
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Human Vestibular Signals Generated By Natural Locomotion

Permalink
https://escholarship.org/uc/item/21t2f541

Author
Wisti, Andrew Zachary

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike 
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/21t2f541
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


 
 

UNIVERSITY OF CALIFORNIA, 
IRVINE 

 
 

Human Vestibular Signals Generated By Natural Locomotion 

DISSERTATION 

Submitted in partial satisfaction of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in Psychology 

by 

Andrew Zachary Wisti 

 

 

 

 

 

 

Dissertation Committee: 

Professor Michael D’Zmura, Chair 

Professor Ramesh Srinivasan 

Professor Charles E. (Ted) Wright 

2017



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2017 Andrew Zachary Wisti 



ii 
 

DEDICATION 

To 

my family and friends 

without whom I would not be where I am today 

 

 

 

I will find each and every one of you… 

 

 

 

 

 

 

 

 

  



iii 
 

TABLE OF CONTENTS 
LIST OF FIGURES ...................................................................................................................................................................... v 

LIST OF TABLES...................................................................................................................................................................... vii 

ACKNOWLEDGMENTS ........................................................................................................................................................ viii 

CURRICULUM VITAE ............................................................................................................................................................. ix 

ABSTRACT OF THE DISSERTATION .................................................................................................................................. x 

1 Introduction ..................................................................................................................................................................... 1 

2 Methods for Measurement of Vestibular Signals .............................................................................................. 4 

2.1 Subjects ........................................................................................................................................................................ 4 

2.2 Conditions ................................................................................................................................................................... 4 

2.3 Measurements ........................................................................................................................................................... 5 

2.4 Data Analysis ............................................................................................................................................................. 6 

3 Statistical Properties of Vestibular Signals .......................................................................................................... 8 

3.1 Introduction ............................................................................................................................................................... 8 

3.2 Data Analysis ............................................................................................................................................................. 8 

3.3 Results .......................................................................................................................................................................... 9 

3.3.1 Peak Velocity ................................................................................................................................................ 9 

3.3.2 Distribution Fitting .................................................................................................................................. 15 

3.3.3 Power Spectral Densities ....................................................................................................................... 21 

3.4 Discussion ................................................................................................................................................................. 24 

3.5 Summary ................................................................................................................................................................... 28 

4 Models of Head Stabilization and Intersubject Clustering .......................................................................... 30 

4.1 Introduction ............................................................................................................................................................. 30 

4.2 Data Analysis ........................................................................................................................................................... 31 

4.3 Results ........................................................................................................................................................................ 34 

4.3.1 Coherence .................................................................................................................................................... 34 

4.3.2 Adaptive Linear Filter ............................................................................................................................. 37 

4.4 Discussion ................................................................................................................................................................. 42 

4.4.1 Coherence .................................................................................................................................................... 43 

4.4.2 Adaptive Linear Filters ........................................................................................................................... 45 

4.5 Summary ................................................................................................................................................................... 47 

5 Head Stabilization During Natural Motion with Normalization ............................................................... 49 

5.1 Introduction ............................................................................................................................................................. 49 



iv 
 

5.2 Methods ..................................................................................................................................................................... 50 

5.2.1 Subjects ......................................................................................................................................................... 50 

5.2.2 Conditions .................................................................................................................................................... 50 

5.2.3 Measurements............................................................................................................................................ 51 

5.2.4 Data Analysis .............................................................................................................................................. 53 

5.3 Results ........................................................................................................................................................................ 54 

5.3.1 Gait Cycle Duration .................................................................................................................................. 54 

5.3.2 Peak Velocity .............................................................................................................................................. 57 

5.3.3 Angular Velocity Distribution Fits ..................................................................................................... 63 

5.3.4 Power Spectral Density .......................................................................................................................... 67 

5.3.5 Coherence .................................................................................................................................................... 70 

5.3.6 Adaptive filter ............................................................................................................................................ 72 

5.4 Discussion ................................................................................................................................................................. 76 

5.4.1 Gait Duration .............................................................................................................................................. 76 

5.4.2 Peak Velocity .............................................................................................................................................. 77 

5.4.3 Power Spectral Densities (PSDs), Coherence, and Filters ....................................................... 80 

5.5 Summary ................................................................................................................................................................... 81 

6 References ....................................................................................................................................................................... 84 

 

  



v 
 

LIST OF FIGURES 

                                Page 
 
Figure 1.1 Reducing Redundancy, From Laughlin (1981)               1 

Figure 2.1 Comparison of IMU Recordings 6 

Figure 2.2 A Cartoon Depiction of the Semicircular Canals 7 

Figure 3.1 Mean Peak Angular Velocity for the LRY- and YPR-frames 11 

Figure 3.2 Peak Angular Velocity of the Head vs. the Torso 12 

Figure 3.3 Mean Angular Velocity Across Conditions 13 

Figure 3.4 Distribution of Differences Between Torso and Head During Running 14 

Figure 3.5 Distribution Fits of Subject-Averaged Angular Velocity 17 

Figure 3.6 Individual Angular Velocity Distributions 18 

Figure 3.7 Subject-Averaged Power Spectral Densities of Walking and Running 20 

Figure 3.8 Subject-Averaged Power Spectral Densities, All Conditions and Axes 22 

Figure 4.1 Diagram of the Linear Adaptive Filter 32 

Figure 4.2 Subject-Averaged Coherence of All Conditions 35 

Figure 4.3 Single Subject Coherence of All Conditions 36 

Figure 4.4 Mean Filter Weights of All Subjects and Conditions 38 

Figure 4.5 Prediction and Weights of the Best-Performing Filter 40 

Figure 4.6 Comparison of Predictions and Weights of Two Subjects 41 

Figure 5.1 A Cartoon Depiction of the Canals During Head Turn Right 51 

Figure  5.2 Inside View of the Custom-Built Foot Sensor 52 

Figure 5.3 Normalized Foot Linear Acceleration of All Subjects Gait Cycles 55 

Figure 5.4 Normalized Torso and Head Velocity of All Gait Cycles for Walking 56 



vi 
 

Figure 5.5 Median Peak Angular Velocity of the Torso and Head for All  57 
 Conditions  

Figure 5.6 Median Peak Angular Velocity of Natural vs. Treadmill Conditions 59 

Figure 5.7 Distribution of Differences Between Torso and Head Velocity 60 

Figure 5.8 Median Peak Angular Velocity of Head Turn Conditions 61 

Figure 5.9 Distribution of Differences of Head Turn Conditions and Walking 62 

Figure 5.10 Fits of Angular Velocity Distributions of the Head 64 

Figure 5.11 Fits of Angular Velocity Distributions of the Torso 65 

Figure 5.12 Individual Angular Velocity Distributions for Walking and Running 66 

Figure 5.13 Power Spectral Densities for LARP velocities 68 

Figure 5.14 Power Spectral Densities for scYaw Velocities 69 

Figure 5.15 Coherence For All Conditions of Subject 1 70 

Figure 5.16 Coherence For All Conditions of Subject 7 71 

Figure 5.17 Filter Predictions for Subjects 1 and 7 74 

Figure 5.18 Correlation Between Coherence and Filter Performance 75 

  



vii 
 

LIST OF TABLES 

  Page 

Table 3.1 AIC of all Models in the LRY-frame          15 

Table 3.2 Likelihood-ratio Tests of Cauchy Models in the LRY-frame 16 

Table 3.3 AIC of all Models in the YPR-frame 19 

Table 3.4 Likelihood-ratio Tests of Cauchy models in the YPR-frame 19 

Table 4.1 Filter Performance in the LRY-frame 39 

Table 4.2 Filter Performance in the YPR-frame 39 

Table 5.1 Mean Gait Cycle Duration 55 

Table 5.2 AIC of all Models in the LRY-frame 63 

Table 5.3 R2prediction of Filters for YPR- and LRY-frame Velocities  73 

Table 5.4 Correlation of Filters for YPR- and LRY-frame Velocities 73 

  



viii 
 

ACKNOWLEDGMENTS 

I would like to express my appreciation and gratitude to my committee chair and academic 
advisor, Professor Michael D’Zmura. He provided both academic and scientific guidance 
while reminding me to maintain a life outside of work. Without his support this 
dissertation would not have been possible. 
 
I would like to thank my committee members, Professor Ramesh Srinivasan and Professor 
Ted Wright, as well as members of my advancement to candidacy committee, Professor Jeff 
Krichmar and Associate Professor Zoran Nenadic. They provided valuable insight and 
suggestions for furthering and improving my work. 
 
In addition, I would like to thank my colleagues and fellow graduate students in the 
Cognitive Science department at the University of California, Irvine. Forged and steeled by 
the fires of graduate school, our friendships have provided both the emotional and 
academic support needed for the completion of my degree. 
 
Finally, I would like to thank my dear friend, Stacie Sanchez. I could not have finished this 
dissertation without her moral support and gifts of food.



ix 
 

CURRICULUM VITAE 

Andrew Zachary Wisti 

2009-10 Research Assistant, Neuromotor Behavior Laboratory,  

 University of Michigan 

 

2010 B.S. in Neuroscience, with Honors, University of Michigan 

 

2011-17 Graduate Student Researcher, Cognitive Neurosystems Laboratory,  

 University of California, Irvine 

 

2011-17 Teaching Assistant, University of California, Irvine 

 

2016 Multidisciplinary Design Program, University of California, Irvine 

 

2016 Visiting Research Assistant, U.S. Army Research Laboratory 

 

2016 M.S. in Cognitive Neuroscience, University of California, Irvine 

 

2017 Ph.D. In Psychology with concentration in Cognitive Neuroscience, 

 University of California, Irvine 

 

FIELD OF STUDY 

Cognitive Science 

 

PUBLICATIONS 

Wisti, A. Z., D’Zmura, M. “Torso and Head Angular Velocity During Natural Motion.” 
Physiological Review (Submitted June 2017). 
  
Dennison, M. S., Wisti, A. Z., D’Zmura, M. “Use of physiological signals to predict 
cybersickness.” Displays 44 (2016). DOI: 10.1016/j.displa.2016.07.002. 
  
Wisti, A. Z., Passaro, T. “State Classification of EEG During Visual Threat Detection Task” 
Internal Tech Report, U.S. Army Research Lab (2016). 
 
Wisti, A.Z. “The Effects of Musical Training on Bimanual Control and Interhemispheric 
Transfer.” Undergraduate Honors Thesis, University of Michigan (2010)  

 



x 
 

ABSTRACT OF THE DISSERTATION 

Human Vestibular Signals Generated By Natural Locomotion 

By 

Andrew Zachary Wisti 

Doctor of Philosophy in Psychology 

University of California, Irvine, 2017 

Professor Michael D’Zmura, Chair 

 

Sensory systems are believed to take advantage of the properties of natural stimuli. 

Natural images, for example, follow normality and a power-law which are reflected in the 

dynamics of visual cells. In order to better understand the vestibular system we examined 

natural human motion. We measured torso and head angular velocities of human subjects 

who walked, jogged, and climbed a staircase. Angular velocity distributions of the head and 

torso were fit well by Cauchy distributions, while power spectral densities did not follow a 

power law. We found that neither a power law nor a two-line-segment fit were sufficient to 

fit power spectral densities of angular velocity. Increases in power at the gait frequency 

and its harmonics are not well fit by lines. Differences between torso and head motion 

show a more evenly distributed reduction of angular velocities, presumably by the neck, in 

the semicircular canal frame of reference. Coherence between torso and head angular 

velocity did not show a linear relationship over all frequencies, but did suggest a linear 

relationship at the fundamental gait frequency and its harmonics. Reduction in angular 

velocity between the torso and head was then modeled by an adaptive linear filter. Results 

were mixed and depended on subject, condition, and axis. Qualitatively, predictions of 
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angular velocity were good, capturing both the amplitude and periodicity of the actual head 

velocity. Finally, initial results were replicated while normalizing gait cycles using linear 

length normalization. Natural walking and running conditions were compared to treadmill 

walking and running. Subjects showed significantly different peak velocities during natural 

and treadmill conditions despite similar movement speeds. Coherence was also different 

between natural and treadmill conditions. These results provide evidence that natural and 

treadmill locomotion are treated differently, possibly due to the lack of visual input during 

treadmill locomotion. Subjects also walked with their heads turned to either the left or 

right, separating direction of motion and direction of the head. Angular velocity during 

these conditions show that head direction is not important for stabilizing the head, 

suggesting that efference copies play a role in head stabilization. 
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1 Introduction  

Natural stimuli in vision and audition follow a power law, where spectral power is 

inversely proportional to frequency (Burton & Moorhead, 1987; Legge, 1981). These 

sensory systems are believed to be adapted to and take advantage of the statistical 

properties of the stimuli they encode. One common proposal is that neurons encode stimuli 

as efficiently as possible by maximizing information capacity (Atick, 1992; Attneave, 1954; 

Barlow, 1961; Burton & Moorhead, 1987). For example, large monopolar cells of the fly’s 

compound eye have a contrast-response function that nearly matches the cumulative 

probability function of the contrast of natural scenes (Laughlin, 1981) (Figure 1.1).  

 

Figure 1.1. Reducing Redundancy Left, top: A hypothetical distribution of stimulus intensity. Left, 
bottom: The intensity-response function that maximizes a neuron’s information capacity by ensuring 
all response levels are used with equal frequency. As number of neurons reaches infinity, this curve 
becomes the cumulative probability function.  Right: The contrast-response function of the large 
monopolar cells of a fly plotted next to the cumulative probability function of the contrast in natural 
images. From Laughlin (1981). 
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The vestibular system detects angular acceleration via three roughly orthogonal 

semicircular canals and linear acceleration via two otolith organs (Angelaki and Cullen, 

2008). These organs measure self-motion generated from walking or running, through 

head movements during visual search, or through passive motion like that found when 

riding as a passenger in a vehicle. Groundbreaking work by Carriot and colleagues (2014) 

showed that vestibular stimuli are not distributed normally and do not follow a power law. 

These distinctive features of vestibular stimulation may be due to the nature of self-motion 

and biomechanical filtering of vestibular input by the body (Allum, Gresty, Keshner, & 

Shupert, 1997; Fard, Ishihara, & Inooka, 2004; Goldberg & Peterson, 1986). 

