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Abstract: Abscission is a tightly regulated developmental process that initiates
in response to endogenous and environmental cues. In an agricultural context,
regulation of abscission has substantial effects on crop productivity and quality.
Crop domestication often selected against abscission of the fruit, allowing easier
harvesting. A better understanding of the mechanisms underlying abscission will,
therefore, inform efforts to improve crop breeding and harvesting practices. In this
article, we summarize our current knowledge of the various regulatory mecha-
nisms involved in abscission. We first review the regulation of abscission zone cells
as they acquire competence in response to abscission signals. We then summarize
the regulation of abscission initiation, exploring the phytohormone signals, devel-
opmental factors, and environmental cues regulating the initiation of abscission.

Keywords: abscission zone, abscission activation, phytohormone, transcription
factor, kinase

1 Introduction

Abscission is a highly programmed developmental process, that allows
plants to shed ripe fruit and senescent, injured, infected, or otherwise
dispensable organs (Addicott, 1982; Osborne, 1989). Abscission results
in the shedding of vegetative and reproductive organs in response to
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developmental and environmental cues. In an agronomic context, abscission
is a key factor that affects yield and quality of crops. Hunter-gatherers
domesticated the wild ancestors of current-day crops by selecting cereals
with reduced abscission, thus decreasing seed and fruit dispersal and
increasing yield (Lewis et al., 2006; Fuller, 2007; Onishi et al., 2007). The
improvement of organ abscission traits is still pursued by crop breeders
today (Jiang et al., 2019) and has been extended to include horticultural crops
such as fruits, vegetables, and flowers. For example, in tomato (Solanum
lycopersicum), jointless mutants are characterized by defective development
of the pedicel abscission zone (AZ) (Mao et al., 2000). The pedicels (or stems
connecting the fruits to the rest of the plant) normally remain attached to
the fruit in jointed tomato varieties. In jointless mutants, the pedicel AZ does
not form, even though AZs between other organ boundaries such as at the
base of the leaf or the calyx (sepals) are unaffected. Commercially, this trait
has been introduced into many tomato varieties by classical breeding, since
during mechanical harvesting of jointless tomato fruits, the pedicel separates
from the fruit and remains attached to the parent plant, thus preventing
damage to other fruits during picking and packing.

Many fruit-bearing trees produce abundant flowers to maximize pop-
ulation survival by generating large numbers of fruits and seeds. During
fruit setting, most flowers and young fruits are shed as the mother plant
cannot sustain their growth until they reach maturity: this is the so-called
physiological fruit drop. In fruit production, excessive abscission results in
uneconomical fruit production. Conversely, too little abscission may lead to
overloading of the mother plant, which may bear large numbers of fruits
with small sizes (Estornell et al., 2013; Tranbarger and Tadeo, 2020). For
instance, litchi (Litchi chinensis) plants produce many inflorescences with
100–250 female flowers per inflorescence. However, over 95% of the initial
female flowers cannot develop into mature fruits following three distinct
waves of abscission (Stern et al., 1995; Mitra et al., 2005). In such cases,
reducing the proportion of flowers/fruitlets by abscission is a major goal
in fruit crop breeding to increase productivity while not overburdening the
mother plant (Yuan and Huang, 1988; Mitra et al., 2005).

In ornamental crops, such as roses (Rosa sp.) and lilies (Lilium longiflorum),
how long a flower remains intact before petals start to fall off due to abscis-
sion affects ‘vase life’ and thus is a critical factor in the determination of their
ornamental value (Lombardi et al., 2015; Gao et al., 2019). Therefore, rose
cultivars that were prone to early petal abscission have gradually become
obsolete over the course of cut rose breeding.

A generally accepted model for the abscission process includes four phases
(Bleecker and Patterson, 1997; Patterson, 2001; Estornell et al., 2013): phase A,
undifferentiated cells differentiate into an anatomically discrete AZ; phase B,
the AZ acquires the competence to respond to abscission signals; phase C,
the AZ cells are activated by abscission signals, leading to cell separation;
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and phase D, which partially overlaps with phase C, the remaining portion
of the AZ on the plant trans-differentiates into a protective layer. After the AZ
has formed (phase A), it may stay in a quiescent state from days to months
until the AZ becomes competent (phase B) to respond to signals as noted
above. Therefore, phases B and C are tightly associated with the timing of
abscission initiation.

Over the past several decades, genetic and mutational studies, especially
with model plants such as Arabidopsis (Arabidopsis thaliana) and tomato
(Solanum lycopersicum), have identified many of the molecular components
involved in the regulation of organ abscission activity. In this article, we
summarize recent advances on the regulatory mechanisms underlying
phases B and C of abscission. We initially address the regulation of AZ
cells acquiring the competence to respond to abscission signals and then
delve into the regulation of activation of abscission. Of particular interest
are the influence of phytohormones, plant developmental stages, and
environmental cues on these two critical phases.

2 Acquisition of Competence for Abscission Activation

The role of ethylene in the abscission process was inadvertently discovered
almost a century ago (Abeles et al., 1992), while our knowledge of a role for
auxin in abscission dates back over 50 years (Addicott, 1982). A commonly
accepted model posits that abscission cannot occur when a continuous
polar flow of auxin passes through the AZ. Auxin depletion renders the AZ
sensitive to ethylene signals for the initiation of abscission. The depletion of
auxin flow through the AZ may be a consequence of decreased biosynthesis
in the source tissue (abscising organ), or inhibition of polar auxin transport
(Bangerth, 1989; Dhanalakshmi et al., 2003; Blanusa et al., 2005; Dal Cin et al.,
2009; Celton et al., 2014; Kuhn et al., 2014; Meir et al., 2015).

