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Abstract

Targeted learning of high-dimensional parameters and its finite sample inference
by
Weixin Cai
Doctor of Philosophy in Biostatistics
University of California, Berkeley

Professor Mark J. van der Laan, Chair

Targeted maximum likelihood estimator (and semiparametric efficient estimators in gen-
eral) involves deriving the efficient influence function of target parameters and adjusting an
estimate of the data distribution towards the target estimand. This adjustment step requires
fitting a least favorable submodel on the initial estimator with the same dimensionality of
the parameter, which can become unstable for high-dimensional target parameters. Another
direction that will vastly improve the credibility of these semiparametric estimators is to im-
prove the finite-sample coverage of confidence intervals. In this dissertation, we first study
the robust estimation of high-dimensional target parameters. Then we investigate how to
perform finite sample inference in a large semi-parametric model. We also build an estimator
that is simultaneously efficient for a large family of target parameters by undersmoothing a
single regression.

In Chapter 1, we propose using universal least favorable submodel to robustly estimate
high-dimensional target parameters, with applications to survival analysis. We establish a
novel connection between a universal least favorable submodel and moving along a sparse
local least favorable submodel, and demonstrate the extensions in survival analysis when the
whole survival curve needs to be nonparametrically estimated and given statistical inference.
We assess the finite sample performance in both a simulation study and an observational
study on monoclonal gammopathy.

In Chapter 2, we theoretically develop and extend nonparametric bootstrap inference for
the targeted maximum likelihood estimator (TMLE). We establish a formal theorem show-
ing that the nonparametric bootstrap is an asymptotically valid procedure for finite sample
TMLE inference using highly-adaptive LASSO (HAL) as the nuisance parameter estimator
and demonstrate superior coverage than existing influence-function-based methods. This
article explores the problem of applying semiparametric models and machine learning algo-
rithms to small datasets and still have honest causal and statistical inference. Prior to this
work, one either has to run nonparametric bootstrap by assuming small parametric models
or do estimation in a large semiparametric model where the nonparametric bootstrap has
no theoretical guarantee. We propose an effective tuning parameter selection method that



optimizes confidence interval coverage (rather than estimation precision) which shows good
coverage even for non-doubly robust causal parameters.

In Chapter 3, we propose two efficient estimators based on highly-adaptive LASSO
(HAL): targeted HAL and undersmoothed HAL. Using undersmoothed HAL to estimate
the likelihood gives us an efficient estimator for a large family of target parameters. The key
is to propose a strategy to choose the tuning parameter that results in a sectional variation
norm larger than the one selected using cross-validation. In this chapter, we propose a ‘multi-
task tuning’ method that can be generally applied to a wide range of target parameters. The
second method called targeted HAL solves the efficient score equations by including an ad-
ditional covariate into the LASSO design matrix that targets the statistical parameter of
interest. We provide examples of our methods for estimating the average treatment effect
and illustrate using two simulations where one favors inverse probability weighting methods
(such as estimating equations and TMLE) and another challenging design where there is
practical violation of the positivity assumption. We demonstrate the outstanding perfor-
mance of the undersmoothed HAL in both scenarios. We also show theoretical results that
shed light on why undersmoothed HAL is performing well in data generating distributions
where positivity assumption is violated.
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Chapter 1

One-step Targeted Maximum
Likelihood Estimation for
Time-to-event Outcomes

1.1 Introduction

Researchers in observational survival analysis are interested in not only estimating survival
curve nonparametrically but also having statistical inference for the survival curve as a whole.
We consider right-censored failure time data where we observe n independent and identically
distributed observations of a vector random variable consisting of baseline covariates, a binary
treatment at baseline, a survival time subject to right censoring, and the censoring indicator.
We assume the baseline covariates are allowed to affect the treatment and censoring so that
an estimator that ignores covariate information would be inconsistent. The goal is to use
these data to estimate the counterfactual average survival curve of the population if all
subjects are assigned the same treatment at baseline.