The first project, which is described in Chapters 2 and 3, confirms that power 

spectral densities of angular velocity do not follow a power law, shows that the probability 

distributions of vestibular stimuli are modeled well by Cauchy distributions, and explores 

the differences between world-centered and vestibular-organ-centered velocities. The 

second project, described in Chapter 4, models and predicts the biomechanical filtering of 

the neck using a linear adaptive filter and looks at intersubject differences in angular 

velocity. The third project, described in Chapter 5, uses normalization techniques to reduce 

differences between subjects and replicates the results of Chapters 3 and 4. It also 

examines head stabilization of conditions with altered sensory feedback. Differences in 

natural and treadmill locomotion highlight the importance of visual feedback and the 

effects of its absence. Locomotion while the head is turned separates movement direction 

and head direction, and examines the roles of efference copies and measurement-feedback 

mechanisms during head stabilization. 
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Understanding the statistical properties of vestibular stimuli and the effects of 

biomechanical stabilization can also help in creating better virtual environments. Some 

users of virtual environments experience cybersickness, which includes symptoms similar 

to motion sickness such as nausea, eye strain, and vertigo, but is generally not caused by 

vestibular stimulation (LaViola, 2000). While there is no one exact cause for cybersickness 

(Kennedy & Fowlkes, 1992), motion sickness in general seems to occur from sensory 

mismatch where signals from the eyes, vestibular system, and non-vestibular 

proprioception are at odds (Mark Stephen Dennison & D’Zmura, 2017; Krusienski et al., 

2006; James T. Reason & Brand, 1975; J T Reason, 1978). Tracking and predicting head 

movements in space can lead to improved accuracy in visual presentation of virtual 

environments (LaValle, Yershova, Katsev, & Antonov, 2014). Improving the presentation of 

virtual environments should reduce symptoms related to cyber sickness by reducing 

sensory mismatch, and a better understanding of the properties of head movements should 

allow for better prediction of head movements. Physiological signals have been used in the 

past to predict motion sickness (Mark S. Dennison, Wisti, & D’Zmura, 2016), and 

understanding head stability during natural motion would provide a baseline to compare 

to for prediction of motion sickness and determining susceptibility to motion sickness.
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2 Methods for Measurement of Vestibular Signals 

The following section details methods common to the projects in Chapters 3 & 4. 

2.1 Subjects  

Angular velocity measurements for the torso and head were recorded for 13 

subjects (11 male, 2 female) while they moved actively or sat passively in six conditions. All 

subjects were in good physical condition with no reported history of vestibular defects and 

with normal or corrected-to-normal vision. 

2.2 Conditions 

Angular velocities of the torso and head were measured while subjects performed 6 

different activities: Walking, Running, Virtual Walking, Stair Climbing, Stair Descending, 

and Virtual Sitting. Each condition lasted two minutes, except for stair climbing and stair 

descending conditions, each of which lasted 1.5 minutes. Walking and running was done on 

a NordicTrack Commercial 1750 treadmill. No subject reported any sickness or discomfort 

during Virtual Walking or Virtual Sitting. The details of each condition were as follows: 

Walking: Subjects used the treadmill to walk at 2 mph. 

Running: Subjects used the treadmill to run at either 5 or 6 mph. Subjects were 

started at 6 mph and ran for a short period of time to determine if this speed was 

comfortable. Two subjects elected to lower their running speed to 5 mph.  

Stair Climbing: Subjects climbed 5 flights of stairs set outdoors at a moderate, 

comfortable pace, one step at a time. The stairs spiraled up in a counter-clockwise fashion. 
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Stair Descending: Subjects descended the same 5 flights of stairs at a moderate, 

comfortable pace, one step at a time. The stairs spiraled down in a clockwise fashion. 

Virtual Walking: Subjects walked on the treadmill while wearing an HMD. The 

virtual environment was comprised of a well-lit, bare hallway with textured walls. Subjects 

walked on the treadmill at 1.5 mph while the camera in the virtual environment moved 

down the hallway at a comfortable speed. Before recording, the camera height and 

movement speed was matched to the subject’s satisfaction in order to feel as natural as 

possible while walking on the treadmill. 

Virtual Sitting: Subjects sat in a chair and wore the HMD and viewed a tour through 

the solar system (Titans of Space for the Oculus Rift). Subjects were instructed to look 

around freely and progress through the tour at their own pace. 

2.3 Measurements 

Angular velocities of the torso and the head were recorded at 100 Hz using either 

two InertiaCube BTs, a 3 degrees-of-freedom orientation tracking system, or one 

InertiaCube BT and an Oculus Rift Development Kit 2 Head Mounted Display (HMD). Torso 

measurements were taken at approximately the sternum; head measurements were taken 

from the forehead. Each InertiaCube was attached by an elastic band. Both the InertiaCubes 

and the HMD recorded angular velocity around three axes: yaw (vertical), pitch 

(horizontal), and roll (forward-backward). Recall that rotation about a vertical axis 

produces left-right motion, often referred to as yaw. The torso cube malfunctioned for one 

subject during the Stair Climbing and Stair Descending conditions; data collected during 

those periods were not included in analysis. Figure 2.1 shows raw velocity measurements 
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from both the cubes and the HMD. Measurements from the two devices were nearly 

identical. No scaling was needed except for changing the sign of yaw angular velocity. 

 

 

Figure 2.1. Angular velocity data from an inertia cube (blue) and the HMD (red). No scaling was 
required to match HMD angular velocity to cube angular velocity. The only transformation 
needed was changing the sign of the HMD’s yaw angular velocity data. 

2.4 Data Analysis 

Angular velocity measurements were first filtered using a 7-pole Butterworth filter 

with a low-pass cutoff of 25 Hz. This range includes the frequencies at which the 

vestibuloocular reflex does not suffer from frequency-dependent nonlinearities (Huterer & 

Cullen, 2002). It also includes the upper limit of harmonics produced while running 

(Grossman, Leigh, Abel, Lanska, & Thurston, 1988). 
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The semicircular canals do not lie perfectly along the X-Y-Z axes used by the inertial 

measurement units, so angular velocity measurements were rotated onto the semicircular 

canal planes (left-anterior, right-posterior [LARP]; right-anterior, left-posterior [RALP]; 

semicircular canal yaw [scYaw]) using the following rotation matrix: 

where θ = 45°and γ = 18° (Carriot et al., 2014; Della Santina et al., 2005; see Figure 2.2). 

Effectively, this is equivalent to taking an object and rotating in pitch 18° and in yaw 45° in 

world-centered yaw-pitch-roll. It is also important to note that while the horizontal canal 

pair (LH & RH) is approximately coplanar, the vertical canal pairs (LA & RP; RA & LP) are 

slightly less so. Measurements and analysis for the following project were calculated as if 

all three pairs of semicircular canals were exactly coplanar for ease of calculation. 

 

Figure 2.2. A cartoon depiction of the 
orientation of the semicircular canals 
and their axes of rotation, Left 
Anterior (LA), Left Posterior (LP), 
Left Horizontal (LH), Right Anterior 
(RA), Right Posterior (RP) and Right 
Horizontal. Note that the yaw axis 
does not go through the center of the 
top of the head; it is instead it is 
rotated back slightly. Also note that 
in reality canals are not exactly 
coplanar and differed by 
approximately 15±7.5°. See Della 
Santina et al. (2005) for details. 

(3.1) (

𝑣𝐿𝐴𝑅𝑃
𝑣𝑅𝐴𝐿𝑃
𝑣𝑠𝑐𝑌𝐴𝑊

) = [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

] [
𝑐𝑜𝑠(𝛾) −𝑠𝑖𝑛(𝛾) 0
0 1 0

𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛾) 1
] (

𝑣𝑋
𝑣𝑌
𝑣𝑍
)  
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3 Statistical Properties of Vestibular Signals 

3.1 Introduction 

The first project aimed to describe the vestibular signals experienced by the torso 

and head during self-motion. It also aimed to look at the differences between LARP, RALP, 

and scYaw rotation signals as well as their relationship to world-centered axes of yaw, 

pitch, and roll. 

3.2 Data Analysis 

Analysis was performed on angular velocity data in both the original sensor frame of 

reference (YPR-space) and the rotated, semicircular-canal frame of reference (LRY-space). 

This was done to compare the signals experienced by the torso and head both in an 

intuitive, world-centered coordinate system and in a coordinate system corresponding to 

the orientation of the semicircular canals (Della Santina et al., 2005).  

First, peak angular velocities were compared across subjects, conditions, and axes. 

To get peak angular velocities, head and torso data were split into epochs, consisting of a 

single gait cycle, which were determined manually for each subject and condition from 

sensor angular position. For example, one epoch would last from the moment the left foot 

first left the ground to the next time it left the ground. For each gait cycle, two peak angular 

velocities were extracted for analysis from the absolute value of angular velocity 

measurements. The first was taken from the first half and the second from the second half 

of the epoch, representing each step. No such analysis was performed for the virtual sitting 

condition. 
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Akaike’s information criterion (AIC) was used to compare the fit of normal and 

Cauchy distributions to the empirical distributions of angular velocity data. For a model 

with k parameters and likelihood L, 𝐴𝐼𝐶 = 2𝑘 − 𝑙𝑛(𝐿) (see Bozdogan, 1987, for review). 

This measure estimates the amount of information lost by the model (lower is better) and 

can be compared with an AIC calculated for a different model. Next, a likelihood ratio test 

was used to compare the fits of different Cauchy distributions from a full model with 

separate parameters for each combination of sensor, subject, condition, and axis to simpler 

models aggregating over one or more dimensions.  

Power spectral densities (PSD) of the angular velocity time series were calculated 

by Welch’s method with a window of size 512 samples (5.12 seconds) and 50% sample 

overlap. Following Carriot and colleagues (2014), two kinds of line-based fits were 

calculated for each PSD function. The first was a single line fit over the entire frequency 

range (0.2 to 25 Hz). The second was made of two lines, one fit over the low frequency 

range (0.2 to 2 Hz) and the other over the high frequency range (10 to 25 Hz) and 

combined at their intersection. A paired t-test was used to compare fits of these two 

models. 

3.3 Results 

3.3.1 Peak Velocity 

Angular velocity data from each stride epoch were used to determine two peak 

angular speeds, one from the first half and one from the second half of the stride. Figure 

3.1A and B shows mean peak speeds for the torso and the head for each condition 

combined over subjects and axes of rotation. Mean peak speeds for the head were lower 
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than for the torso overall (p<.001) and within each condition (each head-torso pair p<.001). 

Torso mean peak speeds were greatest while running, followed by stair descent and 

climbing. 

The two walking conditions had the lowest mean peak speeds.  Mean peak speeds 

for the head followed a similar pattern but with much smaller differences between 

conditions. LARP and RALP average peak speeds were about equal, with yaw smaller for 

both the torso and head (Fig. 3.2A). A repeated measures ANOVA showed significant main 

effects of sensor (p<.001) and axis (p<.001) and significant interaction effects of sensor by 

axis (p<.001). 

Figure 3.3 shows that mean angular velocities were at or close to zero for all 

conditions except for the two stair conditions where subjects climbed a spiral staircase, 

ascending counterclockwise or descending clockwise. During stair climbing and stair 

descending, LARP and RALP angular velocities were more extreme for the head than for the 

torso, while scYaw angular velocities were more extreme for the torso than for the head 

(p<.001).   
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Figure 3.1. Mean peak angular velocity for semicircular axes (LARP, RALP, and scYaw, left 
column) and raw sensor axes (yaw, pitch, and roll, right column). Note that scYaw and sensor yaw 
are not parallel, accounting for differences between C’s scYaw and D’s Yaw. See Della Santina et al. 
(2005) for details. A and B show mean peak angular speed for the torso and head combined 
across subjects and axis of rotation, separated by condition. Subjects did not move during Virtual 
Sitting so mean peak angular speed was not calculated for this condition. Each torso-head pair 
was significantly different (p<.001). The slightly lower mean peak velocity for running in the raw 
axes is likely due to the consistently small values of roll angular velocity for the raw sensor axes. C 
and D show mean peak angular speed of the torso and head separated by axis, combined over 
subjects and conditions. This highlights the reduction in angular velocity between torso and head 
for each axis. scYaw speeds were significantly lower than LARP and RALP speeds (p<.001). There 
was a significant difference in damping between yaw, pitch, and roll (p<.001).   
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Figure 3.2.  Comparison of LARP, RALP, and scYaw peak angular velocity to raw sensor yaw, 
pitch, and roll peak angular velocity for the head and torso. Comparing A to B and C to D, changes 
in LARP and RALP are driven mostly by increases in pitch. Roll angular velocity is relatively small 
throughout all activities. In the torso, LARP, RALP, and scYaw are all almost equal for all 
conditions except running, whereas in the head scYaw is clearly damped. 
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Figure 3.3.  Mean angular velocities for the head (top row) vs. torso (bottom row), semicircular 
canal axes (left column) vs. sensor axes (right column). Mean velocities were close to zero in all 
cases except for during the two staircase conditions where subjects turned clockwise or 
counterclockwise 

 

The more extreme LARP and RALP head velocities may be due to the pitch of the 

head while moving up and down stairs, which would be split evenly between LARP and 

RALP but not appear in the yaw axis of rotation. The torso, however, does not experience 

such strong pitching motion and shows smaller LARP and RALP velocities. Speeds were not 

calculated during the VR Sit condition because subjects did not take any strides.  



14 
 

 
Figure 3.4.  The distributions of differences (reduction) between torso and head angular 
velocities in the LRY-frame (left) and YPR-frame (right) during running. Differences were 
calculated as the peak torso velocity minus the peak head velocity; two differences were 
calculated for each gait cycle (once per step). Reduction levels differ in the YPR-frame, but 
transforming velocities to the LYR-frame shows almost equal levels of damping for each 
semicircular canal plane. 
 

