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On the optimal design of experiments for conceptual and
predictive discrimination of hydrologic system models
C. P. Kikuchi1,2, T. P. A. Ferr�e1, and J. A. Vrugt3,4

1Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona, USA, 2E. Montgomery and
Associates, Tucson, Arizona, USA, 3Department of Civil and Environmental Engineering, University of California Irvine,
Irvine, California, USA, 4Department of Earth System Science, University of California Irvine, Irvine, California, USA

Abstract Experimental design and data collection constitute two main steps of the iterative research
cycle (aka the scientific method). To help evaluate competing hypotheses, it is critical to ensure that the
experimental design is appropriate and maximizes information retrieval from the system of interest. Scien-
tific hypothesis testing is implemented by comparing plausible model structures (conceptual discrimination)
and sets of predictions (predictive discrimination). This research presents a new Discrimination-Inference
(DI) methodology to identify prospective data sets highly suitable for either conceptual or predictive dis-
crimination. The DI methodology uses preposterior estimation techniques to evaluate the expected change
in the conceptual or predictive probabilities, as measured by the Kullback-Leibler divergence. We present
two case studies with increasing complexity to illustrate implementation of the DI for maximizing informa-
tion withdrawal from a system of interest. The case studies show that highly informative data sets for con-
ceptual discrimination are in general those for which between-model (conceptual) uncertainty is large
relative to the within-model (parameter) uncertainty, and the redundancy between individual measure-
ments in the set is minimized. The optimal data set differs if predictive, rather than conceptual, discrimina-
tion is the experimental design objective. Our results show that DI analyses highlight measurements that
can be used to address critical uncertainties related to the prediction of interest. Finally, we find that the
optimal data set for predictive discrimination is sensitive to the predictive grouping definition in ways that
are not immediately apparent from inspection of the model structure and parameter values.

1. Introduction

To balance the many conflicting uses of water by society and the environment, hydrologists are called upon
to make specific predictions about future hydrologic conditions that will form the basis for water manage-
ment decisions. Frequently, these hydrologic predictions are guided by the outcome of hydrologic models.
It is increasingly recognized, however, that multiple models often provide acceptable agreement with exist-
ing observations [e.g., Neuman, 2003; Refsgaard et al., 2006; Tsai and Li, 2008; Foglia et al., 2013; W€ohling
et al., 2015], and hence model conceptualization itself is often uncertain.

Conceptual uncertainty and predictive uncertainty [Ye et al., 2010; W€ohling et al., 2015], greatly complicate
science-based decision making. Related to the problem of poor model identifiability is the problem of multi-
modal predictive distributions [e.g., D’Odorico et al., 2000; Milly, 2001; Ajami et al., 2008; W€ohling and Vrugt,
2008] for which probability mass may concentrate in multiple areas of the prediction space. To resolve the
stated problems of conceptual and predictive identification requires an experimental design suited to
achieving discrimination – among competing conceptualizations or competing prediction groups. Indeed,
what is needed is an experimental design that identifies optimally informative data to be collected from
complex hydrologic system of interest in order to address the related problems of conceptual and predic-
tive discrimination.

This research introduces a novel approach to the identification of highly informative hydrologic data, which
we refer to as Discrimination-Inference (DI). The DI methodology provides an information theoretic basis for
experimental design with the objective of discriminating among competing system conceptualizations or
prediction modes. This paper is organized as follows. Section 1 places DI in the context of previously pub-
lished experimental design studies in hydrology. Section 2 develops key theoretical bases of DI; these
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include the derivation of the proposed discrimination metric based on Bayesian model averaging (BMA)
theory and the principle of predictive grouping. Section 3 presents two case studies demonstrating the use
of DI. Section 3 also examines the characteristics of optimal designs as selected by different data utility func-
tions. The paper concludes with a summary of findings in section 4.

1.1. Optimal Design of Monitoring Networks
Optimal design (OD) studies attempt to identify optimal or near-optimal measurement sets to maximize
some data utility function [Chaloner and Verdinelli, 1995]. The first phase of an OD study is to define the
physical situation and the experimental design objective. Objectives typically fall into one of three catego-
ries. The first category of studies focuses on reducing prediction uncertainty as the experimental design
objective. These include, for example, uncertainty in model-predicted concentration [Herrera and Pinder,
2005], advective transport [Hill et al., 2013], contaminant arrival time [Nowak et al., 2010], or other environ-
mental performance metrics [de Barros et al., 2012]. The second category of studies focuses on system
parameter identification [e.g., Vrugt et al., 2002] and uncertainty reduction. Examples include identification
of transport parameters [Cleveland and Yeh, 1990], reducing the uncertainty in log-permeability [Lu et al.,
2012], and geostatistical parameter estimation [Sun and Yeh, 2007; Nowak et al., 2010; Neuman et al., 2012].
The third category of studies focuses on minimizing costs associated with management of a natural system.
For example, the classic study of James and Gorelick [1994] considered the selection of monitoring locations
to minimize expected costs of both contaminant remediation and data collection. More recently, Liu et al.
[2012] presented a framework to determine the value of improved parameter information on expected con-
taminant remediation costs.

The majority of optimal design studies in subsurface hydrology have been developed in the context of
groundwater contamination problems. Two additional objectives specific to this context are minimizing the
probability of contaminant detection failure [Dokou and Pinder, 2009] and estimating the spatial and/or
temporal moments of a contaminant plume [Kollat et al., 2008]. Conceptual model discrimination as a
design objective has in general received less attention, and is further reviewed in section 1.2. Finally, it
should be recognized that the data utility function need not be limited to a single design objective [Kollat
et al., 2011]; indeed, multiobjective formulation will provide insight into trade-offs between different design
objectives.

The second phase of OD studies entails the mathematical formulation of a data utility function used to
quantify data worth. In general, the data utility function reflects the intended use of prospective hydrologic
data toward one of the three categories listed above: reduced prediction uncertainty, parameter identifica-
tion, or cost-based management. Herrera and Pinder [2005] used the trace of the concentration error covari-
ance matrix as the data utility function; similarly, Lu et al. [2012] used the trace of the predicted
permeability covariance matrix. The total variance approach used in these two studies considers uncertainty
lumped across a spatial domain. A more common approach is to consider prediction uncertainty at one par-
ticular target location. For example, Zhang et al. [2005] used the coefficient of variation (CV) of contaminant
concentration at a sensitive location as the data utility function, with the intent of reducing the prediction
CV. A related statistic to the prediction CV is the entropy in risk as considered by de Barros and Rubin [2008].
It is also possible to evaluate the uncertainty associated with a binary prediction or indicator variable
[Nowak et al., 2012] such as the exceedance of a legal concentration limit in groundwater. Alternately, some
OD studies quantify the anticipated change in prediction uncertainty associated with one or more potential
measurements, and then proceed with measurement selection to maximize this quantity [e.g., de Barros
et al., 2012], yielding a unit value of uncertainty reduction associated with the hydrologic data. Some
approaches translate the reduction in prediction uncertainty directly into monetary terms [e.g., James and
Gorelick, 1994; Feyen and Gorelick, 2005], allowing for cost-benefit analysis of hydrologic data; this approach
is more representative of problems aimed at minimizing expected cost.

The third phase of OD studies forecasts how currently unknown hydrologic data will impact the data utility
function. Many studies that are focused on reducing prediction uncertainty linearize the error propogation
between proposed candidate measurements and predictions at sensitive target locations through first-
order, second moment (FOSM) approaches [Glasgow et al., 2003] such as the ensemble Kalman filter [e.g.,
Herrera and Pinder, 2005; Nowak et al., 2010] and OPR-PPR statistics [Tonkin et al., 2007]. These techniques
provide a computationally efficient means of undertaking the preposterior analysis for linear or nearly linear
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problems, but lead to less suitable monitoring network design for nonlinear problems [Leube et al., 2012].
The primary OD approach for nonlinear problems has been to condition the prediction variance upon a
number of randomly sampled realizations of the unknown data values for candidate measurements [Neu-
man et al., 2012; Leube et al., 2012]; this is known as preposterior estimation. The drawback of this approach
is that it is very computationally expensive. To reduce computational costs of the preposterior analysis for
nonlinear problems, Lu et al. [2012] introduced three possible approximations. The approximations are
based upon disregarding: parameter uncertainty; data uncertainty; or both. It has been recognized that of
these three approximations, disregarding data uncertainty in particular may introduce large errors into pre-
posterior estimates of prediction variance reduction [Lu et al., 2012].

The fourth and final phase of OD studies is to select optimal or near optimal measurement sets; that is,
those measurement sets that maximize the data utility function. Measurement optimization algorithms that
have been used in OD studies include the sequential exchange algorithm [e.g., Nowak et al., 2010; Leube
et al., 2012], genetic algorithm [Zhang et al., 2005], and simulated annealing [Nowak et al., 2012]. Considera-
tion of the number, timing, spatial coordinates, and type of candidate measurements as free design varia-
bles to be optimized leads to a very challenging problem in combinatorial optimization. This problem is
compounded by the high dimensionality and computationally demanding nature of many hydrologic mod-
els. As a result, most OD studies reduce the degrees of freedom in candidate measurement selection. This
may include, for example, limiting the number of measurement locations and times under consideration.

1.2. Model Discrimination Criteria and Data Utility Functions
The OD studies discussed above focus primarily on identifying optimal designs related to reducing either
prediction or parameter uncertainty. Model discrimination – in other words, critically testing individual
models, or sets of models – is another experimental design objective. In comparison with OD for reducing
prediction uncertainty, however, OD for the objective of model discrimination has received relatively little
attention in the hydrologic sciences literature.

The idea of model discrimination as an experimental design objective was first introduced by Hunter and
Reiner [1965]. They defined model discrimination as testing rival conceptual models against each other
using a likelihood ratio to quantify discrimination between two rival models. In this framework, discrimina-
tion is achieved by finding experimental conditions under which the models – each using respective maxi-
mum likelihood parameter estimates – differ to the greatest extent. Hunter and Reiner [1965] proposed a
data utility function, the S-index, based on differences in measureable, model-predicted quantities.