As early as in 1936, it was demonstrated that in Coleus, application of auxin
onto petioles with excised leaf blades delayed petiole abscission (La Rue,
1936). Later, Louie and Addicott (1970) reported that in cotton (Gossypium
hirsutum), auxin applied onto the distal side of the cut petiole inhibited petiole
abscission, as expected. However, auxin applied to the proximal side of the
stem accelerated the onset of abscission instead (Louie and Addicott, 1970).
These observations suggested that the reversal of the auxin gradient across
the AZ is critical for the initiation of abscission. Intriguingly, the application
of auxin at both the distal and proximal sides of the stem at various con-
centrations and ratios between the two sides indicated that the magnitude
of the auxin gradient across the AZ determined the rate of abscission, not
the absolute amount of auxin flowing through the AZ (Louie and Addicott,
1970).
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2.1 Auxin Functions in Floral Organ Abscission

Auxin depletion has been documented during various stages of plant
growth and development, leading to the detachment of senescing leaves and
flowers, and fruits following their ripening. During floral organ abscission,
the shedding of unfertilized or male flowers may be ascribed to the low
levels of endogenous auxin produced by the ovary (van Doorn and Stead,
1997). In begonia (Begonia× semperflorens-cultorum), abscising male flower
buds accumulate much lower auxin levels than nonabscising female flowers,
and the seasonal variation in male bud shedding coincides with a reduction
of the auxin indole-3-acetic acid (IAA) contents in the buds (Hanischtencate
et al., 1975). In the Easter lily (L. longiflorum), two closely related genotypes
showed obvious differences in the context of petal wilting/abscission. The
tepals of L. longiflorum wilted substantially during senescence but did not
shed, whereas the tepals of L. longiflorum Asiatic hybrid (L.A.) abscised turgid
(Lombardi et al., 2015). Auxin levels correlated with the observed level of
floral organ abscission and wilting, with high auxin content in L. longiflorum,
but much lower auxin levels in the tepals of Lilium L.A. (Lombardi et al.,
2015). An auxin gradient across the AZ has also been observed during
abscission for the pedicel AZ in tomato and the petal AZ in roses. In tomato,
the auxin distribution in the pedicel AZ was determined using the synthetic
auxin-responsive promoter DR5 driving the expression of the β-glucuronidase
reporter gene in the DR5pro : GUS construct (Ma et al., 2015). In rose, an
immunofluorescence assay using an anti-IAA monoclonal antibody allowed
the visualization of auxin distribution during petal abscission (Liang et al.,
2020). Both studies demonstrated that the transport of auxin through the AZ
decreases during the process of organ abscission. In a petal abscission-prone
rose cultivar (R. hybrida cv. Golden Shower), petals shed without wilting.
Application of exogenous auxin onto the flowers of this cultivar induced
petal wilting, but prevented their abscission (Liang et al., 2020).

In cut flowers from the orchid Dendrobium, the floral buds at the top of the
inflorescence stalk exhibit early yellowing and abscised. Application of an
auxin transport inhibitor or an auxin action inhibitor to the stigma of open
flowers induced high flower abscission rates (Rungruchkanont et al., 2007).
In yellow lupine (Lupinus luteus L.), disturbing polar auxin transport caused
a reversal of the spatial gradient of IAA, and led to flower abscission (Kucko
et al., 2020). In tomato, removal of the flower from the pedicel triggered the
abscission of the remaining pedicel. Exogenous auxin placed on the cut sur-
face of the pedicel counteracted the effect of flower removal (Meir et al., 2010).
Several additional reports have shown that exogenously applied auxin pre-
vented or delayed abscission of flowers and floral parts such as styles and
stamens (van Doorn and Stead, 1997). Accordingly, exogenous auxin treat-
ments can extend the vase life of many cut flowers, such as in Dendrobium,
Geraldton wax flower (Chamelaucium uncinatum), and poinsettia (Euphorbia
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pulcherrima) (Gilbert and Sink, 1971; van Doorn and Stead, 1997; Abebie et al.,
2008).

The modulation of auxin flow results from changes in the transcript abun-
dance of many genes involved in auxin biosynthesis, signal transduction,
and transport. The functions of auxin pathway genes on floral organ abscis-
sion have been widely investigated. Endogenous auxin levels may be mod-
ulated by expressing the bacterial genes iaaL and iaaM: the encoded iaaL
enzyme converts endogenous IAA into its inactive conjugated form IAA-Lys,
whereas iaaM catalyses the conversion of Trp into an IAA precursor. In Ara-
bidopsis, manipulation of auxin levels specifically within the floral organ AZ
can be accomplished by expressing iaaL and iaaM under the control of the
floral AZ-specific ARABIDOPSIS DEHISCENCE ZONE POLYGALACTUR-
ONASE 2 (ADPG2) promoter. The iaaL transgenic plants were characterized
by lower IAA levels in the floral AZ, resulting in premature shedding. By
contrast, iaaM transgenic plants showed increased IAA levels and delayed
floral organ shedding (Basu et al., 2013).

