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ABSTRACT 

FUNDAMENTALS OF THE PARTICULATE PHASE 

IN A GAS-SOLID HIXTURE 

Woon-Shing Yeung* 

Some fundamental behaviors of a gas-solid mixture were studied 

from a microscopic point of view. For a dilute suspension, one can 

look upon it as a mixture of a continuum gas, the carrier fluid, and 

a semi-rarefied gas, the solid particles. The boundary conditions 

of such a suspension were examined in detail and finally, the general 

Eulerian formulation of the "particle gas" was given and specialized 

to a curved pipe geometry. 

*Materials and Molecular Research Division, Lawrence Berkeley 
Laboratory, University of California, Berkeley, California 94720. 



Introduction 

There are two major methods to handle the particle phase in a dilute 

suspension: the Lagrangian description and the Eulerian description. The 

Lagrangian description fixes attention on a single particle throughout its 

whole trajectory in the region of interest. Under simplified assumptions, it 

involves only solving a set of ordinary differential equations subject to given 

initial conditions l . The Eulerian formulation, on the other hand, assumes the 

particle phase as a continuum and the resulting governing equations for the 

particle phase are quite similar to the well-known Navier-Stokes equations in 

fluid mechanics (see Section II). Even under simplified assumptions, it 

requires the solution of a set of partial differential equations subject to 

both initial and boundary conditions. Of most importance, the continuum 

assumption must be justified in using the Eulerian formulation of the 

particulate phase. Fortunately, most practical phySical systems involving 

gas-particle mixtures satisfy the continuum assumption. . For a discussion of 

2 the continuum assumption, see, for example, Soo In those systems where 

particle-particle interaction is insignificant, the Lagrangian technique 

readily generates the particle trajectories. On the other hand, if particle-

particle interaction cannot be neglected, as in a recirculating zone or 

turbulence regions, the solution of the Lagrangian formulation is a quite 



formidable task. For such systems, the use of the Eulerian formulation is 

conceptually more correct since the randomness of the particulate phase is 

accounted for byway of the formulation. Many authors, in particular 

so03,4,5,6, Singleton? and MarbleS, have successfully applied the Eulerian 

formulation to solve the particulate phase of a dilute suspension of some 

simple physical systems, such as pipe flow and flow over a flat plate. In 

fact, some of the papers are so general that even electromagnetic effect and 

deposition of the particles are included. Unfortunately, there is scarce 

literature dealing with more complicated systems than those mentioned above. 

Also, little effort is devoted to the fundamental behavior of the particulates 

in a suspension, especially near the physical boundary of the system. It is 

the purpose of the present paper to discuss some fundamental aspects of a dilute 

suspension from the molecular point of view and to give a rather general 

Eulerian formulation and appropriate boundary conditions as applied to the gas-

particle flow through a curved pipe with circular cross-section in a coal gasi-

ficationenvironment. No attempt has been made to solve. the resulting equations. 

II. Molecular aspects of a gas-particle mixture. 

The fundamentals of a gas-particle mixture must be understood before the 

formulation of the general governing equations for each phase. Of particular 

importance are the transport properties of each individual phase and phase-

phase interactions. One way to calculate these quantities is by use of kinetic 

theory of a mixture of gases, assuming, of course, the validity of the continuum 

approximation of the particle phase. The major task is to solve the Boltzmann 

equation of transport. However, it.is not the purpose of this section to adopt 

the mathematical methods of kinetic theory to the gas-particle system; but 

rather, to bring out some basic features of the gas-particle system by looking 

upon it from a molecular point of view. 

2. 



A dilute mixture of solid particles and gas is very similar to a mixture 

of gas-molecules and electrons, respectively, as far as the size distribution 

is concerned. Since particles in a dilute suspension are much larger than the 

gas molecules, their random intensity of motion, or thermal agitation, is very 

~lt' much less than that of the gas molecules. Thus a dilute suspension is similar 

~ to a Lorentzian gas9 and it is logical to follow the treatment of Lorentz
lO 

if 

one tries to attempt the problem from the Boltzmann equation. For a further 

discussion, the interested reader is referred to Culick
ll

. 