Following this benchmark study, Buzzi-Ferraris and Forzatti [1983] proposed a modified data utility function,
the T-index, also capable of accounting for estimated variance of the measurement errors, and variance of
the predicted response. In contrast to the likelihood ratio advocated by Hunter and Reiner [1965], Buzzi-Fer-
raris and Forzatti [1983] recommended quantifying model discrimination as the rejection of poor models
subsequent to performing classical statistical tests such as the F test on the residuals from each model
under consideration. Box and Hill [1967] took a fundamentally different approach, defining model discrimi-
nation as the expected change in Shannon entropy before and after additional data collection. The Bayesian
approach of Box and Hill [1967] makes explicit use of prior probabilities on the models. They developed a
data utility function, the D-index, to quantify the maximum possible change in entropy due to the addition
of a new experiment or data point.

Applications of discrimination criteria in hydrologic experimental and monitoring network design are pre-
sented by Knopman and Voss [1988] and Usunoff et al. [1992]. Knopman and Voss [1988] proposed four dis-
crimination criteria as a basis for accepting or rejecting rival models: the magnitude of prediction errors; the
presence of systematic error; changes in maximum likelihood parameter estimates; and measures of model
fit before and after data collection. It should be noted that systematic errors consist of all sources of error,
and are in practice difficult to disentangle. The proposed discrimination criteria were applied to determine
the locations and times of groundwater sampling to identify boundary conditions and aquifer layering for a
solute transport problem. This application is representative of field-scale hydrologic monitoring, for which
sampling locations are the design variables to be optimized.

In contrast, Usunoff et al. [1992] investigated whether proposed column transport experiments – considering
hydraulic boundary conditions and tracer pulse duration as the design variables – could discriminate among
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competing conceptual models. Usunoff et al. [1992] quantified model discrimination as the difference in pre-
dicted values between model pairs for which the second of the two models had been calibrated to simulated
concentration values of the first model. Mathematically this procedure consists of quantifying pairwise mini-
mum differences over many possible model pairings. Discrimination is achieved when the minimum differ-
ence is sufficiently large; for example, greater than some threshold such as the level of experimental error.

The idea of conceptual discrimination, as discussed above, has been applied to testing system conceptual
models against each other, with the ultimate goal of selecting a subset of more probable models. The funda-
mental idea underlying conceptual discrimination can be logically extended to the idea of predictive discrimi-
nation – that we may wish to test two or more predictions of future conditions against each other. This idea
has received attention in the medical field [e.g., Hanley and McNeil, 1982; Steyerberg et al., 2010], in particular
when the prediction of interest is a binary or indicator variable such as the presence or absence of an illness.
We are aware of only one study [Nowak et al., 2012] that considers the question of predictive discrimination
for water resources applications; that is, examining how data will change prediction probabilities. Nowak et al.
[2012] evaluated the prospective impact of data on the probabilities of committing type I or type II errors in
hypothesis testing, requiring that predictions be embedded in a binary or indicator variable.

The research presented here develops a DI framework for evaluating the suitability of prospective data sets
for conceptual and predictive discrimination, which we refer to as Discimination-Inference (DI). The worth
of potential data sets to achieve conceptual or predictive discrimination is evaluated as the expected
Kullback-Leibler (KL) divergence between prior and posterior probability distributions, of either the concep-
tual models, or the predictive groups. We use numerical preposterior techniques to evaluate the data utility
function for various prospective data sets. Finally, the preposterior analysis is embedded within a discrete
optimization framework, thereby addressing measurement selection as an OD problem. The DI framework
facilitates the comparison of optimal designs for both conceptual and predictive discrimination, providing a
solid basis for analysis of water resources in the face of uncertainty.

2. Methods

The DI methodology quantifies the expected discrimination due to additional data collection as the dis-
tance between prior and posterior probability distributions. This metric can be applied to either conceptual
(model) discrimination or predictive discrimination. The starting point for our analysis is a collection of simu-
lations capable of predicting past, current, and future hydrologic conditions. Each simulation is based on a
unique combination of underlying concept, mathematical formulation, system property parameters, and
boundary conditions. We refer to the collection of simulations as the simulation ensemble, and to each indi-
vidual simulation as an ensemble member.

2.1. Discrimination Metric
In the context of experimental and monitoring network design, we define discrimination as the extent to
which the acquisition of a new data set causes a change in the ensemble member probabilities. Let us con-
sider a simulation ensemble with N members comprising diverse conceptual-mathematical models, param-
eterizations, and boundary conditions. For notational convenience, boundary condition variability is
included in the model conceptualization and parameterization. Let pu21

i denote the prior probability of the
ith ensemble member, with i5 1; 2; . . . ;Nf g conditioned on the existing data set du21. Similarly, let pu

i

denote the posterior probability of the ith ensemble member after acquiring the additional measurements
to form the uth data set, du. We now collect the prior and posterior probabilities into two N31 vectors pu21

and pu. We wish to quantify the distance between pu21 and pu.

A natural choice is the Kullback-Leibler divergence, DKL [Kullback and Leibler, 1951] which is used to measure
the distance between two probability distributions. For notational convenience, we hereafter use the vari-
able U to represent DKL:

U5DKL5
X

i

ln
pu

i

pu21
i

� �
pu

i (1)

We adopt equation (1) to define discrimination; in other words, the value of U quantifies the extent to
which the ensemble probabilities have changed due to the acquisition of new data du.
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The KL-divergence is one member
from the family of f-divergences [Ali
and Silvey, 1966] that quantifies differ-
ences between two probability distri-
butions. The KL-divergence has
traditionally been used as the data
utility function in Bayesian experi-
mental design [Chaloner and Verdi-
nelli, 1995], and is used in this study
to quantify discrimination achieved
by collection of new data. However,
the framework presented here is
entirely general and readily accomo-
dates alternate summary statistics
including other f-divergences.

2.1.1. Simulation Grouping Schemes
The focus of this work is to quantify
the degree of change among concep-
tual model structures or predictive

groups. To achieve this, we introduce a scheme to calculate the probabilities of different ensemble group-
ings, defined specifically to accommodate different experimental design objectives. Conceptual discrimina-
tion is targeted by grouping simulations sharing the same underlying conceptual-mathematical
representation of the system of interest. Suppose that the ensemble has been generated from K underlying
conceptual-mathematical models. Then, the KL-divergence for the conceptual models, Ucm, is evaluated
over pu21

k and pu
k ; k5 1; . . . ; Kf g:

Ucm5
X

k

ln
pu

k

pu21
k

� �
pu

k (2)

Equation (2) quantifies the conceptual discrimination that can be attributed to the uth data set. This defini-
tion differs substantially from discrimination metrics used by previous studies [e.g., Box and Hill, 1967; Buzzi-
Ferraris and Forzatti, 1983; Knopman and Voss, 1988; Usunoff et al., 1992] and to our knowledge has not pre-
viously been used as a data utility function for optimal design studies.

Predictive discrimination is targeted by grouping simulations that produce similar predictions of interest for
water management decisions. Figure 1 illustrates an example distribution on the prediction D; the solid line
represents the weighted average of predictive distributions over three conceptual models (CM-01, CM-02,
CM-03). A predictive group consists of a set of simulations yielding values of future predicted quantities that
fall within a specified range. In Figure 1, the vertical dashed line represents a threshold delineating the predic-
tive groups, D1 and D2. The boundary between these groups is user-defined and reflects the intended applica-
tion of the predictions. Each predictive group will typically comprise ensemble members from more than one
conceptual model. Consequently, predictive discrimination is distinct from conceptual discrimination.

Once the predictive groups are defined, the analysis is similar to that described for conceptual discrimina-
tion. First, W predictive groups are defined. Figure 1 illustrates W 5 2 predictive groups; however, there are
no restrictions on the number of predictive groups. The KL-divergence for discriminating among predictive
groups is now evaluated over pu21

w and pu
w ; w5 1; . . . ;Wf g:

Upr5
X

w

ln
pu

w

pu21
w

� �
pu

w (3)

Equation (3) quantifies the predictive discrimination that can be attributed to the uth data set.

2.1.2. Groupwise Probabilities
To calculate the conceptual and predictive discrimination metrics, Ucm and Upr, requires evaluation of the
posterior groupwise conceptual and predictive probabilities. The posterior probabilities p Mk jduð Þ of the K
discrete conceptual models, conditioned on data du, follow Hoeting et al. [1999]:

Figure 1. Illustrative example showing predictive distributions for three concep-
tual models (colored symbols), the expected value over the three models (solid
black line), the predictive grouping threshold (at approximately 15 here), and the
definition of two predictive groups.
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p Mk jduð Þ5 p dujMkð Þp Mkð ÞXK

j51

p dujMj
� �

p Mj
� � (4)

p dujMkð Þ5
ð

p dujbk ;Mkð Þp bk jMkð Þdbk (5)

In equation (5) bk denotes the parameters of the kth model; the integral is referred to as the Bayesian model
evidence (BME). The first probability under the integral in equation (5) is the likelihood function, which
quantifies in probabilistic terms the size of the model-data mismatch, including bias, uncertainty, correla-
tion, etc. The second probability under the integral is the prior on the parameters for the kth conceptual
model.

Evaluating equation (5) is quite challenging in practice, especially if the parameter dimensionality is large
[Sch€oniger et al., 2014]. The use of Markov Chain Monte Carlo (MCMC) simulation (section 2.2), renders equa-
tion (5) more tractable. Specialized estimators have been developed to calculate the BME from MCMC sam-
pling of the posterior distribution; we adopt the use of a Laplace-Metropolis estimator of the BME [Lewis
and Raftery, 1997]:

BME � 2pð Þnk=2jRk j1=2p b�k
� �

p du21jb�k
� �

(6)

In equation (6), nk is the number of parameters in the kth conceptual model, j � j is the determinant operator,
Rk is the covariance matrix of posterior MCMC samples from the kth conceptual model, and b�k is the maxi-
mum likelihood parameter set corresponding to the kth conceptual model.

