
Segmental dynamics measured by quasi-elastic neutron
scattering  and  ion  transport  in  chemically-distinct
polymer electrolytes
Katrina Irene S. Mongcopa,† Daniel A. Gribble,† Whitney S. Loo,† Madhusudan
Tyagi,‡, § Scott A. Mullin, # and Nitash P. Balsara*,†,▽,⊗ 

†Department of Chemical and Biomolecular Engineering, University of California, Berkeley,
Berkeley, California 94720, United States

‡National Institute of Standards and Technology Center for Neutron Research, Gaithersburg,
Maryland 20899, United States

§Department  of  Materials  Science and Engineering,  University of  Maryland,  College Park,
Maryland 20742, United States

#Seeo Inc., Hayward, California 94545, United States

▽Materials  Sciences Division,  Lawrence Berkeley National  Laboratory,  Berkeley,  California
94720, United Sates

⊗Joint  Center  for  Energy  Storage  Research,  Lawrence  Berkeley  National  Laboratory,
Berkeley, California 94720, United States



Abstract

We investigate the segmental dynamics and ion transport in two chemically-
distinct polymer electrolytes: poly(cyano 2-cyanoethyl acrylate) (PCEA) and
poly(ethylene  oxide)  (PEO),  and  their  mixtures  with  lithium  bis-
(trifluoromethane)sulfonimide (LiTFSI)  salt.  Quasi-elastic  neutron scattering
experiments  reveal  slow  dynamics  in  PCEA/LiTFSI  relative  to  that  in
PEO/LiTFSI, translating to monomeric friction coefficients that are orders of
magnitude different. In spite of the enhanced salt dissociation in PCEA due to
the presence of polar groups, ion transport is largely dominated by the effect
of increased monomeric friction in the pure polymer. Conductivity in these
systems  is  quantified  through  a  simple  expression  combining  salt
dissociation, the monomeric friction in the pure polymer, and the effect of
added salt on the monomeric friction.
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Introduction

There is  growing interest in shifting towards solid  polymer electrolytes  to

meet the demands for safe, high energy density rechargeable batteries. The

current  state-of-the-art  lithium-ion  battery  consists  of  an  organic  liquid

electrolyte,  typically mixtures of  alkyl  carbonates and salts such as LiPF6,

through  which  lithium  ions  are  shuttled  back  and  forth  between  the

electrodes during charge and discharge. However, the inherent flammability

and incompatibility  of  liquid  electrolytes  with novel  active materials  have

prompted  the  development  of  promising  alternatives  based  on  high

molecular weight polymers.1 Prototypical polymer electrolytes are mixtures

of  poly(ethylene oxide)  (PEO) and lithium bis(trifluoromethane)sulfonimide

(LiTFSI)  salt.2–4 Nitrile  or  cyano-based  polymer  electrolytes  have  also

stimulated  interest  due to  their  high  dipole  moments  and  high  dielectric

constants, favoring interaction with lithium ions.5 

An  important  prerequisite  to  the  applicability  of  these  polymer

electrolytes is an understanding of the mechanism of ion transport in such

systems. It  is  known that the dynamics of the polymer chains, to a large

extent, influence ion conduction in these materials.6,7  In previous work,8 we

quantified the underlying segmental  dynamics in PEO/LiTFSI  mixtures and

established  how  it  affects   ionic  conductivity.  We  extend  this  study  by

comparing the PEO/LiTFSI system to a chemically-distinct polymer electrolyte

consisting of poly(2-cyanoethyl acrylate) (PCEA)/LiTFSI over a wide range of



salt concentrations, elucidating the effect of segmental dynamics on ionic

conductivity in polymers with high dielectric constants. 

Quasi-elastic  neutron  scattering  (QENS)  is  a  powerful  tool  for

understanding the relaxation mechanisms of polymers in space and time.9–11

In this work, we use QENS to investigate dynamics on length scales between

5 and 50 Å and time scales between 0.1 to 2 ns.  Previous work has shown

that the addition of salt slows down the polymer dynamics on these time-

and length-scales.8,12–14 The QENS data are used to determine the effect of

added salt  on  the monomeric  friction  coefficient  in  both  PCEA-  and PEO-

based electrolytes. We explore the relationships between this parameter and

ionic  conductivity  in  the  two  systems.  Ion  transport  depends  on  both

frictional  effects  and salt  dissociation.  Our analysis  enables decoupling of

these effects. 

