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Many computer vision problems require image upsampling, where the number of pix-

els per unit area is increased by inferring values in high-dimensional image space from low-

dimensional representations. Recent research has shown that deep learning-based solutions

achieve state-of-the-art performance on such tasks by training deep neural networks (DNNs)

on large annotated datasets. Yet, their adoption in real-time applications is predicated on the

deployment costs of the resulting models since end-user devices impose significant compute and

memory constraints on inference pipelines. To address this, many researchers and practitioners
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have proposed methods to reduce inference costs without sacrificing model quality. However,

many of these works focus on DNNs designed for image downsampling. In this thesis, we study

inference optimization techniques designed for deep learning-based image upsampling networks.

While some inference optimizations are applicable to both upsampling and downsampling net-

works, we show that specifically tailoring optimizations for image upsampling workloads can

lead to more efficient and effective deployment.

We maintain a holistic view of inference optimization, from training through deploy-

ment to execution, by integrating hardware-aware deep learning techniques, compute graph

transformations, and computer architecture optimizations into an end-to-end pipeline. We be-

gin by characterizing this pipeline and the different requirements for image upsampling and

downsampling workloads. We then introduce novel statistical approaches to hardware-aware

deep learning techniques based on quantization and pruning. Once trained, we then introduce

novel compute kernels and graph transformations that reduce the compute costs of common

upsampling workloads by up to a factor of 3.3. Finally, we adapt our novel inference algorithms

to a specialized hardware architecture that reduces resource utilization and improves dataflow on

FPGA-based accelerators.

We evaluate a wide range of computer vision benchmarks covering both stochastic and

deterministic models to show that our approaches improve power efficiency, throughput, and

resource utilization without damaging model quality. Our research highlights the importance

of end-to-end inference optimization for deep learning-based image upsampling networks and

provides an effective solution for reducing the deployment costs of DNNs designed for real-time

computer vision applications on resource-constrained platforms.
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Chapter 1

Introduction

Since the success of deep convolutional neural networks in the 2012 ILSVRC Computer

Vision Challenge [94, 99, 138], deep learning has become the primary approach to developing

state-of-the-art solutions for many prominent computer vision problems (e.g., image classifi-

cation [66, 77], scene segmentation [52, 106], and object detection [65, 133]). Over the past

decade, numerous architectural variations have been proposed, each with unique benefits and

capabilities [66, 77, 89, 134, 136, 144]. As the availability of both data and computation has

increased, both the size and quality of these models have scaled [69], resulting in widespread

adoption across real-world applications including smart cities [12], medical imaging [49], and

industrial robotics [172].

Many emerging computer vision applications, however, require real-time inference (e.g.,

autonomous driver assistance systems [50,146] and high-fidelity rendering [88,149]). Thus, deep

learning models are increasingly being moved closer to their data sources to run inference directly

on end-user devices at the edge [44]. This migration reduces strain on network bandwidth and

decreases system latency by removing any reliance on internet connectivity. However, it also

imposes significant constraints on the inference pipeline since edge devices have form-factor and

cost considerations that limit power budgets, compute capabilities, and memory storage [33, 44].

These constraints make it challenging to deploy state-of-the-art models for real-time inference

on edge devices as the compute and memory requirements of large models often exceed the
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capabilities of such platforms [53, 63].

To address the rising inference costs, researchers and practitioners have introduced

hardware, software, and algorithmic optimizations in the pursuit of minimizing the trade-offs

between hardware performance and model quality [2, 35, 54, 63, 75, 81, 176, 179, 183, 191]. The

resulting body of work surrounding inference optimization research has rapidly expanded to

cover many modalities ranging from images [33, 81, 149] to natural language [55, 165, 179],

all with a shared goal of minimizing hardware costs while maintaining model quality. We

have focused our attention on computer vision applications, where we have observed inference

optimization research to be heavily skewed towards image downsampling workloads [2, 35,

61, 62, 75, 86, 97, 111, 117], leaving the optimization of image upsampling workloads an open

challenge approached by few [23, 33, 161, 177].

Many recent state-of-the-art neural architectures have increasingly employed image

upsampling [74, 89, 134, 136, 144], where the number of pixels per unit area (i.e., resolution) is

increased by inferring values in high-dimensional image space from low-dimensional representa-

tions. This class of architectures, which we refer to as deep learning-based image upsampling

networks, is now commonly used to train models for tasks such as super resolution [144, 149],

image generation [57,74,89], and style transfer [134,190]. In contrast to downsampling, which is

a many-to-one mapping used to extract or encode high-level features from an image by reducing

dimensionality, upsampling is a one-to-many mapping used to infer or recover information in

an image by increasing dimensionality. The differences in these workloads present unique and

interesting inference optimization problems. While some inference optimization techniques

are applicable to both upsampling and downsampling workloads, we show that specifically

tailoring optimizations for image upsampling workloads can lead to more efficient and effective

deployment of deep learning-based image upsampling networks.

To demonstrate one aspect of these differences, let us compare the weight and activation

requirements of common downsampling and upsampling networks assuming 32-bit floating-point

implementations. When trained on CIFAR10 [93], LeNet5 [100] requires roughly 248 KB for
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weights and 38 KB for activations. Conversely, when trained for Set5 [14], ESPCN [144] requires

roughly 239 KB for weights and 7 MB for activations, nearly 180x more activations than LeNet5

with 4% fewer weights. Let us additionally consider large-scale models. When trained for

ImageNet [42], ResNet50 [66] requires roughly 102 MB for weights and 31 MB for activations.

Conversely, when trained on DIV2K [5], U-Net [136] requires roughly 45 MB for weights and

1.4 GB for activations, nearly 46x more activations than ResNet50 with 56% fewer weights. This

is in large part because image upsampling applications often have higher dimensional inputs

when compared to their downsampling counterparts, which is only exacerbated by the expanding

output fields [33]. Such differences often render image upsampling workloads memory-bound,

where optimizations that improve dataflow and reduce memory requirements can yield substantial

gains [33].

We study inference optimization techniques designed for deep learning-based image

upsampling networks. Since their benefits often depend on the characteristics of the deep

learning workload and the capabilities of the target hardware, maximally exploiting inference

optimizations often requires aggressive hardware-software (HW-SW) co-design. For example,

unstructured weight pruning can offer high compression rates with minimal accuracy degradation

due to its inherent topological flexibility [51, 63]; however, such flexibility results in irregular

sparsity patterns that lead to poor data locality and can result in low hardware efficiency if not

exploited by sparse inference kernels [54] or specialized hardware accelerators [23, 31, 122]. In

an effort to fully exploit our contributions, we maintain a holistic view of inference optimization,

integrating hardware-aware deep learning techniques, compute graph transformations, and

specialized hardware accelerators into an end-to-end pipeline.

We visualize our inference optimization pipeline in Fig. 1.1, where we split the process

into three stages: training, deployment, and inference. We first use hardware-aware deep learning

techniques based on quantization and pruning to train our models to take advantage of the

hardware characteristics of a specific platform (described in Chapters 2, 3, and 4). While

we consider both general-purpose platforms and programmable hardware, we primarily study
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Figure 1.1. A high-level flow diagram of our end-to-end inference optimization pipeline.

deployment on FPGA-based accelerators as they can take advantage of fine-grained parallelism

and custom data types to a greater extent [34]. Given the trained model, we introduce novel graph

transformations and compute kernels (described in Chapters 5 and 6, respectively) that reduce the

compute costs of common image upsampling workloads by up to a factor of 3.3. We then adapt

our novel image upsampling algorithm to an FPGA-based accelerator (described in Chapter 7).

Finally, we conclude with additional deployment considerations as well as implications for

broader impact. The contributions of our work are summarized as follows:

1. In Chapter 2, we introduce a novel quantization-aware training algorithm that constrains

an integer-quantized neural network to use a low-precision accumulator without numerical

overflow while inherently increasing the sparsity of the resulting weights.

2. In Chapter 3, we introduce a data-driven structured weight pruning algorithm that uses non-

parametric measures of importance to greedily remove redundant channels in quantized

neural networks trained for computer vision applications.

3. In Chapter 4, we introduce a systematic approximation framework that optimizes the

power consumption of stochastic neural networks using a unified pruning and quantization

formulation guided by surrogate measures of neuron criticality.
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4. In Chapter 5, we introduce a novel deconvolution inference algorithm that exposes more

opportunities for concurrent execution to improve adaptability to resource-constrained

settings.

5. In Chapter 6, we introduce novel graph transformations that can significantly reduce the

data movement costs of common image upsampling workloads.

6. In Chapter 7, we adapt our novel compute kernels to a specialized hardware architecture

that reduces resource utilization and improves dataflow on an FPGA-based accelerator.
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Chapter 2

Integer-Quantized Neural Networks

Quantizing the weights and activations of neural networks significantly reduces their

inference costs, often in exchange for minor reductions in model accuracy. This is in large part due

to compute and memory cost savings in operations like convolutions and matrix multiplications,

whose resulting products are typically accumulated into high-precision registers, referred to as

accumulators. While many researchers and practitioners have taken to leveraging low-precision

representations for the weights and activations of a model, few have focused attention on

reducing the size of accumulators. Part of the issue is that accumulating into low-precision

registers introduces a high risk of numerical overflow which, due to wraparound arithmetic,

can significantly degrade model accuracy. In this chapter, we introduce a quantization-aware

training algorithm that guarantees avoiding numerical overflow when reducing the precision of

accumulators during inference. We leverage weight normalization as a means of constraining

parameters during training using accumulator bit width bounds that we derive. We evaluate

our algorithm across multiple quantized models that we train for different tasks, showing that

our approach can reduce the precision of accumulators while maintaining model accuracy with

respect to a floating-point baseline. We then show that this reduction translates to increased

design efficiency for custom FPGA-based accelerators. Finally, we show that our algorithm not

only constrains weights to fit into an accumulator of user-defined bit width but also increases the

sparsity and compressibility of the resulting weights. Across all of our benchmark models trained
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with 8-bit weights and activations, we observe that constraining the hidden layers of quantized

neural networks to fit into 16-bit accumulators yields an average 98.2% sparsity with an estimated

compression rate of 46.5x all while maintaining 99.2% of the floating-point performance.

2.1 Introduction

Quantization is the process of reducing the range and precision of the numerical represen-

tation of data. Among the many techniques used to reduce the inference costs of neural networks

(NNs), integer quantization is one of the most widely applied in practice [56]. The reduction in

compute and memory requirements resulting from low-precision quantization provides increased

throughput, power savings, and resource efficiency, usually in exchange for minor reductions in

model accuracy [80]. During inference, information is propagated through the layers of an NN,

where most of the compute workload is concentrated in the multiply-and-accumulates (MACs) of

operators such as convolutions and matrix multiplications. It has been shown that reducing the bit

width of the accumulator can increase throughput and bandwidth efficiency for general-purpose

processors by creating more opportunities to increase parallelism [40, 121, 170]. However,

exploiting such an optimization is non-trivial, as doing so incurs a high risk of overflow which

can introduce numerical errors that significantly degrade model accuracy due to wraparound

twos-complement arithmetic [121].

Previous work has sought to either reduce the risk of numerical overflow [139, 170] or

mitigate its impact on model accuracy [121]. In this work, we train quantized NNs (QNNs) to

avoid numerical overflow altogether when using low-precision accumulators during inference. To

fully exploit the wider design space exposed by considering low-precision weights, activations,

and accumulators, we target model deployment on FPGA accelerators with custom spatial

streaming dataflow rather than general-purposes platforms like CPUs or GPUs. The flexibility of

FPGAs makes them ideal devices for low-precision inference engines as they allow for bit-level

control over every part of a network; the precision of weights, activations, and accumulators can
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be individually tuned to custom data types for each layer without being restricted to power-of-2

bit widths like a CPU or a GPU would be. The contributions of our work are summarized as

follows:

• We show that reducing the bit width of the accumulator can reduce the resource utilization

of custom low-precision QNN inference accelerators.

• We derive comprehensive bounds on accumulator bit widths with finer granularity than

existing literature.

• We introduce a novel quantization-aware training (QAT) algorithm that constrains learned

parameters to avoid numerical overflow when reducing the precision of accumulators

during inference.

• We show that our algorithm not only constrains weights to fit into an accumulator of

user-defined bit width, but also significantly increases the sparsity and compressibility of

the resulting weights.

• We integrate our algorithm into the Brevitas quantization library [126] and the FINN

compiler [7] to demonstrate an end-to-end flow for training and deploying QNNs using

low-precision accumulators with custom streaming architectures on AMD-Xilinx FPGAs.

To the best of our knowledge, we are the first to explore the use of low-precision accumu-

lators to improve the design efficiency of programmable QNN inference accelerators. However,

our results have implications outside of the accelerators generated by FINN. Constraining the

accumulator bit width to a user-defined upper bound has been shown to increase throughput

and bandwidth efficiency on general-purpose processors [40, 121, 170] and reduce the compute

overhead of homomorphic encryption arithmetic [107]. Furthermore, our experiments show that

our algorithm can offer a better trade-off between resource utilization and model accuracy than

existing approaches, confirming the benefit of including the accumulator bit width in the overall

hardware-software (HW) co-design space.
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2.2 Related Works

As activations propagate through the layers of a QNN, the intermediate partial sums

resulting from convolutions and matrix multiplications are typically accumulated in a high-

precision register before being requantized and passed to the next layer, which we depict in

Figure 2.1. While many researchers and practitioners have taken to leveraging reduced precision

representations for weights and activations [56, 81, 119, 183], few works have focused attention

on reduced precision accumulators [40, 121, 139, 170].

8-bit Input Data8-bit Learned Weights

32-bit Accumulator

Requantize

8-bit Output Data

K Times

Previous Layer

Next Layer

Figure 2.1. A simplified illustration of fixed-point arithmetic in neural network inference.
Quantized weights are frozen during inference. Input/output data is dynamic and thus, scaled
then clipped as the hidden representations (i.e., activations) are passed through the network. The
accumulator needs to be big enough to fit the dot product of the learned weights with input data
vectors, which are assumed to both be K-dimensional.

One approach to training QNNs to use low-precision accumulators is to mitigate the

impact of overflow on model accuracy. Xie et al. [170] sought to reduce the risk of overflow using

an adaptive scaling factor tuned during training; however, their approach relies on distributional

assumptions that cannot guarantee overflow avoidance during inference. Alternatively, Ni et

al. [121] proposed training QNNs to be robust to overflow using a cyclic activation function based
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on expensive modulo arithmetic. They also use a regularization penalty to control the number of

overflows. In both approaches, overflow is accounted for at the outer-most level, which fails to

consider possible overflow when accumulating intermediate partial sums. Moreover, modeling

overflow at the inner-most accumulation level during QAT is not easily supported by off-the-shelf

deep learning frameworks as it is not directly compatible with fake-quantization over pre-existing

floating-point backends. As such, the current practice is to either use high-precision registers or

simply saturate values as they are accumulated; however, such clipping can still: (1) introduce

errors that cascade when propagated through a QNN; and (2) require saturation logic, which can

break associativity and add to latency and area requirements [8]. Thus, in our work, we train

QNNs to completely avoid overflow rather than simply reducing its impact on model accuracy.

Most similar to our work is that of [40], which proposed an iterative layer-wise opti-

mization strategy to select mixed-precision bit widths to avoid overflow using computationally

expensive heuristics that assume signed bit widths for all input data types. Our proposed

method constrains weights to avoid numerical overflow through the construction of our weight

normalization-based quantization formulation, which accounts for both signed and unsigned

input data types while adding negligible training overhead.

Tangential to our work, Wang et al. [160] and Sakr et al. [139] study the impact of

reduced precision floating-point accumulators for the purpose of accelerating training. Such

methods do not directly translate to fixed-point arithmetic, which is the focus of this work.

2.3 Background

Our work explores the use of weight normalization as a means of constraining weights

during quantization-aware training (QAT) for the purpose of avoiding overflow when using

low-precision accumulators. Here, we provide background related to this objective.
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2.3.1 Quantization-Aware Training (QAT)

The standard operators used to emulate quantization during training rely on uniform affine

mappings from a high-precision real number to a low-precision quantized number, allowing

for the core computations to use integer-only arithmetic [81]. The quantizer (Eq. 2.1) and

dequantizer (Eq. 2.2) are parameterized by zero-point z and scaling factor s. Here, z is an integer

value that maps to the real zero such that the real zero is exactly represented in the quantized

domain, and s is a strictly positive real scalar that corresponds to the resolution of the quantization

function. Scaled values are rounded to the nearest integers using half-way rounding, denoted by

⌊·⌉, and elements that exceed the largest supported values in the quantized domain are clipped:

clip(x;n, p) = min(max(x;n); p), where n and p are dependent on the data type of x. For signed

integers of bit width b, we assume n =−2b−1 and p = 2b−1−1 and assume n = 0 and p = 2b−1

when unsigned.

quantize(x;s,z) := clip(
⌊x

s

⌉
+ z;n, p) (2.1)

dequantize(x;s,z) := s · (x− z) (2.2)

It has become increasingly common to use unique scaling factors for each of the output

channels of the learned weights to adjust for varied dynamic ranges [118]. However, extending

this strategy to the activations incurs additional overhead as it requires either storing partial

sums or introducing additional control logic. As such, it is standard practice to use per-tensor

scaling factors for activations and per-channel scaling factors on only the weights. It is also

common to constrain the weight quantization scheme such that z = 0, which is referred to as

symmetric quantization. Eliminating these zero points reduces the computational overhead of

cross-terms when executing inference using integer-only arithmetic [83]. During training, the

straight-through estimator (STE) [13] is used to allow local gradients to permeate the rounding
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Figure 2.2. We adapt images from [18,153] to provide: (a) an overview of the FINN framework;
and (b) an abstraction of the matrix-vector-activation unit (MVAU), which is one of the primary
building blocks used by the FINN compiler to generate custom streaming architectures.

function such that ∇x⌊x⌉= 1 everywhere, where ∇x denotes the local gradient with respect to x.

2.3.2 Weight Normalization

Weight normalization reparameterizes each weight vector w in terms of a parameter

vector v and a scalar parameter g as given in Eq. 2.3, where ∥v∥2 is the Euclidean norm of the K-

dimensional vector v [141]. This simple reparameterization fixes the Euclidean norm of weight

vector w such that ∥w∥2 = g, which enables the magnitude and direction to be independently

learned.

w = g · v

∥v∥2
(2.3)

Tangential to our work, prior research has sought to leverage weight normalization as a

means of regularizing long-tail weight distributions during QAT [20]. They replace the standard

ℓ2-norm with an ℓ∞-norm and derive a projection operator to map real values into the quantized

domain. As further detailed in Section 2.6, we replace the ℓ2-norm with an ℓ1-norm to use

the weight normalization parameterization as a means of constraining learned weights during

training to use a pre-defined accumulator bit width during inference.
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Figure 2.3. Reducing the size of the accumulator in turn reduces LUT utilization as we vary
the size of the dot product (K) and the input and weights bit widths, N and M respectively. For
simplicity, we use the same bit width for the weights and activations such that N = M for all data
points and jointly refer to them as “data bit width.” For a given dot product size and data bit
width, we normalize the LUT utilization to the largest lower bound on the accumulator bit width
as determined by the data types of the inputs and weights.

2.4 Motivation

To motivate our research objective, we evaluate the impact of accumulator bit width on

the resource utilization of custom FPGA accelerators with spatial dataflow architectures. To

do so, we adopt FINN [18, 153], an open-source framework designed to generate specialized

streaming architectures for QNN inference acceleration on AMD-Xilinx FPGAs.

2.4.1 Generating Streaming Architectures with FINN

The FINN framework, depicted in Figure 2.2a, generates specialized QNN accelerators

for AMD-Xilinx FPGAs using spatial streaming dataflow architectures that are individually

customized for the network topology and the data types used. At the core of FINN is its compiler,

which empowers flexible hardware-software (HW-SW) co-design by allowing a user to have per-

layer control over the generated accelerator. Weight and activation precisions can be individually

specified for each layer in a QNN, and each layer is instantiated as its own dedicated compute

unit (CU) that can be independently optimized with fine-grained parallelism.

As an example of how a layer is instantiated as its own CU, we provide a simplified

abstraction of the matrix-vector-activation unit (MVAU) in Figure 2.2b. The MVAU is one of the

primary building blocks used by the FINN compiler for linear and convolutional layers [18]. Each

CU consists of processing elements (PEs), which parallelize work along the data-independent
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output dimension, and single-instruction multiple-data (SIMD) lanes, which parallelize work

along the data-dependent input dimension. Execution over SIMDs and PEs within a layer is

concurrent (i.e., spatial parallelism), while execution over layers within a network is pipelined

(i.e., temporal parallelism). All quantized monotonic activation functions in the network are

implemented as threshold comparisons that map high-precision accumulated results from the

preceding layer into low-precision output values. During compilation, batch normalization,

biases, and even scaling factors are absorbed into this threshold logic via mathematical manipula-

tion [154]. The input and output data for the generated accelerators are streamed into and out of

the chip using AXI-Stream protocols while on-chip data streams are used to interconnect these

CUs to propagate intermediate activations through the layers of the network. During inference,

all network parameters are stored on-chip to avoid external memory bottlenecks. For more

information on the FINN framework, we refer the interested reader to [7, 18, 153].

2.4.2 Accumulator Impact on Resource Utilization

FINN typically relies on look-up tables (LUTs) to perform MACs at low precision; in such

scenarios, LUTs are often the resource bottleneck for the low-precision streaming accelerators it

generates. Furthermore, because activation functions are implemented as threshold comparisons,

their resource utilization exponentially grows with the precision of the accumulator and output

activations [18]. Thus, reducing the size of the accumulator has a direct influence on both the

compute and memory requirements.

To evaluate the impact of accumulator bit width on LUT utilization, we consider a fully

connected QNN with one hidden layer that is parameterized by a matrix of signed integers.

The QNN takes as input a K-dimensional vector of unsigned integers and gives as output a

10-dimensional vector of signed integers. We use the FINN compiler to generate a streaming

architecture with a single MVAU targeting an AMD-Xilinx PYNQ-Z2 board with a frequency of

100 MHz. We report the resource utilization of the resulting RTL post-synthesis. To simplify our

analysis, we assume that LUTs are the only type of resources available and configure the FINN
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compiler to target LUTs for both compute and memory so that we can evaluate the impact of

accumulator bit width on resource utilization using just one resource.

As further discussed in Section 2.5, the minimum accumulator bit width that can be used

to avoid overflow is a function of the size of the dot product (K) as well as the bit widths of the

input and weight vectors x and w, respectively denoted as N and M. In Figure 2.3, we visualize

how further reducing the accumulator bit width in turn decreases resource utilization as we vary

K, N, and M. For a given dot product size and data bit width, we normalize the LUT utilization

to the largest lower bound on the accumulator bit width as determined by the data types of the

inputs and weights. To control for the resource utilization of dataflow logic, we use a single

PE without applying optimizations such as loop unrolling, which increase the amount of SIMD

lanes.

We observe that the impact of accumulator bit width on resource utilization grows

exponentially with the precision of the data (i.e., M and N). As we reduce the size of the

accumulator, we observe up to a 25% reduction in the LUT utilization of a layer when N =M = 8,

but only up to a 1% reduction in LUT utilization when N = M = 3. This is expected as

compute and memory requirements exponentially grow with precision and thus have larger

proportional savings opportunities. We also observe that K has a dampening effect on the impact

of accumulator bit width reductions that is also proportional to the precision of the data. When

N = M = 8 and K = 32, we observe on average a 2.1% LUT reduction for every bit that we

reduce the accumulator, but only a 1.5% LUT reduction when K = 512. Conversely, we observe

on average a 0.2% LUT reduction for every bit that we reduce the accumulator when N = M = 3

regardless of K. We hypothesize that this dampening effect is in part due to the increased storage

costs of larger weight matrices because, unlike threshold storage, the memory requirements of

weights are not directly impacted by the accumulator bit width. Therefore, the relative savings

from accumulator bit width reductions are diluted by the constant memory requirements of the

weights. We explore this further in Section 3.5, where we break down the resource utilization of

FPGA accelerators generated for our benchmark models.
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2.5 Accumulator Bit Width Bounds

Figure 2.1 illustrates a simplified abstraction of accumulation in QNN inference. As

activations are propagated through the layers, the intermediate partial sums resulting from

operations such as convolutions or matrix multiplications are accumulated into a register before

being requantized and passed to the next layer. To avoid numerical overflow, the register storing

these accumulated values needs to be wide enough to not only store the result of the dot product,

but also all intermediate partial sums.

Consider the dot product of input data x and learned weights w, which are each K-

dimensional vectors of integers. Let y be the scalar result of their dot product given by Eq. 2.4,

where xi and wi denote element i of vectors x and w, respectively. Since the representation range

of y is bounded by that of x and w, we use their ranges to derive lower bounds on the bit width

P of the accumulation register, or accumulator.

y = ∑
K
i=1 xiwi (2.4)

It is common for input data to be represented with unsigned integers either when following

activation functions with non-negative dynamic ranges (e.g., rectified linear units, or ReLUs), or

when an appropriate zero point is adopted (i.e., asymmetric quantization). Otherwise, signed

integers are used. Since weights are most often represented with signed integers, we assume

the accumulator is always signed in our work. Therefore, given that the scalar result of the

dot product between x and w is a P-bit integer defined by Eq. 2.4, it follows that ∑
K
i=1 xiwi is

bounded such that:

−2P−1 ≤ ∑
K
i=1 xiwi ≤ 2P−1−1 (2.5)

To satisfy the right-hand side of this double inequality, it follows that |∑K
i=1 xiwi| ≤

2P−1−1. However, the accumulator needs to be wide enough to not only store the result of the

dot product, but also all intermediate partial sums.
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Since input data is not known a priori, our bounds must consider the worst-case values

for every MAC. Thus, because the magnitude of the sum of products is upper-bounded by the

sum of the product of magnitudes, it follows that if ∑
K
i=1 |xi||wi| ≤ 2P−1−1, then the dot product

between x and w fits into a P-bit accumulator without numerical overflow, as shown below.

|∑i xiwi| ≤ ∑i |xiwi| ≤ ∑i |xi||wi| ≤ 2P−1−1 (2.6)

2.5.1 Deriving Lower Bounds Using Data Types

The worst-case values for each MAC can naı̈vely be inferred from the representation

range of the data types used. When xi and wi are signed integers, their magnitudes are bounded

such that |xi| ≤ 2N−1 and |wi| ≤ 2M−1, respectively. In scenarios where xi is an unsigned integer,

the magnitude of each input value is upper-bounded such that |xi| ≤ 2N−1; however, we simplify

this upper bound to be |xi| ≤ 2N for convenience of notation1. Combining the signed and unsigned

upper bounds, it follows that |xi| ≤ 2N−1signed(x), where 1signed(x) is an indicator function that

returns 1 if and only if x is a vector of signed integers.

