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Determining What to Learn in a

Multi-Component Planning System

*

Bruce Krulwich
Northwestern University
The Institute for the Learning Sciences
1890 Maple Avenue
Evanston, Illinois 60201

Abstract

An intelligent agent which is involved in a variety of
cognitive tasks must be able to learn new methods
for performing each of them. We discuss how this
can be achieved by a system composed of sets of
rules for each task. To learn a new rule, the system
first isolates the rule set which should be augment-
ed, and then invokes an explanation-based learning
mechanism to construct the new rule. This raises
the question of how appropriate target concepts for
explanation can be determined for each task. We
discuss the solution to this problem employed in
the CASTLE system, which retrieves target concepts
in the form of performance specifications of its
components, and demonstrate the system learning
rules for several different tasks using this uniform
mechanism.

Cognitive tasks and components

In the course of determining its behavior, an intelligent
agent must activate goals, notice opportunities, and
devise and select among plans of action that will
accomplish its goals. In competitive planning domains,
including such games as chess (in which our system
operates), an agent must additionally notice threats
posed by other agents and develop plans to respond
to them. Such an agent should be able to learn new
methods for accomplishing each of these cognitive tasks.

The CASTLE system! engages in these tasks while
playing chess [Birnbaum et al., 1990; Collins et
al., 1991]. In the course of its decision-making, CASTLE
generates explicit ezpectations about future actions and
abilities, and learns from failures of these expectations.
A variety of decision-making methods are represented

*This work was supported in part by the Office of Naval
Research under contract N00014-89-J-3217, and by the
Defense Advanced Research Projects Agency, monitored by
the Air Force Office of Scientific Research under contract
F49620-88-C-0058. The Institute for the Learning Sciences
was established in 1989 with the support of Andersen
Consulting, part of The Arthur Andersen Worldwide Or-
ganization. The Institute receives additional support from
Ameritech, an Institute Partner, and from IBM.

'CAsTLE stands for Concocting Abstract Strategies
Through Learning from Expectation-failures.
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explicitly, and an explicitly represented model of these
procedures is used to diagnose expectation failures.

CASTLE is broken up into a number of components,
which reflect a functional decomposition of the decision-
making process [Collins et al., 1991]). Each component
i1s dedicated to a particular cognitive task, and is
implemented as a set of rules which provide different
methods for performing the task. This decomposition
of the agent into distinct components enables a uniform
learning process to learn methods for any cognitive task
in which the system is engaged.

For example, one such component has the task of
noticing threats and opportunities as they become
available. Rather than recomputing these at each turn,
CASTLE maintains a set of active threats and oppor-
tunities which is updated over time. To accomplish
this incremental threat detection, the system uses a
detection focusing component, which consists of focus
rules that specify the areas in which new threats may
have been enabled. Then, a separate threat detection
component, consisting of rules for noticing specific types
of threats, detects the threats that have been enabled.
A sample focus rule is shown in figure 1, which embodies
the system’s knowledge that the most recently moved
piece, in its new location, may be a source of new
threats. Another focus rule, not shown, specifies that
the move recently moved piece can also be a target of
newly enabled attacks. Using focus rules such as these,
the actual threat detector rules will only be invoked
on areas of the board which can possibly contain new
threats.

A second system component has the task of generat-
ing responses to enemy threats. This counterplanning

(def-brule focus-new-source
(focus focus-moved-piece 7player
(move ?7player 7move-type ?piece 7locl 7loc2)
(vorld-at-time 7time))
<=
(move-to-make (move 7player 7prev-move-type
?piece 7o0ld-loc ?locl)
?player ?goal (1- ?time)) )

Figure 1: Focusing on new moves by a moved piece




(def-brule counterplan-1
(counterplan 7player
(goal-capture 7piece ?loc
(move opponent (capture 7piece)
?opp-piece 7opp-loc ?loc))
?time ?the-response)
<=
(and (move-legal
(move ?player move ?7piece ?loc 7new-loc))
(no (and (at-loc 7opponent Zother-opp-piece
7other-opp-loc 7time)
(move-legal
(move ?opponent (capture ?piece)
?other-opp-piece ?other-opp-loc
7new-loc))))
(is-seq 7the-response
(move ?player move ?piece ?loc 7new-loc))))

Figure 2: Reacting to a threat by running away

component i1s invoked whenever an enemy threat is
noticed, and generates moves that the system can make
in response. It is additionally invoked whenever the
system has to reason about responses to an action, as we
will see later. One such counterplanning rule is shown
in figure 2, which says that a possible response to an
enemy threat is to move the threatened piece to a safe
location.