 

Overall angular velocity did not differ too much between sensor axes and 

semicircular canal axes (Figure 3.1A & B). However, damping between the different axes is 

clearly different. Pitch angular velocity contributes to both LARP and RALP angular velocity 

(Figure 3.1C & D, Figure 3.2 left vs. right column). Angular velocity in pitch is the most 

damped between the torso and head (p<.001, Figure 3.1D). Increase in pitch angular 

velocity is much greater than increase in yaw angular velocity when going from Walking to 

Running, while Stair Climbing and Stair Descending are much closer for pitch and yaw. Roll 

contributes relatively little to head angular velocity. The distribution of differences 
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between the torso and head are different in YPR-space with pitch having nearly twice the 

damping than yaw for Running, and roll damping being near zero. In semicircular canal 

space, LARP and RALP are nearly identical and have greater damping than scYaw (see 

Figure 3.4, previous page). 

3.3.2 Distribution Fitting 

Angular velocity distributions depend on movement condition (e.g. walking vs. 

running), subject, axis of rotation, and sensor location (torso vs. head). This can be seen by 

comparing different models using AIC and likelihood ratio tests. Table 3.1 shows the AIC of 

the full Cauchy and normal models as well as Cauchy models that aggregate data over one 

or more dimensions (lower is better).  

Table 3.1. Models and their AIC for LARP, RALP, scYaw 

Model    AIC 

Cauchy Full 8.85 x 105 

Cauchy Axes Combined 1.08 x 106 

Cauchy Subjects Combined  1.18 x 106 

Cauchy Sensors Combined 1.33 x 106 

Cauchy Conditions Combined 2.23 x 106 

Cauchy Subjects and Conditions Combined 2.28 x 106 

normal Full 2.83 x 106 

 

Table 3.2 shows likelihood ratio tests comparing the full Cauchy model to various 

simpler models aggregating data over one or more dimensions. 
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Table 3.2. Likelihood-ratio test of Cauchy fits, full models vs. various combinations for 
LARP, RALP, scYaw. 2 sensors * 13 subjects * 6 conditions * 3 axes – lost data of 2 conditions * 3 
axes for one subject = 930 degrees of freedom in full model 

Comparison Degrees of 

Freedom 

Χ2 p 

Full vs. Combined Subjects 930 – 72 = 858 3.01 x 105 <.001 

Full vs. Combined Conditions 930 – 156 = 774 1.35 x 106 <.001 

Full vs. Combined Axes 930 – 312 = 618 2.05 x 105 <.001 

Full vs. Combined Sensors 930 – 468 = 462 1.82 x 105 <.001 

 

Neither head nor torso velocity distributions were fit well by normal distributions. 

The ΔAIC comparing the full-model Cauchy distributions and full-model normal 

distributions was -1.95 × 106 in favor of the Cauchy model. This means that the normal 

model is exp(-1.95 × 106/2) << .0001 times as likely as the Cauchy model to minimize 

information loss (Burnham & Anderson, 2002).  

The best fit Cauchy and normal distributions can be seen plotted with the measured 

velocity distributions in Figure 3.5 (next page). The stair conditions show a slight skew in 

opposite directions. Subjects turned counter-clockwise while climbing and clockwise while 

descending, which caused velocities to skew in opposite directions. 
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Figure 3.5. Distributions of scYaw angular velocities for the head (top) and torso (bottom), 
combined across subjects for each condition. The solid black lines and gray shading show the 
means and standard deviations, respectively. Green dashed lines show the best-fit normal 
distributions. Magenta dash-dotted lines show the best-fit Cauchy distributions. These are better 
fit by Cauchy rather than normal distributions. 
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Variation in individual subject yaw angular velocity distributions is shown in Figure 

3.6 for walking and running conditions. Color is used to code each subject’s distribution. 

The bold black curve in each panel is used to show the average distribution. Individual 

subjects show large variation but follow the same general pattern. The angular velocity 

distribution during walking is more leptokurtic than during running; there are fewer 

extreme velocities while walking than while running. The angular velocity distribution for 

the head is more leptokurtic than for the torso; the head experienced fewer extreme 

velocities than the torso. Overall, this underscores individual differences in head 

stabilization and the difficulties in combining data over subjects.  

 

Figure 3.6. Angular velocity distribution in the yaw axis of all 13 subjects plus their average 
plotted in thick black. While the individual subjects varied greatly from each other, they all 
followed a similar pattern when comparing between walking and running and between head and 
torso velocities. The head was more stable than the torso, experiencing a smaller range of lower 
velocities. 
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Fits using raw sensor axes yaw, pitch, and roll yield mostly the same results: Cauchy 

distributions fit angular velocity distributions better than normal distributions, fits are best 

done with subjects and conditions kept separate, and head velocities are generally more 

leptokurtic. Tables 3.3 & 3.4 show AIC and chi-squared comparisons of model fits using 

angular velocity in sensor axes (yaw, pitch, and roll). 

 

Table 3.3. Models and their AIC for yaw, pitch, roll 

Model    AIC 

Cauchy Full 3.40 x 105 

Normal Full 2.25 x 106 

Cauchy Subjects Combined  6.97 x 105 

Cauchy Conditions Combined 1.60 x 106 

Cauchy Axes Combined 7.06 x 105 

Cauchy Sensors Combined 5.64 x 105 

Cauchy Subjects and Conditions Combined 1.67 x 106 

 

 

Table 3.4. Likelihood-ratio test of Cauchy fits, full models vs. various combinations yaw, 
pitch, roll. 2 sensors * 13 subjects * 6 conditions * 3 axes – lost data of 2 conditions * 3 axes for 
one subject = 930 degrees of freedom in full model 

Comparison Degrees of Freedom Χ2 p 

Full vs. Combined Subjects 930 – 72 = 858 3.59 x 105 <.001 

Full vs. Combined Conditions 930 – 156 = 774 1.35 x 106 <.001 

Full vs. Combined Axes 930 – 312 = 618 2.05 x 105 <.001 

Full vs. Combined Sensors 930 – 468 = 462 1.82 x 105 <.001 
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Figure 3.7. Subject-averaged power spectral density of LARP angular velocities for the torso and 
head during walking (A) and running (B); plots for other conditions are largely the same. Vertical 
black bars mark the fundamental gait frequency (approximately 0.8 Hz for walking and 1.3 Hz for 
running). Filled black circles mark the cross point of the 2-line fit. There was no cross point for 
the two-line model for walking when using the high range of 10 to 25 Hz, but as shown in the 
figure there is a cross point at about 1.7 Hz when the high range was changed to 5 to 25 Hz. A 
two-line model fits both the torso and head better than the one-line model; angular velocity does 
not follow a power law. Keeping conditions separate reveals the large increases in power at gait 
frequencies that are not well described by line fits. 
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3.3.3 Power Spectral Densities 

PSDs of the subject-averaged angular velocity time series for each condition and axis 

of rotation were calculated. Following Carriot and colleagues (2014), we fit two simple 

models to the PSDs. The first was a simple power-law fit (a single line over the entire 

frequency range). The second model was a two-line fit over two physiologically relevant 

frequency ranges (Massot, Schneider, Chacron, & Cullen, 2012) including the range where 

the vestibuloocular reflex has approximately unity gain (Gauthier, Piron, & Roll, 1984; 

Huterer & Cullen, 2002; Tabak & Collewijn, 1994). These two models are shown by the 

dashed lines in Figure 3.7, which shows PSD results for LARP rotations in the running 

condition. 

Figure 3.8 (see next page) shows subject-averaged PSDs with best fit lines for both 

models for all conditions. LARP, RALP, and scYaw axes of rotation are shown in the 

columns, respectively, while conditions are separated by row. The range depicted covers 

the proposed neurologically relevant frequency ranges for the vestibular system (Massot et 

al., 2012) and the upper range of harmonics still visible in running (Grossman et al., 1988): 

the low range of 0.2 to 2 Hz and the high range of 10 to 25 Hz. The two models that were 

used to fit PSDs were 1) a power-law (single line) fit over the entire frequency range and 2) 

a two-line model with one line fit over the low range and one line fit over the high range.7 
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Figure 3.8. Subject-averaged PSDs for angular velocity. Blue and green lines are for the torso, red 
and magenta lines are for the head. The dashed lines represent the two best-fit lines over the low 
(.2 to 2Hz) and high (10 to 25 Hz) ranges separately. The black dot is at the cross-point between 
these two best-fit lines. The dotted-dashed lines represent the single best-fit line over the low 
and high ranges combined. 
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Walking PSDs show a clear peak at 0.8 Hz, the fundamental gait frequency, and its 

harmonics (~1.6 & 2.4 Hz). Running shows a similar set of peaks at about 1.3 Hz and its 

harmonics. Peaks for walking and running are visible in all three axes of rotation. While 

these same peaks are present during virtual walking at ~ .7 Hz, they are greatly reduced in 

LARP & RALP for the head; the vanishing point of the hallway may have acted as a sort of 

fixation point and reduced pitching of the head compared to walking and running where no 

fixation cross was provided. Stair climbing shows a clear peak at .9 Hz and its harmonics 

for both the torso and head for all axes of rotation.  Stair descending has some weak peaks 

at approximately 1 Hz but they are not as clear as other conditions and mostly appear only 

in the torso. There is a particularly large peak at 2.15 Hz; this peak is unlikely to be the 

fundamental stride frequency considering running has a fundamental frequency of only 1.3 

Hz. Because this peak is very strong in LARP and RALP but not as much in scYaw, this peak 

is probably the downward velocity from moving down a step and upward velocity from 

stabilizing on that same step, putting it at roughly twice the stride frequency. 

For the low frequency range, there is reduced power in the head compared to the 

torso for most conditions and axes of rotation. All axes of rotation for running as well as 

yaw for walking and virtual walking show reduced power in the head at the fundamental 

stride frequency. Virtual walking does not have as pronounced peaks at the fundamental 

stride frequencies when compared to walking. This may be due to the slightly slower speed 

and because many subjects used the treadmill armrests for balance and support. For the 

high frequency range, there is reduced power in the head compared to the torso for all 

conditions and axes of rotation. Overall, head PSDs stay at around the same power 

regardless of condition while torso power changes up to 2 orders of magnitude. This is 
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especially evident when comparing walking to running. Just as in Figure 3.1A, torso power 

varies greatly by condition while head power stays roughly the same.  

The virtual sitting condition is much different than any of the other conditions, 

which comes as no surprise because it did not involve periodic motion and instead was 

mostly active head movements. There is greater power at low frequencies for the head than 

for the torso, but it declines more rapidly at high frequencies. 

One-line and two-line models were fit to the PSDs, as described in the Methods. In 

all cases, the two-line model fit better than the one-line model, especially for the virtual 

sitting condition. An F-test with subjects averaged rejects the null hypothesis 

(F(108,12204)=16.55, p<.0001) that PSDs for the head and torso follow a power law. The 

same procedure performed on the full data set (with subjects not averaged) also rejects the 

null hypothesis (F(1404,158652)=7.87, p<.0001) that PSDs of the head and torso velocities 

follow a power law. Despite the improvement in fit using the two-line model, it is unable to 

capture the spectral peaks at the fundamental gait frequency and its harmonics.  

3.4 Discussion 

The current study continues the efforts of previous head stabilization studies that 

have use both passive (Fard et al., 2004; Goldberg & Peterson, 1986; E. A. Keshner, 

Cromwell, & Peterson, 1995; Emily A. Keshner, Hain, & Chen, 1999; Tabak & Collewijn, 

1994) and active (Carriot et al., 2014; Grossman et al., 1988; Pozzo, Berthoz, & Lefort, 

1990) conditions to provide a clearer picture of head stabilization and of natural vestibular 

stimuli. In addition to determining characteristics of vestibular neurons, head and torso 

motions can be used to study movement disorders such as Parkinson’s disease (Latt, Menz, 

Fung, & Lord, 2009) or motion-sickness from perceived movement in virtual environments.  
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The statistical properties of vestibular stimuli should shape the way vestibular 

neurons respond to such neurons, just as in other modalities (Atick, 1992; Attneave, 1954; 

Barlow, 1961; Burton & Moorhead, 1987; Laughlin, 1981). In the present study, torso 

angular velocities show non-power-law and non-normal properties. In contrast, active 

motion of feet during locomotion as well as passive motion (such as the seat of a bus) both 

follow power-law distributions (Carriot et al., 2014). This suggests that biomechanical 

filtering (e.g. passive absorption of motion by bones and flesh and/or active movements to 

counteract motion) takes place in addition to neck stabilization. Body-balancing systems 

like the neural networks involved in the cervicocollic reflex must deal with non-power-law, 

non-normal signals from body motion. In any case, even though there were large changes 

from task to task in torso angular velocity, there was relatively little variation in the head 

(Figure 3.2). Compared to the walking condition, there were huge increases in torso 

velocity during running and only moderate increases during stair climbing/descent. 

Angular velocity was not fit well by a normal distribution as the empirical 

distributions tended to be far too peaked with relatively high kurtosis values. This agrees 

with previous work (Carriot et al., 2014) where relatively high kurtosis values were found 

for the distributions of the head’s angular velocity. We show in the present work that 

Cauchy distributions capture better the shapes of the angular velocity distributions than do 

normal distributions. Also, subjects clearly differed from one another, as shown by the high 

intersubject variability and the increase in goodness of fit when fitting individual 

distributions as opposed to subject-averaged distributions. 

Vestibular stimuli do not follow a power-law. In agreement with Carriot and 

colleagues (2014), there is greater power at lower frequencies (0.2 to 2Hz) than at high 



26 
 

frequencies (10-20 Hz), with the change in power over frequency not consistent with a 

power law. This follows the results of Massot and colleagues (2012), who found that gain of 

central vestibular neurons was significantly lower over 0-5 Hz compared to 15-20 Hz when 

vestibular stimulation had both low- and high-frequency components. This type of 

frequency response would allow the detection of high frequency stimuli despite the power 

of the low frequency band, especially in the 1-2 Hz range. In order to efficiently detect high-

frequency signals, neurons would have to be more sensitive to high frequency than to low 

frequency signals. 

