
Data Hallucination, Falsification and Validation using Generative Models
and Formal Methods

by

José Rafael Valle Gomes da Costa

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Machine Listening and Improvisation

and the Designated Emphasis

in

Computational and Data Science and Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Edmund Campion, Chair
Professor Sanjit Seshia, Co-Chair

Professor Ken Ueno

Spring 2018

Data Hallucination, Falsification and Validation using Generative Models and Formal
Methods

Copyright c� 2018

by

José Rafael Valle Gomes da Costa

1

Abstract

Data Hallucination, Falsification and Validation using Generative Models and Formal
Methods

by

José Rafael Valle Gomes da Costa
Doctor of Philosophy in Machine Listening and Improvisation

and Designated Emphasis in Computational and Data Science and Engineering

University of California, Berkeley
Professor Edmund Campion, Chair
Professor Sanjit Seshia, Co-Chair

The increasing pervasiveness and fast-paced development of deep learning (DL) systems
with human-like perception, agency and creativity has brought concern related to
information reliability: the generative models that have surprised and confused humans
with their high quality media hallucinations can be used to fool other computer systems
and humans to believe that the generated media is real. In addition to developing
strategies to increase the quality of the data produced with generative models, specially
generative adversarial networks (GANs), our research community has been exploring
mechanisms to better understand and control the data they generate.

In the context of data falsification, formal methods (FM) and formal specifications
(FS) can be used to prevent adversarial attacks by verifying that some potentially
adversarial data follows the specifications of the real data. Formal methods and formal
specifications can also be used to guide the output of a generator such that, as much
as possible, the generated data fulfills the specifications of the real data. Although
formal methods have been largely and sucessfuly used in the field of software and
hardware engineering, their interaction with Artificial Neural Networks (ANNs) poses
many challenges that are yet to be solved.

In this thesis, we address challenges related to hallucination, falsification and
validation of data using generative models and formal methods. We start by focusing
on artistic applications related to music by developing an automata-based system for
machine improvisation with formal specifications. We briefly describe the Control
Improvisation framework and describe its application to machine improvisation with
formal specifications. We propose data abstractions derived from symbolic music data
and describe strategies for mining specifications from them. We then use the mined
specification to summarize a musical style and guide the improvisation of a generative
model.

Next, we focus on security applications in speech synthesis and investigate the
efficiency of generative models such as WaveNet, SampleRNN and our own GAN

2

model in performing spoofing attacks to fool a text-independent speaker recognition
system. Inspired by universal background models (UBMs) in speech, we propose a
modification to the Wasserstein GAN objective function such that data from multiple
speakers can be used to generate data from a single speakers, increasing the efficiency
of our spoofing attacks.

Last, in the hope of preventing adversarial attacks produced with data synthesized
by generative models, specially GANs, we look at the properties of synthesized samples
hoping to find traces of the data generation process that can be used to identify the
data as adversarial. We empirically show that the data produced with these generative
models do not follow the specifications of the real data and that they have universal
properties, byproducts from the models and the algorithms used to train them, that
can be used to identify the source of the data.

i

To my mom and dad.

ii

Contents

Contents ii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation . 1
1.2 Interfacing with Generative Algorithms 2

1.2.1 Rule-based and data-driven approaches 3
1.3 Interfacing with Artificial Neural Networks 3

1.3.1 Interpretability . 3
1.3.2 Robustness to adversarial attacks 4

1.4 Research Challenges . 4
1.4.1 Data generation for targeted and untargeted attacks 4
1.4.2 Data generation with formal guarantees 5
1.4.3 Properties of GANs samples 5

1.5 Thesis Organization and Contribution 5
1.5.1 Specification Mining for Machine Improvisation with Formal

Specifications . 6
1.5.2 Adversarial Attacks to Speaker Recognition Systems using GANs 6
1.5.3 Interesting properties of GAN samples 6

2 Preliminaries 7
2.1 Automata . 7

2.1.1 Deterministic and Non-Deterministic Finite Automata 8
2.1.2 Formal specification . 9

2.2 Artificial Neural Networks . 10
2.2.1 Convolutional Neural Networks 11
2.2.2 Backpropagation . 12
2.2.3 Tricks of the Trade . 12

2.2.3.1 Input Normalization 13

iii

2.2.3.2 Weight Normalization 13
2.2.3.3 Parameter Initialization 13
2.2.3.4 Non-Linearities . 13
2.2.3.5 Regularization . 14

2.3 Generative Adversarial Networks . 14
2.3.1 Adversarial Neural Networks 15
2.3.2 Least Squares GAN . 16
2.3.3 Wasserstein GAN . 17
2.3.4 Wasserstein GAN with Gradient Penalty 17
2.3.5 Tricks of the Trade . 17

2.3.5.1 Objective Function 17
2.3.5.2 Adding instability 18
2.3.5.3 Optimizer . 18
2.3.5.4 Learning rate . 18

2.4 Concluding Remarks . 19

3 Specification Mining for Machine Improvisation 20
3.1 Introduction and Motivation . 20
3.2 Overview . 21

3.2.1 Specifications . 22
3.2.2 Factor Oracle-based improvisation 23
3.2.3 Enforcing Specifications . 24

3.3 Control Improvisation and Specification Mining 24
3.3.1 Control Improvisation . 24

3.3.1.1 Notation and Background 24
3.3.1.2 Problem Definition 25

3.3.2 Specification . 27
3.3.2.1 Events and Patterns 27
3.3.2.2 Pattern Merging . 28
3.3.2.3 Specifications from Patterns 29

3.4 Learning and Enforcing Specifications 30
3.4.1 Learning Specifications . 30
3.4.2 Improvising with Specifications 30

3.5 Music Specification Mining . 34
3.5.1 Time Domain Features . 34
3.5.2 Frequency Domain Features 35

3.6 Experimental Results . 37
3.6.1 Specification Validation . 38
3.6.2 Machine Improvisation with hard and soft specifications . . . 39

3.7 Related Work . 41
3.8 Discussion . 42

iv

4 Attacking Speaker Recognition with GANs 44
4.1 Introduction and Motivation . 44
4.2 Related Work . 45
4.3 Attacking Text-Independent Speaker Recognition Systems 46

4.3.1 Neural speaker recognition system 46
4.3.2 Adversarial attacks . 46

4.4 Experimental Setup . 47
4.4.1 Datasets . 47
4.4.2 Pre-processing . 47
4.4.3 Feature extraction . 48
4.4.4 Models . 48

4.4.4.1 WaveNet . 48
4.4.4.2 sampleRNN . 49
4.4.4.3 WGAN . 49
4.4.4.4 WGAN-GP with modified objective function 49

4.5 Experimental Results . 50
4.5.1 GAN Mel-Spectrogram . 50
4.5.2 GAN Adversarial attacks . 51

4.5.2.1 Untargeted attacks 52
4.5.2.2 Targeted attacks . 53

4.6 Discussion . 54

5 Interesting properties of GAN samples 56
5.1 Introduction and Motivation . 56
5.2 Hypotheses . 57
5.3 Experimental Setup . 58

5.3.1 Datasets . 58
5.3.2 Property extraction . 58

5.3.2.1 Spectral Moments 58
5.3.2.2 Spectral Slope . 59

5.3.3 Generative Models . 59
5.3.4 Distance Measures . 59

5.4 Experimental Results . 60
5.4.1 MNIST . 60
5.4.2 Bach Chorales . 63
5.4.3 Speech . 65

5.5 Related Work . 68
5.6 Discussion . 70

6 Conclusion 71
6.1 Contributions . 71
6.2 Future Directions . 72

v

List of Figures

2.1 State diagram of the hypothesized automatic faucet. 7
2.2 Graphical representation of a fully conected neural network with two

inputs, two hidden layers with three nodes each and one output node.
The weights are represented by arrows and the activation function is
implicit . 11

2.3 An intermediary step of convolution with stride 1. The kernel in green
is convolved with the first area in the data, represented by the red
square and the output is stored on the first cell of the orange grid. . . 11

3.1 Workflow of our approach. 22
3.2 Factor oracle constructed from the example melody. 24
3.3 Specification automaton for '1. 26
3.4 First phrase of Crossroads Blues by Robert Johnson as transcribed in

the Real Book of Blues. 28
3.5 Pattern graph learned on the chord degree feature (interval from root)

extracted from the phrase in Fig. 3.4. 30
3.6 Selection of event duration specifications learned from the training set.

The pattern 1/3 S 1 (1/3, 1, 1/3) is allowed but can produce incomplete
tuplets if placed on certain beats. 35

3.7 Beat onset locations specifications learned from the training set. . . . 35
3.8 Selection of scale degree specifications learned from the training set. . 36
3.9 Interval class specifications learned from the training set. 37
3.10 Histogram of melodic interval and chord degree violations. The y-axis

represents the patterns that do not exist in the specification and the x-
axis represents their frequency. F and T represent the patterns Followed
and ’Till respectively. 39

3.11 Pitch Histograms for the training set and factor oracle improvisations
with 0.75 replication probability. The melodic similarity with respect
to the training set bargraph (b) has values normalized by the larger
similarity value (Wref). 40

3.12 Factor Oracle improvisations with 0.75 replication probability on a
traditional instrumental blues lick . 41

LIST OF FIGURES vi

4.1 Architecture for CNN speaker verifier. 47
4.2 Comparison of real and generated (⇠ 5000 generator iterations) spec-

trogram samples from all speakers. Each grid contains 64 samples. . . 51
4.3 Summary of untargeted attacks. Red represents high confidence. . . . 51
4.4 Confusion matrix of GAN untargeted attacks. x-axis corresponds to

predicted label, y-axis to ground truth. 52
4.6 Histogram of predictions on IWGAN and mixed loss data. Target label:

0. 53

5.1 Spectral centroids on digits and Mel-Spectrograms 58
5.2 Spectral slopes on digits and Mel-Spectrograms 59
5.3 Samples from MNIST train, test, LSGAN, IWGAN, FSGM and Bernoulli. 60
5.4 Pixel empirical CDF of training data as reference (green) and other

datasets(red) . 61
5.5 Distribution of moments of spectral centroids computed on each image. 61
5.6 Histogram of pixel intensities for each dataset. First row shows his-

togram within the [0, 1] interval and 100 bins. Second row shows
histograms between the [0.11, and 0.88] interval and 100 bins. 62

5.7 Fake MNIST samples and pixel distribution from generators trained
with DCGAN, Batch Norm and linear or scaled tanh activation functions. 62

5.8 Fake MNIST samples and pixel distribution from generators trained on
binarized real data with DCGAN and WGAN-GP, Batch Norm and
linear activation functions. 63

5.9 Samples drawn from Bach Chorales train, test, IWGAN, and Bernoulli
respectively. 64

5.10 Intensity distributions of training, test iwgan and Bernoulli Bach choral
samples . Row 1 is in the range [�1, 1], Row 2 is in the range (�1, 0.9]
and Row 3 is in the range [0, 1). The figure shows that GAN samples
smoothly approximate the modes of the distribution. 65

5.12 Samples drawn from Mel-Spectrogram Speech train, test, IWGAN, and
exponential respectively. 67

5.13 Empirical CDF and statistical tests of speech intensity 67
5.14 Moments of spectral centroid (left) and slope(right) 68
5.15 KS Test-Statistics of spectral centroid (top) and slope (bottom). Pure

color is the test Statistics and hatched color is p-value. 69

vii

List of Tables

3.1 Dataframe from Blues Stay Away From Me by Wayne Raney et al. NA
represents a rest or a transition to or from a rest. dur is duration in
beats and mel_interval is melodic interval 37

4.1 Description of the datasets used in our experiments. 48

5.1 Statistical comparison over the distribution of pixel values for different
samples using MNIST training set as reference. 60

5.2 Number of specification violations with training data as reference. . . 65

viii

Acknowledgments

I’m extremelly thankful to every single entity who directly or indirectly made this
possible.

1

Chapter 1

Introduction

The desire to have statistical models with human-like perception and creativity
has motivated our research community to develop strategies that increase the quality of
the data produced with them, to explore mechanisms that prevent adversarial attacks
they empower, and to better understand and control the data they produce. Within
this context, this thesis addresses challenges related to hallucination, falsification and
validation of data using generative models and formal methods.

In this section we motivate this thesis and situate it with respect to generative
algorithms (GAs), artificial neural networks (ANNs), formal methods and the possible
interactions therein. Formal methods is a field of computer science and engineering that
is concerned with the the rigorous mathematical specification, design, and verification
of systems [119]. We briefly describe the interface with GAs and ANNs and pose
several research challenges related to these interactions, including challenges that can
be addressed with formal methods. We focus on challenges related to the production
and prevention of adversarial attacks with fake data, data generation with formal
guarantees and understanding the properties of samples produced with generative
adversarial networks (GANs). We then describe the organization of this thesis and
the contributions offered therein.

1.1 Motivation
The increasing pervasiveness and fast-paced development of computer systems

with human-like perception, agency and creativity has been dubbed by the 21st century
media with the "clickbaity" name Artificial Intelligence Revolution. The Artificial
Intelligence (AI) revolution has produced systems that can arguably perform tasks such
as autonomous driving [16,106], free-form and open-ended visual-question answering [4,
135], and writing romantic symphonies under the supervision of a human [10,30].
Preceded by a period in the 80s that has been called the AI winter [62], the AI
revolution and renaissance became possible through recent advancements in parallel

CHAPTER 1. INTRODUCTION 2

and distributed systems [11,32] that enabled feeding huge amounts of data 1 into
deep learning models, a subset of machine learning that uses artificial neural networks
(ANN) to train mathematical models successful in classifying and generating data.

Surprisingly, our extreme success in the use of ANNs to solve tasks that require
human-like intelligence is not accompanied by a clear understanding of ANNs in
general. Our lack of understanding is such that in 2014 the field was surprised with
the famous example [56] in which a ANN-based object recognition model classifies
an imperceptibly modified image of a panda as a gibbon with 99% confidence. This
limited understanding of such systems, their increasing pervasiveness and the amount
of personal data collected with them raises several concerns. What are the guarantees
provided by such systems [127]? How robust are they to adversarial attacks [55]?
Are these systems so powerful that they can be used to generate fake data that can
fool humans and machines [79]? These are a few challenges that must be addressed
towards reaching the goal of verified artificial intelligence [120].

Artificial intelligence and computer science have also strongly impacted art to
the extent of enabling the development of new styles such as Spectral music [44] and
Inceptionism [97], a new style of visual art. The first published use of algorithmic
music composition [90] dates back to the Illiac Suite of the 1950’s. The limited
understanding and control over the output of generative algorithms has impacted art
in different ways: while some embraced it as a blessing to be incorporated into their
art form, the community interested in controlled machine improvisation has seen the
lack of formal guarantees as a curse and challenge that must be addressed.

1.2 Interfacing with Generative Algorithms
We can define generative algorithms as the set of non-deterministic algorithms

that generate data in some domain given some input or seed. In the sonic arts a
famous example is Mozart’s Musikalisches Wuerfelspiel and in the visual arts Google’s
DeepDream [97].

These algorithms can be a sequence of instructions, such as the flow-chart score
to Michael Philippot’s Composition for Double Orchestra [137], or a mathematical
model with which one can generate new data given some context, such as Deepak
Pathak’s Context-Encoder [104]. There are also systems that have a mixed approach
in which mathematical models are combined with instructions and rules such as David
Cope’s Experiments in Musical Intelligence (EMI) [29], George Lewis’ Voyager [80]
and Edmund Campion’s Nat-Sel [87].

Lately, the production and consumption of data produced with generative algo-
rithms has been increasing and finding success in data augmentation [122], adversarial
attacks [121,136], music composition [10] (officially recognized by SACEM as a com-
poser), speech synthesis [86] (a Montreal startup that claims it can recreate any voice

1Data is the new oil., as stated by Clive Humby in 2006.

CHAPTER 1. INTRODUCTION 3

using just one minute of sample audio), and art venues such as the successful auction
of images generated with AI [134].

1.2.1 Rule-based and data-driven approaches

Generative algorithms are normally designed using rule-based and data-driven
approaches [115]. Rule-based approaches attempt to define rules characterizing the
expected behavior or rules of a system generating data in some domain. Rule-based
approaches have the advantage that the rules of the system are written by a domain
specialist and, hence, are interpretable. For example, a musicologist can describe
rules that can be used to write jazz melodies [69]. On the other hand, data-driven
approaches learns from the data the parameters of the model that describes the joint
distribution of input and output [14]. For example, one can collect jazz licks and try
to use data to train a model that is capable of producing jazz licks [50]. Naturally, it
is possible to combine both approaches [93].

It has been observed, specially in music, that it is difficult to come up with the
proper rules, resulting in systems that are either too restrictive, limiting creativity,
or too relaxed, thereby allowing undesirable behavior [29,37,70]. Constrained on
the data available and compared to rule-based approaches, data-driven have better
generalization, do not require the potentially cumbersome task of writing the rules
that describe the generation process 2 and can exploit latent properties in the data
that can be unknown to specialists or even the producer of the data.

1.3 Interfacing with Artificial Neural Networks
ANNs are extremely efficient mathematical objects capable of learning functions

that can be used to learn a map from an input to an expected output. Work based on
the universal approximation theorem [31,65] claims that a multi-layered feed-forward
network with limited capacity can approximate continuous function on compact subsets
of Rn. ANNs are so powerful that they can fit random noise with 100% accuracy, as
described in [143].

1.3.1 Interpretability

The interpretation of neural networks is an on-going research question that has
been been approached from data and network-centric perspectives [140]. Data-centric
approaches can, for example, look for individual neurons 3 or groups of neurons
that are highly activated given some properties in an image [142], e.g. the "cat
neuron". Notably, theoretical work in [127] claims that in the high layers it is the

2Imagine writing rules that describe how to draw Surrealist art.
3Neuron in the sense of neural network units.

CHAPTER 1. INTRODUCTION 4

space, rather than the individual neurons, that contains the semantic information. An
existing network-centric approach uses the gradient of ANNs to find images that cause
higher [123] or lower [127] activations for output units. The same network-centric
approach can be used to attack an ANNs by finding the smallest modification to an
image that makes the ANN output a label that is not the label associated with the
image. This network-centric approach is one of the pillars of adversarial attacks [56,96]
to classifiers that are built using ANNs.

1.3.2 Robustness to adversarial attacks

Our limited understanding of ANNs also has consequences on their robustness
to adversarial attacks. Whereas there is a belief that that ANN’s non-robustness to
some adversarial attacks is due to their non-linear nature, [56,127] argue that ANNs
learn input-output mappings that are fairly discontinuous and that the main cause to
the vulnerability of ANNs to adversarial attacks is their linear nature. This creates
an interesting paradox in which models that are easier to train due to their linearity
become more prone to adversarial attacks.

1.4 Research Challenges
The interface with generative algorithms and neural networks has interesting

research challenges. Broadly speaking, current research trends in generative models
are focused in increasing the quality of generated samples [79,88,103] or enforcing
specifications on generated data [1,36,46], estimating what is their efficiency in fooling
humans and machines [121,136], understanding what are the properties of the samples
produced by them [8,9,128]. A formal specification is a mathematical statement of
what a system must or must not do, often expressed in mathematical logic or using
automata-theoretic formalisms.

1.4.1 Data generation for targeted and untargeted attacks

The rise of generative models producing high quality audio [92,130], video [125],
image [79] and text [57,144] data raises questions related to security and information
reliability. Generative models have been used to produce fake data that has successfully
fooled both humans and machines [56,121,136]. As a matter of fact, the topic is so
relevant that in 2017 NIPS created a competition track named Adversarial Attacks
and Defenses [126] and The Economist magazine has produced two pieces [40,41]
wherein they discuss generative models and their ability to hallucinate 4 fake but
convincing audio and video data.