Existing methods such as inverse probability of censoring weighted (IPCW) estimator,
estimating equations (EE) and targeted maximum likelihood estimator (TMLE) do not pro-
duce a monotone estimator of the curve, which translates to large variance. The reason is
that these estimators separately estimate the survival curve for each time point. The IPCW
estimator [42] re-weights the observed data by the inverse of the product of the propen-
sity score and censoring probability before applying a standard estimation method. The
EE estimator [17] is a locally efficient and double robust estimator, which improves the
IPCW by adding the sample mean of the efficient influence curve. EE is more efficient than
IPCW when the conditional distribution of failure given treatment and baseline covariates
is consistently estimated [17]. For IPCW, its consistency relies on correctly estimating the
conditional survival function of censoring. In contrast, EE is doubly robust in the sense
that if either the conditional failure distribution or both propensity score and conditional
censoring probability is correctly estimated, then the EE estimator will be consistent [17].
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TMLE is a plug-in doubly robust and locally efficient estimator and is shown to be better
than the IPCW and EE methods [38, 44]. In contrast to these methods, TMLE performs an
adjustment on the estimate of the data distribution prior to applying the parameter mapping
thus always respecting the parameter space (probabilities falling inside [0,1]) [Chapter 6 of
26]. As a result, TMLE is a plug-in estimator that is more robust in finite samples than EE.
While TMLE works well to improve the statistical efficiency of EE, it can still give rise to a
non-monotone survival curve. The reason is that both EE and TMLE are built on efficiency
theory for univariate parameters. As a result, their solutions for estimating the survival
curve is a collection of univariate survival probability estimators.

In this article, we propose a TMLE that targets the survival curve as a whole, while still
preserving the performance of the point-wise TMLE for the survival curve at a point. Due to
the joint targeting, the resulting estimator is a monotone function. The method we propose
is built upon the recent advancement of TMLE theory called one-step TMLE [21]. This
powerful framework estimates the entire survival curve and ensures monotonicity. We also
discover that the proposed new algorithm is more stable and computationally more efficient
than classic TMLE. We also give a new insight into one-step TMLE by comparing it to the
high-dimensional penalized regression literature, which will shed light on the superior finite
sample performance of our method.

Organization of paper We start in Section 1.2 by defining the right-censored data, stat-
ing the parameter of interest, and reviewing the efficient influence curve of the parameter. In
Section 1.3 we review nonparametric regressions used in observational survival analysis, and
in Section 1.4 we formally review the IPCW, EE, and classic TMLE estimators. In Section
1.4 we present intuition on why EE and classic TMLE do not always produce a monotonically
decreasing survival curve. We use this intuition to build a TMLE that ensures monotonicity
in Section 1.5. In Section 1.6 we present a simulation study demonstrating the finite sample
performance of the estimators, and in Section 1.7 we present an applied example.

1.2 Statistical formulation of estimation of the
survival curve

Let the full data be X; = (W,, A;, Cy;, Coi, Thi, Toi),t = 1, ..., n, where W is a vector of base-
line covariates, A € {0, 1} is binary treatment assigned at baseline, T} is the failure time un-
der treatment, Tp is the failure time under control, C} is the censoring time under treatment,
Cy is the censoring time under control. Our observed data is O; = (W, A;, A, Ta,) ~btd
Pye Mfori=1,...,n, where T4 min (74, C4) is the last measurement time of the subject,
and A £ [(T4 < C) is the censoring indicator. P denotes the true probability distribu-
tion of O, and we use py to denote the true probability density. M is the model space of
distributions which is believed to be nonparametric.
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The causal parameter is the marginal survival curve in the whole population where every
subject is under the same treatment

P(T,>t),t=1,....tma,

where T, is the counterfactual failure time one would have observed had an individual’s treat-
ment been set, possibly contrary to fact, to treatment level a. The parameter can be causally
identified from the observed data under the assumptions: (a) no unmeasured confounder,
(b) coarsening at random (the joint variable of censoring and treatment is conditionally in-
dependent of the full data given the observed data), and (c) positivity assumption [17, 14,
43]. After causal identification, our task is reduced to estimating the statistical parameter