A model that uses one- or two-line segments to model PSDs fails to capture the 

increase in power at gait frequencies and their harmonics. This differs from previous 

results (Carriot et al., 2014) where a two-line fit worked well to capture angular velocity 

PSDs. However, this result is almost certainly the result of combining subject data and the 

types of conditions used. Subjects show large individual differences in head and torso 

motion as well as peaks in their PSDs at gait frequencies, especially during walking and 

running. In addition, because gait varies by condition, power increases at gait frequencies 

become difficult to see after averaging across conditions.  

Angular velocities in scYaw are reduced the most through head stabilization, 

although LARP and RALP reduction are not much less. Peak velocities were smaller for the 

scYaw axis (left-right motion) than for the LARP or RALP axes, and LARP and RALP 

velocities increased greatly for running whereas scYaw velocity increased only slightly. 

Raw sensor data show that these differences are a result of changes in pitch.  

Head movement in pitch has been studied in some detail (Fard et al., 2004; Hirasaki, 

Moore, Raphan, & Cohen, 1999; Pozzo et al., 1990). Angular velocity measurements from 
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the present study match previous work (Pozzo et al., 1990) pitch angular velocity was 

measured during a number of self-motion activities including walking (30+-8 deg/s), 

running (72+-20 deg/s), and hopping (72+-15 deg/s). During running, where there was the 

most damping of velocity from torso to head, the differences in velocities for yaw, pitch, 

and roll clearly stand out. Figure 3.4 shows that there is approximately twice as much 

damping in pitch than there is in yaw. There is very little damping in roll, possibly due to 

the lack of roll angular velocity in general. 

It has been suggested that the size of semicircular canals is related to the type of 

locomotion of the animal. For primates and other mammalian species, those that are agile 

and have fast, jerky locomotion have significantly larger canals relative to body size than 

those that move more cautiously (Spoor et al., 2007). Humans have larger vertical canals 

(LARP and RALP) and a somewhat smaller lateral canal than the great apes, which may be 

due to the bipedal nature of human locomotion (Spoor, Wood, & Zonneveld, 1994). If canal 

size is related to type of locomotion, then the orientation of the canals may also depend on 

the movement of the organism. 

The distribution of head angular velocities and their relative levels of damping shed 

some light on why the canals are oriented the way they are. Rather than having the canals 

in axes corresponding to left-right, forward-back, and up-down, the canals are rotated 45° 

in yaw and 18° in pitch (Della Santina et al., 2005, see Figure 2.2). Yaw, pitch, and roll 

angular velocities are quite different from each other (Figures 3.1 & 3.2). However, angular 

velocities in the semicircular canal planes are much more similar, with LARP and RALP 

being nearly identical. Having the semicircular canals rotated 45° splits up pitch rotations 

to LARP and RALP, instead of just a hypothetical pitch canal. While sensitivity may be 
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roughly equal for each semicircular canal axis, because pitch contributes to both LARP and 

RALP signals there are twice as many neurons available to detect changes in pitch. It is 

possible that this would lead to greater sensitivity to changes in pitch as well as better head 

stabilization in pitch compared to other axes. Whereas in semicircular canal coordinates 

damping from torso to head is roughly equal for the three axes (lines are roughly parallel in 

Figure 3.1C, distributions are roughly equal in Figure 3.4), damping in world-centered 

coordinates is greatest for pitch, less for yaw, and least for roll (Figures 3.1D & 3.4). A 

comparison with other species would be informative for answering this question. Cats 

(Blanks, Curthoys, & Markham, 1972) and pigeons (Dickman, 1996) have similarly oriented 

canals but very different methods of locomotion. It may be the case that these two species 

face similar challenges in that pitch velocity during locomotion is significantly greater than 

yaw or roll and needs to be damped at a much greater level.  

3.5 Summary 

Replicating and enhancing previous work (Carriot et al., 2014), this work shows that 

vestibular stimuli do not follow normal distributions nor do they follow a power law in 

their PSDs, unlike visual and auditory stimuli. It was previously postulated (Carriot et al., 

2014) that passive filtering of the flesh and bones were responsible for these properties. 

This is supported by the non-power law and non-normal distributions of torso angular 

velocity. The neck further shapes angular velocities experienced by the head. The current 

study shows that it is inappropriate to combine subject and condition data; subjects, 

conditions, and axes all show distinct patterns of angular velocity and are best fit when 

kept separate. Significant increases in power at gait and step frequencies and their 

harmonics further shape angular velocity statistics. Finally, differences in sensor-centered 
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and semicircular canal-centered coordinates show that the orientation of the semicircular 

canals may be due to the requirements of human locomotion. Most head motion is in pitch, 

followed by yaw, with little motion in roll as measured by mean peak velocity. The same 

pattern is true of damping, with pitch damping roughly twice that of yaw damping, and roll 

damping being close to zero. When rotated to semicircular-canal coordinates, LARP and 

RALP canals experience roughly equal stimulation and damping is roughly equal for all 

three axes. Pitch angular velocity, which is the source of most of the angular velocity 

changes, gets split roughly evenly between two canals per vestibular organ instead of one 

and may benefit from twice the measurement power, leading to its significant damping 

compared to yaw and roll.



30 
 

4 Models of Head Stabilization and Intersubject Clustering 

4.1 Introduction 

Head stabilization involves many components and includes biomechanical filtering 

of the flesh and bones as well as short latency reflexes such as the vestibulocollic reflex 

(VCR), the cervicocollic reflex (CCR), and the vestibuloocular reflex (VOR)(Angelaki & 

Cullen, 2008; Goldberg & Peterson, 1986; Hirasaki et al., 1999; Peterson, Goldberg, Bilotto, 

& Fuller, 1985; Wilson, 1991; Wilson & Schor, 1999). While decerebrate cats and lower 

mammals rely principally on the VCR and CCR to stabilize the head on the body (Goldberg 

& Peterson, 1986), it is less clear this is the case for primates, especially humans. Bizzi and 

colleagues (1978) estimated that the contribution to head stabilization by VCR and CCR 

amounted to only 10 – 30%. Instead, voluntary actions seem to contribute a great deal to 

head stability. Mechanical properties of the neck muscles (stiffness, viscosity, elasticity) 

that can be adjusted by subjects voluntarily seem to contribute more to head stabilization 

than reflexes such as VCR (Allum et al., 1997; Emily A. Keshner et al., 1999). When 

distracted by a mental arithmetic task, subjects showed a reduced ability to stabilize their 

head in space (Guitton, Kearney, Wereley, & Peterson, 1986). This may be because CCR and 

VCR both act to prevent instability of the head relative to the body but not necessarily to 

provide stabilization in space. 

In passive vestibular perturbation studies, previous work has suggested VOR had 

unity gain up until 10 Hz and suffered from serious phase lag at frequencies of 15 Hz and 

higher (Gauthier et al., 1984; Tabak & Collewijn, 1994; Tabak, Collewijn, Boumans, & van 

der Steen, 1997), but there has also been evidence to the contrary. Huterer and Cullen 



31 
 

(2002) showed that VOR in monkeys was highly compensatory even up to stimuli up to 25 

Hz. The authors argue that problems with equipment explained the results of previous 

experiments. As shown in the previous chapter, head stabilization still shows power at 

harmonics up to approximately 20 Hz in yaw, pitch, and roll. Cremer and colleauges (1998) 

looked at VOR in both healthy subjects and patients who had undergone surgery to alter 

their semicircular canals. For healthy subjects, VOR retained a gain of .9 or greater to low-

amplitude (15-30°), high velocity (200 – 400°/s), high-acceleration (2000 – 4000°/s) head 

rotations. A VOR with these characteristics is more than enough to compensate for the head 

velocities experienced by subjects during locomotion. 

This project aims to model head stabilization by trying to predict head motion from 

torso motion, effectively modeling the action of the neck during self-motion. Although the 

previous project showed that subjects had very large individual differences overall, this 

project attempts to find any underlying links between subjects. 

4.2 Data Analysis 

A linear adaptive filter (Widrow & Stearns, 1985) was used to determine the 

characteristics of the neck in filtering angular velocity from the torso, T(τ), to the head, H(τ) 

(see Figure 4.1, next page).  

Given the most recent 100 torso signal samples T(τ) = [x(τ), x(τ – 1), x(τ – 2), . . ., x(τ 

– 100 + 1)]T and a vector of weights W(τ) = [w1(τ), w2(τ), w3(τ), . . ., w100(τ)]T, the 

prediction of the head signal at time τ was calculated by: 

 

  

(4.1) �̂�(𝝉) = 𝑾𝑻(𝝉)𝑻(𝝉)  
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Error was calculated as 

where H(τ) was the recorded head signal. Weights were updated at using the least 

mean squares (LMS) algorithm: 

where μ(τ) was step-size. Weights of a filter are equivalent to its impulse response 

in time. 

 

Figure 4.1. The adaptive filter 
used to determine the role of 
the neck during self-motion in 
stabilizing the head. T(τ) is the 
angular velocity of the torso, 
H(τ) is the recorded angular 
velocity of the head, �̂�(τ) is the 
predicted angular velocity using 
the adaptive filter, W(τ) is the 
set of weights for the adaptive 
filter, and e(n) is the error 
between predicted and 
recorded head velocity. The 
adaptive filter attempts to 
recreate the head angular 
velocity by mimicking the 
filtering effect of the neck. The 
error signal is fed back into the 
adaptive filter algorithm to 
adjust its weights via the LMS 
algorithm. 

 

  

(4.2) 𝒆(𝝉) = 𝑯(𝝉) − �̂�(𝝉)  

(4.3) 𝑾(𝝉 + 𝟏) = 𝑾(𝝉) + 𝝁(𝝉)𝒆(𝝉)𝑻(𝝉)  
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Trial data from the experiment described in Chapter 3 were split into 11 chunks of 

data. The first 10 chunks were used to train the filter weights via 10-fold cross validation. 

The mean estimated filter weights were then used to predict head motion on the 11th chunk 

of data. Filter fit and prediction was calculated using R2prediction by 

 

where h was the actual recorded head velocity and �̂� was the predicted head for 

R2prediction. Correlation was calculated by taking the dot product of the normalized predicted 

and recorded head velocity measurements. In other words, 

 The relationship between torso and head angular velocity was estimated using 

magnitude squared coherence. Coherence is a frequency-dependent measure of similarity 

between two signals. For two signals x(t) and y(t), coherence is calculated as: 

where Gxy is the cross-power spectrum of x(t) and y(t) and Gxx and Gyy are the auto-power 

spectrum of x(t) and y(t), respectively. A linear, noise-free system will have unity 

coherence, whereas introducing noise or nonlinearities reduces coherence (Bendat & 

Piersol, 1993; Thomas, 2015). When calculated for torso and head angular velocity, 

coherence gives an idea of how much noise is present and whether there are nonlinearities 

as vestibular signals pass through the neck from the torso to the head. 

(4.4) 𝑹𝟐 = 𝟏 −
∑ (𝒉𝒊 −�̂�𝒊)

𝟐/(𝑵 − 𝟏)𝑵
𝒊=𝟏

∑ (𝒉𝒊 −𝒉𝒊)
𝟐/(𝑵 − 𝟏)𝑵

𝒊=𝟏

= 𝟏 −
𝑴𝑺𝑬𝑷𝒉𝒆𝒂𝒅

𝑽𝒂𝒓[𝒉]̂
 

 

(4.5) 𝒄𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 =
𝑯 ∙ �̂�

‖𝑯‖‖�̂�‖
  

(4.6) 𝐶𝑥𝑦(𝑓) =
|𝐺𝑥𝑦(𝑓)|

2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
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Finally, cluster analysis was used to determine if subjects could be separated into 

any number of subgroups. A k-means clustering approach was used on parameters from 

Cauchy fits of the previous experiment. Because k-means clustering is sensitive to scaling, 

each set of parameters was normalized by dividing by its standard deviation across 

subjects, conditions, and axes. A normalized mean squared distance to cluster centroid was 

used to determine the optimal number of clusters. This can be thought of a mean squared 

error, where cluster centroid positions are the prediction and Cauchy solutions are the 

observed values. Hierarchical clusters based on Euclidean space were also computed using 

MATLAB’s linkage command. This clustering was used as comparison to the k-means 

clustering. 

4.3 Results 

4.3.1 Coherence 

Coherence was calculated between torso and head angular velocity for yaw, pitch, 

and roll. Figure 4.2 shows subject-averaged coherence and Figure 4.3 a single subject’s 

coherence for yaw, pitch, and roll for all 6 conditions. Coherence is low except at gait & step 

frequencies and their harmonics. Yaw and roll show relatively high coherence at gait 

frequency (from left foot off to left foot off) and its harmonics whereas pitch shows high 

coherence at the step frequency (double the gait frequency) and its harmonics. Coherence 

is greatest for Walking, Running, and Virtual Walking, with some coherence in Stair 

Climbing and Stair Descending. Virtual Sitting, as expected, showed little coherence 

between torso and head.  
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Figure 4.2. Subject-averaged coherence for all conditions in yaw, pitch, and roll. Yaw and roll 
show peaks in coherence at the fundamental gait frequency and its harmonics; pitch shows 
peaks at the step frequency (twice the gait-frequency). Walking, Running, and Virtual Walking 
show the most coherence and have the clearest pattern of harmonics. Stair Climbing and Stair 
Descending show peaks in coherence for yaw and roll at the fundamental gait frequency. Stair 
Descending shows a peak in pitch coherence at the step frequency. Averaging over subjects 
likely smoothed over any gait-related harmonics for Stair passage. 

 

Stair Climbing and Stair Descending have high coherence at low frequencies in yaw 

for due to the spiral staircase used in this study. A constant clockwise or counterclockwise 

turn shows up as a low-frequency component. Because the turn was the same direction and 

magnitude for torso and head, it has a high coherence. These two conditions also have 

moderate peaks in yaw and roll at the gait-frequency. Only Stair Descending has a peak in 

pitch at twice the gait-frequency which may be due to the faster and jerkier motion when 

descending stairs compared to when climbing stairs. In the single subject case, Stair 

Climbing and Stair Descending have coherences that do not show the same clear peaks as 
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Walking or Running. It is very likely that because subjects had very different styles of 

climbing and descending stairs that these coherences were averaged out in the subjects-

averaged coherence. 

