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Abstract

While the primary sequences of human proteins have been cataloged for over a decade, 

determining how these are organized into a dynamic collection of multiprotein assemblies, 

with structures and functions spanning biological scales, is an ongoing venture. Systematic and 

data-driven analyses of these higher-order structures are emerging, facilitating the discovery and 

understanding of cellular phenotypes. At present, knowledge of protein localization and function 

has been primarily derived from manual annotation and curation in resources such as the Gene 

Ontology, which are biased toward richly annotated genes in the literature. Here, we envision a 

future powered by data-driven mapping of protein assemblies. These maps can capture and decode 

cellular functions through the integration of protein expression, localization, and interaction data 

across length scales and timescales. In this review, we focus on progress toward constructing 

integrated cell maps that accelerate the life sciences and translational research.
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1. INTRODUCTION

Every organism is composed of cells with tightly coordinated subcellular organization. This 

organization spans length scales of many orders of magnitude, from small protein complexes 

to phase-separated systems and entire organelles. Translocation, moonlighting, and phase 

separation are all classic examples of how protein function is regulated in space and time. 

These processes allow the dynamic formation and reformation of critical cellular subsystems 

that are necessary for the life cycle of all organisms from bacteria to human cells (1). The 

gram-negative bacterium Caulobacter crescentus, for example, has inspired many systems 

biologists due to its fascinating asymmetric division and the intriguing way its cell division 

cycle is regulated by localizing certain proteins to poles of the cell, including CtrA at 

the start of replication (2). In human cells, the glycolytic enzyme Eno1 moonlights with 

additional functions of DNA binding (3) and as a plasminogen receptor (4), depending on its 

location. Phase separation is another type of compartmentalization that is critical for cellular 

function, such as the role disordered proteins like Ddx4 play in forming membraneless 

organelles to help stabilize RNAs (5, 6). While knowledge of individual genes or complexes, 

like these examples, contributes to our understanding of protein functions, we generally need 

more information about the context of subcellular structure as a whole to fully understand 

the emergence of complex cellular phenotypes (7). Mapping cellular organization improves 

our ability to decode cellular functions and predict phenotypic changes (Figure 1).

The proteome is arranged into cellular subsystems at various spatial scales that can 

be addressed with a spectrum of current technologies. Mass spectrometry (MS)-based 

proteomics has provided a means not only to measure entire proteomes in a high-throughput 

fashion, but also to measure the interactions between individual proteins (11). At larger 

physical scales (i.e., length, area, volume), spatial proteomics technologies can capture the 

localization of proteins within organelles (12). Techniques for spatial proteomics include 

immunofluorescence- and fluorescent protein (FP)-based imaging, which produce highly 

correlated data for protein localization (13). Such biological organization extends downward 

in scale to atomic structures, including conformational states, which can be measured by 

cryogenic electron microscopy (cryo-EM) and tomography (14, 15), and post-translational 

modifications (PTMs), which are frequently measured by MS (16). At scales larger than 

a cell, cellular communities in tissues and whole organisms can be characterized with 

imaging technologies (17), single-cell RNA sequencing, and metagenomics in the case of 

microbial communities (18). Many current cell mapping efforts that use these technologies 

have matured and are continuing to be refined (Table 1).

Because these technologies capture proteomic organization at different scales, combining 

their data into integrated cell maps can capture emergent, multiscale processes by which 

protein function translates to phenotype (36). Initial efforts to represent the cell as a 

hierarchy of cellular subsystems have already begun to provide a deeper understanding of 

mutational landscapes (37) and DNA damage response (38). By creating additional scalable 

methods that intelligently combine diverse data modalities, we will be able to describe more 

specific spatial relationships, add temporal logic to proteomic organization, and expand 

these models to include diverse biomolecules of interest. We envision that the future 

of genetics and translational research will require integrated mapping of the multiscale 
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organization of cells in order to more fully understand complex cellular phenotypes 

with genomic and other biological data. Here, we review key developments and future 

directions in determining the multiscale proteomic organization of cells. We discuss the 

main approaches for mapping protein assemblies, recent efforts to integrate these data, and 

the role that multiscale maps can play in advancing systems biology. Finally, we present 

relevant data modalities and integration approaches that we envision will expand future 

multiscale maps to help us better understand biological systems.