W o(P)(t) = E[P(T > t|A = a, W)],t = 1, ..., tumaa

This ¥ : M — [0, 1]'me= is a mapping from model space M to the parameter space of survival
probabilities. W(P) is whole survival curve and W(P)(t) is the survival probability at ¢. For
the rest of the paper, we demonstrate estimators focusing on example in this parameter
family, the treatment-specific marginal survival curve W 4_;. Symmetric arguments can be
made about W 4_¢, and thus all transformations of the two parameters (such as difference of
two counterfactual survival probabilities). The components needed to plug into ¥ = W4,
for the estimand are the conditional survival curve for failure event and the distribution of
W, which need to be learned from the observed data. For performing observational survival
analysis, the conditional survival function for censoring and propensity score also need to
be estimated. Under the causal identification assumptions, the probability density under P
factorizes as follows:

P(0) = g (W)g(W) T [ A (HA, W)™NOLL — Ay (¢4, W] =4O
t<T
[T . (1A, WSO — (4, W) =80,

t<T

(1.1)

where gy is the density of probability distribution of W; g(W) = P(A|W) is the propensity
score; Ay (t|A, W) and A4, (t|A, W) are the conditional hazards of the failure event and
censoring event; dN(t) and dA.(t) are the counting process indicators of the failure event
and censoring event. We will formally define them in Section 1.3.

Efficient influence curve

The EE and TMLE methods to be discussed in this paper are built around the parameter’s
efficient influence curve offer a straightforward approach to estimation. [3] show that a
regular estimator for a statistical parameter in a semiparametric model is asymptotically
efficient (i.e., the estimator has minimal asymptotic variance), if it is asymptotically linear
with influence curve (influence function) equal to the efficient influence curve (EIC). Under
our model space M, the EIC for ¥ was derived and presented in [38] as
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D:(P) = th(go7A,So7Ac, SOJV)(]{?,A,W) |:[(j: = k‘,A = 1)—

k<t

I(T > k)xon(k|A = 1,W)] + Son(t|A =1, W) — Ty(P)(t) (1.2)
= D7 (90,4, S0,4., So,n) + D3, (P),
where
(o Sonr o ), AL W) = — I(A=1DIk <) Son(t|A, W) 13

go,a(A = 1|W)Sp 4, (k_|A, W) Sy n(k|A, W)

1.3 Nonparametric estimation of components for
observational survival analysis methods

After causal identification, existing observational survival analysis methods depend on es-
timating four components nonparametrically: (1) conditional survival function for failure
event given treatment and confounders, (2) conditional survival function for censoring event
given treatment and confounders, (3) propensity score of treatment given confounders, and
(4) distribution of confounders in the population of interest.

Conditional survival function for failure event

The conditional survival function is estimated by first estimating the conditional hazard of
the failure event, and then transforming into the conditional survival function. The definition
of the conditional hazard is

= PlAN(t) = 1N(t — 1) = 0, Ao(t — 1) = 0, A, W], (1:5)

where N(t) = I(T <t,A=1), A(t) =I1(T <t,A=0) and

Lif N(t)=1 N(t—-1)=

AN () = i (t) and N(t—1)=0 (1.6)
0, otherwise,

JA(1) = 1,if Ac(t)' =land A (t—1)=0 (17)
0, otherwise.