Harmonics in coherence were present up to 20 Hz during the Running condition, 

similar to what was found by Grossman and colleagues(1988) for angular velocity. In the 

subjects-averaged case, coherence drops off from 5-10 Hz and is in general low above 10 

Hz. However, coherence remains high at harmonics up to and past 10 Hz for Running for 

individual subjects. Coherence slowly drops off to moderate levels past 10 Hz for Walking 

and Virtual Walking.  

 
Figure 4.3. Single-subject (bottom) coherence for all conditions in yaw, pitch, and roll. Yaw and 
roll show peaks in coherence at the gait frequency and its harmonics; pitch shows peaks at step 
frequency (twice the gait-frequency). Walking, Running, and Virtual Walking show clear and 
strong coherence at gait and step frequencies and their harmonics. In general, individual subject 
coherence has greater coherence at gait and step frequency harmonics than subject-averaged 
coherence. 
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4.3.2 Adaptive Linear Filter 

Adaptive filter weights for each condition and axes followed some patterns between 

subjects (see Figure 4.4, next page). LARP and RALP weights were very similar to each 

other and dissimilar to yaw. Running showed greater variation in weights compared to 

walking and virtual walking. Filters for yaw tended to weigh recent samples positively 

while filters for LARP and RALP weighed them negatively. Running weights were lower 

overall than for Walking or Virtual Walking, which matches the result shown in Figure 3.2 

that the reduction of peak angular velocity from torso to head was greater for Running than 

for Walking or Virtual Walking. Just as in the project on the statistical properties of 

vestibular stimuli, there were some general patterns but there was great variation between 

subjects, condition, and axes. Filter weights converged to roughly the same values for each 

of the 10 folds. This means subjects kept a steady pattern for the duration of a trial and that 

filter weights converged to values that minimized least squared error. 
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Figure 4.4. A comparison of mean filter weights. Colored lines show weights for individual 
subjects; black lines show subject-averaged weights. Individual subject weights varied greatly 
between subjects, but some trends are visible. LARP and RALP weights are similar to each other, 
while scYaw is different. 
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Linear filter R2prediction values are summarized in Tables 4.1 and 4.2. Filters varied in 

their performance from great to very poor, with great individual variation. The linear filter 

had the highest R2prediction values for yaw and scYaw, with LARP and RALP being roughly 

equal. R2prediction values averaged over subjects and conditions were -0.06, 0.06, and 0.25 for 

LARP, RALP, and yaw, respectively. Among conditions, Walking and VR walking had the 

highest R2prediction values, followed by the stair climb/descent conditions, with running 

having the lowest R2prediction values, except for in yaw.  

Table 4.1. R2 values averaged over subjects for the 10-fold cross-validation procedure and 
correlation for values for the predicted and actual head in semicircular canal axes, LARP, RALP, 
and scYaw. 

R2prediction Walking Running Stair 
Climbing 

Stair 
Descending 

Virtual 
Walking 

Mean 

LARP 0.2477 -0.8823 0.0813 0.05

23 

0.2193 -0.0563 

RALP 0.2156 -0.3894 0.1299 0.10

96 

0.2382 0.0608 

scYaw 0.3891 0.1691 0.1414 0.24

13 

0.3224 0.2527 

       

Correlation       

LARP 0.4974 0.4304 0.2979 0.29

94 

0.4634 0.3977 

RALP 0.4627 0.4522 0.3375 0.30

44 

0.4800 0.4074 

scYaw 0.6142 0.5530 0.4020 0.45

23 

0.5570 0.5157 

 

Table 4.2. R2 values averaged over subjects for the 10-fold cross-validation procedure and 
correlation values for the predicted and actual head in sensor axes, yaw, pitch, and roll. 

R2prediction Walking Running Stair 
Climbing 

Stair 
Descending 

Virtual 
Walking 

Mean 

Yaw 0.4741 0.2775 0.1947 0.2043 0.2349 0.2771 

Pitch 0.2469 -2.3279 0.1732 0.1839 0.3834 -0.2681 

Roll 0.3227 0.3949 0.1914 0.0758 0.3037 0.2577 

       

Correlation       

Yaw 0.6795 0.5700 0.4619 0.4379 0.4545 0.5208 

Pitch 0.4858 0.3828 0.3989 0.4523 0.6066 0.4653 

Roll 0.5699 0.6294 0.3874 0.2964 0.5609 0.4888 
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When looking at individual subjects, one reached a maximum R2prediction value of 

during the walking condition (Figure 4.5), followed by 0.76 for the same subject during the 

running condition, both in scYaw. This same subject showed the highest mean R2prediction 

value across subjects in scYaw at 0.62. Filters that had low R2prediction values (meaning they 

did not explain much of the variance in the signal) still did a good job qualitatively, and 

correlations tended to be higher than R2prediction values. Figure 4.6 compares a filter with 

high R2prediction and a filter with low R2prediction. Again, even with a negative R2prediction the 

predicted angular velocity seems to capture the essence of the recorded head angular 

velocity. The correlation of the “low” R2prediction filter is 0.693.  

 

Figure 4.5. Top: Recorded torso (green), recorded head (blue), and predicted head velocity 
(magenta) for Subject 2, with R2prediction = 0.85. Bottom: The 10 sets of filter weights determined 
by the adaptive filter algorithm and 10-fold cross-validation procedure. The weights spanned 
the most recent 100 samples (1 second) of data. The 10 sets of filter weights for each trial had 
little variation, meaning each fold of data was similar to the other folds.  
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Figure 4.6. Top and middle: recorded torso (green), recorded head (blue), and predicted head 
(magenta) velocities. The top panel shows a prediction for a well-fit filter that accounts for 
roughly half of the variation in the original signal (head velocity). The middle panel shows a 
prediction for a poorly-fit filter that has more variation than the actual head signal. Even though it 
is “poorly” fit, the predicted head velocity signal captures the amplitude and periodicity of the 
recorded head velocity signal. Bottom: filter weights for subject 3’s (blue) and subject 9’s (red) 
filters. While slightly different, similarities remain.  
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4.4 Discussion 

Active, voluntary motion surely plays an important role in head stabilization, not 

only during passive perturbations (Allum et al., 1997; Guitton et al., 1986) but during active 

motion. Unlike many previous studies that used these passive perturbations to study head 

stabilization, the present study examines head stabilization during voluntary, rhythmic 

actions. Reflex control may play a vital role in head stabilization (Hirasaki et al., 1999; 

Peterson et al., 1985; Wilson, 1991; Wilson & Schor, 1999) as reflex control operates in the 

1-2 Hz range (Keshner et al., 1995), overlapping with gait frequencies. However, head 

stabilization during locomotion may rely instead on efference copies of motor command 

signals.  

The idea of efference copies (also known as corollary discharge) has its origins with 

von Helmholtz (1925) and was later expanded upon by von Holst and Mittelstaedt (1950). 

Motor commands can cause changes in sensory afference but are somehow accounted for 

and generally do not affect one’s perception of the world. For example, moving one’s eyes 

during a gaze shift causes the image on the retina to move without the perception of the 

world moving whereas poking one’s eye seemingly causes the world to jump around. Von 

Holst and Mittelstaedt (1950) proposed that a copy of a motor command, the efference 

copy, is used to predict the reafference that would be caused by that command. This 

reafference is then compared to the actual afference received by the sensor and the 

resulting difference is the exafference. The exafference represents the sensory input from 

the outside world. Assuming no change in the outside world, a perfect efference copy 

would fully negate the sensory reafference and the resulting exafference would be zero. 

The suppression of reafference from self-generated behavior has been shown in many 
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animals and sensory systems including the electrosensory systems of mormyrid fish (Bell, 

1981; Mohr, Roberts, & Bell, 2003), the mechanosensory system of crayfish (Edwards, 

Heitler, & Krasne, 1999; Krasne & Bryan, 1973), and the auditory system of crickets (Poulet, 

2003, 2006). 

 Spinal central pattern generator-derived efference copies in tadpoles have been 

shown to drive compensatory eye movements (Combes, Le Ray, Lambert, Simmers, & 

Straka, 2008; Lambert, Combes, Simmers, & Straka, 2012; von Uckermann, Le Ray, Combes, 

Straka, & Simmers, 2013). Theoretical models of tadpole, teleost fish, and horse locomotion 

have shown that head displacement during locomotion (whether aquatic or terrestrial) 

shows strong spatio-temporal correlation to potential predictive values for compensatory 

eye movements (Chagnaud, Simmers, & Straka, 2012). In other words, stereotyped 

locomotion involves efference copies that could be used to predict head motion and 

consequently generate compensatory eye movements. This motion prediction can be 

combined with sensory feedback from VCR and CCR during rhythmic motion to maximize 

stability. This matches previous work with VOR where vestibular neurons were able to 

encode and compensate for voluntary gaze shifts during motion (see Angelaki and Cullen, 

2008, for review). 

4.4.1 Coherence 

Fard, Ishihara, & Inooka (2004) used a spring-mass-damper model to accurately 

model head pitch motion during passive perturbations. In the frequency range of 0.8 Hz to 

3 Hz, the mean values of 98% of their coherence functions were greater than 0.7 (see 

Figure 4.8). 
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Because they found consistently high coherence over their relevant range of 

frequencies, they decided it was appropriate to use a linear model. In the present study, 

coherence between torso and head angular velocities are close to one at step/gait 

frequencies, suggesting that linear models may work for predicting the relationship 

between the torso and head at those frequencies, but overall a purely linear approach may 

not do well. Figures 4.2 and 4.3 show subject-averaged coherence and a single subject’s 

coherence. All conditions except for Virtual Sitting showed a similar pattern of coherence, 

where there were strong spikes at gait frequency but heavy noise and/or nonlinearities 

elsewhere. Overall, this pattern of coherence points to a non-linear system where gait 

frequencies pass through but other frequencies are not linked in a linear fashion between 

torso and head. Predicted velocity has coherence of near unity across the frequency range, 

unlike actual head velocity, and thus will fail to explain much of the variance in the actual 

head angular velocity in many cases even if amplitudes are reproduced.  

Results could be improved by reducing sensor noise with better experimental 

procedure and equipment, much as Huterer and Cullen (2002) did to improve upon 

previous VOR experiments. Results may also be improved by considering nonlinear, active 

prediction of the neck. A model that uses predicted torso motion or has an existing model 

of possible head motion would likely do better to predict head motion than a purely 

passive model. It is very possible that efference copies originating from the spinal pattern 

generator or motor cortex could be used to predict head motion and the required neck 

muscle activation to counter that head motion. A simple modification of the linear filter 

may improve its prediction. This could be achieved by training a non-causal version of the 
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filter with prerecorded data then using a prediction of torso motion in addition to past 

torso motion to predict head motion in real-time. 

4.4.2 Adaptive Linear Filters 

Filter weights did not vary much from epoch to epoch during the 10-fold cross 

validation procedure (Figure 4.5), meaning subjects kept a stable pattern of motion during 

each task. In addition, LARP and RALP filter weights tended to be similar to each other 

while scYaw weights differed. This intuitively makes sense since scYaw velocities were 

different from LARP and RALP velocities in general and in their reduction from torso to 

head. In addition, most of the rotation experienced by subjects in this experiment was 

symmetrical in the LARP and RALP axes and different in the scYaw axis due to the natural 

left-right sway in gait. 

The two walking conditions had the best R2prediction and correlation values for each 

axis, which may have been related to the amount of motion of the torso and the jarring 

nature of faster movements, i.e. some subjects may have been smoother runners than 

others. Any jarring motion may have not only caused differences in how the neck 

anticipated incoming motion, but also may have created extra noise in the IMUs. Each 

sensor was attached by a strap to the head and torso which allowed some movement 

independent of the body, especially during changes in velocity like during the bottom or 

top of a stride. During the more rigorous conditions (running/stairs) the torso sensor may 

have bounced independent of the body in a way that they did not during the calmer 

conditions. The head sensor probably did not experience this problem as the head was 

stabilized by the neck and did not experience such large changes in acceleration.  
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The VR condition had slightly lower prediction that the walking condition which 

could be explained in several ways. Subjects were also may not have been perfectly 

matched in speed and height in the VR condition which may have affected their balance and 

movements. For safety and comfort reasons, some subjects held onto the treadmill’s hand 

rails or relied on the safety strap placed behind them to guide their movements, which may 

also have affected their movements. Although the VR walking pace was slightly slower and 

had slower peak head velocities, there was probably no significant difference in sensor 

noise. Finally, they may have also been distracted by the novelty of the VR environment. 

Many subjects were new to VR in general and seemed excited to explore the world around 

them. 

Qualitatively, the filters predicted head motion well, especially in terms of the 

amplitude range and general shape of the angular velocity curve. Sensor noise and high 

frequency perturbations from the sensor as it jostled independently from the torso/head 

could explain the low percent of variance explained and introduction of more variance than 

actually experienced for certain conditions. As previously mentioned, conditions with 

lower movement speed had better prediction in general. As Huterer and Cullen (2002) 

discovered, the fit of the sensors can significantly alter results, especially at high 

amplitudes and frequencies. 

The linear filter does not account for voluntary movements subjects may have made 

to look around their environment. Subjects had high individual differences when it came to 

prediction. One subject had very high R2predicted values for yaw at a mean 0.63 across 

conditions and an average correlation of 0.8. Two other subjects had R2predicted values of 

0.45 and 0.41 across conditions. Other subjects had very poor fits and were not modeled 
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well. This matches the statistical modeling in that individuals varied greatly from each 

other and were best fit separately. 

Several factors could explain this inter-subject difference. Subjects varied greatly in 

their style of motion, with some subjects determined to look straight ahead while on the 

treadmill and others not so diligent (subjects were not specifically instructed to fixate their 

gaze, especially during conditions that took place outdoors). Some subjects also held onto 

the hand rails of the treadmill and/or stairs for stability, which may have affected their 

natural gait or caused some other unexpected alteration to their head velocity. Differences 

in gait and stabilization may also simply be due to intrinsic differences between subjects 

such as sex, height, weight, and athleticism.  