2. MAPPING PROTEIN ASSEMBLIES

The endeavor of creating maps of protein assemblies is built upon previous work that 

constructed parts lists and distinguished cell types. The Human Genome Project, completed 

in 2003, determined both the primary DNA sequence and a list of elemental biological 

objects (39), consisting of genes and their corresponding putative proteins (40). Since 

that time, these sequence maps and parts lists have been refined, including the recently 

completed telomere-to-telomere genome (41), the creation of inventories of proteomes 

(42, 43) and transcriptomes (33, 44, 45) across diverse cell types, and ongoing efforts 

to identify all human proteoforms in many cell types (46, 47). Presently, there is a rise 

in systematic efforts to map how the proteome is organized within cells in higher-order 

structures, including the interactions (48–50) and locations (12, 51) of proteins within cells 

and tissues.

2.1. Protein Interactomes

Protein–protein interaction (PPI) maps represent subcellular structure by determining the 

physical interactions of proteins to capture protein complexes and other higher-order 

structures of proteins. Key examples of efforts to map the protein interactome include 

BioPlex (11), which uses systemic affinity purification mass spectrometry (AP-MS) 

analysis, and Human Cell Map (27), which uses biotinylation probes to pull down and 

analyze interacting proteins with MS. These approaches have revealed global interaction 

networks, but they are low-throughput approaches when expanded to other cell contexts. 

Recently, coelution MS (29) has emerged as a higher-throughput means of globally 

determining protein interactions. In this technique, native protein complexes are separated, 

often by size-exclusion chromatography (SEC), into dozens of fractions prior to MS 

analysis. Proteins identified as coeluting in the same fractions are considered likely 

interactors. This approach enables high-throughput collection of interactomic data in 

different cellular contexts, although filtering false positive interactions from coeluting 

proteins can be challenging.

The endogenous epitope tagging of proteins with an FP has enabled both live-cell imaging 

and PPI mapping using immunoprecipitation (IP) of the FP, followed by MS-based 

proteomic analysis (IP-MS) (22, 52). The use of endogenous protein levels in SEC-MS 

and endogenous tagging potentially allow for the calculation of stoichiometries, which 

are obscured by the overexpression used in most AP-MS workflows (29, 52, 53). Both 

techniques have trade-offs. The use of IP-MS following endogenous epitope tagging is 

less robust for detecting protein interactors with lower abundance or stoichiometry, but 
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the overexpression of bait proteins that allows AP-MS to have a lower limit of detection 

may lead to more false positive interactions. Another emerging technique is cross-linking 

mass spectrometry (XL-MS), which is increasingly able to produce global maps of protein 

interactions and may at the same time be able to aid in determining subunit organization and 

conformational heterogeneity within protein complexes and cellular subsystems (30, 54–56). 

Cross-linking can reveal transient interactions, such as those between disordered proteins or 

proteins that are less solubilized, which may be missed by other methods (56). In summary, 

these protein interaction mapping efforts are producing global interactome datasets that are 

expanding across different cell lines (9) and cellular contexts (29).

