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FUNDAMENTALS OF THE PARTICULATE PHASE
IN A GAS-SOLID MIXTURE

Woon-Shing Yeung#*

ABSTRACT

Some fundamental behaviors of a gas-solid mixture were studied
from a microscopic point of view. For a dilute suspension, one can
look upon it as a mixture of a continuum gas, the carrier fluid, and
a semi-rarefied gas, the solid particles. The boundary conditions
‘0of such a suspension were examined in detail and finally, the general
Eulerian formulation of the "particle gas'" was given and specialized

to a curved pipe geometry.

*Materials and Molecular Research Division, Lawrence Berkeley
Laboratory, University of California, Berkeley, California 94720.



Introduction

There are.two major methods to handle the particle phase in a dilute
suspension: the. Lagrangian descriptioh and the Eulerian description. The

Lagrangian description fixes attention on a single particle throughbut its

"whole trajectory in the region of interest. Under simplified assumptions, it

involves only solving a set of ordinary differential eqhations subject to given
initial conditionsl. The Eulerian formulation, on the other hand, assumes the
particle phase as a continuum and the resulting governing equations for the
particle phase are quite similar to the well-known Navier-Stokes equations in
fluid mechanics‘(see Section II). Even under éimplified assumptions,’it
requires the solution of a set of partial differential equations subject to
both initial and boundary conditions. Of most importance, the continuum
assumption must be justified in using the Eulerian formulation of the
particulate phase. Fortunately, most practical physical systems involving
gas~-particle mixtures satisfy the continuum assumption. " For a discussion of
the continuum assumption, see, for example, Sooe. In those éystems where
particle-particle interaction is insignificant, the Lagrangian technique
readily generates the particle trajectories. On the other hand, if particle-
particle interaction cannot be neglected, as in a recirculating zone or

turbulence regions, the solution of the Lagrangian formulation is a quite



formidable task. ForAsuah systems, the use of the Eulerian formulation is
conceptually more corréct since tﬁa randoﬁness of the particulate.phase is
accounted for by way of the formulation. Many authofs, in particular .
8003’u’5;6, Siagléton7 and Marble8,vhave successfully applied the Eulerian
fofmulation to solve the particulate phase of a dilute auspension of some
'Simple'bhyslcalvéystema, such as pipe flow and flow over a flat plate. In
faat,'some of the papars are sovgeneral that even électromagnetic effect and
depositioh’of'the particles are inclﬁded. ‘Unfortunately, there is scarca
literature dealing with more éomplicated systems than tﬁose mentioned above.
Also, little-effort is devoted to the fundamental behavior of the particulates
in a suspension,:especially near the physical boundary of the system. lt is
the purpose éf.the present paper to discuss some fundamental aspectsaof a -dilute
suspension from the molecular point of view and to give a father general

Eulerian formulation'and appropriate boundary conditions as applied to the gas-~

particle flow through a curved pipe with circular cross-section in a coal gasi-

fication -environment. No attempt has been made to solve the resulting equations.

II. Molecular aspects of a gas-particle mixture.

The fundamentals of a gas-barticle mixture must be undérstood before the
formulation of the general governing equations for each phase. Of barticular
importaace are the transport properties of each individual phase and phase-
phase interactions. One way to calculate these-quantitias'is by use of kinetic
theory of a mi#ture of gases,‘assuming, of course, the validity of the continuum
_approxlmation of the particle phase. The major task is to solve the Boltzmann
equation‘of transporf. However, it is not the'purpose of this section to adopt
the mathematical methods of kinetic theory to the gas-particlé system; but
rather, to bring out some basic features of the gas-particle system by looking

upon it from a molecular point of view.
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A dilute mixture of solid particles and gas is very similar to a mixture

" of gas-molecules and electrons, respectively, as far as the size diétribution

is concerned. Since particles in a dilute suspension are much larger than the
gas moleculés, their random intensity of motion, or thermal agitation, is very
muéh less than that of the gas molecules. Thus a dilute suspension. is similar

to a Lérentzian gas9 ahd it is logical to follow the treatment of Lorentzlo if~

one tries to attempt the problem from the Boltzmann equation. For a further

. . - . . L
discussion, the interested reader is referred to Culick l.