Experimental Methods

Synthesis of poly(2-cyanoethyl acrylate) (PCEA)

2-cyanoethyl  acrylate  (9.43  ml,  80  mmol)  and  acetone  (32  ml)  were

combined in a round bottom flask equipped with a stir bar. 1-dodecanethiol

(0.095 ml, 0.4 mmol) and AIBN (264 mg, 1.6 mmol) were then added to the

flask, and the solution was sealed and bubbled under argon for 30 min. The

solution mixture was placed in an oil bath at 60 °C and reacted for 5 hrs. The

reaction  mixture  was  then  exposed  to  air  and  dropwise  added  to  cold

methanol.  Further purification was performed by re-dissolving the solid in

acetone, reprecipitating in methanol and drying under vacuum to afford a



colorless, sticky polymer. The resulting polymer (Figure 1) was characterized

by size-exclusion chromatography (Mn = 10,700 g/mol, PDI = 1.203), NMR

and FTIR, as presented in the Supporting Information.

Figure 1. Structure of poly(cyanoethyl acrylate) (PCEA).

Materials and electrolyte preparation

The  poly(ethylene  oxide)  had  a  molecular  weight  of  35  kg/mol  and  was

obtained from Polymer Source. The LiTFSI salt was obtained from Novolyte.

The materials were processed and the electrolytes were prepared according

to  Ref  15.  All  sample  preparation  was  performed  in  an  argon  glovebox

(MBraun)  to  minimize  exposure  to  water  and  oxygen.  All  materials  were

initially dried under vacuum at 90 °C for at least 24 h prior to use. Polymer

electrolytes  were  prepared  by  mixing  the  appropriate  amounts  of  LiTFSI

(Novolyte)  and  the  polymer  in  anhydrous  tetrahydrofuran  to  obtain  the

desired salt concentration (in molality). The solutions were allowed to mix for

several hours at 65  °C to ensure complete mixing, after which the solvent

was  allowed to  evaporate  overnight.  The  polymer  electrolytes  were  then

dried at 90 °C under vacuum overnight to ensure complete solvent removal. 

Electrochemical characterization

Ion  transport  properties  were  determined  by  performing

electrochemical  measurements  on  symmetric  cells  made  of  blocking



electrodes.  Conductivity  samples  for  PEO/LiTFSI  and  PCEA/LiTFSI  were

prepared by pressing the polymer into a 508  μm thick silicone spacer and

sandwiching  between two  200  μm thick  stainless-steel  electrodes.  Nickel

tabs were secured to the stainless-steel shims to serve as current collectors.

The assembly was vacuum sealed in a laminated pouch material (Showa-

Denko)  prior  to  removal  from  the  glovebox.  Electrochemical  impedance

spectroscopy was performed within a frequency range of 1 MHz to 1 Hz and

sinusoidal  amplitude  of  60  mV.  The  final  electrolyte  thickness  was

determined  by  subtracting  the  electrode  thickness  from  the  total  cell

thickness  after  the  experiments  were  completed.  Conductivity  was  then

determined according to the equation,

κ=
l

A∙Rb

(1)

 where l is the electrolyte thickness, A is the sample area and Rb is the bulk

resistance  determined  from the  low  frequency  minimum in  the  resulting

Nyquist impedance plot.

Quasi-elastic neutron scattering

Quasi-elastic  neutron  scattering  (QENS)  samples  were  prepared  by

sandwiching a thin film of the polymer electrolyte between two pieces of

aluminum foil  and sealing in aluminum cans under a helium environment.

Measurements  were  performed  on  the  NG2  high-flux  backscattering

spectrometer  (HFBS)  at  the  NIST  Center  for  Neutron  Research.  Data  are

collected over time scales ranging from 0.1 to 2 ns and reciprocal  space



ranging  from  Q =  0.25  to  1.75  Å-1,  where  Q is  the  magnitude  of  the

scattering vector,  Q. Experiments were performed at 90 ℃ and 120 ℃  for

PEO/LiTFSI and PCEA/LiTFSI, respectively. We first performed the PEO/LiTFSI

experiments and were hoping to perform experiments on PCEA/LiTFSI at 90

℃. Unfortunately, we found that the dynamics in the PCEA system at 90 ℃

were too slow for the QENS experiment. We thus decided to examine the

PCEA system at 120 ℃.