2.2. Subcellular Protein Localizations

Resolving subcellular protein localizations within cellular compartments, including 

organelles and condensates, can shed light on a larger physical scale of cellular organization 

than PPIs. One such mapping effort is the Human Protein Atlas (HPA) (19), which has 

used classic antibody-based imaging to study the localizations of proteins within cells, 

tissues, and tumors. The HPA Subcellular Atlas (20) has cataloged the locations of nearly 

all nonsecreted proteins across many cell lines including nearly complete coverage of the 

U-2 OS osteosarcoma cell line; the HPA Tissue Atlas (32) has information about the 

protein expression and subcellular location of proteins in normal human tissues; and the 

HPA Pathology Atlas has information about protein expression in a large cohort of human 

tumors with subcellular resolution (32). Beyond subcellular localization, these data have also 

revealed important information about the heterogeneity of protein expression, including new 

cell cycle associations for hundreds of proteins (21). Overall, these data provide extensive 

mapping of proteins in larger structures like condensates, organelles, cells, and even cell 

types within tissue contexts.

Proteins can also be localized using endogenously tagged FPs (57–59); early work in this 

area determined how best to tag and image the proteins for localization. Since then, the 

advent of CRISPR-based technologies has facilitated subcellular localization of proteins 

using gene editing to endogenously tag FPs prior to imaging (22, 60). One limitation of 

using these techniques is the need to ensure that the FP tags do not alter the proteins’ 

functions, localizations, or interactions (22).

Subcellular localizations of proteins can also be determined with centrifugation fractionation 

techniques, in which larger organelles like the nucleus can be separated from smaller 

ones like vesicles. In centrifugation fractionation techniques such as LOPIT (61) and 

SubCellBarCode (24), maps of proteins are created through MS-based identification of 

proteins in the same centrifugation fractions as proteins from one or several organelles. 

Fractions are assigned to organelles using a training set of proteins with known locations. 

While this assignment method may produce some bias, it is a high-throughput option for 

identifying the contents of higher-order structures within the cell.

2.3. Creating Multiscale Maps of Protein Assemblies with Data Integration

Integrating more than one proteomic data modality can extract complementary information 

and bridge gaps in physical scales and proteome coverage. Adding new data modalities 
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introduces new degrees of freedom that allow biologically meaningful separation of 

previously indistinguishable subsets of data, such as the subcellular location of subsystems 

or the structure of proteins within complexes. This multimodal data integration can also 

strengthen the true signal in an existing dataset, as many sources of noise are unlikely to be 

correlated across assays. We see this effect in integrative structural biology, where multiple 

data types (e.g., X-ray crystallography, XL-MS, nuclear magnetic resonance spectroscopy) 

are combined in order to improve the accuracy and completeness of structural models (62). 

This approach has been used to create accurate models of protein subsystems that are 

difficult to model with one approach alone, such as the ∼50-MDa nuclear pore complex 

(63).

Recent efforts are bridging the gap across larger scales by integrating proteomic interaction 

data with immunofluorescent images that capture subcellular location. In our recent work, 

a multiscale integrated cell map (36) systematically integrated an imaging proteomic 

dataset from the HPA Subcellular Atlas (20) for HEK293T with the global BioPlex 

AP-MS interaction network (11). An embedding was created for each protein for each 

data modality separately, and these embeddings were integrated into a coembedding with 

supervised machine learning trained with the Gene Ontology (GO) knowledgebase to 

determine predicted proximities between each pair of proteins. These resulting proximities 

were clustered at multiple resolutions (64, 65) to reveal a data-driven hierarchy of cellular 

subsystems, calibrated to physical distance using GO components of known sizes in the 

literature.

3. GENETICS IN THE ERA OF SYSTEMS BIOLOGY

Multiscale maps enable the interpretation of gene-level data to reveal important biological 

information from genetic information, i.e., to connect genotype to phenotype. In studies that 

focus on gene-level information, much is often lost due to solely looking for enrichment of 

certain phenotypes on a per-gene level. One way systems biology has augmented genetic 

analyses is by finding modules from network-level data (66–71). One group of methods 

to perform this network-level enrichment is called network propagation; in this approach 

a signal is allowed to propagate along a network of prior associations of genes for a 

phenotype of interest (72). Propagating signals for gene-level information across these types 

of networks can result in gene scores that are more consistent across datasets, enable robust 

module discovery, and better rank genes to prioritize them for follow-up analyses.