These two components, and others like them, span
the spectrum of cognitive tasks, including monitoring
the environment, reacting to external actions, planning
computer actions, and selecting among possible actions.
Each component consists of a set of rules which col-
lectively achieve the desired task. For each of these
components, learning new methods for achieving their
tasks is accomplished by constructing new rules for their
rule sets.

Counterplanning by interposition

Consider one way in which CASTLE can learn a new
rule for the counterplanning component. In the chess
situation shown in figure 3(a), the computer has two

(a)

Figure 3: Interposition: Computer (black) to move
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options — it can capture the opponent’s knight or it
can construct a plan to take the opponent’s bishop.
One plan to capture the opponent’s bishop would be
to move the queen two squares to the right and capture
the bishop on the subsequent turn. In deciding whether
this is a viable plan, the computer considers whether
the opponent would have a response to its move that
would disable the attack before it could be carried out.
In other words, the computer checks whether there is a
possible counterplan for the opponent [Krulwich, 1991].

It is clear in figure 3(b) that the opponent would
in fact have a possible counterplan, namely moving its
knight to block the attack. Suppose, however, that the
system had an incomplete collection of counterplanning
rules that included rules for moving a piece to a safe
location (the rule shown in figure 2) and capturing
the attacking piece, but did not include a rule for
interposing a piece to block a threat. Under these
circumstances, when considering the viability of its
plan, the system would conclude that the opponent
will not have a response to the threat. Given this
assumption, the system would consider the plan to take
the bishop foolproof, and would proceed to carry it out.

Of course, this plan will fail, because the opponent
will block the attack by interposing its knight, as we
see in figure 3(c). Because the plan failure came
about due to the system’s lack of counterplanning
knowledge, our system should respond to the failure
by constructing a rule for counterplanning against an
attack by interposing a piece.

Learning from the component failure

To learn from this plan failure, the system must first
determine which component is at fault. The system’s
diagnosis engine has this task of identifying the faulty
component. CASTLE accomplishes this using a model-
based reasoming approach [Davis, 1984; deKleer and
Williams, 1987; Simmons, 1988]. Currently, our model
1s limited to the case in which only one component is
at fault. Failures of more than one component could
be handled by repairing the two components indepen-
dently, if the failure reflects separable faults in the two
components. Alternatively, the higher-level component
which made use of the two faulty components may need
to be repaired, to account for unanticipated interactions
between the two components. In this paper we are
limiting our discussion to the case of single-component
faults.

CASTLE performs its diagnosis using explicit justifica-
tion structures [deKleer et al., 1977; Doyle, 1979], which
record how the planner’s expectations are inferred from
the rules that constitute its decision-making mecha-
nisms, in conjunction with the policies and underlying
assumptions which it has adopted. Diagnosing the fail-
ure then involves “backing up” through the justification
structures, recursively explaining the failure in terms of
faulty rule antecedents [Smith, Winston, Mitchell, and
Buchanan, 1985; Simmons, 1988; Birnbaum, Collins,



and Krulwich, 1989]. In the cases we are considering,
this procedure will “bottom out” by faulting a com-
pleteness assumption for a component. In other words,
many of the underlying assumptions of the system will
refer to the completeness of its component rule sets,
and faulting one of these assumptions is a signal that
a rule set must be augmented. There are, of course,
other types of assumptions that could be faulted.
(CASTLE examines the form of the faulted assumption
to determine which type of repair is necessary. In our
example, the diagnosis will indicate that the failure was
due to the lack of a counterplanning rule to predict
the opponent’s response. The structure of the faulted
assumption will direct CASTLE to repair the failure by
constructing a new counterplanning rule.