Results and Discussion

The dependence of conductivity,  κ, on salt concentration (molality,  m) for

the PCEA/LiTFSI system at different temperatures is plotted in Figure 2. At all

temperatures,  the PCEA/LiTFSI  system exhibits  a monotonic  increase in  κ

with increasing salt concentration before reaching a plateau at m = 0.9 mol/

kg.  The  increase  in  conductivity  is  due  to  an  increase  in  charge  carrier

concentration. However, the addition of salt slows down segmental motion

which in turn impedes ion transport. The plateau at high salt concentrations

is due to the balancing of these two competing effects. While  κ increases

with  increasing  temperature,  the  qualitative  dependence  of  κ on  salt

concentration is unaffected. 



Figure 2. Conductivity, κ, of PCEA/LiTFSI measured at different temperatures using
ac impedance spectroscopy, and plotted as a function of salt molality, m. Error bars

represent the standard deviation of the measurements.

 Figure 3 shows the dependence of  κ on salt molality for PEO/LiTFSI

and PCEA/LiTFSI at 90 °C. The molecular weights of both polymers are in the

regime where ionic conductivity is not a function of molecular weight (Mn,PEO

= 35 kg/mol,  Mn,PCEA  = 10 kg/mol).16 The data obtained from PEO/LiTFSI is

similar to PCEA/LiTFSI; conductivity of PEO/LiTFSI increases with increasing

salt concentration and a plateau is observed when  m>¿ 1.5 mol/kg. Across

the entire salt  concentration range investigated, the  κ of  PEO/LiTFSI  is  at

least two orders of magnitude higher than that of PCEA/LiTFSI. In this work,

we attempt to reconcile this difference by comparing the dissociation and

friction  in  these  chemically-distinct  polymers.  Friction  is  quantified  using

QENS.



Figure 3. Conductivity, κ, of PEO/LiTFSI and PCEA/LiTFSI measured at 90 °C using ac
impedance  spectroscopy,  and  plotted  as  a  function  of  molality,  m.  Error  bars
represent the standard deviation of the measurements.

QENS provides information on the dynamics in a sample by measuring

the  change  in  energy  of  the  scattered  neutrons, ħω.17 Due  to  the  large

incoherent scattering cross section of hydrogen, the scattering intensity is

primarily  dominated  by  the  motion  of  hydrogen  atoms  in  the  polymers

(LiTFSI  does  not  contain  hydrogen  atoms).  The  dependence  of  the

normalized  Sinc(Q,ω)  on  ħω obtained at a representative scattering vector

Q=¿ 0.62 Å-1 for PCEA/LiTFSI at 120 °C is shown in Figure 4a. The frequency-

dependent data shown in Figure 4a is re-expressed in the time domain using

a program provided by NIST (DAVE).18 The same program also accounts for

instrumental  resolution.  The  output  of  this  program  is  Sinc(Q,t)  which  is

related to the  mean-square displacement of the hydrogen atoms, ¿r2
(t )>¿: 

Sinc(Q ,t )=exp¿



The dependence of r2 on t was obtained from the data in Figure 4a and

the results are shown in Figure 4b (Q=¿ 0.62 Å-1). The data are in agreement

with the expected Rouse scaling of  r2   t1/2.19,20 The solid lines in Figure 4b

represent least squares fits through the data and are used to calculate the

diffusion parameter, DR=¿ r2
>¿t1 /2. This parameter is plotted in Figure 4c as a

function of Q. In theory,21 DR is expected to be independent of Q. The dashed

lines in Figure 4c represent the average values of DR obtained at the given

salt  concentrations.  DR generally  decreases  with  increasing  salt

concentration, except for m = 0.4 mol/kg. 

Figure 4. (a) Normalized incoherent structure factor,  Sinc(Q,ω)/Sinc,max(Q,ω),  in the
frequency domain, plotted as a function of energy, ħω , at Q = 0.62 Å-1

  and 120 °C.
The structure factor was measured by QENS. (b) Mean-square displacement, ¿r2

>¿,
as a function of time, t, from QENS experiments at Q = 0.62 Å -1

 with solid lines
representing fits to the Rouse scaling, ¿r2

>¿  t1/2. (c) Diffusion parameter,
DR,  plotted  as  a  function  of  Q for  electrolytes  with  different  salt  concentrations
expressed in molality. Dashed lines represent average values of DR.