Suppose a gas-solid mixture is at rest in a container. Because of the 

random motion of the gas molecules, the solid particles would undergo Brownian 

motion. The R.M.S. (root-mean-square) speed of a particle will be given by the 

Einstein12 formula 

with 
- 1 

(C2 )2 the R.M.S. speed of a particle, 
p 

k Boltzmann constant, 

T body temperature of the particle, 

a particle radius, 

Pp the material density of the particle. 

o -6 / -2 As an example, we take T = 1255.5 K, P = 3.89 X 10 gm c.c and a = 10 cm, which p 

are the conditions found inside a coal gasifier. From equation (1), We can 

2"1-
easily calculate (C )2 as 0.2 cm/sec. It is seen that the R.M.S. speed of a 

p 

(1) 

particle is much less than that of a gas molecule, which has a R.M.S. molecular 

speed comparable to sound speed of the gas phase. Hence, if there is a macro-

scopic motion of the gas-particle mixture, say about 1000 cm/sec, one can 

generally neglect the Brownian motion of the particles. On the other hand, one 

may not generally neglect the collisions between particles themselves. It is 

3· 



quite misleading to say that when the interparticle distance is large compared 

with the particle size, one can neglect the collisions between particles. As 

an example, the intermolecular distance of hydrogen gas at N.T.P. coridition is 

about 10 times the molecular size, which is large compared with the molecular 

size; yet the collision frequency is as high as 1029 between all hydrogen 

molecules. Although the collision frequency between particles themselves is 

very much less than 1029 as will be shown below, collision may be significant 

even in a dilute suspension constituting 10% by weight of particles. 

We now proceed to estimate the various interaction lengths (mean free path) 

and collision frequency for a dilute suspension. The results only apply to 

the equilibrium case, i.e., the suspension at rest in a container. However, 

they serve as good comparisons even when the suspension undergoes a macroscopic 

motion. The following formulae can be found in Chapman and Cowling13. We 

shall assume that the molecules and particles are smooth, rigid, elastic 

spheres. Let 

where 

diameter of a particle 

0"2 diameter of a molecule. 

The total number of collisions between pairs of particle and molecule per 

unit time is 

where 

n
l 

number density of particles per unit volume of mixture 

n2 number density of molecules per unit volume of mixture 

ml mass of a particle 

m2 mass of a molecule 

4. 

(2 ) 



and 

It follows that the collision frequencies between molecules themselves and 

particles themselves are 

The collision frequency for a particle with a particle is 

for a molecule with a molecule 

for a particle with a molecule 

and for a molecule with a particle 

The mean free p~th between particles and particles is given by 

2 
TTnlO'l 

Similarly, between molecules and molecules 

between particle and all molecules 

5. 

(4) 

(6) 

(8) 

(10) 

(11) 

(12 ) 



j m2 1 
1,12= . in -2"'---

o 'lT0'12n2 

and between a molecule and all particles 

I ml 1 
1,21 = 'J in 2 

o 'ITO'12nl 
(14) 

For the same condition used. above to calculate the R.M.S. speed of the particles, 

it is found that 

and 

fl1 ~ 0·3 collisions/sec, 

f21 .~ 2 X 103 collisions/sec, 

NIl ~ 450 collisions/sec/cm3 , 

N21 ~ 2 X 10
22 

collisions/sec/cm3 

for nl = 1.5 X 103 particles/cm3 and n2 = 1019 mOlecules/cm3 , which correspond 

to about 10% by weight of particles typical inside the coal gasifier. 

-It is evident that particle-particle collision is negligible in comparison 

with particle-molecule collision. Since collision is the main mechanism of 

exchanging momentum, one can neglect the interaction between particles themselves 

and retain only the interaction term between particle and gas phase, in a macro-

scopic formulation of the system, such as the Eulerian formulation. The word 

macroscopic is crucial in justification of neglecting particle-particle inter­

action, since microscopically there are still 450 collisions/sec/em3 between 

particles, however negligible as compared to particle-molecule collisions. If 

we are to formulate the motion of each particle, as is done in Lagrangian method, 

these collisions must be taken into account. Thus, to be rigorous and practical, 

some sort of statistical averaging method and assumptions of the particle-

particle interaction should be introduced in conjunction with the Lagrangian 

technique for systems where particle-particle collision is significant, at 

least in a microscopic scale. No such difficulty arises when using the Eulerian 

6. 



approach because only average quantities are formulated in this approach. We 

can also estimate the relative effect of each phase upon the other from 

comparing the interaction lengths t21 and t 12 • From equations (13) and (14), 

s inc e ml » m2 and nl «n2 in most dilute suspens ions, it follows that 

The longer the interaction length, the weaker the interaction of one phase 

upon the other. Thus the effect of particle phase on the gas phase, as suggested 

by t 21, is less prominent than the effect of the gas phase on the particle phase, 

as suggested by t
12

• 

,III. Boundary conditions of the particle phase. 