The task now at hand is for the system to analyze
the failure and encapsulate the relevant information
into a new rule for counterplanning by interposition.
One common approach to learning from failures is
to equip the system with critics, which map directly
from failure descriptions to repairs [Sussman, 1975].
CASTLE’s more general approach is to use explanation-
based learning (“EBL”) [Mitchell, Keller, and Kedar-
Cabelli, 1986; DeJong and Mooney, 1986]. In its
general form, EBL constructs new rules for category
membership by explaining why a particular instance
is a member of a category, and then determining the
most general preconditions under which the explanation
will still be correct. To accomplish this, EBL 1is
given a target concept, which is a description of the
category being learned. As has been widely discussed,
target concepts must relate to the purpose to which
the acquired category membership rules will be put.
In previous work, however, this observation has been
applied in a framework in which the purpose of the rules
to be learned has been fixed, such as recognizing objects
for use in plans [Kedar-Cabelli, 1987] or speeding up
a search process [Keller, 1987; Minton, 1988]. We
would like to extend the notion of EBL target concept
formulation for an intelligent agent which is involved in
many cognitive tasks.

Constructing a counterplanning rule

Once the system has determined that the plan failure is
due to its set of counterplanning rules being incomplete,
it knows that it needs to construct a new rule to
perform counterplanning, i.e., a rule whose consequent
matches the generic form of counterplanner queries.
The antecedent of this new rule should encode the
type of counterplan that the opponent used in the
situation that caused the failure. More specifically, the
antecedent should be a generalized description of the
counterplan (i.e., the move) that the opponent used.
To construct this rule, CASTLE uses explanation-based
learning to generalize a description of the move that the
opponent made. The EBL target concept should thus
be an expression which implies the assertion that the
counterplanner should have generated.
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CASTLE has expressions which fit these requirements,
in the form of component performance specifications.
These specifications are part of a larger planner self-
model [Collins et al., 1991], which is used for plan-
ning, expectation formulation, failure diagnosis, and,
as described here, fault repair. In general, performance
specifications describe the correct behavior of each
component, in a way that can be recognized after the
fact in a situation in which the component should have
produced a particular behavior.? In other words, when
the system has reason to believe that a component
should have been executed in a given situation, based
on information from the diagnosis module, this spec-
ification will enable the system to conclude that the
component should have behaved in a particular way,
and to construct an explanation of why it should have
done so.® An explanation (proof) of the correctness of
the specification as applied to a particular situation can
then be generalized using EBL, and the new rule can
be constructed.

For example, the system’s performance specification
for the counterplanning component says, simply, that a
correct counterplan to an attack is a one-move sequence
consisting of a move that disabled the attack. Since this
specification is only used to explain why a particular
move 1s a correct counterplan, MOVE-DISABLED-
MOVE need not be implemented in a way which can be
evaluated before the fact. In other words, even without
a specific rule for disabling an attack by interposing a
piece, the system has the ability to observe the game
board sequence after the fact and use its domain physics
knowledge to realize how the attack was blocked.

In our example from figure 3, after the opponent
has responded to the computer’s attack by interposing
its knight, the diagnosis module determines that the
counterplanning component must be augmented. To
construct a new counterplanning rule, the system uses
its counterplanner specification as a target concept,
and invokes a deductive explanation mechanism to
construct an explanation of the opponent’s counterplan.
This explanation, shown in figure 4, says roughly
that the opponent counterplanned against the queen-
bishop atlack, because the atlack was disabled by the
opponent’s move, because the line of atlack was no

2CASTLE's component performance specifications serve
the purpose of PRODIGY’s target concept specifications
[Minton, 1988)], which specify EBL target concepts for each
type of search-control rule. In PRODIGY terms, CASTLE is
(a) generalizing from search-control rules to functional agent
components, (b) embedding the specifications in a general
planner self-model, and (c) replacing erample recognizers
with expectation-failure diagnosis.