Building from Eq. 2.6, it follows that the sum of the product of the magnitudes is bounded

such that:

∑
K
i=1 |xi||wi| ≤ K ·2N+M−1−1signed(x) ≤ 2P−1−1 (2.7)

Taking the log of both sides, we can derive a lower bound on the accumulator bit width P:

log2

(
2log2(K)+N+M−1−1signed(x)+1

)
+1≤ P (2.8)

1Note that our simplification of the upper bound for unsigned input data does not compromise overflow avoidance.
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This simplifies to the following lower bound on P:

P≥ α +φ(α)+1 (2.9)

α = log2(K)+N +M−1−1signed(x) (2.10)

φ(α) = log2(1+2−α) (2.11)

In Figure 2.4, we visualize this bound assuming that x is a vector of unsigned integers

such that 1signed(x) = 0. There, we show how the lower bound on the accumulator bit width

increases as we vary both the size of the dot product (K) and the bit width of the weights and

activations.

2.5.2 Deriving Lower Bounds Using Learned Weights

Since learned weights are frozen during inference time, we can use knowledge of their

magnitudes to derive a tighter lower bound on the accumulator bit width.

Building again from Eq. 2.6, the sum of the product of magnitudes is bounded by Eq. 2.12,

where ∥w∥1 denotes the standard ℓ1-norm over vector w.

∑
K
i=1 |xi||wi| ≤ 2N−1signed(x) · ∥w∥1 ≤ 2P−1−1 (2.12)

Here, we define a tighter lower bound on P:

P≥ β +φ(β )+1 (2.13)

β = log2(∥w∥1)+N−1signed(x) (2.14)

φ(β ) = log2(1+2−β ) (2.15)

In Figure 2.4, we visualize this bound again assuming that x is a vector of unsigned

integers. Because Eq. 2.14 is dependent on the values of the learned weights, we randomly
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Figure 2.4. We visualize the differences between our accumulator bit width bounds as we vary
the size of the dot product (K) as well as the bit width of the weights (M) and input activations
(N), which we jointly refer to as “data bit width” such that M = N.

sample each K-dimensional vector from a discrete Gaussian distribution and show the median

accumulator bit width along with the minimum and maximum observed over 300 random

samples. We show that using learned weights (right) provides a tighter lower bound on the bit

width of the accumulator than using data types (left) as we vary both the size of the dot product

(K) and the bit width of the weights and input activations.

2.6 Training Quantized Neural Networks to Avoid Overflow

To train QNNs to use low-precision accumulators without overflow, we use weight

normalization as a means of constraining learned weights w to satisfy the bound derived in

Section 2.5.2. Building from Eq. 2.12, we transform our lower bound on accumulator bit width

P to be the upper bound on the ℓ1-norm of w given by Eq. 2.16. Note that because each output

neuron requires its own accumulator, this upper bound needs to be enforced channelwise.

∥w∥1 ≤
(
2P−1−1

)
·21signed(x)−N (2.16)

2.6.1 Constructing Our Quantization Operator

To enforce this constraint during QAT, we reparameterize our quantizer such that each

weight vector w is represented in terms of parameter vectors g and v. Similar to the standard

weight normalization formulation discussed in Section 2.3.2, this reparameterization decouples
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the norm from the weight vector; however, unlike the standard formulation, the norm is learned

for each output channel. For a given layer with C output channels, we replace the per-tensor ℓ2-

norm of the standard formulation (Eq. 2.3) with a per-channel ℓ1-norm. This reparameterization,

given by Eq. 2.17, allows for the ℓ1-norm of weight vector w to be independently learned

per-channel such that gi = ∥wi∥1 for all i ∈ {1, · · · ,C}, where wi denotes the weights of channel

i and gi denotes element i in parameter vector g.

wi = gi ·
vi
∥vi∥1

∀ i ∈ {1, · · · ,C} (2.17)

Similar to the standard quantization operator, our weight normalization-based quantiza-

tion relies on a uniform affine mapping from the high-precision real domain to the low-precision

quantized domain using learned per-channel scaling factors s= {si}Ci=1. Thus, by constraining

gi to satisfy Eq. 2.18, we can learn quantized weights that satisfy our accumulator bit width

bound and avoid overflow.

gi ≤ si ·
(
2P−1−1

)
·21signed(x)−N (2.18)

Below, we articulate our weight normalization-based quantization operator. For clarity

and convenience of notation, we consider a layer with one output channel (i.e., C = 1) such that

parameter vectors g = {gi}Ci=1 and s= {si}Ci=1 can be represented as scalars g and s, respectively.

quantize(w;s,z) := clip
(⌊

g
s

v

∥v∥1

⌋
+ z;n, p

)
(2.19)

During training, our weight quantization operator applies fours elementwise operations

the following in order: scale, round, clip, then dequantize. As with the standard operator, we

eliminate the zero points in our mapping such that z = 0. We use an exponential parameterization

of both the scaling factor s = 2d and the norm parameter g = 2t , where d and t are both log-

scale parameters to be learned through stochastic gradient descent. This is similar to the work
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of [83] with the caveat that we remove integer power-of-2 constraints, which provide no added

benefit to the streaming architectures generated by FINN as floating-point scaling factors can

be absorbed into the threshold logic via mathematical manipulation [18]. The scaled tensors

are then rounded to zero, which we denote by ⌊·⌋. This prevents any upward rounding that may

cause the norm to increase past our constraint. Note that this is another difference from the

conventional quantization operators, which use half-way rounding. Finally, once scaled and

rounded, the elements in the tensor are then clipped and dequantized using Eq. 2.2. Our resulting

quantization operator used during training is given by Eq. 2.20, where n and p depend on the

representation range of weight bit width M.

q(w;s) := clip
(⌊

g
s

v

∥v∥1

⌋
;n, p

)
· s (2.20)

where s = 2d (2.21)

and g = 2min(T,t) (2.22)

and T = 1signed(x)+ log2(2
P−1−1)+d−N (2.23)

When quantizing our activations, we use the standard quantization operators discussed in

Section 2.3.1. All activations that follow non-negative functions (i.e., ReLU) are represented

using unsigned integers, otherwise they are signed.

To update our learnable parameters during training, we use the straight-through estimator

(STE) [13] to allow local gradients to permeate our rounding function such that ∇x ⌊x⌋ = 1

everywhere, as is common practice.

2.6.2 Regularization with Lagrangian Penalties

To avoid t getting stuck when t > T in Eq. 2.22, we introduce the Lagrangian penalty

Lpenalty given by Eq. 2.24. For a neural network with L layers, each with Cl output channels,

ti,l denotes the log-scale parameter of the norm for channel i in layer l and Ti,l denotes its upper

bound as given by Eq. 2.23. Note that, even when Lpenalty > 0, we still satisfy our accumulator
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Figure 2.5. Using image classification and single-image super resolution benchmarks, we show
that we are able to maintain model performance with respect to the floating-point baseline even
with significant reductions to the accumulator bit width. We visualize this trade-off using Pareto
frontiers estimated using a grid search over various weight, activation, and accumulator bit
widths. Here, we use P∗ to denote the largest accumulator bit width allowed across all layers in
the network. We compare our algorithm (green dots) against the standard quantization baseline
algorithm (blue stars) and repeat each experiment 3 times, totaling over 500 runs per model to
form each set of Pareto frontiers. We observe that our algorithm dominates the baseline in all
benchmarks, showing that we can reduce the accumulator bit width without sacrificing significant
model performance even with respect to a floating-point baseline.

constraints by clipping the norm in Eq. 2.22. However, our Lagrangian penalty encourages norm

gi and scale si of each channel i in each layer to jointly satisfy the bound without clipping, which

allows their log-scale parameters to be updated with respect to only the task error.

Lpenalty = ∑
L
l=1 ∑

Cl
i=1
(
ti,l−Ti,l

)
+

(2.24)

It is important to note that our formulation is task agnostic. Assuming base task loss Ltask,

our total loss Ltotal is given by Eq. 2.25, where λ is a Lagrange multiplier. In our experiments,

we fix λ to be a constant scalar, although adaptive approaches such as [137] could be explored.

Ltotal = Ltask +λLpenalty (2.25)

2.7 Experiments

We evaluate our algorithm using image classification and single-image super resolution

benchmarks. Because our algorithm is the first of its kind, we compare our approach to the

standard QAT formulation discussed in Section 2.3.1. We implement all algorithms in PyTorch
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using Brevitas v0.7.2 [126], where single-GPU quantization-aware training times range from

5 minutes (e.g., ESPCN) to 2 hours (e.g., MobileNetV1) on an AMD MI100 accelerator. To

generate custom FPGA architectures for the resulting QNNs, we work from FINN v0.8.1 [7] and

add extensions to support our work.

2.7.1 Image Classification Benchmarks

We train MobileNetV1 [77] and ResNet18 [66] to classify images using the CIFAR10

dataset [93]. We closely follow the network architectures originally proposed by the respective

authors, but introduce minor variations that yield more amenable intermediate representations

given the image size as we discuss below. As is common practice, we fix the input and output

layers to 8-bit weights and activations for all configurations, and initialize all models from

floating-point counterparts pre-trained to convergence on CIFAR10. We evaluate all models by

the observed top-1 test accuracy.

For MobileNetV1, we use a stride of 2 for both the first convolution layer and the final

average pooling layer. This reduces the degree of downscaling to be more amenable to training

over smaller images. All other layer configurations remain the same as proposed in [77]. We

use the stochastic gradient descent (SGD) optimizer to fine-tune all models for 100 epochs in

batches of 64 images using a weight decay of 1e-5. We use an initial learning rate of 1e-3 that is

reduced by a factor of 0.9 every epoch.

For ResNet18, we alter the first convolution layer to use a stride and padding of 1 with a

kernel size of 3. Similar to MobileNetV1, we remove the preceding max pool layer to reduce the

amount of downscaling throughout the network. We also use a convolution shortcut [67] rather

than the standard identity as it empirically proved to yield superior results in our experiments.

All other layer configurations remain the same as proposed in [66]. We use the SGD optimizer

to fine-tune all models for 100 epochs in batches of 256 using a weight decay of 1e-5. We use an

initial learning rate of 1e-3 that is reduced by a factor of 0.1 every 30 epochs.
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2.7.2 Single-Image Super Resolution Benchmarks

We train ESPCN [144] and UNet [136] to upscale single images by a factor of 3x using the

BSD300 dataset [113]. Again, we closely follow the network architectures originally proposed

by the respective authors, but introduce minor variations that yield more hardware-friendly

network architectures. As is common practice, we fix the input and output layers to 8-bit weights

and activations for all configurations; however, we train all super resolution models from scratch.

We empirically evaluate all models by the peak signal-to-noise ratio (PSNR) observed over the

test dataset.

For ESPCN, we replace the sub-pixel convolution with a nearest neighbor resize convolu-

tion (NNRC), which has been shown to reduce checkerboard artifacts during training [124] and

can be efficiently executed during inference [33]. All other layer configurations remain the same

as proposed in [144]. We use the Adam optimizer [90] to fine-tune all models for 100 epochs in

batches of 16 images using a weight decay of 1e-4. We use an initial learning rate of 1e-4 that is

reduced by a factor of 0.98 every epoch.

For UNet, we use only 3 encoders and decoders to create a smaller architecture than

originally proposed by [136]. We replace transposed convolutions with NNRCs, which have

been shown to be functionally equivalent during inference [33], but have more favorable behavior

during training [124]. We replace all concatenations with additions and reduce the input channels

accordingly. We use the Adam optimizer to fine-tune all models for 200 epochs in batches of 16

images using a weight decay of 1e-4. We use an initial learning rate of 1e-3 that is reduced by a

factor of 0.3 every 50 epochs.

2.7.3 Experiment Setup and Research Questions

We design our experiments around the following questions:

• How does reducing the accumulator bit width impact model performance?

• What are the trade-offs between resource utilization and model performance?
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Figure 2.6. To evaluate the trade-off between resource utilization and accuracy, we visualize
the Pareto frontier observed over our image classification and single-image super resolution
benchmarks. We evaluate these Pareto frontiers in the following scenarios: (a) no spatial
parallelism; (b) maximizing the PEs for each layer; and (c) maximizing the PEs and SIMDs for
each layer. In each scenario, we observe that our algorithm (green dots) provides a dominant
Pareto frontier across each model when compared to the standard quantization algorithm (blue
stars), showing that our algorithm can reduce LUT utilization without sacrificing significant
model performance.

• Where do our resource savings come from as we reduce accumulator bit width?

Similar to the experiments described in Section 3.3, we simplify our analysis and assume

that LUTs are the only type of resources available. We configure the FINN compiler to target

LUTs for both compute and memory wherever possible so that we can evaluate the impact of

accumulator bit width on resource utilization using just one type of resource.

Throughout our experiments, we focus our attention on data bit widths between 5 and

8 bits for two reasons: (1) reducing precision below 5 bits often requires uniquely tailored
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hyperparameters, which would not make for an even comparison across bit widths; and (2)

reducing the size of the accumulator has a negligible impact on LUT utilization at lower data

bit widths, as shown in Section 3.3. Still, even with a reduced set of possible data bit widths, it

is computationally intractable to test every combination of weight, activation, and accumulator

bit widths within the design space exposed by the QNNs that we use as benchmarks. Thus, for

weight and activation bit widths, we uniformly enforce precision for each hidden layer in the

network such that M and N are constant scalars, aside from the first and last layers that remain

at 8 bits such that M = N = 8. The accumulator bit width, however, is dependent on not only

the weight and activation bit widths, but also the size of the dot product (K), as discussed in

Section 2.5. To simplify our design space, we constrain all layers in a given network to use

the same accumulator bit width that we denote as P∗ such that the maximum accumulator bit

width for any layer is P∗ bits. Recall that the value for P∗ is used by Eq. 2.16 to upper bound

the ℓ1-norm of each weight per-channel and used by Eq. 2.23 to enforce this constraint during

training.

To collect enough data to investigate our research questions, we perform a grid search

over weight and activation bit widths from 5 to 8 bits. For each of these 16 combinations, we

calculate the largest lower bound on the accumulator bit width as determined by the data type

bound (Eq. 2.9) of the largest layer in the network. Using this to initialize P∗, we evaluate up to

a 10-bit reduction in the accumulator bit width to create a total of 160 configurations. Finally,

we benchmark our results against the standard quantization algorithm discussed in Section 2.3.1;

however, because it does not expose control over accumulator bit width, this grid search is

restricted to the 16 combinations of weight and activation bit widths. We run each configuration

3 times to form a total of 528 runs per model. In the following sections, we summarize our

findings.
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Figure 2.7. We break down LUT utilization into compute, memory, and control flow for each of
our Pareto optimal models from Figure 2.6.

2.7.4 Accumulator Impact on Model Performance

Our algorithm introduces a novel means of constraining the weights of a QNN to use

a pre-defined accumulator bit width without overflow. As an alternative to our algorithm, a

designer can choose to heuristically manipulate data bit widths based on our data type bound

given by Eq. 2.9. Such an approach would still guarantee overflow avoidance when using a

pre-defined accumulator bit width P, but is an indirect means of enforcing such a constraint.

Given a pre-defined accumulator bit width upper bound P∗, we compare the performance of

models trained with our algorithm against this heuristic approach. We visualize this comparison

as a Pareto frontier in Figure 2.5. It is important to note that, while this is not a direct comparison

against the algorithm proposed by [40], the experiment is similar in principle. Unlike [40],
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we use the more advanced quantization techniques detailed in Section 2.3.1, and replace the

computationally expensive loss-guided search technique with an even more expensive, but more

comprehensive grid search.

The Pareto frontier shows the maximum observed model performance for a given P∗. We

observe that our algorithm can push the accumulator bit width lower than what is attainable using

current methods while also maintaining model performance. Furthermore, most models show

less than a 1% performance drop from even the floating-point baseline with a 16-bit accumulator,

which is most often the target bit width for low-precision accumulation in general-purpose

processors [40, 170].

2.7.5 Trade-Offs Between Resources and Accuracy

To understand the impact that accumulator bit width can have on the design space of

the accelerators generated by FINN, we evaluate the trade-offs between resource utilization and

model performance. For each of the models trained in the grid search detailed in Section 2.7.3,

we use the FINN compiler to generate resource utilization estimates and use Pareto frontiers

to visualize the data. In Figure 2.6, we provide the maximum observed model performance

for the total LUTs used by the accelerator. We evaluate these Pareto frontiers with three

optimization configurations. First, we instantiate each layer in each model as a CU without any

spatial parallelism optimization and visualize the Pareto frontiers in Figure 2.6a. Second, we

maximize the number of PEs used in each layer in each model and visualize the Pareto frontiers

in Figure 2.6b. Finally, we maximize both the number of PEs and the SIMD lanes used and

visualize the Pareto frontiers in Figure 2.6c.

To ensure that the trends we analyze from these estimates are meaningful, we return to the

experiments carried out in Section 3.3. We compare the absolute LUT utilization reported from

post-synthesis RTL against the corresponding FINN estimates and observe a 94% correlation.

Reducing the precision of weights and activations provides resource utilization savings

in exchange for model performance; however, we observe that adding the accumulator bit width
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to the design space provides a better overall trade-off. Our results show that, for a given target

accuracy or resource budget, our algorithm can offer a better trade-off between LUT utilization

and model performance than existing baselines for various optimization strategies, confirming

the benefit of including the accumulator bit width in the overall HW-SW co-design space.

2.7.6 Evaluating Resource Savings

Because we force the FINN compiler to use LUTs for compute and memory resources

wherever possible, we evaluate where our resource savings come from. To do so, we separate

LUT utilization into compute, memory, and control flow. For compute, we aggregate the LUTs

used for adder trees, MACs, and comparison logic; for memory, the LUTs used to store weights,

thresholds, and intermediate representation; and for control flow, the LUTs used for on-chip

interconnects and AXI-Stream protocols. In Figure 2.7, we visualize this break down for each of

the Pareto optimal models that correspond to our Pareto frontier in Figure 2.6.

We observe that the majority of LUT savings come from reductions to memory resources

when accelerators are generated without spatial parallelism, but primarily come from compute

resources as parallelism is increased. Without parallelism, the reductions in LUT utilization

are largely from the reduced storage costs of thresholds and intermediate activations, which are

directly impacted by the precision of the accumulator and output activations. As parallelism

is increased, the reductions in compute LUTs primarily come from the reduced cost of MACs,

which are directly impacted by the precision of the weights, inputs, and accumulators.

Finally, we observe that the control flow LUTs largely remain constant for each network,

which is expected as the network architecture is not impacted by changes to the data types used.

Noticeably, the relative share of LUTs contributed by control flow logic is higher for networks

with skip connections (e.g., ResNet18 and UNet) than without (e.g., MobileNetV1 and ESPCN),

and is relatively less impactful as parallelism is increased.
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2.7.7 A Deeper Look at the Impact of Our Constraints

As a byproduct of our weight normalization formulation, our quantization algorithm

provides a means of not only constraining weights to fit into an accumulator of user-defined bit

width, but also of increasing the sparsity and compressibility of the resulting weights, as shown

in Figure 2.8.

Sparsity is the proportion of zero-valued elements in a tensor. The most common use

of sparsity in machine learning workloads is to accelerate inference by reducing compute and

memory requirements [54]. We direct the interested reader to [75] for a recent survey of prior

work on sparsity in deep learning. Among this work are various studies regarding the use of

ℓ1-norm weight regularization as a means of introducing sparsity [25, 174]. Our quantization

algorithm has a similar effect. By replacing the ℓ2-norm of the standard weight normalization

formulation with our log-scale ℓ1-norm parameter, we introduce a novel means of encouraging

unstructured weight sparsity. Recall that the value of P∗ is used by Eq. 2.16 to upper bound

the ℓ1-norm of the weights. Consequently, reducing P∗ further constrains this upper bound to

encourage weight sparsity as a form of ℓ1-norm weight regularization. In Figure 2.8 on the

left, we visualize the average sparsity across all of our benchmark models as we reduce the

accumulator bit width P∗.

Compressibility is often estimated using the theoretical lower bound on the amount of

bits per element as measured by the entropy [143]. Reducing the entropy reduces the amount of

information required for lossless compression, increasing the compression rate. Prior work has

studied the use of entropy regularization as a means of improving weight compression [4, 11].

We observe that our ℓ1-norm constraints have a similar effect as these techniques. As shown in

Figure 2.8 in the middle, we observe that the entropy decreases as we reduce the accumulator bit

width P∗.

In Figure 2.8, we visualize how the sparsity, compressibility, and relative model per-

formance are effected by reductions to P∗ using the models from our grid search described in
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Figure 2.8. As a result of our ℓ1-norm constraints, reducing the accumulator bit width exposes
opportunities to exploit unstructured sparsity (left) and weight compression (middle) without
sacrificing model performance relative to the floating-point baseline (right).

Section 2.7.3. To simplify our analysis, we focus on configurations where the weight and input

activation bit widths were the same (e.g., M = N), and plot the averages observed across all 4 of

our benchmark models. For models with 8-bit weights and activations, we observe that reducing

P∗ to 16 bits yields an average sparsity of 98.2% with an estimated compression rate of 46.5x

while maintaining 99.2% of the floating-point performance.

2.8 Conclusions and Future Work

We propose a novel quantization algorithm to train QNNs for low-precision accumulation.

Our algorithm leverages weight normalization as a means of constraining learned parameters

to fit into an accumulator of a pre-defined bit width. Unlike previous work, which has sought

to merely reduce the risk of overflow or mitigate its impact on model accuracy, our approach

guarantees overflow avoidance.

Our study is the first to our knowledge that explores the use of low-precision accumulators

as a means of improving the design efficiency of programmable hardware used as QNN inference

accelerators. As such, we theoretically evaluate overflow and derive comprehensive bounds on

accumulator bit width with finer granularity than existing literature. Our experiments show that

using our algorithm to train QNNs for AMD-Xilinx FPGAs improves the trade-offs between

resource utilization and model accuracy when compared to the standard baseline. Our results

inform the following takeaways:
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• While reducing the size of the accumulator invariably degrades model accuracy, our

algorithm significantly alleviates this trade-off.

• Using our algorithm to train QNNs for lower precision accumulators yields higher-

performing models for the same resource budget when compared to the baseline.

• Without spatial parallelism, the majority of our resource savings come from reductions to

memory requirements because reducing the accumulator bit width also reduces the cost of

storing thresholds and intermediate activations.

• As spatial parallelism is increased, reductions in compute costs dominate our resource

savings because reducing the accumulator bit width reduces the cost of creating more

MACs.

• Our algorithm inherently encourages extreme unstructured sparsity and increased com-

pressibility of the resulting weights of the QNN while maintaining performance relative to

the floating-point baseline.

The flexibility of FPGAs is a double-edged sword. The bit-level control allows for the

precisions of weights, activations, and now accumulators to be individually tuned for each layer

in a QNN; however, the design space exposed by so many degrees of freedom introduces a

complex optimization problem. Our algorithm increases the flexibility of HW-SW co-design by

exposing the accumulator bit width as yet another parameter that can be tuned when simulta-

neously optimizing QNNs and their corresponding inference accelerators. In future work, we

hope to explore the use of state-of-the-art neural architecture search algorithms as a means of

navigating this large design space more efficiently.
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Chapter 3

Low-Precision Structured Subnetworks

Pruning and quantization are core techniques used to reduce the inference costs of deep

neural networks. Among the state-of-the-art pruning techniques, magnitude-based pruning

algorithms have demonstrated consistent success in the reduction of both weight and feature

map complexity. However, we find that existing measures of neuron (or channel) importance

estimation have at least one of two limitations: (1) failure to consider the interdependence

between successive layers; and/or (2) parametric estimation that relies on distributional as-

sumptions of the feature maps. In this chapter, we demonstrate that the importance rankings

of the output neurons of a given layer strongly depend on the sparsity level of the preceding

layer, and therefore naı̈vely estimating neuron importance to drive magnitude-based pruning

will lead to sub-optimal performance. Informed by this observation, we introduce a purely

data-driven non-parametric, magnitude-based channel pruning strategy that we greedily apply

using the activations of the previous sparsified layer. We demonstrate that our proposed method

works effectively in combination with statistics-based quantization techniques to generate low-

precision structured subnetworks that can be efficiently accelerated by hardware platforms such

as GPUs and FPGAs. Using our proposed algorithms, we demonstrate an increased performance-

per-memory footprint over existing solutions across a range of discriminative and generative

networks.
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3.1 Introduction

The performance of deep neural networks (DNNs) has been shown to scale with the

size of both the training dataset and model architecture [69]; however, the resources required

to deploy larger networks for inference can be prohibitive as they often exceed the compute

and storage budgets of resource-constrained platforms such as mobile or edge devices [53, 63].

Therefore, as the usage of deep learning has proliferated in real-time applications with tight

energy consumption budgets and low latency requirements, the field of research focused on

reducing inference costs while maintaining model performance has rapidly expanded in recent

years. Of the many techniques studied to accomplish this task, pruning and quantization

are the most widely used, and are often complementary to other approaches such as network

distillation [131] and neural architecture search [47, 162].

Pruning (i.e., the process of removing identified redundant elements from a neural

network) and quantization (i.e., the processing of reducing their precision) are often considered

to be independent problems [103, 128]; however, recent work has begun to study the application

of both in either a joint [63,162,178,188] or unified [32,156] setting. Unified algorithms typically

use mixed precision quantization and integrate pruning by reducing the precision of an element

(or a set of elements) to 0. On the other hand, joint algorithms combine separate optimization

objectives for pruning and quantization under one learning framework often using the standard

“prune-then-quantize” paradigm [63,184]. In this work, we study the joint application of pruning

and quantization under this paradigm across both discriminative and generative tasks for the

purpose of learning low-precision structured subnetworks that can be efficiently accelerated by

highly-parallelized hardware platforms.

Motivated by our observation that data-driven measures of neuron importance strongly

depend on the activation distribution of the preceding layer, we design a greedy layerwise

channel pruning algorithm that is heuristically guided by non-parametric estimates. We evaluate

the performance of our algorithm using various pruning schedules and alternative measures
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of neuron importance based on pre-existing literature, and observe that our greedy layerwise

algorithm yields consistent benefits. Intuitively, our results suggest that, by allowing a given

layer to adjust to abrupt shifts to its input activation distribution before pruning, the heuristics

used to rank order neurons by importance become more effective, which leads to improved

network performance. Furthermore, when combined with our moving average statistics-based

uniform quantization procedure, we are able to learn low-precision structured subnetworks with

minimal performance degradation for both discriminative and generative tasks. Our joint pruning

and quantization algorithm is visualized in Figure 3.1, where we depict the sequence of pruning

and quantization steps used during training. As further described in Section 3.4, our framework

uses data-driven importance measures to guide our greedy layerwise channel pruning algorithm

before our quantization operator is activated to reduce the precision of both the weights wi and

activations hi for each layer i ∈ {1, · · · ,L}. The pruning mask for each layer i is evaluated for tp

steps before moving to layer i+1. After all layers are pruned to a target sparsity, we activate

the quantization operators and fine-tune for tq steps. It is important to note that, while only the

pruning mask of one layer is tuned every tp steps, the weights in all layers are updated through

gradient descent in every step, and latent operators act as identity functions until activated. The

primary contributions of our work are summarized as follows:

1. We design a greedy layerwise channel pruning strategy using a non-parametric data-driven

importance measure built without invoking any distributional assumptions.