4.5 Summary 

The relationship between torso and head angular velocities was examined and a 

linear adaptive filter was used to predict head motion from torso motion. Just as in the 

previous project, subjects varied greatly between each other. Different movement 

conditions had different patterns of coherence. While all showed peaks in coherence at the 

fundamental gait frequency, some conditions showed peaks in coherence at each harmonic 

while others did not. This suggests that a linear or mostly linear relationship may exist 

between the torso and head. Linear adaptive filters had varying success which depended 

on subject, condition, and axis. In some cases, linear adaptive filters worked well to capture 

the filtering of the neck and predict head motion from torso motion, having both high 

correlation and high percent of variance explained. In other cases, the filters did not 

capture the noise of head motion, resulting in low percent of variance explained or even 

predicting greater variance than what the head actually experienced. Even in these cases, 
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however, there was still a considerable amount of correlation between predicted and actual 

head motion. A filter that took into account planned movement may be more accurate. One 

possible way of implementing this would be to train a non-causal filter or use a model to 

predict future torso movement and negate it, much like an efference copy is used to 

generate a prediction of change in sensation and is used to negate reafference. In any case, 

the active portion of head stabilization must be considered when trying to predict head 

motion during locomotion.
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5 Head Stabilization During Natural Motion with Normalization 

5.1 Introduction 

Experiments 1 and 2 are repeated with modification. New angular velocity 

measurements were recorded from 20 subjects in eight conditions that included those 

from the previous chapters, except for virtual reality conditions. Outdoors walking and 

running conditions were added to allow analysis of gait in a more natural setting, rather 

than on a treadmill. Stair climbing and stair descent conditions were improved to only 

include actual stair-stepping rather than including turns between flights on the staircase. 

Two head turn conditions, where subjects walked with their heads turned approximately 

45° to the left or right, were added to examine stabilization in situations where head and 

eye facing were different from direction of motion. 

Custom sensors were built for this project to measure foot acceleration, which 

allowed analysis of gait cycles duration and normalization of data based on gait cycle. 

Methods from Chapter 3 on peak velocity of the torso vs. head, fitting angular velocity 

distributions, and power spectral density analysis were repeated with the new, gait-

normalized data and the additional conditions. Methods from Chapter 4 on coherence and 

using linear adaptive filters to predict head motion were repeated for the gait-normalized 

data and the additional conditions. Finally, the relationship between coherence and filter 

performance was examined. 
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5.2 Methods 

5.2.1 Subjects 

Angular velocity measurements for torso, head, and feet were recorded for 20 

subjects (13 male, 7 female) while actively moving in eight conditions. All subjects were in 

good physical condition with no reported history of vestibular defects. 

5.2.2 Conditions 

Eight conditions were used to study gait: walking, jogging, head turned right 

walking, head turned left walking, stair climbing, stair descent, treadmill walking, and 

treadmill jogging. Participants were recorded for two minutes while performing each 

activity. Walking, jogging, and the two head turn walking conditions were performed in an 

outdoor corridor. Recording was paused as subjects reached either end of the corridor and 

turned around. For each head turn condition, subjects were instructed to turn their head so 

their nose was approximately 45° to the side, but otherwise walk as normal. The reason for 

this was to disentangle head direction (and vision) from the body’s direction of motion. 

Turning the head approximately 45° in either direction moves the semicircular canals 

closer to the YPR-frame (see Figure 5.1). For Head Right, torso pitch corresponds to head 

LARP while torso roll corresponds to head RALP. These pairs are swapped for Head Left. If 

the head is being stabilized in a “measure and react” fashion, then there might be a 

difference in pitch reduction between Walking and head turn walking. If, however, 

efference copies are being used to stabilize the head, this head turn will be taken into 

account and velocity reduction should be the same as Walking. 
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For the two stair-climbing conditions, subjects were instructed to climb and 

descend the same flight of stairs at a moderate pace, one step at a time, for approximately 5 

minutes. Recording was paused when subjects reached either landing at the top or bottom 

of the stairs and resumed after subjects turned around and resumed climbing. The two 

treadmill conditions were performed continuously for 2 minutes each, walking at 2.5 mph 

and running at 5mph. One subject elected to run at 4mph. Subjects were instructed to look 

at a fixation cross presented to them directly in front and slightly above the treadmill. 

5.2.3 Measurements 

Angular velocities of the torso and head were recorded at 1000 Hz using two 

InertiaCube BTs, a 3 degrees-of-freedom orientation tracking system. Instead of using an 

elastic band to hold the InertiaCube BTs in place, an inelastic nylon webbing was attached 

and tightly fastened to subjects. One InertiaCube was attached around the head with the 

sensor resting on the forehead just above the eyebrows. The other InertiaCube was 

attached to the torso, with the webbing wrapping just under the armpit and above the bust.  

 

Figure 5.1. A cartoon diagram of the head 
during the Head Right condition, where 
subjects walked forward with their heads 
turned approximately 45° to the right. This 
turn not only disentangles head direction for 
body motion direction, but also aligns the 
semicircular canals to a position closer to the 
yaw, pitch, and roll axes. From the perspective 
of body motion, roll is measured by the LARP 
canals while pitch is measured by LARP. For 
Head Left, these are reversed. Roll is 
measured as rotation in RALP and pitch is 
measured as rotation in LARP. 
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Two custom-built sensors (see Figure 5.2) were attached to the legs to measure 

angular velocity of the feet at 300 Hz. Each sensor was built using an ESP8266 

microcontroller and an LSM9DS1 9 degree-of-freedom IMU. Custom software allowed 

wireless communication with the sensor and the labstreaminglayer protocol (UCSD Swartz 

Center for Computational Neuroscience, 2017). Each sensor was attached to the feet, facing 

outwards, and measured angular velocity in three axes: vertical (up-down), linear 

(forward-back), and lateral (left-right). The sensors were used to detect gait cycles. 

 

Figure 5.2. The custom IMU system that was built for this project and used to detect gait cycles. 
This IMU is depicted with the case open for detail. A sensor was attached to each foot, facing 
outwards, each measuring angular velocity in three axes: vertical, linear, and lateral. Data was 
recorded at 300 Hz, which was then down-sampled to 128 Hz for analysis. 
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5.2.4 Data Analysis 

Much of the data analysis was identical to previous chapters so only new or 

modified analyses will be described in this section. 

Angular velocity data were filtered using a 16th order bandpass Butterworth filter 

with passband frequency of 0.2 to 25 Hz. Torso and head angular velocity data were down-

sampled to 256 Hz whereas feet angular velocity data were down-sampled to 128 Hz.  

Steps were marked using foot angular velocity. The major peak in vertical angular 

velocity was used to mark steps during stair-climbing (representing the lifting and landing 

of one foot), and linear angular velocity was used to mark steps in all other conditions 

(representing the forward motion and halting of one foot). One gait cycle was the time from 

one major peak in acceleration to the next major peak, e.g. the time from when the right 

foot took off to the next time the right foot took off. Angular velocity measurements were 

then normalized in time by spline interpolation using the MATLAB interp1 function. This 

step-normalized data was used to calculate PSDs. Gait cycles were phase-locked by taking 

the median gait cycle for each subject and condition, finding the phase angle (sample 

number) of the maximum point, then shifting the cutoff point so that each gait cycle started 

at the maximum acceleration value. 

Peak velocities tended to be positively skewed, partly due to being the magnitude of 

velocity, so a Kruskal-Wallis test was used to compare peak velocity samples combined 

across subjects. Instead of looking at means as in Chapter 3, medians were examined 

instead, although this change did not change previous results (see Results, below). For the 

two head turn conditions, YPR-frame data from the torso was compared to LRY-frame in 

addition to the within-frame comparisons. This is because pitch velocity from the torso 
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would approximately be measured as RALP velocity in the Head Right condition and LARP 

in the Head Left condition. Roll velocity from the torso would approximately be measured 

as LARP velocity in the Head Left condition and RALP in the Head Right condition (see 

Figure 5.1). 

Chapter 4’s methods were also reproduced, and coherence and prediction by an 

adaptive linear filter were performed. In contrast to Chapter 4, the adaptive linear filter 

was performed on normalized data. Additionally, to examine the relationship between 

coherence and performance by the adaptive linear filter, a correlation coefficient was 

calculated. Two different measures of coherence were used to calculated this correlation. 

The first was the peak value at the fundamental gait frequency and the second was peak 

coherence below 10 Hz. Filter performance was measured by R2predicted and filter 

correlation.  

5.3 Results 

5.3.1 Gait Cycle Duration 

Gait cycle duration variability was generally small within subjects and conditions. 

Table 5.1 shows the average gait duration and standard deviation of in milliseconds across 

all subjects and for a single representative subject. Individual subjects showed very little 

variability in their gait cycle durations. The two stair conditions showed the greatest 

variability in gait cycle duration. 
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Table 5.1. Mean gait duration in milliseconds with standard deviation in parentheses. 

Condition Duration (ms) 

Average of Subjects 

Variability (%) Duration (ms) 

Subject 2 

Variability (%) 

Walking 1110.10 (28.09) 2.53 1073.79 (21.37) 1.99 

Running 759.08 (31.81) 4.19 741.79 (18.58) 2.50 

Head Turn Right 1098.67 (40.79) 3.71 1051.07 (20.70) 1.97 

Head Turn Left 1104.23 (41.00) 3.71 1073.57 (18.78) 1.75 

Stair Climb 1183.01 (74.33) 6.28 1050.23 (55.28) 5.26 

Stair Descent 1107.15 (71.79) 6.48 981.69 (76.17) 7.76 

Treadmill Walking 1140.92 (22.47) 1.97 1108.69 (19.26) 1.74 

Treadmill Running 778.03 (25.24) 3.24 796.54 (13.37) 1.68 

 

 

Figure 5.3. Foot liner 
acceleration for all subjects, 
walking. After normalization 
and phase alignment, foot 
acceleration data shows very 
clear patterns even across all 
subjects. This means that the 
general movement of the feet 
were the same across subjects 
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Figure 5.3 shows foot linear acceleration for all subjects. After normalization and 

phase alignment, a clear pattern is visible in foot linear acceleration even across all subjects. 

This shows that subjects move their feet in a very similar manner. Figure 5.4 shows gait 

cycle data for all subjects for the Walking conditions. This was done mostly as a visual 

check to ensure gait cycle detection and alignment was working correctly. Foot 

acceleration shows a relatively clear pattern of motion across subjects. Gait cycles within a 

condition for individual subjects show clear patterns with relatively little variation across 

gait cycles, but subject-averaged data comes out to mostly noise around a mean of zero.  

 

  

 

Figure 5.4. Walking scYaw data split by gait cycle, means in black and medians in green. Top left: 
Head scYaw angular velocity for subject 15, all gait cycles. Top right: Torso scYaw angular 
velocity for subject 15, all gait cycles. Most subjects & conditions showed identifiable patterns for 
individuals, showing that gait cycle identification was successful. Bottom left: Head scYaw 
angular velocity for all subjects. While head motion, especially for walking, was relatively small, 
averaging across subjects eliminated any identifiable patterns. Bottom right: Torso scYaw 
angular velocity for all subjects. Again, averaging over subjects removed much of the identifiable 
information and left mostly noise around the mean. 
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5.3.2 Peak Velocity 

Subject-averaged median peak angular velocity is summarized in Figure 5.5. Median 

peak velocity was used in contrast to mean peak velocity as in Chapter 3 because of the use 

of the Kruskal-Wallis test in analyzing peak velocity. Peak velocity distributions show 

enough rightward skew that they do not follow normality. This is partly because of taking 

the magnitude of angular velocity in order to include both halves of the gait cycle.  

 

Figure 5.5. Median peak velocity by condition, combined across subjects. Axes are plotted on 
different lines. Angular velocities of the head are the in the top two plots and velocities of the 
torso are in the bottom two plots. LRY-frame velocities are in the left column and YPR-frame 
velocities are in the right column. Just as previously examined in Chapter 3, YPR-frame velocities 
are greatest in pitch, followed by yaw, and finally least in roll for most conditions. 

 

For both the LRY-frame and the YPR-frame, velocities are generally greater for the 

torso than the head, and the two running conditions have the greatest peak velocities. In 

the YPR-frame, peak velocity is greatest in pitch, followed by yaw, and least in roll. In the 
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LRY-frame, peak velocity is more evenly distributed between the semicircular canal axes. 

Just as before, it seems that pitch and roll are split between LARP and RALP, while yaw and 

scYaw are roughly equal.  

The two stair conditions show increased yaw and scYaw compared to pitch, LARP, 

and RALP. Peak velocities of the four walking conditions combined over subjects are shown 

in Figure 5.6. For all conditions, reduction in velocity from torso to head is statistically 

significant (p<.0001).  For Walking and Treadmill Walking, head scYaw velocity was 

significantly different from LARP and RALP velocities (p<.0001). For Treadmill Walking, 

torso scYaw was significantly different from torso LARP and torso RALP (p<.0001) and it 

was significantly different from torso scYaw in Walking (p<.0001). Treadmill Walking 

RALP and LARP were significantly greater than Walking RALP and LARP (both p<.0001). 

scYaw was different between Treadmill Running and Running for both the torso (p<.0001) 

and head (p<.0001). Distributions of differences between torso and head angular velocity 

are summarized in Figure 5.7. Overall, reduction of scYaw velocity is significantly greater 

than LARP (p<.0001) and RALP (p<.0001). Velocity reduction for LARP and RALP are not 

significantly different (p=.65).  
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Figure 5.6. Median peak velocity of the torso and head in the LRY-frame for all walking 
conditions. A Kruskal-Wallis test was used to compare peak velocities between axes within each 
condition and sensor. In the treadmill walking condition, torso scYaw is significantly different 
from torso and torso RALP LARP (p<.0001); head scYaw is significantly different than head LARP 
and head RALP (p<.0001). In the walking condition, head scYaw is significantly different than 
head LARP and head RALP (p<.0001). In the head turn conditions, RALP and LARP show 
complementary patterns. In Head Left, LARP and scYaw are significantly different from RALP 
(p<.0001) but not from each other. In Head Right, RALP and scYaw are significantly different 
from LARP (p<.0001) but not from each other. 
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Figure 5.7. Distribution of differences between torso and head for the walking conditions in the 

LRY-frame. For all conditions, reduction in scYaw is greater than LARP and RALP (p<.0001). This 

contrasts with Figure 3.4, where LARP, RALP, and scYaw are all about equal. Note that the x-scale 

of the walking conditions (left side) goes from -100 to +100 degrees/s whereas the running and 

stairs conditions go from -150 to +250 degrees/s. This means that there is less reduction during 

the walking conditions, presumably because motion is not as great. 
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Reduction in the head turn conditions was performed by comparing torso YPR-

frame velocities with head LRY-frame velocities. With the head turned to the right, pitch 

and roll of the torso correspond more closely to LARP and RALP of the head, respectively. 