We use the Rouse model to relate DR to the monomeric friction 

coefficient, ζ, according to equation 3,

ζ=
12kBT l2

DR
2π

(3)



where l is the statistical segment length of the monomer unit. While explicit

measurement  of  statistical  segment  length  using  small-angle  neutron

scattering for PEO as well as for  PEO/LiTFSI mixtures has been reported in

literature,21,22 we are not aware of any reports of data for PCEA. It has been

shown  in  Ref  23 that  the  statistical  segment  length  of  a  wide  variety  of

polymers is 6  Å when the monomeric reference volume is taken to be 0.1

nm3. We therefore assume that l for PCEA and PEO is 6 Å,23 and obtain the

dependence of ζ on salt concentration using equation 3. The resulting plots

of ζ  versus salt concentration are shown in Figure 5. ζ  is the average friction

coefficient over the scattering vectors of 0.62<Q ( Å−1)<0.75. The data for the

PEO/LiTFSI  system  are  reproduced  from  Ref  8.  It  is  clear  that  in  both

systems,  ζ  increases  with  salt  concentration.  However,  the  segmental

dynamics in PCEA/LiTFSI at 120 °C is about a hundred times slower than that

in PEO/LiTFSI at 90 °C. It is thus clear that the differences in conductivities

between  the  two  systems  seen  in  Figure  3  is  due,  at  least  in  part,  to

differences in segmental dynamics.   



Figure 5. Average friction coefficient, ζ , of PCEA at 120 °C and PEO at 90 °C as a
function of molality, m.

In  Figure  6,  we  plot  the  normalized  monomeric  friction  coefficient,

ζ (m)/ζ (0),  as  a  function  of  salt  concentration  for  PCEA.  The  monomeric

friction  coefficient  increases  exponentially  with  salt  concentration;  at

m=1.6kg /mol , ζ  is about a factor of 2.5 larger than that of neat PCEA. The

dashed curve in Figure 6 is an exponential fit through the data which gives 

ζ (mPCEA)

ζ (0)
=exp(

mPCEA

1.72 )(4)

In  our  analysis,  a  single  parameter,  M f or  the  segment  mobility  factor,

quantifies the slowing down of segmental dynamics due to the interactions

between polymer  chains  and  salt;  for  PCEA/LiTFSI  at  120  °C,  M f =  1.72

mol/kg.  More  complex  functional  forms  for  this  slowing  down  have  been

recently proposed in the literature.24 



Figure 6. Normalized average friction coefficient, ζ (m )/ζ (0), of PCEA at 120 °C as a
function of molality, m. The dashed curve represents equation 4.

A similar relationship describes the effect of salt concentration on ζ  in

a PEO/LiTFSI system at 90 °C as presented in our previous work.8 When the

salt  concentration  is  expressed  in  terms  of  molality,  the  expression  for

PEO/LiTFSI becomes 

ζ (mPEO)

ζ (0)
=exp(

mPEO

1.94)(5)

which gives M f=1.94 kg/mol for PEO/LiTFSI at 90 °C.

It  is  instructive to examine the product  (κζ ) for  the two electrolyte

systems to quantify the effect of  segmental dynamics on ion transport.  If

conductivity were only dependent on frictional effects, this product would be

identical for the two electrolytes. In Figure 7, we plot (κζ ) versus molality, m,

for PCEA and PEO at 120 °C and 90 °C, respectively. In spite of the fact that

the conductivity of PEO is much larger than that of PCEA, the product  (κζ ) is



only  about  an  order  of  magnitude  larger  for  PCEA across  the  entire  salt

concentration range. 

Figure 7. Product of conductivity, κ, and monomeric friction coefficient, ζ , plotted
as a function of salt concentration for PCEA at 120 °C and PEO at 90 °C. ζ  is

determined using Eq. 4 and 5 for PCEA and PEO, respectively.