Suppose a gas-solid mixture is at rest in a container. Because of the.

random motion of the gas molecules, the solid particles would undergo Brownian

 motion. The R.M.S. (root-mean-square) speed of a particle will be given by the

Einstein12 formula

(2)F o (—XI 42 (1)
P hra 5;

with

— _ »
(CIZ))2 the R.M.S. speed of a particle,

k Boltzmann constant,

T body temperature of the particle,

a particle radius,

Bp the materigl density of the particle.

As an example, we take T =1255.5°K, pp=:3.89><10—6gm/c.c and a==lO-2cm, which
are the conditions found inside a coal gasifier. From equation (1), we can
easily calculate'(gg)% as 0.2 cm/sec. It is seen that the R.M.S. speed of a
particle is much less than that of a gas molecule, which has a R.M.S. molecular
speed comparable to sound speed of the gas phase. Hence, if there is a macro-
scopic motion of the gas-particle mixture, say about 1000 cm/sec, one can

generally neglect the Brownian motion of the particles. On the other hand, one

may not generally neglect the collisions between particles themselves. It is

3.



qﬁite misleédiﬁg to say that when the intefparticle distanée is large compared
with the barticle size, one.cén‘neglect the collisions between parficles. As
an example, the intermolecular disﬁance df hydrogen gas at N.T.P. condition is
about 10 times the mélecular”siée, which is iarge compared with the molecular

9

size; yet the collision frequency is as high as lO2 between all hydrogen

molecules} Although the collision frequency between particles themselves is

29

very much-less than 10~ as wiil be shown below, collision may be significant
even in a dilute'suspension constituting 10% by weight of particles.

We néw proceed to estimate the various interaction lengths (méan’free path)
and collision ffequency for a dilute suspension. The results only apply to
the equilibrium case, i.e., the Suspension at rest in a container. However,
they serve as good coﬁparisons even when the suspension undergoes a macroscopic
‘motion. The following formulae can be found in Chapman and Cowlingl3. We

shall assume that the molecules and particles are smooth, rigid, elastic

spheres. Let ‘ : g

' 1 .
= 5(g, +
oy, = 3(oyta,) o | (2)
where
o) diameter of a'particle
5 : diameter of a molecule.

The total number of collisions between pairs of particle and molecule per

unit time is

5 2nkTmO 1 '
- — 92
Ny =N,y = 20300, ( mom,) ) | (3)
where

ny : number density of particles per unit volume of mixture

n, : number density of molecules per unit volume of mixture

m mass_bf a particle
- m, : mass of a molecule



.!‘()

and .

mo ='ml_-i-m.2 (4)

It follows that the collision frequencies between molecules-theméelves and
particles themselves are

. _ 2 2mkT\E S
Nop = hna"e(mz) ’ o (5)
22 (mEINE - <
Nll‘— hnlcl(ml )2 . | (6)

The collision frequehcy,for a particle with a particle is

fllz—n_’ P _ ) | : (7)

for a molecule with a molecule

22 " n

for a particle with a molecule

12 " n
and for a molecule with a particle

£y = 'E; . - (10)

4. = e : (11)

™, oy
Similarly, between molecules and moclecules

1122 = VE. 5 (12)
TTn202

between particle and all molecules



- T
: _'\/._2- 1 .
he =V "2 | (13)
12" - -

and between a molecule and all particles

[T ‘ '

1 1 . :

1"V "o | (24) N
. | | ™M . | K}

For the same condition used above to calculate the R.M.S. speed of the particles, ‘P‘

it is found that

~ 0.3 collisions/sec,

fil
,f21v~n2 x103 collisions/sec,
.Nll ~ 450 collisions/sec/cm3,
= : 22 s /3
and Ny, ~2x10 collisions/sec/cm
for nl==l.5)<lO3 particleé/cm3 and n2.==lO19 mblecules/cms, which correspond

to about 10% by weight of particles typical inside the coai gasifier.
'thvis‘evidgnt that particle-particle collision is negligible in comparison
with particle-molecule cdllisién. Since collision is the main mechanism of
exchanging momentum, one can,negleét thé interaction between particles themselves
and retain on1y>tﬁe interaction term between particle ana gas phase, in a macro-
scopic formulation of the system, such as the Eulerian formulation. The wbrd
macroscopic is crﬁcial in justification of neglecting particle-particle inter—
action, since microscopically there are still hso c'ollis_ions/seé/cm3 between -
particles, however negligible as compared t0 particle-molecﬁle collisions. If
we are to forﬁulate the motion of each particle,‘as is done in Lagrangian method,
these collisions must be taken into account.v Thus, to be rigofous_and'practicél,
some sdrt of statistical a%eragihg method and assumptions of the particle-
particle interaction should be inerduced in conjunction with fhe Lagrangian
-~techniqué for syétems where particle—barticlé.collision is significant, at