Turning away from auxin biosynthesis and focusing on auxin signalling
components, the proteins encoded by the Aux/IAA INDUCIBLE gene family
contain a potent transcriptional repression domain and localize to the
nucleus via a shared nuclear localization signal. Aux/IAA proteins form
heterodimers with Auxin Response Factors (ARFs) transcriptional regu-
lators, which bind to the conserved cis-acting Auxin Responsive Element
(AuxRE) within auxin-inducible promoters (Roosjen et al., 2018). It was
first reported in Arabidopsis that ARF1, ARF2, ARF7, and ARF19 were
partially redundant, and functioned in floral organ abscission (Ellis et al.,
2005; Okushima et al., 2005). A mutation in ARF2 alone delayed the onset
of floral organ abscission, which was further enhanced by the loss of ARF1
activity, or by the loss of both ARF7 and ARF19 activities (Ellis et al., 2005).
In addition, transactivation of the gain-of-function AXR3-1 gene to disrupt
auxin signalling in Arabidopsis floral organ AZ demonstrated a requirement
for the IAA signalling pathway to initiate abscission (Basu et al., 2013).
Moreover, the expression of the ARF gene family was investigated during
floral organ abscission in tomato (Guan et al., 2014). The expression of the
Aux/IAA gene family during floral organ abscission was investigated in
Mirabilis jalapa (Meir et al., 2006), Cestrum elegans (Abebie et al., 2008), and
rose (Gao et al., 2016). The function of Aux/IAA genes involved in floral
organ abscission was also tested in rose: the downregulation of RhIAA16
by virus-induced gene silencing (VIGS) in rose promoted premature petal
abscission (Gao et al., 2016).

2.2 Auxin Functions in Ripening-induced Fruit Abscission

Tomato as a model plant for fruit ripening has been widely used to study
hormone distribution in fruit during ripening. Auxin levels are high during
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the early ripening phase mainly attributed to auxin production in the seeds.
Later, auxin levels decrease during ripening and coincides the with matura-
tion of the seeds. Meanwhile, ripening-associated and early auxin-responsive
Gretchen Hagen 3 (GH3) genes may function in decreasing the free IAA con-
centration, and the low auxin levels in the remaining fruit tissues may be
an effect of their action (Kumar et al., 2014). The corresponding changes in
fruit auxin content are then thought to influence the auxin gradient in the
pedicel AZ, since polar auxin transport originates from the fruit. It is intrigu-
ing that floral organs are shed following pollination, even though ovules still
express AUXIN SYNTHASE genes at relatively high levels, which should
sustain high auxin levels and thus prevent organ abscission. One possible
explanation suggests the existence of a block in the auxin transport in use-
less floral organs including petals, and stamens, which become obsolete after
successful pollination.

To date, four auxin transporter families have been reported, including
AUX/LAX (AUXIN1/LIKE-AUX1), PIN (PIN-FORMED, auxin efflux car-
riers), ABCB (ATP-binding cassette-B (ABCB)/P-glycoprotein (PGP)), and
PILS (PIN-Likes) (Zazimalova et al., 2010; Barbez et al., 2012). In tomato,
ribonucleic acid (RNA) interference-mediated silencing of PIN1 expression
accelerated pedicel abscission by simultaneously raising auxin accumulation
in the ovary and decreasing the auxin content in the AZ (Shi et al., 2017),
suggesting that auxin transport mediates the source-sink auxin balance to
influence organ abscission.

2.3 Auxin Functions in Leaf Abscission

Leaf abscission takes a relatively long time compared with floral organ abscis-
sion, and no functional AZ forms at the base of the leaf in monocots and
annual dicots, such as the model plants rice (Oryza sativa) and Arabidopsis
respectively. The leaves senesce and wilt on the plant, but do not abscise.
This phenomenon is termed as marcescence (Meir et al., 2015), and restricts
research dedicated to the elucidation of leaf abscission.

In Populus (Populus trichocarpa), the auxin-responsive reporter GH3 : GUS
revealed changes in auxin content during the dark-induced abscission of
leaves (Jin et al., 2015). The GH3 : GUS reporter showed a strong signal
before the beginning of the shading treatment, but became much weaker
after transfer into shade. Intriguingly, with the shading treatment, a new
local auxin response maximum emerged on the abaxial side of the petiole
upon shading, and gradually expanded to the adaxial side of the petiole
preceding the formation and maturation of the AZ. In addition, applica-
tion of auxin delayed dark-induced leaf abscission of Populus (Jin et al.,
2015). Similarly, application of auxin can delay petiole abscission in Coleus
and cotton (La Rue, 1936; Louie and Addicott, 1970). In tomato, a gene
encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) regulates
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ethylene-induced petiole abscission through modulating expression of genes
related to auxin transport and signalling components in the petiole AZ (Ma
et al., 2015). In addition, a recent study showed that hydrogen sulfide (H2S)
can inhibit ethylene-induced petiole abscission through modulating the
expression of genes related to auxin signalling components (Liu et al., 2020).
However, the mechanisms of KD1 and H2S regulating the genes involved in
auxin transport and signalling need to be clarified.

2.4 Regulation of the Establishment of Competence

How is abscission competence established? Two possible mechanisms differ
in the extent of cellular differentiation and the number of cells receptive to
abscission signal(s): (i) the entire separation layer may be pre-differentiated
to sense changes in the auxin gradient, or (ii) alternatively only a few cells
within the separation layer sense the changing of auxin gradient and then
these cells radially secrete a secondary signal outwards. In impatiens (Impa-
tiens sultani), small fragments originating from the dissection of a petiole AZ
cross-section retained the ability to undergo cell separation independently
of the other fragments (Sexton, 1979). In tomato, cortical cells from the leaf
AZ abscised after exposure to ethylene even after being dissected away
from vascular cells (Tucker and Yang, 2012). These results suggest that
cell-to-cell interaction within the AZ is not a prerequisite for organ shedding,
and that the cells within the separation layer across the entire petiole are
pre-differentiated to abscise.

Bean (Phaseolus vulgaris) produces a diffusible signal within the vascular
tissue of the leaf AZ to induce separation via leaf cortex cells (Thompson and
Osborne, 1994). These results indicated that a few cells within the separation
layer establish abscission competence by perceiving the decline in the auxin
gradient and transducing the signal to other cells of the separation layer to
initiate abscission. An analysis of the auxin gradient in tomato pedicel AZ
using the DR5 : GUS auxin-responsive reporter system showed that auxin
signals were detected in vascular tissue of the AZ (Ma et al., 2015; Shi et al.,
2017). Therefore, it is reasonable to speculate that cells in the vascular tissue
may constitute the first sensory target of the auxin gradient, assuming that
the auxin gradient is the critical factor that establishes abscission competence.