4Hallucination is the term used by the deep learning community to refer to surreal images produced
with deep learning models.

CHAPTER 1. INTRODUCTION 5

1.4.2 Data generation with formal guarantees

Generative models can be coupled with controllers that restrict their behavior
such that, as much as possible, the data generated fulfills the specifications [109].
Informally speaking, specifications are deterministic or non-deterministic rules that
describe the expected behavior of a system [26]. In music, for example, there are
several rules for counterpoint [24], harmony [110], that describe the expected behavior
of a musical style. Although there has been work on combining Neural Networks and
Control [94], there are many challenges related to verified artificial intelligence that
are yet to be solved [120].

While generative models using ANNs are extremely powerful, it is not trivial to
predict the outcome given the input, specially in situations where the output of the
system is recursively used as input. On the other hand, models based on automata
are more predictable but usually lack the power and flexibility of ANNs. The Control
Improvisation [45,46] framework addresses these issues by combining data-driven
learning and controller synthesis from formal specifications.

1.4.3 Properties of GANs samples

The abundance of papers on GANs [63] and the high quality image samples
produced with them is inversely proportional to how much we understand their
properties. A few researchers, specially Sanjeev Arora and have been raising questions
about what exactly GANs learn and what are the properties of the samples they
generate. There are empirical and theoretical studies in [8,9] showing that “current
GANs approaches, specifically, the ones that produce images of higher visual quality,
fall significantly short of learning the target distribution, and in fact the support
size of the generated distribution is rather low”. Very interesting work [128] on the
evaluating of generative models emphasizes that visual fidelity is a bad predictor of
true log-likelihood performance and that even a simple k-means based approach can
obtain better Parzen windows performance than using the original samples from the
dataset, even though they come from the exact same distribution!

1.5 Thesis Organization and Contribution
In this thesis, we address challenges related to hallucination, falsification and

validation of data using generative models and formal methods. We start by focusing
on artistic applications related to music by developing an automata-based system for
machine improvisation with formal specifications.

Next, we focus on security applications related to speech and investigate the
design of neural network generative models for spoofing attacks to speaker recognition
systems. These models are later applied to music applications. Last, in the hope
of preventing spoofing attacks, we look at the properties of generated samples with

CHAPTER 1. INTRODUCTION 6

GANs hoping to find traces of the data generation process that can be used to identify
the data as being adversarial.

1.5.1 Specification Mining for Machine Improvisation with For-

mal Specifications

Chapter 3 tackles the problem of mining specifications from symbolic music
data and using the specifications in a machine improvisation system for music with
formal specifications. We propose an algorithm for mining specifications from symbolic
music data using pattern graphs, introduce the concept of hard and soft specifications
and show results comparing machine improvisations with and without specifications.
This work was done jointly with the UC Berkeley’s Control Improvisation project led
by Professors Sanjit A. Seshia Professor, David Wessel, and Professor Edward Lee
and including Adrian Freed, Alexandre Donzé, Ilge Akkaya, Daniel Fremont, Sophie
Libkind.

1.5.2 Adversarial Attacks to Speaker Recognition Systems us-

ing GANs

Chapter 4 analyzes the efficiency of generative models in fooling text-independent
speaker recognition systems through targeted and untargeted attacks. Within this
task, we investigate the performance of state-of-the-art generative models for speech
and our own GAN based generative model. We propose a modification to the objective
function of the Wasserstein GAN with gradient penalty to enable semi-supervised
training, where we train one GAN per target speaker using real data from the target
speaker and other speakers. This work was done jointly with Anish Doshi and Wilson
Cai.

1.5.3 Interesting properties of GAN samples

In Chapter 5 we analyze properties of GAN samples from different sources,
including Handwritten Digits, Music and Speech. We speculate that the generated
samples have an universal property that is dependent on the learning setup, i.e.
stochastic gradient descent and the non-linearities used. This universal property and
other factors impact the difference between the distribution of features computed over
the real data and the fake generated data. We also show that samples produced with
GANs can violate specifications of the real data distribution, although to the bare
eyes they look similar to the real data. This work was done jointly with Anish Doshi
and Wilson Cai.

7

Chapter 2

Preliminaries

The research in this thesis relies heavily on automata and artificial neural networks.
In this section, we superficially describe them with the purpose of arming the reader
with good intuition on these subjects. Whenever necessary, we provide references to
publications that describe these models and aspects thereof in depth.

2.1 Automata
The word automaton comes from ancient Greek and refers to self(autos)-acting

entities. In computer science, automata theory deals with the definitions and properties
of mathematical models of computation. The simplest model of computation possible
is the finite state machine or finite automaton (FSA). In the following paragraphs we
provide some basic intuition and formal definitions therein.

Let’s start with a simple automaton example: an automatic faucet. The automatic
faucet is machine with a gate that controls water output based on human presence.
The gate has two states, open or closed, and faucet’s controller has a single bit of
memory that records in which state the faucet is. The gate transitions between these
two states conditional on human presence. For example, if the gate is open and a
there is no human presence, the gate will transition from open to closed. Describing a
complex FSA in such a manner will be complicated and require several lines of text.
An efficient alternative is to represent automata with state diagrams:

q1start q2

0 (close)

1 (open)

0 (open)

1 (close)

Figure 2.1: State diagram of the hypothesized automatic faucet.

CHAPTER 2. PRELIMINARIES 8

Figure 2.1 depicts a state machine where the states are represented with labeled
circles and transition are represented with labeled arrows. The start state q1 is
identified by the arrow pointing at it from nowhere and it represents a state from
which the machine should start its execution. The accept state is identified by the
double circle and represents a state in which the machine can finish its execution.

Perhaps unexpectedly, automata can be used to describe the specifications or
desired behavior of some traditional western music. For example, the start and
accept states can be interpreted as valid notes to start and end a melody and the
transitions as how these notes can be reached. In Chapter 3, we address this subject
in detail, describing how to learn specifications from data and how to use them to
control musical agent that improvises.

2.1.1 Deterministic and Non-Deterministic Finite Automata

Now that we have broadly described the concept of an automaton, we will focus
on formal definitions, starting with the deterministic finite automaton (DFA).

Definition 1 (Deterministic Finite Automaton). A Deterministic (DFA) finite state
automaton is a 5-tuple A = (Q, q0, F,⌃,!) where Q is a finite set of states, q0 2 Q
is the initial state, F ⇢ Q is the finite set of accepting states1, ⌃ is a finite set called
the alphabet and ! ⇢ Q⇥ (⌃

S {"})⇥Q is the transition relation trans(A).

The execution of an automaton A operates such that given a state, possibly the
current state of the automaton, and an input symbol representing a transition, the
transition function returns a state:

Definition 2 (Execution). An execution of an automaton A is a sequence q0�0q1�1...
where (qi, �i, qi+1) 2 trans(A). Executions can be finite or infinite and must end in a
state.

Let’s consider the letters of the alphabet as observable events of the execution of
the automata under consideration, for example the state of the faucet automaton. A
word w is either ✏ (transition with no observable event) or a finite sequence of letters
in ⌃, i.e. w = �1�2 . . . �k for some integer k � 1. The length of a word is defined
inductively as |✏| = 0 and |w�| = |w|+ 1 8� 2 ⌃.

To illustrate, let’s use the letters c and o to represent states q1 and q2 from our
faucet automaton and evaluate the execution of the input string 1. With this input
string, the machine starts on q1, transitions from q1 to q2 by means of 1. This can be
summarized as q1

1�! q2 and produces the output word w = co. This leads us to the
definition of traces and accepting traces:

1Also known as final states.

CHAPTER 2. PRELIMINARIES 9

Definition 3 (Trace). A trace of A is a record of some sequence of instructions
executed by A. A word is a trace of a FSA A () there exists a sequence of states
qi 2 Q such that q0

�1�! q1
�2�! . . .

�n�1���! qn�1
�n�! qn. It is an accepting trace of

A () qn 2 F . The language of A, noted L(A) is the set of accepting traces of A.

Although finite state automaton can be extremely useful, they have limitations
when taking a single transition can lead to multiple states. In such cases Non-
Deterministic Automata can be used:

Definition 4 (Non-Deterministic Finite Automaton). A Non-Deterministic (NFA)
finite state automaton is a 5-tuple A = (Q, q0, F,⌃,!) where Q is a finite set of
states, q0 2 Q is the initial state, F ⇢ Q is the set of accepting states, ⌃ is a finite
set called the alphabet and ! ⇢ Q ⇥ (⌃

S {"}) ⇥ P (Q) is the transition relation,
where P (Q) is the power set of Q..

The difference between DFAs and NFAs resides on the transition function.
Whereas DFA’s transition function takes a state and an input symbol and outputs a
state, NFA’s transition function also takes a state and a symbol or the empty string "
and outputs the set of possible next states [124].

2.1.2 Formal specification

In the previous subsection, we briefly mentioned that automata can be related to
specifications in music. A formal specification is a mathematical statement, described
in mathematical logic or automata-theoretic formalism, that defines the expected
behavior of a system. Formal specifications are central to certain fields of computer
science, such as program verification or supervisory control. Supervisory control refers
to the problem of designing a controller (supervisor) that guarantees that a system
(plant) always satisfies a set of formal specifications. If we think of formal specifications
as music rules and the “plant” as a random improviser, then the supervisory controller
is similar to a controlled improviser of music. In supervisory control, the combination
of a system and a controller can be done via a synchronous product:

Definition 5. (Synchronous Product) The synchronous product of A = (Q, q0, F,⌃,�!)
and A0 = (Q0, q00, F

0, ⌃,�*0), noted A||A0, is defined as the FSA A||A0 , (Q ⇥
Q0, (q0, q00), F ⇥ F 0,⌃,�+) where 8� 2 ⌃

S{"}, (qi, q0i)
��! (qj, q0j) if and only qi

��* qj
and q0i

��+ q0j.

Intuitively, A||A0 is a finite state machine where A and A0 take transitions
synchronously, with the constraint that for a transition to be possible, both current
states of A and A0 must have an outgoing transition driven by the same event. In
Chapter 3 we further develop this topic and describe our research related to mining
specifications from symbolic music data and music improvisation using the control
improvisation framework [45,46].

CHAPTER 2. PRELIMINARIES 10

2.2 Artificial Neural Networks
The other class of models used in this thesis are Artificial Neural Networks

(ANNs), also know as Deep Neural Networks or Deep Learning. The name informally
draws inspiration from theoretical models of how learning could happen in the brain.
Deep learning is not new and according to [54], there have been three eras: cybernetics
in the 1940s-1960s, connectionism in the 1980s-1990s and the current Deep Learning
renaissance beginning around 2006. Mathematically speaking, a fully-connected neural
network is a chain of equations, possibly non-linear, whose parameters are estimated
using methods such as stochastic gradient descent and backpropagation.

We introduce ANNs through linear and logistic regression and use Figure 2.2
as a reference. Linear regression is used to estimate the parameters that model the
relationship between an output variable given input variables. Mathematically, it can
be described as a weighted sum of inputs of the form2:

z = w · x+ b (2.1)

where weights w and inputs x are vectors in Rn, b is a scalar bias term, and z is a
scalar. The output of single neuron without non-linearities is similar to the output of
the linear regression described previously. Logistic regression is a special version of
regression where a specific non-linear function, i.e. the sigmoid function, is applied to
the output of the linear regression described in Equation 2.1:

g(z) =
1

1 + exp�(z)
(2.2)

This non-linear equation is similar to the output of one neuron with a sigmoid non-
linearity, also known as activation function. A combination of such neurons, with their
respective non-linearieties and weights, defines a simple layer in a neural network, and
a chain of layers 3 defines a simple form of neural network. The output of a hidden
layer is described by Equation 2.3 and Figure 2.2 below:

h(l) = g(l)(w(l) · x+ b(l)) (2.3)

Equation 2.3 illustrates the similarity between linear/logistic regression and a simple
fully connected ANNs. We use Figure 2.2 to illustrate Equation 2.3 and the flow of
data in a simple fully connected ANNs.

For more details and a thorough explanation of deep learning, we forward the
reader to the book [54].

2We ignore the error term.
3Lasagne [33] is a well know Italian dish and deep learning library

CHAPTER 2. PRELIMINARIES 11

x1

x2

h1
1

h1
2

h1
3

h2
1

h2
2

h2
3

o

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2.2: Graphical representation of a fully conected neural network with two
inputs, two hidden layers with three nodes each and one output node. The weights
are represented by arrows and the activation function is implicit

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [78] are neural networks that convolve
filters or kernels, i.e. tensors in Rd, that are convolved with the data to produce
output. These parameters of these filters are estimated during training and in the
image domain they are square with small sizes ranging from 3x3 to 9x9 in pixel size.
The convolution operation can be interpreted as sliding a filter over the data and for
each reached location applying a dot product between the filter and the data at the
location. Figure 2.3 below shows a simple example.

Figure 2.3: An intermediary step of convolution with stride 1. The kernel in green
is convolved with the first area in the data, represented by the red square and the
output is stored on the first cell of the orange grid.

A special characteristic of CNNs is that the weights of the filters are learned. For
example, if the task at hand is classifying handwritten digits from the MNIST dataset,
the ANN might learn filters that look like vertical, horizontal and diagonal lines [140].

For more information on CNNs and convolution arithmetic, we again forward the
reader to [54] and the excellent A guide to convolution arithmetic for deep learning [39].

CHAPTER 2. PRELIMINARIES 12

2.2.2 Backpropagation

The back-propagation, or backpropagation, algorithm [112] is a special case of
reverse mode automatic differentiation [83]. In its basic modern version [83,114], the
back-propagation algorithm has become the standard for training neural networks,
possibly given its underlying simplicity and relative power [113]. Inspired by the work
of Donal Hebb and the so-called Hebb rule [61], Rosenblatt developed the idea of a
Perceptron that was based on the formation and change of synapses between neurons,
where the output of a neuron would be modeled as a weighted sum of its incoming
signals. This is similar to what we described in Equation 2.3.

The basic idea of estimating the parameters for a model with back-propagation is
as follows: define an error function, compute the gradient of the loss with respect to the
weights using back-propagation and perform gradient descent to find a weight update
that is optimal for minimizing the error given the current data. From a perspective of
calculus, back-propagation is an algorithm that efficiently computes the chain rule,
with a specific order of operations [54].

The data and the error function are extremely important aspects of the learning
procedure that will be used to estimate the parameters of the model. For example,
let’s consider training a classifier to identify handwritten single digits. Let’s assume
we decide to train the model using the famous MNIST [77] dataset, containing 28
by 28 monochromatic images of single handwritten white digits on a black ground.
Ideally, we want the model to predict 1 whenever the image looks like a 1, 2 whenever
it looks like a 2 and so on. Back-propagation does not define what aspects of the
images should be considered nor does it provide guarantees that the classifier will
generalize to unseen examples and will not simply memorize the data used during
training. Indeed, a model trained with the data we described will considerably fail if
the colors are inverted, i. e. black digits on white background. Note that, in this case,
regularization methods that do not rely on data augmentation will probably also fail
in helping the model generalize to other color schemes. One common procedure to
fix such issues is to augment the data and include images with all combinations of
foreground and background color 4.

2.2.3 Tricks of the Trade

Neural Networks: Tricks of the Trade is the title of the book released by Springer
in 2003 [100] wherein several authors provided practical advice on training neural
networks. This section addresses some of such tricks, including tricks available
in [13,76], that were relevant to the execution of our research.

4Certainly not the most elegant nor abstract solution to the problem of generalization.

CHAPTER 2. PRELIMINARIES 13

2.2.3.1 Input Normalization

Input normalization is an old trick, if not requirement, for training neural
networks. Data with very large of very small numbers can lead to exploding or
vanishing gradients, respectively. Therefore, a common pre-processing step in training
neural networks is to standardize the data. Following normative practice, the mean
and standard deviation computed on the training data are used to standardize any
new data, including validation and test data. Input normalization is a costless and
efficient procedure that contributes to weight normalization.

2.2.3.2 Weight Normalization

In neural networks weight normalization can prevent overflow and underflow of
gradients [51,60,73] and to avoid covariate shift. In [66], the authors explain that the
covariate shift can cause the input distribution not to be fixed, possibly leading to
exploding and vanishing gradients. Batch normalization is a remedy that does not
come for free because it requires estimating additional parameters.

Weight-norm [117] is another efficient and recent weight normalization technique
It is a reparameterization of the weight vectors in a neural network that decouples the
length of those weight vectors from their direction.

Very recently, the Soft Exponential Linear Unit (SELU) [72] has been introduced
under the premise that it can be more efficient than weight normalization techniques
in fully connected, recurrent and convolutional neural networks. Weight normalization
can be a remedy for poor parameter initialization.

2.2.3.3 Parameter Initialization

Faster convergence can be achieved with parameter intialization and, in the case
of GANs, convergence itself might only happen with proper parameter initialization.
Currently, the main strategies for parameter initialization are described in [51,60,72,73]
and focus on initializing weights with a normal distribution with zero mean and variance
dependent on the number of incoming and outgoing units and the non-linearity at
hand.

Proper parameter initialization is extremely important for gradient propagation
and poor initialization might impede the network from converging, e.g. Andrej
Karpathy, director of AI at Tesla, was not able to reproduce experiments on a 20-layer
network by initializing network weights with N(0, 0.02) but only N(0, 0.05).

2.2.3.4 Non-Linearities

Traditionally, the sigmoid non-linearity dominated the field of ANNs but it
has been replaced by other non-linearities such as tanh and the rectified linear
unit(relu) [60]. The gradient of the sigmoid non-linearity quickly and asymptotically

CHAPTER 2. PRELIMINARIES 14

approaches zero as the magnitude of the input increases, providing only a small
gradient for most of its domain.

The hyperbolic tangent function shows a similar behavior to the sigmoi function
but with gradients that are considerably stronger in the vicinity of 0.

Although the rectified linear unit, a.k.a. half-wave rectifier, has 0 gradient in
half its domain, it has been replacing the sigmoid and tanh non-linearities due to it’s
computational efficiency and tendency to produce sparse representations.

The recent and promising selu [72] non-linearity is believed to produce self-
normalizing networks and provides evidence of doing so on fully connected, convolu-
tional and recursive neural networks.

2.2.3.5 Regularization

It is rather common that neural networks have more parameters than data points
being learned, thus raising questions regarding overfitting the training data. Recent
research shows that deep neural networks with enough capacity are capable of learning
a classifier trained on data with random labels [143], even if regularization is used to
circumvent the problem of overfitting.

Similar to regression models, the L1 and L2 norm are regularization techniques
that are used in neural networks. Whereas both L1 and L2 regularization penalize
model complexity, L1 also drives sparsity.

Another technique, or heuristic, is believed to prevent overfitting is early stop-
ping [98], where a criteria based on performance degradation on the validation is used
to stop training.

Dropout [64] is another easy to implement regularization technique where for
each iteration the nodes of the network are set to zero with probability p. During
inference, the learned weights are scaled by 1/p.

Finally, data augmentation is another procedure related to regularization that is
very efficient when it is feasible to augment the data. It operates under the assumption
that regularization is not necessary if the data available is representative of the real
data distribution. Compared to other regularization techniques, data augmentation
has the benefit of possibly training models that are invariant to the transformations
applied in data augmentation, e.g. invariant to rotation and scale.