‘least in a microscopic scale. - No Such difficulty arises when using the Eulerian



approaéh because only éverage quantities are formulated in this approach. We
can also estimate the relative effect of each phase upon the other from
comparing the interaction lengths 4y, and f,,. From equations (13) and (14),

since ml:i>m2 and nl<:<:n2 in most dilute suspensions, it follows that

Loy > iy - ' _(15)
The longer the interaction length, the weaker the intefaction of one phase
upon the_other. Thus the effect of particle phase on the gas phase, as suggested

by Lel,is less prominent than the effect of the gas phase on the particle phase,

as suggested by 212.

. ITI. Boundary. conditions of the particle phase.

The derivation of appropriate conditions at a physical boundary can be
very complicated and difficult. As mentioned in the Introduction, there is
scarce literature discussing the boundary conditions of a suspension at a
solid surface. In this section, we shall discuss further the fundamental
aspects of a dilute suspension with the guidance of the results obtained in
Section II and the boundary conditions of the particle phase used hitherto by
other authors.

It is well known that the phenomenological no-slip condition on a solid
wall in conventional continuum fluid mechanics governed by the Navier-Stokes
equations is only approximately true. The actual boundary conditions must be
obtained from the solution of Boltzmann equation and suitable reflection laws
for the molecular impact with the wall. It also turns out that the usual
boundary conditions for use with the Navier-Stqkes equatioh are not the actual
macroscopic value of the gas velocity at the wall, because of the invariable
presence of the Knudsen layer (see Koganlh). In the regime of semi-rarefied

gas dynamics, the solution of the Naviei-Stokes equation together with the

7.



-so-called slip condition at'the:boundary_has beenvshown to be adeqﬁate in moét
cases. In the case of a gas mixture,.some'componentsvmay be in‘the élip flow
regime and others in the no-slip regime. The.exact derivation_of boundary
condition becoméé very complicated bécause of the interaétion among components.

The determination of which régime a flow belongs to depends on the magnitude ~‘?
of the appropriate mean frée_path of each componént. In é dilutg suspension v ’
Section IT shows that differentlmagnitudes of free paths exist and one may
expect that different flow regimes exist for different phases. Consequently,
vthe particle and gas phases do not satisfy the same boundary conditions. In
order to derive the proper boundary conditions for the particle phase, details
of the interaction between the particle and the solid boundary must be known.
The possibilities of attrition upon impact, embedding into thé wall énd dif-
ferent shapes éf the particles.render an exact derivation almost impossible.
However, ffom the estimation of fhe:mean free path of the ﬁarticle phase
(equation (11)) and comparison_with'the méan free path of the gas phase
(equation (125), there is feasdn to believé that the particulate phase is
similar to a semi-rarefied gas in the slip regime. Thus, some of the importanf
results derived for the semi-rarefied gas may be applied to the particle phase.

Before discussing this further, we shall mention that the particles that
constitute the particulate phase are very much different from the molecules
‘that constitute the gas phase. For a simple gas in the subsonié régibn, the
gas macroscopically can always adjust its streamline to align with the bouhdary
surface. Hence we only speak of.slip velocity tangential to the wall of the
gas. For a 'pérticle gas,' however, the streamlinés, or particle trajectories,
often do not align with the physical bOundéries. Thus, in addition to the slip -
vvelocity tangential to the wall, there is also a nonvanishing normal velocity
component of the particle phase at the wall. Macroscopically, this nonvanishing

normal velocity component causes deposition of the particles on the bouridaries.

8.



It should be noted depositidn is caused by the presence of field forces, such

as gravity force, electrostatic force,'etc. Once deposition occurs, a layer

~ of particles at the boundary may build up to a point such that a sliding bed

will proceed downstream6. The appropriate boundary condition for this case is
given by the conservation of the total particle flow:
2 {1 pgrya = ofmoyry o [ u, o, an-omay v, (16)
A pPp p A pw pW . -pw _
where

! 1 1ift probability due to 1ift force

o sticking probability depending on material properties

Oy : sticking probability due to adhesion

v, : 1lift velocity

va ¢ adhension velocity

P : perimeter of the cross-section A (Figure 1)

Py density of particles at packed béd condition

P : local particle phase density

wp : streamwise particle velocity in the direction s

and subscript w refers to the value at the wall unless otherwise stated.