3 Phytohormones Regulate the Activation of Organ
Abscission

In addition to the role of auxin in establishing competence in the AZ,
phytohormones have major roles in regulating the activation of organ abscis-
sion. Some phytohormones such as gibberellin (GA), and brassinosteroid
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(BR), inhibit abscission; other phytohormones such as ethylene, abscisic
acid (ABA), jasmonic acid (JA), and cytokinin (CTK), accelerate abscission
(Estornell et al., 2013; Patharkar and Walker, 2019).

3.1 Other Abscission-inhibiting Phytohormones

GA has been described as an inhibitor of fruit abscission. In peach (Prunus
persica), exogenous applications of GA blocked fruit shedding (Stutte and
Gage, 1990). In citrus, pollination increased GA levels in the ovary, leading
to inhibition of fruit abscission (BenCheikh et al., 1997; Mahouachi et al.,
2009). Fruitlet abscission induced by defoliation reduced carbohydrate con-
tents by removing the major source of photosynthates but did not affect GA
levels (Mehouachi et al., 2000). Few studies have explored the role of BRs in
organ abscission. In citrus, exogenous BR treatment inhibited leaf and fruit
abscission, suggesting an inhibitory role for BRs in organ abscission (Iwahori
et al., 1990).

3.2 Abscission-accelerating Phytohormones

Ethylene plays a main role as positive regulator of abscission and senes-
cence. Genes involved in ethylene biosynthesis and signal transduction
participate in the regulation of organ abscission. In Arabidopsis, the mutants
ethylene-insensitive 2 (ein2) and ethylene response 1 (etr1-1) inhibit floral organ
abscission (Patterson and Bleecker, 2004). Similarly, the tomato ethylene
receptor mutants, never ripe (nr), sletr1-1, and sletr1-2, affect ethylene receptor
function and ethylene sensitivity, thereby delay fruit ripening and organ
abscission (Lanahan et al., 1994; Whitelaw et al., 2002; Okabe et al., 2011). In
the wishbone flower (Torenia fournieri), heterologous expression of a mutated
carnation (Dianthus caryophyllus) ethylene receptor gene Dc-ETR1nr, that
confers ethylene insensitivity, inhibited petal abscission (Tanase et al., 2011).
Other examples of ethylene receptors functioning in organ abscission have
been reported in peach (P. persica), larkspur (Delphinium spp.), and mango
(Mangifera indica) (Rasori et al., 2002; Kuroda et al., 2003; Ish-Shalom et al.,
2011). In addition, in tomato, reducing the expression of the EIN3-like gene
LeEIL retarded flower pedicel abscission and fruit ripening (Tieman et al.,
2001). EIN3 encodes a transcription factor that acts downstream of the
ethylene pathway to modulate gene expression. In litchi, the expression of
EIN3-like genes LcEIL2/3 is strongly upregulated during ethylene-induced
fruitlet abscission. Heterologous expression of LcEIL2/3 in wild-type Ara-
bidopsis and the double ein3 eil1 mutants accelerated floral organ abscission.
LcEIL2/3 directly induced the expression of genes involved in cell wall
remodelling, such as the cellulases LcCEL2/8 and the polygalacturonases
LcPG1/2, as well as the ethylene biosynthetic genes ACC synthase LcACS1/4/7
and ACC oxidase LcACO2/3 (Ma et al., 2020).
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ABA was originally isolated from young cotton fruits, and called abscisin
II, since it accumulated during abscission (Ohkuma et al., 1963). High levels
of ABA in floral organs and fruit AZs prior to abscission have been reported
in many plant species (Sagee and Erner, 1991; Vernieri et al., 1992; Zacarias
et al., 1995). Therefore, ABA was previously assumed to be directly associated
with abscission. However, ABA is now mostly considered to be associated
with the activation of organ senescence rather than abscission itself. In citrus,
exogenous ABA treatment did not affect abscission in intact plants. However,
high amounts of ABA did promote ethylene biosynthesis and accelerated
abscission in aged or injured detached tissues (Goren, 1993). Similarly, exoge-
nous ABA treatment had no effect on abscission in blue flax (Linum lewisii)
(Addicott, 1977) and montbretia (Crocosmia × crocosmiiflora) (Mckenzie and
Lovell, 1992).

The effects of ABA on abscission appear to be dependent on interac-
tions with other phytohormones rather than ABA itself (Estornell et al.,
2013). In citrus, ABA may induce accumulation of the ethylene precursor
1-aminocyclopropane-1-carboxylic acid (ACC), leading to ethylene biosyn-
thesis and fruit abscission (Gomez-Cadenas et al., 2000). In apple (Malus
domestica), ABA accumulated in the cortex of abscising fruitlets but not
in nonabscising fruitlets. ABA may cooperate with other phytohormones,
resulting in the downstream activation of the AZ (Eccher et al., 2013). In
Arabidopsis, ABA and JA are both required to induce the expression of the
QUARTET2 gene, which encodes a polygalacturonase, during floral organ
abscission (Ogawa et al., 2009).

JA has been reported to accelerate abscission. Exogenous methyl jasmonate
treatments induced leaf abscission in bean (Ueda, 1996), as well as fruit
abscission in citrus, apple, and tomato (Hartmond et al., 2000; Beno-Moualem
et al., 2004; Dal Cin et al., 2007). In Arabidopsis, MADS-box transcription
factor AGAMOUS (AG) mutant ag-1, exhibited delayed sepal senescence
and abscission, and reduced JA content in the flower of ag-1. Other mutants
deficient in JA, defective in anther dehiscence 1 (dad1) and delayed dehiscence 2
(dde2), exhibited delayed sepal senescence and abscission as well. Exogenous
methyl jasmonate treatments rescued the abscission phenotypes of ag-1, dad1
and dde2 flowers, demonstrating the role of JA in organ abscission (Jibran
et al., 2017).