The groupwise predictive probabilities, p Dwð Þ, are defined as the probability that the predicted quantity of
interest, D, lies in the region between a, b. Mathematically, this is expressed as p Dwð Þ5p D 2 a; bf gð Þ. The
value of p Dwð Þ is evaluated by integrating over the region between a, b:

p Dwð Þ5
ðb

a
p Dð ÞdD (7)

In equation (7), p Dð Þ5p Djduð Þ, and

p Djduð Þ5
XK

k51

p DjMk ;duð Þp Mk jduð Þ (8)

Equation (8) follows Hoeting et al. [1999], and the model probabilities p Mk jduð Þ can be calculated with equa-
tions (4) and (5).

2.2. Sampling the Feasible Model Space
We consider N ensemble members, developed to explain and make predictions related to a hydrologic system
and based on a broad range of K plausible model conceptualizations (based on variable geologic structures,
choice of governing equations, boundary and initial conditions, etc.), and parameterizations b. Let k represent
the K31 vector of discrete conceptual models. We then populate a vector of simulation inputs s of size N,
with the ith entry, si, drawn at random from the joint pdf of k, b conditioned upon existing data du21:

si � pu21 k; bjdu21� �
p du21� �

(9)

The ensemble inputs corresponding to the kth conceptual model are propogated through the correspond-
ing model operator, fk, to populate a matrix of predictions, Ŷ5fk sð Þ, with dimensions N 3 R, where R is the
number of predictions. Prospective candidate measurements d̂u such as groundwater levels or streamflow,
and future predicted quantities relevant to decision-making D̂, such as contaminant fluxes or streamflow
depletion, may be included in the list of predictions.

The distribution of Ŷ depends directly on the distribution of s; consequently, the accuracy of the predictive
moments depends on the degree to which the posterior density on s has been sampled. MCMC sampling is
the most reliable and efficient approach for populating the input vector s; the analyses presented here use
MCMC to sample the posterior parameter densities on bk . MCMC fully samples the posterior density on bk ,
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revisiting with high frequency regions of the parameter space leading to more probable model simulations,
while still retaining less probable realizations. Upon convergence, the input sample produced by MCMC
simulation can be used directly to populate the model inputs s.

The development of efficient and accurate MCMC algorithms for hydrologic problems has been the topic
of extensive research. The DiffeRential Evolution Adaptive Metropolis [Vrugt et al., 2009] (DREAM) algo-
rithm represents the state of the art in MCMC sampling, and is used in this study. Briefly, DREAM runs
multiple Markov Chains concurrently, and multivariate proposals are created on the fly using differential
evolution [Storn and Price, 1997], each of which moves through the parameter space, converging on
those regions associated with higher density. This methodology is easy to implement in practice and
exhibits a high sampling efficiency. For the DI methodology considered here, ensembles based on more
than one underlying conceptualization require that MCMC sampling be conducted for each different
conceptualization.

2.3. Preposterior Estimation of the Discrimination Metric
Given the values of two data sets, du21 and du, the conceptual or predictive discrimination can be calcu-
lated using equations (2) and (3), respectively. Our objective in this work, however, is to determine the suit-
ability of prospective data sets for which du is unknown. That is, we aim to predict the discriminatory
capabilities of data before they are collected. To solve this problem, we turn to preposterior estimation
techniques [e.g., Reichard and Evans, 1989; James and Gorelick, 1994; Feyen and Gorelick, 2005; Leube et al.,
2012; Neuman et al., 2012], which estimate the expected value of some data utility function by calculating
the average over many ensemble-generated realizations of the prospective data set.

The preposterior estimation procedure used in this study consists of four steps. First, we generate a set of M
data realizations. To accomplish this, we independently populate the M31 vector of model inputs to be
used for data realizations, sdrz from the model input space according to equation (9). Then, we pass those
inputs through the model operator to predict the numerical values corresponding to the uth prospective
data set, d̂

u
drz. We then conduct a Bayesian updating procedure for each of the M data realizations. For each

data realization, the prospective data set values d̂
u
drz are then compared to the ensemble-predicted equiva-

lents, d̂
u
ens. The difference between the predicted measurement values under the ith ensemble member d̂u

i

and the jth data realization d̂u
j is used to evaluate the likelihood function. The case studies considered in this

paper use a Gaussian likelihood function:

p d̂
u
i jd̂

u
j

� �
5

1

2pð Þnu j2R�j½ �1=2
exp 2

1
2

eT 2R�ð Þ21e
� 	

(10)

In equation (10), nu is the size of the uth data set, R� is the error covariance matrix, and e is the difference
between d̂

u
i and d̂

u
j . This formulation uses noise-free ensemble members and data realizations, but doubles

the error covariance matrix, according to the marginalization derived by Leube et al. [2012]. Equation (10) is
substituted directly into equation (5), from which the conceptual and predictive probabilities are calculated.
It should be noted that although Gaussian likelihood functions are shown in the following examples, the DI
framework can handle non-Gaussian likelihood functions.

Having calculated the posterior probabilities, we now evaluate the discrimination metric (Ucm
j or Upr

j ) for
the jth realization using equation (2) or (3). For each realization, the values of the discrimination metric are
stored in the M31 vector U. In the final step, we calculate the expected value of the discrimination metric
for each proposed set of observations by averaging over the data realizations:

E U½ �5 1
M

XM

j51

Uj (11)

The preposterior estimation procedure described above may be sensitive to both the ensemble size, N, and
the number of data realizations M. For small values of N, conditioning on d̂

u
may concentrate the probabil-

ity mass in a relatively small number of ensemble members. This problem is known as filter degeneracy
[Doucet and Johansen, 2008], and may introduce error into the calculation of the groupwise posterior proba-
bilities. Selecting an adequately large value for N is problem-specific, and can be guided by recording and
evaluating the effective sample size (ESS) [Liu, 2008], which measures sample diversity.
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ESS5
XN

i51

p2
i

 !21

(12)

Averaging the ESS over the M data realizations provides an average effective sample size (AESS) [Leube
et al., 2012]. The ESS quantifies the approximate number of perfect samples drawn from the distribution of
interest [Doucet and Johansen, 2008]. The required ESS for inference is application dependent. Previous
studies of preposterior data worth estimation [e.g., Leube et al., 2012] determined that ESS values of 500
were adequate for the purposes of evaluating the worth of prospective data.

Obtaining a representative value of E U½ � requires a sufficiently large number of data realizations, M, to smooth
out the variability in the conditioning data due to model input uncertainty. To evaluate the reliability of the
preposterior discrimination metric for each case study, we conduct benchmark calculations to determine the
sensitivity of E U½ � to M, enabling selection of sufficiently large M. Similarly, we determine appropriate values
of N applicable to problems of varying complexity. These results are presented in section 3.1.4.

2.4. Optimization Algorithm
The DI procedure, as detailed above, may be used to estimate the ability of candidate data sets to achieve
conceptual or predictive discrimination between ensemble members. Specifically, we wish to maximize
E U½ �; formally, this can be written:

uopt5 max
u2D

E U½ �5 1
M

XM

j51

Uj

( )
(13)

In equation (13), D is the space containing all admissible experimental designs satisfying logistical con-
straints (e.g., total cost, available observations). The vector u is a subset of D representing experimental
design settings such as measurement types, times, and locations. High-dimensional D renders infeasible the
exhaustive evaluation and comparison of all prospective data sets. Therefore, it will generally be necessary
to solve equation (13) using optimization techniques. The prospective data set is based on design variables,
which may be either discrete or continuous. The optimization algorithm must be capable of handling both
variable types. This research uses the Nonlinear Mesh Adaptive Direct search (NOMAD) algorithm [Le
Digabel, 2011], as implemented in the OPTimization Interface (OPTI) toolbox [Currie and Wilson, 2012] for
MATLAB software.

2.5. Computational Implementation
The Discrimination-Inference (DI) method is illustrated schematically in Figure 2, and is implemented as
described by the following steps:

1. Propose and implement a set of K conceptual-mathematical models to describe the hydrologic system of
interest. For each conceptual model, describe quantitatively the distribution of the model parameters,
based on field samples, existing databases, etc.

2. If data suitable for model calibration are available, use those existing data to derive posterior parameter
densities under each conceptual model. If data are not available, then parameter densities must be esti-
mated on the basis of qualitative data, literature values, etc.

3. Based on the outcome of steps (1) and (2), use equation (9) to generate the N31 vector sens containing
ensemble inputs. Then, propogate the simulation inputs through the model operator fk to produce the N 3

R array of ensemble predictions. Repeat this procedure independently for each data realization, to generate
the M31 vector sdrz containing inputs for generating the data realizations. Then, populate the M 3 R array
of data realizations via the same model operator fk.

4. Determine the admissible space, D, of measurement sets as dictated by logistical, time, and fiscal con-
straints, and subject to expert judgment, where possible.

5. Implement a discrete optimization algorithm to maximize the data utility function E U½ � subject to the
constraints identified in step 4; each evaluation of the data utility function entails the following:

i. Loop through the M data realizations; for the jth realization, evaluate the Bayesian model evidence
(equation (5)).
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Figure 2. Schematic diagram showing workflow of the Discrimination-Inference framework, including optimal design analysis (within dashed line).
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ii. Compute pj Mk jd̂
� �

for each group; then, compute either Ucm
j or Upr

j , using equation (2) or (3), depend-
ing on the objective of the investigation (conceptual versus predictive discrimination).

iii. Store the data utility function of the jth realization—either Ucm
j or Upr

j —in the vector U. Once all of the
data realizations have been processed, calculate E U½ � using equation (11).

Steps 5(i–iii) are repeated within the optimization algorithm until the convergence criterion for globally
optimally E U½ � has been satisfied.

3. Case Studies

We present two case studies to illustrate the DI procedure for optimal selection of hydrologic measure-
ments. The first case study concerns the selection of paired pressure head and water content measure-
ments in soils, with the objective to discriminate among multiple soil hydraulic models. The second case
study considers the long-term effects of groundwater pumping on spring discharge in a closed hydrologic
basin. The objective in the second case study is to select a set of predevelopment measurements best
suited to discriminate among predictions of spring depletion under postdevelopment conditions.