Performing multiscale community detection on networks organizes genes into hierarchical 

clusters in cell maps, which can then be used for interpreting genetic mutations across 

the scales of cellular organization. We recently used this type of approach to reveal 

cellular subsystems that are recurrently mutated across cancer patients (37). Notably, these 

subsystems often contain genes that are sparsely mutated at the gene level and are only 

revealed as important when the associations of proteins into higher-order assemblies are 

considered. This is an important motivating example of the power of using systems-level 

analyses through multiscale maps for the analysis of genetic results.
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Systems-level analyses do not need to be limited to interpretation of genetic mutations; any 

sort of inputs, such as differential transcriptomic or proteomic analyses upon perturbation, 

can be analyzed in the context of the multiscale proteomic organization to better understand 

the underlying biology. Many times in these analyses, a list of differential abundant proteins 

or transcripts upon a perturbation is obtained. How to interpret this list of proteins to 

understand the underlying subcellular phenotype remains a challenge; enrichment against 

the GO knowledgebase has typically been used for attempting to interpret sets of genes 

or proteins, but the associated GO terms may be biased by heavily annotated genes (73). 

We believe data-derived cell maps will have key utility in these analyses for understanding 

where groups of proteins interact in the cell relative to others, especially in different cell 

types or contexts.

4. EXPANDING THE SCALES AND MODALITIES OF MULTISCALE MAPS 

OF PROTEIN ASSEMBLIES

Understanding proteomic organization will involve an expansion of the scales and data 

modalities that can be included in cell models (Figure 1). Smaller-scale changes include 

protein sequence variations and PTMs that define proteoforms and minute structural 

changes, while tissue architecture is an example of a larger-scale change that can be captured 

in proteomic data and represented in multiscale models. Proteins also interact with other 

biomolecules such as nucleic acids, lipids, and metabolites, and including these can capture 

new layers of protein assemblies and regulation.

4.1. Understanding Proteoform Diversity and Organization

New biological problems will present themselves as systems are analyzed across scales, 

in which case previously generated data will likely yield new discoveries. One important 

avenue of future work is understanding the relationship between proteoforms and subcellular 

structure. Since immunofluorescent images are created with broadly targeting antibodies 

for the gene of interest, they depict the localization of the superset of proteoforms (74, 

75) for each gene. Thus, there is an opportunity to better understand proteoform systems 

biology by deconvoluting these images into the localization of different proteoforms from 

the same gene. These proteoform differences can change subcellular localization; for 

example, phosphorylation of the tau protein regulates its binding to microtubules (76), 

phosphorylation of 4E-BP2 has been shown to determine whether it exists in a disordered 

or structured state (77), cells and tissues show notable spatial regulation of glycosylation 

(78), and alternatively spliced isoforms of the same gene can produce proteoforms with 

rewired protein interactions that are as different as those of entirely different genes (79). 

In cases where a modification affects a protein’s structure or localization, this conditional 

information may need to be reflected in the multiscale model as an attribute on a node or 

by representing different proteoforms or isoforms separately in interaction networks or cell 

maps (79–83). Efforts to expand the maps of protein assemblies to the scales of proteoforms 

and PTMs are likely to yield new understanding of the spatial proteomic regulation.
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4.2. Zeroing In On Smaller Scales by Incorporating Structural Shifts

Protein structural shifts can be induced by PTMs, sequence changes, and PPIs, and they 

can induce functional changes in proteins. Notably distinct bond angles and conformational 

patterns can be revealed by methods such as cryo-EM (14), MS techniques like XL-MS 

(84), trapped ion mobility spectrometry (TIMS) (85), tandem-TIMS (86), and MS-based 

accessibility measurements such as hydrogen deuterium exchange (87) and covalent protein 

painting (CPP) (88). One study using CPP found that conformational changes can affect 

protein accessibility over tumorigenesis and are distinct between cell lines, and alterations 

in proteins such as heat shock proteins are predictors of drug efficacy (89). Just as 

protein accessibility can affect interactions with drugs, it can affect interactions with other 

proteins. Thus, we expect that integrating proteoform sequence and structural information 

will clarify the variation underlying some or many pleiotropy and moonlighting events. 