With the head turned left, left, pitch and roll correspond to RALP and LARP, respectively. 

For both, torso yaw is unaffected and corresponds to head scYaw as normal. Median peak 

angular velocity is shown in Figure 5.8. Head Right LARP peak velocities are not 

significantly different from Head Left RALP. Walking yaw peak velocity is not significantly 

different form Head Right RALP (p = .15) or scYaw (p = .997). Head Left LARP and scYaw 

are both significantly greater than Head Right RALP and scYaw and greater than Walking 

yaw and roll (all p<.0001). Walking pitch is significantly greater than all peak velocities for 

Head Right and Head Left. 

Reduction of torso pitch to its corresponding head axis follows the same pattern for 

Head Right and Head Left as it does for Walking in the YPR-frame (Figure 5.9). Torso roll is 

 

Figure 5.8. Left, Middle: Median peak velocity of the torso and head for the two head turn 
conditions. Because the head was rotated, the semicircular canals were oriented approximately to 
match yaw, pitch, and roll axes. Torso peak velocities are taken from the YPR-frame values 
whereas head peak velocities are taken from the LRY-frame values to examine how the neck 
stabilizes incoming motion from the body. Right: Median peak velocity of the torso and head for 
Walking in YPR-frame only.  
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near zero or slightly negative (meaning there was more roll in the head), and pitch and yaw 

are roughly equal. Head Right RALP differences were not significantly different from Head 

Left LARP differences (p=.92), and Head Right LARP differences were not significantly 

different from Head Left RALP (p=.42). However, Walking roll differences were around the 

same magnitude but still significantly greater than Head Right RALP (p<.001) and Head 

Left LARP (p<.0001). Walking Pitch differences were significantly less than Head Right 

LARP (p<.0001) and significantly less than Head Left RALP (p<.0001).  

 

 

Figure 5.9. Left, Middle: Distribution of differences between torso and head angular velocity for 

the two head turn conditions. Velocity for the torso was taken from the YPR-frame, velocity for 

the head was taken from the LRY-frame. In the Head Right condition, pitch velocity is measured 

by LARP, roll is measured by RALP, and yaw is measured by scYaw, approximately. For the 

Head Left condition, roll is measured by LARP, pitch is measured by RALP, and yaw is measured 

by scYaw (approximately). For Head Right, reduction in pitch-LARP velocity is significantly less 

than in roll-LARP and in yaw-scYaw (both p<.0001). For Head Left, reduction in roll-LARP 

differences are significantly less than in pitch-LARP and in yaw-scYaw (both p<.0001). Torso 

roll velocities were often actually less than their head counterpart, leading to the peak at a 

negative angular velocity value. Right: Distribution of differences between torso and head for 

Walking in the YPR-frame alone.  
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5.3.3 Angular Velocity Distribution Fits 

Cauchy and normal distributions were fit to angular velocity distributions just as in 

Chapter 3. Table 5.2 shows the AIC of each model. Again, the full Cauchy model performs 

better than the normal model. Additionally, the full model has a better (lower) AIC than the 

model with data combined over any dimension. The ΔAIC comparing the Cauchy model to 

the normal model is 8.2 x 106 in favor of the Cauchy model, which means the normal model 

is much less than .0001 times as likely to minimize information loss as the Cauchy model  

(Burnham & Anderson, 2002). 

Figures 5.10 and 5.11 show subject-combined angular velocity distributions and 

their best Cauchy and normal fits for head and torso LARP and scYaw. For the two running 

conditions in LARP and RALP the normal model fits as well or better than the Cauchy 

model, but for all other conditions and axes of rotation the Cauchy model is better fit. In 

those two conditions, there is a valley at 0°/sec angular velocity instead of a peak. In 

general, angular velocity distributions are leptokurtic, but more so for the head than the 

torso. 

 

 

 

 

 

 

 

 

Table 5.2. Models and their AIC for LARP, RALP, scYaw 

Model    AIC 

Cauchy Full 1.04 x 107 

Cauchy Axes Combined 1.13 x 107 

Cauchy Sensors Combined 1.14 x 107 

Cauchy Subjects Combined  1.15 x 107 

Cauchy Conditions Combined 1.26 x 107 

Cauchy Subjects and Conditions Combined 1.32 x 107 

Normal Full 1.86 x 107 
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Figure 5.10. Angular velocity distributions for head LARP and scYaw and the best fit Cauchy and 
normal distributions for each condition. Cauchy fits are in magenta, normal fits are in green, and 
subject averaged data is in black with standard deviation shaded in grey. In all cases the Cauchy 
distribution does a better job capturing the empirical angular velocity distributions. 
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Figure 5.11. Angular velocity distributions for torso LARP and scYaw. Cauchy fits are in magenta, 

normal fits are in green, and subject averaged data is in black with standard deviation shaded in 

grey. In all cases except for running LARP the Cauchy distribution does a better job of capturing 

the empirical angular velocity distributions. 
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Figure 5.12. Angular velocity distributions of all 20 subjects plus the mean, plotted in black. Just 

as in Figure 3.6, individual subjects show great variation while following common trends. 

Angular velocity distributions during Walking tend to be more leptokurtic than during Running, 

meaning subjects experienced less motion. Head angular velocities are also more leptokurtic than 

torso angular velocities, as is expected, because the head is presumably more stabilized and thus 

experiences less motion. 

 

As was previously shown in Chapter 3, angular velocity distributions of individual 

subjects show large variation, but follow common trends for each condition and sensor. 

Shown in Figure 5.12, this finding replicates previous results (see Figure 3.6). Each colored 

line represents one subject, with mean plotted in black. One difference to note is that torso 

velocities are smaller on average (more clustered around 0) here than in Figure 3.6. The 

walking condition from Chapter 3 was from the treadmill which has lower yaw (and 

scYaw) angular velocity than walking outdoors (see Figure 5.6). 
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5.3.4 Power Spectral Density 

PSDs of full and subject-averaged angular velocity time series were calculated for 

each condition and axis of rotation. Just as in Chapter 3, we fit two simple models to the 

PSDs. The first was a single line, power-law fit, over the low (0.2 to 2 Hz) and high (10 to 25 

Hz) range. The second model used two lines, one each for the low and high range.  Figures 

5.13 and 5.14 show subject-averaged PSDs with both the power-law (single line) and two-

line fit. PSDs of angular velocity were much cleaner as a result of using gait-normalized 

data. All the walking conditions had a fundamental gait frequency of 0.875 Hz. This 

matches the previously computed mean gait cycle duration for each walking condition 

which came out to approximately 0.9 Hz (see Table 5.1).  

The two-line model was a significantly better fit than the one-line (power law) 

model for the full set of PSDs not combined over any dimension (F(2880,125760) = 9.16, 

p<.0001) and for PSDs of subjects combined (F(144,6288) = 11.55, p<.0001). However, just 

as before, increases in power at the fundamental gait frequency and its harmonics were not 

well captured by either model. Power in LARP was greater for the head below 0.8 Hz for 

the walking conditions. Above 1 Hz, head power was generally lower than torso power 

(Figure 5.13). Power in the torso was greater over the whole frequency range during 

running. Power was about equal in the stair conditions below the fundamental gait 

frequency, and lower in the head above the fundamental gait frequency. Power in scYaw 

was greater for the head in walking conditions below and greater for the torso above the 

fundamental gait frequency. For the running conditions, power was about equal 

throughout the whole range. For the stair conditions, power was slightly greater in the 

head for almost the whole range, evening out near the gait frequency (Figure 5.14). 
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Figure 5.13. PSDs of LARP angular velocity. LARP is generally greater in the torso than head, 
except for very low frequencies (<1Hz) in the walking conditions. Each walking condition and 
stair condition had its fundamental peak in power at 0.875 Hz, which matches the normalized 
gait cycle duration. Running had a fundamental gait frequency of 1.375, with Treadmill Running 
slightly lower at 1.25 Hz. As a result of the gait cycle normalization, the peaks in power are much 
smoother compared to Figure 3.7. Again, single line fits of PSDs fail to capture increases in gait 
power at fundamental gait frequencies and their harmonics. For the stair climbing conditions, 
the two-line fit fails to cross in the depicted range. 
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Figure 5.14. PSDs of scYaw angular velocity. Each walking condition and stair condition had its 
fundamental peak in power at 0.875 Hz, which matches the normalized gait cycle duration. 
Running had a fundamental gait frequency of 1.375, with Treadmill Running slightly lower at 
1.25 Hz. As a result of the gait cycle normalization, the peaks in power are much smoother 
compared to Figure 3.7. Again, single line fits of PSDs fail to capture increases in gait power at 
fundamental gait frequencies and their harmonics. For the stair climbing conditions, the two-
line fit fails to cross in the depicted range. 
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5.3.5 Coherence 

Coherence was calculated for the YPR- and LRY-frame between torso and head 

angular velocity, just as in Chapter 4, and results were largely the same. Subject-averaged 

coherence was quite poor, never exceeding 0.4 at the fundamental gait frequency for any 

condition-axis pair. Figure 5.15 shows single-subject coherence in the LRY-frame, which is 

in contrast to the single subject coherence in the YPR-frame as in Figure 4.3.  

Coherence for normalized data was much cleaner than for the non-normalized data 

from Chapter 4. Peaks are much more recognizable at the fundamental frequency and its 

harmonics. Coherence is generally greater at lower frequencies and drops off as frequency 

increases, but patterns beyond this are subject-dependent. For example, subject 1 shows 

 

Figure 5.15. Coherence between the torso and head in the LRY-frame for a subject 1. Peaks in 
coherence occur at the fundamental gait frequency and its harmonics. Coherence for scYaw was 
generally the highest. Peaks in coherence remain visible through 10 Hz. 
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strong peaks in coherence at the fundamental gait frequency and its harmonics up to 10 Hz 

during Treadmill Walking and Treadmill Running (Figure 5.15), while subject 7 (see Figure 

5.16) shows a quick falloff in coherence over that same range. 

 

  

 

Figure 5.16. Coherence between the torso and head in the LRY-frame for subject 7. Peaks in 
coherence occur at the fundamental gait frequency and its harmonics. Coherence for scYaw was 
generally the highest. Contrast the Treadmill Running condition here with that of subject 1 
(Figure 5.15). For subject 7, peaks in coherence quickly disappear with increasing frequency, 
whereas subject 1 shows strong peaks up to 10 Hz.  
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5.3.6 Adaptive filter  

Average linear filter R2prediction values are summarized in Table 5.3. Head velocity 

predictions by the adaptive filter are shown in Figure 5.17. In the LRY-frame, prediction 

was roughly equal for all three axes except for scYaw in Walking and Treadmill Walking. In 

the YPR-frame, the highest R2prediction values were for roll, followed by yaw, and were lowest 

for pitch head motion.  The four walking conditions had the greatest R2prediction values, 

followed by the two stair conditions, and finally was lowest for the two running conditions. 

Mean values were lower than in Chapter 4, but this may be due to the Running condition, 

where predicted head velocity had much more variance than actual head velocity. 

Treadmill Running in this experiment also had worse subject-averaged R2prediction values. 

Out of the 20 subjects, only 3 had positive scYaw R2prediction values for Running. Filters for 

Treadmill Running fared better, with half of the subjects ending up with positive scYaw 

R2prediction values. Just as before, individuals had large variation in R2prediction and qualitative 

filter performance. 

Correlation between the predicted head velocity and actual head angular velocity 

were higher (see Table 5.4). Higher correlations mean that predicted head velocities are 

more similar in shape to actual head velocities, regardless of amplitude. Walking conditions 

generally had the greatest correlation between predicted and actual head velocity. In the 

YPR-frame, pitch had the lowest correlation overall, with yaw and roll being roughly equal. 

In the LRY-frame, correlation was more evenly split between axes but slightly greater in 

scYaw. Individuals also had large variation in correlation within each condition. 
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Table 5.3. Average of individual R2prediction values averaged over subjects for the 10-fold 
cross-validation procedure for yaw, pitch, roll, LARP, RALP, and scYaw. The values in 
parentheses for the mean row are the mean without using the outliers from Running. 

R2prediction Yaw Pitch Roll LARP RALP scYaw 

Walking 0.28 0.16 0.41 0.23 0.23 0.34 

Running -4.03 -0.95 -0.03 -0.47 -0.67 -4.26 

Head Right 0.22 0.2 0.27 0.26 0.24 0.22 

Head Left 0.18 0.21 0.27 0.28 0.29 0.24 

Stair Climb 0.11 0.1 0.31 0.20 0.20 0.15 

Stair Descent 0.16 0.19 0.24 0.22 0.26 0.19 

Treadmill Walking 0.44 0.24 0.32 0.26 0.27 0.45 

Treadmill Running -0.51 -1.13 0.34 -0.44 -0.42 -0.36 

Mean -0.39 (0.13) -0.12 (0.00) 0.27 (31) 0.07 (0.15) 0.05 (0.15) -0.38 

(0.17) 

Table 5.4. Average of individual correlations of filter prediction with actual head for the 
10-fold cross-validation procedure for yaw, pitch, roll, LARP, RALP, and scYaw. 