3.1. Case Study 1: Soil Water Characteristic Curve
The soil water characteristic (SWC) curve relates pressure head and water content in a porous medium. This
relation is central to modeling processes such as infiltration, soil evaporation, root water uptake, ground-
water recharge, and water redistribution. Several different models have been proposed that describe this
relationship. As their application often involves important differences in the simulated soil moisture regime
and associated hydrologic processes, it is important to select the most appropriate hydraulic model for a
given soil and experimental data. The objective of the first case study is to identify two sets of paired meas-
urements of water content, h, and pressure head, w, that are optimally suited to discriminate among soil
hydraulic models. The analysis presented here considers three soil hydraulic models: Mualem-van Gen-
uchten [Van Genuchten, 1980], Brooks-Corey [Brooks and Corey, 1964], and Kosugi [Kosugi, 1996] models.
Each of the three conceptual models described above contains four fitting parameters whose values are
typically estimated from in situ (field) or laboratory h2w data using nonlinear least-squares. The Mualem-
van Genuchten (MVG) model of the SWC is given by:

h wð Þ5hr1 hs2hrð Þ 11 ajwð jn½ Þ�1=n21 (14)

The MVG model contains four fitting parameters whose values are soil dependent; hs is the saturated water
content, hr is the residual water content, a is related to the inverse of the air-entry pressure, and n is related
to the pore-size distribution. The Brooks-Corey (BC) model of the SWC is given by:

h wð Þ5hr1 hs2hrð Þ wb

w

� �k

(15)

In addition to hr and hs, the BC model contains two parameters - the bubbling capillary pressure, wb, and
the pore-size index, k, that are related to the parameters of the MVG model by wb5a21 and k5n21 [Rawls
et al., 1993]. Finally, the Kosugi (KM) model of the SWC is given by:

h wð Þ5hr1 hs2hrð Þ 1
2

erfc
ln ðw=aÞffiffiffi

2
p

n

� 	� �
(16)

The KM fitting parameters are a and n, in addition to hs and hr. The KM parameters a and n are not related
the the MVG or BC parameters.

3.1.1. Generation of Simulation Ensemble and Data Realizations
Following the procedure outlined in section 2.5, we first populate a simulation ensemble comprising param-
eter realizations from each of the three conceptual models. The prior distributions on the parameters of the
MVG and BC model are derived from calibrated MVG parameter values in the ROSETTA database [Schaap
et al., 2001]. Specifically, for a given soil texture – in this case, a sandy loam soil – we extract all correspond-
ing MVG parameter estimates (481 total soil samples), and compute a sample mean and covariance over
the set of parameter estimates. The sample mean and covariance of the KM parameters are not included in
the ROSETTA database. Rather, we calculated them as follows: for each of the sandy loam soils for which
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paired h-w are listed, the KM parameters were estimated to minimize the model-data residuals over avail-
able soils from the ROSETTA database, producing a set of KM parameter estimates. Then, the sample mean
and covariance were calculated over all the parameter sets.

For each conceptual model, the corresponding parameter mean and covariance matrix were used to con-
struct a Gaussian prior. We evaluated the posterior probability density over each of the three conceptual
models, and then calculated the conceptual model probabilities according to equation (4). We used the
DREAM algorithm [Vrugt et al., 2009] to derive the posterior parameter distribution using a total of 100,000
function evaluations per conceptual model. The observational data du21 consist of six paired h2w measure-
ments for a sandy loam soil, taken from the ROSETTA database [Schaap et al., 2001]. We used a Gaussian
likelihood function as described by equation (9), with parameters based on the assumed distribution of
measurement errors. For this case, we assume uncorrelated measurement errors; the diagonal entries of R�

contain the constant measurement error variance of 0.0001 (m3 m– 3) associated with a water content mea-
surement error (treated as 95% confidence interval) of 0.02 (m3 m– 3). These values are typical for time-
domain reflectrometry measurement of soil water content [Topp et al., 1980].

We monitored the convergence of each DREAM run based on the R̂-statistic of Gelman and Rubin [1992].
Inspection of DREAM output showed that the R̂-statistic typically dropped below 1.2 within the first 10,000
function evaluations for each chain. It was therefore determined that the algorithm had converged to the
posterior density after this point. That is, parameter samples drawn from each chain after the first 10,000
function evaluations represent a full sample of the posterior parameter space. We extracted the last 50,000
parameter samples and associated log-likelihood function values for each conceptual model, and used the
samples to evaluate equation (4) for each conceptual model, assuming equal (uniform) prior probabilities
for each conceptual model. The posterior probabilities of the MVG, BC, and KM conceptual models after
conditioning on du21 were 0.237, 0.233, and 0.530, respectively. The distribution on conceptual model prob-
abilities exhibits a preference for the KM; however, the other two models are still plausible.

Populating both the simulation ensemble and the set of data realizations for preposterior analysis requires
drawing two independent sets of model inputs, sens and sdrz. For this example, the model inputs consist of
parameter realizations under each conceptual model, and are readily available as the parameter output
samples from the DREAM algorithm. We populated sens directly from the DREAM parameter sampling out-
puts, and populated sdrz from a second, independent DREAM run with 50,000 maximum function evalua-
tions per conceptual model. Our preliminary analysis used N 5 150,000 ensemble members divided equally
among the conceptual models, and with M 5 1,500 data realizations. We also conducted benchmark runs to
evaluate the effect of N and M on the results of the DI procedure.

3.1.2. Simulation Ensemble Characteristics
The effect of data on the distribution of model predictions can be evaluated through BMA statistics – specif-
ically, the decomposition of prediction variance to within-model variance and between-model variance
[Hoeting et al., 1999]:

EK var Dð Þ½ �5
X

k

var Djdð Þp Mk jdð Þ (17)

varK E Dð Þ½ �5
X

k

E Djd;Mkð Þ2E Djdð Þ½ �2p Mk jdð Þ (18)

Equation (17) defines the within-model variance as the expectation of the variance over the conceptual
models, and quantifies prediction uncertainty associated with factors such as parameter variability and forc-
ing data. Equation (18) defines the between model variance as the variance of expectation over the concep-
tual models, and quantifies prediction uncertainty due to conceptual, or model structural variability. The
total prediction variance is equal to the sum of the within and between-model variance. Conditioning the
parameters of each conceptual model on the initial data set du21 of six h-w measurement points substan-
tially reduced both within-model and between-model prediction variance in the pressure range corre-
sponding to the existing data. Figure 3a compares the expectation of the predicted water content E hk jMk½ �,
under each of the three conceptual models. The expectation of the predicted water content, E hk jMk½ �, calcu-
lated over all ensemble members under each of the soil hydraulic models, are represented by blue (MVG),
red (BC), and green (KM) lines. The dark gray area in Figures 3a–3c represents the prediction uncertainty, as
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represented by the posterior BMA standard deviation of the predicted water content. The predictions
diverge to the greatest extent at pressure heads closest to zero. Figures 3b and 3c illustrate the posterior
weighted expectation over all three conceptual models underlain by the standard deviation of the pre-
dicted water content, representing prediction uncertainty. The light gray area in Figure 3b shows the
within-model component of the total predictive uncertainty, and the light gray area in Figure 3c shows the
between-model component of the total predictive uncertainty. To generalize, the prediction standard devi-
ations are relatively tight in the vicinity of measurements corresponding to du21, but relatively wide at very
low and very high w values. However, most of the uncertainty is attributed to within-model variations rather
than between-model variations.

3.1.3. Implementation of DI Analysis
Having generated the simulation ensemble and the data realizations, we now compute the data utility func-
tion, E Ucm½ �, over the space of possible measurements. For this problem we consider the selection of two

additional h-w pairs, with w 2 2104;21023

 �

[m]. We discretized the log-transformed pressure heads into

75 equally spaced points, resulting in
75

2

 !
5 2,775 pairs of w coordinates. We augmented this candidate

measurement set with 75 additional points, each constituting a single w coordinate, resulting in a total of
2,850 possible candidate measurement sets. For this particular example, the relatively small number of can-
didate measurement sets, coupled with the fast simulation time associated with equations (14–16) made
possible a complete, exhaustive exploration of the entire candidate measurement space. In other words, we
evaluated equation (11) a total of 2,850 times.

Figure 3. Posterior expectation and uncertainty of predicted volumetric water content based on three conceptual models. For all plots,
the dark gray area represents total posterior standard deviation of the predicted water content. (a) Posterior expectation, E hk jMk ;d½ � for
each conceptual model, (b) posterior expectation, E hjd½ �, over all three conceptual models; light gray area represents within-model stand-
ard deviation, (c) posterior expectation, E hjd½ � over all three conceptual models; light gray area represents between-model standard devia-
tion. Horizontal dashed lines indicate the optimal set of two h-w measurement pairs that maximize conceptual model discrimination.
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3.1.4. Results of DI Analysis
The horizontal dashed lines in Figures 3 and 4 depict the pressure heads of the optimal measurement set
for the purposes of conceptual model identification, as determined by the DI procedure described above. In
other words, the pair of measurements identified by pressure heads of w1521021:6 and w2521020:95 m
are those for which the value of E Ucm½ � was largest. The optimal w-coordinates are surprising on first inspec-
tion, as Figure 3c indicates that the largest between model variation is associated with w521022 m. This
result suggests that h-w measurements in this area would support conceptual model discrimination. How-
ever, the optimal measurements are instead located at slightly more negative pressure heads. The some-
what counterintuitive selection of optimal observations can be explained by two key characteristics of
optimal measurement set selection for conceptual model discrimination: the selected observations must
target differences among the conceptual models in excess of the within-model uncertainty, and they must
minimize the collection of redundant information.