Ionic conductivity depends on three parameters: (1) salt concentration,

(2) the extent of dissociation of  the salt, and (3) frictional effects.25–27 We

present a simple expression that captures this dependence: 

κ=(
K

ζ (0))mexp(
−m
M f

)(6)

where the parameter  K reflects the extent of the salt dissociation.  In our

previous work,8 we proposed that ionic conductivity is given by the product

of  a  linear function  of  salt  concentration  and the exponential  increase in

friction captured by equations 4 and 5. The prefactor, (
K

ζ (0)), in equation 6 is

necessary  for  comparing  chemically-distinct  polymers  to  account  for



differences in the dielectric constant of the polymers which will affect K, as

well as differences in the monomeric friction coefficients in the absence of

salt. We have already determined M f for the two systems. We use the data in

Figure 8 to determine K. The dashed curves in Figure 8 are fits of equation 6

through the data which give                         

¿

Figure 8. Conductivity, κ, of PEO at 90 °C and PCEA at 120 °C using ac impedance
spectroscopy plotted as a function of salt concentration. The dashed curves

represent equations 7 and 8 for PEO and PCEA, respectively.

In  our  analysis,  the  ionic  conductivity  of  polymer  electrolytes  is

governed by K, ζ (0), and Mf. In Table 1, we list these parameters for PEO and

PCEA electrolytes.  It  is  helpful  to examine the ratios of these parameters

when  we  compare  electrolytes  (see  Table  1).  The  dissociation  in  PEO is

κPEO=(5.75x 10−11

3.18 x10−8 )mPEOexp(
−mPEO

1.94 ) , (7) ⁡

κPCEA=(6.47x 10−10

4.88 x 10−6 )mPCEAexp (
−mPCEA

1.72 ).(8) ⁡



significantly  worse  than  that  in  PCEA,  
KPEO

K PCEA

<1.  However,  the  monomeric

friction in pure PEO is much lower than that of PCEA, 
ζ PEO (0)

ζ PCEA (0 )
<1. Surprisingly,

the  effect  of  added  salt  on  friction,  quantified  by  Mf,  is  similar  in  both

systems,  
Mf , PEO

Mf ,PCEA

≈1.  It  is  obvious  that  the  increased  dissociation  seen  in

PCEA  comes  at  a  disproportionate  cost  of  increased  monomeric  friction

relative to PEO.  The increased salt dissociation in PCEA is attributed to the

presence of three polar sites on the monomer, C≡N, C¿O and –O– (Figure

1).28–30 In contrast, the PEO monomer only contains one polar site, –O–.

Table 1. K, ζ (0), and Mf for PEO and PCEA.

K ζ (0) M f

PEO at 90 °C 5.75 x10−11 3.18x 10−8 1.94

PCEA at 120 °

C

6.47 x10−10 4.88x 10−6 1.72

PEO/PCEA 8.89x10−2 6.52x 10−3 1.13

Conclusions

We have used QENS to quantify the effect of segmental dynamics in

chemically-distinct polymer electrolytes. In the case of PCEA/LiTFSI, we found

slower segmental dynamics relative to that of PEO/LiTFSI.8 The Rouse model



allowed for the determination of the monomeric friction coefficient, which for

PCEA/LiTFSI  is  orders  of  magnitude  higher  than  that  of  PEO/LiTFSI.  The

dependence  of  ionic  conductivity  of  polymer  electrolytes  on  salt

concentration is quantified by a simple expression (Eq 6) that contains three

parameters, K, ζ (0) and M f, quantifying salt dissociation, monomeric friction

in the pure polymer,  and the effect of  added salt  on monomeric  friction.

These parameters are given in Table 1. The introduction of polar groups in

PCEA leads to significant enhancement of  salt  dissociation.  Unfortunately,

the accompanying effect of increased monomeric friction in the pure polymer

dominates, resulting in diminished ion transport. The proposed framework is

a simple starting point for quantifying the factors that govern ion transport in

chemically-distinct polymer electrolytes.
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List of Symbols

English

DR diffusion parameter (Å2/ns1/2)

K dissociation constant

m molality (kg/mol)

Mf segment mobility factor

Mn polymer molecular weight (kg/
mol)

Q scattering vector (Å-1)

¿r2
>¿ mean-squared  displacement

(Å2)
Sinc incoherent structure factor

t time (ns)

Greek

ℏω energy of scattered neutrons

κ ionic conductivity (S/cm)

ζ monomeric  friction
coefficient (g/s)

List of Abbreviations

AIBN azobisisobutyronitrile

LiTFSI lithium bis(trifluoromethane)sulfonimide salt

PCEA poly(cyano 2-cyanoethyl acrylate)

PDI polydispersity index



PEO poly(ethylene oxide)

QENS quasi-elastic neutron scattering
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