CTKs may promote abscission, although high CTK concentrations can
also inhibit abscission (Pierik and Abbadi, 1972; Trueman, 2010). A synthetic
CTK-like chemical thidiazuron (TDZ) has been widely used as defoliant to
facilitate mechanical harvesting for many crops, especially cotton (Xu et al.,
2019). Although the exact mode of TDZ action is not understood, it has been
demonstrated that a higher concentration of TDZ application increased ethy-
lene accumulation in cotton, which resulted in leaf abscission (Suttle, 1986).
Several other studies also suggest that CTK crosstalks with ethylene to
regulate organ abscission (Dal Cin et al., 2007; Xu et al., 2019). It appears that
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CTKs may play indirect roles on abscission, depending on interactions with
other hormones.

3.3 Crosstalk of Phytohormones in Abscission

3.3.1 Auxin and Ethylene Crosstalk
Unlike the synergistic interaction between auxin and ethylene in controlling
specific growth and developmental processes, such as root elongation and
root hair formation (Muday et al., 2012), the antagonistic effects of auxin and
ethylene on organ abscission have been well established by classical physio-
logical experiments (Addicott, 1982; Sexton et al., 1985). The auxin-ethylene
interaction is outlined in a model originally proposed by Rubinstein and
Leopold (1963) with regard to organ abscission, and subsequently further
demonstrated by Abeles and Rubinstein (1964) and Sexton and Roberts
(1982) (Rubinstein and Leopold, 1963; Abeles and Rubinstein, 1964; Sexton
and Roberts, 1982). However, to date, the molecular mechanisms underlying
the acquisition of ethylene sensitivity in response to auxin deficiency in the
AZ are still far from understood. Changes in the transcriptome of the pedicel
AZ were investigated in tomato during the rapid acquisition of ethylene
sensitivity following flower removal. The results suggested that acquisition
of ethylene sensitivity in the AZ was associated with expression changes of
auxin-related genes caused by auxin depletion (Meir et al., 2010). Ethylene
has been shown to affect auxin levels by either inhibiting auxin transport to
the AZ (Morgan and Gausman, 1966; Riov and Goren, 1979) or by increasing
the rate of the auxin conjugation to reduce active IAAs (Beyer and Morgan,
1970; Ernest and Valdovinos, 1971; Riov and Goren, 1979). Interestingly, in
tomato, application of 1-Methylcyclopropene (1-MCP), an ethylene inhibitor,
downregulated expression of the auxin transporter SlPIN1 and delayed
flower abscission, suggesting that ethylene may positively regulate tran-
scription of SlPIN1 and auxin efflux to affect the flower abscission process
(Shi et al., 2017).

3.3.2 Ethylene and ABA Crosstalk
ABA and ethylene are both accelerators of abscission. ABA and ethylene
signals are integrated to mediate plant growth and development, as well as
plant responses to biotic and abiotic stresses (Zhu and Guo, 2008; Ton et al.,
2009; Zhang et al., 2009; Zhao and Guo, 2011; Luo et al., 2014). Similarly, it
was shown that in citrus, ABA acts as a modulator of ACC levels, leading
to the accumulation of ethylene during abscission (Gomez-Cadenas et al.,
2000).

3.3.3 Ethylene and JA Crosstalk
Several studies have described the antagonistic or synergistic roles of JA
and ethylene in plant development and defence (Lorenzo et al., 2003;
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Memelink, 2009; Zhu et al., 2011b). In the context of organ abscission,
reduction of JA levels observed in the ein2 ethylene-insensitive mutants
caused an ethylene response with accelerated abscission (Kim et al., 2013). In
addition, a double mutant between the JA receptor mutant delayed abscission
4 (dab4-1, also called coronatine insensitive 1 (coi1)) and ein2-1 rescued ethylene
sensitivity for floral organ abscission (Kim et al., 2013; Kim, 2014). These
results indicated that JA acts as a negative regulator of ethylene signalling in
the context of organ abscission.

4 Developmental and Environmental Cues Alter
the Activation of Organ Abscission

Organ abscission is a highly programmed process that simultaneously
responds to endogenous (physiological modifications) and exogenous
(seasonal changes in the environment) cues (Taylor and Whitelaw, 2001;
Sawicki et al., 2015). Here, we summarize the effects of prominent endoge-
nous and exogenous cues on organ abscission.

4.1 Senescence

Abscission is frequently coupled with senescence as both processes are
activated by many of the same developmental and environmental factors.
Abscission is typically the terminal phase of senescence, while abscission can
also take place in the absence of senescence, and vice versa. Ethylene is the
major phytohormone that regulates both abscission and senescence. There-
fore, mutants in ethylene-related genes may affect both processes and exhibit
phenotypes related to abscission and/or senescence, as in the Arabidopsis
ethylene-insensitive mutants etr1-1 and ein2-1 (Patterson and Bleecker, 2004).
In addition, the ectopic expression of the MADS-box transcription factors
AGAMOUS-like 15 (AGL15), AGL18, and Forever Young Flower (FYF) in
Arabidopsis influenced flower senescence as well as floral organ abscission
(Fernandez et al., 2000; Fang and Fernandez, 2002; Adamczyk et al., 2007;
Chen et al., 2011b; Chen et al., 2015). However, many genes related to abscis-
sion do not necessarily affect the process of senescence, which is especially
true for genes with high expression in the AZ. For example, in Arabidopsis,
Inflorescence Deficient in Abscission (IDA) and NEVERSHED (NEV) regulate
floral organ abscission without affecting flower senescence (Butenko et al.,
2003; Liljegren et al., 2009).