The definition (1.5) gives guidance of how to construct a classification task and estimate
the conditional hazard. We first construct a training data where each subject O; is mapped
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into ¢4, rows in a new data with covariates (dN(t);, N(t — 1);, A.(t — 1);, A;, W, 1), t =
1,..., timas- Estimating the conditional hazard now becomes classification of dN(t);, using
(N(t—1);, A(t —1);, A;, W, t) as features, performed on the subset of rows that satisfy the
criteria N(t —1); = 0 and A.(t —1); = 0. Note that we include an extra feature ¢ into the
design matrix and pool data from all ¢t = 1, ..., t,,4, into one classification model. Empirically
we found that smoothing over ¢ accelerates the training of classification algorithms. We
follow the common standard to transform the conditional hazard into the conditional survival
function:

t
Sn(HA, W) = P(T > t|A, W) = [][1 - Av(k|A, W)].
k=1

Conditional survival function for censoring event

The conditional survival function for censoring is estimated in the same fashion as that for
the failure event, while swapping the role of N and A, when constructing the classification
dataset.

A, (H{A,W) = P(T =t,A=0|T >t, A, W)
= PldA.(t) =1|N(t —1) =0, A,(t — 1) = 0, A, W],
t
Sa(tlA, W) = P(C > t|A, W) = [][1 = M. (k] A, W))].
k=1

Propensity score
We estimate the propensity score by running a classification of A against W as features.

g(W) = P(A = 1|W).

Distribution of confounders
We model the joint distribution of confounders using the empirical probability distribution
of Wy, ..., W,,, which we denote as @, w.

1.4 Review of existing observational survival analysis
methods

Inverse probability of censoring weighted estimator

The inverse probability of censoring weighted (IPCW) estimator re-weights the observed
data by the inverse of the product of the propensity score and censoring probability in
order to make the treatment arms among the uncensored subjects comparable with respect
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to confounders, and then applies standard estimation as if treatment was randomized and
censoring was non-informative. The IPCW estimator for by (t) is

1i[(7~}>t,Ai:1,Ai:1) (18)

Ynrpew (t) = — = .
N Sa (Ti|W;, A= 1)g(W;)

Estimating equations method

The estimating equation (EE) method is an asymptotically linear estimator based on solving
the efficient influence curve equation:

> DiR)(0) =0 (19)

We remind readers that a regular estimator 1), of 1y is asymptotically linear if and only
if v/n(1,, — 1y) behave approximately as an empirical mean of a mean-zero, finite-variance
function of the observed O, where ¥y = ¥(F), vy, = W(P,) are the estimand and the
estimate. This function is referred to as the estimator’s influence curve (1.2). The EE
method is one way for constructing estimators with user-specified influence curve, which
applies an EIC-based correction to the plug-in estimate. Once the empirical influence curve
is evaluated for each observation, the EE method is the IPCW estimator added to the sample
mean of EIC evaluated on each observation.

IR
Yo, ee(t) = PYnpew(t) + - ; Dy, (0y), (1.10)

where Dj,(O;) = D;(P,)(O;) = Df(gn,Qn)(0;) is calculated by plugging in the initial
estimators of @, = (Qn.w, Sn.n) and g, = (gn.a, Sn.c) into D} and evaluate at O;.

Targeted maximum likelihood estimator

TMLE is a general framework for constructing plug-in estimators that satisfy user-specified
equations, which in our case is the EIC equation (1.9). It is a plug-in estimator in the sense
that the estimators for Sy (t|A = 1, W) can be plugged into the mapping ¥ to calculate an
estimate as .
1
T(Qn)(1) = — gsn,N(t\A =1, W)).

Since TMLE updates parts of the likelihood before applying the parameter mapping, it is
guaranteed to fall inside the range [0, 1] of the survival probability.

For the TMLE of ¥(¢), the method is implemented in two steps. First, initial estimators
of the four components are generated by user in Section 1.3. Subsequently, the initial estima-
tors are carefully modified such that (i) the modified estimators inherit desirable properties
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of the initial estimators (e.g., their rate of convergence); and (ii) relevant, user-specified
equations are satisfied. For the present problem, the conditional survival function of failure
event is iteratively updated to form a targeted estimator Wy, = W(Py) = W(gn, Sna,., S5 n),
such that the EIC estimating equation + 3", D*(P*)(O) = 0 is satisfied. This can be
achieved, for example, by defining a loglstlc regression working model for the failure event
conditional hazard, with logit(Ax)) = logit[A, v (k|A = 1, W)] as an offset, , o intercept term,