2. We build a fully data-driven non-parametric framework to learn performant low-precision

structured subnetworks by combining our layerwise channel pruning algorithm with

quantization-aware training.

3. We evaluate our algorithm using alternative pruning schedules and neuron importance

measures, and demonstrate clear advantages over pre-existing approaches.

4. We demonstrate increased performance per memory footprint over existing solutions across
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a wide range of discriminative and generative computer vision tasks.

Quantize

Prune Quantize

Quantize

Prune Quantize

Quantize

Prune Quantize
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Prune Quantize

training
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computational
order

Quantize

Prune Quantize

Quantize

Prune Quantize

...

Figure 3.1. We introduce a joint layerwise channel pruning and uniform quantization framework
built from algorithms formulated using moving average statistics. Here, yellow blocks denote
operators actively being evaluated, clear blocks with dotted lines denote latent operators that
have yet to be activated, and white blocks denote activated operators that have already been
evaluated.

The outline of the rest of the chapter is as follows. In Section 3.2, we review prior

work in neural network pruning and quantization. In Section 3.3, we motivate our intuition

for data-driven layerwise pruning using non-parametric measures of correlation and distance

between rank orderings of neuron importance. In Section 3.4, we describe our layer-by-layer

channel pruning and moving average statistics-based quantization-aware training algorithms.

In Section 3.5, we evaluate the performance results of our joint channel pruning and uniform

quantization framework using discriminative and generative networks. In Section 6.7, we

conclude the paper and discuss directions for future work.
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3.2 Background

Our work explores the joint application of channel pruning and uniform quantization

on both the weights and activations of deep neural networks. Here, we motivate our selected

configurations for both.

3.2.1 Pruning

Neural network pruning techniques aim to reduce the inference costs of overparameterized

models by identifying subnetworks that minimize memory requirements while maintaining task

performance. In practice, pruning is often performed by setting the values of identified elements

to zero, and the proportion of zero-valued elements is referred to as sparsity, where higher values

correspond to fewer non-zero elements. Given a target sparsity, there are a variety of criteria used

to identify which elements to prune; the most important of which are the topology constraints on

the resulting subnetwork, the measure used to rank elements by importance, and the schedule in

which elements are pruned.

Topology constraints for pruning techniques can be divided into structured or unstruc-

tured approaches. Structured pruning techniques introduce sparsity in varied levels of granularity

(e.g., entire kernels or channels), whereas unstructured pruning techniques impose no constraint

on the topology of the sparsity scheme, as shown in Figure 3.2. Due to their inherent flexibil-

ity, unstructured pruning techniques can offer high compression rates with minimal accuracy

degradation [51, 63]; however, they bring little hardware efficiency due to poor data locality

caused by irregular sparsity patterns which create minimal opportunities for parallelism [68,111].

Alternatively, structured pruning techniques offer more hardware-friendly implementations often

by removing entire channels. This not only reduces the compute workload in a manner that is

easily accelerated by most computing platforms [111], but also reduces energy consumption as

activations dominate data transfer costs for both discriminative [85] and generative [33] models.

Therefore, we focus on channel pruning in this work.
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Various measures have been proposed to heuristically determine the relative importance

of channels in a neural network. Weight magnitude has become the standard importance measure

used to guide unstructured pruning algorithms [17, 51, 63], intuitively suggesting that larger

magnitudes have greater influence in the network. Thus, weight magnitude can be extended to

rank order channels using the ℓ1-norm of channel weights [26]. We refer to such importance

measures as data-free, as they do not require a data distribution to estimate neuron importance.

Alternatively, purely data-driven approaches such as [78] prioritize removing redundancy from

the information (i.e., hidden activations) propagated through the network from the input data. This

class of techniques has shown tremendous promise in finding performant structured subnetworks

by heuristically guiding pruning algorithms to minimize feature reconstruction error [68], remove

underutilized channels [78], or minimize the mutual information between successive layers [37].

However, we find that these approaches are limited by one or two key oversights:

1. They do not consider the interdependence between successive layers in a neural network

when measuring neuron importance, as in the case of [26, 78, 116].

2. They either use a parametric setting or invoke distributional assumptions on the activation

data that may not hold true for all network architectures, as in the case of [37,68,108,191].

In this paper, using a completely non-parametric framework, we design a layerwise

channel pruning algorithm using a data-driven measure of channel importance. Using targeted

statistical experiments, we focus on some important differences between data-driven and data-

free approaches when constructing our pruning algorithms. These experiments, further discussed

in Section 3.3, also motivate the rationale for our layerwise approach.

3.2.2 Quantization

We are interested in quantization for the purpose of accelerating our structured subnet-

works on mobile or edge devices; thus, we construct our “quantization” and “dequantization”

operators from the standard uniform affine mapping from a high-precision real number r to a
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Figure 3.2. We depict the differences between structured (top) and unstructured (bottom)
pruning.

low-precision quantized number q using a scaling factor s and zero-point z, as given by Eq. 3.1.

Although more complex non-uniform and non-linear mappings have been considered [131, 163],

their utility and practicality are often circumstantial as they require dequantization before

performing computation in the high-precision real domain and are thus far less efficient on

resource-constrained hardware [168].

r = s · (q− z) (3.1)

40



As is standard practice, our quantizer (Eq. 3.2) and dequantizer (Eq. 3.3) are parameterized by

scaling factor s and zero-point z. Here, s is a strictly positive real scaling factor and z is an integer

value that maps to the real zero such that the real zero is exactly representable in the quantized

domain. This ensures the numerical fidelity of common operations like zero-padding [82, 92].

Here, ⌊·⌉ denotes the half-way rounding function and clip(x;n, p) = min(max(x,n), p), where

n and p are the clipping limits defined by the bit width b. For signed integers, n = −2b−1

and p = 2b−1− 1. For unsigned integers, n = 0 and p = 2b− 1. As is standard practice, we

use per-tensor scaling factors on the activations and per-channel scaling factors on only the

weights [56].

quantize(x;s,z) := clip(
⌊x

s

⌉
+ z;n, p) (3.2)

dequantize(x;s,z) := s · (x− z) (3.3)

As reported in previous studies, eliminating zero points in the quantization mapping such

that z = 0 reduces the computational overhead of cross-terms when executing inference using

integer-only arithmetic [56,83]. This strategy is commonly referred to as symmetric quantization,

with asymmetric quantization as its alternative. To demonstrate the computational overhead of

cross-terms introduced by asymmetric quantization, consider the real values for input activation

x, weight w, and output activation y mapping to quantized values qx, qw, and qy, respectively.

The arithmetic for their product, y = x ·w, becomes the following:

sy(qy− zy) = sx(qx− zx) · sw(qw− zw) (3.4)

where sx, sw, and sy represent their respective scaling factors and zx, zw, and zy represent their

respective zero points. This simplifies to the following:

qy =
sxsw

sy
(qxqw−qxzw−qwzx + zxzw)+ zy (3.5)

41



These cross-terms often require non-trivial optimizations to remain efficient; however,

by constraining the quantization scheme of all weights in a DNN to be symmetric (i.e., zw = 0),

we can mask the overhead of asymmetric quantization on the activations without any additional

hardware or software optimizations as the arithmetic simplifies to Eq. 3.6, where l denotes layer

l ∈ {0, · · · ,L} in a neural network with L sequential layers.

(
q(l+1)

x − z(l+1)
x

)
=

s(l)x s(l)w

s(l+1)
x

q(l)w

(
q(l)x − z(l)x

)
(3.6)

Note that, when using a symmetric quantizer on both the inputs and outputs to the neural

network (i.e., x(0) and x(L), respectively), we can freely use asymmetric quantization on the

hidden layers without any overhead caused by the cross terms in Eq. 3.5. While previous works

have alluded to this optimization [168], we are not aware of any research that has explicitly

exploited it as we do. In our work, we focus on uniform affine quantization where we apply

symmetric, per-channel quantization to the weights and asymmetric, per-tensor quantization to

the activations.

3.3 Motivation

To demonstrate the interdependence between successive layers in a neural network, we

inject structured sparsity into the input activations of a given layer within the network and

evaluate how this leads to a shift in output channel importance rankings with respect to the

dense input activations (i.e., when there is no input sparsity). To rank order output channels by

importance, we use two measures: (1) the mean ℓ1-norm of the output activations generated by

each channel; and (2) the ℓ1-norm of the learned weights for each output channel. For a given

layer i with hidden activations hi and Ci output channels, we denote the importance estimates for

each channel as µi,c where c ∈ {1, · · · ,Ci}. In order to compare two sets of rankings, we use the

following non-parametric measures:

• Kendall’s Coefficient of Rank Correlation [91]:
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For a given layer i with Ci outputs channels, let the rank orderings of 2 sets of importance

estimates µi = {µi,1, · · · ,µi,Ci} and νi = {νi,1, · · · ,νi,Ci} be given by rµi
and rνi , respec-

tively. The Kendall’s coefficient of rank correlation measures the similarity between rµi

and rνi . The statistic τ (referred to as Kendall’s Tau) is given below in Eq. 3.7, where

sign(x) is given by Eq. 3.8. Here, τ = 1 is a perfect relationship, τ = 0 is no relationship

at all, and τ =−1 is a perfect negative relationship.

τ =
2

n(n−1) ∑
k< j

sign(µi,k−µi, j) · sign(νi,k−νi, j) (3.7)

sign(x) =


+1 if x> 0

0 if x = 0

−1 if x< 0

(3.8)

• Levenshtein Distance [101]:

For a given layer i with Ci outputs channels, let the rank orderings of 2 sets of importance

estimates µi = {µi,1, · · · ,µi,Ci} and νi = {νi,1, · · · ,νi,Ci} be given by rµi
and rνi , respec-

tively. The Levenshtein distance between these two sequences of ranks, which we denote

as lev(rµi
,rνi), is defined as the minimum number of single element edits required to

change rµi
to rνi . The distance is formally defined using recursion as given by Eq. 3.9

and Eq. 3.10. The function tail(r) of an ordered set of n elements returns all but the first

element of the string such that r = {r(1), · · · ,r(n)} and tail(r) = {r(2), · · · ,r(n)}, where we

denote element j of ranked set rµi
as r( j)

µi
. Here, lev(rµi

,rνi) will have a low value close
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to 0 if rµi
and rνi are very similar, else it will have a high value.

lev(rµi
,rνi) =



length(rµi
) if length(rνi) = 0

length(rνi) if length(rµi
) = 0

lev(tail(rµi
), tail(rνi)) if r(1)µi

= r(1)νi

1+ f (rµi
,rνi) otherwise

(3.9)

f (rµi
,rνi) = min(lev(tail(rµi

),rνi), lev(rµi
, tail(rνi)), lev(tail(rµi

), tail(rνi))) (3.10)

To perform our evaluation for a discriminative task, we train LeNet5 [100] models

to classify MNIST [98] images. For a generative task, we train convolutional variational

autoencoders (VAEs) to generate MNIST images1. For each case, we independently train 30

models using different random seeds. Our 30 LeNet5 models have an average test accuracy of

98.2% with a standard deviation of 0.003%, and our 30 VAEs have a mean Fréchet inception

distance (FID) [70] of 9.81 with a standard deviation of 0.725. In Figure 3.3, we provide sampled

images generated from a randomly selected VAE. These metrics and images are provided as

supporting evidence that we use fully trained models in our statistical analysis, which form the

basis of our conclusions in this section.

(a) Original Images (b) Generated Images

Figure 3.3. We provide random images generated from one of our VAEs trained on MNIST [98].

For LeNet5, we evaluate the importance of the 16 output channels of the second layer

when iteratively pruning its 6 input channels. For the VAE, we evaluate the importance of the 16
1We use a network architecture comparable to LeNet for the purpose of a reasonably symmetric evaluation across

discriminative and generative tasks. Our encoder uses 2 convolution layers, each followed by a ReLU and max
pooling layer. Our decoder uses 3 deconvolution layers, each followed by a ReLU except for the final deconvolution
layer, which is followed by a sigmoid.
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output channels of the second layer of our decoder, which has 32 input channels. We increase

the sparsity of the input channels using the rank ordering of the original unpruned network as

determined by the mean ℓ1-norm of its activations when estimated over the test dataset. We

denote the importance estimate of the preceding layer as µi−1 and the respective rank ordering

as rµi−1 . Note that µi−1 = {µi−1,1, · · · ,µi−1,6} for LeNet5 and µi−1 = {µi−1,1, · · · ,µi−1,32} for

our VAE. For each level of input sparsity, which we denote as s, we then rank order the output

channels using the mean ℓ1-norm over their respective activations also estimated over the test

dataset. We denote the rank ordering of output channel activations by importance measure µi for

a given sparsity level (s) as rµi|s. Note that this sparsity level is over the input of our activation

distribution, not the layer being evaluated, and the importance estimates of the evaluated layer i

is µi = {µi,1, · · · ,µi,16} for both LeNet5 and our VAE.

To evaluate the interdependence between successive layers, we iteratively increase the

sparsity (s) of the input activations according to µi−1 for both our discriminative and generative

models, and measure the coefficient Kendall’s Tau τ and Levenshtein distance between rµi|s

(i.e., the rank order of the output channels of layer i by importance measure µi when input

activations hi−1 have a sparsity of s > 0) and rµi (i.e., the rank order of output channels of layer

i by importance measure µi when input activations have no sparsity). We visualize the results

in Figure 3.4. For brevity in the titles of our plots, we use sparse activations to refer to the

rank order of the output channels of layer i when using the mean ℓ1-norm of the output channel

activations as the importance measure µi when input activations hi−1 have a sparsity of s (i.e.,

rµi|s); alternatively, we use dense activations when input activations hi−1 have no sparsity (i.e.,

rµi). We use dense weights to refer to the rank order of the output channels of layer i when using

the ℓ1-norm of the channel weights as the importance measure νi (i.e., rνi). We observe that as

the input activation sparsity s increases from 0 to 100%, the correlation between rµi|s and rµi

gradually decreases and the Levenshtein distance gradually increases. We repeat this process

using the ℓ1-norm of our channel weights as our measure of importance, which we will denote

as νi; however, the ℓ1-norm of our channel weights is a data-free measure that is by definition
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(a) LeNet5 Correlation Evaluation (b) VAE Correlation Evaluation

(c) LeNet5 Distance Evaluation (d) VAE Distance Evaluation

Figure 3.4. As discussed in Section 3.3, we evaluate Kendall’s coefficient of rank correlation (top
row) and the Levenshtein distance (bottom row) over 30 independently trained discriminative
models (left column) and generative models (right column). We plot the correlation and distance
between rµi and rµi|s in blue, and the correlation and distance between rµi|s and rνi in green.

invariant to this sparsity injection. Therefore, when iteratively increasing the sparsity of the input

activations according to νi−1, we measure the relationship between our data-driven rankings

rµi|s and data-free ranking rνi . We observe that the correlation between rµi|s and rνi is much

weaker, and their relationship is not as severely affected by the sparsity of the input activations.

From these experiments, we draw the following conclusions. First, data-driven channel

importance rankings (e.g., the rankings of output channels by the ℓ1-norm of activation distri-
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butions) are heavily impacted by the sparsity of the preceding input activation distribution2.

Given this, we hypothesize that we can increase the effectiveness of data-driven pruning criterion

by allowing a given layer to adjust to shifts in its input activation before applying pruning.

Second, data-driven and data-free channel importance measurements are weakly correlated.

Therefore, when used to heuristically guide channel pruning algorithms, we expect that these two

importance measurements will behave differently under extreme levels of sparsity. It is important

to note that we cannot conclude which ranking is necessarily “correct”, as these experiments

only demonstrate that they are “different”. In Section 3.5, we evaluate the performance of these

neuron importance measurements using various pruning schedules to provide further insights.

3.4 Algorithms

For the purpose of describing our pruning and quantization algorithms, we first intro-

duce our notation. We denote the input data to a neural network with L layers as x and, for

discriminative tasks, its associated output label as y. We denote the activations of the network as

{hi}L
i=1, where hi denotes the activations of hidden layer i and h0 = x for convenience. The

set of weights of each layer are denoted as {wi}L
i=1, where wi is the set of weights for layer i

with Ci output channels, which we refer to as neurons. Finally, we denote the binary mask used

to prune each layer as {mi}L
i=1 and the importance estimates of each neuron as {µi}L

i=1, where

mi,c ∈ {0,1} and µi, j ∈R+ are respectively a scalar value for the binary mask and non-negative

importance estimate for each neuron c in layer i, where c ∈ {1, · · · ,Ci}.

3.4.1 Layerwise Channel Pruning using Non-parametric Statistics

When viewing the input data x as a random variable, neural networks are sometimes

interpreted as Markov chains, where every hidden layer i defines the conditional probability

p(hi|hi−1) [37, 150]. Such a formulation motivates our observations that the effectiveness of

neuron importance measurements relying on hi is dependent on the stability of input activation

2We repeated these experiments using the ℓ0-norm of the activation distribution as see very similar results.
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Algorithm 1. Our proposed layerwise channel pruning algorithm using per-channel ℓ1-norm
of activations to measure importance. All channel masks {mi}L

i=1 are initialized to 1 and all
importance measurements {µi}L

i=1 are initialized to 0. We update learned weights of all layers
in the network {wi}L

i=1 every step using backpropagation, but only update the mask mi for layer
i at step i.

Input: s := sparsity target, tp := number of evaluation steps, ∆p := update frequency
Output: {mi}L

i=1 := sparsity mask mi for layers i ∈ {1, · · · ,L}
{mi}L

i=1← initializeMasksToOne()
{µi}L

i=1← initializeImportanceEstimatesToZero()
for i ∈ {1, · · · ,L} do

for t ∈ {1, · · · tp} do
networksForwardPass()
for c ∈ {1, · · · ,Ci} do

µi,c← (µi,c · (t−1)+∥hi,c∥1)/t

networkBackwardPass()
if mod(i,∆p) = 0 then

for c ∈ {1, · · · ,Ci} do
if mi,c < quantile(µi,s) then

mi,c← 0

distribution hi−1. In Section 3.3, we show that iteratively increasing the sparsity of the input

activations of a given layer results in a monotonic decorrelation between the rank orderings of its

output activations when using sparse versus dense input activations. Thus, we hypothesize that

by allowing a given layer to adjust to these abrupt shifts in its input activation distribution hi−1

before pruning hi, we can increase the effectiveness of the heuristics used to rank order neurons

by importance. As such, we design an iterative channel pruning algorithm that greedily traverses

the topology of a feedforward neural network starting from the first hidden layer h1 and ending

at the final hidden layer hL.

Our layerwise iterative channel pruning algorithm is summarized in Algorithm 1. We first

initialize the values of all masks {mi}L
i=1 to 1 and the values of all importance measurements

{mi}L
i=1 to 0. Note that the mask for a given neuron mi,c is a binary value that prunes the neuron

when mi,c = 0, and µi,c is a non-negative value where µi,1 > µi,2 is interpreted as neuron 1 being

more important than neuron 2 in layer i. When pruning layer i, we estimate the importance of

each neuron c using the moving average of the ℓ1-norm of activations over channel c from hi
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over tp steps. We evaluate our pruning mask every ∆p steps, where ∆p ≤ tp, at which point we

prune neurons according to the µi using a pre-defined sparsity target sT . The entire network

is pruned to the given target sparsity once all L layers are processed. As is standard practice,

we do not prune visible activations (i.e., the input and output activations x and y, respectively).

In practice, we apply this procedure on a pre-trained network, and continue to fine-tune our

structured subnetwork for T more epochs after pruning. As we greedily increase the sparsity of

the network layer-by-layer, we refer to this iterative pruning schedule as “layerwise” channel

pruning. Throughout our algorithm, we continue to update the weights of each layer {wi}L
i=1

using gradient descent such that all weights are updated for L · tp +T gradient steps.

The concept of using an iterative pruning schedule to alleviate the impact of abruptly

removing neurons has been explored in prior work [32, 66, 105, 191]; however, they iteratively

introduce sparsity globally at each step. Because these pruning schedules gradually introduce

sparsity according to a per-step heuristic, we refer to this class of algorithms as “stepwise”

pruning. We visualize the differences in these algorithms in Figure 3.5. Unlike our layerwise

pruning schedule, which determines µi only after hi−1 has stabilized, stepwise pruning schedules

determine µi and µi−1 jointly. As discussed in Section 3.3, this could lead to less effective

measures of neuron importance. In Section 3.5, we compare our layerwise pruning schedule

against the standard stepwise approach.

3.4.2 Uniform Quantization-Aware Training

To train our structured subnetworks for low-precision quantization, we use the straight-

through estimator (STE) [13] to allow gradients to permeate our rounding function such that

∇x⌊x⌉= 1, but ⌊x⌉ ̸= x. To apply asymmetric quantization to our hidden activations {hi}L
i=1, we

adaptively fit our per-tensor scaling factor si and zero-point zi. To apply symmetric quantization

to our weights {wi}L
i=1, we adaptively fit our per-channel scaling factor si where si,c denotes

the scaling factor for channel c ∈ {1, · · · ,Ci}. For each layer i, we estimate the upper and

lower bounds of activation hi and the maximum magnitude of weight wi using moving average
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Training
Progress

(a) Stepwise Pruning Schedule

Training
Progress

(b) Layerwise Pruning Schedule

Figure 3.5. We depict the differences between the standard stepwise pruning schedule (left) and
our layerwise pruning schedule (right). While stepwise pruning algorithms iteratively increase
sparsity globally in the network with each step, our layerwise pruning algorithm iteratively
increases sparsity layer-by-layer with each step. Throughout the training progress (horizontal
flow), gray nodes denote visible neurons that are not pruned, red nodes denote hidden neurons
that have been identified to be pruned in a given step, and white nodes denote hidden neurons
that remain active.

statistics, similar to our technique in Algorithm 1. Following the work of [92], we summarize the

adaptive asymmetric and symmetric quantization algorithms used in this paper in Algorithms 2

and 3, respectively.

Algorithm 2. Our adaptive asymmetric quantization algorithm for our activations hi using
per-tensor scaling factors. We use moving average statistics over hidden activation hi to estimate
the bounds on its dynamic range for the purpose of deriving scaling factorsi and zero-point zi for
layer i.

Input:
(

l(t)i ,u(t)i

)
:= estimated bounds on hidden activation hi at time step t

Output: Quantized activation ĥi; Updated bounds
(

l(t+1)
i ,u(t+1)

i

)
l(t+1)
i ← (lt · t +min(hi))/(t +1)

u(t+1)
i ← (ut · t +max(hi))/(t +1)

si← (u(t+1)
i − l(t+1)

i )/2b

zi← ⌊−l(t+1)
i /s⌉

ĥi← clip
(
⌊hi/si⌉+ zi;0,2b−1

)
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Algorithm 3. Our adaptive symmetric quantization algorithm for the set of weights wi for layer
i using per-channel scaling factors. We use moving average statistics to estimate the maximum
weight magnitude for each channel c to derive our per-channel scaling factors sc.

Input: s(t)i,c := estimated scaling factor s for channel c of weight wi at time t

Output: Quantized weight ŵi; Updated scaling factor s(t+1)
i,c

for c ∈ {1, · · · ,Ci} do

s(t+1)
i,c ←

(
s(t)i,c · t +

max(wi)

2b−1

)
/(t +1)

ŵi← clip(⌊wi/st+1⌉;−2b−1,2b−1−1)

3.5 Experiments

In Section 3.3, we motivate our hypothesis that, by allowing a given layer to adjust to

abrupt shifts to its input distribution before pruning its channels, the heuristics used to rank order

neurons by importance become more effective. Here, we compare our greedy layerwise channel

pruning algorithm against alternative pruning schedules and importance measures to demonstrate

the increased performance of our approach versus existing baselines. For the purpose of enabling

inference acceleration on resource-constrained hardware such as mobile and edge devices, we

combine the use of our channel pruning algorithm with moving average statistics-based uniform

quantization, as described in Section 3.4. We evaluate the performance of our algorithms using

the following discriminative and generative computer vision tasks:

1. Image classification with DenseNet121 [79], and MobileNetV2 [142] on CIFAR100 [93]

2. Semantic segmentation with UNet [136], and FRRNet [130] on Cityscape [36]

3. Image style transfer with CycleGAN [190] on Cityscape

We implement our pruning algorithms using the PyTorch deep learning framework [127],

and create a custom neural network pruning module to compute neuron importance estimates and

derive binary masks using local buffers3. For each task, our baselines are built using the existing

3The code for the algorithms discussed in this paper can be found at https://github.com/mlzxy/mdpi2022.
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open-source implementations provided by the original respective authors. To the extent possible,

we use the same weight initialization techniques, network architecture, and hyperparameter

configurations as reported in the original papers. All models are trained through Nautilus, a

distributed research compute infrastructure from the Pacific Research Platform (PRP) [155].

Single-GPU training time for each model ranges from 3 hours (e.g., MobileNetV2 on CIFAR100)

to 12 hours (e.g., CycleGAN on Cityscape) depending on the complexity of the task. Furthermore,

for the style transfer task, CycleGAN uses a cycle consistency loss that includes two mappings:

(1) generator Gθ , parameterized by θ , that maps input image x to the target domain x̂; and (2)

generator Fφ , parameterized by φ , that maps x̂ back to the original image x. During training,

we only prune the forward mapping into the target domain Gθ (x), as we are only interested in

accelerating inference, and the reverse transform is discarded at inference time. Given an input

label map, the forward mapping Gθ of our pruned and quantized CycleGAN model generates

realistic 128 × 128 images in the first-person driving view, as shown in Figure 3.6.

Input Output
(Baseline)

Output
(P50%)

Output
(P75%)

Output
(P50%, W8A8)

Output
(P75%, W8A8)

Figure 3.6. We provide examples of images generated from CycleGAN given the same input
(left). Here, P50% and P75% denote 50% and 75% channel pruning, respectively. We use
“W8A8” to denote that the weights and activations have both been quantized to 8 bits.

3.5.1 Evaluating Pruning Schedules and Importance Measures

Here, we evaluate the importance of our layerwise iterative pruning schedule by compar-

ing it to three alternative pruning schedules:

1. Training from scratch. Prior work has demonstrated that in some cases, there is no need

to implement a pruning schedule because pre-defined structured subnetwork architectures
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can be trained from scratch to match or surpass the performance of the original larger

network [105]. As such, we evaluate our pruning algorithm against this baseline.