These proteoforms or structural conformers could be represented in future cell maps in 

the appropriate subcellular systems. Other useful information may come from predictive 

modeling approaches. For example, protein language models are already being used to 

generate three-dimensional protein structures (90), and these structures are being analyzed 

for their propensity for interactions (91, 92). These predictive modeling approaches could 

provide new avenues to investigate how the cell utilizes these subtle structural variations to 

regulate complex biological phenomena.

4.3. Broadening the Scales: Cell Types, Neighborhoods, Tissues, and Beyond

Toward the larger end of the scale, we expect these hierarchies to include information at 

the tissue, organismal, and possibly even ecological levels. There is a growing field of 

multiscale modeling at the tissue level using spatial single-cell RNA sequencing (93–97) and 

multiplexed proteomic imaging (98) to determine the spatial locations and relationships of 

different cell states. Many of the current interactomic and imaging datasets listed in Table 1 

were collected in cell line models, which may miss key biological factors, such as secreted 

proteins or interactions between different cell states. Determining the protein assemblies in 

different cell states remains challenging, although recent developments in spatial single-cell 

proteomics analyses provide the opportunity to reveal the proteins expressed in different 

cell states (99, 100). A recently reported strategy for dissecting complex cellular phenotypes 

using the deep visual proteomics technique (99, 101) classifies cell types with label-free 

imaging and uses laser capture microdissection to cut out regions of the tissue with 

specific cell types to prepare biologically relevant subsamples for high-sensitivity MS-based 

proteomics. Multiplexed protein imaging across tissues using technologies like CODEX 

(102), MIBI-TOF (103), and others (17, 104) can also reveal these cellular phenotypes and 

relationships. Constructing multiscale models with these types of data will reveal how the 

proteome is organized across tissue architectures.

The relationships between the cell types present in different tissues, such as immune cells 

in the blood and intestinal (98) or fetal tissues (105), can reveal connections between the 

phenotypes of these tissues. There may even be an opportunity to combine modalities like 

whole-organism imaging (106, 107) with other data types to represent cellular phenotypes 

over the development of whole organisms, such as has been performed for zebrafish 

embryos (108) and is proposed for human embryos (35). Higher order still, we may be 
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able to represent our interactions with other organisms, including microbes in our gut 

and host–pathogen interactions (109). Overall, expanding multiscale models to account for 

these larger-scale interactions will improve our ability to decode organismal biology, with 

important applications for understanding human health and disease in the clinic (110).

4.4. Integrating More Types of Biomolecules Will Improve Our Understanding of 
Proteomic Organization

Proteins are not the only types of molecules that contribute to proteomic organization 

and regulation. Other types of biomolecules can interact with and even scaffold 

protein assemblies and should eventually be included in multiscale maps. For example, 

data showing protein–nucleic acid and nucleic acid–nucleic acid interactions could be 

integrated to represent interfaces that regulate much of gene expression, transcription, 

and translation [e.g., protein–DNA with ChIP (chromatin immunoprecipitation) or EMSA 

(electrophoretic mobility shift assay); protein–RNA with eCLIP (enhanced cross-linking 

and immunoprecipitation), loRNA (localization of RNA), or FISH (fluorescence in situ 

hybridization)/ISH; DNA–DNA with Hi-C or 3C (chromosome conformation capture); 

RNA–RNA with RIC-seq (RNA in situ conformation sequencing) or proximity ligation; 

and RNA–DNA or proximity ligation]. The subcellular locations of these molecules can 

also be visualized using spatial transcriptomics, which is approaching single-cell resolution 

(111, 112), including in whole organs (113), and with subcellular and superresolution 

transcript sequencing techniques including seqFISH+ (114), MERFISH (multiplexed error-

robust FISH) (115), and APEX-seq (116). Similarly, there is progress in studying protein–

metabolite (117) and protein–lipid interactions (118), as well as MS-based imaging 

techniques that can resolve spatial distributions of these biomolecules (119, 120). Revealing 

the proteomic organization in the context of these diverse biomolecules will inform our 

understanding of cellular substructures, metabolism, and gene regulation.