2.3 Generative Adversarial Networks
Generative Adversarial Networks [55](GANs) hare evolving rather quickly and

have been receiving a considerable amount of attention recently, including Yann
LeCun’s comment expressing that the GAN framework is one of the most important
topics in deep learning.

CHAPTER 2. PRELIMINARIES 15

The framework has been applied to many tasks, including unsupervised feature
learning [104,108], text to image synthesis [111], image super-resolution [79], symbolic
music [139] and many others.

In addition to being applied to many tasks, many variations of the GAN framework
have been proposed, including Energy-Based GANs [145], Boundary Equilibrium
GANs [15], Mix-GANs [8], Least-Squares GANs [88], Wasserstein GAN [7] and finally5

Wasserstein GAN with Gradient Penalty [59].

2.3.1 Adversarial Neural Networks

Adversarial Neural Networks were first described in the landmark paper [55] in
2014. The setup of the framework uses an adversarial process to estimate the parame-
ters of generative models by iteratively and concomitantly training a discriminator
network D and a generator network G. One of the main advantages of GANs is that,
unlike other deep generative models that use approximation methods to compute
intractable functions or inference, GANs do not require an approximation method.

Informally speaking, the discriminator network plays the role of an investigator
that learns to distinguish between samples that are real, i. e. samples that come from
the distribution generating the training data, and samples that are fake, i. e. samples
produced by the generator. The generator network plays the role of a counterfeiter
that uses feedback from the discriminator to learn how to produce samples that are
capable of fooling the discriminator. This informal description already calls attention
to issues that might be present when using the framework:

• A week investigator might be easily fooled by the generator.

• An investigator without capacity might not learn to distinguish the data properly.

• An investigator that disregards variety can be fooled with a single example.

Formally speaking, D is a function f : x 7! y, where x is some input sample in
Rd, e.g. an image, and y is a scalar, e.g. representing D’s predicted probability that x
comes from the real distribution. G is a function f : z 7! x̃, where z is a noise vector
in Rd and G(z) = x̃ 2 Rd is an image produced by the generator. D and G play a
two-player minimax game with the value function V(G, D):

min
G

max
D

V (D,G) = Ex⇠pdata [logD(x)] + Ez⇠pz [log(1�D(G(z)))] (2.4)

One of the most important assumptions described in the seminal GAN paper is
that the model will converge to the true distribution if the discriminator and generator
have infinite capacity and there is a large amount of data. Work done in [8,9] poses
questions about the assumption and evaluates networks using the birthday paradox

5The field is moving absurdly fast and this list will be outdated at the time of release.

CHAPTER 2. PRELIMINARIES 16

test. Although this test is extremely dependent on the distance measure obtained
to identify similar objects, it is an upper bound approximation! Furthermore, work
in [128] shed theoretical and empirical light on this assumption: they describe that
there is considerable independence between sample quality and likelihood, showing
that high likelihood and sample quality does not necessarily imply a good model given
independence between pixels. Naturally, in natural images neighboring pixels are
normally not independent.

The objective function described in Equation 2.4 is equivalent to minimizing the
Jensen-Shannon (JS) divergence between the distributions, as described in [55]. The
Jensen-Shannon divergence is a symmetric and smoothed version of the Kullback-
Leibler (KL) divergence [75].

DJS(P || Q) =
1

2
DKL(P || M) +

1

2
DKL(Q || M), (2.5)

where DKL is defined as :

DKL(P || Q) =

Z +1

�1
p(x) log

q(x)

p(x)
dx (2.6)

It can be seen from Equation 2.6 that KL based objective functions suffer from
exploding loss when the support of the real distribution P is not contained on the
other distribution Q, that is, the KL divergence goes to � inf if there is some x such
that Q(x) = 0 where P (x) > 0. In addition, the authors in [7] provide a thorough
comparison of different distances and explain that there are distributions where JS,
KL and even Total Variation divergence do not converge and have gradients always
equal to 0.

Another problem with the original GAN objective function in Equation 2.4 is
that the sigmoid function saturates quickly and, for this reason, will barely consider
the distance of a sample to the decision boundary formed with the sigmoid[88].

These problems associated with the original GAN objective function have been
addressed with the development of Least-Squares GAN(LSGAN) [88] and Wasserstein
GAN(WGAN) [7].

2.3.2 Least Squares GAN

The Least Squares GAN [88] uses the least squares objective function to train the
discriminator and generator. Unlike the sigmoid cross entropy, the least squares loss
more heavily penalizes samples regarding their position with respect to the decision
boundary. In their paper [88], the authors affirm that the LSGAN contributes to the
stability of the learning process, removes the need of using Batch Normalization and
converges faster than the Wasserstein GAN.

CHAPTER 2. PRELIMINARIES 17

2.3.3 Wasserstein GAN

The Wasserstein GAN [7] (WGAN) framework instead uses the Wasserstein
(Earth-Mover) distance between distributions, which in many cases does not suffer from
loss explosion and vanishing gradient. In the WGAN framework, the loss functions of
the generator and critic (which no longer emits a simple probability, but rather an
approximation of the Wasserstein distance between the fake and real distributions)
become:

LG = � E
ex⇠Pg

⇥
D(ex)

⇤
(2.7)

LC = E
ex⇠Pg

⇥
D(ex)

⇤
� E

x⇠Pr

⇥
D(x)

⇤
(2.8)

where Pr is the real distribution and Pg the distribution learned by the generator.
The original WGAN framework uses weight clipping to ensure that the critic satisfies
a Lipschitz condition.

2.3.4 Wasserstein GAN with Gradient Penalty

As pointed by [59], however, this weight clipping can lead to problems with
gradient stability. Instead, [59] suggests adding a gradient penalty to the critic’s loss
function, which indirectly tries to constrain the original critic’s gradient to have a
norm close to 1. Interestingly, already in 2013, [127] proposed a method to direct
neural networks to become k-Lipschitz by penalizing the objective function with the
operator norm of the weights of each layer. Equation 2.8 thus becomes (taken from
[59]):

LC = E
ex⇠Pg

⇥
D(ex)

⇤
� E

x⇠Pr

⇥
D(x)

⇤

| {z }
Original critic loss

+� E
x̂⇠Px̂

⇥
(krx̂D(x̂)k2 � 1)2

⇤

| {z }
Gradient Penalty

(2.9)

2.3.5 Tricks of the Trade

Similar to tricks for training neural networks, there are a few sources [25,116]
that provide best practices for training generative adversarial networks. These best
practices were mainly developed to circumvent the difficulty in training GANs using
the objective function described in 2.4. These tricks might not apply nor be necessary
to other GAN formulations such as LSGAN or WGAN.

2.3.5.1 Objective Function

The first formulation of the objective function of the generator

min
G

Ez⇠pz [log(1�D(G(z)))], (2.10)

CHAPTER 2. PRELIMINARIES 18

has vanishing gradients early on. In practice, it’s preferable to use:

max
G

Ez⇠pz [logD(G(z))] (2.11)

2.3.5.2 Adding instability

It is reported that adding instability to the training procedure can improve
training. Common strategies include occasionally flipping labels, i. e. real becomes
fake and fake becomes real, adding time decaying uniform noise to the input data,
and using label smoothing, that is, replace labels 0 and 1 with a random number close
to 1 or 0 respectively. In our experiments in Chapter 4 we used time decaying uniform
noise to prevent the discriminator from overfitting the data.

2.3.5.3 Optimizer

Given the unstable and unpredictable nature of GAN training, it is better to
use adaptive learning methods such as ADAM or RMSProp. In our experiments with
the MNIST dataset and GANs with different objective functions (GAN, LSGAN,
WGAN, WGAN-GP) described in Chapter 5 we found that ADAM performs better
than RMSProp, producing better samples earlier in the training process.

2.3.5.4 Learning rate

One of the challenges in training neural networks is setting the proper learning
rate. Within the GAN framework wherein one looks for an equilibrium between the
discriminator and the generator networks, this challenge gets exacerbated given the
presence of a learning rate for each network and the dependencies between losses.

For discriminator and generator networks of equal size, one expects the discrimi-
nator to have some advantage over the generator such that the updates provided by
the discriminator to the generator are useful. This can be achieved by setting the
discriminator’s learning rate to be slightly higher than the generator or by performing
more discriminator updates than generator updates.

For discriminator and generator networks where the generator is larger than the
discriminator, the strategy can differ. For example, let’s consider a context-encoder
generator as the one described in [104]. In this example, the generator has more
parameters than the discriminator given that it has both an encoder that interprets
the context and a decoder that generates the missing data. In this case, the training
process of the generator is slower and the balance between discriminator and generator
can be disrupted if the learning rates are the same. This setup was used in [104] and
in our experiments on attacking speaker verification systems described in Chapter 4.

CHAPTER 2. PRELIMINARIES 19

2.4 Concluding Remarks
Now that we have superficially explained the theoretical pillars of the research

in this thesis, we will describe in depth the three projects that were summarized in
subsection 1.5. These projects address data hallucination, falsification and validation
in different domains using generative models and formal methods.

20

Chapter 3

Specification Mining for Machine
Improvisation with Formal
Specifications

3.1 Introduction and Motivation
The field of machine improvisation, i.e. computer music improvisation, has been

investigated under mainly two approaches: rule-based and data-driven. Rule-based
approaches attempt to define rules characterizing “good” improvisations and generate
pieces of music that follow these rules. However, it has been observed that it is difficult
to come up with the “right” rules, resulting in systems that are either too restrictive,
limiting creativity, or too relaxed, thereby allowing undesirable behavior [29,37,70].
Data-driven approaches tend to employ machine learning techniques to learn generative
models from music samples and use these models to generate new melodies. Examples
of such models include stochastic context-free grammars (SCFGs) [49,69], hidden
Markov models (HMMs) [50,102], and universal predictors [12,18,37,38]. Some systems
combine rule-based and data-driven approaches; e.g. the Impro-visor system [70]
based on SCFGs uses rules learned by grammatical inference from training licks [49].
Related to our work, [101] describe non-homogeneous Markov processes with control
constraints, e.g. last pitch must be a specific note. While Pachet’s work focuses on
unary constraints manually created by the user and binary constraints that are within
the scope of the Markov order, this research focuses on learning constraints from data
as formal specifications. Our recent efforts in this direction are presented in [36],
in which we define the problem of machine improvisation with formal specifications.
In computer science, a formal specification is a mathematical statement of expected
behavior of a system, typically given in mathematical logic or as an automaton. In
[36], we considered the scenario of improvising a monophonic jazz melody given a
training sequence (melody) and a chord progression. Overall, our approach described

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 21

in [36] consists of two stages: a generalization stage, where a reference sequence (e.g.
obtained from a human improviser) is used to learn an automaton generating similar
sequences, and a supervision stage, that enforces specifications on pitch and rhythm.

In [36], the specification, formally represented as a finite state automaton
(FSA), encodes rhythmic and harmonic constraints adapted and simplified from
generic jazz improvisation guidelines found in Keller’s How to Improvise Jazz Melodies
[69]. Although these hand-crafted guidelines can be manually converted into formal
specifications, this task is time-consuming even in simple cases. Generally, writing
specifications requires knowledge of logic not possessed by most composers and,
conversely, musical knowledge not possessed by most logicians. Specification mining
offers a solution that is either entirely automatic or only requires the much simpler task
of creating templates for the musical patterns of interest. Our engine statistically learns,
in the form of a pattern graph, the musical characteristics of a song dataset by mining
predefined musical and general usage patterns from it. In this research, we evaluate
our approach using a dataset of traditional blues songs and the predefined patterns
focus on properties related to rhythm, pitch, melodic contour and chord/non-chord
tones.

The chapter is organized as follows. Section 3.2 gives an overview of our approach,
using a simplified presentation and a small example, followed by related work in
Section 3.7. Section 3.3 describes the control improvisation and specification mining
formalisms our techniques are based on, while the algorithms themselves are described
in Section 3.4. Next, Section 3.5 details the specific musical features used in our
experiments, whose results are presented in Section 3.6. Finally, we conclude in
Section 3.8 with a summary and directions for future work.

3.2 Overview
In this section, we give an informal overview of the machine improvisation

approach that we developed, sketching the different components using a simplified
formalization and a small example. As sketched in Figure 3.1, the overall flow begins
with a training set of songs D = {s1, . . . , sN} and a reference song s, and produces
as output a set of specifications used in a controller, and an improviser, which is
the actual object generating new improvisations, i.e., new sequences of notes. The
improviser and the procedure to enforce the specifications are implemented closely
following [36]: the main contribution of the present paper is how to generate the
specifications.

All songs are assumed to be in lead sheet format, i.e. with a single instrument
melody line and an accompaniment specified as a simple chord sequence. In the
following, assume s is given by:

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 22

Training
dataset D

Reference
song s

Specification
Mining Controller

Improviser
(Factor
Oracle)

Possible
Notes

Desirable
Note

L

Improvised
song simpro

Figure 3.1: Workflow of our approach.

s = G 7G7ˇ ˇ ˇ ˇ Cˇ ˇ ˇ ˇ 7
Using standard chord and pitch notations, such as C, Am, D7 and a, a#, b, c, c#, d,
etc., we can write s as a sequence of pitch and chord pairs:

(g,G7)(b,G7)(d,G7)(b,G7)(c,C)(b,C)(c,C)(c,C)

We say that s can be encoded using two alphabets, one for chords and another for
pitches. Here, for the sake of simplicity, we ignore duration information and other
nuances that can be encoded using other alphabets.

3.2.1 Specifications

The songs s1, . . . , sN in our training set can be represented in the same way and
we assume that they all satisfy some a priori unknown set of specifications, which are
properties of the combined sequence of pitches and chords. Simple examples of such
specifications include:

• '1: the current pitch belongs to the current chord, e.g.,

– (c,C),(g,C),(f,G7),(b,G7) satisfies '1

– (c#,C),(a,C),(c,G7),(e,G7) does not satisfy '1

• '2: the current pitch does not belong to the chord, but the one before did and
the one after will, and they are at an interval not greater than one tone, e.g.,
(c,C),(b,C) is a sequence satisfying '2 iff the next note is (c,C).

• '3: about 70% of the time, a (g,C) is followed by a (c,C).

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 23

In [36], such specifications were described and implemented manually, whereas in this
work, we describe how to explicitly and implicitly1 extract these specifications from the
training set D. Note also that '1 and '2 are non-probabilistic (hard) specifications and
'3 is probabilistic (soft). In [36], we only considered non-probabilistic specifications.

The purpose of the improviser is to generate new songs of arbitrary length, e.g.,

(g,G7)(b,G7)(d,G7)(b,G7)(c,C)(d,C)(e,C)(c,C)(b,G7)(a,G7)(g,G7)(f,G7)(e,C), ...

that satisfy several criteria, which we state informally below:

(a) All generated sequences satisfy at least one of the non-probabilistic specifications
at all times;

(b) The distribution of generated sequences is sufficiently diverse (i.e. there is a
variety of different improvisations);

(c) The melody diverges from the reference melody in some controllable way, i.e. it
can be made very similar or arbitrarily different;

(d) The distribution of generated sequences satisfies the probabilistic specifications.

In Section 3.3 we will see how criteria (a), (b), and (c) naturally fit into the framework
of control improvisation. This is not the case for criterion (d), since [36] did not
consider probabilistic specifications.

3.2.2 Factor Oracle-based improvisation

To construct an improviser satisfying the above criteria, we start by following
the approach presented in [12]: we construct the factor oracle [27] corresponding to
the melody line of the reference song s. A factor oracle is a finite state machine with
n+ 1 states (where n is the number of notes) and edges labeled with the pitches of
the melody. The factor oracle corresponding to the above reference melody is shown
in Figure 3.2. It is constructed in such a way that if one follows the edges and reads
labels, it produces a sequence which is a concatenation of subsequences of the reference
sequence. Moreover, if one takes only “direct” transitions, i.e. those from a state i
to i+ 1, and no other forward or backward transitions, then the sequence of labels
reproduces exactly the original sequence. It was then observed in [12,36] that by
assigning a fixed probability p, called the replication probability, to direct transitions,
and uniform probabilities to other “branching” transitions, one obtains a stochastic
generator which produces sequences similar in some sense to the original sequence,
where the degree of similarity is controlled by p. Such a generator satisfies criteria (b)
and (c) above for appropriate values of p.

1In our system, the pattern '1 is learned implicitly given chord degree specifications.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 24

0 1 2 3 4 5 6 7 8
g b d b c b c c

b
d

c

c c

Figure 3.2: Factor oracle constructed from the example melody.

3.2.3 Enforcing Specifications

The factor oracle improviser we just described generates notes without taking into
account the harmonic context, and more generally the type of (musical) specifications
that we are interested in. Extending our work in [36], and as described in Section 3.4,
our approach works by enforcing the desired or mined specifications over sequences
of notes proposed by the factor oracle. For example, without specifications the
factor oracle of Figure 3.2 might generate the sequence gbdcb by going through
states 0, 1, 2, 3, 0, 5, and 6 . Once combined with the chord sequence, we get
(g,G7)(b,G7)(d,G7)(c,G7)(b,C) which clearly violates both '1 and '2 above, since
c does not belong to the G7 chord, and b does not belong to the C chord. In this
situation, our approach would have prevented this improvisation by blocking the
transition in the factor oracle from state 5 to 6, forcing the improviser to either take a
c transition (valid because this would cause the last three notes to satisfy '2) or to go
back silently to state 0 and take another transition satisfying either '1 or '2.

3.3 Control Improvisation and Specification Mining

3.3.1 Control Improvisation

We now describe more formally the automata-theoretic concepts used in this
research, including the control improvisation problem. For a fully formal definition
and theoretical treatment of control improvisation, see [46].

3.3.1.1 Notation and Background

As will be discussed later in Section 3.5, in this research we work entirely with
discrete, symbolic representations of musical data (pitches, durations, chords, etc.).
Objects such as melodies are represented as finite sequences, or words, whose elements
are drawn from a finite alphabet of symbols ⌃. We write ✏ for the empty word
consisting of no symbols, and |w| for the length of a word w. Words can be combined

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 25

by concatenation, which we denote as multiplication: for example, ab is a word of
length 2 if a and b are symbols in ⌃.

A convenient formalism for expressing sets of words is regular expressions. The
simplest regular expressions are written a for some a 2 ⌃, and denote the set of
words consisting of the single word a. We also use ⌃ to denote the set of all of these
singleton sets. These basic expressions can then be combined using three operators:
concatenation, union, and Kleene star. Given regular expressions p and q, their
concatenation pq simply consists of all words which are concatenations of a word in
p with a word in q. The union p

S
q is just the set-theoretic union, consisting of all

words in either p or q. Finally, the Kleene star p⇤ is the set of all concatenations of
finitely many words in p (including the empty concatenation ✏). For example, ⌃⇤ is
precisely the set of all words over the alphabet ⌃, and (a

S
b)⇤ is the set of all words

using only the symbols a and b.
Another useful way to represent sets of words is with finite state automata:

Definition 6. A finite state automaton (FSA) is a tuple A = (Q, q0, F,⌃,!) where
Q is a set of states, q0 2 Q is the initial state, F ⇢ Q is the set of accepting states,
⌃ is a finite set called the alphabet and ! ⇢ Q ⇥ (⌃

S{"}) ⇥ Q is the transition
relation. We use the notation q

��! q0 to mean that (q, �, q0) 2 !.

A word �1�2 . . . �n is a trace of a FSA A iff there exists a sequence of states
qi 2 Q such that q0

�1�! q1
�2�! . . .