and a single covariate h), regressed onto the binary outcome Ny, = I ( =k, A=1). For
each (k, W),k = 1,..., tpae, we define this covariate as hwy = hi(gn,a, Sn 4., SnN)(k:, 1, W).
The maximum hkehhood estimator €, of the regression coefficient ¢ associated with the
covariate h is estimated (via iterative re-weighted least squares). For each W, we de-
fine the so-called targeted S; y as the conditional survival function transformed from the
targeted conditional hazard A; y(k|A = 1,W) = expit[logit(Aw)) + enhw]. For nota-
tion simplicity, we use P, and P; for the initial and targeted distribution of F), where
Py = (9n; Sn.aes Quw, Ann) and Py = (gn, Sna,, Quw, A x). The gn, Spa, and Qnw are
never updated because they are tangent to our statistical parameter of interest and only
An,n is updated. Here we illustrate one iteration of the targeting step and assume it
has converged, while in practice one iteration is not enough and one might have to it-
crate many times until ||e,|| is small or explicitly check the value of 13" | Dy(Pr)(O;)
smaller than a threshold. It is straightforward to show that the score of the coefficient
e at ¢ = 0 evaluated at a typical observation O, equals Df(P,)(O); thus, we may de-
duce that the EIC estimating equation is satisfied by the updated failure event conditional
survival function S;; . The TMLE ¥7 of the treatment-specific marginal survival curve
is computed as the plug—in estimator based on the modified conditional survival function,
W(Q)(E) = W (S, Quin)(t) = [ S (ulA = 1, W)dQuuw (u) = L 0, S5y (HA = 1, W),

Under regularity condltlons on the initial estimates S, v, Sn, 4, and gn, the TMLE is
regular and asymptotically linear [26], so /n[W%(t) — Wo(t)] —¢ N(0,02). When S, ,
Sh,a. and g, are consistent estimators for Sy n, Sp 4, and go, the variance o? is the variance
of the EIC. In order to estimate the variance o?, we can use an estimate of the sample
variance of the EIC. Wald type hypothesis tests can be performed, and confidence intervals
can be constructed with the estimated variance 2. TMLE is also double robust in the sense
that the TMLE is consistent if either (a) the propensity score g(W) and the censoring event
conditional survival probability S4, (A, W) are consistently estimated or (b) the failure event
conditional survival probability Sy (A, W) is consistently estimated.

Motivation: Why existing TMLE for survival curve is not monotone

The existing TMLE for the marginal treatment-specific survival curve can be viewed as an
application of TMLE in Section 1.4 repeated for survival probabilities at ¢t = 1, ..., t,,4. The
steps for the TMLE algorithm outlined in Section 1.4 can be summarized in the pseudo code
as follows:
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Algorithm 1: iterative TMLE for survival curve

N =

N o o s W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Data: initial estimator: conditional hazard for failure event, conditional survival
curve for censoring event, propensity score

Result: TMLE for the counter-factual marginal survival curve W4,

fort=1,...,t,4: do

initialize S = Syp.n with the initial estimator for the survival curve of the failure
event;
J=0;
while True do
for:=1,...,n do
for k=1, ,ﬁ do
evaluate hg’)k) = he(gn.a, Sn.a., SV (K, Ai, W);
evaluate N p) = [(TA:Z =k,A=1);
evaluate A}, = AU (k, A = 1, W);
end
end
concatenate into vectors ), N and AU);
get £ by running a logistic regression logitN = logit(A\)) + ch();
evaluate \U+Y = expit[logit(\?)) + Er0)];
transform to SUTD;
J+ =1
if |€] < le — 3 then
‘ break
end
end
(1) = £ L, 5P (0);
end
concatenate the W*(¢) to get the entire curve W*(¢),t = 1, ..., tiax;