4.5. Expanding in the Temporal Dimension

Another critical component is the expansion of multiscale models in the temporal direction. 

A spatiotemporal map of cell structure may be able to show how cell structure organizes 

over time during the cell cycle (21), circadian rhythms, metabolic oscillations, organismal 

development (35, 108), or hitherto undiscovered autonomous clocks (121). Temporal 

analyses could also include mapping the subcellular reorganization upon stimuli such as 

drug response or viral infection (122). Live-cell imaging enables tracking the subcellular 

localization of proteins over time. Fluorescent markers with intensities that are indicative 

of cellular processes have allowed a temporal dimension to be calculated and correlated 

to protein expression, such as using FUCCI (fluorescent ubiquitination-based cell cycle 

indicator) markers to interrogate protein expression over the cell cycle (21). To determine 

changes in the interactome over time, light-activated proximity labeling strategies like LOV-

Turbo (123) have been developed to capture the proteome of organelles and show promise 

for revealing PPIs.

Incorporating these data into spatial multiscale maps will facilitate understanding how 

the cell is structured temporally in a dynamic fashion. Maps could include recent work 

on elucidating the structure of proteins over time, such as modeling the structures of 
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dynamic complexes like the nuclear pore complex (124). At a smaller timescale, nanosecond 

structural fluctuations of proteins have been mapped using X-ray free-electron lasers and 

infrared techniques (125). At a larger timescale, whole-organism-level analyses in model 

species such as the zebrafish (108) have modeled spatiotemporal development. A recent 

study has found that different organs within humans can age at different rates (126), inviting 

further study of the drivers of these cell and tissue changes over larger timescales.

5. ADVANCES IN MULTISCALE MODELING AND REPRESENTATION

5.1. Advances in Multimodal Data Integration for Mapping Proteomic Organization

Recent advances in artificial intelligence research have led to the development of deep 

learning approaches for systematically integrating data modalities that could readily be 

applied to the integration of protein modalities for protein assembly construction. In the 

realm of multimodal data integration, a prominent category of deep learning techniques 

centers on coembedding (or joint embedding), which aims to translate diverse, high-

dimensional data types into a shared, low-dimensional space. Importantly, many of these 

approaches can integrate data in self-supervised or unsupervised learning schemas that do 

not require labeled training data such as known protein functions or complexes, which 

may be unavailable for many proteins or biased toward well-studied proteins. Coembedding 

approaches also offer the possibility of integrating unpaired data, such as datasets where 

proteins are present in one modality but missing in another. Unpaired data integration 

provides an avenue to include modalities that reveal other biomolecules, such as RNAs or 

glycans, which will be inherently missing from one data type or the other.

One technique that has been applied to align multiple data modalities is contrastive learning, 

which brings corresponding pairs (e.g., the same protein in two different modalities) 

together in a joint latent space while pushing dissimilar pairs (e.g., different proteins) apart 

(127). This approach has been applied to tasks like predicting drug–target interactions from 

protein sequence embeddings (128) and coembedding drug structures and transcriptional 

responses (129). Methods such as ImageBind have been used to align data from many data 

modalities, without samples that are fully paired across all domains (e.g., audio, visual, 

thermal); this method finds a common representation by linking all data to their paired 

sample in the image domain (130).