2. One-shot. We compare against the common “prune-then-fine-tune” strategy [78], where

we train a fully connected baseline, and then prune the converged model to our target

sparsity in one step before fine-tuning to heal the network.

3. Stepwise. Unlike one-shot pruning schedules, which jump to the target sparsity in one

step, stepwise pruning schedules iteratively increase the sparsity in the network over many

steps throughout training. We benchmark against the state-of-the-art iterative pruning

schedule proposed by Zhu and Gupta [191].

In Table 3.1, we report the performance of each of these algorithms with target sparsity

levels of sT =50% and sT =75% across our discriminative and generative tasks. Each entry is the

averaged result over 3 independent runs. We use the same learning rate schedule and optimizer

for each experiment to ensure an even comparison. We use top-1 accuracy to evaluate image

classification models, mean intersection-over-union (mIOU) to evaluate semantic segmentation

models, and Fréchet inception distance (FID) [70] to measure the difference between real images

and images generated from our CycleGAN. Based on these metrics, we observe that our layerwise

channel pruning algorithm performs stronger at more extreme levels of sparsity in a majority of

cases.

Next, we compare the performance of data-driven and data-free neuron importance

measures when used to guide our greedy layerwise channel pruning algorithm. In Table 3.2, we

compare the performance of our algorithm when using the ℓ1-norm of the channel activations

against using the ℓ1-norm of the channel weights. Although prior work had experimented with

using the ℓ0-norm as a data-driven importance measure [78], we do not compare against this as

not all layers in our baselines are followed by a ReLU. We observe that using the ℓ1-norm of the

output activation channels yields superior results than using the ℓ1-norm of channel weights in

a majority of cases. Furthermore, we also observe that using the ℓ1-norm of channel weights
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to guide our greedy layerwise pruning algorithm often yields better results than other pruning

schedules reported in Table 3.1.

The results reported in Tables 3.1 and 3.2 suggest that we can increase the effectiveness

of non-parametric data-driven pruning criteria by only pruning a given layer after its preceding

layer has been fully pruned, which supports our motivating hypothesis. Our experiments in

Section 3.3 show that the rank ordering of channels for a given layer i is strongly impacted

by the sparsity of the input activations hi−1 to that layer. Equation-based pruning schedules

such as [191] gradually introduce sparsity throughout the network with each step, as shown in

Figure 3.5. Thus, at time t, they approximate the neuron importance with respect to the target

sparsity sT using the neuron importance with respect to the current sparsity st , where st ≤ sT

and t ≤ T . As such, this class of algorithms use rankings rµi|st to heuristically guide pruning.

Furthermore, one-shot pruning schedules approximate the neuron importance with respect to

the target sparsity sT using estimates at step 0, when the input activations have no sparsity. As

such, this class of algorithms use rankings rµi to heuristically guide pruning. In contrast, our

layerwise pruning schedule directly uses the neuron importance measure with respect to the

target sparsity sT , where we use rµi|sT to heuristically guide pruning. As the sparsity target sT

increases to more extreme levels, there is a gradual decorrelation between rµi and rµi|sT , as

shown in Section 3.3. Our results given in Table 3.1 show that directly using rµi|sT within our

greedy layerwise framework increases the effectiveness of data-driven rankings. We conjecture

this is because our greedy layerwise channel pruning algorithm allows an unpruned layer to

freely adjust to abrupt shifts in its input activation distribution caused by pruning the channels of

its preceding layer.

3.5.2 Evaluation of Joint Pruning and Quantization

We evaluate our greedy layerwise channel pruning algorithm when jointly used with the

quantization algorithms detailed in Section 3.4.2 to learn low-precision structured subnetworks

through joint pruning and quantization. As discussed in Section 3.2, we apply symmetric,
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Table 3.1. Comparing pruning schedules across discriminative and generative tasks. With higher
levels of sparsity, our greedy layerwise channel pruning algorithm performs better than existing
baselines across both discriminative and generative tasks. Note that for top-1 accuracy and mIOU
higher is better, but for FID lower is better.

Classification (Accuracy) Segmentation (mIOU) Style Transfer (FID)

DenseNet121 MobileNetV2 UNet FRRNet CycleGAN

Baseline Full Model 78.70 68.31 61.69 66.32 47.17

50% Sparsity

From Scratch 76.75 65.36 58.90 61.84 50.39
One-Shot 78.40 67.39 60.59 64.53 49.43
Stepwise 77.14 68.05 58.13 64.90 52.83

Layerwise (Ours) 78.77 67.58 60.57 65.52 48.06

75% Sparsity

From Scratch 73.07 56.66 56.71 59.29 59.55
One-Shot 76.40 56.16 52.77 58.71 57.07
Stepwise 72.55 60.40 51.05 56.59 65.67

Layerwise (Ours) 76.44 60.71 56.48 61.14 55.48

Table 3.2. Comparing data-free vs. data-driven neuron importance measures across discrimina-
tive and generative tasks using our greedy layerwise channel pruning algorithm. We observe
that the mean ℓ1-norm of the output activations (i.e., “Layerwise (A)”) performs better than the
ℓ1-norm of channel weights (i.e., “Layerwise (W)”).

Classification (Accuracy) Segmentation (mIOU) Style Transfer (FID)

DenseNet121 MobileNetV2 UNet FRRNet CycleGAN

Baseline Full Model 78.70 68.31 61.69 66.32 47.17

50% Sparsity Layerwise (A) 78.77 67.58 60.57 65.52 48.06
Layerwise (W) 77.88 67.56 59.41 66.16 52.52

75% Sparsity Layerwise (A) 76.44 60.71 56.48 61.14 55.48
Layerwise (W) 73.53 60.62 54.38 60.18 67.97

per-channel quantization to the weights of our deep neural networks and asymmetric, per-tensor

quantization to the activations. To implement Algorithms 2 and 3, we create another custom

quantization PyTorch module that accumulates the respective per-tensor or per-channel moving

average statistics. As is standard practice, our modules produce a “fake-quantized” output using

the derived scale s and zero-point z [82, 92]. We apply these modules to every hidden activation

{hi}L
i=1 and set of weights {wi}L

i=1 in the network to prepare our models for integer-only

inference [82]. We follow the standard “prune-then-quantize” training paradigm and activate the

quantization operators only after the completion of layerwise pruning. Figure 3.1 shows both the

training schedule and computational order of our joint pruning and quantization pipeline.

In Table 3.3, we report our joint pruning and quantization results for 50% and 75%

55



sparsity when training 4-bit and 8-bit models. We use “W4A8” to denote quantizing weights to

4 bits and activations to 8 bits. For all networks except for CycleGAN, we quantize the weights

of all layers {wi}L
i=1 to the specified bit width including the first and last layer; and quantize the

activations of all layers {hi}L
i=1 to the specified bit width except for network input x and output

x. For CycleGAN, we always quantize the weights and input activation of the last layer to 8-bit

regardless of global bit width configuration, as is standard practice [149]. For each experiment

reported in Table 3.3, we use our greedy layerwise pruning algorithm with the ℓ1-norm of the

output channel activations as our importance measure.

Table 3.3. Joint channel pruning and uniform quantization to learn low-precision structured
subnetworks using our algorithms depicted in Figure 3.1 and discussed in Section 3.4.

.

Classification (Accuracy) Segmentation (mIOU) Style Transfer (FID)

DenseNet121 MobileNetV2 UNet FRRNet CycleGAN

Baseline Full Model 78.70 68.31 61.69 66.32 47.17
W8A8 79.04 68.26 62.03 66.43 49.89

50% Sparsity
W8A8 79.01 67.58 60.44 64.81 58.12
W4A8 78.41 64.67 60.15 63.42 64.25
W4A4 75.99 59.25 56.12 59.04 92.71

75% Sparsity
W8A8 76.17 61.02 56.15 61.28 85.89
W4A8 76.12 55.41 55.60 60.90 92.12
W4A4 73.62 49.49 51.90 54.16 119.19

Finally, we apply our joint layerwise channel pruning and uniform quantization frame-

work to train ResNet-32 [66] on CIFAR10 dataset with sparsity ratios of 25%, 40% and 50%, and

uniform bit widths of 8 and 4. We compare against existing solutions and summarize the results

in Table 3.4. Here, NW and NA denote the average number of bits used to quantize weights or acti-

vations, respectively, and sW and sA denote the global weight and activation sparsity, respectively.

Note that, as discussed in Section 3.2.1, channel pruning reduces both the storage and operating

memory4 requirements of both the weights and activations, while unstructured weight pruning

only reduces the memory storage requirements of the weights. Therefore, structured pruning can

result in lower operating memory requirements, despite lower compression ratios with respect to

4We define operating memory as the aggregate hardware storage area used for weights and activations of the
network during inference, all of which are required to be kept so they can be readily accessed.
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unstructured pruning. To compare different approaches across these configurations, we compute

the performance per operating memory size (i.e., performance density) for each model, as listed

in the last column. For existing solutions, we summarize the results reported in prior work. For

solutions that do not apply quantization to the weights or activations, we estimate their precision

at 16 bits per element rather than 32, since neural networks can be quantized to 16-bit fixed-point

through post-training quantization without significant accuracy degradation [135].

Table 3.4 shows that our method is able to achieve a higher performance density (8.92)

than the highest of previous solutions (8.59), while having very competitive performance (92.53%

versus 91.66% top-1 accuracy). When applying 50% pruning and 4-bit quantization, our method

achieves the smallest memory footprint and highest performance density of 25.25, three times

larger than the existing highest, while still maintaining sufficient accuracy (87.3%). Moreover,

unlike methods such as [156, 175], our framework provides direct control over the target bit

width and sparsity, which is more useful in practical scenarios under tight design constraints, as

is the case when deployed on edge GPUs or FPGAs [15, 31, 185].

3.6 Conclusions and Future Work

In this work, we demonstrate that, when using data-driven measures of neuron impor-

tance, the rank orderings of the output channels of a given layer strongly depend on the sparsity

level of the preceding layer. In Section 3.3, we show that as we increase the sparsity of the

input activations for a given layer, the correlation trends toward 0 when comparing: (1) the

rank order of its output channels using input activations with no sparsity; versus (2) the rank

order of its output channels when the input activations have sparsity s > 0. Informed by this

observation, we propose a data-driven non-parametric, magnitude-based channel pruning algo-

rithm that works in a greedy manner based on the activations of the previous sparsified layer, as

detailed in Section 3.4. For the purpose of learning low-precision structured subnetworks, we

demonstrate that our proposed algorithm works effectively in combination with statistics-based
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Table 3.4. We demonstrate the superior performance-per-memory footprint (i.e., performance
density) of our framework when compared to existing image classification solutions trained
on CIFAR10. By jointly applying uniform quantization and unstructured pruning to both the
weights and activations of the DNN, we achieve a higher performance density (PD) with higher
compression rates than existing solutions and comparable network performance.

Method Network NW NA sW sA Baseline Acc Accuracy Weights (Mb) Activations (Mb) PD (Acc/Mb)

[29] ResNet-32 8 – 77.8% – 92.58 92.64 (+0.06) 0.83 20.19 4.41

[3] DenseNet-76 2 – 54% – 92.19 91.17 (-1.02) 0.68 141.26 0.64

[105]

VGG-19 – – 95% – 93.50 93.34 (-0.16) 16.03 19.40 2.63
PreResNet-110 – – 95% – 95.04 92.35 (-2.69) 1.38 67.50 1.34
DenseNet-100 – – 95% – 95.24 94.19 (-1.05) 0.97 213.37 0.44

VGG-19 – – 70% 70% 93.5 93.60 (+0.1) 70.70 5.31 1.23
PreResNet-164 – – 60% 60% 95.04 94.23 (-0.81) 16.67 40.21 1.66
DenseNet-40 – – 60% 60% 94.10 93.87 (-0.23) 1.60 22.97 3.82

[187]

DenseNet-40 – – 60% 60% 94.11 93.16 (-0.95) 1.60 22.97 3.79
ResNet-20 – – 38% 38% 92.01 91.66 (-0.35) 2.70 7.96 8.59
ResNet-56 – – 45% 45% 93.04 92.26 (-0.78) 7.53 19.18 3.45

ResNet-110 – – 63% 63% 93.21 92.96 (-0.25) 10.25 25.12 2.63

[169] VGG-16 – – 78.8% 78.8% 93.40 91.50 (-1.90) 49.96 3.75 1.70

[43]
VGG16-C – – 95% – 93.51 93.00 (-0.51) 11.78 17.70 3.15
WRN-22-8 – – 95% – 95.74 95.07 (-0.67) 13.73 115.34 0.74

[175] ResNet-20 1.9 – 54% – 91.29 91.15 (-0.14) 0.24 12.85 6.97

[156] VGG-7 4.8 5.4 – – 93.05 93.23 (+0.18) 43.85 3.27 1.98

[128] MobileNet 8 8 – – 91.31 90.59 (-0.72) 25.74 13.17 2.33

[30] ResNet-32 8 – 87.5% – 92.58 92.57 (-0.01) 0.47 20.19 4.48

Ours ResNet-32

8 8 25% 25%

92.58

92.53 (-0.05) 2.80 7.57 8.92
8 8 40% 40% 91.77 (-0.81) 2.24 6.06 11.06
8 8 50% 50% 90.16 (-2.42) 1.87 5.05 13.04
4 4 50% 50% 87.30 (-5.28) 0.93 2.52 25.25

uniform quantization. As demonstrated in Section 3.5, our joint layerwise channel pruning

and uniform quantization framework yields increased performance per memory footprint over

existing solutions across a range of discriminative and generative networks. The resulting neural

networks can be efficiently accelerated by resource-constrained hardware platforms such as edge

GPUs and FPGAs. In future work, we aim to focus more closely on applying our framework to

generative models and explore advanced quantization-aware training techniques to work jointly

with our non-parametric greedy layerwise channel pruning algorithm.
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Chapter 4

Unified Quantization and Pruning

As discussed thus far, the power budget for embedded hardware implementations of

deep learning algorithms can be extremely tight. To address implementation challenges in

such domains, new design paradigms such as approximate computing have drawn significant

attention. Approximate computing techniques exploit the innate error-resilience of deep learning

algorithms, a property that makes them amenable for deployment on low-power computing

platforms. This chapter introduces an approximate computing framework that we refer to as

AX-DBN, which is designed for an architecture belonging to the class of stochastic deep learning

algorithms known as deep belief networks (DBNs). Specifically, we consider procedures for

efficiently implementing the discriminative deep belief network (DDBN), a stochastic neural

network that is used for classification tasks, extending approximation computing from the

analysis of deterministic to stochastic neural networks. For the purpose of optimizing the DDBN

for hardware implementations, we explore the use of: (a) low-precision representations of

neurons and functional approximations of activation functions; (b) statistical criticality analysis

to identify the nodes in the network which can operate at reduced precision while allowing the

network to maintain target accuracy levels; and (c) a greedy search methodology with incremental

retraining to determine the optimal reduction in precision for all neurons to maximize power

savings. To represent neurons at low precision, our framework jointly considers neuron pruning

by interpreting a pruned neuron as being represented with 0 bits. We refer to such a formulation
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as a unified quantization and pruning formulation. Using the AX-DBN methodology proposed

in this chapter, we present experimental results across several network architectures that show

significant power savings under a user-specified accuracy loss constraint with respect to ideal

full-precision implementations.

4.1 Introduction

In recent years, there has been a significant increase in the use of deep learning algorithms

for a variety of applications such as image recognition, text retrieval, and pattern completion [73,

96, 140]. Enabling such algorithms to operate on low-power, real-time platforms such as mobile

phones and edge devices is an area of critical interest. On such platforms, a training procedure is

typically performed on a cloud server. This training involves optimizing the parameters of a cloud-

based neural network using data presented to the device and uploaded to the cloud. Thereafter,

the cloud performs classification when requested by the device, and subsequently, the device

communicates with the cloud each time an inference task is requested. This purely cloud-based

approach to performing inference has a number of drawbacks including high power consumption,

latency, security, and reliance on stable and fast internet connectivity, and is therefore not suitable

for use on ultra-low-power devices with battery life constraints. Implementing inference locally

on embedded hardware is perceived to be a desirable solution to this problem and is the focus of

current research [27, 39, 157, 182].

We adopt a shared approach where the cloud performs neural network training while a low-

power implementation of the neural network on a local device is used for performing inference,

as shown in Figure 4.1. Neural networks are inherently error-resilient [16] and, therefore, high-

precision representations and operations are not necessary for sufficiently accurate performance

of such algorithms. This property is exploited by approximate computing techniques based

on the use of limited precision representations and algorithm-level approximations to achieve

energy-efficient implementations with negligible performance loss [157, 182]. In this chapter,
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Figure 4.1. The macro-level design of our framework leaves all training, approximation, and
retraining to the cloud server. The hardware client sends a request to the cloud server giving it an
accuracy loss constraint and a fixed bit width search space. The resulting approximated model is
then used for energy-efficient inference on embedded hardware.

we propose AX-DBN, an approximate computing methodology for a class of stochastic neural

networks known as discriminative deep belief networks (DDBNs). These are multi-layered

extensions of the discriminative restricted Boltzmann machine (DRBM) [96], which can be

used for classification in both supervised and semi-supervised settings. Our proposed AX-DBN

framework extends the analysis of deterministic networks [157, 182] to the domain of stochastic

neural networks. AX-DBN involves training and approximating on the cloud and performing

classification on embedded hardware, as depicted in Figure 4.1. In this approach, efficiency

arises from exploiting arithmetical and functional approximations subject to a user-specified

accuracy loss constraint relative to an ideal full-precision implementation.

Related Prior Work. Previous work for neural network implementations in hardware

using approximate computing has focused on feedforward deterministic networks solving clas-

sification tasks [157, 182]. Venkataramani et al. [157] propose a design-space exploration

framework, AxNN, that systematically applies approximation techniques to deterministic neural

networks. Using “resilience characterization,” their approach identifies and applies limited preci-
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sion approximation on neurons whose impact will be the lowest on overall network performance

to enable power-optimized classification. Zhang et al. [182] follows a similar approach where the

formulation of their neuron criticality analysis is applied to identify neurons where approximate

multiplier circuits are instantiated to reduce power during classification in feedforward neural

networks. Their approximate computing framework ApproxANN, along with their power model,

addresses energy savings for memory accesses and computation workloads based on network

structures and hardware characteristics.

Contributions of this Paper. Extending the work of [157] and [182] into the stochastic

domain, we develop a methodology allowing for the design of an energy-efficient implementation

of a stochastic discriminative DBN (DDBN) to balance the trade-off between performance

and power.1 Power efficiency arises from selectively exploiting arithmetical and functional

approximations subject to a user-specified accuracy loss constraint. To accomplish this, two

different levels of approximation are considered in the hardware implementation of a DDBN:

(1) limited precision representation of hidden neurons; and (2) functional approximation of

activation functions. The main contributions of our work are as follows:

• The use of criticality analysis to rank order neurons based on their contribution to DDBN

network performance. This work carries criticality analysis to the domain of stochastic

deep learning algorithms implemented on finite precision digital hardware. Criticality

metric driven approximation using cross entropy is compared against random ordering

using Monte Carlo simulations to gauge their effectiveness in limited precision network

approximation with variable bit widths for individual neurons.

• The use of a greedy retraining procedure to optimize neuron bit widths under given

accuracy loss constraints with respect to ideal full-precision implementations.

• The use of a generalized power model for both computation workloads and memory

1Although the stochastic DBN can perform both classification and generation, in this paper we analyze its
classification properties, leaving an analysis of its generation properties for future work.
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Figure 4.2. The Discriminative RBM is a bipartite graphical model with visible neurons v,
which consist of input neurons x and classification neurons c, that are connected to the hidden
neurons h by weights W and Wc, respectively.

accesses based on fixed point representations of individual neurons, number of samples,

and hardware characteristics.

Outline of the Chapter. In Section 4.2 we review discriminative RBMs (DRBMs) and

describe how they are stacked to form discriminative DBNs (DDBNs). We also present the

network structures that are implemented in this paper. Section 4.3 describes how limited precision

and activation function approximation will be performed for the purpose of implementing such

networks on hardware. In Section 4.4 we present the mathematics for gradient-based neuron

criticality analysis in stochastic neural networks such as DRBMs and DDBNs. In Section 4.5

we outline our AX-DBN hardware design methodology2. Section 4.6 outlines the power model

used for this work. Section 4.7 describes the accuracy and power results for different DRBM and

DDBN architectures using our design methodology and resulting conclusions.

4.2 Discriminative Deep Belief Networks (DDBNs)

Here, we review the mathematical basics of the DRBM, the building block of DDBNs,

and present the DRBM and DDBN configurations used for this work.

4.2.1 Discriminative Restricted Boltzmann Machines

A restricted Boltzmann machine (RBM) is a generative stochastic artificial neural network

that can learn a probability distribution over its set of inputs. The RBM is a bipartite graph
2We note that this method is a significant extension and improvement from our preliminary results reported

in [173].
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that consists of two layers - one visible layer v where the states of the units in this layer can

be observed, and one hidden layer h. The probability distribution implemented by the RBM is

given by the Boltzmann distribution defined by:

P(v,h) =
e−E(v,h)

∑
v,h

e−E(v,h)
(4.1)

where the energy function E(v,h) is given below:

E(v,h) =−vTbv−hTb−vTWh (4.2)

Here, bv and b are biases for the visible and hidden layers, respectively, and W is the

weight matrix between them [71]. From Eq. 4.1, one can derive the conditional distributions:

P(h j|v) = σ(b j +∑
i

viWi j) (4.3)

P(vi|h) = σ(bv
i +∑

j
h jWi j) (4.4)

where σ(x) is the logistic sigmoid function 1/(1+ exp(−x)). The training method we use is

described in [71], where the contrastive divergence (CD) method is applied to provide weight

and bias updates.

To use RBMs as classifiers, Larochelle et al. [96] proposed the use of discriminative

RBMs (DRBMs), which jointly concatenate the input x and its associated “one-hot” target class

c to form the single visible layer v, as illustrated in Figure 4.2. The energy function defined

by [96] is given below:

E(x,h,c) =−xTbx−hTb−cTbc−xTWh−cTW ch (4.5)

Here, bx, b and bc are biases of the visible, hidden, and classification layers, respectively.
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W , W c are the weight matrices between layers as shown in Figure 4.2. The inputs x to the

DRBM can be either binary or continuous. In the scope of this work, we consider binary inputs

x as they can be used for efficient implementations on finite precision hardware with low power

and area.

Similar to the RBM, the following conditional distributions can be derived for a DRBM

with V visible, H hidden and C class units [96]:

P(h j|v) = P(h j|x,c) = σ(b j +
V

∑
i=1

xiWi j +
C

∑
i=1

ciW c
i j) (4.6)

P(xi|h) = σ(bx
i +

H

∑
j=1

h jWi j) (4.7)

P(ci|h) = softmax(bc
i +

H

∑
j=1

h jW c
i j) (4.8)

where σ(x) is the logistic sigmoid function 1/(1+exp(−x)) and softmax(xi) is given by Eq. 4.9,

where i ∈ {1, · · · ,k}.

softmax(xi) =
exp(xi)

∑
k
j=1 exp(x j)

(4.9)

Similar to the RBM, the DRBM can also be trained using contrastive divergence to

estimate the network weight and bias values [96]. Using the notation of Larochelle et al. [96],

the DRBM conditional probability of a class label ci given input x is

P(ci|x) =
e−F(x,ci)

∑
C
j=1 e−F(x,c j)

(4.10)

where F(x,ci) denotes the free energy of the DRBM given input x and class label ci, as defined

below:

F(x,ci) =−bc
ci
−

H

∑
j=1

log
(
1+ exp(b j +W c

jci
+

V

∑
i=1

Wjixi)
)

(4.11)

A trained DRBM can be used to perform classification using two equivalent methods [72]:

• Free Energy: From Eq. 4.10, it can be seen that for a given visible vector x the class c that
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has the highest probability of activation corresponds to the minimum value of F(x,ci).

Therefore, in this method, the free energy for a given x is calculated for all labels ci. The

classification result is the class ci that corresponds to the minimum free energy.

• Gibbs Sampling: The binary activation state of each class can also be found by repeatedly

sampling all class neurons of the DRBM for a given visible vector. The class with

the highest activation frequency given a sufficient number of sampling iterations is the

classification result.

The Gibbs sampling method, with suitable approximations for the sigmoid function, is

more amenable to a realization on digital hardware than free energy due to the highly nonlinear

dependence of free energy on its input values. Therefore in this work, we use Gibbs sampling

for inference in our hardware implementations of DRBMs. Details of the sigmoid function

approximation are outlined in Section 4.3.

4.2.2 Discriminative Deep Belief Networks

Deep belief networks (DBNs) are probabilistic generative models which learn to extract

a deep hierarchical representation from the training data. Hinton et al. [72] show that DBNs are

stacked RBMs and can be learned in a greedy manner by sequentially learning RBMs. Using

contrastive divergence, the first layer is trained as an RBM with the input of the DBN as its input

layer and, after the first RBM is trained, the weights W 1 are fixed, as well as representations of

h1. The binary states of the first hidden unit layer are then used as inputs training the second

RBM for W 2. Iterating this way layer-by-layer, the DBN can be trained by greedily training

RBMs.

Similar to the DRBM, a DBN can also be used as a discriminative model by concatenating

a classification layer to the final hidden layer, as shown in Figure 4.3. Discriminative DBNs

(DDBNs) can be used to perform classification using either free energy or Gibbs sampling, as

described for DRBMs. With the free energy method, we compute the activation probability of all
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Figure 4.3. The DDBN architecture consists of stacked RBMs with a DRBM at the classification
layer. Similar to the DRBM, the visible neurons v are split into input neurons x and class
neurons c. Each hidden layer hl , where l ∈ {1, · · · ,L}, is greedily trained layer by layer [72].

hidden units across layers. Following this, the classification result is given by the class c that has

the minimum free energy across all classes based on the activation values from the last hidden

layer L. Using Gibbs sampling, the binary activation state of each class given a visible vector x is

found by repeated sampling of all hidden neurons across all layers and class neurons. The correct

classification result is given by the class with the highest activation frequency. Similar to the

DRBM, our hardware implementations of DDBNs use Gibbs sampling for on-chip classification.