?CASTLE’s component performance specifications, along
with the desired component result which is provided by the
diagnosis module, can be viewed as a “performance improve-
ment objective” as discussed in Chapter 5 of [Keller, 1987]
and in [Keller, 1989]. The leverage gained from being failure-
driven enables CASTLE to generate these performance objec-
tives automatically as a consequence of failure diagnosis.



(counterplan ?cp-method opponent (goal-capture bishep (loc 1 3) (move gueen ...

(time 2)

{plan (move opponsnt move-move knight (loc 2 4) (loc 4 3) (time 2))))

({move-disabled-move
(move opponent move-move knight
(loc 2 4) (loc 4 3) (time 2))
(move computer (move-take bishop) queen
{loc 5 3) (loc 1 3) (time 3))

(time 2))

({is-seq (plan (move opponent move-move
knight (lec 2 4) ...))

(move cpponent move-move knight
(loc 2 4) (loc 4 3) (time 2)))

(move-to-make ?move opponent

?goal (time 2)) = There

(time 2)))

(move opponent move-move

(loc-on-line 4 3
53113

knight (loc 2 4) (loc 4 31/\

(cols-equal 3 3) {interm-col= 3 3)

Figure 4: Explanation of desired counterplanner performance

longer clear, because the opponent’s knight was moved
into the line of attack.

Explanation-based learning is then invoked, which
generalizes the details of the explanation which are not
relevant to its correctness. For example, it is irrelevant
what type of piece is interposed, because all links in the
explanation which relate to the interposed piece will
remain valid for any type of piece. The system then
collects the most general operational expressions in the
proof tree (operational assertions are shown below the
dotted line). These expressions are then “backed up”
in time so as to be predictive instead of explanatory.
An example of a leaf which must be backed up is
the MOVE-TO-MAKE assertion about the opponent’s
actual move, which took place after the counterplanner
was invoked. CASTLE accomplishes this transformation
using a set of rules for backing-up propositions in time.?

These generalized and adjusted proof-tree leaves will
then form the antecedent of a new rule. Since the
leaves imply the target concept, and the target concept
implies the correct behavior of the counterplanner, the
leaves are sure to specify a correct counterplanning
method. The new counterplanning rule which the
system constructs says, roughly,

TO COMPUTE: A reactive counterplan to a capture

DETERMINE: A location on the line of attack
that another piece can move to

When this rule is added to the set of counterplanning
rules, the system will correctly predict the opponent’s
response in a situation where interposition is viable,
such as the situation of figure 3(b). Furthermore,

* These rules are merely an approximation of the ideal be-
havior: A system should examine the implicit assumptions
that underly an assertion’s being true (e.g., that the legality
of a move underlies its being made), and select from them
the appropriate predictive tests.

because the same set of rules are used for actual
counterplanning against the opponent’s threats, the
system will be able to respond to threats in a new way
[Krulwich, 1991].

Tangentially, it should be noted that the explanation
from which the new rule was generated will form a
justification for the rule’s correctness [Mitchell, Keller,
and Kedar-Cabelli, 1986]. This justification structure
could then be used for maintaining correctness when
underlying assumptions change [deKleer et al., 1977;
Doyle, 1979; McDermott, 1989]. More importantly,
CASTLE can use these justifications for constructed rules
to facilitate further failure diagnosis. This will enable
the system to further refine its learned rules, in the
event that a constructed rule fails in the future.

Learning threat detection

The main point of our model of target concept retrieval
is, of course, that it enables a system to learn new rules
for a variety of cognitive tasks. Consider, for example,
how CASTLE can learn a new rule for the detection
focusing component which we discussed earlier. As we
saw, this component determines the areas of the board
in which threats may have been recently enabled.
Suppose CASTLE had an incomplete set of detection
focusing rules, in particular that it knew about threats
being enabled either to or from the new location of a
piece that has just been moved (as we discussed earlier),
but did not know that threats could be enabled through
discovered atlacks, namely, by moving a third piece
out of the line of attack. If this were the case, there
could be threats enabled through discovered attacks
which cASTLE would not be aware of. In the situation
shown in figure 5(a), the opponent advances its pawn
and thereby enables an attack by its bishop on the
computer’s rook. When the system updates its set
of active threats and opportunities, its threat focusing
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Figure 5: Discovered attacks example: Opponent (white) to move