The sticking velocity up can be approximated as6,
W

Up,, = (fp)u T v (17)

where (fp)u is the field force acting on the particle phase in thé normal,

or u, direction and T is the momentum equilibration time. If the particle

motion belongs to the Stokes flow regime, Tn is given by
o2
2
T = —'—%:— (18)
m9LL _

where Eb is the material density of the particdles. In general, T depends on

both the gas velocity and particle velocity. When there is no net deposition

9.



of the particles, the normal Velocify component at the.physical boundary
vanishes, even when field forces are present. Care must be taken not to
regard up ,-or.ény other variaﬁles, as the value individual particle éttains,
sinée an.ghdividﬁalrpartigle does bombard the wall with nonvanishing velocity
‘components normal té the wall..'It is only the average value of the ﬁormal |

velocity'components of all the particles at a’particular location on the wall

that vanishes.

Several constantS'weré introduced in (16). They are Oy Oy Ous Vis Voo Pye
Theoretically, these can be fbund by-a detailéd consideration of the statistical
mechanics of the particle phase; however, it is mdre practical to resort to
experiments. For the élip velocity components, we extend the corresponding
formula for one-dimensional rarefied gas-dynamics to our general three-dimensional

case:

pr = Cl(TW)V/u s (193)
"y S Cy(1 ) /n s (19v)

10.
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where ('rw)v is the wall shear stress of the particle phase in the v direction
and (tw)w is the wall shear stress of the particle phase in the W direction.
Cl and 02 are two phenomenoclogical constants of proportiohality_and g is the
viscosity of the suspension. It is very important_to realize:that equation
(192) and (19b) are the only plausible generalizations to those fqrﬁﬁlaé
obtained in rarefied gas dynamics. There is nd-rigorous proof of théir

applicability to a dilute suspension. Soo and Tung6 have proposed the

following:

v =LA, | (20)

p, D

where Gé is' the slip velocity vector at éhe Wall’;éw is the defOrmation tensor
of the p:rticle phase at the wall, and Lp is identified as an interaction length
between the fluid phase and the particle phase due to wall effect, wake effegt,
turbulence and molecular diffusivity. This definition of_Lp’is not comp;etely
Justified by Soo. Furthermore, Lp was calculated using eduation (20) rather
than a quantity known in advance of the calculation. It is fherefore more
appropriate to use a proportionality constant in place of Lp, thereby avoiding
any ad hoc definition of Lp, as is done in equation (19a) and (19b). We shall

now give the general governing equations with boundary conditions for the

particulate phase of a dilute suspension flowing through a curved pipe.

IV. Eulerian formulation of the particle phase

The following assumptions are made:
(1) The inertial coupling in momentum due to the change of frame of
reference is neglectedl5. Also the effect due to unsteady flow field in the

viscous range is not taken into account. The force acting on the particulate

- 16
phase due to pressure gradient of the fluid phase can be shown to be negligible

11.
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Finally, the volume fraction of the particulate‘phase is very small so that
the force due to change in volume fraction is not important.

(2) The transport pfoperties of the suspension can be approximated, to
the first order, by those‘of the fluid phase alone.

(3) The particle-particle interaction is negligible compared to fhe
particle-fiuid interacfion. Hence there is little momentum transfer among,
particles by_thé process of particle-particle collision. Under such an
éssgmption, tﬁe 'particle gas' possesses no (or very insignificant) viscosity,
diffﬁsivity, or conductivity and there is no shear stress term due to particle-
particie interaction appearing in the equation of motion. However, particles
can transport'momentum to other particles by diffusion through the gas phase.
The stress term resulting from this diffﬁsion process is known as diffusional
stress for the particulate cloud. As the term suggests, it is important only
when the diffusivity of the particles through the fluid is not small. For

molecular diffusion, Einstein12 has found that

D = 2kT (21)
P 6ma
where
Dp : moleéular diffusivity of particles in the fluid
T : temperature ofvfhe particles
E : fluid viscosity
a : particle diameter.

For most situations, the molecular diffusivity is very small, espeéially for
particle‘sizes of above 100 micron. On the other hand, if the fluid phase is
turbulent, the éiffﬁsivity of the particles thfbugh the turbulent fluid, which
is no longef given by equation (21),>may be significant.