4.2.3 Network Architecture

We use the Discriminative DBN to perform classification on the MNIST dataset [98],

which contains 60k training samples and 10k test samples of 28x28 gray-scale handwritten

digits. We binarize the images using a fixed threshold of 0.5. Throughout this paper, our DRBM

and DDBN naming conventions denote the number of neurons in each hidden layer bottom-up,

e.g., DDBN-100-200 denotes a 2-layer DDBN with 100 neurons in the first hidden layer and

200 neurons in the second hidden layer. Our analysis in this paper is based on the following

architectures:

• 300-neuron budget architectures: DRBM-300, DDBN-100-200

• 600-neuron budget architectures: DRBM-600, DDBN-100-200-300
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4.3 Limited Precision and Function Approximation

Discriminative DBNs implemented with full-precision weights and biases and nonlinear

sigmoidal activation functions cannot be directly implemented for inference on finite-precision

digital hardware platforms. Therefore, we study the effect of fixed-point representations and

approximate sigmoid functions on DDBN classification performance. These approximations

form the basis of our AX-DBN framework used for the implementation of DDBNs in finite

precision embedded hardware.

4.3.1 Limited Precision Approximation

Fixed-point is preferred to floating-point representation because the latter requires exten-

sive area and power for digital hardware implementations [109]. As shown in Figure 4.4, there

are three places in the computation where fixed-point variables can be used to map the network

onto its limited precision (LP) version:

• LP1 limits the precision of weight W and bias b

• LP2 limits the precision of the result Wx+b

• LP3 limits the precision of σ(Wx+b)

4.3.2 Sigmoid Function Approximation

Approximate implementations and comparisons of sigmoid activation functions designed

for digital hardware exist in the literature [9, 151]. Here we use PLAN, a piecewise linear

approximation of the sigmoid function proposed by Amin et al. [9] in our design

y =


f (x) x > 0

1− f (|x|) x≤ 0
(4.12)

where
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Figure 4.4. We exploit limited-precision (LP) approximations at various stages in the DBN.

f (x) =



1 x > 5

0.03125x+0.84375 2.375 < x≤ 5

0.125x+0.625 1 < x≤ 2.375

0.25x+0.5 0≤ x≤ 1

Only addition and shift operations are involved in the approximation given by Eq. 4.12,

which allows for a relatively inexpensive implementation in digital hardware with minimal

accuracy loss. Therefore, we use the PLAN approximation of the sigmoid function in our work.

To motivate this decision, we show that the PLAN approximation achieves almost the same

performance as the original sigmoid function.

Table 4.1. The classification error at various approximation levels.

bits full 64 32 16 8 4
Original 95.56 95.58 94.9 94.7 94.1 8.9
PLAN 95.55 94.7 94.8 94.7 93.9 10.3
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4.4 Neuron Ordering using Criticality Analysis

A neuron is said to be critical if a network’s performance is significantly degraded by

random noise injected on said neuron, otherwise, it is said to be resilient [182]. The performance

of a neural network is invariant to lowering the precision of, or even removing, resilient neurons,

whereas it is significantly degraded otherwise. In the AxNN [157] and ApproxANN [182] design

methodologies, which use deterministic feedforward networks, the Euclidean distance between

the classification output and true label is used as the loss function for both training and criticality

analysis. The magnitude of the average loss over all training samples is used to characterize the

criticality of each neuron.

For the case of stochastic neural networks, such as DRBMs and DDBNs, in this paper

we perform the following steps for criticality analysis:

• After performing stochastic learning, we estimate the criticality of individual neurons

using a gradient-based backpropagation approach as outlined in [157] and [182]. However,

unlike deterministic models, DRBMs and DDBNs are fundamentally stochastic models

which can in principle be used for both discrimination and generation tasks. Keeping this

perspective of a fully probabilistic framework, we propose the use of cross entropy as a

loss function for determining critical neurons using gradient-based backpropagation.

• Inference in DRBMs and DDBNs is performed by Gibbs sampling as described in Section

4.2 for ease of implementation in digital hardware. However, for criticality analysis

we represent the binary states of the neurons in these networks with their activation

probabilities, which are continuous between 0 and 1.

In the cross entropy (CE) loss function, y j and ac
j denote the one-hot ground truth and

softmax class prediction probabilities, respectively.

LCE =−∑
j

y j ln
(
ac

j
)
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The derivative of a given loss function with respect to the value of a hidden neuron

relates that neuron’s contribution to classification error caused by bit width and functional

approximations at that neuron. Using CE, the error sensitivity of loss due to corruption of neuron

j in layer hL (denoted as hL
j ) of a DDBN with L layers is defined in Eq. 4.13, where ac

i is defined

by the softmax output in Eq. 4.8 and zL
i = bc

i +∑ j hL
jW

c
i j.

∂LCE

∂hL
j

= ∑
i

∂L
∂ac

i

∂ac
i

∂ zL
i

∂ zL
i

∂hL
j

= ∑
i
(− yi

ac
i
) ·

∂ softmax(zc
i )

∂ zc
i

∂ ∑
k
(hL

kW c
ik +bc

l )

∂hL
j


= ∑

i
(− yi

ac
i
) ·ac

i (1i= j−ac
j)W

c
i j

(4.13)

The error sensitivity of neuron j in hidden layers hl , where l < L, is computed by

Eq. 4.14. The binary states of individual neurons hl
i are approximated by their sigmoid output al

i .

Here, σ(zl
i) = 1/(1+ exp(−zl

i)).

∂LCE

∂hl
j
= ∑

i

∂L
∂al+1

i

∂al+1
i

∂hl
j

= ∑
i

∂L
∂al+1

i
·σ(zl+1

j )(1−σ(zl+1
j ))W l+1

i j

(4.14)

For k samples of training data, the criticality score for neuron j in hidden layer hl with

Nhl neurons, where l ∈ {1, · · · ,L}, is given by:

criticality(hl
j) =

E[hl
j]

1
N
hl

∑
Nhl
i=1E[hl

j]
(4.15)

where E[hl
j] =

1
k ∑x,y∈data

∣∣∣∣ ∂LCE
∂hl

j

∣∣∣∣.
The hidden neurons are then ranked in order from least to most critical by the magnitude

of these obtained scores.
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Figure 4.5. The approximation algorithm can be broken into two stages: (1) uniform bit
width reduction and (2) neuron criticality analysis with systematic bit width reduction and
retraining. The algorithm takes in a specified model, a set bit width search space, and an accuracy
loss constraint as inputs, then returns an approximated energy-efficient model. All algorithm
hyperparameters are shown in red. The number of hidden neurons is given by numhid, the
number of resilient neurons to approximate is given by numr, and the search step size is given
by numc.

4.5 AX-DBN Design Metholodogy

The design methodology illustrated by Figure 4.1 is composed of two parts: (1) a cloud-

based training and approximation process that optimizes the precision of individual neurons for

inference on hardware; (2) inference performed locally on embedded hardware.

4.5.1 Cloud-based Model Training and Approximation

The approximation algorithm is a scalable framework that can be applied to any fully

connected network of variable width and depth. Figure 4.5 illustrates the approximation flow

chart, starting with a user-specified accuracy loss constraint with respect to a full-precision

implementation and a set of allowed bit widths for a specified DRBM/DDBN model then ending

with its approximated counterpart. Algorithm 4 formally describes this approximation procedure
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and can be summarized by two stages:

1) Full-precision training and uniform bit width reduction

2) Neuron bit width reduction using (a) neuron criticality analysis and retraining and (b)

limited precision neuron approximation

Stage 1 first trains the specified model at full precision then subsequently reduces bit

width uniformly across all weights and biases until it can no longer maintain the accuracy loss

constraint. Stage 2 first analyzes and rank orders hidden neurons according to a given criticality

metric, then individually approximates these neurons based on the criticality ranking and, finally

retrains the limited precision model to allow for further network approximation. In our experi-

ments, hidden neurons can be represented at 64-bit Q8.56, 16-bit Q8.8, 12-bit Q6.6, 8-bit Q4.4,

or 4-bit Q1.3 precision.3 Here, we use Qm.n to denote the fixed-point precision format with m

integral bits (including sign bit), and n fractional bits. Additionally, the algorithm can prune

the neuron completely by representing the bit width as 0-bit Q0.0 precision. Class neurons are

represented at 16-bit Q8.8 precision and not considered in our optimization due to their relatively

minor impact on power savings when compared to that arising from approximating the larger

number of hidden neurons considered in our architectures.

4.5.2 Inference on Embedded Hardware

After the cloud-based approximation procedure is completed, we download the limited

precision weights and biases onto embedded hardware and perform Gibbs sampling for local

inference, as described in Section 4.2. As depicted in Figure 4.6, our hardware implementations

use a pipelined architecture consisting of L+1 stages with one stage for each of the L hidden

layers and a classification layer, respectively.

3We found that these Qm.n bit widths gave the best accuracy when approximating the models uniformly.
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Algorithm 4. The AX-DBN approximation algorithm greedily explores neuron bit width
distributions given a specified model (model0), an accuracy constraint (accmin), and a set bit
width search space (bw). Algorithm hyper-parameters include the desired neuron step size
(numc), the number of approximated resilient neurons (numr), and the total number of hidden
neurons (numhid). The summed difference in all neuron bit widths between successive criticality-
retraining iterations is given by ∆sumbit.

Input: model0 := specified model, accmin := min accuracy, bw := bit width search space
Output: modelax := approximated model

model← fullprecisionTraining(model0)
modelax← uniformApprox(model)
while ∆sumbit > 0 do

order← criticalityScore(modelax)
numr← numhid
while numr > 0 and acc > accmin do

modelax← neuronApprox(modelax,numr,order)
numr← numr−numc

modelax← retrain(modelax)

4.6 Power Model for Compute and Memory Requirements

To perform inference on a DDBN with x visible units, c class units, k data samples, and

L hidden layers each with Nhl hidden neurons, a chip needs to read network parameters and

input data from memory and to write classification results to memory. Each weight or bias is

represented by an q-bit fixed-point number, each input sample is a x-dim binary vector, and each

classification result is represented by a c-dim binary vector. In this model, q refers to m+n in a

Qm.n representation and the number of neurons at q-bit precision in hidden layer hl is given by

Nq
hl

.

The power for off-chip to on-chip data transfer DT is given by Eq. 4.16, where the power

consumption for reading and writing 1 bit of data is given by A. The computation workload CW

is defined by Eq. 4.17 in terms of multiply-accumulate operations, where power consumption for

a q-bit ALU operation is given by Bq. A is obtained by modeling in CACTI [95]. We calculate Bq

as the average accumulator power consumption using Verilog implementations of our specified

DRBM and DDBN architectures at q-bit precision with Synopsys EDA tools using a 65 nm
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Figure 4.6. In our hardware implementations, we use Gibbs sampling to propagate binary
activation states from the input layer x to the classification layer c using the PLAN approximation
for each sigmoid output. Each hidden layer performs random sampling using a pseudo-random
pattern generator (PRPG) implemented in hardware.

standard cell library. We estimate the total power consumed by an AX-DBN approximated

model to be the combination of its data transfer and computation workload, i.e DT + CW . In our

implementation, q takes the following values: {4,8,12,16,64}.

4.7 Experimental Results

An effective criticality metric should be able to accurately determine hidden neurons

that can be approximated using lower precision representations while maintaining specified

classification accuracy above a desired threshold. Our simulations show that the criticality

measure based on cross entropy (CE) achieves this objective. Owing to the stochasticity of our

models, we run 200 Monte Carlo iterations to obtain distributions of power savings and average

neuron bit width. A different random seed is used in each Monte Carlo iteration to initialize the

weights and biases of a new model and train it using contrastive divergence (CD) on the MNIST

dataset. We then compare the performance of criticality metric-driven realizations versus that of

random ordering.

We explore the effectiveness of our AX-DBN framework across the DRBM and DDBN

architectures presented in Section 4.2.3. For an even comparison, we fix the total number
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of neurons as we increase the depth of the network (i.e., DDBN-100-200 and DRBM-300)

will both have a fixed budget of 300 neurons. In our experiments, we first train each network

using contrastive divergence on the MNIST dataset [98], we then perform our criticality-driven

approximations on each network, and finally evaluate the approximated model’s performance.

Reducing the bit width of all neurons uniformly results in significant accuracy degradation, as

shown in Table 4.2. With each median and mean, we provide the inter-quartile range (IQR) and

standard deviation in parenthesis, respectively. Using criticality-driven neuron approximation

and pruning, we are able to significantly reduce the average neuron bit width while maintaining

user-specified accuracy loss constraints with respect to ideal full-precision implementations, as

shown in Tables 4.3 and 4.4.

Figures 4.7, 4.8, 4.9, and 4.10 visualize the power savings with respect to a 64-bit

implementation, the distribution of neuron bit widths, and average neuron bit width for 1% and

5% accuracy loss constraints for different network architectures. We observe that approximated

networks realized using CE-driven critical neuron determination yield higher average power

savings and lower average neuron bit widths when compared to those realized using random

neuron ordering. Overall, CE is an effective metric for hidden neuron criticality determination

across accuracy loss constraints and stochastic network architectures.

DT = A

(
(x+1)

64

∑
q=1

qNq
h1
+

L−1

∑
l=1

(Nhl +1)
64

∑
q=1

(qNq
h(l+1)

)+16(NhL +1)c+ k(x+ c)

)
(4.16)

CW = k

(
(x+1)

64

∑
q=1

(BqNq
h1
)+

L−1

∑
l=1

(Nhl +1)
64

∑
q=1

BqNq
h(l+1)

+B16(NhL +1)c

)
(4.17)

4.8 Conclusions

In this paper, we propose a systematic approximation methodology for stochastic dis-

criminative restricted Boltzmann machines (DRBMs) and discriminative deep belief networks

(DDBNs) to optimize power consumption subject to the constraint of maintaining user-specified
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classification accuracy. This work extends criticality analysis from the domain of deterministic

neural networks to the realm of stochastic networks and introduces a unified formulation of quan-

tization and pruning by representing a pruned neuron as a 0-bit limited-precision approximation.

Our procedure involves two key steps: (1) The use of criticality analysis to rank order neurons

based on their contribution to network performance; (2) The use of greedy retraining to optimize

neuron bit widths under accuracy constraints. Our results show that cross entropy can be used

as an effective metric for determining neuron criticality in stochastic network approximation

and yields lower average neuron bit width representations as well as higher savings in power

consumption when compared to random criticality ordering of neurons. Our future research will

extend our methodology to optimize the power consumption of hardware implementations of

generative neural networks for purposes such as image generation, denoising, and infilling.

Acknowledgements: This chaper is based on material as it appears in the 2019 International

Joint Conference on Neural Networks (Ian Colbert, Kenneth Kreutz-Delgado, and Srinjoy Das,

“AX-DBN: An approximate computing framework for the design of low-power discriminative

deep belief networks”). The dissertation author was the primary investigator and author of this

paper. This chapter was supported in part by NSF awards CNS- 1730158, ACI-1540112, ACI-

1541349, OAC-1826967, the University of California Office of the President, and the California

Institute for Telecommunications and Information Technology’s Qualcomm Institute (Calit2-QI).

Thanks to CENIC for the 100Gpbs networks. We would also like to thank Professor Andrew

Kahng, Jonas Chan, and Chih-Yin Kan at UC San Diego for providing assistance with Verilog

implementations and power measurements.

78



Table 4.2. We run 200 Monte Carlo iterations to measure the median (top) and mean (bottom)
test accuracy of each architecture when reducing the bit width of each neuron uniformly. With
each median and mean, we provide the IQR and standard deviation in parenthesis, respectively.

Architecture 4-bit 8-bit 12-bit 16-bit 64-bit
DRBM-300 54.5 (5.3) 88.6 (1.1) 94.0 (0.3) 94.3 (0.2) 94.3 (0.3)

DDBN-100-200 73.7 (4.7) 94.3 (0.5) 95.9 (0.2) 95.9 (0.2) 96.0 (0.2)
DRBM-600 54.2 (4.2) 82.7 (3.0) 95.0 (0.2) 95.3 (0.2) 95.3 (0.2)

DDBN-100-200-300 58.8 (7.4) 93.0 (0.8) 95.6 (0.2) 95.6 (0.2) 95.9 (0.2)
DRBM-300 54.6 (3.8) 88.5 (0.8) 94.0 (0.2) 94.3 (0.2) 94.3 (0.2)

DDBN-100-200 74.0 (3.8) 94.3 (0.4) 95.9 (0.1) 95.9 (0.2) 95.9 (0.1)
DRBM-600 54.0 (3.0) 82.5 (2.3) 95.0 (0.2) 95.3 (0.2) 95.3 (0.2)

DDBN-100-200-300 58.7 (5.3) 92.8 (0.7) 95.6 (0.2) 95.6 (0.2) 95.9 (0.2)

Table 4.3. We run 200 Monte Carlo iterations to measure the median (top) and mean (bottom) test
accuracy and average neuron bit width of each architecture when approximating with AX-DBN
given a 1% accuracy loss constraint. With each median and mean, we provide the IQR and
standard deviation in parenthesis, respectively. The classification accuracy of the full-precision
(FP) model on the test dataset is given in the first column. FP denotes the full-precision 64-bit
floating-point model.

Architecture FP Random CE
DRBM-300 94.3 (0.3) 93.7 (0.7) | 11.1-bit (0.4) 93.6 (0.5) | 10.2-bit (0.6)

DDBN-100-200 96.0 (0.2) 95.0 (0.2) | 9.63-bit (0.9) 94.8 (0.2) | 8.72-bit (0.9)
DRBM-600 95.3 (0.2) 94.7 (0.8) | 11.3-bit (0.3) 94.5 (0.6) | 9.68-bit (0.7)

DDBN-100-200-300 95.9 (0.2) 94.8 (0.4) | 10.3-bit (0.6) 94.8 (0.3) | 8.72-bit (0.7)
DRBM-300 94.3 (0.2) 93.8 (0.5) | 11.1-bit (0.3) 93.7 (0.4) | 10.2-bit (0.4)

DDBN-100-200 95.9 (0.1) 95.0 (0.2) | 9.57-bit (0.7) 94.8 (0.2) | 8.71-bit (0.7)
DRBM-600 95.3 (0.2) 94.9 (0.5) | 11.2-bit (0.3) 94.6 (0.4) | 9.66-bit (0.5)

DDBN-100-200-300 95.9 (0.2) 94.8 (0.2) | 10.3-bit (0.5) 94.8 (0.2) | 8.71-bit (0.5)
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Table 4.4. We run 200 Monte Carlo iterations to measure the median (top) and mean (bottom) test
accuracy and average neuron bit width of each architecture when approximating with AX-DBN
given a 5% accuracy loss constraint. With each median and mean, we provide the IQR and
standard deviation in parenthesis, respectively. The classification accuracy of the full-precision
(FP) model on the test dataset is given in the first column. FP denotes the full-precision 64-bit
floating-point model.

Architecture FP Random CE
DRBM-300 94.3 (0.3) 91.8 (1.5) | 8.00-bit (0.6) 92.4 (1.0) | 6.46-bit (1.0)

DDBN-100-200 96.0 (0.2) 92.4 (1.0) | 6.91-bit (0.4) 92.5 (0.8) | 5.92-bit (0.5)
DRBM-600 95.3 (0.2) 93.5 (1.1) | 9.05-bit (0.6) 94.4 (0.7) | 6.86-bit (1.1)

DDBN-100-200-300 95.6 (0.2) 92.4 (0.9) | 7.36-bit (0.4) 92.3 (0.8) | 6.13-bit (0.4)
DRBM-300 94.3 (0.2) 91.7 (0.9) | 8.09-bit (0.4) 92.2 (0.8) | 6.52-bit (0.7)

DDBN-100-200 95.9 (0.1) 92.4 (0.6) | 6.89-bit (0.3) 92.4 (0.6) | 5.89-bit (0.3)
DRBM-600 95.3 (0.2) 93.7 (0.7) | 9.10-bit (0.5) 94.3 (0.6) | 6.81-bit (0.7)

DDBN-100-200-300 95.9 (0.2) 92.3 (0.7) | 7.38-bit (0.3) 92.2 (0.6) | 6.15-bit (0.3)

Figure 4.7. DRBM-300: Relative power savings (left), neuron bit width distribution (middle),
and average neuron bit widths (right).
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Figure 4.8. DDBN-100-200: Relative power savings (left), neuron bit width distribution
(middle), and average neuron bit widths (right).
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Figure 4.9. DRBM-600: Relative power savings (left), neuron bit width distribution (middle),
and average neuron bit widths (right).
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Figure 4.10. DDBN-100-200-300: Relative power savings (left), neuron bit width distribution
(middle), and average neuron bit widths (right).
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Chapter 5

Improving Inference Algorithms for Im-
age Upsampling

Many prominent computer vision problems involve image upsampling (e.g., super res-

olution [144], scene segmentation [106], pose estimation [147], and image generation [57]).

In this chapter, our focus is on the core algorithms used to build deep learning solutions to

such problems, namely deconvolution [48, 180], resize convolution [45, 124], and sub-pixel

convolution [6,144]. Previous works comparing these algorithms focus on improving training by

increasing image fidelity and optimizing sample efficiency [6, 124, 144, 145]. In contrast, this

chapter is focused on comparing the inference properties of these algorithms. Our analysis is

followed by a novel deconvolution inference algorithm designed to optimize image upsampling

latency and energy efficiency without sacrificing the image fidelity obtained from training. We

first provide a comprehensive survey and analysis of these state-of-the-art deep learning-based

image upsampling algorithms. We then introduce a novel deconvolution inference algorithm that

exposes more opportunities for concurrent execution and improves its adaptability to limited

resource availability as is common of edge computing platforms.

5.1 Introduction

Many solutions to important computer vision and image processing applications re-

quire increasing the number of pixels per unit area (or resolution) by inferring values in high-
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dimensional image spaces from low-dimensional representations. This process, commonly

referred to as image upsampling, is a one-to-many mapping used to predict, generate, or recover

information to increase dimensionality [144, 164]. In contrast, downsampling is a many-to-one

mapping used to encode features and reduce dimensionality [164]. Image upsampling frame-

works based on deep learning typically rely on convolution-based and/or interpolation-based

algorithms to increase resolution:

• Interpolation-based upsampling algorithms infer the value of pixels for which there are

no sample points using only local information such as nearest pixel value [120]. This class

of techniques includes algorithms such as nearest neighbor and bilinear interpolation.

• Convolution-based upsampling algorithms also infer the value of pixels for which there

are no sample points but predict, generate, or recover high-frequency information by

learning spatial correlations through training strategies [144]. This class of techniques

includes algorithms such as deconvolution, sub-pixel convolution, and resize convolution,

which are commonly used in end-to-end deep learning solutions [164, 166].

The majority of state-of-the-art deep learning solutions for image upsampling rely on

either sub-pixel or resize convolution [6,38,45,124,144,186]. However, these algorithms require

memory-intensive feature map transformations at each inference pass. In this chapter, we review

commonly used convolution-based image upsampling algorithms. We provide insights into

the pros and cons of each algorithm and introduce a novel deconvolution inference algorithm

that further improves concurrency. Our study motivates the contributions later detailed in

Chapter 6, where we characterize the data movement costs of these algorithms and introduce

kernel transformations that exploit the functional equivalence of sub-pixel and resize convolutions

to deconvolution.
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Nearest Neighbor Interpolation

Interpolation-based

Upsampling

Convolution-based

Bicubic Interpolation

Deconvolution

Sub-Pixel Convolution

Bilinear Interpolation

Reverse Looping Deconvolution

Transforming Deconvolution to Convolution

Standard Deconvolution

Fractionally Strided Deconvolution
Resize Convolution

Figure 5.1. We provide an “image upsampling taxonomy.” State-of-the-art deep learning solu-
tions for image upsampling rely on convolution-based and/or interpolation-based algorithms to
increase the resolution of images; however, only the convolution-based algorithms are learnable.

5.2 Sub-Pixel Convolution

The sub-pixel convolution was introduced by Shi et al. [144] to upsample images using a

fully convolutional neural network and is used as the standard method for upsampling images in

deep learning solutions [164, 166]. As shown in Figure 5.2, the algorithm is executed as two

serialized operations: (1) a same-padded convolution followed by (2) a pixel shuffle. However,

convolution (see Algorithm 5) is inherently a downsampling operation. To upsample by a

factor of r, the sub-pixel convolution first generates r2 more output channels using a same-

padded convolution to then feed the resulting output into the pixel shuffle (see Algorithm 6)

to be reshaped. Aitken et al. [6] show that, when properly initialized, a network trained using

the sub-pixel convolution converges faster with lower image reconstruction error than other

convolution-based upsampling algorithms. However, the sub-pixel convolution requires pixel

shuffle post-processing for every inference pass. As further discussed in Chapter 6, this memory-

intensive feature map transformation severely limits time and energy efficiency at inference.

5.3 Resize Convolution

The resize convolution was introduced by Dong et al. [45] and popularized by Odena et

al. [124] to address checkerboard artifacts that can arise during training. As depicted in Figure 5.3,
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(a) t0 (b) t1 (c) t2 (d) t3 (e) PS

Figure 5.2. We visualize an example sub-pixel convolution, where a 2× 2 input (in blue) is
convolved with a 3×3 kernel (in green) using a stride S = 1 and padding P = 1 to create the
2×2 output (in red) before upsampling the image by a factor of 2 using the pixel shuffle (PS).

Algorithm 5. Standard Convolution
1: for oc = 0, oc++, while oc < OC do
2: for oh = 0, oh++, while oh < OH do
3: for ow = 0, ow++, while ow < OW do
4: for ic = 0, ic++, while ic < IC do
5: for kh = 0, kh++, while kh < K do
6: for kw = 0, kw++, while kw < K do
7: ih← S×oh + kh−P
8: iw← S×ow + kw−P
9: x← input[ic, ih, iw]

10: w← kernel[oc, ic,kh,kw]
11: output[oc,oh,ow]← x×w

the resize convolution is executed as two serialized operations, similar to the sub-pixel convolu-

tion. To upsample by a factor of r, the resize convolution first uses (1) an interpolation-based

upsampling algorithm before applying (2) a same-padded convolution in the higher resolu-

tion space [124]. Standard implementations for resize convolution rely on nearest neighbor

interpolation (NN-interpolation) as opposed to bilinear or bicubic [89, 124, 164]. Similar to sub-

pixel convolution’s pixel shuffle, the interpolation-based pre-processing is a memory-dominated

algorithm required for every inference pass. However, unlike the sub-pixel convolution, the

same-padded convolution is executed in a higher dimensional space where the time and energy

costs are much higher [46, 144]. Even so, the sub-pixel and resize convolutions have the same

compute requirements when upsampling an image by a factor of r. As further discussed in

Chapter 6, the interpolation-based pre-processing is the bottleneck that severely limits time and

energy efficiency at inference.
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Algorithm 6. Pixel Shuffle
1: for oc = 0, oc++, while oc < OC do
2: for ow = 0, ow++, while ow < OW do
3: for oh = 0, oh++, while oh < OH do
4: ih← ⌊oh

r ⌋
5: iw← ⌊ow

r ⌋
6: ic← r2 ·oc + r · mod(oh,r) + mod(ow,r)
7: output[oc,oh,ow]← input[ic, ih, iw]

(a) NN (b) t0 (c) t1 (d) t2 (e) t3

Figure 5.3. We visualize an example nearest neighbor resize convolution, where a 2×2 input is
first upsampled by a factor of 2 using NN interpolation, then convolved with a 3×3 kernel (in
green) in a higher dimensional space to create the 4×4 output (in red).