�n�1���! qn�1
�n�! qn. It is an accepting trace of A iff

qn is in F . The language of A, denoted L(A), is the set of accepting traces of A.

3.3.1.2 Problem Definition

As described above, control improvisation seeks to generate random variations
on a reference word wref, all of which must satisfy a given specification and whose
similarity to the reference can be controlled. Following [36], the possible variations
are given as the language of a plant FSA Ap, and the specification is given by another
FSA As. Dissimilarity to the reference word is measured by a divergence measure
dwref , a nonnegative function on words such that dwref(wref) = 0. These together with
parameters indicating how much randomness and similarity to wref is desired specify
a control improvisation problem:

Definition 7. (Control Improvisation Problem) A control improvisation problem P
consists of FSAs Ap and As with a common alphabet ⌃, an accepting trace wref of
both Ap and As, a divergence measure dwref, an interval I = [d, d], and parameters
", ⇢ 2 (0, 1). A solution of P is a probabilistic algorithm generating words w in ⌃⇤

such that the following conditions hold:

(a) Safety: each w is an accepting trace of both Ap and As;

(b) Randomness: the probability of generating each w is smaller than ⇢;

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 26

(c) Bounded Divergence: Pr(dwref(w) 2 [d, d]) > 1� ".

To illustrate how this problem is useful, let us cast the example of Section 3.2 as
an instance of control improvisation. Recall that songs were represented as sequences
of pitch and chord pairs: thus our alphabet ⌃ consists of all possible such pairs. The
plant automaton Ap encodes a model for generating improvisations without enforcing
any specifications, which in our case is a factor oracle over the reference song (as
described in Section 3.7). The automaton As depends on which specifications we desire.
For the specification '1 from Section 3.2, for example, we might use the automaton in
Figure 3.3. To simplify the diagram we have consolidated some transitions: from q0
there are separate transitions for input symbols (c,C) and (g,C), for example, and
generally for all pairs where the pitch is contained in the chord, but since all these
transitions lead back to q0 we have drawn them as a single arrow.

q0 q1

(pitch, chord)
pitch 62 chord

(pitch, chord)
pitch 2 chord

Figure 3.3: Specification automaton for '1.

Now we can see how requirements (a), (b), and (c) on a generated word in the
control improvisation problem correspond exactly to the requirements stated in Section
3.2 for improvised songs:

(a) The improvisation being an accepting trace of Ap ensures it can be generated
by the underlying specification-free improvisation system (e.g. a factor oracle),
while being an accepting trace of As ensures that it satisfies our specifications2.

(b) By requiring that each improvisation w be generated with probability at most ⇢,
we ensure that at least 1/⇢ improvisations can be generated. So by making ⇢
small we can ensure a diverse distribution of improvisations.

(c) By defining the interval I and parameter " appropriately, this condition allows
us to control how much the improvisations can diverge from the reference song
(according to the similarity metric used).

This leaves only requirement (d) from Section 3.2, namely enforcement of probabilistic
specifications. This does not fit into the definition of control improvisation as stated
above, and so will be discussed in Section 3.4.2 below.

2In Section 3.2 we required that the improvisation satisfy at least one of several specifications at
each event, but those can easily be combined into a single specification that is required to hold over
the entire improvisation.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 27

3.3.2 Specification

In this current work, we expand our previous efforts in [36] by developing an
inference engine that mines specifications from a song dataset in the form of pattern
graphs learned using a set of pre-defined pattern templates. The following paragraphs
adapt the work of [82] to formally describe specification mining in music.

3.3.2.1 Events and Patterns

Let F be the set of feature vectors extracted from a song S, e.g. pitch, duration,
and so forth. For every feature f 2 F , we use the notation vf,t to indicate the valuation
of f at time t.

Definition 8 (Event). An event is a tuple (~f,~v, t), where ~f is a set of musical features
and ~v is their corresponding valuations at time t. The alphabet ⌃f is the set of possible
events for feature f , and a finite trace ⌧ is a sequence of events ordered by their time
of occurrence. We address monophonic music in this research, so there is only one
event at a time.

Definition 9 (Projection). The projection ⇡⌃(⌧) of a trace ⌧ onto an alphabet ⌃ is
defined as ⌧ with all events not in ⌃ deleted.

Definition 10 (Specification Pattern). A specification pattern is an FSA over symbols
⌃. Patterns can be parametrized by the events used in this alphabet; for example, we
use “the A pattern between events a and b” to indicate the pattern obtained by taking
an FSA A with |⌃| = 2 and using a as the first element of ⌃ and b as the second. A
pattern occurs3 in a trace ⌧ with alphabet ⌃⌧ ◆ ⌃ if and only if there is a subword �
of ⌧ such that ⇡⌃(�) 2 L(A).

Definition 11 (Binary Pattern). A specification pattern with alphabet size 2. We
denote a binary pattern between events a and b as a R b, where R is a label identifying
the pattern.

Now that we have described patterns as a general concept, we define three types
of patterns that we will use in this research. Each pattern corresponds to common
musical behaviors such as harmonic resolutions and ornaments. For simplicity we
define them using regular expressions, which are equivalent to FSAs.

Followed (F): The followed pattern between two events a and b occurs when a is
immediately followed by b. It provides information about possible transitions between
events, which can be used, for example, to specify the resolution of non-chord tones. We

3Note that this is different from the trace satisfying the pattern in the sense of [82]: we are
interested in occurrences of patterns within a trace, whereas they require the entire trace to match
the pattern.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 28

denote the followed pattern as a F b and can match it with the regular expression (ab).

‘Til (T): The ‘Til pattern between two events a and b occurs when a occurs
two or more times in sequence and is then immediately followed by b. Compared to
the followed pattern, it provides more specific information about what transitions are
possible after self-transitions are taken. We denote this pattern as a T b and can
match it with the regular expression (aaa⇤b).

Surrounding (S): The surrounding pattern between two events a and b occurs
when event a immediately precedes and succeeds event b. It provides information
over a time-window of three events and we musically describe it as an ornamented
self-transition. We use a S b to denote this pattern and can match it with the regular
expression (aba).

3.3.2.2 Pattern Merging

If every match to a pattern P2 = a R b occurs inside a match to a pattern P1 =
a Q b, we say that P1 subsumes P2 and write P1 =) P2. When this happens, we
only add the stronger pattern P1 to the pattern graph. The purpose of merging is
to emphasize longer musical structures: if one pattern always occurs only as part of
a longer one, then we will only allow the longer pattern to occur in our generated
phrases, but not the shorter pattern by itself.

An example is the chord degree4 specification mined from the song Crossroads
Blues, shown in Figure 3.4. Here, chord degree 10 (note f) is followed by chord degree
7 (note d), so without merging we would learn the pattern 10 F 7. This would allow
generating words such as (10, 7, 10, 7), which is inconsistent with the melodic motives
in the song, which always have multiple occurrences of 10 before transitioning to 7.
Thus every match to 10 F 7 is contained in a match to 10 T 7, and so with pattern
merging we only learn 10 T 7, thereby forbidding (10, 7, 10, 7). In fact, 10 T 7 shows
how a pattern can subsume multiple patterns, since in this example it also subsumes
10 F 10 and 10 T 10 (both of which we would otherwise learn).

Figure 3.4: First phrase of Crossroads Blues by Robert Johnson as transcribed in the
Real Book of Blues.

4In this research, chord degree is represented by the distance, in semitones, from a note to the
current chord’s root note.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 29

3.3.2.3 Specifications from Patterns

For each feature f 2 F , the specifications on f that we mine are of several
different types:

1. Which values of f can occur at the beginning of a phrase.

2. Which values of f can occur at the end of a phrase.

3. Which patterns over ⌃f can occur in the phrase.

4. The empirical probabilities of these patterns.

More formally, the type (3) specification requires that every pattern that matches
the trace either is allowed (i.e. occurred in the training data) or is subsumed by one
that is allowed. For example, suppose the specification was learned from the single
word (a, b, a, b, a). Due to merging, we only learn the pattern a S b, even though for
example the word matches b F a. Now consider the word (b, a). The only match to
any pattern in this word is the entire word itself, which matches b F a. This pattern
was not learned, and is trivially not subsumed by a learned pattern since there are
no other matches to subsume it. Therefore (b, a) does not satisfy the specification.
However, the word (a, b, a) does satisfy the specification: it matches a S b, which was
learned; it also matches a F b and b F a, but both matches are subsumed by the
match to a S b.

The first three types of specification are hard constraints that the phrases we
generate must respect, while the last can be viewed as a kind of soft constraint. We
encapsulate all four types in a data structure we call the pattern graph.

Definition 12 (Pattern Graph). A pattern graph is a labelled directed multigraph
whose nodes are elements of ⌃f , i.e. values of a feature f . A node can be labelled as
a starting node, an ending node, or neither. Edges are labelled with a type of binary
pattern and a count indicating how many times the pattern occurred in the dataset.

For example, an edge (a, b) labelled (R, 3) in the pattern graph means the pattern
a R b occurred 3 times in the dataset. A complete example of a pattern graph is shown
in Figure 3.5, where we have indicated starting nodes with an unlabelled incoming
arrow and ending nodes with a double circle (by analogy to the standard notation for
FSAs).

While a pattern graph represents the hard specifications above, it is not itself an
automaton. However, our method still fits into the framework of control improvisation
as presented in Section 3.3.1.2, because the pattern graph can be converted into a
specification automaton As. In fact, as explained in Section 3.4.2, our improvisation
algorithm does not need to perform this conversion.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 30

Figure 3.5: Pattern graph learned on the chord degree feature (interval from root)
extracted from the phrase in Fig. 3.4.

3.4 Learning and Enforcing Specifications
In this section we describe how we learn hard and soft specifications in the form

of pattern graphs, and how those graphs are used to guide the improvisation process.

3.4.1 Learning Specifications

In this subsection we describe the procedure used to learn pattern graphs from
a dataset D with features F . The procedure also takes as input a set P of patterns,
consisting of a function for each pattern type R that maps feature values a, b to a
regular expression defining the pattern a R b. As a preprocessing step, the songs in
D are segmented into three phrases (A A’ B)5. An example of a segmented dataset is
shown in Table 3.1.

After segmentation, for each feature f a pattern graph Gf is constructed by
Algorithm 1, whose main steps are as follows. First, for each phrase we add the first
and last feature values as starting/ending nodes respectively in the graph. Second,
for every a, b 2 ⌃f we find all matches to a R b for every pattern type R. If there
is a match to a R b which is not subsumed, then we add a corresponding edge to
the pattern graph labelled with the number of times the pattern occurs. A naïve
implementation of this algorithm could explicitly compute the locations of every match
by instantiating all possible regular expressions for the patterns in P and finding all
ways each expression matches the phrase. Then the subsumption check is simply a
matter of comparing the locations of the matches. If the number of feature values or
pattern types is large, this could be highly inefficient, but for the pattern types used
in this research all non-subsumed patterns can be found with a fast linear search.

3.4.2 Improvising with Specifications

The core of our improvisation approach is the factor oracle (FO), briefly described
in Section 3.2. Following [36], we enforce specifications on top of the factor oracle
by solving a control improvisation problem where the plant Ap encodes the factor

5Phrase boundaries are automatically extracted and manually corrected if necessary.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 31

Algorithm 1: Specification Mining Algorithm
Input: dataset D over features F ; patterns P
Output: a pattern graph Gf for each f 2 F

1 for f 2 F do
2 Gf new pattern graph on vertices ⌃f

3 for song 2 D do
4 for phrase 2 song do
5 phrasef the sequence of values of the feature f in phrase
6 label the first element of phrasef as a starting node in Gf

7 label the last element of phrasef as an ending node in Gf

8 for a, b 2 ⌃f do
9 counts countPatternMatches(a, b, phrasef ,P)

10 foreach pattern P with counts(P) > 0 do
11 add to Gf the edge (a, b) with label (P, counts(P))
12 end
13 end
14 end
15 end
16 end

oracle built from wref and enforces its chord progression. As described in [36], if the
specification automaton As is non-blocking in the sense that an accepting state is
always reachable, i.e. there are no deadlocks, we can solve the control improvisation
problem by restricting the factor oracle to only take transitions consistent with As. If
there are no such transitions in the factor oracle, we use heuristics to decide which
destination state is most appropriate. This procedure can be extended to general
specifications using techniques from supervisory control (see [36]).

As mentioned above, the pattern graphs learned by the algorithm in the previous
section can be converted into a specification automaton As. However, this construction
involves taking the product of many automata — one for each pattern — resulting in
a final automaton whose size grows exponentially with the number of patterns. So
in practice As is likely to be too large to construct explicitly. Therefore, we use the
following heuristic: we assume As is non-blocking, and if we reach a blocked state (i.e.
one with no outgoing transitions), we reject our current improvisation and start over.
Then we can use the procedure for non-blocking automata cited above, which only
requires being able to compute for any state of As the set of outgoing transitions. As
we will show below, this information can be read off from the pattern graph without
having to construct As. In practice we find that reaching a blocked state is rare, so
few restarts are required and this procedure is efficient.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 32

Determining the transitions allowed by As from the current state is straightfor-
ward. At the beginning of an improvisation, we only allow symbols which are labelled
as starting nodes in the pattern graph. Likewise, we only allow an improvisation to
end on symbols labelled as ending nodes. Finally, if the last generated symbol was a,
a transition on symbol b is allowed only in the following situations:

1. the pattern graph has an edge from a to b labelled with pattern F;

2. the pattern graph has an edge from a to b labelled with pattern S; in this case
we require the next transition to be on symbol a;

3. the pattern graph has an edge from a to b labelled with pattern T, and the
symbol before a was also an a (as the a T b pattern requires two or more copies
of a);

4. a = b, i.e. the transition would generate another a, and the pattern graph has
an edge from a to any symbol c labelled with pattern T (since a T c allows
arbitrarily many copies of a prior to c) .

It is easy to see that this method correctly enforces our specification As: the generated
words match only patterns that occur in the pattern graph or are subsumed by such
patterns.

As an example, consider the pattern graph built from the single word aaab.
Because of pattern merging, the graph will only have a single edge, from a to b and
labelled (T, 1). Initially, we only allow a transition on a since it is the only node
labelled as a starting node. Next, situations (1), (2), and (3) above do not hold (the
last because we have not generated any symbol prior to the a), but situation (4) does
and allows another transition on a. Now by (3) and (4) we can transition on either
b or a respectively — suppose we choose the former (as we will discuss below, we
actually pick between transitions randomly if more than one is available). Since b
is labelled as an ending node in the graph, we can stop here with the improvisation aab.

One remaining question is how to pick the transition to follow in the factor oracle
when more than one choice is consistent with As. This is where we incorporate the
probabilistic or “soft” specifications mentioned in Section 3.2. Building on a suggestion
in [36], we randomly sample from the consistent transitions: a direct transition gets
the replication probability p, and the other transitions get probabilities related to their
empirical probabilities in the dataset. Specifically, the probability for a non-direct
transition is computed as follows: we sum the counts in the pattern graph for every
edge that can allow the transition according to the rules above, and assign a probability
proportional to this sum.

To illustrate this computation, consider the pattern graph learned from the word
aabcaabcaa, and say we have generated aa so far. The pattern graph has an edge from
a to b labelled (T, 2), and an edge from a to a labelled (F, 1). According to the rules

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 33

above, the first edge allows us to transition on b (by (3)), and both edges allow us to
transition on a (by (4) and (3) respectively). Adding up the corresponding counts, we
assign probabilities to b and a proportional to 2 and 2 + 1 = 3 respectively (assuming
neither transition is the direct transition in the factor oracle). Normalizing, we will
pick b with probability 2/5 and a with probability 3/5.

The goal of this heuristic is produce improvisations whose feature distribution
is more similar to that of the dataset than would be achieved with a purely random
choice of transitions (see Section 3.6 for qualitative experiments assessing this). Many
other heuristics are possible, and could give better results in some circumstances. For
example, under the simple heuristic above the pattern a T b contributes equally to the
probabilities of transitions on a and b, thereby prioritizing short ’Till patterns. A more
sophisticated heuristic could incorporate the number of repetitions of a inside each
instance of the pattern, adjusting the transition probabilities accordingly. We also note
that random transition heuristics of this kind can be thought of as attempts to enforce
a type of divergence criterion similar to the one used in the control improvisation
problem, but where divergence is measured against a dataset of multiple songs instead
of a single reference word.

In summary, the overall process for generating an improvisation of length at least
n is:
1. Maintain a sequence (q0, s0)(q1, s0) . . . (qk, sk) of pairs of states of Ap and As, and a

word wk = �0�1 . . . �k 2 ⌃k.
2. If k � n and sk is accepting, return wk.
3. If there are no outgoing transitions from sk, restart the improvisation process.
4. Let C be the set of transitions from qk that are compatible with sk (i.e. such that

sk has a transition on the same input symbol).
5. If C is empty, we need to add a transition to Ap. Pick a random transition from

qk using the distribution described above; let � be the input symbol triggering it
and set qk+1 to be its destination state. Among all input symbols for which there
is a transition from sk, find the one, say ⌧ , most similar to � (e.g. among pitches,
the nearest in terms of intervals), and set sk+1 to be the corresponding destination
state. Add a transition from qk to qk+1 on input ⌧ , and set �k+1 = ⌧ .

6. Otherwise C is nonempty. Pick a random transition from C using the distribution
described above; set �k+1 to the input symbol triggering it and qk+1 to its destination
state. Set sk+1 to the destination state of the corresponding transition from sk.

7. Repeat from step 1.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 34

3.5 Music Specification Mining
In this section we describe some features that can be used to describe expected

musical behaviors or properties and, therefore, are appropriate to mine specifications
from. We start by formally defining the components involved.

We abstract and formalize a song into a sequence of melodies, where a melody
is defined as a string of pitched notes and rests, aligned with an accompaniment,
a sequence of chords with given durations6. The time unit is the beat, including
respective integer subdivisions, and the piece is divided into measures, which are
sequences of k beats. We assume that the accompaniment is fixed and our goal is
to define an improviser for the melody. Hence, the plant will model the behavior of
the accompaniment, without constraining the melody, and the specification FSA will
set constraints on acceptable melodies played together with the accompaniment. To
encode all events in a score, we use an alphabet which is the product of four alphabets:
⌃ = ⌃p ⇥ ⌃d ⇥ ⌃c ⇥ ⌃b, where

• ⌃p is the pitches alphabet, i.e. ⌃p = { > , a0, a#0, b0, c0, · · · };
• ⌃d is the durations alphabet, i.e. ⌃d = {↵, �, ˘ “, . . .} with � = 1 beat. Note that
⌃d also includes fractional durations, e.g., for triplets, as discussed below;

• ⌃c is the chords alphabet, i.e. ⌃c = {C, C7, G, Emaj, Adim, . . .};

• ⌃b is the beat alphabet. For example, if the smallest duration (excluding fractional
durations) is the eighth note, i.e. half a beat, then ⌃b = {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5},
where 0 represents the beginning of the first beat in the measure.

Note that the full alphabet enables the creation of data abstractions, such as
melodic intervals and tone classes. A similar strategy is used in [28], where data
abstractions (derived types) specific for chorales are implemented. In our current
implementation, all pattern graphs implicitly use the full alphabet ⌃. However, each
component alphabet is meant to address one particular aspect of the music formal-
ization, and we construct the specifications by composing many small specifications
which operate only on some of the component alphabets. For example, a specification
might constrain only the sequence of beats in the melody, without using the other
information in each event, and so could be represented as a small pattern graph defined
only over ⌃b.