The large within-model uncertainty—due exclusively to parameter uncertainty in this case—for pressure
heads greater than w521021 m greatly diminishes the worth of water content measurements at pressures
between 0 and 21021 for conceptual discrimination. Figure 4a shows the ratio of the between-model var-
iance to within-model variance, varK E hð Þ½ � : EK var hð Þ½ �; this is effectively a signal-to-noise ratio, where model
variability is the signal and parameter variability constitutes the noise. In other words, this ratio quantifies
the extent to which between-model differences can be discerned given the degree of within-model vari-
ability. This ratio is highest in the pressure range of w521020:8 to w521021:8 m. The selected measure-
ments, w1 and w2, lie within this range.

If we had been seeking one, rather than two, additional h2w measurements, the data pair corresponding
to the maximum value of varK E hð Þ½ � : EK var hð Þ½ � would have been selected. The optimal pressures for a set
of two candidate measurements, however, must balance high discriminatory power - as represented by the
between to within-model uncertainty—with the requirement to minimize the collection of redundant infor-
mation. We use the mutual information to quantify the degree of redundancy of individual candidate meas-
urements with the existing data set and with other individual measurements in the candidate
measurement set. Briefly, MI X;Yð Þ describes how much information X contains regarding Y, and is suitable
for measuring nonlinear relations among random variables. A relatively high MI value indicates a high

Figure 4. (a) The ratio of between-model to within-model variance, varK E hð Þ½ � : EK var hð Þ½ � evaluated over the range of feasible candidate pressure heads; dashed horizontal lines show
the coordinates of the optimal measurement pair, w1 and w2. (b) Mutual information (MI) between possible candidate measurements and the set of existing h2w measurement pairs. (c)
Surface showing the MI evaluated for each possible candidate measurement pair; white circle identifies the location of w1 and w2.
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degree of measurement infor-
mation redundancy. We use
the k-nearest neighbor estima-
tor of Kraskov et al. [2004] to
conduct two sets of MI calcula-
tions, populating the variables
X and Y with ensemble-
predicted water content values
over all conceptual models and
parameterizations.

Figure 4b shows the MI between
existing data du21 and each pos-
sible w-h pair. The highest val-
ues are found in the vicinity of
the existing data, as expected.
This result suggests that h meas-
urements in the range 21020:5 <

w < 2100:2 m are redundant
with the existing data. Figure 4c
shows the MI calculated between
possible pairs of candidate meas-
urements a and b over all

wa;wbð Þ 2 D. The highest MI values are found for pairs comprising identical w-coordinates, as expected. The
white circle in Figure 4c shows the optimal measurements set as identified by the DI analysis. The MI
value for the optimal w-coordinates is relatively small at these coordinates, indicating substantially lower
redundancy than for other possible measurement pairs. To summarize, Figure 4 illustrates that a good
measurement set for conceptual discrimination is one that maximizes between-model versus within-model
prediction uncertainty and minimizes both the redundancy of the measurement set with existing data,
and the internal redundancy of the measurement set. The relative importance for each of these three
qualities cannot be known a priori, but the contribution of both is implicit in the preposterior estimation
procedure.

Figure 5 illustrates the distribution of E Ucm½ � over the feasible measurement space. It is worth noting that
the E Ucm½ � surface is symmetric; this is because the h measurements are simultaneously, rather than
sequentially, assimilated and processed. The surface is bisected by a 1:1 line that reflects measurement sets
consisting of a single h-w measurement pair; this line can be used to identify instances for which a single
measurement may be just as informative or even more informative than two measurements for the purpose
of conceptual discrimination. For example, a single h-w measurement in the vicinity of w521021:5 m (coor-
dinates of w521021:5 m for both w1 and w2) has a larger value of E Ucm½ � than any pair of measurements
for which both values of w lie between 21021 and 2104 m. Note that the selected observations (shown as
the white circle) are in an area of very high E Ucm½ �.

3.1.5. Reliability of the Preposterior Estimates
The reliability of the results shown in Figures 3–5 is contingent upon two important factors. First, the extent
to which filter degeneracy was encountered during the preposterior updating of the simulation ensemble
probabilities, and second, the convergence of E Ucm½ � during the preposterior estimation procedure. We
evaluate the magnitude of filter degeneracy by calculating the minimum, maximum, and median AESS over
all 2,850 possible measurement sets. For the benchmark DI run with N5120,000, M51,200, AESS values
ranged from approximately 30,000 to 40,000. A generally accepted rule-of-thumb in particle filtering for
state estimation is that ESS � N=2 is adequate to characterize the distribution of interest [Doucet and Johan-
sen, 2008]; however, a similar rule of thumb has not been established for data worth applications. Therefore,
we conducted benchmarking analyses to study the effect of the simulation ensemble size, N, on both the
AESS and value of E Ucm½ �. Specifically, we repeated the DI analysis with a range of values for N, compiling
the results in Table 1. We also conducted DI calculation runs for several values of M to provide preliminary
guidance on the minimum value of M to ensure convergence of E Ucm½ �.

Figure 5. Two-dimensional map of E Ucm½ � derived from preposterior estimation using all
possible sets of of two h2w measurement pairings. The white circle indicates the optimal
measurement pair, associated with the highest possible value of E Ucm½ �.
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The optimal w coordinates do not appear to be any more sensitive to the ensemble size N than to M, over
the range of values explored. We therefore conclude that the AESS was acceptably large. This result sug-
gests that at least for low-dimensional problems such as this case study, a smaller ensemble size on the
order of 30,000 ensemble members may be suitable. Increasing the ensemble size shifts upward the AESS
range at the cost of additional computational time. Finally, the coordinates of the optimal measurement set
are remarkably consistent over the range of N and M explored for this analysis. Increasing the number of
data realizations averages out the effects of the underlying structural and parameter uncertainties. The
results shown here suggest that setting M on the order of 500 is adequate for problems similar in complex-
ity to the one considered here. Overall, the benchmarking runs summarized by Table 1 suggest that the pre-
posterior estimation procedure yields reliable estimates of E Ucm½ �.

3.2. Case Study 2: Closed Groundwater Basin
The second case study considers groundwater development in a closed, or endorheic, groundwater basin.
Groundwater discharge from a closed basin may occur as spring discharge or direct evaporation from satu-
rated soil. Groundwater development in a closed basin will ultimately reduce the magnitude of the fluxes
corresponding to both outflow mechanisms. The potential ecological consequences of reductions of spring
discharge may be of great importance for the sustainable long-term management of closed groundwater
basins. The objective of this case study is to identify measurements capable of predictive discrimination,
where the prediction of interest is the long-term reduction in spring discharge rate due to groundwater
pumping. The measurements are to be identified and conducted prior to groundwater development, and
then used to inform ensemble predictions of long-term, postdevelopment changes in spring discharge.

A synthetic, closed basin is used in this case study; Table 2 presents relevant characteristics of the basin. The
hydrogeologic structure of the basin is intended to reflect horst and graben geologic environments, for which
down-dropped basin fill sediments constitute a productive unconfined aquifer bounded by largely impermeable
bedrock. The hydraulic properties of the hydrogeologic units are assumed to be unknown, but internally homo-

geneous; this assumption is frequently employed
for the purposes of basin-scale groundwater
modeling applications. Figure 6 illustrates the
hydrogeologic structure of the basin in plan-
view and cross section, including unit boundaries
and the location of pertinent hydrologic features.
Inflows to the basin consist of distributed in-
place recharge applied over the entire basin
area, and three distinct zones of mountain front
recharge. Outflows to the basin consist of spring
discharge at two locations, and soil evapotranspi-
ration in the basin center. The locations of avail-
able hydraulic head observations and proposed
pumping wells are shown in Figure 6. Both of
the pumping wells are screened between 2100
to 2150 m below land surface, and are each
assumed to pump at 500 m3 d– 1 under postde-
velopment conditions.

Table 1. Summary of DI Calculation Results Over a Range Values for Ensemble Size, N, and Number of Data Realizations, Ma

Ensemble
Size, N

Data
Realizations, M

Min/Max
Value AESS

Median
Value AESS

Optimal
Coordinates w

Wall-Time
(min)

30,000 300 7,852/10,028 8,137 20:050;20:186f g 45
30,000 600 7,910/10,176 8,129 20:041;20:078f g 93
60,000 300 15,688/20,305 16,470 20:033;20:050f g 72
60,000 600 15,769/20,349 16,421 20:050;20:121f g 129
90,000 300 23,427/30,137 24,343 20:0126;20:121f g 106
90,000 600 23,419/30,174 24,369 20:033;20:063f g 198
120,000 1,200 31,280/40,261 32,621 20:050;20:150f g 456

aThe benchmarking runs were conducted on a dual-core processor (2.40 GHz) with 24.0 GB RAM.

Table 2. Hydrogeologic and Numerical Model Specifications Applica-
ble to All Five Conceptual Models of Groundwater Flow in the Closed
Hydrologic Basin

Basin Dimensions

Basin Area 37.5 km 2

Topographic high 10 m
Topographic low 0 m
Hydrogeologic Characteristics
Ratio of horizontal to vertical

hydraulic conductivity
10

Maximum sediment thickness 160 m
Elevation of soil evaporation area 0 m
Area of soil evaporation area 0.74 km2

Maximum soil evaporation rate 5.0 mm d– 1

Evaporation extinction depth 2.0 m
Elevations of springs 0:5; 0:5f g
Area of mountain front

recharge zones A; B; Cf g
0:2; 0:2; 0:2f g

Elevations of mountain
front recharge zones A; B; Cf g

10; 10; 10f g
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3.2.1. Alternate Hydrogeologic Conceptual Models
We assume that initial characterization of the basin has led to a set of four alternate conceptual models in
addition to the conceptual model described above. The alternate conceptual models are based on plausible
hydrogeologic structural uncertainties encountered in basin-scale groundwater investigations. Figure 7 illus-
trates the distinctive conceptual model characteristics. Conceptual model #1 (CM-01) consists of the basin
as described in section 3.2, above. Conceptual model #2 (CM-02) includes the presence of two lenses, for
which the hydraulic properties are considered be substantially different from adjacent aquifer units. Figure
7a illustrates the areal extent of the lenses; the minimum and maximum elevations of lens material are 0
and 250 m for lens A, and 225 and 2100m for lens B. Conceptual model #3 (CM-03) includes an extensive
lens to the west and northwest of the soil evaporation zone, as illustrated in Figure 7b. Conceptual model
#4 (CM-04) represents mountain front recharge as occurring through discrete stream features rather than as
a continuous line parallel to the mountain front. Finally, conceptual model #5 (CM-05) considers the possi-
bility of subsurface zone in the northern portion of the basin, through which water may be transmitted as
underflow to an adjacent basin.