5.4 Deconvolution

Deconvolution (also referred to as transpose convolution) is an end-to-end learnable

upsampling algorithm that, in contrast to the sub-pixel and resize convolutions, inherently

increases the resolution of an input image [48, 180]. Deconvolution was first popularized

by Zeiler et al. [180] to visualize the latent representations of convolutional neural networks

and has since gained popularity in deep learning-based image upsampling solutions [164].

Unlike the other convolution-based upsampling algorithms, deconvolution upsamples the image

directly in one operation. A common misconception of the deconvolution operation is that it

requires inserting zeros to perform fractionally strided transposed convolutions. While it is

possible to execute deconvolution this way, it greatly increases the input feature map size by

adding redundant zero-valued operations, resulting in a much less efficient implementation [48].

We discuss this formulation further in Section 5.4.2. As shown in Figure 5.4, the standard

deconvolution algorithm given by Algorithm 7 strides over the input space, creating overlapping

sums in the output space when the stride (S) is smaller than kernel (K) [24, 31, 48, 185]. In

the context of training, these overlapping sums have been shown to introduce checkerboard
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artifacts as a result of gradient updates [124]. In the context of inference, accumulating over

these overlapping regions requires storing partial sums when K > S and leads to communication

overhead, complex dataflow, and increased resource utilization via on-chip buffering [24, 31,

104, 185]. Key algorithmic approaches that work around this overlapping sums problem can be

divided into the following three categories: reverse looping deconvolution, fractionally strided

deconvolution, and transforming deconvolution to convolution. We describe each below.

(a) t0 (b) t1 (c) t2 (d) t3 (e) final

Figure 5.4. The standard deconvolution algorithm strides over the input space, creating overlap-
ping sums in the output space when the stride S is smaller than kernels size K [24, 31, 48, 185].
In this example, the 2×2 input (blue) is deconvolved with a 4×4 kernel (green) using a stride
S = 2 and a padding P = 1 to create the 4×4 output (red).

Algorithm 7. Standard Deconvolution
1: for oc = 0, oc++, while oc < OC do
2: for iw = 0, iw++, while iw < IW do
3: for ih = 0, ih++, while ih < IH do
4: for ic = 0, ic++, while ic < IC do
5: for kh = 0, kh++, while kh < K do
6: for kw = 0, kw++, while kw < K do
7: oh← S× ih + kh−P
8: ow← S× iw + kw−P
9: x← input[ic, ih, iw]

10: w← kernel[ic,oc,kh,kw]
11: output[oc,oh,ow]← x×w

5.4.1 Reverse Looping Deconvolution

To avoid partial summations in the output space, Zhang et al. [185] introduce a technique

they refer to as reverse looping in which they switch the looping criteria from the input space (see

Algorithm 7) to the output space (see Algorithm 13). By doing so, they enable a one-shot write

to off-chip memory for each output pixel and expose opportunities for concurrent execution. To
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ensure functional correctness, they also introduce a technique they refer to as stride-hole skipping

in which the looping criteria skips over the output space in S2 tiles and an offset based on modulo

arithmetic is added to each output pixel address. The resulting reverse looping deconvolution

algorithm (REVD) enables the concurrent execution of these independent tiles but relies on

expensive modulo arithmetic for address calculations.

Observing that the modulo arithmetic needed to calculate the output pixel address (oh)

is only dependent on the kernel address (kh), Colbert et al. [31] minimize its impact by pre-

computing and caching these offsets for each value of kh. Assuming square kernels, the process

reduces the number of modulo operations to 2K, which minimizes resource utilization and

on-chip memory requirements as K tends to be small. In Section 5.5, we propose a further

improved version of this algorithm to expose additional opportunities for concurrent execution

without the use of stride-hole skipping.

Algorithm 8. Reverse Looping Deconvolution (REVD)
1: for oc = 0, oc++, while oc < OC do
2: for ôw = 0, ôw+=S, while ôw < OW do
3: for ôh = 0, ôh+=S, while ôh < OH do
4: for kh = 0, kh++, while kh < K do
5: for kw = 0, kw++, while kw < K do
6: for ic = 0, ic++, while ic < IC do
7: fh = mod(S−mod(P− kh,S),S)
8: fw = mod(S−mod(P− kw,S),S)
9: oh = ôh + fh

10: ow = ôw + fw
11: ih = (oh +P− kh)/S
12: iw = (ow +P− kw)/S
13: x← input[ic, ih, iw]
14: w← kernel[ic,oc,kh,kw]
15: output[oc,oh,ow]← x×w

5.4.2 Fractionally Strided Deconvolution

The fractionally strided deconvolution (STRD) can be implemented using unmodified

convolution accelerators and is most commonly used by machine learning frameworks such as
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PyTorch [127] and TensorFlow [1]. It avoids the overlapping sum problem by padding each input

pixel by S−1 zeros before executing a standard convolution using transposed kernels [48]. It can

be viewed as two serialized operations: (1) a zero-insertion feature map transformation followed

by (2) a same-padded convolution with transposed kernels. As shown in Figure 5.5, to upsample

by a factor of r, the fractionally strided convolution first inserts H−1 rows and W −1 columns

of S−1 zeros into the input feature map [48] before transposing the deconvolution kernels to

execute a same-padded convolution. While this works around the overlapping sum problem, it

introduces massive redundancies as the input feature map grows [48]. Figure 5.6 shows how the

percentage of zero-valued input pixels increases with upsampling factor. Note that, even when

upsampling by a factor of 2, the majority of the input pixels are redundant computations.

(a) t0 (b) t1 (c) t2 (d) t3 (e) final

Figure 5.5. For the fractionally strided deconvolution to be equivalent to the example in
Figure 5.4, S−1 zeros are first inserted in between the input pixels. Then, the transpose of the
4×4 deconvolution kernels (green) is convolved over the 3×3 input (blue) with a stride of S = 1
and padding P = 2 to create the 4×4 output (red).

5.4.3 Transforming Deconvolution to Convolution

Chang et al. [24] avoid the overlapping sum problem by transforming deconvolution into

S2 tiled convolutions to compute each region of the output feature map independently. They refer

to this formulation as transforming deconvolution to convolution (TDC). To split a deconvolution

into S2 convolutions, the TDC algorithm first uses the transformation given by Algorithm 9

to split the deconvolution kernels into S2 tiles of size KT ×KT , where KT = ⌈K
S ⌉. When K is

not evenly divisible by S, this transformation requires padding each kernel tile by PK , where

PK = (S×KT )−K. Figure 5.6 shows how the percentage of zero-valued weights increases with

upsampling factor (r). Given the transformed kernels, the output pixels of each of the S2 tiles
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can then be computed concurrently using a same-padded convolution. However, similar to the

sub-pixel convolution, the transformation process requires expensive post-processing to stitch

the resulting tiles back together [22,24,171]. Xu et al. [171] introduce a variant of this algorithm

that directly stitches these output tiles together during computation by merging the modulo-based

arithmetic into the core algorithm. This optimization reduces penalties from data transfers at the

cost of increased latency and additional hardware resources. In our algorithm comparisons, we

focus on this variant of TDC.

Algorithm 9. TDC Kernel Transformation
1: for oc = 0, oc++, while oc < OC do
2: for ic = 0, ic++, while ic < IC do
3: for kh = 0, kh++, while kh < KH +PK do
4: for kw = 0, kw++, while kw < KW +PK do
5: n = S×mod(kh,S)+mod(kw,S)
6: k̂h = KT −⌈ kh+1

S ⌉
7: k̂w = KT −⌈ kw+1

S ⌉
8: wT [oc, ic,n, k̂h, k̂w] = w[ic,oc,kh,kw]

5.4.4 Comparison of Compute and Memory Requirements

Table 5.1 summarizes the compute and memory requirements for each of these deconvolu-

tion algorithms. Compute requirements (C) are measured by the number of multiply-accumulates

(MACs). Memory requirements (M) are measured by the number of weights (W ) and activations1

(A) such that M ≡W +A.

Table 5.1. We provide the compute and memory requirements for each deconvolution algorithm.
For simplicity, we assume square kernels K, square inputs H, and equal input/output channels C.
Recall that the upsampling factor is denoted by r. We define PH = (H−1)(r−1) as the zeros
inserted to pad each input pixel for the fractionally strided deconvolution (STRD).

#MACs (C) # Parameters (W ) # Activations (A)
REVD r2×K2×H2×C2 r2×K2×C2 (1+ r2)×H2×C
STRD r4×K2×H2×C2 r2×K2×C2

(
r2×H2 +(H +PH)

2
)
×C

TDC r2×K2×H2×C2 r2×K2×C2 (1+ r2)×H2×C

1We refer to activations as the total input and output feature maps
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Figure 5.6. We visualize the impact of zero-insertion requirements for STRD features and TDC
weights.

In Figure 5.6, we visualize how the percentage of sparse features or weights increase

for STRD or TDC, respectfully, as the upsampling factor (r) increases. As shown in green,

implementing a fractionally strided deconvolution (STRD), as is common practice, greatly

increases the input feature map size by adding redundant zero-valued operations [48]. Assuming

a square input feature map, even upsampling by a factor of 2 requires 75% of input pixels to be

zero. As shown in blue, transforming deconvolution to a convolution (TDC) requires padding

the transformed kernels by PK when the kernel size (K) is not evenly divisible by the stride (S).

Here, we assume PK = 2 to demonstrate how the percentage of zero-valued weights increases

with r, but at a lesser rate than STRD. Note that if K is evenly divisible by S, then no zeros are

required in the TDC kernel transformation.

5.5 Improving Reverse Looping Deconvolution

When the memory requirements of a deep learning model exceed the resources available

on an edge device, the inference pass is typically divided into smaller workloads using tiling [110,

181]. These tiled workloads are data-independent if they each write to distinct memory locations

without overlap. Algorithms that can be divided into smaller tiles have higher degrees of

parallelism as data-independent workloads can be executed concurrently across single-instruction,

multiple-data (SIMD) lanes on parallel platforms such as GPUs and FPGAs. When data-
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independent workloads are evenly balanced, tiling optimizations can increase hardware utilization

and lead to improved energy efficiency. On the other hand, the presence of imbalanced workloads

can force all live processes to wait for an overloaded lane to finish before synchronization, which

increases the penalty as the number of concurrent processes grows [129]. Algorithms with higher

degrees of parallelism expose more opportunities for efficient concurrent execution as workloads

are more easily balanced across SIMD lanes.

To understand the impact of data independence and load balance on inference acceleration,

consider a processor with 16 SIMD lanes designed to accelerate a deconvolution workload. When

used to upsample a 14× 14 image by a factor of 2 using a stride of 2 such that r = 2, S = 2,

and OH ×OW = 28×28, a designer could use a tile size of 7 to divide the total work into 16

data-independent workloads to be dispatched across each lane and achieve 100% load balance.

However, both the reverse looping deconvolution (REVD) and transforming deconvolution

to convolution (TDC) algorithms discussed in Section 5.4 traverse the output space in S2

tiles [24, 185]. As a consequence, functional correctness breaks down when the tiling along the

output space is not perfectly divisible by the stride S. This constrains the degree to which data

independence can be exploited. A tiling factor of 7 is not perfectly divisible by the stride of 2

so a designer is left with options 6 and 8. Using a tiling factor of 8 requires zero-padding each

workload, effectively increasing the data movement by 30%2. This 1.3x increase is detrimental

to the system’s energy efficiency as energy consumption is dominated by data movement [76].

Using a tiling factor of 6 requires multiplexing through the 16 SIMD lanes twice, reducing

hardware utilization to 78%, increasing system latency, and introducing imbalanced workloads

that would need to wait for each lane to finish3. To both circumvent the overlapping sums

problem and fully exploit data-independent concurrent execution, a deconvolution algorithm

needs to sequentially traverse the output space. To address this, we propose an improved reverse

2Moving 16 tiles of 8×8 pixels is 1.3x that of moving 16 tiles of 7×7.
3Executing 16 tiles of 6×6 pixels only covers 73% of the total compute work of a 28×28 image. To complete

the final 27%, the hardware would need to multiplex through the SIMD lanes a second time with 6 tiles of 6×6
pixels. In this pass, only 36% of the hardware is utilized. Over both passes, only 78% of the hardware is being used.
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looping deconvolution algorithm, which we refer to as REVD2.

As shown in Algorithm 10, REVD2 uses stride-hole skipping along the weight space

rather than the output space to both avoid the overlapping sums problem and fully expose the

data independence of output pixels for more effective load balancing. Unlike TDC or REVD,

REVD2 supports a tile size of 7 in the example described above. It also reduces the cost of

modulo arithmetic. Furthermore, we can fully remove any dependence of REVD2 on modulo

arithmetic by leveraging the data independence of each output pixel. When dispatching each

tiled workload for concurrent execution, mod(oh +P,S) can be replaced by a simple counter ( j)

initialized to P. The counter is incremented for each workload and reset to zero when j ≥ S,

where S is the stride4.

Algorithm 10. Improved Reverse Looping Deconvolution
1: for oc = 0,oc++, while oc < OC do
2: for oh = 0,oh++, while oh < OH do
3: for ow = 0,ow++, while ow < OW do
4: for ic = 0, ic++, while ic < IC do
5: for k̂h = 0, k̂h+=S, while k̂h < K do
6: for k̂w = 0, k̂w+=S, while k̂w < K do
7: kh = k̂h +mod(oh +P,S)
8: kw = k̂w +mod(ow +P,S)
9: ih = (oh +P− kh)/S

10: iw = (ow +P− kw)/S
11: x← input[ic, ih, iw]
12: w← kernel[ic,oc,kh,kw]
13: output[oc,oh,ow]← x×w

5.6 Conclusions

In this chapter, we introduce a novel deconvolution algorithm that exposes further

opportunities for parallelization. This algorithm builds on top of the reverse looping deconvolu-

tion [31, 185] to apply stride-hole skipping over the weight space rather than the output space.

Doing so fully exposes per-pixel parallelization. We also characterize the difference of compute

4We have implemented this at https://github.com/icolbert/upsampling
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workloads when using other proposed deconvolution inference algorithms. We show that our

algorithm (REVD2) requires far less padding, which reduces both the compute and memory

requirements. In Chapter 6, we will study the time and energy costs of these algorithms using

theoretical quantitative models.
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Chapter 6

Kernel Transforms, Layer Fusions, and
Time-Energy Analysis

State-of-the-art deep learning solutions for image upsampling are currently trained using

either resize or sub-pixel convolution to learn kernels that generate high-fidelity images with

minimal artifacts. However, performing inference with these learned convolution kernels requires

memory-intensive feature map transformations that dominate time and energy costs in real-time

applications. To alleviate this pressure on memory bandwidth, we propose a novel energy-

efficient edge computing paradigm that confines the use of resize or sub-pixel convolution

to training in the cloud by transforming learned convolution kernels to deconvolution kernels

before deploying them for inference as functionally equivalent deconvolutions. These kernel

transformations, intended as a one-time cost when shifting from training to inference, enable a

systems designer to use each algorithm in their optimal context by preserving the image fidelity

learned when training in the cloud while minimizing data transfer penalties during inference at

the edge. We then compare the inference properties of these convolution-based image upsampling

algorithms. To demonstrate the benefits of our approach, we upsample images selected from

the BSD300 dataset using a pre-trained single-image super resolution network provided by the

PyTorch model zoo. Using quantitative models of incurred time and energy costs to analyze

this deep neural network, we estimate that using REVD2 for inference at the edge improves the

latency of the final layer by up to 2.1x or 2.8x and energy efficiency by up to 2.1x or 2.7x when
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respectively compared to sub-pixel or resize convolution counterparts.

6.1 Introduction

As discussed in Chapter 5, state-of-the-art deep learning solutions most often use resize

or sub-pixel convolution when building deep neural networks for image upsampling [164].

However, both require memory-intensive feature map transformations that can bottleneck latency

and energy efficiency when deployed for inference in real-time applications. This forces systems

designers to balance trade-offs between image fidelity and hardware performance. Models

trained using resize convolution learn to generate high-fidelity images without introducing

checkerboard artifacts; however, the algorithm relies on memory-intensive pre-processing to

resize the image before inefficiently executing compute operations in a higher dimensional

space where the cost is greater [46, 124, 144]. When properly initialized, models trained with

sub-pixel convolution converge faster with less test reconstruction error [6, 144]; however, the

core algorithm requires memory-intensive post-processing to shuffle pixels every inference

pass. Alternatively, a model can use deconvolution to efficiently upsample images without any

additional pre- or post-processing, thereby reducing data transfer penalties; however, gradient

updates during training can introduce checkerboard artifacts during inference [6, 124]. To ease

the selection between these convolution-based image upsampling algorithms, we propose a novel

edge computing paradigm that enables the use of each algorithm in their optimal context1. In

doing so, we avoid the data transfer penalties incurred by image resize or pixel shuffle without

sacrificing the image quality obtained when training a network using either resize or sub-pixel

convolution, respectively.

As depicted in Figure 6.1, our framework confines the use of sub-pixel or resize convo-

lution to training in the cloud, where the cost of a pixel shuffle or image resize is less severe.

Given a trained network, the learned convolution kernels are converted to deconvolution kernels
1We use convolution-based upsampling to denote algorithms relying on either convolution or transposed

convolution, commonly known as deconvolution.
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Figure 6.1. In our design paradigm (left), we introduce the blocks highlighted in yellow to
use convolution-based image upsampling algorithms in their optimal context. Standard edge
computing frameworks (right) deploy pre-trained networks to run inference locally on edge
devices using the same high-level algorithms selected for training (i.e., an identity mapping from
training to inference). At runtime, these high-level algorithms (e.g., convolution) are executed
directly as latency-optimized compute kernels (e.g., general matrix-multiply) [86,97]. We refer to
these compute kernels as low-level algorithms so as to not confuse them with learned convolution
weights, which are also referred to as kernels. Note that the high-level algorithms used for
training are not the same as those used for inference under our paradigm further discussed in
Section 6.3.

using the one-time transformations discussed in Section 6.4. The transformed kernels are then

executed as a functionally equivalent deconvolution using our improved reverse looping decon-

volution algorithm, which we refer to as REVD2, for inference at the edge. Thus, the high-level

algorithms used for training are not the same as those used for inference. When avoiding the

memory-intensive feature map transformations required for sub-pixel or resize convolution-based

inference, we significantly reduce data transfer penalties to improve both latency and energy

efficiency without sacrificing image fidelity. Below, we summarize our key contributions:

1. As shown in Figure 6.1, we enable the physical separation of high-level training and

inference algorithms by introducing a set of single-use kernel transformations that translate
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sub-pixel and resize convolutions to functionally equivalent deconvolutions (Section 6.4).

2. We analyze and compare the properties of these algorithms under a quantitative model to

verify our design paradigm and show that translating to deconvolution for inference from

sub-pixel or resize convolution reduces time and energy costs (Section 6.5).

3. We summarize the implications of these experiments and provide recommendations for sys-

tem designers to support real-time, energy-efficient convolution-based image upsampling

(Section 6.6).

As computations move from high-performance cloud servers to resource-constrained edge

devices, the physical separation of training and inference exposes opportunities for specialized

optimizations in either context. Although our proposal is targeted at edge computing in computer

vision applications, we believe the algorithms and conclusions discussed in this paper have a

broader impact. By demonstrating that our kernel transformations improve both latency and

energy efficiency during inference, we hope to exploit this knowledge to support real-time deep

learning applications, guide system designers to build inference-aware deep neural network

architectures, and improve our understanding of the core algorithms used for image upsampling.

6.2 Related Works

This paper synthesizes a collection of previous works into the foundation of our edge

computing design methodology. We provide an overview of prior works related to compute

kernel fusion and quantitative models of time and energy.

Compute Kernel Fusion. To mask the costs of memory traffic at runtime, previous works

have used compute kernel fusion - a software optimization technique that combines two or more

functions into one equivalent, unified compute kernel [10,58,102,132,158,189]. The fused kernel

uses the same compute resources as its original components, but with reduced penalties incurred
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by data transfers [102]. In deep learning, this is often referred to as layer fusion as the compute

kernels being fused are often pre-optimized neural network primitives. Similar to our work,

layer fusion techniques are intended as inference optimizations capable of efficiently combining

operators to reduce penalties incurred by memory accesses and context switching [132, 189].

Previous works aim to either vertically fuse layers (e.g., fusing batch normalization and activa-

tions functions into a convolution) or horizontally fuse layers (e.g., combining parallel executing

modules) while preserving the underlying algorithms [10, 58, 132, 189]. These fusions do not

alter the underlying computations; instead, they restructure the layers to execute faster and more

efficiently [132]. The key difference in our research from that of layer fusion is that our kernel

transformations do alter the underlying computations such that the high-level algorithms used

for training are not the same as those used for inference. Unlike previous works, our approach

does not simply concatenate compute kernels together, but rather we execute mathematical

transformations directly on the learned convolution weights. In this way, our techniques can be

more aptly seen as layer translations enabled by our novel transformations, which are discussed

further in Section 6.4. Note that, after applying our transformations, a systems designer can

additionally leverage layer fusion techniques to further reduce penalties incurred by memory

accesses and context switching.

Quantitative Models of Time and Energy. As further discussed in Section 6.5, we adopt

existing quantitative models of time and energy to validate our proposed paradigm based on

the properties of each algorithm. To analyze the performance bounds of each algorithm in

terms of time, we use the framework proposed by Williams et al. [167], commonly referred

to as the roofline model. For a given hardware target characterized by its peak computational

performance and peak memory bandwidth, this model estimates the performance bounds of an

algorithm as a function of its compute and memory operations [28, 167]. Inspired by this work,

Choi et al. [28] introduce an energy-based analog of the time-based roofline model. Similar

to [167], this roofline model of energy connects properties of an algorithm (expressed in terms of
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Figure 6.2. We confine the use of sub-pixel or resize convolution to training in the cloud, where
the cost of their additional data transfers is less severe. Once trained, the learned convolution
kernels are transformed into deconvolution kernels and then deployed for energy-efficient
inference using REVD2.

operations, concurrency, and memory traffic) with the time and energy costs of a target hardware

architecture [28]. We use this framework to analyze the performance bounds of each algorithm

in terms of energy. To further analyze energy efficiency, we use the methods introduced by

Jha et al. [84], which provide another means of estimating the energy efficiency of a given

convolution-based image upsampling algorithm by its data requirements. We discuss each of

these quantitative models further in Section 6.5.

6.3 Deep Learning-based Image Upsampling at the Edge

As edge devices have become more powerful, deep learning computations have moved

increasingly closer to data sources to support real-time applications [44]. In such paradigms,

inference at the edge is physically separated from cloud-based training. This cloud-to-edge

separation reduces strain on network bandwidth, decreases system latency, removes reliance on

ubiquitous internet connectivity, and improves overall security [44]. Standard edge computing
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frameworks deploy pre-trained neural networks to run locally on edge devices and the high-level

algorithms used during training are the same as those used during inference. At runtime, these

high-level algorithms are executed directly as compute kernels often selected by an optimizer

without an explicit directive from a systems designer [132]; for example, the standard convolution

algorithm can be executed using general matrix-multiply (GEMM) or fast Fourier transform

(FFT) compute kernels [86, 97]. We refer to these compute kernels as low-level algorithms so as

to not confuse them with learned convolution weights, which are also referred to as kernels.

As discussed in Chapter 5, state-of-the-art image upsampling neural networks are cur-

rently trained to generate high-fidelity images with minimal artifacts using either sub-pixel or

resize convolution. However, convolution is inherently a downsampling algorithm; to upsample

an image requires memory-intensive feature map transformations with each inference pass that

severely limits both latency and energy efficiency. Alternatively, deconvolution is inherently an

upsampling algorithm; the core arithmetic increases the resolution of an image directly, without

reliance on any pre- or post-processing. Thus, our proposed edge computing paradigm confines

the use of sub-pixel or resize convolution to training in the cloud, where the cost of a pixel shuffle

or interpolation-based image resize is less severe. To alleviate memory pressure at inference,

we convert the learned convolution kernels into deconvolution kernels using the transformations

introduced in Section 6.4. As shown in Figure 6.2, these kernel transformations translate the

sub-pixel or resize convolutions into a functionally equivalent deconvolution to be executed

using our novel inference algorithm, which we refer to as REVD2 (see Chapter 5). Thus, the

high-level algorithms used for training are not the same as those used for inference under our

paradigm. By doing so, we significantly reduce data transfer penalties to improve both latency

and energy efficiency during inference at the edge without sacrificing the image fidelity of the

pre-trained model. Figure 6.3 shows an example of this optimization applied to the single-image

super resolution network provided by PyTorch [127]. Note that the images generated before and

after the kernel transformation are identical.

As discussed in Chapter 5, standard deconvolution arithmetic traverses the input space,
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Figure 6.3. We provide an example use case of our proposed methodology using the single-image
super resolution network example provided by PyTorch [127]. Using the techniques detailed in
Section 6.4.1, we avoid the sub-pixel convolution layer (i.e., conv4 + pixel shuffle in blue on
the top) by using the weight shuffle algorithm to translate the learned kernels to deconvolution
kernels. The transformed kernels are then executed as a functionally equivalent deconvolution at
inference (i.e., deconvolution in blue on the bottom). The demonstration is performed using an
image selected from the BSD300 [114] dataset.

creating regions of overlapping summations in the output space that introduce difficulties for effi-

cient inference acceleration. Previous works propose solutions to work around this overlapping

sums problem, but none efficiently expose opportunities to compute each individual output pixel

concurrently. To address these shortcomings, we build on the reverse looping deconvolution

(REVD) algorithm to introduce a novel variation that improves its adaptability to the limited

resource availability common to edge devices. Introduced in Chapter 5, REVD2 exposes more

opportunities for concurrent execution and further reduces the cost of modulo arithmetic. Using

the quantitative models of time and energy discussed in Section 6.5, we analyze the benefits of

using REVD2 as the low-level inference algorithm under our paradigm depicted by Figure 6.2.

6.4 Kernel Transformations

To preserve the image fidelity of a pre-trained neural network while avoiding the data

transfer penalties during inference, we introduce two novel kernel transformations that exploit
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the functional equivalence of deconvolution to the sub-pixel and resize convolution algorithms.

As opposed to the feature map transformations required for each sub-pixel or resize convolution

inference pass, these kernel transformations are intended as a one-time sunk cost in software

before deploying the trained model for inference. Once deployed, the functionally equivalent

deconvolution can be executed using any of the formulations described in Section 5.42.