(4) Since the R.M.S. speed of the particles is very much less than that

of the gas molecules (Section II), the static pressure of a dilute suspension

12.



is due solely to the fluid ﬁﬁase.

-For the éresent example; a set of toroida} coordinates.is used. The
velocity cbmpénentsiare denbtedfby u,v and w in the directions of r increasing,
] increaéing and ¢ inCreasiné, respectivelj. vThe orientation of the curved
elbow is such that tﬁe mid-blane of the elbow is parallel to the vertical

plane (Figure:Z).

Figure 2. Orientation of curved pipe and toroidal coordinates

Assuming the particulate phase is a continuum, the momentum equation can

be written as

N .o |
- = . + - ’ 22
o Dt TV (5) * Py~ Py T (22)

with
pb as the particie phase density
ﬁp the particle velocity vector
;p the diffusional stress tensor of the particle phase
§p any field forces acting on the particles |

- 13.



and I the gas velocity vector. .
In deriving equations. (22), assumptions (1), (3) and (&) have been used.
As is done in fluid mechanics, gp is assumed to take on the Newtonian stress

‘tensor form:

= iv o 2
o (Xp div up)%*—upgp | (23)

Kp and My are two coefficients of viscosity due solely to the interaction

between the fluid and the particle phase. ép is the deformation tensor,

b= (7,4 vprl) E

and I is the unitary tensor.

'Assuming Stokes' hypothesis here, we have
- 2
.)\ =--§p, . . (25)

For a dilute suspension, the viscosity of the particulate phase due to dif-

fusion through the fluid phase can be approximated as

T ppr . (26)

Equation (23)_becomes
T I S G [ o o '

To = PPtV vV, (vv,) -3 ppr(v- vp); . (27)
Thus, when ogly molecular diffusion is present, Dp will be very small
(equation (20))vand &pfcan be neglected. For this case, equation (21) is
reduced to

T r | (28)

Dt Pty )

We shall only consider gravity force and 1lift force. Written in toroidal

coordinates and denoting p as the material density of the fluid, BEq. (28) becomes

14,
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3u du_ v_ou v2 W coéap oW du

—Pyy R4y 2_R_P__R + p p
ot P 3 r d¥ r RAr cos §y R+r cos § o
_ ' - u-u
‘=-g cOS ¢ cOS \y(l-;L)-fL-——-P- , (29a)
o T
v éf v v W V. u v W2 sin {
—Piy PR P p, pP,_D
at p ar r aw R-#r cos | ¥ r R+r cos ¢
' S - v-v_
= g sin ¢ sin §(1-2)-—2 | , (29b)
' Py Tm '
' W si
_R+u'§2_‘f£ P awp+ppcosvap in ¥
ot dr r a¢ *R+r cos ¢V % R+r cos ¢y R+r cos §
w-w :
=-g cos ¢(1- JL) s ‘ (29¢)
pp Tm

where'fL is thé lift force near the wall due to fluid shear. (See,'fdr example,

Scaffmanl7),

The spécieé céntinuity equétion is
22+ciiv(p v )Av=-div(3° )+ T , v (30) -
ot PP D o .
r accéuntsvfor thé'cfeation or annihilation of particles in the fiow. Assuming
no chemical'ieaction, ['=0, and Fick's law of diffusion holds for the dif-
fusional flux 3;‘, we have | |
.A . | | ,
Tp == s - | B
where p'is the_density of the suspension.. It can be reédily sho%n that

p=p PR Py _ ‘ (32)

b

for a dilﬁte suspension, and if the fluid phase is incompressible, Pe is

constant and we have

J =-D ¥ . : . )
7, =-036,) - o (33

15.



Substituting (33) into (30), we have

3p -
243, (0¥ ) =%. (D7
36 F 9 (o) = V. (D To ) . (34)

Ir Dp is very small, we recover the usual continuity equation for a single

phase
dp.. '
- _P.3 N ) = - , . .
at +V_-v(pp-Vp) =0 . (35)

In toroidal coordinates, equation (35) becomes

%0 2% 1 %%, 1 9Pp¥p
ot r 1 A R+r cos ¢ 3¢
ER u.p cos vp sin §
+(r-'TR+r cos § R+r cos \h)ppzo ) (36)

Fquations (29a-c) and (36) are the necessary governing equations under the
assumptions used. For the boundary conditions, equation (16), when written

in toroidal coordinates, gives

n
2 J2 j oo r drdy = ’aJ2V(R-Fr cos W)VLPbd¢
- oaj2 (R-+r cos w)(u p )dw o aJE(R+1'cos §)v ppwd¢ (37a)

where u, is the velocity component normal to the pipe surface at the wall, given as
w : .