3.2.2. Groundwater Simulation Approach
Our objective is to identify sets of measurements – including hydraulic heads, spring discharge, and
recharge flux – that are optimal for predictive discrimination. We therefore require for each ensemble mem-
ber a list of predictions for the candidate measurements under predevelopment conditions. We also need a
list of the predicted spring discharge values under postdevelopment conditions. We are specifically inter-
ested in the long-term changes to spring discharge under postdevelopment conditions. The required

Figure 6. Hydrogeologic structure and hydrologic features of closed basin; gray and white areas represent hydraulic conductivity zones 1 and 2, respectively. Depth of the bottom of
model layer 1 is variable. Depths of the bottoms of model layers 2 and 3 are at 2100 and 2150 m below land surface, respectively.
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predictions can be calculated by solving the steady state groundwater flow equation first under predevel-
opment, then under postdevelopment conditions:

@

@x
Kx
@h
@x

� �
1
@

@y
Ky
@h
@y

� �
1
@

@z
Kz
@h
@z

� �
1S50 (19)

In equation (19), h and K are the hydraulic head and hydraulic conductivity, respectively. The S term in equa-
tion (19) represents internal sources and sinks to the aquifer. For predevelopment conditions, this term
includes recharge, soil evaporation, and spring discharge. For postdevelopment conditions, this term
includes the mechanisms listed above and groundwater pumping. Equation (19) is solved numerically for
each of the five conceptual models using MODFLOW-NWT [Niswonger et al., 2011]. The model grid is recti-
linear, consisting of three layers; each layer includes 75 rows and 50 columns. Constant saturated thickness
is specified for layers 2 and 3, and the saturated thickness in layer 1 is allowed to vary as a function of
hydraulic head, representing an unconfined aquifer. Cell sizes are uniform – 1003100 m – in the horizontal,
and of variable thickness in the vertical, as shown in Figures 6b and 6c. Predicted values of the prospective
candidate measurements, d̂, are calculated by evaluating equation (19) under predevelopment conditions.
On the other hand, predicted values of the spring-flows are calculated by evaluating equation (19) under
both pre and postdevelopment conditions to determine spring depletion due to groundwater pumping.
Consequently, equation (19) is evaluated twice for each ensemble member.

3.2.3. Generation of Simulation Ensemble and Data Realizations
The simulation ensemble for this case study is populated using parameter realizations from each of the
five conceptual models described above. The uncertain parameters of each conceptual model are sum-
marized in Table 3, and consist of both hydraulic conductivity and recharge parameters. We used the
DREAM [Vrugt et al., 2009] algorithm with 150,000 total function evaluations per conceptual model to
evaluate the posterior density under each conceptual model for predevelopment conditions. The obser-
vational data du21 consist of seven hydraulic head measurements generated using a randomly selected
conceptual model and parameterization that were not contained within the simulation ensemble. The
simulated data were then contaminated with random measurement noise following the error distribution
described in section 3.2.5. We adopt a perfectly uninformative prior, with equal probability weights
assigned to the conceptual models, and uniform distribution on the parameters for each conceptual
model. The multinormal log-likelihood function described by equation (10) was used together with the
prior to calculate the posterior density.

Figure 7. Differences in hydraulic property zonation and locations of hydrologic features between (a) CM-01, (b) CM-02, (c) CM-03, (d) CM-04. Dashed outline for hydraulic property
zones indicates buried features.
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3.2.4. Simulation Ensemble
Characteristics
Inspection of the Gelman and Rubin
[1992] R̂-statistic showed that for each
conceptual model, the DREAM algo-
rithm converged after approximately
25,000 function evaluations. To ensure
the use of postconvergence samples, we
extracted from each conceptual model
all samples generated by DREAM after
50,000 function evaluations. We split the
resulting parameter samples into two
groups: the simulation ensemble inputs
sens, and the data realization inputs sdrz.
We used 30,000 and 10,000 realizations
per conceptual model, respectively,
resulting in 150,000 total ensemble
members, and 50,000 data realizations.

Figure 8 shows BMA statistics for the simulated hydraulic heads in model layer 1. Figure 8a illustrates the
BMA expectation of the predicted heads; the direction of groundwater flow is generally from the recharge
zones and basin boundaries toward the spring and soil evaporation zones. Figures 8b and 8c illustrate the
within and between-model variance, respectively. The within-model variance is pronounced in the vicinity
of mountain-front recharge zone A; this result reflects the fact that specified recharge rates were included
as uncertain parameters within each conceptual model. The between-model variance is largest near
recharge zones A and B; this result can be attributed to different spatial distributions of mountain front
recharge between CM-04 and the other conceptual models. The relatively large values of varK E hð Þ½ � in the
vicinity of recharge zone B obscure the spatial patterns over most of the domain. Figure 8d illustrates the
ratio of the between-model to within-model variance, varK E hð Þ½ � : EK var hð Þ½ �, of ensemble predicted hydrau-
lic heads. The spatial patterns of higher values in Figure 8d correspond to areas of the model domain where
conceptual model uncertainty is particularly pronounced. For example, high values of varK E hð Þ½ � : EK var hð Þ½ �
are observed in the central part of the model domain, likely resulting from the different locations of lenses
under CM-02 and CM-03.

Figures 9a–9c summarize the predicted effects of groundwater pumping on discharge from spring #2;
results for spring #1 (not shown here) were very similar. Figure 9a shows the distribution of predevelopment
spring discharge at spring #2; a relatively small number of ensemble members predict zero predevelopment
spring flows, and the expected value of the predevelopment spring flow is approximately 350 m3 d– 1. Fig-
ure 9b shows the distribution of postdevelopment spring discharge at spring #2. Under postdevelopment
conditions, a greater number of ensemble members predict the elimination of spring flows; overall, the his-
togram indicates a shift toward reduced spring flows. Figure 9c shows the distribution of the spring deple-
tion, calculated as the difference between pre and postdevelopment spring flows over all of the ensemble
members. The distribution in Figure 9c is distinctly bimodal, with modes centered on 2100 m3 d–1 and
2250 m3 d–1, representing 10% and 25% of the total groundwater pumping, respectively. We illustrate the
selection of meauresments that could discriminate predictions of critical spring flow depletion (between
2300 and 2150 m3 d–1) from less dramatic reductions (between 0 and 2150 m3 d21).

3.2.5. Implementation of DI Analysis
For this case study, prospective data sets are ranked by the expected KL-divergence of predictive groups,
E Upr
� �

, before and after data collection. Our initial analyses (sections 3.2.6 and 3.2.7) explore the prospective
worth of individual measurements, within each measurement type; in other words, we consider a single
head, or spring flow measurement. For these initial analyses, we evaluate E Upr

� �
for simulated heads at

each node in the model domain, for springs #1 and #2, and recharge zones A-C. Following this preliminary
assessment, we evaluate E Upr

� �
over groups of prospective measurements, considering simultaneously all

of the measurement types. This second analysis (section 3.2.8) requires the use of optimization, as it is infea-
sible to evaluate all possible combination of measurements. Based on practical considerations of the

Table 3. Uncertain Parameters Considered Over All Conceptual Modelsa

Parameter Description

Minimum/
Maximum

Values

Conceptual
Models With

Parameter

HK1 Horizontal hydraulic
conductivity in zone 1

0.001/100 all

HK2 Horizontal hydraulic
conductivity in zone 2

0.001/100 all

HK3 Horizontal hydraulic
conductivity in zone 3

0.001/100 CM-02

HK4 Horizontal hydraulic
conductivity in zone 4

0.001/100 CM-02

HK5 Horizontal hydraulic
conductivity in zone 5

0.001/100 CM-03, CM-05

RCHA Recharge in zone A 0.00001/0.05 all
RCHB Recharge in zone B 0.00001/0.05 all
RCHC Recharge in zone C 0.00001/0.05 all
RCHbase Recharge in zone D 1:031028=1:031025 all

aUnits on all parameters are meters per day.
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computational burden imposed by the number of possible measurement combinations, for the second
analysis we use a subset of the candidate head measurements, imposing 500 m spacing in the y-direction
between candidate measurements; this reduces the number of possible head measurements from 11,250
to 2250. Both analyses use M 5 500 realizations of the candidate measurements.

One of the measurement types – mountain front recharge – is also a model parameter; therefore, measured
values cannot enter directly into the likelihood function in equation (10), as is done with heads and spring
discharge predicted by the ensemble members. Instead, realizations of the mountain front recharge meas-
urements are used to update the parameter prior. Specifically, the zonal mountain front recharge parameter
of interest for the jth data realization is treated as a candidate measurement, with measurement error var-
iance assigned as discussed below. Then, the parameter prior over the simulation ensemble for the moun-
tain front recharge parameter of interest is recentered on the measured value, with variance defined by the
measurement error variance, and the prior probabilities of the ensemble members are updated accordingly.
The ultimate effect on the predictive groupwise probabilities is similar to the effect of recalculating the like-
lihood function based on model predicted values, but the Bayesian updating mechanism is fundamentally
different.

Measurement errors for hydraulic heads are assumed to be homoscedastic, with errors of 60.1 m; treating
the errors as the 95% confidence interval, this corresponds to a measurement error standard deviation of
approximately 0.05 m. Measurement errors for spring flows are assumed to be heteroscedastic, as is typical

Figure 8. Bayesian model average statistics computed for ensemble-predicted predevelopment heads, in meters, in model layer 1. (a) Pos-
terior expectation, (b) within-model variance, (c) between-model variance, and (d) ratio of between to within-model variance.
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of surface water discharge measurement. We assume that the measurement error equals 2% of the meas-
ured value. Consequently, the measurement error standard deviation is described as a linear function of the
measured flow, r�50:0102Qspring, where Qspring is the spring discharge.