3.5.1 Time Domain Features

• Event Duration: This feature describes the duration, given in beats, of silences
and tones. The event duration feature imposes hard constraints on duration

6This is not canonical, and dynamics are not considered in this work, although they could easily
be treated as another feature.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 35

diversity but provides only weak guarantees on rhythmic complexity because
it has no awareness of beat location. Figure 3.6 provides one example where
specifications built on this feature fail to prevent incomplete tuplets. We can
impose further constraints on rhythmic complexity by combining the features
event duration and beat onset location.

Figure 3.6: Selection of event duration specifications learned from the training set.
The pattern 1/3 S 1 (1/3, 1, 1/3) is allowed but can produce incomplete tuplets if
placed on certain beats.

• Beat onset location: This feature describes where events happen within the
beat, ignoring information about the length of the event. It is computed by
taking the remainder modulo 1 of the beat feature, which describes the onset
locations of each event. Cooperatively, event duration and beat onset location
specifications impose hard constraints on rhythmic complexity that duration
specifications alone do not guarantee, and allow for rhythmic diversity that beat
onset location alone does not guarantee. These specifications extend our work
in [36] by replacing handmade specifications designed to ensure rhythmic tuplet
completeness with mined specifications. Figure 3.7 shows an example of the
patterns learned and respective patterns between beat onset locations.

Figure 3.7: Beat onset locations specifications learned from the training set.

3.5.2 Frequency Domain Features

• Scale Degree: The scale degree is the identification of a note disregarding its
octave but regarding its distance from a reference tonality. We represent scale

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 36

degree numerically, e.g. in a C scale C = 0, C# = 1, . . . B = 11. Songs usually
impose soft constraints on the pitch space, defining the set of appropriate scale
degrees and transitions thereof. The selection of specifications mined from scale
degree shown in Figure 3.8 conform with the general consent that blues songs
include the main key’s major scale with the “flat seven" (scale degree 10) and
the blue note (scale degree 3), excluding, for example flat ninths (scale degree
1) so common in jazz literature. In Figure 3.8, notice that sharp fourths (scale
degree 6) are used as approach tones to scale degree 5 and 6. Since scale degree
can only provide overall harmonic constraints to each tone over the scope of the
entire song, we use another feature to provide harmonic constraints based on
chord progression, therefore increasing the temporal granularity of the harmonic
specifications.

Figure 3.8: Selection of scale degree specifications learned from the training set.

• Interval Classification: Expanding on [36], we replace the hand-designed
tone classification specifications, here called interval classification, with mined
specifications. Our specifications include information about the size (diatonic or
leap) and quality (consonant or dissonant) of the music interval that precedes
each tone. Figure 3.9 illustrates the mined specifications. We use the symbols
A, B, C, and D, to describe tones reached by consonant step, consonant leap,
dissonant (non-chord tones) step, and dissonant leap respectively. Consonant
and dissonant notes preceded by rests are described with the symbols I and O
respectively. The symbol R represents rests. Although scale degree and interval
classification specifications ensure desirable harmonic guarantees given key and
chord context, they provide no guarantees over the contour of a melody.

• Chord Degree: The chord degree is the identification of a note regarding its
distance in semitones to the root of a chord. It adds harmonic specificity to the
interval class, without enforcing a melodic contour.

• Melodic Interval: This feature operates on the first difference of pitch values
and is associated with the contour of a melody. Combined with scale degree and
interval classification, it provides harmonic and melodic constraints, including
melodic contour.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 37

Figure 3.9: Interval class specifications learned from the training set.

chord dur measure phrase . . . pitch mel_interval beat interval_class
0 F7 14/3 1 1 . . . 69 NA 1 I
1 F7 1/3 2 1 . . . 65 -4 5/3 B
2 F7 2/3 2 1 . . . 67 2 1 C
3 F7 1/3 2 1 . . . 65 -2 5/3 A
4 F7 1 2 1 . . . 68 3 1 D
. .
22 B-7 1 10 3 . . . 68 3 1 B
23 B-7 1 10 3 . . . 67 -1 1 C
24 F7 4 11 3 . . . 65 -2 1 A
25 F7 -4 12 3 . . . NA NA 1 R

Table 3.1: Dataframe from Blues Stay Away From Me by Wayne Raney et al. NA
represents a rest or a transition to or from a rest. dur is duration in beats and
mel_interval is melodic interval

Table 3.1 provides the reader with a selection of features extracted from a blues
song, including chord and phrase number annotations. The next section analyzes
in detail the application of specification mining to the tasks of song validation and
machine improvisation with formal specifications.

3.6 Experimental Results
In all our experiments, we used the features above to mine specifications from a

training set of 20 blues songs, Dtrain, digitized from the Real Book of Blues [84].

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 38

3.6.1 Specification Validation

To check whether our learned specifications are overfitting the training set, we
measured the extent to which a disjoint set of songs from the same genre satisfied the
specifications. We divide specification violations into two categories:

• the word has a pattern whose symbols exist in the alphabet but the pattern is
not allowed by the specification.

• the starting/ending node does not exist in the specification.

An example of the first type is playing an interval that is not valid, although both
notes exist in the scale; e.g. the augmented fourth is a forbidden interval in harmony
or has to be appropriately resolved. The second type ensures that phrases will start
with the proper notes.

We quantify how a test song violates the specification by computing the violation
ratio, which is the fraction of patterns occurring in the song that are illegal. This
quantity is computed by building the pattern graphs for the test song and comparing
them with the corresponding graphs learned from the training set. Although the
violation ratio is a quantitative measure of how badly the specifications are violated,
its formulation is not based on human cognition and perception. Ideally, we would
like a measure that takes into account how the violations perceptually differ from the
behaviors in the specification. We have developed a prototype of such measure, but
leave its evaluation to future work.

In our experiments, we used a separate test set Dtest consisting of 10 blues songs,
digitized from the Country Blues songbook [58]. In total there were 975 patterns
learned from Dtest, of which 124 were violations. In particular, there were 51 chord
degree violations, 47 melodic interval violations and 26 interval class violations, yielding
a violation ratio of 0.12 for the Dtest dataset with 10 songs. All songs in Dtest had
starting and ending nodes that existed in the specification.

Figure 3.10 provides histograms of violations obtained by using harmonic specifi-
cations based on chord degree and interval to validate each song in the test set.

Given the small size of our training data for learning specifications, we assume
that these violations would not occur on a larger training set. This validation can
be exploited in style recognition and we foresee that more complex validations are
possible by creating more elaborated metrics and using a combination of specifications
from multiple styles.

Overall, there were many interval violations related to leaps. Although both
training and test sets had licks that used chord arpeggiations, their starting notes
were different, leading to invalid interval transitions. We provide a specific example in
Figure 3.10 where the first three notes represent an arpeggiation over E7 that starts
with an invalid interval. In addition to interval violations, this test set has chord
degree violations that are mainly related to playing in sequence two notes that do not

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 39

belong to the current chord. After analysis, we learned that these invalid transitions
occur in blues songs where the second phrase is a repetition of the first phrase under
a different harmony. The blues song You Don’t Mean No Good in Figure 3.10 has a
good example. In that song, the E7 arpeggio on the first phrase, measure 2, is valid
under E7 but invalid on the second phrase, measure 6, under A7.

Figure 3.10: Histogram of melodic interval and chord degree violations. The y-axis
represents the patterns that do not exist in the specification and the x-axis represents
their frequency. F and T represent the patterns Followed and ’Till respectively.

3.6.2 Machine Improvisation with hard and soft specifications

Using the 12-bar blues excerpt and its chord progression shown in Figure 3.12,
we generated improvisations with and without specifications, generated from Dtrain,
using the factor oracle with 75% replication probability. For this task, we used joint
specifications, including duration, beat onset location, chord degree, interval class and
melodic interval.

For the quantitative analysis, we computed the average melodic similarity between
Dtrain and other sets of improvisation, including: 50 factor oracle improvisations
generated without specifications, 50 factor oracle improvisations generated with
hard specifications and 50 factor oracle improvisations generated with soft and hard
specifications. The melodic similarity is computed using the algorithm described in
[129]. As baselines, we also computed the similarity of Dtrain to the 12 Bar Blues
reference word and to 50 songs with random notes and durations.

The results in Figure 3.11 show that the specifications are successful in making the
improvisation generated by the factor oracle more similar to the melodies from which
the specifications were mined. In the case of the 12-bar blues, the pitch distribution
and the melodic similarity of the improvisations generated with hard specs and hard
and soft specs to the training data is almost equal.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 40

(a) Train dataset (20 blues songs) (b) Melodic Similarity w.r.t train dataset

(c) 50 improvisations with-
out specifications

(d) 50 improvisations with
hard specifications

(e) 50 improvisations with
hard and soft specifications

Figure 3.11: Pitch Histograms for the training set and factor oracle improvisations
with 0.75 replication probability. The melodic similarity with respect to the training
set bargraph (b) has values normalized by the larger similarity value (Wref).

Qualitatively, the improvisation without specifications violates several specifica-
tions related to expected harmonic and melodic behavior, as Figure 3.12 confirms. For
example, measure 4 in the improvisation without specifications has chord degrees that
violate harmonic specifications. This is expected because the transitions taken by the
unsupervised improvisation disregard harmonic context, thus commonly producing
unprepared and uncommon dissonant notes. In addition, the melodic profile of the
unsupervised improvisation is rather jumpy.

Both supervised improvisations are able to keep overall harmonic coherence
despite the use of chromaticism. Their melodic contour is rather smooth and the
improvisations include several occurrences of the ’Til and Surrounding patterns,
as measures 5 and 1 of the improvisation with hard and with both hard and soft
specifications respectively show. We noticed that the improvisations generated with
the specifications are considerably similar, which implies that there are not many
solutions to the constraints enforced by the specifications. This raises an interesting
research question, namely how to ensure that there is enough diversity among the
improvisations while still satisfying the constraints.

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 41

(a) Reference song

(b) Improvisation without specifications

(c) Improvisation with hard specifications

(d) Improvisation with hard and soft specifications

Figure 3.12: Factor Oracle improvisations with 0.75 replication probability on a
traditional instrumental blues lick

3.7 Related Work
The concept of control improvisation was first introduced in [35,36] and formalized

in [45,46]. It was presented as a variation of the standard supervisory control problem
for discrete event systems [22], with applications to the generation of music. A real time
implementation was presented in [34], and the problem was investigated theoretically
in [46]. As indicated in the previous section, the core of the improvisation process
rests on the notion of a factor oracle. The factor oracle (FO) was initially introduced
in [27] as an algorithm for optimal string matching, and later suggested as a suitable
data structure for machine improvisation in [12]. It is in use in several prominent

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 42

improvisation systems such as OMax7 and its variant ImproTek [99].
Specification mining is a form of inductive synthesis in which formal artifacts are

synthesized from examples [67,118]. In the software engineering literature, specification
mining is an efficient procedure to automatically infer, from empirical data, general
rules that describe the interactions of a program with an application programming
interface (API) or abstract datatype (ADT) [3]. It has convenient properties that
facilitate and optimize the process of developing formal specifications. First, specifica-
tion mining is either entirely automatic, or only requires the relatively simple task of
creating templates. In addition, it can exploit latent properties that are unknown to
the user and only reflected in the data, offering valuable information on commonalities
in large datasets.

Techniques to automatically generate specifications date back to the early seven-
ties, including [19,132]. More recent efforts that analyze the problem of specification
inference include [2,3,43,82]. In general, specification mining tools infer temporal
properties in the form of mathematical logic or automata. Broadly speaking, the
two main strategies for building these automata include: learning a single automaton
and inferring specifications from it; learning small templates and designing a complex
automaton from them. For example, [3] learns a single probabilistic finite state au-
tomaton from the trace and then extracts likely properties from it. The other strategy
circumvents the NP-hard challenge of directly learning a single finite state automaton
[52,53] by first learning small specifications and then post-processing them to build
more complex state machines. The idea of mining simple alternating patterns was
introduced by [43], and several subsequent efforts [47,48,133,138] built upon this work.
We forward the reader to [81] for a more in-depth discussion of related work.

In music, and specifically music improvisation, the task of learning or describing
such general rules is difficult, even for experts, due to music’s large parameter space and
richness of interpretation. Therefore, specification mining is very attractive because it
offers a systematic and automatic mechanism for learning these specifications from
large amounts of data.

3.8 Discussion
We proposed a solution to the problem of mining specifications from symbolic

music for machine improvisation with formal specifications. This solution replaced
our previous approach, which required manually inferring and encoding specifications,
with an engine that automatically mines information from a dataset of songs. Our
experiments show that the new approach is successful both in graphically and algorith-
mically describing characteristics of a music collection, and in guiding improvisations
in the style of that music collection.

7http://repmus.ircam.fr/omax/home

http://repmus.ircam.fr/omax/home

CHAPTER 3. SPECIFICATION MINING FOR MACHINE IMPROVISATION 43

This research is a first step towards music specification mining and we plan
to investigate mechanisms to build more complex specifications, e.g. hierarchical
specification schemes where the specification layers have hierarchical relationships
such as section, phrase, motif, note. We are also interested in designing an interface
that allows a musician to write, mine and combine specifications from MIDI data and
visualize pattern graphs extracted from it.

44

Chapter 4

Attacking Speaker Recognition
Systems with Generative Adversarial
Networks

4.1 Introduction and Motivation
Speaker authentication systems are being deployed for security critical applica-

tions in industries like banking, forensics, and home automation. Like other domains,
such industries have benefited from recent advancements in deep learning that lead
to improved accuracy and trainability of the speech authentication systems. De-
spite the improvement in the efficiency of these systems, evidence shows that they
can be susceptible to adversarial attacks[136], thus motivating a current focus on
understanding adversarial attacks ([127], [56]), finding countermeasures to detect
and deflect them and designing systems that are provably correct with respect to
mathematically-specified requirements [120].

Parallel to advancements in speech authentication, neural speech generation (the
process of using deep neural networks to generate speech) has also seen huge progress
in recent years ([131], [5]). The combination of these advancements begs a natural
question that has, to the best of our knowledge, not yet been answered:

Are speech authentication systems robust
to adversarial attacks by speech generative models?

Generative Adversarial Networks (GANs) are generative models that recently
have been used to produce incredibly authentic samples in a variety of fields. The
core idea of GANs, a minimax game played between a generator network and a
discriminator network, extends naturally to the field of speaker authentication and
spoofing. We show that a variant of GAN training motivates the model’s use as an
attacking architecture.

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 45

With regards to this question, we offer in this research the following contributions:

• We evaluate SampleRNN and WaveNet in their ability to fool text-independent
speaker recognizers.

• We propose strategies for untargeted attacks using Generative Adversarial
Networks.

• We propose strategies for targeted attacks using a new objective function based
on the improved Wasserstein GAN.

4.2 Related Work
Modern generative models are sophisticated enough to produce fake1 speech

samples that can be indistinguishable from real human speech. In this section,
we provide a summary of some existing neural speech synthesis models and their
architectures.

WaveNet [130] is a generative neural network that is trained end-to-end to model
quantized audio waveforms. The model is fully probabilistic and autoregressive, using
a stack of causal convolutional layers to condition the predictive distribution for each
audio sample on all previous ones. It has produced impressive results for generation
of speech audio conditioned on speaker and text and has become a standard baseline
for neural speech generative models.

SampleRNN [92] is another autoregressive architecture that has been successfully
used to generate both speech and music samples. SampleRNN uses a hierarchical
structure of deep RNNs to model dependencies in the sample sequence. Each deep
RNN operates at a different temporal resolution so as to model both long term and
short term dependencies.

Recent work on deep learning architectures has also introduced the presence of
adversarial examples : small perturbations to the original inputs, normally impercepti-
ble to humans, which nevertheless cause the architecture to generate an incorrect or
deliberately chosen output. In their brilliant papers, [127] and [56] analyze the origin
of adversarial attacks and describe simple and very efficient techniques for creating
such perturbations, such as the fast gradient sign method (FGSM).

In the vision domain, [121] describe a technique for attacking facial recognition
systems. Their attacks are physically realizable and inconspicuous, allowing an attacker
to impersonate another individual. In the speech domain, [21] describe attacks on
speech-recognition systems which use sounds that are hard to recognize by humans
but interpreted as specific commands by speech-recognition systems.

1We use the term fake to refer to computer generated samples

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 46

To the best of our knowledge, GANs have not been used for the purpose of speech
synthesis2. [103] uses a conditional GAN for the purpose of speech enhancement, i.e.
taking as input a raw speech signal and outputting a denoised waveform. The model
in [23] tackles the reverse problem of using GANs to learn certain representations
given a speech spectrogram.

4.3 Attacking Text-Independent Speaker Recognition
Systems

In this section, we define the neural speaker recognition system used in our
experiments and define the targeted and untargeted adversarial attacks we investigate.

4.3.1 Neural speaker recognition system

The speaker recognition system used in our experiments is based on the framework
by [85] and is described in Figure 4.1. The first module at the bottom is a pre-processing
step that extracts the Mel-Spectrogram from the waveform as described in section
4.4.2. The second module is a convolutional neural network (CNN) that performs
multi-speaker classification using the Mel-Spectrogram. The CNN is a modified version
of Alexnet [74]. We warn the readers that unlike [85], our classifier operates on 64 by
64 Mel-Spectrogram and has slightly different number of nodes on each layer.

We train our speaker classifier using 64 by 64 Mel-Spectrograms 3 from 3 speech
datasets, including 100 speakers from NIST 2004, speaker p2280 from CSTR VCTK
and the single speaker in Blizzard. Our speaker classifier has a rejection path, the
“other” class, trained on environmental sounds using samples from the ESC-50 dataset.
Our model achieves approximately 85% test set accuracy

4.3.2 Adversarial attacks

We define adversarial attacks on speaker recognition systems as targeted or
untargeted. In targeted attacks, an adversary is interested in designing an input that
makes the classification system predict a target class chosen by the adversary. In
untargeted attacks, the adversary is interested in a confident prediction, regardless
of the class being predicted as long as it is not a "other" class. Untargeted attacks
are essentially designed to fool the classifier into thinking a fake speech sample is real.
Notice that a successful targeted attack is by definition a successful untargeted attack
as well.

2More specifically, Mel-Spectrogram synthesis
364 mel bands and 64 frames, 100 ms each

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 47

64 x 192 Mel-Spectrogram

L1: convolution 3x3x32

L2: max pooling 2x2

L3: convolution 3x3x64

L4: max pooling 2x2

L5: dense 1024

L6: dropout 50%

L7: dense 103

L8: softmax

labels

Figure 4.1: Architecture for CNN speaker verifier.

4.4 Experimental Setup
In this section we describe the datasets used and the data engineering pipeline,

including pre-processing and feature extraction.

4.4.1 Datasets

In our experiments we use three speech datasets and one dataset with environ-
mental sounds, as shown in Table 4.1. The datasets used are public and provide
audio clips of different lengths, quality, language and content. In addition to the
samples listed in Table 4.1, we used globally conditioned sampleRNN and WaveNet
fake samples available on the web. The samples generated with sampleRNN and
WaveNet are from the Blizzard dataset and CSTR VCTK (P280) respectively. We
warn the reader that although most of the WaveNet and SampleRNN samples we used
carry the timbre of the speaker, the sentences they produce are equal to babble.

4.4.2 Pre-processing

Data pre-processing is dependent on the model being trained. For SampleRNN
and WaveNet, the raw audio is reduced to 16kHz and quantized using the µ-law

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 48

Speakers Language Duration Context
2013 Blizzard 1 English 73 h Book narration
CSTR VCTK 109 English 400 Sentences Newspaper narration
2004 NIST 100 Multiple 5 min / speaker Conversational phone speech.
ESC 50 50 N/A 4 min / class Environmental sounds.