- ). '
_.upw = [-g cos ¢ cos §(1 Eb) L LS (37b?

For the slip velocity components, equations (19a) and (19b) give

va = pw W/p. , (38)
wpw'= CZ(TPW)¢¢/p' . (39)

16,
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.,

From equation (27)

(v )y - 2B o D -2p ik RiL 2
Wiy a dy |, PP 3 'p,Pa d Rtacosy o
| ' v_sin ¢
1 (ko)

" R+acos W

' Solving for vy in (38), we have

- C v
[1+2 5 D l___S&L_]___{_p —2
v 3 Py pp,R+acos¢ b, p aq;
D
PR |
T 3a R+acos¢ a¢|w (k1)
‘Similarly,
p. D v_ 8in
(r. ), =2 R " ! b -2, b - (42)
b, ¢ 3R+acosy 3| "3 R¥acosy ’pp 3 'pp
and equation (39) becomes
. C o P aw av
_ 2k W | - . _2 _Dp
wpW M {3 R +acos a¢|w va81n¢ 3a "p, p oY } h (43)

" It should be mentioned that T _consists of only velocity components tan-
_ w
gential to the pipe surface. In deriving the boundary condition for one-

dimensional rarefied gas dynamics, only the tangential velocity component is
involved. Since equation'(19a) and (19b) are direct extensions of the one-
dimensional rarefied gas dynamics theory, it is consistent to use'only tangential

velocity components in T In this way, the normal and tangential velocity

w

components at the wall are uncoupled from each other. Its validity has to be

berified by experiments or numerical results, or both. Since C1 and C in
equations (41) and (43) are of unknown magnitudes, terms containing Dp may not

be negletted:in deriving the boundary conditioms. .

17.



Equations (29a-c) and (36), together with boundary conditions (37a-b),
(41) and (43) can be solved for Pp and E;. Since equations (29a-c) do not
contain Py one can assume a form of ppw and solve the momentum equations
(29a-c) subject to boundary conditions (37b), (41) and (43) and
initial condition at the pipe entry. Then the continuity equation (36) can
be solved with the assumed form for ppw. The correctness of ppw is then

checked using equation (37a). The process is repeated until (37a) is

satisfied.

V. -Conciusion

Some mblecular aspects of a dilute suspension were studied. Although the
results derived in section II apply strictly to an equilibrium gas-particle
mixture, the major conclusions remain valid when the mixture undergoes a
macroscopic motion. In many dilute gas-particle mixtures, the particulate
phase behaves like a semi-rarefied gas in the slip regime. This is not
surprising since the interaction length among particles is relatively long.
It is therefore expécted that the particulate phase slips along the wall with
velocity components proportional to the deformation tensor, a result extehded
directly from the theory of one-dimensional rarefied gas dynamics. There is
little experimental or numérical data supporting this derivation, in particular
when it is applied to complicated geometries such as a curved tube.

In this paper oﬁlylthe Fulerian formulation was considered. As mentioned
previously, particle-particle eollisions, although insignificant compared to
particle-mélecule or molecule-molecule collisions, are present even in a dilute

suspension. Any attempt to formulate the equation of motion of an individual

18.
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particle must account for_these collisions. Since the Eulerian formulation
uses the cbntinuum cbncept, the parﬁicle-particlé inferaction is automatically
included in the analysis. It is neglected.dn the basis that it is small
compared to particle-fluid intefaction. Since it accounts for the randomness
of the parficles, the Eulerian formuiation is conceptually more éorrect.
Moreover, thevsolutions to the Bulerian formulation, such as density and
velocity, do not apply to individual particles. Iﬁstead, they are the average
values of all particles confined in a vblume large enough to contain a great
number of particles yet small eﬁough when compared with the characteristic
dimension of the region of interest. The main disadvantage using the Eulerian
approach is that the goverhing equations are first-order, elliptic partial
differential equations. Except for some simple geometries, they are quite
difficult to solve. No numerical results have been obtained at the present

stage.
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