4.2 Pollination

In many plants, the abscission of floral organs and fruits is tightly linked
to reproductive development events such as pollination and fruit ripening.
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For example, floral organs begin to shed after pollination. The systematic
signals generated by the act of pollination should simultaneously guarantee
fruit bearing, while also initiate the detachment of obsolete floral organs like
petals and stamens (Kim, 2014). In addition, nutrient mobilization between
pollinated flowers (sink tissues) and the rest of the plant (source) takes place
up until abscission (Jones, 2013). Ethylene has been suggested as one such
systematic signal since an ethylene burst after pollination accelerates abscis-
sion (van Doorn and Woltering, 2008; Jones, 2013). We still do not know how
the accumulation of post-pollination ethylene accelerates floral organ shed-
ding and not that of fruits. Other developmental factors may underlie and
coordinate distinct fruit and floral organ shedding, besides nutrition mobi-
lization and ethylene production.

4.3 Carbohydrates

Abscission often proceeds following the deprivation of, or the competi-
tion for, limited carbohydrates/photo-assimilates (Addicott and Lynch,
1955). A major decline in carbohydrate levels in abscising organs has been
observed in several plant species, including rose (Borochov et al., 1976),
pepper (Capsicum annuum) (Aloni et al., 1997), citrus (Gomez-Cadenas et al.,
2000), apple (Zhu et al., 2011a), and litchi (Peng et al., 2013). In Dendrobium
and pepper, sucrose feeding can inhibit flower abscission (Aloni et al., 1997;
Pattaravayo et al., 2013). Both photosynthesis and the management of carbo-
hydrate reserves can affect organ abscission. In pepper, abscission-prone and
abscission-resistant cultivars differ in their potential for sucrose production
and starch accumulation in the light (Aloni et al., 1996; Marcelis et al., 2004).
In citrus, defoliation treatments at anthesis induced fruit abscission due to a
shortage of carbohydrates (Gomez-Cadenas et al., 2000; Iglesias et al., 2003).
In apple, the frequency of fruit abscission is inversely correlated with the
number of leaves borne by the shoot carrying the fruits (Atkinson et al., 2002;
Iwanami et al., 2012). Interestingly, it was reported that sugar levels regulate
transcript levels of an auxin biosynthesis gene ZmYUC in developing seeds
and modulate kernel growth by altering auxin biosynthesis (LeClere et al.,
2010).

Organ AZs are located between source and sink organs. Carbohydrates
transported from source to sink organs thus pass through the phloem of the
AZ. It is, therefore, reasonable to assume that carbohydrate transport may
play a key role in the determination of organ sensitivity toward abscission.
Indeed, a decrease of the glucose gradient in the pedicel AZ in apple triggered
fruit abscission (Beruter and Droz, 1991). We also observed that the transport
of sucrose to petals through the phloem of the AZ decreased during petal
shedding in rose. In addition, sucrose transport during petal abscission is
regulated by auxin via the RhARF7-RhSUC2 module (Liang et al., 2020).
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4.4 Reactive Oxygen Species (ROS)

Reactive Oxygen Species (ROS) accumulates in response to abiotic and biotic
stresses such as low temperature, drought, salt, and pathogen attack (Baxter
et al., 2014). ROS are known to induce organ abscission, and ROS scavengers
inhibit organ abscission (Michaeli et al., 1999; Michaeli et al., 2001; Sakamoto
et al., 2008b). In apple, fruitlet abscission along the cortex cell layer may be
orchestrated by an interaction between phytohormones (ABA and ethylene)
and other signal molecules like ROS (Botton et al., 2011; Eccher et al., 2013). It
was reported that ethylene can induce ROS production during the abscission
process. In tobacco (Nicotiana tabacum), peroxidase activity increased during
ethylene-induced pedicel abscission (Henry et al., 1974). In the Capsicum
genus, it was also reported that hydrogen peroxide (H2O2) contributes to
ethylene-induced leaf abscission (Sakamoto et al., 2008a). Interestingly, in
olive (Olea europaea), ROS induced abscission in response to ethylene but
only in leaves and not in fruits (Goldental-Cohen et al., 2017).

4.5 Light

Light quality and quantity are critical for light-mediated plant development,
known as photomorphogenesis. Incubation in the dark, as well as low-light
treatments, both induce flower and fruit abscission in several plants, includ-
ing apple, cotton, grapevine (Vitis vinifera) and pepper (Aloni et al., 1996;
Ferree et al., 2001; Marcelis et al., 2004; Zhu et al., 2011b). It has been suggested
that phytohormones may be recruited to regulate abscission in response to
light stress. It is well-known that auxin plays a critical role in the photomor-
phogenesis by controlling cell elongation in response to the light environ-
ment (Franklin, 2016). For instance, Coleus leaves exhibited increased free
auxin production in response to decreasing far-red and increasing red light
(Mao et al., 1989).

4.6 Water Stress

Many plant species experience early flower and fruit abscission when
subjected to abiotic stresses. Drought diminishes the plant water content
and induces premature flower and fruit shedding. A recent study in tomato
demonstrated that drought-induced pedicel abscission was regulated by
phytosulfokine (PSK), a peptide hormone (Reichardt et al., 2020). Under
drought condition, phytaspase 2, a subtilisin-like protease of the phytaspase
subtype, generates PSK in tomato pedicels by aspartate-specific processing
of the PSK precursor. PSK induces the expression of the cell wall hydrolase
TAPG4 gene to activate pedicel abscission. In addition, the expression
of TAPG4 regulated by PSK is in an auxin- and ethylene-independent
manner (Reichardt et al., 2020). However, any interaction between PSK
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and auxin- and ethylene-mediated regulation of abscission remains to be
investigated.