Measurement techniques for the above-mentioned prospective measurements are standard, with well char-
acterized error models. In contrast, direct measurement of mountain front recharge is much more challeng-
ing, and the uncertainty on such direct measurements is in general poorly constrained. Of the many
techniques available for quantifying mountain front recharge [Wilson and Guan, 2004], one of the most
widely accepted is the chloride mass balance technique [Dettinger, 1989]. We are unaware of any proposed
measurement error model for the chloride mass balance technique – or indeed, for any measurement of
mountain front recharge. However, the measurement error can be quantified given the assumed error on
the data inputs required for a chloride mass balance calculation—namely, the annual precipitation and
basin yield, and mean chloride concentration in precipitation, runoff, and groundwater. We adopt conserva-
tive error estimates of 20% on precipitation and basin yield, and 5% on chloride concentration, as was done
by Aishlin and McNamara [2011]. Treating these error levels as 95% confidence intervals, the variance on
the recharge flux is equal to approximately 0.005 m d– 1. We assume homoscedastic measurement error on
the recharge measurement. Finally, we assume uncorrelated measurement errors among the prospective
measurements.

3.2.6. Results of DI Analysis for Individual Head Measurements
Initially, we evaluated E Upr

� �
over individual measurements within each measurement type. It is important

to recognize that changes in groupwise probabilities depend in large part on the threshold delineating pre-
dictive groups, which we hereafter refer to as the predictive grouping threshold (PGT). Predictive histo-
grams (Figure 9) suggest that a logical threshold between predictive groups would be located between
2150 and 2200 m3 d– 1. However, we wish to explore the effect of threshold choice on the value of E Upr

� �
.

Specifically we evaluate the effect on the distribution of E Upr
� �

within each measurement type by

Figure 9. Histograms showing ensemble-predicted discharge at spring #2 under (a) predevelopment conditions, (b) postdevelopment
conditions. (c) Spring depletion, equal to the change in discharge between predevelopment and postdevelopment conditions. Vertical
dashed line in Figure 9c represents the predictive grouping threshold used for optimal design analyses in section 3.2.8.
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systematically varying the PGT. This analysis demonstrates the impact of user-defined PGT on the selection
of optimal measurements, and furthermore provides an initial comparison of data worth among the three
measurement types considered.

We first consider E Upr
� �

for individual hydraulic head measurements. Maps of E Upr
� �

over the nodes in layer
1 of the groundwater model with PGT set at 2100, 2150, and 2200 m3 d–1 are shown in Figure 10a–10c,
respectively. A common color scale has been adopted across these three plots to facilitate intercomparison.
The magnitudes of E Upr

� �
calculated for head measurements in layer 1 differ with changes in the PGT value.

For example, the maximum value of E Upr
� �

is much higher in Figure 10a than in Figures 10b and 10c. This
result may suggest that head measurements have higher value value for predictive discrimination if the
probability mass between the predictive groups is more equally distributed. Such diagnostic exercises can
be used to guide general inferences regarding data worth for a specific application.

A striking difference between Figures 10a and 10b is the location of the most informative head measure-
ments. These measurements are located in and surrounding recharge zone A for the lower PGT, emphasiz-
ing basin inflows. In contrast, optimal single head measurements located in and surrounding the soil
evaporation zone are more important for higher PGT values, balancing improved quantification of basin
inflows and outflows, respectively. The relatively high value of head measurements in the soil evaporation
zone for Figure 10b likely reflects differences among ensemble members predicting moderate spring deple-
tion in the range of 2150 m3 d–1. For ensemble members in this predictive range, predictive discrimination
can be achieved by more accurately partitioning the outflows between soil evaporation and spring dis-
charge. It is also worth noting the distinctive appearance of the soil evaporation zone across all predictive
threshold values in Figures 10a–10c. We evaluated the mutual information between heads in the upper
aquifer (model layer 1) and the postdevelopment spring depletion; the results showed that the mutual
information between layer 1 heads and spring depletion is strongest in the vicinity of the soil evaporation
zone; this result is independent of the PGT and instead reflects the dependence of springflow response to
groundwater pumping on the partitioning of basin outflows.

For comparison, we show in Figure 10d the distribution of the expected conceptual model discrimination,
E Ucm½ �, based on individual head measurements in model layer 1. The E Ucm½ � surface is strikingly different
from the E Upr

� �
surfaces; conceptual model discrimination emphasizes head measurements in the vicinity of

recharge zone B to a much greater extent. Even more pronounced is the importance of head measurements
in the west-southwestern quadrant between recharge zones A and B at approximately x; yf g5 1; 5f g km. In
contrast to the result from case study 1, the E Ucm½ � surface for the present case study is not closely related to
the ratio of between-model to within-model uncertainty (Figure 10d).

Figure 10. Expectation of the KL-divergence between predictive groups, E Upr
� �

, computed based on the hypothetical addition of candidate head measurements from model layer 1.
Plots show changes in the distribution of E Upr

� �
under different predictive group thresholds: (a) 2100 m3 d21, (b) 2150 m3 d21, and (c) 2200 m3 d21. Figure 10d shows the expected

conceptual discrimination, E Ucm½ �, associated with the hypothetical addition of a single head measurement in model layer 1.
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To investigate this result, we
evaluated the contribution of
each conceptual model to the
KL-divergence (equation (2)),
and consequently, E Ucm½ �.
Under the prior distribution
(updated following MCMC sam-
pling), CM-02 is assigned
approximately 93% of the prob-
ability mass, whereas CM-01 is
assigned only 0.1% of the prob-
ability mass. Decomposition of
the KL-divergence—not shown
here in the interest of brevity—
reveals that the conceptual dis-
crimination E Ucm½ �, as shown in
Figure 9d is dominated by
changes to the probability of
CM-01. Specifically, conceptual
discrimination from a single

head measurement occurs primarily through redistributing probability mass to CM-01, which had been
strongly discredited following the first round of data collection. Head measurements in the west-
southwestern quadrant of the basin have a very high potential to test the viability of CM-01 and are there-
fore expected to provide the greatest degree of conceptual discrimination. Comparison among the alter-
nate conceptual models (Figure 7) supports this conclusion, as several of the hydrogeologic lenses
considered under CM-02, CM-03, and CM-05 terminate in the west-southwestern quadrant. The results of
this analysis show broadly the importance of measuring heads in areas for which hydrogeologic structures
vary among the conceptual models. An important distinction, however, is that important measurements
cannot be identified from decomposition of the BMA variance alone. Instead, there are additional interac-
tions within the simulation ensemble that can be captured only through the preposterior analysis. Further-
more, it should be stressed that the results of preposterior analysis may vary depending on the definition of
the experimental design objective (e.g., conceptual or predictive discrimination). In fact, the ability to ana-
lyze both objectives with the same suite of simulations is one of the strengths of the DI methodology for
experimental design.

3.2.7. Results of DI Analysis for Individual Spring Flow and Recharge Measurements
We conducted similar sensitivity analyses between E Upr

� �
and the predictive threshold for both predevel-

opment spring discharge and mountain front recharge measurements. Figure 11 illustrates the results of
the sensitivity analysis for spring discharge measurements. The numerical value of E Upr

� �
is much greater

for spring discharge measurements than for hydraulic head measurements. This result is consistent with
intuition, because the magnitude of postdevelopment spring depletion depends directly on the predevel-
opment spring discharge. The distribution of E Upr

� �
diverges most noticeably for springs #1 and #2 for pre-

dictive threshold values between 250 to 2150 m3 d–1; within this range, the value of E Upr
� �

for spring #2
greatly surpasses E Upr

� �
for spring #1.

The values of E Upr
� �

for recharge measurements are roughly two orders of magnitude lower than the values
E Upr
� �

for spring discharge measurements (Figure 12). Furthermore, the PGT value has a consistent impact
on the discriminatory value of data in all of the recharge zones. This result suggests that there is no clear
reason to select observations in a specific recharge zone; this is a somewhat surprising finding given the
clear preference for measuring heads near recharge zone A (Figure 10). For all three recharge zones, the
highest predictive discrimination for recharge measurement is achieved when the PGT is 2220 m3 s–1. This
reflects the characteristics of ensemble members predicting relatively high rates of spring depletion due to
groundwater development. These ensemble members are associated with values of mountain front
recharge toward the lower end of the feasible parameter space. It therefore stands to reason that

Figure 11. Expected value of the KL-divergence between predictive groups, E Upr
� �

, com-
puted based on the hypothetical addition of candidate spring discharge measurements,
evaluated over a range of predictive group thresholds between predictive groups.
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identifying ensemble members
associated with especially low
recharge values would critically
test this predictive group,
resulting in high predictive
discrimination.

3.2.8. Results of DI Analysis
Over Prospective
Measurement Sets
Having examined the distribu-
tion of E Upr

� �
for individual

measurements within a given
measurement type, we now
turn our attention to a more
practical, and substantially
more complex question. Given
a fixed number of possible
measurements, which collec-
tion of measurement types, and

locations within each given type, are best suited to acheive predictive discrimination? This presents a nontri-
vial problem in combinatorial optimization. As a starting point for our analysis, we consider the space of
admissible design variables, D, to consist of 2,250 possible head measurements, 2 spring discharge measure-
ments, and 3 mountain front recharge measurements. Considering combination with repetition, we now have
2.5 million possible combinations for a set of 2 measurements, and 1.9 billion possible combinations for a set
of 3 measurements. Even for a reduced number of measurements, design optimization is clearly needed.