(focus 7focus-method computer

(move opponent (move-take rock) bishop (loc 1 3) (loc § 7) (time 4})

(world-at-time 3))

imove-enabled-move
(move cpponent move-move
pavwn (loc 2 4) (loc 3 4) (time 2))
{move opponent (move-take rook) bishop
(lec 1 3) (loec 5 7) (time 4)))

(move-to-make
imove opponent

(move-to-make
{move opponent

move-move pawn (move-take rook)
(loc 2 4) (loc 3 4) bishop
(time 2)) ({loe 1 3) (loc § 7)
opponent 7goall (time 4)))
(time 2))

(move-to-make
H (move opponent (move-take rook) bishop ...}
opponent 7goalZ (time 4))

\

{loc-on-line 2 4
1357

{loc-on-diagonal
241357M

Figure 6: Explanation of desired detection focusing

rules will enable it to detect its own ability to attack the
opponent’s pawn, but it will not detect the threat to its
rook. Because of this, when faced with the situation in
figure 5(b), the computer will capture the opponent’s
pawn instead of rescuing its own rook, and it will
expect that the opponent’s response will be to execute
the attack which it believes to the only one available,
namely to capture the computer’s pawn. Then, in
the situation shown in figure 5(c), when the opponent
captures the computer’s rook, the system has the task
of diagnosing and learning from its failure to detect the
threat which the opponent executed.

As in the inlerposition example discussed earlier, the
system invokes its diagnosis engine to determine the
component which is at fault. In this case it will conclude
that the failure resulted from having an incomplete set
of detection focusing rules, and it will try to learn from
the failure by constructing a new one. To accomplish
this, the system retrieves a specification of the detection
focusing component, which says that focus rules will
indicate any moves which have been enabled. To learn
from the failure, CASTLE uses this specification as a
target concept to construct an explanation of what the
focus rules should have computed. This explanation,
which is shown in figure 6, says roughly that the focus
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rules should have focussed on the bishop-rook attack,
because a new threal was enabled, because the line of
atlack was opened up, because the opponent’s pawn was
moved oul of the line of altack.

As in the previous example, explanation-based learn-
ing is used to generalize this explanation and collect
the operational leaves of the proof tree. CASTLE then
constructs a rule from the proof tree leaves which will
correctly focus on discovered attacks. This rule says
roughly:

TO COMPUTE: Moves that may have been enabled

DETERMINE: Moves through the square
vacated by the most recent move

While the two rules that we have seen learned are very
similar in terms of their structure and the computation
which they perform, they fulfill very different purposes
in the CASTLE system, and more generally they relate
to very different cognitive tasks. Using component
performance specifications, CASTLE can learn rules
to focus perceptual detection by means of the same
mechanism that it uses to learn counterplanning rules.



Conclusions

We have given a framework for determining appropriate
explanation-based learning target concepts from ex-
plicit performance specifications of agent components.
This framework enables explanation-based learning to
be applied to the spectrum of cognitive tasks which are
performed by intelligent agents. We have demonstrated
this within the CASTLE system, which learns new rules
for such tasks as counterplanning and threat detection
focusing.

Applying this technique to learning rules for other
cognitive tasks involves extending CASTLE's model in
two ways. First, the explicit decision-making model
must be extended to include the cognitive task in
question. Secondly, a performance specification must
be given for any new components. We are in the
process of extending the model to include components
for goal-regression planning, execution scheduling, and
case-based planning. When these and other tasks are
expressed in CASTLE’s decision-making vocabulary, and
performance specifications are given for them, CASTLE
will be able to learn new methods for them in response
to failures. Future work will determine how well the
technique applies to other cognitive tasks, as well as to
other types of intelligent agents.
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and Mike Freed. Additional thanks go to Matt Brand, Eric
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