Table 4.1: Description of the datasets used in our experiments.

companding transformation as referenced in [92] and [130]. For the model based on
the Wasserstein GAN, we pre-process the data by converting it to 16kHz and removing
silences by using the WebRTC Voice Activity Detector (VAD) as referenced in [141].
For the CNN speaker recognition system, the data is pre-processed by resampling to
16kHz when necessary and removing silences by using the aforementioned VAD.

4.4.3 Feature extraction

SampleRNN and WaveNet operate at the sample level, i.e. waveform, thus
requiring no feature extraction. The features used for the neural speaker recognition
system are based on Mel-Spectrograms with dynamic range compression. The Mel-
Spectrogram is obtained by projecting a spectrogram onto a mel scale. We use the
python library librosa [91] to project the spectrogram onto 64 mel bands, with window
size equal to 1024 samples and hop size equal to 160 samples, i.e. 100ms long frames.
Dynamic range compression is computed as described in [85], with log(1 + C ⇤M),
where C is a compression constant scalar set to 1000 and M is a matrix representing
the Mel-Spectrogram. Training the GAN is also done with Mel-Spectrograms of 64
bands and 64 frames image patch.

4.4.4 Models

4.4.4.1 WaveNet

Due to constraints on computing power and the extreme difficulty in training
WaveNet 4, we used samples from WaveNet models that had been pre-trained for 88
thousand iterations. Parameters of the models were kept the same as those in [130].
The ability of WaveNet to perform untargeted attacks amounts to using a model
trained on an entire corpus. Targeted attacks are more difficult - we found that a
single speaker’s data was not enough to train WaveNet to converge successfully. To
construct speaker-dependent samples, we relied on samples from pre-trained models
that were globally conditioned on speaker ID. Based on informal listening experiments,
such samples do sound very similar to the real speech of the speaker in question.

4Our community has not been able to replicate the results in Google’s WaveNet paper

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 49

4.4.4.2 sampleRNN

Similarly to WaveNet, we found that the best (least noisy) sampleRNN sam-
ples came from models which were pretrained with a high number of iterations.
Accordingly, we obtained samples from the three-tiered architecture, trained on
the Blizzard 2013 dataset [107], which as mentioned in Section 3 is a 300 hour
corpus of a single female speaker’s narration. We also downloaded samples from
online repositories, including samples from the original paper’s online repository at
https://soundcloud.com/samplernn/sets, which we qualitatively found to have
less noise than our generated ones.

4.4.4.3 WGAN

In all of our experiments, we use the Wasserstein GAN with this gradient penalty
(WGAN-GP), which we found makes the model converge better than regular WGAN or
GAN. We will henceforth use WGAN, IWGAN, GAN, and WGAN-GP interchangeably
to refer to WGAN-GP.

In our experiments, we trained a WGAN-GP to produce mel-spectrograms from
1 target speaker against a set of 101 speakers. On each critic iteration, we fed it with
a batch of samples from one target speaker, and a batch of data uniformly sampled
from the other speakers.
We used two popular architectures for generator/critic pairs:

• DCGAN [108] models the generator as a series of deconvolutional layers with
ReLU activations, and the discriminator as a series of convolutional layers with
leaky ReLU activations. Both architectures use batch normalization after each
layer.

• ResNet [79] models the generator and discriminator each as very deep convnets
(30 layers in our experiments) with upsampling/downsampling respectively.
Residual (skip) connections are added every few layers to make training easier.

Performing untargeted attacks with the WGAN-GP (i.e., training the network to output
speech samples that mimic the distribution of speech) is relatively straightforward:
we simply train the WGAN-GP using all speakers in our dataset. However, the most
natural attack is one that is targeted : where the GAN is trained to directly fool
a speaker recognition system, i.e., to produce samples that the system classifies as
matching a target speaker with reasonable confidence.

4.4.4.4 WGAN-GP with modified objective function

A naive approach for targeted attacks is to train the GAN on the data of the single
target speaker. A drawback of this approach is that the critic, and by consequence

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 50

the generator, does not have access to universal properties of speech5. To circumvent
this problem, we rely on unsupervised learning and propose a modification to the
critic’s objective function that allows it to learn to differentiate between not only real
samples and generated samples, but also between real speech samples from a target
speaker and real speech samples from other speakers. We do this by adding a term to
the critic’s loss that encourages its discriminator to classify real speech samples from
untargeted speakers as fake. From equation 2.9, the critic’s loss LC changes to:

E
ex⇠Pg

⇥
D(ex)

⇤

| {z }
Generated Samples

+↵ ⇤ E
ẋ⇠Pẋ

⇥
D(ẋ)

⇤

| {z }
Different Speakers

� E
x⇠Pr

⇥
D(x)

⇤

| {z }
Real Speaker

+� E
x̂⇠Px̂

⇥
(krx̂D(x̂)k2 � 1)2

⇤

| {z }
Gradient Penalty

, (4.1)

where Px̂ is the distribution of samples from other speakers and ↵ is a tunable
scaling factor. Note that equation 4.1 is no longer a direct approximation of the
Wasserstein distance. Rather, it provides a balance of the distance between both the
fake distribution and real one, and the distance between other speakers’ distribution
and the target speaker’s one. We refer to this objective function as mixed loss.

Initially, we were able to converge the targeted loss model used the same pa-
rameters as [59], namely 5 critic iterations per generator iteration, a gradient penalty
weight of 10, and batch size of 64. Both the generator and critic were trained using
the Adam optimizer [71]. However, under these parameters we found that the highest
↵ weight we could successfully use was 0.1 (we found that not including this scaling
factor led to serious overfitting and poor convergence of the GAN).

In order to circumvent these problems and train a model with ↵ set to 1, we made
modifications to the setup, including setting the standard deviation of the DCGAN
discriminator’s weight initialization to 0.05 and iterations to 20. To accommodate
the critic’s access to additional data in the mixed loss function (4), we increased the
generator’s learning rate. Finally, we added Gaussian noise to the target speaker data
to prevent overfitting.

4.5 Experimental Results

4.5.1 GAN Mel-Spectrogram

Using the improved Wasserstein GANs framework, we trained generators to
construct 64x64 mel-spectrogram images from a noise vector. Visual results are
demonstrated below in Figure 4.2. We saw recognizable Mel-Spectrogram-like features
in the data after only 1000 generator iterations, and after 5000 iterations the generated
samples were indistinguishable from real ones. Training took around 10 hours for
20000 iterations on a single 4 GB Nvidia GK104GL GPU.

5We draw a parallel with Universal Background Models in speech.

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 51

(a) Real (actual) (b) Fake (generated)

Figure 4.2: Comparison of real and generated (⇠ 5000 generator iterations) spectro-
gram samples from all speakers. Each grid contains 64 samples.

4.5.2 GAN Adversarial attacks

Within the GAN framework, we train models for untargeted attacks by using
all data available from speakers that the speaker recognition systems was trained on,
irrespective of class label. We show that an untargeted model able to generate data
from the real distribution with enough variety can be used to perform adversarial
attacks. We provide details in the untargeted attacks subsection 4.5.2.1. Figure 4.3b
depicts that our GAN-trained generator successfully learns all speakers across the
dataset, without mode collapsing.

(a) Our speaker classifier’s softmax
distribution of 1000 samples on ap-
proximately 100 speakers.

(b) Our speaker classifier’s distribu-
tion of randomly sampled speech from
the generative model.

Figure 4.3: Summary of untargeted attacks. Red represents high confidence.

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 52

Normally, models for targeted attacks with GANs are trained in two manners:

1. conditioning the models on additional information [95] such as class labels;

2. using only data from the target class;

While the first approach might result in mode collapse, a drawback of the second
approach is that the discriminator, and by consequence the generator, do not have
access to universal6 properties of speech. In the targeted attacks subsection 4.5.2.2 we
show results using our new semi-supervised objective function described in equation 4.1
that uses data from all classes and recognizes and produces data from a single class.

4.5.2.1 Untargeted attacks

For each speaker audio data in the test set, we compute a Mel-Spectrogram
as described in section 4.4.2. The resulting Mel-Spectrogram is then fed into the
CNN recognizer and we extract a 1024-dimensional feature � from the first fully-
connected layer (L5) in the pre-trained CNN model (4.1) trained on the real speech
dataset with all speaker IDs. This deep feature/embedding � is then used to train a
K-nearest-neighbor (KNN) classifier, with K equal to 5.

To obtain class labels from samples produced with our generator, we feed the
generated Mel-Spectrograms into the same CNN-L7 pipeline to extract their cor-
responding feature b�. Utilizing the pre-trained KNN, each sample is assigned to
the nearest speaker in the deep feature space. Therefore, we know which speaker
our generated sample belongs to when we attack our CNN recognizer. We evaluate
our controlled WGAN-GP samples against our CNN speaker recognition system and
provide a confusion matrix in Figure 4.4.

Figure 4.4: Confusion matrix of GAN untargeted attacks. x-axis corresponds to
predicted label, y-axis to ground truth.

6We draw a parallel with Universal Background Models in speech recognition.

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 53

4.5.2.2 Targeted attacks

We ran all three models (WGAN-GP, SampleRNN, WaveNet) on a mixed corpus
containing the entirety of the NIST 2004 corpus, a single speaker (P280) from the
VCTK Corpus, and the single speaker from the Blizzard dataset. The mixed corpus
therefore contains 102 speakers. Samples were either downloaded from the web or
created from WaveNet globally conditioned on the single VCTK corpus speaker, and
on SampleRNN trained only on data from the Blizzard dataset.

Results on WaveNet and SampleRNN are demonstrated in Figure ??. Neither
WaveNet samples nor sampleRNN samples were able to attack the speaker recognition
model. In the sampleRNN and WaveNet models, all the predictions made by the
classifier match a speaker class but none of the predictions matches the target speaker.

(a) Histogram of predictions on sam-
pleRNN data. Target label: 100.

(b) Histogram of predictions on WaveNet
data. Target label: 101.

We also trained the WGAN-GP with and without our mixed loss on speaker 0.
The histogram of predictions in Figure 4.6 shows that with the mixed loss model,
most of the energy is concentrated on the target speaker 0. Our mixed loss achieves
achieves 12% error: a 75% relative increase in accuracy over naive WGAN-GP.

Figure 4.6: Histogram of predictions on IWGAN and mixed loss data. Target label: 0.

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 54

It is therefore clear that in this context the WGAN-GP mixed loss is an improve-
ment over the original loss function. This is expected given the network’s access to
additional speaker data.

4.6 Discussion
In this research we have investigated the use of speech generative models to

perform adversarial attacks on speaker recognition systems. We show that the samples
from autoregressive models we trained, i.e. SampleRNN and WaveNet, or downloaded
from the web were not able to fool the CNN speaker recognizers we used in this
research. On the other hand, we show that adversarial examples generated with GAN
networks are successful in performing targeted and untargeted adversarial attacks
given the speaker recognition system used in our experiments.

It is important to mention that the generative models used in this research have
different loss functions: whereas WaveNet and sampleRNN learn next-step prediction,
the GAN framework trains a generator to fool a discriminator by producing fake
samples that the discriminator believes to come from the same distribution as the
real samples. The loss of both training schemes is very different from the loss used
in training a speaker recognizer and none of the generative models, including GANs,
interact with the speaker recognition system. Also worth mentioning is that the
GAN generator we used is unconditional an incapable of generating samples based on
previous samples.

Although we have ongoing successful experiments on training sequential GANs
to produce samples conditioned on previous samples, fooling text-independent speaker
classifiers is an important intermediate step to evaluate the ability of speech generative
models in their capacity to fool speaker classifiers. It is reasonable to affirm that a
generative model that does not fool a text-independent speaker classifier, like WaveNet
and sampleRNN does not, will not fool a text-dependent speaker classifier. Not
reported in this paper, the generative models were also tested against a GMM-UBM
i-vector speaker classifier trained using Alize and WaveNet and SampleRNN did not
fool the GMM-UBM classifier.

A pertinent argument against the validity of the informal GMM-UBM tests lies
on the fact that GMM-UBM models have high precision and would not generalize to
speech in different conditions, e.g. different room or microphone. First, it is not within
the scope of this research to build a speaker recognition system that is invariant to
room and microphone conditions. Second, given that the speaker recognition models,
CNN and informally GMM-UBM, have good performance on test data and that
WaveNet and SampleRNN goal is to replicate speech data that is from a speaker with
similar and fixed microphone and room conditions, it is expected that the outputs
of these generative models should be properly classified by the speaker recognition
system.

CHAPTER 4. ATTACKING SPEAKER RECOGNITION WITH GANS 55

With this research we hope to raise attention to issues that generative models
bring to security and biometric systems. We foresee that samples produced with
generative models have signatures that can be used to identify the source of the data.
This hypothesis is investigated in the next chapter.

56

Chapter 5

Interesting properties of samples
generated with Generative
Adversarial Networks

5.1 Introduction and Motivation
Since the groundbreaking Generative Adversarial Networks paper [55] in 2014,

most GAN related publications use a grid of image samples to accompany theoretical
and empirical results. Given this context, the expansion of GAN research to other
domains including language models [59] and music [139] display the need of sample
inspection.

Unlike Variational Autoencoders (VAEs) and other models [55], most of the
evaluation of the output of Generators trained with the GAN framework is qualitative:
authors normally list higher sample quality as one of the advantages of their method
over other methods. Interestingly, little is mentioned about the numerical properties
of GAN samples and how these properties compare to real samples.

In the context of Verified Artificial Intelligence[120], it is hard to systematically
verify the Generator and the samples it produces because verification might depend on
the existence of perceptually meaningful features. For example, consider the generation
of images of humans: although it is possible to compare color histograms of real and
fake1 samples, we do not yet have robust algorithms able to verify if an image follows
specifications derived from anatomy.

This research is related to this systematic sample verification and focuses on
understanding the numerical properties of GAN samples. We investigate how the
Generator approximates modes in the real distribution and verify if the generated
samples violate specifications derived from the real distribution. We offer the following
contributions in this research:

1Generated samples

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 57

• We show that GAN samples have universal signatures.

• We show how GAN samples approximate modes of the real distribution.

• We show significant differences between the marginal distribution of features.

• We show GAN samples that violate specifications in the real data.

5.2 Hypotheses
Hypothesis 1 (H1). Generative models can approximate the distribution of real data
and hallucinate fake data that has some variety and resembles real data.

Although this hypothesis is trivial for experiments that have already been con-
ducted, it is the first condition for our experiments. To our knowledge there are no
publications where GANs are successful in hallucinating polyphonic music and speech
data. During our experiments we prove that these hypotheses hold.

Hypothesis 2 (H2). The real data has useful properties that can be extracted compu-
tationally.

By useful we refer to properties that can be used to describe specifications of the
real data. For example, computing the distribution MNIST pixel values might be not
useful for assessing drawing quality but it might be useful to evaluate if a random
MNIST sample is real or fake.

Hypothesis 3 (H3). The fake data has properties that differ from the real data and
are hardly noticed with visual inspection of samples.

Visual inspection of generated samples has become the norm for the evaluation
of samples generated using the GAN framework. We investigate if there are properties
common to all GAN samples or properties that significantly differ between the real
data and the fake data. This hypothesis supports the next hypothesis related to
adversarial attacks.

Hypothesis 4 (H4). The difference in properties can be used to identify the source
(real or fake)

The development of generative models foreshadows the imminent rise of adver-
sarial attacks. We investigate if these differences can be used to detect the source of
the data (real, GAN or adversarial attack).

With respect to hypotheses 2 and 4, we call the reader’s attention that approxi-
mating the distribution over features computed on the real data does not guarantee
that the real data is being approximated. Formally speaking: consider X ⇠ Z, i.e. X
distributed as Z, and f(X) ⇠ W , where f : X 7! Y . If A ⇠ B and B approximates Z,
then f(A) ⇠ D must also approximate W . However, a distribution that approximates
W is not guaranteed to approximate Z.

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 58

5.3 Experimental Setup
In this section we describe our methodology, briefly describing the datasets and

features computed, as well as the model architectures and GAN algorithms used.

5.3.1 Datasets

In our experiments, we use the MNIST dataset, a MIDI dataset of 389 Bach
Chorales downloaded from the web and a subsample of the NIST 2004 telephone
conversational speech dataset with 100 speakers, multiple languages and on average 5
minutes of audio per speaker.

5.3.2 Property extraction

The properties extracted from the datasets used on this research can be percep-
tually meaningful or not. We claim that both properties can be used to numerically
identify the source of the sample. In the context of this paper, samples are images of
size 64 by 64.

5.3.2.1 Spectral Moments

The spectral centroid [105] is a feature commonly used in the audio domain,
where it represents the barycenter of the spectrum. This feature can be applied to
other domains and we invite the reader to visualize Figure 5.1 for examples on MNIST
and Mel-Spectrograms [105]. For each column in an image, we transform the pixel
values into row probabilities by normalizing them by the column sum, after which we
take the expected row value, thus obtaining the spectral centroid.

Figure 5.1a shows the spectral centroid computed on sample of MNIST training
data.

(a) MNIST samples and centroids (b) Mel-Spectrograms and centroids

Figure 5.1: Spectral centroids on digits and Mel-Spectrograms

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 59

5.3.2.2 Spectral Slope

The spectral slope adapted from [105] is computed by applying linear regression
using an overlapping sliding window of size 7. For each window, we regress the spectral
centroids on the column number mod the window size. Figure 5.2 shows these features
computed on MNIST and Mel-Spectrograms from the NIST dataset.

(a) MNIST samples and slopes (b) Mel-Spectrograms and slopes

Figure 5.2: Spectral slopes on digits and Mel-Spectrograms

5.3.3 Generative Models

We investigate samples produced with the DCGAN architecture using the Least-
Squares GAN (LSGAN) [88] and the improved Wasserstein GAN (IWGAN) [59]. We
also compare adversarial MNIST samples produced with the fast gradient sign method
(FGSM) [56].

5.3.4 Distance Measures

We use the Jensen-Shannon divergence and the Kolgomorov-Smirnov Two-Sample
test [89] for comparing distributions. The Jensen-Shannon divergence is described in 2.5
and below we provide the equation describing the Kolgomorov-Smirnov Two-Sample
test:

Dn,m = sup
x

|F1,n(x)� F2,m(x)|, (5.1)

where F1,n and F2,m are the empirical cumulative distribution functions (eCDF) of
the first and the second sample respectively, and sup is the supremum function. The
null hypothesis is rejected at level ↵ if:

Dn,m > c(↵)

r
n+m

nm
, (5.2)

where n and m are the sizes of first and second sample respectively. The value of c(↵)
can be computed with:

c (↵) =

r
�1

2
ln
⇣↵
2

⌘
. (5.3)

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 60

5.4 Experimental Results

5.4.1 MNIST

We compare the distribution of features computed over the MNIST training set
to other datasets, including the MNIST test set, samples generated with GANs and
adversarial samples computed using FGSM. The training data is scaled to [0, 1] and
the random baseline is sampled from a Bernoulli distribution with probability equal
to the mean value of pixel intensities in the MNIST training data, 0.13. Each GAN
model is trained until the loss plateaus and the generated samples look similar to the
real samples. The datasets compared have 10 thousand samples each.

Figure 5.3: Samples from MNIST train, test, LSGAN, IWGAN, FSGM and Bernoulli.