Another approach for finding unified embeddings from various input data modalities is 

through multimodal autoencoder models, which generate a latent embedding space from 

the input data that can then be used to reconstruct the original data (131). These models 

have naturally lent themselves to translation tasks, such as transforming transcriptomic data 

into single-cell nuclear images using DAPI (4′,6-diamidino-2-phenylindole) staining in a 

common embedding space (131). This technique could potentially be useful in a situation 

where data are missing in one modality but closely related ground truth exists in another, 

providing broader coverage over all relevant proteins (132).

Coembedding approaches have been readily applied to integrate imaging and single-cell 

RNA sequencing data for the characterization of cells (131, 133–135) and other multiomics 

Cesnik et al. Page 9

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2024 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data (136–143). We anticipate that such methods will be instrumental to integrating 

biological data for mapping protein assemblies across scales (Figure 2a).

5.2. Advances in Hierarchical Representation

A critical step in constructing multiscale models involves clustering at different resolutions 

to capture communities across scales, for which many algorithms have been developed 

(64, 65, 144, 145). A hierarchy of protein assemblies in the cell should allow parent 

nodes to have multiple children representing different hierarchical containments within 

a protein subsystem. These models must also represent pleiotropic proteins that perform 

multiple functions and localize to more than one subcellular compartment or assembly. 

These characteristics are widespread, with over half of all proteins localizing to multiple 

locations (20) and moonlighting proteins performing multiple functions (146) in the cell. 

For example, a large number of Golgi and nuclear proteins are dual-localizing, including 

the regulatory homologous recombination repair protein RAD51C (147). This overlap in 

biological systems also occurs at larger scales, such as immune cell types that appear in 

more than one tissue type in the human body. Representing pleiotropy and other types of 

multifunctionality in multiscale maps may entail either displaying multiple parent–child 

relations in a hierarchy or representing entities in maps as distributions of conformations or 

other properties as in statistical mechanics (148). Ideally, multiscale maps should accurately 

reflect these diverse functions of proteins, protein assemblies, and cell types.

5.3. Adding Dynamics to Multiscale Maps

Many observations provide a snapshot of cellular processes. Incorporating dynamics into 

multiscale maps will help us represent and better understand dynamic processes like 

signaling and environmental response (Figure 2b). They may also allow us to predict 

protein interaction remodeling over these processes, which remains poorly understood (9). 

Many protein assemblies have conditional states, such as those dependent on rhythms like 

the cell cycle, PTMs and their effects on protein structure or localization, and chemical 

environments that may drive protein folding. Multiscale models may be able to represent the 

cascade of changes in cells and even tissues, capturing the dynamic changes downstream of 

a cell surface event or perhaps a response to nutrient gradients or other stimuli. How much 

of the interactome is rewired between cells and over cell state shifts like differentiation or 

the cell cycle remains an open question.

Integrating dynamics into multiscale models of cell structure presents a host of new 

challenges in data integration and coembedding. Challenges include representing data over 

time, combining bulk and single-cell information, and including cell conditions that are 

not represented in all datasets. Solutions might include projecting results for these types of 

experiments onto a static map for that system, using factor analysis (149), or using transfer 

learning to leverage pretrained models (150). Alternatively, integration approaches like 

neural ordinary differential equations (151) and geometric deep learning (152, 153) could 

be used to generate embeddings with explicit physical constraints on the system that might 

include elements such as the density of the cell, diffusion rates, and metabolite mass balance 

equations. An initial study reported that only approximately 50% of interactions are similar 

between two cell lines (9), which indicates there is much to learn about context-specific and 
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dynamic interactions (154). We expect to see a deepening understanding of this rewiring 

concurrently with the development of dynamic multiscale maps.
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SUMMARY POINTS

1. Cellular proteomes are organized in a hierarchical manner across scales 

from protein interaction complexes to subcellular locations, but much of this 

organization remains unknown.

2. Technologies exist that capture the organization of proteins at different scales, 

including protein–protein interactions and their subcellular localization.