The derivation of appropriate conditions at a physical boundary can be 

very complicated and difficult. As mentioned in the Introduction, there is 

scarce literature discussing the boundary conditions of a suspension at a 

solid surface. In this section, we shall discuss further the fundamental 

aspects of a dilute suspension with the guidance of the results obtained in 

Section II and the boundary conditions of the particle phase used hitherto by 

other authors. 

It is well known that the phenomenological no-slip condition on a solid 

wall in conventional continuum fluid mechanics governed by the Navier-Stokes 

equations is only approximately true. The actual boundary conditions must be 

obtained from the solution of Boltzmann equation and suitable reflection laws 

for the molecular impact with the wall. It also turns out that the usual 

boundary conditions for use with the Navier-Stokes equation are not the actual 

macroscopic value of the gas velocity at the wall, because of the invariable 

presence of the Knudsen layer (see KOgan14). In the regime of semi-rarefied 

gas dynamics, the solution of the Navier-Stokes equation together with the 



so-called slip condition at the boundary has been shown to be adequate in most 

cases. In the case of a gas mixture, some components may be in the slip flow 

regime and others in the no~slip regime. The exact derivation of boundary 

condition becomes very complicated because of the interaction among components. 

The determination of which regime a flow belongs to depends on the magnitude 

of the appropriate mean. free path of each component. In a dilute suspension 

Section II shows that differentmagn:ltudes of free paths exist and one may 

expect that different flow regimes exist for different phases. Consequently, 

the particle and gas phases do not satisfy the same boundary conditions. In 

order to derive the proper boundary conditions for the particle phase, details 

of the interaction between the particle and the solid boundary must be known. 

The possibilities of attrition upon impact, embedding into the wall and dif-

ferent shapes of the particles render an exact derivation almost impossible. 

However, from the estimation of the mean free path of the particle phase 

(equation (11)) and comparison with the mean free path of the gas phase 

(equation (12)), there is reason to believe that the particulate phase is 

similar to a semi-rarefied gas in the slip regime. Thus, some of the important 

results derived for the semi-rarefied gas may be applied to the particle phase. 

Before discussing this further, we shall mention that the particles that 

constitute the particulate phase are very much different from the molecules 

that constitute the gas phase. For a simple gas in the subsonic region, the 

gas macroscopically can always adjust its streamline to align with the boundary 

surface. Hence we only speak of slip velocity tangential to the wall of the 

gas. For a 'particle gas,' however, the streamlines, or particle trajectories, 

often do not align with the physical boundaries. Thus, in addition to the slip 

velocity tangential to the wall, there is also a nonvanishing normal velocity 

component of the particle phase at the wall. Macroscopically, this nonvanishing 

normal velocity component causes deposition of the particles on the bouridaries. 

8. 



It should be noted deposition is caused by the presence of field forces, such 

as gravity force, electrostatic force, etc. Once deposition occurs, a layer 

of particles at the boundary may build up to a point such that a sliding bed 

6 will proceed downstream. The appropriate boundary condition for this case is 

given by the conservation of the total particle flow: 

..,.0 IS p w dA = O'L' Pp VL - 0' IS u P dA - 0' pp. V 
oS A P P PAP pap a w w w 

where 

, 
O'L lift probability due to lift force 

0' sticking probability depending on material properties 

O'a sticking probability due to adhesion 

vL 
lift velocity 

v a 
adhension velocity 

P perimeter of the cross-section A (Figure 1) 

Pc, density of particles at packed bed condition 

Pp local particle phase density 

w p streamwise particle velocity in the direction s 

and subscript w refers to the value at the wall unless otherwise stated. 