Visual inspection of the generated samples in Figure 5.3 show that IWGAN
seems to produce better samples than LSGAN. Quantitatively, we use the MNIST
training set as a reference and compare the distribution of pixel intensities. Table 5.1
reveals that although samples generated with LSGAN and IWGAN look similar
to the training set, they are considerably different from the training set given the
Kolgomorov-Smirnov (KS) Two Sample Test and the Jensen-Shannon Divergence
(JSD), specially if compared to the same statistics on the MNIST test data.

KS Two Sample Test JSD
Statistic P-Value

mnist_train 0.0 1.0 0.0
mnist_test 0.003177 0.0 0.000029
mnist_lsgan 0.808119 0.0 0.013517
mnist_iwgan 0.701573 0.0 0.014662
mnist_adversarial 0.419338 0.0 0.581769
mnist_bernoulli 0.130855 0.0 0.0785009

Table 5.1: Statistical comparison over the distribution of pixel values for different
samples using MNIST training set as reference.

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 61

These numerical phenomena can be understood by investigating the empirical
CDFs in Figure 5.4. The pixel values of the samples generated with the GAN framework
are mainly bi-modal and smoothly and asymptotically approach the modes of the
distribution of pixel values in the real data, 0 and 1.

Figure 5.4: Pixel empirical CDF of training data as reference (green) and other
datasets(red)

In addition, a plot of the distribution of moments of the spectral centroid in
Figure 5.5 suggests that the fake images are more noisy than the real images. Consider
for example the images produced by randomly sampling a Bernoulli distribution with
parameter estimated from the training data. These images have pixel values of zero
and one that are equally distributed 2 over the image. Well, an image that has pixels
values distributed in such manner will have distribution of mean spectral centroid
that will be centered at the center row of the image, row 14. This and the similarity
between the distribution of mean spectral centroids from fake data and Bernoulli
data shows evidence that the fake images have noise that are also equally spatially
distributed.

Figure 5.5: Distribution of moments of spectral centroids computed on each image.

Last, Figure 5.6 shows that the GAN generated samples smoothly approximate
the modes of the distribution. This smooth approximation is considerably different

2This spatial distribution is independent of the parameter of the Bernoulli distribution.

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 62

from the training and test sets. Although these properties are not perceptually
meaningful, they can be used to identify the source of the data, hence confirming
hypotheses 2, 3 and 4.

Figure 5.6: Histogram of pixel intensities for each dataset. First row shows histogram
within the [0, 1] interval and 100 bins. Second row shows histograms between the
[0.11, and 0.88] interval and 100 bins.

Our first hypothesis for the smooth approximation of the modes of the distribution
was that it would be present in any data produced with a generator that is trained
using stochastic gradient descent and an asymptotically converging activation function,
such as sigmoid or tanh, at the output of the generator. To evaluate this hypothesis,
we conducted a set of experiments using different GAN architectures (WGAN-GP,
LSGAN, DCGAN, LSGAN) with different activation functions, including linear and
the scaled tanh, at the output of the Generator, keeping the discriminator fixed.

To our surprise, we noticed that the models trained with linear or scaled tanh
activations were not able to produce images that were similar to the MNIST training
data and, to our surprise, the distribution of pixel intensities, although uni-modal
around zero, still possessed a smooth looking curve. This is illustrated in Figure 5.7.

(a) Linear (b) Scaled Tanh

Figure 5.7: Fake MNIST samples and pixel distribution from generators trained with
DCGAN, Batch Norm and linear or scaled tanh activation functions.

We then hypothesized that the smooth behavior was due to smoothness in the
pixels intensities of the training data itself. To validate this hypothesis, we binarized

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 63

the real data by first scaling it between [0, 1] and then thresholding it at 0.5. With this
alteration the distribution of the pixel intensities of the real data becomes completely
bi-modal with modes at 0 and 1. Interestingly, even with binarized training data, the
smooth behavior was still present as we show in Figure 5.8.

(a) DCGAN Linear, Binary samples (b) WGAN-GP Linear, Binary samples

Figure 5.8: Fake MNIST samples and pixel distribution from generators trained on
binarized real data with DCGAN and WGAN-GP, Batch Norm and linear activation
functions.

With this empirical evidence at hand, we provide an informal analysis of the
smoothness of the distribution of pixels of the generated data from the perspective of
optimization, differentiation and function approximation with neural networks. We
know that backpropagation and stochastic gradient descent are used to update the
weights of a neural network model based on the gradient of the loss with respect to
the weights. We also know that differentiation requires the function that is being
differentiated to have some high degree of smoothness and be differentiable almost
everywhere 3. Hence, we conjecture that the inductive bias of the neural networks is
that of smoothness given the requirements of differentiation.

We speculate that this inductive bias is responsible for the smoothness of the
distribution of pixel values at any iteration during training and that the U shape of
the distribution of pixel values, similar to blurring, is the byproduct of an smooth
approximation of the function that is being learned 4. We forward the interested user
to our github repo 5 in which we provide code to replicate our experiments. This
behavior probably explains why the smooth behavior is also present on the GAN
generated Bach chorales studied in the next experiment.

5.4.2 Bach Chorales

We investigate the properties of Bach chorales generated with the GAN framework
and verify if they satisfy musical specifications. Bach chorales are polyphonic pieces

3ReLU is not smooth at 0 for example but works fine.
4Consider approximating a function with polynomials of increasing degrees
5https://github.com/rafaelvalle/ipgans

https://github.com/rafaelvalle/ipgans

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 64

of music, normally written for 4 or 5 voices, that follow a set of specifications/rules6.
For example, a global specification could assert that only a set of durations are valid;
a local specification could assert that only certain transitions between states (notes)
are valid depending on the current harmony.

For this experiment, we convert the dataset of Bach chorales to piano rolls. The
piano roll is a representation in which the rows represent note numbers, the columns
represent time steps and the cell values represent note intensities. We compare the
distribution of features computed over the training set, test set, GAN generated
samples and a random baseline sampled from a Bernoulli distribution with probability
equal to the normalized mean value of intensities in the training data. After scaling,
the intensities in the training and test data are strictly bi-modal and equal to 0 or 1.
Figure 5.9 below shows training, test, IWGAN and Bernoulli samples, thus confirming
hypothesis 1. Each dataset has roughly 1000 image patches and the image patches
from training and test data are randomly sampled from the Bach Chorales dataset in
piano roll format.

Figure 5.9: Samples drawn from Bach Chorales train, test, IWGAN, and Bernoulli
respectively.

Figure 5.10 shows a behavior that is similar to our previous MNIST experiments:
the IWGAN asymptotically approximates the modes of the distribution of intensity
values. In the interest of space, we refer the reader to the online appendix7 for statistics
and other relevant information.

Following, we investigate if the generated samples violate the specifications of
Bach chorales. Given that the intensities of notes in the Bach chorales are strictly
bi-modal, we must post-process the GAN samples to define what consists of a silence

6The specifications define the characteristics of the musical style.
7Not provided to preserve anonymity

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 65

Figure 5.10: Intensity distributions of training, test iwgan and Bernoulli Bach choral
samples . Row 1 is in the range [�1, 1], Row 2 is in the range (�1, 0.9] and Row 3 is
in the range [0, 1). The figure shows that GAN samples smoothly approximate the
modes of the distribution.

or note onset. For doing so, we first convert all datasets to boolean by thresholding at
0.5: values above the threshold are set to 1 or set to 0 otherwise. We use these piano
rolls to compute boolean Chroma [105] feature and to compute an empirical Chroma
transition matrix, where the positive entries represent existing and valid transitions.
The transition matrix built on the training data is taken as the reference specification,
i.e. anything that is not included is a violation of the specification. Table 5.2 shows the
number of violations given each dataset. Although Figure 5.9 shows generated samples
that look similar to the real data, the IWGAN samples have over 5000 violations, 10
times more than the test set! We use these facts to confirm hypotheses 2, 3 and 4.

bach_train bach_test bach_iwgan bach_bernoulli
Number of Violations 0 429 5029 58284

Table 5.2: Number of specification violations with training data as reference.

In addition to experiments with Chroma features, we computed the distribution
of note durations on the boolean piano roll described above. Figure 5.11a shows
the distribution of note durations within each dataset. The train and test data are
approximately bi-modal and, again, the improved WGAN smoothly approximates the
dominating modes of the distribution. Table 5.11b provides a numerical comparison
between datasets.

5.4.3 Speech

Within the speech domain, we investigate dynamic compressed Mel-Spectrogram
samples produced with GANs trained on a subset of the NIST 2004 dataset, with 100

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 66

(a) Histogram of note durations
KS Two Sample Test JSD
Statistic P-Value

train 0.0 1.0 0.0
test 0.09375 0.929 0.002
iwgan 0.21875 0.080 0.084
bernoulli 0.93750 0.0 0.604

(b) Test statistics

speakers. We divide the NIST 2004 dataset into training and test set, generate samples
with the GAN framework and use a random baseline sampled from a Exponential
distribution with parameters chosen using heuristics. The generated samples can be
seen in Figure 5.12, thus confirming hypothesis 1. We obtain the Mel-Spectrogram
by projecting a spectrogram onto a mel scale, which we do with the python library
librosa [91]. More specifically, we project the spectrogram onto 64 mel bands, with
window size equal to 1024 samples and hop size equal to 160 samples, i.e. frames
of 100ms long. Dynamic range compression is computed as described in [85], with
log(1 + C ⇤M), where C is the compression constant scalar set to 1000 and M is
the matrix representing the Mel-Spectrogram. Each dataset has approximately 1000
image patches and the GAN models are trained using DCGAN with the improved
Wasserstein GAN algorithm.

In Figure 5.13a we show the empirical CDFs of intensity values. Unlike our
previous experiments where intensity (Bach Chorales) or pixel value (MNIST) was
linear, in this experiment intensities are compressed using the log function. This
considerably reduces the distance between the empirical CDFs of the training data
and GAN samples, specially around the saturating points of the tanh non-linearity,
�1 and 1 in this case. In Table 5.13b we show numerical analysis of the differences
and confirm hypotheses 2 and 3.

Figure 5.14 shows the distribution of statistical moments computed on spectral
centroids and slope. The distributions from different sources considerably overlap,
indicating that the generator has efficiently approximated the real distribution of these
features.

Figure 5.15 shows statistics used to compare the reference (training data) and

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 67

Figure 5.12: Samples drawn from Mel-Spectrogram Speech train, test, IWGAN, and
exponential respectively.

(a) Intensity empirical CDF of training data in blue and other datasets.
KS Two Sample Test JSD
Statistic P-Value

train 0.0 1.0 0.0
test 0.03685 0.0 0.00080
iwgan 0.22149 0.0 0.00056
bernoulli 0.36205 0.0 0.11423

(b) Test statistics

Figure 5.13: Empirical CDF and statistical tests of speech intensity

other datasets. The difference between KS-Statistics and JSD of the test data and
generated samples are negligible. Interestingly, the p-values of the spectral slope of the
improved WGAN are considerably higher than the test data. For these reasons and
although Table 5.13b shows a significant difference between the KS-Statistic of test
data and generated data with respect to the training data, we refrain from confirming
hypothesis 4. An adversary can easily manipulate the generated data to considerably
decrease this difference and still keep the high similarity in features harder to simulate

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 68

(a) Spectral Centroid Moments

(b) Spectral Slope Moments

Figure 5.14: Moments of spectral centroid (left) and slope(right)

such as moments of spectral centroid or slope.

5.5 Related Work
Despite its youth, several publications ([6], [116], [145], [108]) have investigated

the use of the GAN framework for generation of samples and unsupervised feature
learning. Following the procedure described in [17] and used in [55], earlier GAN
papers evaluated the quality of the Generator by fitting a Gaussian Parzen window8 to
the GAN samples and reporting the log-likelihood of the test set under this distribution.
It is known that this method has some drawbacks, including its high variance and
bad performance in high dimensional spaces [55].

Unlike other optimization problems, where analysis of the empirical risk is a
strong indicator of progress, in GANs the decrease in loss is not always correlated

8Kernel Density Estimation

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 69

(a) Spectral Centroid KS Statistics. First row compares datasets with respect to the
distribution of spectral centroid mean computed over each image. Second row compares
standard deviation of the same feature.

(b) Spectral Slope KS Statistics. First row compares datasets with respect to the distribution
of spectral slopes mean computed over each image. Second row compares standard deviation
of the same feature.

Figure 5.15: KS Test-Statistics of spectral centroid (top) and slope (bottom). Pure
color is the test Statistics and hatched color is p-value.

with increase in image quality [7], and thus authors still rely on visual inspection of
generated images. Based on visual inspection, authors confirm that they have not
observed mode collapse or that their framework is robust to mode collapse if some
criteria is met ([7], [59], [88], [108]). In practice, github issues where practitioners
report mode collapse or not enough variety abound.

In their brilliant publications, [88], [7] and [59] propose alternative objective
functions and algorithms that circumvent problems that are common when using the
original GAN objective described in [55]. The problems addressed include instability
of learning, mode collapse and meaningful loss curves [116].

These alternatives do not eliminate the need or excitement9 of visually inspecting
GAN samples during training, nor do they provide quantitative information about
the generated samples. In the following sections, we will analyze GAN samples and
reveal some interesting properties therein. In addition to comparing the marginal

9Despite of authors promising on twitter to never train GANs again.

CHAPTER 5. INTERESTING PROPERTIES OF GAN SAMPLES 70

distribution of features from the real and fake data, we approach these distributions
from the real data as specifications that can be used to validate the output of GAN
Samples. We start by enumerating the hypotheses evaluated in this research.

5.6 Discussion
In this research we investigated numerical properties of samples produced with

adversarial methods, specially Generative Adversarial Networks. We showed that
GAN samples have universal signatures that are dependent on the choice of non-
linearity on the last layer of the generator. In addition, we showed that adversarial
examples produced with the FSGM have properties that can be used to identify an
adversarial attack. Following, we showed that GAN samples smoothly approximate the
dominating modes of the distribution and that this information can be used to identify
the source of the data. Last, we showed that samples generated with GANs violate
specifications and do not provide guarantees on satisfaction of simple specifications.
With this we hope to call attention to the necessity of the development of verified AI
and better understanding of GAN generated samples.

71

Chapter 6

Conclusion

In this section we conclude the thesis with a summary of its contributions and
future directions.

6.1 Contributions
In this thesis we investigated data hallucination, falsification and validation with

generative models and formal methods.
From the perspective of data hallucination, in Chapter 3 we applied the con-

trol improvisation framework to the problem of machine improvisation with formal
specifications using symbolic music data. First we described an algorithm that uses
simple binary patterns to mine specifications in the form of pattern graphs. Then we
used the mined specifications to compare data generated with and without the control
improvisation framework. Our results showed that showed that the data generated
with the framework produces less violations of the specifications, still maintaining
artistic interest.

Next, from the perspective of data falsification, in Chapter 4 we evaluated
generative models for speech in their efficiency in fooling a time-independent speaker
recognition system. We compared the performance of globally conditioned WaveNet,
SampleRNN and our GAN models and showed that our spoofing attacks with GANs
is considerably more efficient than attacks with the other models, given its low error
rate and ease of training. These results were achieved with our modification of the
GAN objective function that rewards the model for producing data from the target
speaker and penalizes is for producing data from other speakers.

Last, hoping to circumvent adversarial attacks with generated data and un-
derstanding samples produced by GANs, in Chapter 5 we studied the properties of
samples produced with GANs and compared them to real samples, i.e. the samples
that were used to train these GANS. We showed that, although real and fake samples
look similar to the bare eye, fake samples produced with GANs or the fast-gradient

CHAPTER 6. CONCLUSION 72

sign method (FGSM) have numerical properties that differ from real data and that
these numerical properties can be used to identify the source of the data. We show
that these differences are also manifested in violations of specification computed over
the real data. Finally, we show that data produced with generative models will be an
smooth approximation of the real data and conjecture that this smoothness is inherent
to differentiability and stochastic gradient descent.

6.2 Future Directions
In this work we combined generative models with formal methods to perform

tasks related to data hallucination, falsification and verification. This combination was
mainly done from the perspective of mining specifications and using these specifications
to generate data in a controlled way or to validate data that was generated. Formal
methods can also be combined with neural networks in simple ways, such as adding a
penalty term to a generator’s loss function that is based on the formal specifications
mined from the real data [120], or in more intricate ways to enforce that the neural
network is smooth and robust to adversarial attacks. These are extremely hard
challenges that have recently been addressed by our community [20,42,68,120] and
that we plan to address in the future.

Regarding adversarial attacks in speaker recognition and given that the generative
models used in our experiments produced only babble or speech features, it would
be valuable to synthesize full speech with these generative models and evaluate their
performance on a text-dependent speaker recognition system. Furthermore, following
the trend of studies that investigate the properties of data generated with GANs, an
analysis of the variety of speech produced by our GANs could show evidence that the
GAN models have learned the distribution of the real data, instead of producing a
few modes from the distribution.

Artistically, further work in machine improvisation with formal specifications and
pattern graphs includes designing an interface that allows a musician to write, mine
and combine specifications from MIDI data and visualize pattern graphs extracted
from it. In addition to providing artists with a tool for guided improvisation, this
provides a new visual tool for music analysis that can shed light onto commonalities
and characteristics of large sets of data.

Finally, in our current GAN work, we have trained models that predict the
next future block of music given the current block. We are also interested in data
generation conditioned on musical abstractions such as the ones used to build pattern
graphs in this thesis. This is a point of connection between specification mining and
GANs where the mined specifications can be used to condition the output of the GAN
generator.

73

Bibliography

[1] Ilge Akkaya, Daniel J. Fremont, Rafael Valle, Alexandre Donzé, Edward A.
Lee, and Sanjit A. Seshia. Control Improvisation with probabilistic temporal
specifications. In Internet-of-Things Design and Implementation (IoTDI), 2016
IEEE First International Conference on, pages 187–198. IEEE, 2016.

[2] Rajeev Alur, Pavol Cernỳ, Parthasarathy Madhusudan, and Wonhong Nam.
Synthesis of interface specifications for Java classes. ACM SIGPLAN Notices,
40(1):98–109, 2005.

[3] Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining specifications.
ACM Sigplan Notices, 37(1):4–16, 2002.

[4] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv
Batra, C Lawrence Zitnick, and Devi Parikh. VQA: Visual question answering.
In Proceedings of the IEEE International Conference on Computer Vision, pages
2425–2433, 2015.

[5] S. O. Arik, M. Chrzanowski, A. Coates, G. Diamos, A. Gibiansky, Y. Kang,
X. Li, J. Miller, A. Ng, J. Raiman, S. Sengupta, and M. Shoeybi. Deep Voice:
Real-time neural text-to-speech. ArXiv e-prints, February 2017.

[6] M. Arjovsky and L. Bottou. Towards principled methods for training generative
adversarial networks. January 2017.

[7] M. Arjovsky, S. Chintala, and title = Wasserstein GAN journal = arXiv preprint
arXiv:1701.07875 year = 2017 Bottou, L.

[8] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium
in generative adversarial nets (GANs). ArXiv e-prints, March 2017.

[9] S. Arora and Y. Zhang. Do GANs actually learn the distribution? An empirical
study. ArXiv e-prints, June 2017.

[10] Artificial Intelligence Virtual Artist. Genesis - op. 21 for orchestra, 2017.

BIBLIOGRAPHY 74

[11] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker,
John Shalf, Samuel Webb Williams, et al. The landscape of parallel computing
research: a view from Berkeley. Technical report, Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, 2006.

[12] Gérard Assayag and Shlomo Dubnov. Using factor oracles for machine improvi-
sation. Soft Computing, 8(9):604–610, 2004.