Given that functions f and g are respectively parameterized by θ and β , then gβ is

functionally equivalent to fθ if fθ (x) = gβ (x) for all valid x. As described in Chapter 5, both the

sub-pixel and resize convolution rely on same-padded convolutions, which use a stride of 1. As

shown below, this restricts the valid convolution kernel sizes to be odd as K = 2P+1. When

transforming learned convolution kernels to deconvolution kernels, the functional equivalence

holds for all valid kernel sizes (e.g., 1, 3, 5, 7, etc.).

OH = (IH−K +2P)/S+1 (6.1)

H = (H−K +2P)/1+1 (6.2)

K = 2P+1 (6.3)

6.4.1 Sub-Pixel Convolution to Deconvolution

To upsample by a factor of r, the sub-pixel convolution generates r2 more output channels

before applying the pixel shuffle algorithm over the output space. As shown in Figure 5.2, this

results in a unique pattern of r2 output pixels, each originating from independent channels.

To replicate this pattern, a functionally equivalent deconvolution uses a stride S = r with a

kernel size KD = rK. The deconvolution padding (PD) is calculated below where K and P are

respectively the convolution kernel size and padding given in Eq. 6.3, IH is the input height, KD

2Although TDC translates deconvolution to convolution, it does not undo the proposed kernel transformations.
The algorithm splits the resulting deconvolution into S2 tiles to be executed concurrently as same-padded convolu-
tions but the outputs need to be stitched back together either during [24] or after [171] the computation. While the
algorithm is functionally equivalent to deconvolution, the resulting S2 tiles may require zero-padding of the learned
kernels under the conditions described in Section 5.4.
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is the deconvolution kernel size, S is the stride, and OH is the output height [48].

OH = S× (IH−1)+KD−2PD (6.4)

rH = r(H−1)+ rK−2PD (6.5)

2PD = r(K−1) (6.6)

PD = rP (6.7)

Building from the qualitative analysis of Shi et al. [145], we introduce the weight shuffle

algorithm, given by Algorithm 11. Given a sub-pixel convolution with a valid kernel size,

this algorithm transforms the K×K learned convolution kernels into rK× rK deconvolution

counterparts to be executed as a functionally equivalent deconvolution. As shown in Figure 6.4,

the weight shuffle algorithm moves the learned parameters of the convolution kernels in a similar

way to the pixel shuffle but also reverses element indices as a 2D matrix transpose. Unlike the

pixel shuffle algorithm, which requires a memory-intensive feature map transformation at each

inference pass, the weight shuffle algorithm transforms the kernels of a pre-trained network. It is

a one-time sunk cost that can be done in software before deploying a trained model for inference.

Algorithm 11. Weight Shuffle
1: for ic = 0, ic++, while ic < IC do
2: for od

c = 0, od
c++, while od

c < OD
C do

3: for kd
h = 0, kd

h++, while kd
k < KD

H do
4: for kd

w = 0, kd
w++, while kd

w < KD
W do

5: kc
h← KC

H −⌊
kd

h
r ⌋−1

6: kc
w← KC

W −⌊
kd

w
r ⌋−1

7: oc
c← r2 ∗od

c + r ∗ mod(kd
h ,r) + mod(kd

w,r)
8: wD[ic,od

c ,k
d
h ,k

d
w]← wC[ic,oc

c,k
c
h,h

c
w]
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Figure 6.4. Our weight shuffle algorithm moves the learned parameters of the sub-pixel convolu-
tion kernels in a similar way to the pixel shuffle algorithm but also reverses the element indices.
Unlike the pixel shuffle, this is a one-time cost in software before deploying a trained model for
inference.

6.4.2 Resize Convolution to Deconvolution

To upsample by a factor of r, the nearest neighbor (NN) resize convolution first uses NN-

interpolation to increase the resolution of the image before applying a same-padded convolution

over the higher dimensional output space. As shown below to reflect Figure 5.3, the replication

of each input pixel results in a unique pattern of r2 identical output pixels. Formulating the

ensuing same-padded convolution as a matrix multiplication enables a significant reduction in

operations.

y0,0 = x0,0 ∗ (w1,1 +w2,1 +w1,2 +w2,2) (6.8)

y0,1 = x0,0 ∗ (w1,0 +w1,1 +w2,0 +w2,1)+ (6.9)

x0,1 ∗ (w1,2 +w2,2) (6.10)

y0,2 = x0,1 ∗ (w1,1 +w2,1 +w1,2 +w2,2) (6.11)

x0,0 ∗ (w1,0 +w2,0)+ (6.12)

y0,3 = x0,1 ∗ (w1,0 +w1,1 +w2,0 +w2,1) (6.13)
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The emerging pattern matches the deconvolution arithmetic shown in Figure 5.4.

y0,0 = x0,0wD
1,1 (6.14)

y0,1 = x0,0wD
1,2 +x0,1wD

1,0 (6.15)

y0,2 = x0,0wD
1,3 +x0,1wD

1,1 (6.16)

y0,3 = x0,1wD
1,2 (6.17)

Solving for both sets of equations, we find that the linear combination follows a locally connected

pattern similar to a convolution with transposed kernels, as shown below.

wD
1,0 = w1,2 +w2,2 (6.18)

wD
1,1 = w1,1 +w2,1 +w1,2 +w2,2 (6.19)

wD
1,2 = w1,0 +w1,1 +w2,0 +w2,1 (6.20)

wD
1,3 = w1,0 +w2,0 (6.21)

To account for the redundant replication of input pixels, a functionally equivalent decon-

volution uses a stride S = r and maintains padding such that PD = P = K−1
2 . The resulting kernel

size KD is calculated below where K is the convolution kernel size given by Eq. 6.3, IH is the

input height, S is the stride, and OH is the output height [48].

OH = S× (IH−1)+KD−2PD (6.22)

rH = r× (H−1)+KD−K−1 (6.23)

KD = K + r−1 (6.24)

Building from this algebraic reduction, we introduce the weight convolution, given by

Algorithm 12. Given a NN resize convolution with a valid kernel size, this algorithm transforms
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K ×K learned convolution kernels into (r +K − 1)× (r +K − 1) deconvolution kernels to

be executed as functionally equivalent deconvolutions. To stride over the kernel space, the

inequality i+K − 1 < KD must hold such that i < r. As shown in Figure 6.5, the weight

convolution transposes the learned kernels before convolving over the weight space with a stride

of 1.

Algorithm 12. Weight Convolution
1: for ic = 0, ic++, while ic < IC do
2: for oc = 0, oc++, while oc < OC do
3: for i = 0, i++, while i < r do
4: for j = 0, j++, while j < r do
5: wD[ic,oc, i : i+K, j : j+K]← wC[ic,oc]

T

Similar to the weight shuffle, this algorithm is a one-time sunk cost that is done before

deploying a trained model for inference. However, unlike the weight shuffle, the weight convolu-

tion drastically lowers the total compute work as a consequence of the algebraic reductions. The

resulting deconvolution requires only H×W ×C2× (r+K−1)2 multiply-accumulate (MAC)

operations. When compared to the resize convolution, which requires H×W ×C2×K2× r2,

this is a significant reduction that scales with upsampling factor r. Using the standard kernel

size of 3, the resulting ratio of deconvolution MACs to NN resize convolution MACs becomes
(r+2)2

(9r2)
. When upsampling by a factor of 2, the resulting deconvolution only requires 44% of

the MAC operations used by its NN resize convolution counterpart to generate the same image.

When upsampling by a factor of 3, the resulting deconvolution only requires 30% of the MACs

to generate the same image. It is important to note that other forms of resize convolution (e.g.,

bilinear or bicubic) can be derived here as well, but we focus our attention on nearest neighbor

resize convolution because of its prevalence in recent models [124, 136].

6.5 Time and Energy Analysis at Inference

In our proposed edge computing paradigm depicted in Figure 6.2, a deep learning model

is first trained in the cloud using either sub-pixel convolution (C-SP) or nearest neighbor resize
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(a) Transpose (b) t0 (c) t1 (d) t2 (e) t3 (f) tN

Figure 6.5. We visualize an example application of the weight convolution algorithm. We can
equate the operations depicted in Figures 5.3 and 5.4 from Chapter 5 by first rotating the kernels
to reverse the indices, the convolving the reversed 3×3 convolution kernel (in green) over the
4×4 deconvolution kernel (in yellow) with a stride of 1.

convolution (C-NN). The learned weights are then converted to deconvolution kernels using the

transformations discussed in Section 6.4. Finally, the resulting kernels are deployed for inference

as a functionally equivalent deconvolution. In Chapter 5, we discussed the various formulations of

deconvolution that avoid the overlapping summation problem observed when the kernel size (K)

is greater than the stride (S). We consider and compare the following deconvolution variants as

low-level inference algorithms - improved reverse looping deconvolution (REVD2), transforming

deconvolution to convolution (TDC), and fractionally strided deconvolution (STRD). Here, we

discuss a quantitative analysis framework to validate our proposed paradigm based on the

properties of each algorithm. We refer to deconvolution as translated from sub-pixel convolution

as D-SP and deconvolution as translated from nearest neighbor resize convolution as D-NN. The

results and conclusions are discussed in Section 6.6.

6.5.1 Quantitative Models for Time and Energy

We use the simplified, optimistic quantitative model detailed by [28] to compare the time

and energy costs of algorithms characterized by their compute and memory requirements. The

assumptions held by this model yield a best-case analysis that is only valid when algorithms are

sufficiently parallelizable [28]. As discussed in Chapter 5, each of the algorithms considered

(i.e., REVD2, TDC, STRD) are data-independent along the output space and can therefore be

executed with high degrees of concurrency.

The time cost model given by Eq. 6.25 assumes an idealized hardware design that
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perfectly masks the communication overhead with computation work, where Tcomp and Tmem are

the total time to execute all compute and memory operations, respectively [28]. Here, a higher

computation-to-communication ratio would better hide memory bottlenecks.

T ≡max(Tcomp,Tmem) (6.25)

Similarly, let Ecomp and Emem be the total energy to execute all compute and memory

operations, respectively, and let E0(T ) be the cost of constant energy expended while executing

the algorithm. Unlike time cost, the energy cost model given by Eq. 6.26 does not overlap

computation and communication costs and has an additional penalty for increased latency [28].

E ≡ Ecomp +Emem +E0(T ) (6.26)

For a fixed hardware architecture, let τcomp and τmem be the time cost per compute and

memory operation, respectively. For a given algorithm, let C be the total number of computation

operations and M the total number of memory operations required. Under the optimistic

assumption of hiding memory latency with perfect overlap, the total time cost of an algorithm

becomes Eq. 6.27, where Tcomp ≡Cτcomp and Tmem ≡Mτmem [28].

T = max(Cτcomp,Mτmem) (6.27)

Similarly, let εcomp and εmem be the energy cost per compute and memory operation,

respectively. The total energy cost of an algorithm then becomes Eq. 6.28, where Ecomp≡Cεcomp,

Emem ≡Mεmem, and the constant energy cost is assumed to be linear in time with a fixed constant

power defined by π0 such that E0(T )≡ π0T [28].

E ≡Cεcomp +Mεmem +π0T (6.28)
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Given the compute and memory requirements of an algorithm, we use Eq. 6.27 and

Eq. 6.28 to estimate time and energy costs using this idealized abstraction of hardware per-

formance. In all of our experiments, we assume a fixed graphics processing unit (GPU) with

the capabilities summarized below in Table 6.1, where time costs for compute and memory

operations are measured in picoseconds per operation (ps/op) and energy costs for compute and

memory operations are measured in picojoules per operation (pJ/op).

Table 6.1. For each experiment, we use the specifications provided by [28], which are based on
the best-case capabilities of the assumed hardware.

τcomp 0.3 ps / op
τmem 5.2 ps / op
εcomp 43.2 pJ / op
εmem 437.5 pJ / op
π0 66.4 W

Deconvolution Time and Energy Costs

Unlike REVD2, both STRD and TDC require the insertion of zeros to upsample an

image by a factor of r. As discussed in Chapter 5, the presence of these redundant zero-valued

computations increases with the upsampling factor and cannot be ignored when analyzing data

movement patterns3.

Figure 6.6 shows the relative increase in time and energy costs as a function of upsampling

factor (r) for each low-level deconvolution algorithm using either the D-SP or D-NN formulation.

In each experiment, we consider the case of upsampling a 1024×1024×3 image by a factor of

r using 3×3 kernels4. We assume a GPU with the capabilities summarized in Table 6.1 where

all pixel values and network parameters are executed and stored at 32-bit precision (i.e., 4 bytes).

Because memory requirements are dominated by activations rather than weights, the impact of

3Zero-skipping techniques can lessen the impact of increased sparsity. However, it requires control logic that can
introduce overhead and, if not properly balanced across concurrent processes, it can also introduce synchronization
issues in multi-threaded hardware [15,122]. We ignore the impact of these optimizations in our quantitative analysis.

4Note that most practical computer vision applications deal with 1K, 2K, or 4K images. To simplify analyses,
we alter the standard 1K RGB image resolution, which is 1024×768×3, to be square (i.e., 1024×1024×3).
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the zero-insertion requirements for STRD is massive while that of TDC is negligible. As such,

the fractionally strided deconvolution (STRD) formulation does not scale as well as REVD2 and

TDC with workload size. Additionally, we observe the exacerbation of this trend when using

D-SP rather than D-NN; for example, the time cost of upsampling an image by a factor of 5

using STRD for D-SP is 5x that of D-NN. This is due to the significant reduction in compute

operations resulting from the weight convolution algorithm, as discussed in Section 6.4.2. We

discuss this further in Section 6.6.

Convolution-based Upsampling Time and Energy Costs

Whereas deconvolution directly upsamples an image in one operation, both the sub-pixel

convolution (C-SP) and nearest neighbor resize convolution (C-NN) rely on memory-dominated

operations to move data for post- and pre-processing, respectively. These operations are required

for every inference pass and cannot be ignored when analyzing data movement patterns, nor

trivially fused with preceding or succeeding layers.

Table 6.2 summarizes the compute and memory requirements for each of the high-level

convolution-based image upsampling algorithms. Note that the compute (C) and activation (A)

requirements of C-SP and C-NN are equal. The sub-pixel convolution performs computations in

low-resolution (LR) space but generates r2 more output channels and requires expensive post-

processing in high-resolution (HR) space. The resize convolution requires less-expensive pre-

processing in LR space but performs its computations in HR space. Using kernel transformations

to enable deconvolution for inference at the edge avoids any penalties for expensive data pre-

or post-processing while maintaining the image fidelity learned through training in the cloud.

We separately consider deconvolution as translated from sub-pixel convolution (D-SP) and

deconvolution as translated from nearest neighbor resize convolution (D-NN).

Figure 6.7 shows the relative increase in time and energy costs as a function of upsampling

factor (r) for each high-level convolution-based image upsampling algorithm. Again, we consider

the case of upsampling a 1024×1024×3 image by a factor of r using standard kernels of size
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Table 6.2. We provide the compute and memory requirements for each high-level convolution-
based image upsampling algorithm. For simplicity, we assume square kernels K, square inputs
H, and equal input/output channels C. Note that both C-SP and C-NN activations include the
pixel shuffle and NN-interpolation, respectively, as they are required for every inference pass.
We assume REVD2 as the low-level deconvolution algorithm for D-SP and D-NN.

#MACs (C) # Parameters (W ) # Activations (A)
C-SP r2×K2×H2×C2 r2×K2×C2 (1+3r2)×H2×C
C-NN r2×K2×H2×C2 K2×C2 (1+3r2)×H2×C
D-SP r2×K2×H2×C2 r2×K2×C2 (1+ r2)×H2×C
D-NN r2×⌈ r+K−1

r ⌉2×H2×C2 (r+K−1)2×C2 (1+ r2)×H2×C

3×3. We assume fixed hardware with the capabilities summarized in Table 6.1 where all pixel

values and network parameters are executed and stored at 32-bit precision. For both D-SP

and D-NN, we assume REVD2 as the low-level deconvolution algorithm. With activations

dominating memory requirements, the deviation in weight requirements (W ) between C-NN and

C-SP has minimal impact on time and energy costs. As such, the algorithms scale equivalently

with workload size; however, neither scale as well as D-SP and D-NN. As further discussed in

Section 6.6, avoiding the memory-intensive feature map transformations required of C-SP and

C-NN significantly reduces both time and energy costs.

6.5.2 Estimating Energy Efficiency by Data Reuse

The efficiency of an algorithm is typically described by data reuse and measured using

arithmetic intensity - the number of useful compute operations for every byte of data accessed.

Algorithms with high data reuse are more likely to yield performance improvements with an

increase in compute resources because computations dominate the communication overhead.

Algorithms with low data reuse put more strain on a system’s memory bandwidth as each

compute operation requires more off-chip memory accesses. While the value of this ratio implies

the scalability and locality of an algorithm, it fails to reliably estimate the energy efficiency

of convolution-based deep learning algorithms [84]. By separately considering weight and

activation reuse, Jha et al. [84] show that, for convolution-based deep learning algorithms, the
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variation in arithmetic intensity is attributed to the variation in activation reuse, which in turn is

highly correlated to variations in energy efficiency. As such, we use the compute and memory

requirements discussed in Section 6.5.1 to estimate the energy efficiency of convolution-based

upsampling algorithms by activation reuse.

Energy consumption is dominated by data movement rather than computation [76]. When

estimating the energy efficiency using activation reuse, we define useful compute operations

as those contributing to output pixel values. As such, we define activation reuse as the number

of non-zero-valued computations for every byte of activation data accessed when upsampling

an image by a factor of r. Figure 6.8 shows how activation reuse increases with upsampling

factor r for each convolution-based upsampling algorithm. For D-SP and D-NN, we assume

REVD2 as the low-level deconvolution algorithm. Again, we consider the case of upsampling

a 1024× 1024× 3 image by a factor of r using standard kernels of size 3× 3 where all pixel

values and network parameters are executed and stored at 32-bit precision.

6.5.3 Roofline Models of Time and Energy

The hardware architecture analog to arithmetic intensity is time-balance [28]. For a fixed

machine, its time-balance point (Bτ ) is defined as the ratio of its time cost per memory operation

(τmem) to its time cost per compute operation (τcomp) such that Bτ ≡ τmem/τcomp [28]. Similarly,

the energy-balance point (Bε ) of a machine is defined as the ratio of its energy cost per memory

operation (εmem) to its energy cost per compute operation (εcomp) such that Bε ≡ εmem/εcomp [28].

When the arithmetic intensity of an algorithm is equal to the balance of a machine such

that AI = B, the cost of the algorithm’s compute operations is equal to that of its memory

operations. We can visualize these balance principles using roofline models of time [167] and

energy [28], which provide an upper bound on the attainable performance of an algorithm

for fixed hardware as a function of that algorithm’s data reuse patterns. Figure 6.9 shows

these roofline models using the balance points provided by [28]. The roofs of each model are

normalized to peak performance and data reuse is measured by arithmetic intensity for time and

115



activation reuse for energy. For each experiment, we consider the single-image super resolution

network provided by PyTorch [127] shown in Figure 6.3. We use a 320x480 image selected

from the BSD300 [114] dataset and assume the GPU capabilities summarized in Table 6.1. The

model is pre-trained using sub-pixel convolution (e.g., conv4 + pixel shuffle) to upsample a

single-channel image by a factor of 3 such that the output image is 960x1440. As such, we use

this deep neural network to analyze C-SP and D-SP. To analyze C-NN and D-NN, we design an

analogous deep neural network architecture in which the sub-pixel convolution is substituted

with NN resize convolution (e.g., NN-interpolation + conv4).

6.6 Results of Quantitative Analysis

Local edge devices are often limited by battery life and hardware area which constrains

the power budget and on-chip resources available for inference [44, 148]. To support real-time

deep learning applications in the landscape of rapidly evolving edge devices, low latency, high

energy efficiency, and algorithm scalability become critical. When considering such applications,

we define latency as the time cost incurred by upsampling a single image as real-time image

upsampling applications typically process images sequentially in batch sizes of 1. Furthermore,

we evaluate energy efficiency under two metrics. First, we use energy per pixel to evaluate the

energy cost incurred by upsampling a single image [84]. This is defined as the total energy cost

divided by the total output pixels generated and is measured in units of Joules/pixel [84]. Second,

we use performance per energy to evaluate the rate of computation for every unit of energy

consumed. This is defined as the total useful computations divided by the total energy cost

and, as the energy analog of throughput, is measured in units of MACs/Joule [28]. To analyze

algorithm scalability, we use activation reuse since an increased computation-to-communication

ratio implies a greater opportunity for performance improvements when compute and memory

resources increase [28, 84, 167].

As shown in Table 6.2, the compute (C) and activation requirements (A) of the sub-pixel
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convolution (C-SP) and nearest neighbor resize convolution (C-NN) are equal5. With activations

dominating memory requirements (M) and, therefore, data transfer penalties, the variations

in weight requirements (W ) have negligible impact on time and energy costs. By translating

learned convolution kernels for deconvolution inference, the kernel transformations introduced

in Section 6.4 remove the reliance of C-SP and C-NN on the memory-intensive feature map

transformations that increase activate requirements. We highlight the following implications of

this reduction in memory accesses, assuming REVD2 as the low-level deconvolution inference

algorithm. Using the quantitative models detailed in Section 6.5, we analyze and compare the

properties of convolution-based image upsampling algorithms using metrics of time and energy.

As in Section 6.5.3, we again consider the single-image super resolution network provided

by PyTorch [127] and shown in Figure 6.3 to upsampling the 320x480 image selected from

the BSD300 [114] dataset by a factor of 3. Note that, because the network is trained to do so

using the sub-pixel convolution (e.g., conv4 + pixel shuffle), we use this deep neural network to

analyze C-SP and C-NN. To analyze C-NN and D-NN, we design an analogous neural network

architecture in which the sub-pixel convolution is substituted with NN resize convolution (e.g.,

NN-interpolation + conv4).

1. Latency. As shown in Figure 6.7a, the detrimental impact of memory-intensive feature

map transformations on C-SP and C-NN increases with upsampling factor (r). Translating

C-SP to D-SP removes its reliance on the pixel shuffle post-processing. Translating

C-NN to D-NN not only avoids NN-interpolation pre-processing but also significantly

reduces the total MACs required to upsample an image, as discussed in Section 6.4. To

analyze the impact these kernel transformations have on system latency, we use the time

cost model detailed in Section 6.5.1 and consider the deep neural network depicted by

Figure 6.3. Upsampling the selected image using D-SP decreases system latency by 2.1x

when compared to C-SP and using D-NN decreases system latency by 2.8x when compared

5For simplicity of analysis, we ignore the impact of address calculations and modulo arithmetic, which are often
long-latency instructions.
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to C-NN.

2. Energy per Pixel. Energy consumption is dominated by data movement [76]. With

activation requirements dominating memory accesses, removing the memory-intensive

feature map transformations of C-SP and C-NN reduces the energy cost of upsampling an

image. Figure 6.7b shows how the energy cost of each algorithm increases with upsampling

factor (r). As each algorithm is generating an rH× rH×C output image, this is also the

relative increase in energy per pixel. To analyze the impact these kernel transformations

have on energy per pixel, we use the energy cost model detailed in Section 6.5.1 and

consider the neural network depicted by Figure 6.3. Upsampling the selected image

using D-SP decreases energy per pixel by 2.1x when compared to C-SP and using D-NN

decreases energy per pixel by 2.7x when compared to C-NN.

3. Performance per Energy. As discussed in Section 6.5.2, activation reuse is defined

as the ratio of useful compute work to activation requirements. The activation reuse

of convolution-based upsampling algorithms is tightly correlated with performance per

energy (PPE) [84]. Figure 6.8 shows how the activation reuse of each convolution-based

upsampling algorithm increases with upsampling factor (r). While removing the reliance

on memory-intensive feature map transformations improves the PPE of D-SP, it reduces

the PPE of D-NN as the reduction in MACs significantly outweighs the reduction in

memory accesses. This imbalanced reduction ultimately renders D-NN memory-bound as

the amount of compute work grows slower than the amount of memory accessed.

4. Scalability. The ratio of useful computations to memory accesses (i.e., arithmetic intensity)

implies the scalability of an algorithm. As described in Section 6.5.3, algorithms with an

arithmetic intensity lower than the machine balance point are ultimately bound by memory

bandwidth [167]. Algorithms with an arithmetic intensity higher than the machine balance

point are ultimately bound by compute resources and are more likely to see performance

gains as resources scale [28]. For each convolution-based upsampling algorithm, we use
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the roofline models depicted in Figure 6.9 to visualize the relationships of their arithmetic

intensities to the time and energy machine balance points. We further show how these

relationships change with upsampling factor in Figure 6.10. Unlike C-SP, C-NN, and

even D-NN, D-SP remains compute-bound in both time and energy as upsampling factor

increases. With compute work dominating memory accesses, the increased arithmetic

intensity of D-SP implies increased time and energy efficiency as compute resources

scale [28].

These trends do not hold for all selections of deconvolution formulations. Deep learning

frameworks commonly use the fractionally strided deconvolution (STRD) formulation to leverage

unmodified convolution accelerators [1, 127]. However, the zero-insertion requirements on the

input feature maps exponentially increase the data transfer penalties. Figure 6.6 shows how

time and energy costs increase with upsampling factor. Once again considering the deep neural

network depicted in Figure 6.3, using REVD2 as the low-level deconvolution algorithm in

place of STRD reduces latency by 19x and reduces energy per pixel by 6.8x, as estimated

using the time and energy cost models detailed in Section 6.5.1. As shown in Table 5.1, the

compute and activation requirements of transforming deconvolution to convolution (TDC) are

the same as REVD2. As such, the TDC zero-insertion requirements on the learned kernels

have negligible impact on high-resolution images. However, as discussed in Section 5.5, the

functional correctness of TDC breaks down when attempting to tile the workloads in sizes not

evenly divisible by the stride (S). Additionally, the address calculations are heavily modulo-based

when minimizing the cost of stitching together the data-independent output tiles from TDC.

These penalties respectively lead to under-utilized hardware resources and longer latency but do

not show in this simplified quantitative model of hardware performance. We aim to quantify this

impact in future work.
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6.7 Conclusions and Future Work

Cloud computing systems can have nearly limitless resources, making them ideal for

resource-intensive tasks such as data storage, data processing, and model training. However,

real-time deep learning applications often require edge computing frameworks to improve system

latency and energy efficiency by executing inference locally on edge devices without reliance on

a stable internet connection [44, 148].