4.7 Temperature

Hostile temperature-influencing organ abscission is a complex process,
depending not only on temperature regime but also different growth stages
and different tolerance of genotypes (Sawicki et al., 2015). High temperature
leading to accelerate floral organ and fruit abscission has been reported in
various plant species, such as cotton, soybean (Glycine max), bean, peach,
grapevine, apricot (Prunus armeniaca), avocado (Persea americana), and citrus
(Sedgley and Annells, 1981; Monterroso and Wien, 1990; Reddy et al.,
1992; Rodrigo and Herrero, 2002; Yuan and Burns, 2004; Zhao et al., 2005;
Gunes, 2006; Couto et al., 2007; Greer and Weston, 2010; Hoque et al., 2015).
In pepper, the changing of ethylene biosynthesis and auxin content and
transport in high temperature-induced abscission indicated that the reduc-
tion of auxin transport capacity associates with high temperature-induced
reproductive organ abscission (Huberman et al., 1997). In addition, in cotton,
measurement of nonstructural carbohydrate indicated that decreasing
of nonstructural carbohydrate is a key factor for fruit abscission under
high temperature and enhanced UV-B radiation conditions (Zhao et al.,
2005).

Relative low temperature can either accelerate or delay organ abscission.
The most obvious example of low temperature-induced organ abscission is
the seasonal shedding of leaves in autumn of temperate regions, which is
triggered by changes in photoperiod, temperature, and water availability
(Addicott, 1982). In postharvest handling of cut flower, low temperature
is normally beneficial for inhibiting abscission. But the natural habitats of
plant species determine the effect of temperature on the organ abscission.
Temperature below the limitation of the individual species temperature
‘window’ can cause chilling injury (Reid 1991; Ascough et al., 2005). Recently,
a multiple year study found that in tropical regions temperature is particu-
larly important during inflorescence and fruit bunch development, and has
an effect later on the ripe fruit abscission timing in oil palm (Elaeis guineensis)
(Tisné et al., 2020).

5 Regulatory Genes Involved in Activation of Organ
Abscission

Over the past three decades, many regulatory genes involved in the acti-
vation of abscission have been identified, especially in the context of floral
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Figure 1 A gene regulatory network that activates floral organ abscission by auxin
and ethylene, with the integrated data from multiple species such as Arabidopsis, tomato,
and rose.

organ abscission (Figure 1). Here, we summarize most of the regulatory genes
involved in the activation of organ abscission, although the relative position
of many of these genes along the regulatory pathway is unknown.

5.1 IDA signalling

The last 20 years has witnessed the identification of a regulatory pathway
that is essential for floral abscission in Arabidopsis. The receptor-like kinase
RLK5 is expressed specifically in the floral organ AZs. Silencing of RLK5 (also
named HAESA (HAE)) delayed floral organ abscission (Jinn et al., 2000). In
the Arabidopsis IDA mutant, most floral organs (petals, sepals, and stamens)
remain attached while the silique grows and matures. The IDA gene encodes
a small protein with an N-terminal signal peptide. IDA is part of a small
five gene family that are functionally equivalent: indeed, they all accelerated
floral organ abscission when constitutively over-expressed (Butenko et al.,
2003). IDA peptides bind to the HAE or HAE-LIKE 2 (HSL2) receptors.
HAE/HSL2 works with SOMATIC EMBRYOGENESIS RECEPTOR-LIKE
KINASE 1/2/3/4 (SERK1/2/3/4) to activate a Mitogen-Activated Protein
(MAP) kinase cascade that regulates floral organ abscission (Cho et al., 2008;
Stenvik et al., 2008; Meng et al., 2016; Santiago et al., 2016).

A screen for Arabidopsis mutants that restored abscission in the ida
mutant background identified a KNOTTED-like homeobox gene, KNAT1, as
a suppressor of the abscission defects seen in ida. IDA signalling represses
KNAT1 expression, whose gene product KNAT1 normally induces KNAT2
and KNAT6 expression to activate abscission (Shi et al., 2011). Later, the
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MADS-domain transcription factor AGL15 was described as a putative
regulator of HAE expression. Overexpression of AGL15 resulted in decreased
expression of HAE as well as a delayed abscission phenotype. MAP
kinase-mediated phosphorylation of AGL15 is necessary for full HAE
expression, suggesting a positive feedback loop controlling HAE expression
(Patharkar and Walker, 2015). The functions of IDA-like peptides have also
been investigated in citrus, litchi, lupine, oil palm, and Poplar (Estornell et al.,
2015; Stø et al., 2015; Ying et al., 2016; Wilmowicz et al., 2018; Tranbarger
et al., 2019).

Several genes and mutants that directly or indirectly affect IDA signal
transduction in Arabidopsis have been identified. An ADP-ribosylation fac-
tor GTPase-activating protein NEV targets the Golgi apparatus and protein
secretion, which modulates floral organ abscission (Liljegren et al., 2009).
EVERSHED, also known as SUPPESSOR OF BIR1 1 (SOBIR1), and CAST
AWAY (CST) encode receptor-like kinases that regulate floral organ abscis-
sion, possibly through interference of the IDA signalling pathway (Leslie
et al., 2010; Burr et al., 2011; Taylor et al., 2019).

The role of auxin and ethylene in IDA pathway is not addressed, though
the regulatory function of IDA in organ abscission has been well established.
A recent review re-evaluated the role of IDA in organ abscission based on
relevant abscission literatures, and proposed that IDA pathway may be
essential for the final stages of organ abscission, while ethylene may play a
major role in its initiation and progression (Meir et al., 2019).