The sticking velocity u can be approximated as6, 
Pw 

where (f) is the field force acting on the particle phase in the normal, 
p u 

or u, direction and T is the momentum equilibration time. If the particle 
m 

motion belongs to the Stokes flow regime, T is given by 
m 

'- 2 
2 P a 

T m = 9" .::..lL­
\-L 

where Pp is the material density of the particles. In general, T depends on 
m 

both the gas velocity and particle velocity. When there is no net deposition 

9· 

(16) 

(18) 



of the particles, the normal velocity component at the physical boundary 

vanishes, even when field forces are present. Care must be taken not to 

regard u ,or any other variables, as the value individual particle attains, 
Pw 

since an individual pa~ticle does bombard the wall with nonvanishing velocity 

components normal to the wall. It is only the average value of the normal 

velocity components of all the particles at a particular location on the wall 

that vanishes. 

, ~--
I , 

r , 
"\.,;~ . 

I' x\ dA I \ 
I' \ 
I \ \ , \ \ , \ \ 

J ' I U I , 
I , 
I I 

, 
I 
I 
r 
r J I 

, W I / 

i<l5~ " 
\ I( 

" " l ~...- \ 
-...... I 

.... ~ I 
~, 

Figure 1 

~ 
FLOW 

Several constants were introduced in (16). They are o'L, 0', o'a , vL' vw' Pb · 

Theoretically, these can be found by a detailed consideration of the statistical 

mechanics of the particle phas e; however, it is more practical to resort to 

experiments. For the slip velocity components, we extend the corresponding 

formula for one-dimensional rarefied gas dynamics to.our general three-dimensional 

case: 

(19a) 

(19b) 

10. 
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where (r) is the wall shear stress of the particle phase in the v direction 
w v 

and (r) is the wall shear stress of the particle phase in the w direction. ww 

C
I 

and C
2 

are two phenomenological constants of proportionality and ~ is the 

viscosity of the suspension. It is very important to realize that equation 

(19a) and (19b) are the only plausible generalizations to those formulas 

obtained in rarefied gas dynamics. There is no rigorous proof of their 

6 applicability to a dilute suspension. Soo and Tung have proposed the 

following: 

..... 

(20) 

where vpw is the slip velocity vector at the wall, ~ is the deformation tensor 

of the particle phase at the wall, and L is identified as an interaction length 
p 

between the fluid phase and the particle phase due to wall effect, wake effect, 

turbulence and molecular diffusivity. This definition of L is not completely 
p . 

justified by Soo. Furthermore, L was calculated using equation (20) rather 
p 

than a quantity known in advance of the calculation. It is therefore more 

appropriate to use a proportionality constant in place of L , thereby avoiding p 

any ad hoc definition of L , as is done in equation (19a) and (l9b). We shall 
p 

now give the general governing equations with boundary conditions for the 

particulate phase of a dilute suspension flowing through a curved pipe. 

IV. Eulerian formulation of the particle phase 

The following assumptions are made: 

(1) The inertial coupling in momentum due to the change of frame of 

reference is neglected15 • Also the effect due to unsteady flow field in the 

viscous range is not taken into account. The force acting on the particulate 

phase due to pressure gradient of the fluid phase can be shown to be negligible
16

. 
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Finally, the volume fraction of the particulate phase is very small so that 

the force due to change in volume fraction is not important. 

(2) The transport properties of the suspension can be approximated, to 

the first order, by those of the fluid phase alone. 

(3) The particle-particle interaction is negligible compared to the 

particle-fluid interaction. Hence there is little momentum transfer among 

particles by the process of particle-particle collision. Under such an 

assumption, the 'particle gas' possesses no (or very insignificant) viscosity, 

diffusivity, or conductivity and there is no shear stress te~ due to particle-

particle interaction appearing in the equation of motion. However, particles 

can transport momentum to other particles by diffusion through the gas phase. 

The stress term resulting from this diffusion process is known as diffusional 

stress for the particulate cloud. As the term suggests, it is important only 

when the diffusivity of the particles through the fluid is not small. For 

molecular diffusion, Einstein12 has found that 

where 

D 
P 

Dp molecular diffusivity of particles in the fluid 

T temperature of the particles 

~ fluid viscosity 

a particle diameter. 