We propose a novel edge computing paradigm for real-time convolution-based image

upsampling applications that separately considers algorithms for training in the cloud and

inference at the edge. The use of sub-pixel or resize convolution is confined to training in the

cloud to minimize the data transfer penalties incurred by the memory-intensive feature map

transformations they require for inference. The learned convolution kernels are then transformed

into deconvolution kernels without sacrificing the image fidelity learned in training. These

deconvolution kernels are then deployed for inference at the edge using our improved reverse

looping deconvolution algorithm, which we refer to as REVD2. We summarize our results as

follows:

1. Using quantitative models of time and energy, we show that executing deconvolution

inference at the edge with REVD2 improves both system latency and energy efficiency

when compared to sub-pixel or resize convolution counterparts (Section 6.5).

2. When optimizing for energy efficiency and scalability, we show that training with sub-pixel

convolution in the cloud and then transforming the learned kernels using the weight shuffle

for deconvolution inference at the edge minimizes the pressure on memory bandwidth and

maximizes energy efficiency (Section 6.6).

3. When optimizing for latency and energy consumption, we show that training with nearest

neighbor resize convolution in the cloud and then transforming the learned kernels using

the weight convolution for deconvolution inference at the edge minimizes the time and
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energy costs incurred by upsampling an image (Section 6.6).

4. To upsample images selected from the BSD300 [114] dataset, we consider the pre-trained

single-image super resolution network provided by PyTorch [127] and estimate that using

REVD2 for deconvolution inference at the edge improves system latency by 2.1x or 2.8x

and energy efficiency by 2.1x or 2.7x when compared to sub-pixel or resize convolution

counterparts, respectively (Section 6.6).

In future work, we aim to extend our analyses to further quantify each algorithm’s

adaptability to the underlying constraints of a target hardware architecture. Additionally,

we hope to build an energy-efficient accelerator designed to exploit the parallelism that is

exposed from REVD2. Code for each algorithm discussed in this paper can be found at

https://github.com/icolbert/upsampling.
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(a) D-SP: Time Cost (b) D-NN: Time Cost

(c) D-SP: Energy Cost (d) D-NN: Energy Cost

Figure 6.6. We analyze the effect of workload size on time and energy costs for each low-level
deconvolution algorithm. Here, we show how these costs increase as a function of upsampling
factor (r). For clarity, we normalize all estimates to the cost of using REVD2 when r = 1 such
that IH =OH =H. Intuitively, as r increases, the workload increases, thus increasing the time and
energy costs of each algorithm. The left column, (i.e., (a) and (c)) shows how time and energy
costs increase for each of the three low-level deconvolution algorithms under consideration
(i.e., REVD2, TDC, and STRD) assuming the high-level algorithm was derived from sub-pixel
convolution (D-SP). Similarly, the right column (i.e., (b) and (d)) shows how time and energy
costs increase for deconvolution as derived from nearest neighbor resize convolution (D-NN).
As further discussed in Section 6.5.1, fractionally strided deconvolution (STRD) formulation
does not scale as well as REVD2 and TDC, whose costs are nearly identical as the upsampling
factor (r) increases.
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(a) Time Cost (b) Energy Cost

Figure 6.7. We analyze the effect of workload size on time and energy costs for each high-level
convolution-based image upsampling algorithm. For clarity, we normalize all estimates to the
cost of using deconvolution as derived from sub-pixel convolution (D-SP) when r = 1 such
that IH = OH = H and assume REVD2 as the low-level deconvolution algorithm. Again, each
experiment assumes a 1024×1024×3 input image upsampled using a standard 3×3 kernel.
As shown in Table 6.2, the compute (C) and activation (A) requirements of C-SP and C-NN are
equal. With data movement dominated by activations, any variance in weights (W ) is minimally
impactful, making their costs nearly identical as the upsampling factor (r) increases.

(a) (b) D-SP (c) D-NN

Figure 6.8. We use the compute and memory requirements from Tables 5.1 and 6.2 to calculate
the activation reuse for each convolution-based image upsampling algorithm. Following the
work of Jha et al. [84], we use this metric to estimate the energy efficiency of each algorithm
as a function of upsampling factor (r). Each experiment assumes a 1024× 1024× 3 input
image upsampled using a standard 3×3 kernel. Note that the compute (C) and activation (A)
requirements of the high-level algorithms C-SP and C-NN are equal as are those of the low-level
algorithms REVD2 and TDC. Thus, their respective activation reuse, measured as the ratio of
compute operations to bytes of activations transferred, are nearly identical as upsampling factor
(r) increases.
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(a) (b) (c)

(d) (e) (f)

Figure 6.9. We use the roofline models of time (top row) and energy (bottom row) to visualize
the performance of the pre-trained single-image super resolution example shown in Figure 6.3
provided by PyTorch [127]. Because the network is trained to upsampling an image by a factor of
3 using the sub-pixel convolution (e.g., conv4 + pixel shuffle), we use this deep neural network to
analyze C-SP and C-NN. To analyze C-NN and D-NN, we design an analogous neural network
architecture in which the sub-pixel convolution is substituted with NN resize convolution (e.g.,
NN-interpolation + conv4). For each experiment, we use the 320x480 image selected from the
BSD300 [114] dataset and assume the GPU summarized in Table 6.1. In each plot, the black
curve is the roofline model and the vertical black line is its respective balance point using values
provided by [28]. The roofs of each model are normalized to peak performance. As discussed
in Section 6.5.2, we use arithmetic intensity for the time roofline model [167] and activation
reuse for the energy roofline model [28, 84]. Note that REVD2 and TDC have nearly the same
activation reuse or arithmetic intensity.

124



(a)

Figure 6.10. To visualize algorithm scalability, we add the time balance point (Bτ ) and energy
balance point (Bε ) of the GPU summarized in Table 6.1 to the data reuse patterns of Figure 6.8a.
The memory-intensive feature map transformations of C-SP and C-NN render each algorithm
memory-bound in both time and energy. Avoiding the pixel shuffle post-processing of C-SP
drastically increases the efficiency of D-SP for inference. The increased activation reuse implies
increased time and energy efficiency as compute resources scale because the overwhelming
majority of work is dedicated to computations rather than memory accesses [28]. For D-NN, the
significant reduction in MACs outweighs the reduced memory accesses, ultimately rendering
it memory-bound in both time and energy as the memory pressure increases faster than the
compute workload as upsampling factor increases. Unlike C-SP, C-NN, and even D-NN, D-SP
remains compute-bound in both time and energy as upsampling factor (r) increases.
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Chapter 7

Hardware Acceleration for Deconvolution
Inference

When trained as generative models, deep learning algorithms have shown exceptional

performance on tasks involving high-dimensional data such as image denoising and super

resolution. In an increasingly connected world dominated by mobile and edge devices, there

is surging demand for these algorithms to run locally on embedded platforms. FPGAs, by

virtue of their re-programmability and low-power characteristics, are ideal candidates for these

edge computing applications. As such, we design a spatiotemporally parallelized hardware

architecture capable of accelerating a deconvolution algorithm optimized for power-efficient

inference on a resource-limited FPGA. We propose this FPGA-based accelerator to be used for

deconvolutional neural network (DCNN) inference in low-power edge computing applications.

To this end, we develop methods that systematically exploit micro-architectural innovations,

design space exploration, and statistical analysis. Using an AMD-Xilinx PYNQ-Z2 FPGA, we

leverage our architecture to accelerate inference for two DCNNs trained on the MNIST and

CelebA datasets using the Wasserstein GAN framework. On these networks, our FPGA design

achieves a higher throughput-to-power ratio with lower run-to-run variation when compared to

the NVIDIA Jetson TX1 edge computing GPU.

126



7.1 Introduction

Generative models are widely used as a means of parameterizing distributions of high-

dimensional signals and structures. Among the various types of generative models, the generative

adversarial network (GAN) first proposed by Goodfellow et al. [57] yields superior performance

on applications such as image generation, super resolution, and language modeling [125]. The

learning strategy of the GAN jointly optimizes a generator G and a discriminator D. While the

generator G is trained to minimize the distance between the ground truth distribution Pg and

the model-parameterized distribution Pθ , the discriminator D is trained to separate Pg from Pθ .

Although training optimizes both G and D, only the generator G is needed for inference when

drawing samples from Pθ .

The typical GAN framework shown in Fig. 7.1 involves convolution layers, where D

is a convolutional neural network (CNN) and G is a deconvolutional neural network (DCNN).

Traditionally, these networks are deployed on CPUs and GPUs using cloud computing infras-

tructures. However, the proliferation of applications for mobile and edge computing has created

new opportunities to deploy these models on embedded hardware for local inference. In contrast

to CPUs and GPUs, FPGAs offer large-scale fine-grained parallelism and provide consistent

power-efficient throughput, making them well-suited for these edge computing applications [15].

In this paper, we consider DCNN inference acceleration using a resource-limited AMD-

Xilinx PYNQ-Z2 FPGA. We benchmark our implementation against the NVIDIA Jetson TX1

GPU, a processor heavily optimized for edge computing applications, and achieve a superior

throughput-to-power ratio. The contributions of this paper are as follows:

• Significant enhancements over the algorithm proposed by [185] that reduce resource

utilization, improve dataflow, and exploit memory hierarchy

• A spatiotemporally parallelized hardware architecture specifically designed to exploit these

algorithmic innovations for power-efficient acceleration of DCNN inference
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Figure 7.1. We visualize the generative adversarial network architecture [57]. After training on
the cloud, we map generator G onto local hardware for low-power inference at the edge.

• An application of high-dimensional statistical analyses to balance the trade-off between

hardware performance and generative quality when exploring network sparsity

7.2 Related Works

Previous works take architectural and algorithmic approaches to accelerate deconvolution

workloads. The authors in [176] and [177] reformulate the deconvolution operation as a sparse

convolution and build complex architectures that unify SIMD and MIMD execution models.

Wang et al. [159] also use the zero-insertion deconvolution algorithm, approaching the problem

by parallelizing over a uniform 2D systolic array hardware architecture to accelerate both 2D and

3D DCNNs. Liu et al. [104] propose a tiling method with a memory-efficient architecture that

limits off-chip memory accesses at the cost of increased resource utilization via on-chip buffering.

Chang et al. [21, 22] propose an accelerator that transforms the deconvolution operation into a

convolution (TDC). Given a stride of S, this operation requires S2 as many filters and potentially

zero-padding both the learned weights. To improve dataflow, Tu et al. [152] explore the on-chip

re-stitching of the disjoint output feature maps resulting from the TDC method. Mao et al. [112]

adapt this method in a piecewise manner to handle the load imbalance resulting from zero-

padding at the cost of increased hardware complexity. The algorithm first proposed by Zhang et

al. [185] avoids the zero-insertion and zero-padding requirements of the methods outlined above.

We adapt this algorithm to a parallel hardware architecture as described in Sections 7.3 and 7.4.
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Figure 7.2. Visualization from [185] for mapping input and output blocks in reverse looping
deconvolution algorithm.

7.3 Deconvolution Algorithm

Standard deconvolution arithmetic traverses the input space, which requires a summation

of regions that overlap in the output space [48]. When realized in hardware, accumulating over

these overlapping regions can require complex dataflow and increase resource utilization via on-

chip buffering [22, 104, 185]. To circumvent this, Zhang et al. [185] redesign the deconvolution

algorithm to directly loop over the output space at the cost of the expensive modulo arithmetic

required to calculate dependent input pixels. We propose the following three enhancements to

adapt this reverse looping algorithm to a spatiotemporally parallelized hardware architecture.

(1) Preprocessing modulo arithmetic. Standard deconvolution arithmetic calculates the indices

of dependent output pixels oh from input index ih using weight index kh, stride S, and padding P,

as shown in Eq. 7.1. Here, tiling along the input space leads to overlapping blocks in the output

space, creating communication overhead [22, 152, 185].

oh = ih×S+ kh−P (7.1)

To avoid this, Zhang et al. [185] use the mapping in Fig. 7.2 to loop over the output space and

determine ih using Eq. 7.2.

ih =
oh +P− kh

S
(7.2)

When S > 1, Eq. 7.2 yields fractional values. To ensure functional correctness, Zhang et al. [185]
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Algorithm 13. We provide pseudocode for our reverse looping deconvolution dataflow, where
each kernel loads inputs, weights, and offsets into local memory before computing each output
block.

y← initializeToBias()
for ic = 0, ic++, while ic < IC do

x← loadInputBlock()
w← loadWeightBlock()
for kh = 0, kh++, while kh < K do

for kw = 0, kw++, while kw < K do
w = w[kh,kw]
fh = loadOffset(kh)
fw = loadOffset(kw)
for ôh = 0, ôh+=S, while ôh < TOH do

for ôw = 0, ôw+=S, while ôw < TOW do
oh = ôh + fh
ow = ôw + fw
ih = (oh +P− kh)/S
iw = (ow +P− kw)/S
y[oh,ow]← w×x[ih, iw]

pushOutputBlock(y)

propose a stride hole skipping technique, adding an offset value fh given by Eq. 7.3.

fh = mod(S−mod(P− kh,S),S) (7.3)

However, the resulting input pixel calculation given by Eq. 7.4 relies on modulo arithmetic which

increases resource utilization and power consumption when implemented in hardware.

ih =
oh +P− kh + fh

S
(7.4)

Observing that, in Eq. 7.3, fh is only dependent on kh, we pre-compute and cache these offsets

for each value of kh. This process reduces the number of modulo operations to 2K, where K is the

weight filter size. This minimizes resource utilization and on-chip memory as K tends to be small.

(2) Dataflow Optimization. Loop interchange is an algorithm-level optimization that can be

applied to improve the sequential computation order of operations [110]. We reorder the loops

of the deconvolution arithmetic in [185] to sequentially traverse the weight space and maximize
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data reuse. Increasing weight-level data reuse also increases the impact of zero-skipping - a

conditional execution paradigm that eliminates redundant operations by only processing non-zero

elements.

Additionally, we exploit the opportunities for data-level parallelism exposed by directly

looping over the output space. Unlike the standard deconvolution algorithm, which suffers from

the overlapping sum problem, the output space of the reverse looping deconvolution can be

tiled into smaller batches to execute concurrently on a parallelized hardware architecture. When

the size of the output feature space increases owing to the upsampling nature of deconvolution

operations, the workloads and memory requirements remain constant, simplifying hardware

design requirements.

(3) Decoupling external memory accesses from compute operations. Reverse looping decon-

volution arithmetic using [185] produces a non-sequential external memory access pattern over

the input space. To mask any resulting overhead, we decouple all external memory accesses

from compute operations to allow for the cascaded execution of these sub-tasks on a pipelined

hardware architecture and restrict non-sequential memory access patterns to faster on-chip

memory. This is done by first computing the pixel addresses of an input block using Eq. 7.4,

then sequentially reading these addresses from external memory, and finally caching the data

on-chip to be distributed. To do this, we determine the tile size TIH of the input block needed for

each output block from the output tiling factor TOH and the layer parameters using Eq. 7.5. The

resulting deconvolution kernel given by Algorithm 13 can then continuously compute TOH ×TOW

output blocks with a non-sequential access pattern over locally cached TIH ×TIW input blocks

using K×K weight blocks as the next set of inputs are fetched from external memory using

sequential reads.

TIH = max(ih)−min(ih) =
⌈

TOH

S

⌉
+

⌈
K
S

⌉
(7.5)
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Figure 7.3. We design a spatiotemporally parallelized hardware architecture customized to
accelerate the deconvolution algorithm proposed in Section 7.3 for low-power DCNN inference
at the edge.

7.4 FPGA Hardware Architecture

To accelerate DCNN inference on an FPGA, we design a SIMD (single-instruction

multiple-data) hardware architecture with replicable compute units (CUs) that exploits the op-

portunities for both spatial and temporal data-level parallelism that arise from the optimizations

discussed in Section 7.3. As depicted in Figure 7.3, the dataflow of the deconvolution accelerator

IP block is split into the three pipelined stages outlined below.

(1) Reading Inputs and Weights. The limited amount of on-chip memory is a bottleneck

when accelerating large networks on a resource-limited FPGA. As such, the input feature maps

and network weights are stored in off-chip DDR memory and fetched using AXI interconnects.

As described in Section 7.3, decoupling external memory accesses masks the communication

overhead when executed in a pipelined architecture. We separate input and weight external

memory accesses into dedicated hardware blocks to concurrently read from DDR memory and

stream to CUs through on-chip FIFOs. This efficient memory hierarchy is realized by on-chip

buffers using BRAMs to store tiled input and weight blocks to be processed by CUs.

(2) Spatially Parallelized Compute Units. Looping over the output feature map enables
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(a) MNIST DCNN (b) CelebA DCNN

Figure 7.4. We consider the network architectures shown above for inference acceleration on
low-power hardware.

partitioning deconvolution arithmetic into tiled batches that can execute concurrently across an

array of CUs. The CUs follow a SIMD execution model, where each workload is dependent on

blocks of inputs and weights that are sequentially streamed in through FIFOs and accumulated.

The CUs each perform the deconvolution arithmetic outlined in Algorithm 13 using on-chip

DSP units and the resulting TOH ×TOW output block is streamed out to be written to off-chip

memory. To maximize the occupancy of these CUs, we explore the design space as outlined in

Section 7.5.1 to optimize the output tiling factor.

(3) Writing Output Pixels. Traversing the output space and avoiding the overlapping sum

problem allows for a one-shot write to external memory for each output block computed by a

CU. We dedicate a hardware block to stream the outputs from each element in the CU array to

be written to external DDR memory. This minimizes communication overhead with DDR and

on-chip BRAM memory requirements.

7.5 Experimental Results

We implement our architecture on an AMD-Xilinx PYNQ-Z2 board at 32-bit fixed-point

precision using the Vivado Design Suite. With the available hardware resources, we synthesize the
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(a) MNIST DCNN (b) CelebA DCNN

Figure 7.5. The optimal tiling factor TOH maximizes attainable throughput while satisfying the
peak sustainable bandwidth constraint as measured by the STREAM benchmark [115].

design with 16 CUs at 125MHz in Vivado HLS using HLSLIB [41] and benchmark performance

on the two DCNNs depicted in Figure 7.4. Each DCNN is trained on the MNIST and CelebA

datasets using the WGAN-GP [60] framework.

7.5.1 Design Space Exploration

In this work, we explore square tiling factors over the output space such that TOH = TOW

and use the design space exploration methodology proposed by Zhang et al. [181] to optimize

TOH . Because our accelerator multiplexes through the DCNN layers, we optimize TOH globally

across all layers for each network architecture as a unified hardware design parameter as in [181].

Fig. 7.5 depicts all legal solutions for both the MNIST and CelebA DCNNs. Any solution to

the left of the peak sustainable bandwidth slope requires a higher bandwidth than the FPGA

can sustain [181]. The optimal TOH (indicated in green) maximizes attainable throughput while

satisfying the hardware constraints. Table 7.1 provides the values used in this work and the

resulting FPGA resource utilization. Note that the PYNQ-Z2 board is extremely resource-

constrained, using only 9% of the DSP blocks used in [176] and 5% of that used in [159]

and [21].
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Table 7.1. AMD-Xilinx PYNQ-Z2 Resource Utilization

TOH DSP48s BRAMs Flip-Flops LUTs
MNIST 12 134 50 43218 36469
CelebA 24 134 74 48938 40923

7.5.2 Performance-per-Watt Comparison with Edge GPU

GPUs are power-hungry processors heavily optimized for large batch processing of

on-chip memory [64]. Unlike the FPGA, which has been shown to provide workload-insensitive

throughput with better power efficiency, the time-varying optimizations leveraged by modern

GPUs give rise to a non-deterministic execution model that can rarely provide the consistent

performance that is required by edge computing applications [15, 87]. Additionally, modern

GPUs use hardware throttling (i.e., reducing clock frequency) to lower power and cool the chip

when it gets hot, further increasing run-to-run variation [123]. This makes FPGAs the more

suitable choice for edge computing applications when consistent throughput and power efficiency

are key requirements [15].

In our experiments, we compare the throughput to power ratio of our AMD-Xilinx

PYNQ-Z2 FPGA design against the heavily optimized NVIDIA Jetson TX1 edge computing

GPU. As in [122], we evaluate the GPU with PyTorch [127] using nvprof to collect performance

and power numbers for each layer in each DCNN. We measure FPGA power using a USB Power

Table 7.2. We measure the mean and standard deviation (in parenthesis) of the throughput-to-
power ratio (GOps/second/Watt) of each layer in each DCNN on each processor over 50 runs.

MNIST L1 L2 L3 Total
FPGA 2.4 (0.02) 3.0 (0.01) 2.8 (0.01) 2.9 (0.01)
GPU 1.3 (0.17) 2.7 (0.42) 1.8 (0.25) 2.1 (0.18)

CelebA L1 L2 L3 L4 L5 Total
FPGA 4.0 (0.00) 4.0 (0.00) 4.0 (0.00) 2.3 (0.00) 1.2 (0.01) 3.9 (0.00)
GPU 3.2 (0.66) 4.4 (0.81) 3.9 (0.66) 4.4 (0.69) 2.2 (0.40) 3.6 (0.31)
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(a) Hardware Performance (b) Generative Quality (c) Balancing Trade-Off

Figure 7.6. While unstructured sparsity leads to FPGA speed-ups when using conditional
execution paradigms like zero-skipping, removing learned parameters from a network invariably
leads to degradation in generative quality. We propose a design metric to balance this trade-off.

Meter Voltage Detector and collect performance numbers using hardware counters. We compute

total network throughput as the sum of the arithmetic operations of all layers divided by the

sum of the execution time of all layers. Our results provided in Table 7.2 show that our design

yields a higher total network throughput-to-power ratio with lower run-to-run variation when

compared to the GPU for both DCNNs. As noted in [181], unified design parameters such as TOH

simplify implementation cost but may be sub-optimal for some layers. We observe this behavior

for the CelebA DCNN as shown in Table 7.2. In future work, we will investigate dynamically

reconfiguring tiling factors to optimize dataflow per layer.

7.5.3 Sparsity Experiments

Weight pruning is a widely studied technique used to reduce network power consumption

and memory footprint on mobile and edge computing platforms [63]. It’s difficult for GPUs to

effectively accelerate this form of unstructured sparsity as they are highly sensitive to conditional

execution paradigms such as zero-skipping [15, 122]. Alternatively, FPGA performance is stable

under such paradigms and can yield significant speed-ups when only executing non-zero valued

computations [15, 23]. Previous works optimizing DCNN dataflow for unstructured sparsity fail

to account for this degradation [23].

In our experiments, we systematically prune DCNN weights by their magnitude as done

in [63]. To visualize both hardware performance and generative quality, we analyze the rates of
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change of both system latency and maximum mean discrepancy (MMD) distance, respectively.

MMD distance is used to compute the dissimilarity between model-parameterized distribution Pθ

and ground truth distribution Pg and, in practice, is empirically estimated by drawing independent

samples {x1, · · · ,xn} ∼ µ and {y1, · · · ,yn} ∼ ν from distributions Pθ and Pg, respectively,

where kernel k maps to a reproducing kernel Hilbert space [19, 59]. It follows that the MMD

distance given by the equation below is zero if and only if the distributions are identical. Here,

we explore the use of MMD with the standard Gaussian kernel k(x,x′) = exp(∥x−x′∥2) using

the Euclidean distance, selecting the median euclidean distance between ground truth samples as

the bandwidth [59].

MMDk(µ,ν) = Eµ,µ [k(X ,X ′)]+Eν ,ν [k(Y,Y ′)]−2Eµ,ν [k(X ,Y )]

Pruning more weights yields higher speed-ups when skipping computations with zero-

valued weights, as shown in Fig 7.6-a. However, as shown in Fig 7.6-b, the generative quality

decreases with added sparsity. To balance the trade-off between hardware performance and

generative quality, we propose an optimization metric given by Eq. 7.6. Here, t0 and d0 denote

the execution time and MMD distance with respect Pg using the full weight matrix θ0 while tp

and dp denote that of the sparse matrix θp where di is given by MMD(Pg,Pθi). Multiplying the

rate of change of system latency and MMD distance leads to a concave optimization curve with

a peak representing the sparsity level that balances image quality with execution time.

d0

dp
× t0

tp
(7.6)

7.6 Conclusions and Future Work

In this paper, we adapt the deconvolution algorithm first proposed in [185] to a paral-

lelized execution model by reducing resource utilization, improving data flow, and exploiting

memory hierarchy. We design a spatiotemporally parallelized hardware architecture to accelerate

this algorithm for DCNN inference on an AMD-Xilinx PYNQ-Z2 FPGA. For edge computing

applications when consistent throughput and power efficiency are key requirements, we show that
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this resource-limited FPGA achieves a higher throughput-to-power ratio with lower run-to-run

variation than the NVIDIA Jetson TX1 edge computing GPU. To balance the trade-off between

generative quality and hardware performance, we propose an MMD-based optimization metric

when exploring unstructured sparsity. In future work, we will adapt this architecture to other

GANs and investigate the effect of bit width reduction on hardware performance and generative

quality.
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Chapter 8

Conclusion

In recent years, deep learning-based solutions have achieved state-of-the-art performance

on image upsampling tasks by training deep neural networks (DNNs) on large annotated datasets

(e.g., super resolution [144, 149], image generation [57, 74, 89], and style transfer [134, 190]).

However, the adoption of these solutions in real-time applications is limited by the deployment

costs of the resulting models as end-user devices impose significant compute and memory

constraints on inference pipelines. To address this challenge, researchers and practitioners have

proposed methods to reduce inference costs without sacrificing model quality. While many

of these works focus on DNNs designed for image downsampling, we show that specifically

tailoring optimizations for image upsampling workloads can lead to more efficient and effective

deployment of deep learning-based image upsampling networks.

This dissertation detailed specialized hardware-aware deep learning techniques, infer-

ence algorithms, and compute graph transformations designed for the core layers within deep

learning-based image upsampling networks (e.g., sub-pixel convolutions, resize convolutions,

and deconvolutions). By integrating our proposed inference optimization techniques into an

end-to-end pipeline, we can achieve significant improvements in hardware performance and

efficiency without sacrificing model quality. Furthermore, by co-designing our software optimiza-

tions along with our specialized hardware architecture, we further reduce resource utilization

and improve dataflow on parallelizable platforms such as FPGA-based inference accelerators,
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leading to a more effective deployment on resource-constrained platforms such as mobile or

edge devices.

In summary, our contributions address the deployment costs of deep neural networks

(DNNs) designed for real-time computer vision applications while improving power efficiency,

throughput, and resource utilization without adversely impacting model quality. As deep learning

research continues to progress at an accelerating pace, the solution design space continues to

expand. By focusing on improving the hardware performance and efficiency of the core image

upsampling algorithms, we develop adaptable solutions that keep pace with this rapidly evolving

landscape since most state-of-the-art computer vision models consist of the same fundamental

building blocks [74, 134, 136]. In future work, we aim to explore the intersection of this work

with automated design space exploration techniques such as neural architecture search (NAS)

algorithms.
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