3. Integrating data from different technologies provides the opportunity to better 

map the organization of the proteome across scales and can increase the 

power of multiscale maps of protein assemblies.

4. Multiscale maps empower genetics and other biological analyses by revealing 

the subsystems upon which a set of individual proteins or genes converge, 

such as mutated proteins or differentially abundant proteins across conditions.

5. We believe multiscale maps will expand to smaller scales to account for 

post-translational modifications and protein structural shifts, and larger scales 

to account for different cell states and interactions between cell types.

6. Recent machine learning advances have enabled approaches for integrating 

multimodal datasets that will be highly important when integrating different 

proteomic data modalities to create unified multiscale maps.

7. Dynamic multiscale maps will provide an exciting opportunity to understand 

how the proteome reorganizes across spatiotemporal phenomena, such as cell 

division, drug response, and metabolism.
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Multiscale map:

data-driven hierarchy of cellular subsystems represented by protein assemblies (i.e., 

proximal sets of proteins)
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Proteoform:

a unique molecular form of a protein defined by its primary amino acid sequence and 

modifications at specific residues

Cesnik et al. Page 21

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2024 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Protein interactome:

the set of all physical interactions between proteins in a cell
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Subcellular protein localization:

the physical locations of a protein within the cell, including organelles, condensates, and 

membranes
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Multiscale community detection:

a hierarchical clustering of nodes in a network, defining relationships within communities 

and between different communities, across multiple levels of detail
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Coembedding:

transformation of multimodal data into a shared embedding (a lower-dimensional 

representation of high-dimensional vectors) to reveal relationships and commonalities
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Figure 1. 
Changes at the various levels of cellular and organismal organization inform our 

understanding of cellular pathways and disease. We can decode cellular and disease 

phenotypes using data-driven methods to create multiscale maps of protein assemblies 

through integration of data modalities that capture information at different scales. Expanded 

data modalities and length scales of interactions will reveal more about the functional 

significance of modifications and conformational differences on the atomic side and about 

tissue architecture and interactions with other organisms on the larger end. Abbreviations: 

cryo-EM, cryogenic electron microscopy; IF, immunofluorescence; MS, mass spectrometry. 

Whole zebrafish embryo image reproduced with permission from Reference 8, whole mouse 

brain image reproduced from RIKEN National Science Institute (CC BY 4.0). Human 

duodenum tissue sample IF image taken by Anna Bäckström (CC BY 4.0). Human cell 

diagram and IF images from The Human Protein Atlas, Subcellular Atlas (CC BY-SA 3.0). 

Protein structures from Protein Data Bank (PDB ID: 1YCR). Interactome image reproduced 

with permission from Reference 9. Cell map hierarchy image adapted from Reference 10.

Cesnik et al. Page 26

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2024 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Advancing cell maps with new data modalities for understanding proteomic organization 

across space and time. (a) New multimodal coembedding approaches will be key to 

the development of multiscale modeling of protein assemblies. Imaging and various 

interactomic data types are represented in cylinders. Coembedding approaches provide an 

opportunity to tolerate missing proteins in different input modalities. Expanding to integrate 

additional data modalities will reveal newly mapped assemblies. (b) Key challenges in 

cell mapping include the representation and embedding of dynamic cellular processes in 

multiscale models. Targeting dynamic maps, with unique cellular imaging proteomics and 

protein–protein interaction maps, possibly over cell processes, may reveal deep insights 

into cellular phenotypes and disease. Shown are images of HMGCS1 in U-2 OS, which is 

involved in cholesterol biosynthesis. Scale bar is 10 µm. Abbreviations: AP-MS, affinity 

purification mass spectrometry; HCM, Human Cell Map; XL-MS, crosslinking mass 
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spectrometry. Cell images in panel b from The Human Protein Atlas (CC BY-SA 3.0). 

Cell map hierarchy image adapted from Reference 10.
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