For most Situations, the molecular diffusivity is very small, especially for 

particle sizes of above 100 micron. On the other hand, if the fluid phase is 

turbulent, the diffusivity of the particles through the turbulent fluid, which 

is no longer given by equation (21), may be significant. 

(4) Since the R.M.S. speed of. the particles is very much less than that 

of the gas molecules (Section II), the static pressure of a dilute suspension 

12. 

(21) 



is due solely to the fluid phase. 

For the present example, a set of toroidal coordinates is used. The 

velocity components are denoted by u,v and w in the directions of r increasing, 

$ increasing and ¢ increasing, respectively. The orientation of the curved 

~~.. elbow is such that the mid-plane of the elbow is parallel to the vertical 

. ~ plane (Figure· 2) . 

/ 
I 

I r 
~-t­

~ \ , , / ~ ... 

..... , , 
\ , , 

a"", 
" 

Figure ~. Orientation of curved pipe and toroidal coordinates 

Assuming the particulate phase is a continuum, the momentum equation can 

be written as 

with 

Pp as the particle phase density 

u the particle velocity vector 
p 

T the diffusional stress tensor of the particle phase 
~p -f any field forces acting on the particles 

p 

: 13. 
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-> 
and u the gas velocity vector. 

In deriving equations (22), assumptions (1), (3) and (4) have been used. 

As is done in fluid mechanics, -r is assumed to take on the Newtonian stress 
~ 

tensor form: 

T = ( A di v i7 ) I + ~ b. 
~ p p~ ~ 

Ap and ~p are two coefficients of viscosity due solely to the interaction 

between the fluid and the particle phase. 

( ~ ~ (~ ~ )-1) b. = \lv+\lv 
R1p P p 

and I is theuriitary tensor. 
~ 

~ is the deformation tensor, 

Assuming Stokes' hypothesis here, we have 

2 
A.p = -"3 ~p 

For a dilute suspension, the viscosity of the particulate phase due to dif­

fusion through the fluid phase can be approximated as
6 

Equation (23) becomes 

Thus, when only molecular diffusion is present, D will be very small 
p 

(equation (20» and T can be neglected. For this case, equation (21) is 
p 

reduced to 

fu 
---E. 
Dt 

We shall only consider gravity force and lift force. Written in toroidal 

(24 ) 

(25 ) 

(26 ) 

(27 ) 

(28 ) 

coordinates and denoting p as the material density of the fluid, Eq. (28) becomes 

14. 



2 2 
aU aU v aU v wcos ~ w aU 
---E. + u ---E. + ~ --.l? _ ....£. _ p + p -=-.J2. 
at p ar r a~ r R + r cos ~ R + r cos ~ O¢ 

u-u 
. == - g cos ¢ cos ~ (1 - ~) - f _-----E. 

Pp L Tm 
(29a) 

, (29b) 

ow ow v ow w ow u w cos ~ v w s in ~ 
-=-.J2. + u ---E. + ...E.~ + p ---E. + p p ....a;.p ...... p~_-,.. 
at p ar r a~ R + r cos ~ a¢ R + r cos ~ - R + r cos '" 

w-w 
= - g cos ¢ (1 - .L) -~ (29c) 

- T 
Pp m 

where fL is the lift force near the wall due to fluid shear. (See, for example, 
. . 17 

Scaffman ). 

The species continuity equation is 

r accounts for the creation or annihilation of particles in the flow. Assuming 

no chemical reaction, r=O, and Fick's law of diffusion holds for the dif-

..... 
fusional flux j ,we have 

p 

..... .....~ 
jp = -pD 'il( ) , p p 

, 
where p is the density of the suspension. It can be readily shown that 

for a dilute suspension, and if the fluid phase is incompressible, Pf is 

constant and we have 

j ~- D ~(p ) 
P P P 

15. 