We used the NOMAD algorithm [Le Digabel, 2011] to solve equation (13), thereby selecting the optimal
measurement set for predictive discrimination given a fixed number of measurements. In general, discrete
optimization routines such as NOMAD require selecting the best of several suboptimal solutions [Christakos,
1992]. We found that optimal solutions would vary among NOMAD runs; therefore, we used multiple start-
ing points in the parameter space for NOMAD runs, then selected the design associated with the highest
value of E Upr

� �
in order to derive a robust estimate of the globally optimal measurement set. Finally, we

repeated the multitry NOMAD optimization runs while systematically varying the number of measurements
from 1 to 5. The goal of this procedure was to determine the relation between the size of the candidate
measurement set and E Upr

� �
, to evaluate the marginal information gain associated with adding to the num-

ber of candidate measurements. Table 4 displays the results of the analysis including the values of E Upr
� �

,
measurement coordinates, and computational time.

The results of the optimization analysis show that the value of E Upr
� �

continues to rise with the number of
measurements in the candidate data set, demonstrating that even the fifth measurement contributes
unique information. However, the marginal information gain associated with adding measurement points
decreases with the number of measurements. That is, increasing the size of the data set exhibits diminish-
ing marginal changes in predictive discrimination. For example, the value of E Upr

� �
increases by 0.119

Table 4. Results From Multitry NOMAD Optimization Runs, Including the Best E Upr
� �

Achieved, and Measurements Corresponding to
the Best E Upr

� �
Valuea

Number of
Candidate
Measurements Best E Upr

� �
Wall-Time (h) Head Coordinates x; y; zf g (m)

Spring Discharge
Observations

Recharge Zone
Observations

1 0.358 6.54 Spring #2
2 0.477 18.5 Spring #1, #2
3 0.505 35.95 50; 3450;2125f g Spring #1, #2
4 0.528 51.7 50; 3450;2125f g; 2650; 6950;2125f g Spring #1, #2

5 0.546 81.5
f50; 3450;2125g; f2650; 6950;2125g;
f2550; 5950;2125g

Spring #1, #2

aEach row is based on the best E Upr
� �

result from 25 individual NOMAD runs.

Figure 12. Expected value of the KL-divergence between predictive groups, E Upr
� �

, com-
puted based on the hypothetical addition of candidate recharge measurements, evaluated
over a range of predictive group thresholds.
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when considering two, rather than one candidate measurements, but only by 0.018 when considering five,
rather than four candidate measurements. Evaluating the marginal information gain with size of the candi-
date measurement set provides an opportunity to weigh the expected information benefits from additional
data points against the cost of additional data collection.

All of the measurement sets include measurement of predevelopment discharge from spring #2. Intuitively,
this is a logical result, as the experimental design objective is to discriminate between predictive groups of
flow depletion at spring #2; this result is furthermore consistent with the preliminary sensitivity analyses
(Figure 11). Flow measurements at spring #1 are included for sets comprising at least two candidate meas-
urements. Coupled measurements of flow at spring #1 and #2 greatly constrain the partitioning of basin
outflows between springs and soil evaporation, as discussed in greater detail below.

The highest value of E Upr
� �

was obtained for a set of five prospective measurements; Figure 13 shows the
locations of the measurements in the optimal set. None of the optimal measurement sets includes recharge
measurements, which we found to be surprising and counterintuitive given the great efforts typically made
to quantify recharge. From a water balance perspective, recharge is the only inflow to the basin, and should
therefore dictate to a large extent the expected severity of spring depletions due to groundwater pumping.
However, basin outflow is divided (with the exception of CM-05) between two outflow mechanisms: spring
discharge, and soil evaporation from the basin center. The simulated basin outflow from soil evaporation is,
on average, five times larger than the simulated outflow from springs. Therefore, the partitioning of basin
outflows between soil evaporation and spring discharge is also an important consideration in predicting
postdevelopment spring depletion. This is complicated by the fact that the evaporation flux is defined as a
function of head in the soil evaporation zone. Therefore, one could imagine a situation in which ground-
water pumping might lower the head in the soil evaporation zone, reducing the evaporation outflows and
therefore reducing the magnitude of postdevelopment spring depletion. These dynamics cannot be
assessed based solely on water budget considerations, as is discussed more generally by Bredehoft [2002].

Set against this backdrop, the selected optimal measurement set is quite informative. The partitioning of
basin outflows between spring discharge and soil evaporation under postdevelopment conditions strongly

Figure 13. Bayesian model average expectation of the hydraulic heads, and existing proposed measurements in (a) model layer 1, (b) model layer 2, and (c) model layer 3. Circles repre-
sent existing head measurements, triangles represent candidate head measurements in the optimal measurement set, and squares represent spring discharge measurements in the opti-
mal measurement set.
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controls the predicted spring depletion. Therefore, predevelopment measurements of groundwater flow
patterns related to the outflow partitioning, and possibly influenced by groundwater development, should
be particularly informative. Direct measurement of mountain front recharge may constrain the magnitude
of inflows to the groundwater basin, but not the outflow partitioning. In contrast, hydraulic head measure-
ments along flow paths from the recharge area to the soil evaporation zone provide important insight into
outflow partitioning. This case study demonstrates the importance of experimental design analysis before
collecting data and beyond its specific use in identifying measurement points. Indeed, improved under-
standing of which data achieve highest discrimination provides insight into the hydrologic function of the
system in the context of a specific question (e.g., predicted spring depletion).

All three of the hydraulic head measurements in the optimal set of five candidate measurements are
located in the lower aquifer unit (model layer 3). These head measurements contain information about the
magnitude of the flux along a regional flow path to the basin outflow areas, for which a large quantity
would potentially be intercepted by the pumping wells. One of the head measurements is directly beneath
recharge zone A; it should be noted that the expected value of recharge flux in zone A is the highest of the
three mountain front zones. This result is consistent with the PGT sensitivity analysis (Figure 10), which iden-
tified head measurements near recharge zone A as especially informative. The remaining two head meas-
urements are located in the vicinity of recharge zone B. These measurements provide information about
the magnitude of the regional flux toward the basin outflows (springs and soil evaporation zone) through
the lower aquifer unit.

For this case study, the selection of hydraulic head measurements is related to information redundancy
among data points, as shown for case study #1. In a separate analysis not shown here, we evaluated the
mutual information between head measurements and predevelopment spring flow measurements. The
head measurements in model layer 3, in the southern part of the basin, exhibit relatively minor mutual
information with the predevelopment spring flows. Head measurements in the southern part of the basin
quantify the deeper groundwater flux to the basin outflows, which is potentially subject to capture by the
pumping wells. Furthermore, these head measurements share minimal information with other data points
in the optimal measurement set. Based on these considerations, the selected head measurements have
clear value for predictive discrimination, yet are somewhat counterintuitive and could easily be overlooked
in the absence of a systematic analysis during the planning stages of a field investigation.

4. Discussion and Conclusions

To date, efforts to guide optimally informative experimental and monitoring network designs in hydrology
have focused primarily on objectives relating to parameter identification or prediction uncertainty reduc-
tion. State-of-the-art experimental design approaches—namely Monte Carlo simulation [e.g., Leube et al.,
2012] and data assimilation [Kollat et al., 2011]—have generally been adapted to target these particular
kinds of objectives. This research proposes a novel objective driving the collection of new data sets to be
the discrimination achieved among competing model structures and predictive groupings. The DI method-
ology presented here uses a data utility function based on the distance between prior and posterior proba-
bility distributions to assess the discriminatory capabilities of candidate data sets. The probability
distributions can either consist of conceptual probabilities in the case of conceptual discrimination, or pre-
dictive probabilities in the case of predictive discrimination.

From a practical standpoint, implementation of the DI methodology requires that the user specify the simu-
lation ensemble size, N, and the number of data realizations, M. As part of this research, we evaluated for
case study #1 the effect of changing both the ensemble size and number of data realizations on the conver-
gence of the preposterior metric. We found that, in general, a relatively small number of data realizations
may be suitable to obtain robust estimates of the optimal measurement set. However, this should be recon-
sidered for more complex problems. The choice of likelihood function is another key consideration, and
should reflect any correlation or heteroscedasticity present in model and measurement errors [Schoups and
Vrugt, 2010]. Finally, the BMA statistics are implicitly conditional on the set of conceptual models used in
the analysis [Hoeting et al., 1999]. Therefore, the potential for conceptual discrimination depends directly on
the choice of the K conceptual models and indeed, the DI framework will be most informative when a com-
prehensive set of conceptual models is considered.
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The composition of optimal measurement sets for conceptual and predictive discrimination can be explained in
part by characteristics of the underlying simulation ensemble. Case study #1 demonstrates that the ratio of
between-model to within-model variance is one such important characteristic. Another key aspect, when multi-
ple measurements are considered, is the minimization of redundant information. These general rules of thumb
are useful as an initial screening for evaluating candidate data sets during the planning stages of a hydrologic
investigation. However, the results of this study show that additional interaction among the processes of mea-
surement selection, Bayesian updating, and discrimination, are best handled in a preposterior framework.

We also investigated the sensitivity of expected predictive discrimination, E Upr
� �

, to the specification of pre-
dictive groups. This kind of analysis demonstrates that the selection of predictive grouping threshold may
strongly influence the relative importance of different measurements. On the other hand, certain measure-
ment types—such as spring flow measurements in case study #2—are substantially more informative than
other measurement types, regardless of the predictive grouping threshold. We did not undertake a system-
atic comparison of optimal data sets for conceptual versus predictive discrimination in this study; however,
initial analyses, shown in Figure 10, indicate that the composition of the optimal measurement set differs
between conceptual and predictive discrimination. In fact, it is likely that the optimal data set will be unique
for each prediction or set of predictions of interest, underlining the importance of experimental design anal-
yses that are tailored to each investigation.

The optimization algorithm as implemented here requires a fixed number of measurements to be specified. A
logical next step would be to extend the optimization procedure to include the number of measurements as
one of the decision variables, thereby allowing for an assessment of diminishing returns in additional data col-
lection. Alternately, cost minimization may be specified as one of the objectives addressed by optimization.
Numerous techniques previously developed for optimal design of experiments in hydrology specify multiple
objectives driving data collection. Expanding the preposterior framework to jointly consider multiple objec-
tives including discrimination, parameter identification, predictive uncertainty reduction, and cost minimiza-
tion will provide further insight into the characteristics of optimally informative hydrologic data sets.
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