5.2 Transcription Factors and Kinases

Nine transcription factor families have been reported to be involved in
regulating activation of organ abscission (Table 1). Among them, transcrip-
tion factors involved in ethylene and auxin signalling pathways have been
identified as regulators of abscission activation, including EIN3, ARFs, and
Aux/IAAs. MADS-box genes regulate the activation of floral organ and fruit
abscission in Arabidopsis, tomato, peach, Oncidium, and Cattleya intermedia
orchids, besides the classic functions of MADS-box transcription factors dur-
ing formation of the AZ (Mao et al., 2000; Nakano et al., 2012; Liu et al., 2014).
In addition, members of KNOTTED-LIKE HOMEOBOX, HD-ZIP, DOF, and
Zinc Finger transcription factor families have been found to play important
roles in activation of organ abscission. Moreover, genetic and mutational
studies in Arabidopsis identified several receptor-like kinases involved in
activation of organ abscission, including HAE/HSL2, EVERSHED/SOBIR1,
SERKs, and CST (Cho et al., 2008; Leslie et al., 2010; Burr et al., 2011; Meng
et al., 2016). A NAK-type protein kinase gene in apple also functions in the
activation of organ abscission (Kim et al., 2011).
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Table 1 Regulatory genes involved in the activation of organ abscission.

Gene name Plant species Function Reference

MADS-box transcription factor
AGL15 Arabidopsis Floral organ abscission Fernandez et al. (2000),

Fang and Fernandez
(2002)

AGL18 Arabidopsis Floral organ abscission Adamczyk et al. (2007)
FYF Arabidopsis Floral organ abscission Chen et al., (2011b),

Chen et al. (2015)
AGAMOUS Arabidopsis Floral organ abscission Jibran et al. (2017)
PpMADS4 Peach Floral organ abscission Xu et al. (2008)
OoFYF Oncidium orchid Floral organ abscission Chen et al. (2011a)
CaFYF1/2 Cattleya intermedia Floral organ abscission Chen et al. (2018)
SlFYFL Tomato Fruit abscission Xie et al. (2014)

EIN 3 transcription factor
LeEIL Tomato Floral organ abscission Tieman et al. (2001)
LcEIL2/3 Litchi Fruit abscission Ma et al. (2020)

AP2/EREBP transcription factor
SHN Arabidopsis Protective layer formation Aharoni et al. (2004)
EDF1/2/3/4 Arabidopsis Floral organ abscission Chen et al. (2015)
SlERF52 Tomato Floral organ abscission Nakano et al. (2014)
RhERF1 Rose Floral organ abscission Gao et al. (2019)
RhERF4 Rose Floral organ abscission Gao et al. (2019)

KNOTTED-LIKE HOMEOBOX transcription factor
KNAT1 Arabidopsis Floral organ abscission Shi et al. (2011)
KNAT2/6 Arabidopsis Floral organ abscission Shi et al. (2011)
KD1 Tomato Floral organ abscission Ma et al. (2015)
LcKNAT1 Litchi Fruit abscission Zhao et al. (2020)

HD-ZIP transcription factor
LcHB2/3 Litchi Fruit abscission Ma et al. (2019)
SlREV Tomato Floral organ abscission Hu et al. (2014)

DOF transcription factor
AtDOF4.7 Arabidopsis Floral organ abscission Wei et al. (2010,

Wang et al. (2016)
Zinc finger transcription factor
AtZFP2 Arabidopsis Floral organ abscission Cai and Lashbrook (2008)

ARF transcription factor
ARF1 Arabidopsis Floral organ abscission Ellis et al. (2005)
ARF2 Arabidopsis Floral organ abscission Ellis et al. (2005),

Okushima et al. (2005)
ARF7 Arabidopsis Floral organ abscission Ellis et al. (2005)
ARF19 Arabidopsis Floral organ abscission Ellis et al. (2005)

Aux/IAA transcription factor
RhIAA16 Rose Floral organ abscission Gao et al. (2016)

(continued overleaf)
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Table 1 (continued)

Gene name Plant species Function Reference

Receptor-like kinase
HAE/HSL2 Arabidopsis Floral organ abscission Cho et al. (2008),

Stenvik et al. (2008)
EVERSHED/SOBIR1 Arabidopsis Floral organ abscission Leslie et al. (2010),

Taylor et al. (2019)
SERK1/2/3/4 Arabidopsis Floral organ abscission Lewis et al. (2010),

Meng et al. (2016)
CST Arabidopsis Floral organ abscission Burr et al. (2011)

NAK-type protein kinase
AFSK Apple Floral organ abscission Kim et al. (2011)

6 Concluding Remarks and Perspectives

Over the last decades, genetic and mutational studies have identified many
molecular components involved in the regulation of organ abscission activa-
tion. Although no single common mechanism fits all the types of abscission,
auxin appears to be a critical component for most abscission types. It is well
established that an auxin gradient across the AZ is critical for the initiation
of abscission. However, how AZ cells sense the auxin gradient remains
elusive. Further studies should clarify whether changes in the auxin gradient
through the AZ is sensed by the entire separation layer or a few cells, which
then secrete a secondary signal radially to transmit the abscission signal.
Ethylene also plays a major role in accelerating abscission. The interaction
between auxin and ethylene signalling during abscission is well established
at the physiological level, but a molecular explanation of the classical dogma
behind the ‘balance between auxin and ethylene in abscission’ remains to
be offered. The molecular mechanisms leading to ethylene sensitivity in
response to auxin deficiency in the AZ are far from understood as well. The
roles of phytohormones, and developmental and environmental cues in
activation of organ abscission have been extensively investigated. However,
further research directions are necessary in order to dissect the interactions
between these various cues and the IDA pathway, and how they activate
organ abscission.
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