Substi tuting (33) into (30), we have 

OPp ... 
::.t + 'V. (p -; ) = V· ( D ~ P ) 
u p p . p p 

If D is very small, we recover the usual continuity equation for a single 
p 

phase 

In toroidal coordinates, equation (35) becomes 

u u cos ~ v sin W 
+ (....E+ p p)p 0 

r R + r cos ~ R + r cos 1\1 p 

Equations (29a-c) and (36) are the necessary governing equations under the 

assumptions used. For the boundary conditions, equation (16), when written 

in toroidal coordinates, gives 

where u is the velocity component normal to the pipe s.urface at the wall, given as 
Pw 

u = [-g cos ¢ cos 1\I(1-:?) - fL)'fm Pw Pp 

For the slip velocity components, equations (19a) and (19b) give 

16. 



.. 

From equation (27)' 

2 ov 
=-~ 

a o~ w 

2 1 Ov l' OW 
P D -- P D [- -12.+ ---E. 
p p 3 p p a o~ R + a cos ~ O¢ w w 

v sin ~ 
p ] 

R + a cos ~ w 

Solving for v in (38), we have 
pw 

Pp Dp OW 
___ . .,;,;,.w __ ~ ) 

3a R + a cos W O¢ w 
2 

Similarly, 

P D v sin W 
4 pw p ~ 4 Pw 

("p ) ¢¢ = 3 R + a cos W O¢ w - 3" R + a cos.~ Pp Dp 
w w 

and equation (39) becomes 

C2 4 Ppw
Dp 

awpi 
- (- [ :::w - v sin 

I-L 3 R + a cos ~ vy.J w pw 

It should be mentioned that.T consists of only velocity components tan­
pw 

gentia1 to the pipe surface. In deriving the boundary condition for one-

dimensional rarefied gas dynamics, only the tangential velocity component is 

involved. Since equation (19a) and (19b) are direct extensions of the one-

(40) 

(41) 

(42 ) 

dimensional rarefied gas dynamics theory, it is consistent to use only tangential 

velocity components in T In this way, the normal and tangential velocity 
pw 

components at the wall are uncoupled from each other. Its validity has to be 

berified by experiments or numerical results, or both. Since C1 and C2 in 

equations (41) and (43) are of unknown magnitudes, terms containingD may not 
p 

be neglected in deriving the boundary conditions. 

17. 



Equations (29a-c) and (36), together with boundary conditions (37a-b), 

(41) and (43) can be solved for p and ~. Since equations (29a-c) do not 
p p 

contain p , one can assume a form of p and solve the momentum equations 
p pw 

(29a-c) subject to boundary conditions (37b), (41) and (43) and 

initial condition at the pipe entry. Then the continuity equation (36) can 

be solved with the assumed form for p • The correctness of Pp is then 
. ~ w 

checked using equation (37a). The process is repeated until (37a) is 

satisfied. 

v. Conclusion 

Some molecular aspects of a dilute suspension were studied. Although the 

results derived in section II apply strictly to an equilibrium gas-particle 

mixture, the major conclusions remain valid when the mixture undergoes a 

macroscopic motion. In many dilute gas-particle mixtures, the particulate 

phase behaves l.ike a semi-rarefied gas in the slip regime. This is not 

surprising since the interaction length among particles is relatively long. 

It is therefore expected that the particulate phase slips along the wall with 

velocity components proportional to the deformation tensor, a result extended 

directly from the theory of one-dimensional rarefied gas dynamics. There is 

little experimental or numerical data supporting this derivation, in particular 

when it is applied to complicated geometries such as a curved tube. 

In this paper only the Eulerian formulation was considered. As mentioned 

previously, particle-particle collisions, although insignificant compared to 

particle-molecule or molecule-molecule collisions, are present even in a dilute 

suspension. Any attempt to formulate the equation of motion of an individual 

18. 
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particle must account for these collisions. Since the Eulerian formulation 

uses the continuum concept, the particle-particle interaction is automatically 

included in the analysis. It is neglected on the basis that it is small 

compared to particle-fluid interaction. Since it accounts for the randomness 

of the particles, the Eulerian formulation is conceptually more correct. 

Moreover, the solutions to the Eulerian formulation, such as density and 

velocity, do not apply to individual particles. Instead, they are the average 

values of all particles confined in a volume large enough to contain a great 

number of particles yet small enough when compared with the characteristic 

dimension of the region of interest. The main disadvantage using the Eulerian 

approach is that the governing equations are first-order, elliptic partial 

differential equations. Except for some simple geometries, they are quite 

difficult to solve. No numerical results have been obtained at the present 

stage. 
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