Correlation Yaw Pitch Roll LARP RALP scYaw 

Walking 0.67 0.41 0.62 0.48 0.45 0.69 

Running 0.23 0.23 0.34 0.24 0.22 0.22 

Head Right 0.59 0.44 0.49 0.50 0.48 0.59 

Head Left 0.58 0.46 0.5 0.51 0.53 0.59 

Stair Climb 0.7 0.36 0.56 0.45 0.46 0.69 

Stair Descent 0.65 0.47 0.48 0.49 0.50 0.65 

Treadmill Walking 0.67 0.48 0.55 0.49 0.49 0.67 

Treadmill Running 0.39 0.28 0.58 0.34 0.30 0.45 

Mean 0.56 0.39 0.52 0.44 0.43 0.57 
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Correlation was calculated between filter R2prediction and filter correlation to peak 

coherence at the fundamental gait frequency. Gait frequency coherence had a correlation 

coefficient of 0.03 for R2prediction and a correlation coefficient of 0.42 for filter correlation 

when not using the running conditions. The running conditions had large outliers for R2, 

and removing them gave correlation coefficients of 0.18 and 0.46 for R and filter 

correlation, respectively (see Figure 5.18).  

 

Figure 5.17. Top: Predicted head velocity, actual head velocity, and torso velocity in scYaw for 
subject 1 during Treadmill Walking, one of the better-performing subject-condition pairs, with 
R2prediction = 0.69 and a correlation of 0.83. Bottom: weights for the adaptive linear filter that 
predicted this head velocity. This is equivalent to an impulse response. Bottom: Predicted head 
velocity, actual head velocity, and torso velocity in scYaw for subject 7 during Running, a subject-
condition pair where R2prediction was close to zero (little proportion of variance explained) but with 
high correlation. At their best, the adaptive linear filter predicts head velocity very well, and even 
when R2prediction values are low they may still have a high correlation and. In these cases, the small 
high frequency variation is not well accounted for. 
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An example of this can be seen by comparing the linear filter predictions from 

Figure 5.17 to coherence in Figures 5.15 and 5.16. The top half of Figure 5.17 shows the 

actual and predicted head scYaw velocities of subject 1 during Treadmill Walking, which 

was one of the better-performing filter predictions. Figures 5.15 shows coherence for 

subject one, with Treadmill Walking in the bottom left. Coherence is very high at the 

fundamental gait frequency (0.875) and there are clear, strong peaks at its harmonics 

through 10 Hz. The bottom half of Figure 5.17 shows the actual and predicted head scYaw 

velocities of subject 7 during Treadmill Running, which had moderate performance with 

low R2prediction but high correlation. There is one strong peak in scYaw at the fundamental 

gait frequency, but coherence quickly drops and does not have peaks at gait frequency 

harmonics.  

  

   

 

Figure 5.18. Line fits of peak fundamental 
gait coherence to filter R2prediction and to 
filter correlation, without using the 
running conditions. The running 
conditions had large outliers for R2prediction 
which severely affected the line fits. The 
correlation coefficients for these 
measureas are 0.18 for filter R2prediction and 
0.46 for filter correlation. Conditions 
where subjects showed greater gait 
frequency coherence between torso and 
head tended to also be the conditions 
where the adaptive filter performed best.  
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5.4 Discussion 

This project aimed to confirm previous results while applying gait normalization 

techniques to subject data. It also replicated previous results while attempting to control 

for gait cycle differences between subjects. There are several methods of normalization 

which are each useful for different applications such as linear length normalization, 

dynamic time warping, and piecewise versions of each (Helwig, Hong, Hsiao-Wecksler, & 

Polk, 2011). For this project, a linear length normalization was used, linearly adjusting each 

gait cycle is to have equal length. While different normalization methods warp data in 

different ways, using a more complicated method may not have been appropriate or helpful 

for the present work. 

5.4.1 Gait Duration 

Overall mean gait cycle durations and variability are comparable to previous work 

(Brisswalter & Mottet, 1996; Kurz, Wilson, & Arpin, 2012) but notably have smaller gait 

duration variability. This may be because previous work averaged across subjects whereas 

here an average of subject averages was taken. When averaging with subject data 

combined, variability becomes comparable to previous work. 

Figure 5.4 shows the variation in torso and head angular velocity of gait cycles for 

all subjects combined and for a single subject. The overall structure of foot acceleration was 

still visible after averaging subjects, and torso velocity for a single subject still clearly 

followed the pattern of individual gait cycles. The loss of structure for head and torso 

velocity across subjects might just be due to differences between subjects and not a failing 

of the gait normalization method. Using one of the more advanced normalization methods 

outlined by Helwig and colleagues (2011) may or may not have given better results. The 
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shape of foot acceleration was largely similar across all subjects after normalization, but 

there was plenty of noise across subjects. Using a piecewise method where subsections of 

gait are normalized in length instead of just overall length may have improved results by 

reducing noise, but differences between subjects makes subject-averaged data average out 

to noise around the mean (see Figure 5.4). Variation within subjects was so small that 

improvements were likely to have been minor. 

5.4.2 Peak Velocity 

Peak velocity does not rely on the shape of the gait cycle and thus results were 

largely unaffected by normalization. In contrast to Chapter 3, median peak velocities 

instead of mean peak velocities were analyzed.  This is because peak velocity distributions 

tended to not follow a normal distribution and instead were positively skewed. Replicating 

results from Chapter 3, angular velocity was greatest in pitch and least in roll, and 

transforming data to the LRY-frame more evenly distributed velocity among the three 

semicircular canal axes. Peak angular velocity by sensor and axis, however, differed from 

previous results. Compare Figure 5.6 with Figure 3.1 C and D. Results from Chapter 3 show 

that LRY-frame angular velocity reduction is more even across the three axes (LARP, RALP, 

scYaw) than for reduction in the YPR-frame, seen as three roughly parallel lines for LRY-

frame data compared to clearly non-parallel lines for YPR-frame data. In the current work, 

the relationship between axes and sensors is more nuanced. One key difference was in 

scYaw peak velocities and reduction. 

Natural walking and running differed from Treadmill walking and running. Yaw and 

scYaw of the torso between Walking and Treadmill Walking were significantly different. 

This is especially notable as peak torso scYaw velocities were the same as LARP and RALP 
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peak velocities during Walking, but peak torso scYaw velocities were significantly greater 

than RALP and LARP peak velocities during Treadmill Walking. Reduction in scYaw was 

also significantly greater than LARP and RALP, as opposed to the even reduction found in 

Chapter 3. It is unlikely that differences in walking speed were the cause of this, as LARP 

and RALP angular velocities were not significantly different between Walking and 

Treadmill Walking. Differences in walking outside vs. on a treadmill such as a forced speed, 

lack of optic flow, or lack of forward linear acceleration may account for these differences 

in torso angular velocity. Lacour and colleagues (1997) found that their group of subjects 

seemed to weigh visual and vestibular input differently while measuring body sway. 

Approximately half of their subjects (both healthy and patients with a vestibular disorder) 

swayed more with eyes closed while the other half swayed less with eyes closed. It may be 

the case that the presence or absence of visual cues of motion like optic flow and vestibular 

cues of motion like linear acceleration may affect torso and head stabilization. 

The two head turn conditions separate direction of motion and head direction. It 

also causes the semicircular canals to be oriented in such a way that pitch velocity no 

longer is split evenly between LARP and RALP canals. Instead, rotation in pitch of the torso 

becomes rotation in RALP of the head and rotation in roll of the torso becomes rotation in 

LARP of the head during the Head Right condition (and vice versa for Head Left).  

Peak velocities for Head Right and Head Left followed the same pattern as Walking 

YPR-frame velocities. For Walking, peak pitch velocity was the greatest, with peak yaw 

velocity being only slightly greater than peak roll velocity. For Head Right, peak LARP 

velocities were greatest, with peak RALP and peak scYaw velocities roughly equal. For 
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Head Left, RALP and LARP switched places, as would be expected. Head Right and Head 

Left are not quite equal in scYaw or their roll equivalents (RALP for right, LARP for left).  

Reduction of head velocities for the head turn conditions follow the same pattern of 

reduction as Walking in the YPR-frame. In these conditions, instead of two pairs of canals 

measuring pitch and roll, only one pair measures each. If head stabilization were 

completely reflexive, measuring incoming signals and counteracting them as quickly as 

possible, then using measurements from a single set of canals rather than two sets should 

reduce the stability of the head. Instead, reduction is about the same with the head turned 

in either direction, consistent with the hypothesis that head stability depends on signals 

generated by the torso (supporting efference-copy driven stability), as it has been shown to 

drive eye-movements in tadpoles (Combes et al., 2008; Lambert et al., 2012; von 

Uckermann et al., 2013) and be correlated to head displacement in tadpoles, telecost fish, 

and horses (Chagnaud et al., 2012). It may also be that perturbation from walking does not 

reach the limit of a single set of canals. 

These results do not follow exactly what would be expected if the canals were 

rotated 45°. If subjects had held their heads at exactly 45° from center, each head turn 

condition should have shown results closer to the YPR-frame Walking results. In fact, 

subject mean head turn was 39.5° for Head Right and -38.1° for Head Left, meaning 

subjects had not turned and kept their heads at 45° for the entire trial. This means pitch 

and roll velocities were slightly split between RALP and LARP. Peak velocity distributions 

show this pattern, where peak velocities of RALP and LARP values of the head turn 

conditions are closer to each other than peak pitch and roll velocities of Walking. 
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5.4.3 Power Spectral Densities (PSDs), Coherence, and Filters 

Power Spectral Densities  

PSD graphs are much cleaner because of the normalization compared to the PSD 

graphs from Chapter 3 (see Figure 3.7). Overall results are the same, showing that the two-

line fit is indeed better that a simple power-law fit. However, increases in power at 

fundamental gait frequency and its harmonics are not well-described by a power law. 

Coherence 

Coherence results mostly replicated those from Chapter 4 except for the low 

coherence for subject-averaged data, likely due to larger individual differences and/or gait 

cycle normalization. Coherence for scYaw was generally greatest, and all three axes showed 

peaks in coherence at the fundamental gait frequency and/or its harmonics. For some 

conditions (especially the two treadmill conditions), some subjects showed peaks in 

coherence up to 10 Hz while others had very weak or no peaks at gait frequency harmonics. 

This shows that walking and running outside vs. on a treadmill can be very different for 

some people and is another factor to consider when examining gait data. 

Filters 

The adaptive linear filters showed mostly the same results as in Chapter 4. There 

was overall poor proportion of variance explained (R2predicted), but filters for some 

individual subjects did very well. While roll showed higher R2predicted than Yaw or pitch, this 

is likely because there was very little roll velocity to begin with. Gait normalization does 

not seem to affect filter performance, although smoothing of input velocity does. A lowpass 

filter with lower cutoff (e.g. 5 Hz instead of 25 Hz) results in greater R2predicted performance, 

but this is to be expected as there is less high frequency variation. This may be desirable as 
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high frequency components are likely to come from sensor noise such as movement of the 

sensor against the skin that does not correspond to gait. Gait cycles had a fundamental 

frequency of around 1 Hz, so even a 5 Hz cutoff allows the first several harmonics to be 

represented in the data. Correlation is possibly a better measure of filter performance, and 

these values are much higher than R2predicted values with an average of 40 – 50% correlation. 

Just as in Ch 4, the amplitude and shape of head motion is generally represented well by the 

filter prediction, even if the more minute variations are not. Filters for some subjects 

perform much better than for other subjects. 

There was a positive correlation between coherence and filter performance. Given 

that the filter is a linear combination of data, data that have high coherence (i.e. linear 

relationship) will be more accurately represented by a linear relationship. Figure 5.15 

shows coherence for one of the better performing subject-condition pairs. The prediction 

of this filter is shown in the top half of Figure 5.17. 

5.5 Summary 

Results from the first two projects in Chapter 3 and 4 were reexamined using gait 

cycle normalization techniques. Several conditions were added or modified to further 

examine gait, and to do so more optimally. Finally, a closer look was taken at results from 

Chapter 3 and Chapter 4 methods on new data.  

Gait cycle normalization showed that subjects had very low variation in gait cycle 

duration. After normalization, gait cycles showed relatively little variation in foot 

acceleration, showing that a simple linear warping performed very well for healthy 

subjects during single gait types.  
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Modifications to the conditions include the staircase conditions and the two head 

turn conditions. The staircase conditions were modified to only record actual stair climbing 

and stair descent. Unlike Chapter 3 and 4, stair climbing did not include the turns that 

occurred between flights of stairs, and thus was a more accurate representation of gait 

cycles during stair climbing. Two additional outdoors conditions, Walking and Running, 

were added to contrast with the treadmill versions from Chapters 3 and 4, which were 

replicated with the Treadmill Walking and Treadmill Running of Chapter 5. Peak angular 

velocities as well as reduction in angular velocities were different between the outdoor and 

treadmill walking/running conditions. These differences may be due to the lack of optic 

flow, lack of linear acceleration, or the more controlled fixation point for the treadmill 

conditions.  

The head turn conditions aimed to examine what happens when the canals are 

oriented in a YPR-frame relative to the direction of motion. Results from these conditions 

resemble those of YPR-frame Walking, with some differences. These differences may be 

because subjects did not turn their heads far enough to reach 45° during these trials. 

Results are consistent with the hypothesis that head stabilization is driven by efference 

copies of gait, although stronger perturbations of the head may be needed to fully answer 

this question. Using a motorized platform to apply rotations to subjects, one could 

theoretically record a subject’s torso motion and “play it back” to them by rotating the 

platform in an identical manner. Differences in head rotation between this condition and 

from when they were actually moving could provide evidence of the importance of 

efference copies in head stabilization. 
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Previous model fitting results were mostly replicated. Distribution fitting was 

unaffected by gait cycle normalization. Cauchy distributions fit empirical distributions 

better than normal distributions, except for Torso LARP and RALP during running 

conditions. Full models that did not combine over subjects, conditions, or axes 

outperformed all other models. Results on PSD fitting were unaffected, other than the 

generation of cleaner PSDs. While the two-line model was a better fit for PSDs, power 

increases at the fundamental gait frequency and its harmonics were much clearer and were 

not captured by either model. 

Coherence again showed large peaks at the fundamental gait frequency and its 

harmonics, although the decay over frequency differed between subjects and conditions. 

Linear adaptive filters again proved to have a wide range of success in predicting head 

velocity from torso velocity. However, this time, the performance of the filters was found to 

be correlated with coherence at the fundamental gait frequency, providing evidence that 

filter performance is dependent on the gait cycle of subjects. 
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