[13] Yoshua Bengio. Practical recommendations for gradient-based training of deep
architectures. In Neural networks: Tricks of the trade, pages 437–478. Springer,
2012.

[14] J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman,
A. F. M. Smith, and M. West. Generative or discriminative? Getting the best
of both worlds. Bayesian Stat, 8(3):3–24, 2007.

[15] D. Berthelot, T. Schumm, and L. Metz. BEGAN: Boundary equilibrium genera-
tive adversarial networks. ArXiv e-prints, March 2017.

[16] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller,
Jiakai Zhang, et al. End-to-end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

[17] Olivier Breuleux, Yoshua Bengio, and Pascal Vincent. Quickly generating
representative samples from an RBM-derived process. Neural Computation,
23(8):2058–2073, 2011.

[18] Giordano Cabral, Jean-Pierre Briot, and Francois Pachet. Incremental parsing
for real-time accompaniment systems. In The 19th International FLAIRS
Conference, Special Track: Artificial Intelligence in Music and Art. Florida
Artificial Intelligence Research Society, 2006.

[19] Michel Caplain. Finding invariant assertions for proving programs. In ACM
SIGPLAN Notices, volume 10, pages 165–171. ACM, ACM, 1975.

[20] N. Carlini, G. Katz, C. Barrett, and D. L. Dill. Ground-truth adversarial
examples. ArXiv e-prints, September 2017.

[21] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,
Clay Shields, David Wagner, and Wenchao Zhou. Hidden voice commands. In
25th USENIX Security Symposium (USENIX Security 16), Austin, TX, 2016.

[22] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. Springer-Verlag New York, Inc., 2006.

BIBLIOGRAPHY 75

[23] Jonathan Chang and Stefan Scherer. Learning representations of emotional
speech with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1705.02394, 2017.

[24] Luigi Cherubini. A Course of Counterpoint and Fugue, volume 1. R. Cocks,
1837.

[25] Soumith Chintala, Emily Denton, Arjovsky Martin, and Michael Mathieu. How
to train a GAN? Tips and tricks to make GANs work. https://github.com/
soumith/ganhacks.

[26] Edmund M. Clarke and Jeannette M. Wing. Formal methods: State of the art
and future directions. ACM Computing Surveys (CSUR), 28(4):626–643, 1996.

[27] Loek Cleophas, Gerard Zwaan, and Bruce W. Watson. Constructing factor
oracles. In Proceedings of the 3rd Prague Stringology Conference, 2003.

[28] Darrell Conklin and Ian H Witten. Multiple viewpoint systems for music
prediction. Journal of New Music Research, 24(1):51–73, 1995.

[29] David Cope. Computers and Musical Styles. Oxford University Press, 1991.

[30] David Cope. Computer models of musical creativity. MIT Press Cambridge,
2005.

[31] Balázs Csanád Csáji. Approximation with artificial neural networks. Faculty of
Sciences, Etvs Lornd University, Hungary, 24:48, 2001.

[32] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, et al. Large scale
distributed deep networks. In Advances in neural information processing systems,
pages 1223–1231, 2012.

[33] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby,
Daniel Nouri, Daniel Maturana, Martin Thoma, Eric Battenberg, Jack Kelly,
et al. Lasagne: first release. Zenodo: Geneva, Switzerland, 2015.

[34] Alexandre Donzé, Ilge Akkaya, Sanjit A. Seshia, Edward A. Lee, and David
Wessel. Real-time Control Improvisation for the SmartJukebox, November 2013.

[35] Alexandre Donzé, Sophie Libkind, Sanjit A. Seshia, and David Wessel. Control
Improvisation with application to music. Technical Report UCB/EECS-2013-183,
EECS Department, University of California, Berkeley, Nov 2013.

[36] Alexandre Donzé, Rafael Valle, Ilge Akkaya, Sophie Libkind, Sanjit A. Se-
shia, and David Wessel. Machine improvisation with formal specifications. In
Proceedings of the 40th International Computer Music Conference (ICMC), 2014.

https://github.com/soumith/ganhacks
https://github.com/soumith/ganhacks

BIBLIOGRAPHY 76

[37] Shlomo Dubnov and Gérard Assayag. Universal prediction applied to stylistic
music generation. In Mathematics and music, pages 147–159. Springer, 2002.

[38] Shlomo Dubnov, Gérard Assayag, Gill Bejerano, and Olivier Lartillot. A system
for computer music generation by learning and improvisation in a particular
style. IEEE Computer, 10(38), 2003.

[39] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for
deep learning. arXiv preprint arXiv:1603.07285, 2016.

[40] The Economist. Fake news: you ain’t seen nothing yet, 2017.

[41] The Economist. How "fake news" could get even worse, 2017.

[42] Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural
networks. In International Symposium on Automated Technology for Verification
and Analysis, pages 269–286. Springer, 2017.

[43] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems
code, volume 35. ACM, 2001.

[44] Joshua Fineberg. Spectral music. Contemporary Music Review, 19(2):1–5, 2000.

[45] Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel. Control
Improvisation. CoRR, abs/1411.0698, 2014.

[46] Daniel J. Fremont, Alexandre Donzé, Sanjit A. Seshia, and David Wessel. Control
Improvisation. In 35th IARCS Annual Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS 2015, pages 463–474,
2015.

[47] Mark Gabel and Zhendong Su. Javert: fully automatic mining of general
temporal properties from dynamic traces. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engineering,
pages 339–349. ACM, 2008.

[48] Mark Gabel and Zhendong Su. Symbolic mining of temporal specifications. In
Proceedings of the 30th international conference on Software engineering, pages
51–60. ACM, 2008.

[49] John Gillick, Kevin Tang, and Robert M. Keller. Learning Jazz grammars. In
Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference,
pages 125–130, 2009.

BIBLIOGRAPHY 77

[50] Jonathan Reuven Gillick. A Clustering Algorithm for Recombinant Jazz Impro-
visations. PhD thesis, 2009.

[51] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 249–256, 2010.

[52] E. Mark Gold. Language identification in the limit. Information and control,
10(5):447–474, 1967.

[53] E. Mark Gold. Complexity of automaton identification from given data. Infor-
mation and control, 37(3):302–320, 1978.

[54] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[55] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[56] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[57] Alex Graves. Generating sequences with recurrent neural networks. ArXiv
e-prints, August 2013.

[58] Stefan Grossman, Stephen Calt, and Hal Grossman. Country Blues Songbook.
Oak, 1973.

[59] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. Improved training of Wasserstein GANs. arXiv preprint
arXiv:1704.00028, 2017.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[61] Donald Olding Hebb. The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[62] James Hendler. Avoiding another AI winter. 2008.

[63] Avinash Hindupur. The GAN zoo. https://github.com/hindupuravinash/
the-gan-zoo.

https://github.com/hindupuravinash/the-gan-zoo
https://github.com/hindupuravinash/the-gan-zoo

BIBLIOGRAPHY 78

[64] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors.
ArXiv e-prints, July 2012.

[65] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[66] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning, pages 448–456, 2015.

[67] Susmit Jha and Sanjit A Seshia. A theory of formal synthesis via inductive
learning. Acta Informatica, 54(7):693–726, 2017.

[68] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. ArXiv e-prints, February
2017.

[69] Robert M. Keller. How to Improvise Jazz Melodies, 2012.

[70] Robert M. Keller and David R. Morrison. A grammatical approach to auto-
matic improvisation. In Proceedings SMC’07, 4th Sound and Music Computing
Conference, pages 330 – 337, 2007.

[71] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[72] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing
neural networks. ArXiv e-prints, June 2017.

[73] S. Krishna Kumar. On weight initialization in deep neural networks. ArXiv
e-prints, April 2017.

[74] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[75] Solomon Kullback and Richard A Leibler. On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86, 1951.

[76] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[77] Yann LeCun, Corinna Cortes, and Christopher JC Burges. MNIST hand-
written digit database. AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, 2, 2010.

BIBLIOGRAPHY 79

[78] Yann LeCun et al. Generalization and network design strategies. Connectionism
in perspective, pages 143–155, 1989.

[79] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. Photo-realistic single image super-resolution using a generative
adversarial network. arXiv preprint arXiv:1609.04802, 2016.

[80] George Lewis. Too many notes: Computers, complexity and culture in Voyager.
Leonardo Music Journal, 10:33–39, 2000.

[81] Wenchao Li. Specification Mining: New Formalisms, Algorithms and Applica-
tions. PhD thesis, EECS Department, University of California, Berkeley, Mar
2014.

[82] Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. Scalable specification mining
for verification and diagnosis. In Proceedings of the 47th design automation
conference, pages 755–760. ACM, 2010.

[83] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, 16(2):146–160, 1976.

[84] Jack Long. The real book of Blues. In The real book of Blues. Wise, Hal Leonard,
1999.

[85] Yanick Lukic, Carlo Vogt, Oliver Dürr, and Thilo Stadelmann. Speaker identifi-
cation and clustering using convolutional neural networks. In Machine Learning
for Signal Processing (MLSP), 2016 IEEE 26th International Workshop on,
pages 1–6. IEEE, 2016.

[86] Lyrebird. Lyrebird, 2017.

[87] Keeril Makan. An interview with Edmund Campion. Computer Music Journal,
28(4):16–24, 2004.

[88] X. Mao, Q. Li, H. Xie, R. Y. K. Lau, Z. Wang, and S. P. Smolley. Least Squares
generative adversarial networks. ArXiv e-prints, November 2016.

[89] Frank J. Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal
of the American statistical Association, 46(253):68–78, 1951.

[90] Kenneth McAlpine, Eduardo Miranda, and Stuart Hoggar. Making music with
algorithms: A case-study system. Computer Music Journal, 23(2):19–30, 1999.

[91] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric
Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis in Python.
In Proceedings of the 14th python in science conference, 2015.

BIBLIOGRAPHY 80

[92] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar, Shub-
ham Jain, Jose Sotelo, Aaron Courville, and Yoshua Bengio. Samplernn:
An unconditional end-to-end neural audio generation model. arXiv preprint
arXiv:1612.07837, 2016.

[93] Rada Mihalcea, Courtney Corley, Carlo Strapparava, et al. Corpus-based and
knowledge-based measures of text semantic similarity. In AAAI, volume 6, pages
775–780, 2006.

[94] W. Thomas Miller, Paul J. Werbos, and Richard S. Sutton. Neural networks for
control. MIT press, 1995.

[95] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784, 2014.

[96] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool:
a simple and accurate method to fool deep neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2574–2582, 2016.

[97] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going
deeper into neural networks. Google Research Blog. Retrieved June, 20:14, 2015.

[98] Nelson Morgan and Hervé Bourlard. Generalization and parameter estimation
in feedforward nets: Some experiments. In Advances in neural information
processing systems, pages 630–637, 1990.

[99] Jérôme Nika and Marc Chemillier. Improtek: integrating harmonic controls
into improvisation in the filiation of OMax. In International Computer Music
Conference Proceedings, pages 180–187, 2012.

[100] Genevieve B. Orr and Klaus-Robert Müller. Neural networks: tricks of the trade.
Springer, 2003.

[101] Francois Pachet, Pierre Roy, and Gabriele Barbieri. Finite-length Markov
processes with constraints. pages 635–642, 2011.

[102] Jean-Francois Paiement, Samy Bengio, and Douglas Eck. Probabilistic models
for melodic prediction. Artificial Intelligence, 173(14):1266–1274, 2009.

[103] Santiago Pascual, Antonio Bonafonte, and Joan Serrà. SEGAN: Speech en-
hancement generative adversarial network. arXiv preprint arXiv:1703.09452,
2017.

BIBLIOGRAPHY 81

[104] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A.
Efros. Context encoders: Feature learning by inpainting. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2536–2544,
2016.

[105] Geoffroy Peeters. A large set of audio features for sound description (similarity
and classification) in the CUIDADO project. Technical report, IRCAM, 2004.

[106] Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous
navigation. Neural Computation, 3(1):88–97, 1991.

[107] Kishore Prahallad, Anandaswarup Vadapalli, Naresh Elluru, G. Mantena, B. Pu-
lugundla, P. Bhaskararao, H. A. Murthy, S. King, V. Karaiskos, and A. W.
Black. The Blizzard challenge 2013–Indian language task. In Blizzard Challenge
Workshop, volume 2013, 2013.

[108] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[109] Peter J. Ramadge and W. Murray Wonham. Supervisory control of a class of
discrete event processes. SIAM journal on control and optimization, 25(1):206–
230, 1987.

[110] Jean-Philippe Rameau. Traité de l’harmonie réduite à ses principes naturels...
JBC Ballard, 1722.

[111] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. Generative adversarial text to image synthesis. arXiv preprint
arXiv:1605.05396, 2016.

[112] Frank Rosenblatt. Principles of neurodynamics. 1962.

[113] David E. Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin.
Backpropagation. chapter Backpropagation: The Basic Theory, pages 1–34. L.
Erlbaum Associates Inc., Hillsdale, NJ, USA, 1995.

[114] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[115] Stuart Russell, Peter Norvig, and Artificial Intelligence. Artificial Intelligence: A
modern approach. Artificial Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27,
1995.

BIBLIOGRAPHY 82

[116] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training GANs. CoRR, abs/1606.03498,
2016.

[117] Tim Salimans and Diederik P Kingma. Weight normalization: A simple repa-
rameterization to accelerate training of deep neural networks. In Advances in
Neural Information Processing Systems, pages 901–909, 2016.

[118] Sanjit A. Seshia. Combining induction, deduction, and structure for verification
and synthesis. Proceedings of the IEEE, 103(11):2036–2051, Nov 2015.

[119] Sanjit A Seshia. New frontiers in formal methods: Learning, cyber-physical
systems, education, and beyond. CSI Journal of Computing, 2(4):R1, 2015.

[120] Sanjit A. Seshia, Dorsa Sadigh, and S. Shankar Sastry. Towards verified Artificial
Intelligence. ArXiv e-prints, June 2016.

[121] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Acces-
sorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1528–1540. ACM, 2016.

[122] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb.
Learning from simulated and unsupervised images through adversarial training.
ArXiv e-prints, December 2016.

[123] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. ArXiv e-prints,
December 2013.

[124] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson
Course Technology Boston, 2006.

[125] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised
learning of video representations using lstms. In International Conference on
Machine Learning, pages 843–852, 2015.

[126] Neural Information Processing Systems. Adversarial attacks and defenses, 2017.

[127] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

[128] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative
models. ArXiv e-prints, November 2015.

BIBLIOGRAPHY 83

[129] Rafael Valle and Adrian Freed. Symbolic music similarity using neuronal
periodicity and dynamic programming. In Mathematics and Computation in
Music, pages 199–204. Springer, 2015.

[130] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
Wavenet: A generative model for raw audio. CoRR abs/1609.03499, 2016.

[131] Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss,
Navdeep Jaitly, Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al.
Tacotron: A fully end-to-end text-to-speech synthesis model. arXiv preprint
arXiv:1703.10135, 2017.

[132] Ben Wegbreit. The synthesis of loop predicates. Communications of the ACM,
17(2):102–113, 1974.

[133] Westley Weimer and George C. Necula. Mining temporal specifications for error
detection. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 461–476. Springer, 2005.

[134] Wired. Google’s artificial brain is pumping out trippy - and pricey - art., 2017.

[135] Qi Wu, Damien Teney, Peng Wang, Chunhua Shen, Anthony Dick, and Anton
van den Hengel. Visual question answering: A survey of methods and datasets.
Computer Vision and Image Understanding, 2017.

[136] Zhizheng Wu, Nicholas Evans, Tomi Kinnunen, Junichi Yamagishi, Federico
Alegre, and Haizhou Li. Spoofing and countermeasures for speaker verification:
a survey. Speech Communication, 66:130–153, 2015.

[137] Iannis Xenakis. Formalized music: thought and mathematics in composition.
Number 6. Pendragon Press, 1992.

[138] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir
Das. Perracotta: mining temporal API rules from imperfect traces. In Proceedings
of the 28th international conference on Software engineering, pages 282–291.
ACM, 2006.

[139] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. MidiNet: A convolutional
generative adversarial network for symbolic-domain music generation using 1d
and 2d conditions. CoRR, abs/1703.10847, 2017.

[140] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding
neural networks through deep visualization. ArXiv e-prints, June 2015.

BIBLIOGRAPHY 84

[141] Adham Zeidan, Armin Lehmann, and Ulrich Trick. WebRTC enabled multimedia
conferencing and collaboration solution. In WTC 2014; World Telecommunica-
tions Congress 2014; Proceedings of, pages 1–6. VDE, 2014.

[142] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833. Springer,
2014.

[143] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep
learning requires rethinking generalization. ArXiv e-prints, November 2016.

[144] Xingxing Zhang and Mirella Lapata. Chinese poetry generation with recurrent
neural networks. In EMNLP, pages 670–680, 2014.

[145] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial
network. ArXiv e-prints, September 2016.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Interfacing with Generative Algorithms
	Rule-based and data-driven approaches

	Interfacing with Artificial Neural Networks
	Interpretability
	Robustness to adversarial attacks

	Research Challenges
	Data generation for targeted and untargeted attacks
	Data generation with formal guarantees
	Properties of GANs samples

	Thesis Organization and Contribution
	Specification Mining for Machine Improvisation with Formal Specifications
	Adversarial Attacks to Speaker Recognition Systems using GANs
	Interesting properties of GAN samples

	Preliminaries
	Automata
	Deterministic and Non-Deterministic Finite Automata
	Formal specification

	Artificial Neural Networks
	Convolutional Neural Networks
	Backpropagation
	Tricks of the Trade
	Input Normalization
	Weight Normalization
	Parameter Initialization
	Non-Linearities
	Regularization

	Generative Adversarial Networks
	Adversarial Neural Networks
	Least Squares GAN
	Wasserstein GAN
	Wasserstein GAN with Gradient Penalty
	Tricks of the Trade
	Objective Function
	Adding instability
	Optimizer
	Learning rate

	Concluding Remarks

	Specification Mining for Machine Improvisation
	Introduction and Motivation
	Overview
	Specifications
	Factor Oracle-based improvisation
	Enforcing Specifications

	Control Improvisation and Specification Mining
	Control Improvisation
	Notation and Background
	Problem Definition

	Specification
	Events and Patterns
	Pattern Merging
	Specifications from Patterns

	Learning and Enforcing Specifications
	Learning Specifications
	Improvising with Specifications

	Music Specification Mining
	Time Domain Features
	Frequency Domain Features

	Experimental Results
	Specification Validation
	Machine Improvisation with hard and soft specifications

	Related Work
	Discussion

	Attacking Speaker Recognition with GANs
	Introduction and Motivation
	Related Work
	Attacking Text-Independent Speaker Recognition Systems
	Neural speaker recognition system
	Adversarial attacks

	Experimental Setup
	Datasets
	Pre-processing
	Feature extraction
	Models
	WaveNet
	sampleRNN
	WGAN
	WGAN-GP with modified objective function

	Experimental Results
	GAN Mel-Spectrogram
	GAN Adversarial attacks
	Untargeted attacks
	Targeted attacks

	Discussion

	Interesting properties of GAN samples
	Introduction and Motivation
	Hypotheses
	Experimental Setup
	Datasets
	Property extraction
	Spectral Moments
	Spectral Slope

	Generative Models
	Distance Measures

	Experimental Results
	MNIST
	Bach Chorales
	Speech

	Related Work
	Discussion

	Conclusion
	Contributions
	Future Directions