Note that the method creates t,,,, different )‘Z N = 1, ..., tae for each \I'(%v) task, there-

fore transforming the multiple A* =~ into survival probabilities does not create a monotone

decreasing survival curve.
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1.5 One-step TMLE targeting the entire survival
curve

The logistic submodel we use in the previous section is also called the local least favorable
submodel (LLFM) around A, y:

logit[ A, ve(k|A =1, W)] = logit[ A\, y(k|A =1, W)| + chgy, (1.11)

because it has the property that
d P, .

de 8P
where Dj(F,) is the short notation for the EIC at (g 4, Sn,a., Ann) and P, . is the distri-
bution at (gn 4, Sna., Anne). This is a key result that ensures TMLE is solving the EIC
estimating equation by running a logistic regression along the submodel (1.11), but it also
implies that the results hold only if we use the submodel around ¢ = 0, that is, we don’t
update along the submodel with a large step size £. Doing a logistic regression on this sub-
model (1.11), however, does not guarantee that £ ~ 0. This intuition explains why doing
TMLE on a high-dimensional parameter can often lead to diverging results, because TMLE
is an iterative algorithm and because the first few iterations usually involve large step sizes.

[21] proposed a novel targeting step to modify the initial estimators called one-step
TMLE. The idea is that since the gradient equals the EIC only locally when we update
the initial estimators, one-step TMLE only performs the update locally. If we make the step
size small enough, the submodel has the property that at any e

d,  dP..
de 8P

|5:0 - D:(Pn>7

= DZ(Pnﬁ) = D*(An,N,a Qn,Wy gn>‘

This submodel is known as the universal least favorable submodel (ULFM) around A, v,
which takes the form

logit[ A\, ve(k|A =1, W)] = logit[\, n(k|A =1, W)|+

/ ht(gn,A,Sn7Ac,Sn,N7x)(k,1,W)dx. (1.12)
0

This theoretical formulation gives an insight into how this methodology works, but is not
useful when analyze our survival curve problem because it involves integration of a complex
function of S, n, (which itself is a function of A, ).

In execution, the one-step TMLE is carried out by many LLFMs (performed in logistic
regressions) with small step sizes. The one-step TMLE updates in small steps locally along
LLFM, making sure only using the update direction h;(.) that is optimal around the current
probability density. One-step TMLE also allows the analyst to update the conditional hazard
for all points on the survival curve (or any high-dimensional parameter in general), so that the
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conditional hazard can be transformed into a monotone survival curve after the algorithm.
To do this, one replaces the univariate h:(.)(k, 1, W) in (1.11) with a high dimensional vector
h(.) = [h()(1, L, W), oy by () (Bmax, 1, W], each one corresponding to the clever covariate
of survival probability at one time point. Fitting the high-dimensional logistic regression will
not hurt the performance since we never update with large step size. Another way to view
the one-step TMLE is that the logistic regression we used within classic TMLE is replaced
with a logistic ridge regression, where the coefficient L-2 norm is constrained to be smaller
than a tiny value. Because the logistic ridge regression generally outperforms classic logistic
regression in high dimensions, the one-step TMLE is better than classic TMLE for high-
dimensional target parameters. Given the same input and output, one-step TMLE leads
to a new targeting procedure. The essential steps becomes the pseudo-code Algorithm 2 as
follows, where the differences between one-step TMLE and classic TMLE are highlighted.
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Algorithm 2: one-step TMLE for the survival curve
Data: initial estimator: conditional hazard for failure event, conditional survival
curve for censoring event, propensity score
Result: TMLE for the counter-factual marginal survival curve W4,
1 initialize SO = Syp.n with the initial estimator for the survival curve of the failure

event;
2 J=0;
3 while True do
4 fori=1,...ndo
5 for k =1, ..., t4. do
6 evaluate N ) = I(T, =k, A=1);
7 evaluate )\g’)k) =0 (k,A=1,W,);
8 for t' =1, ...ty do
9 evaluate hg’)k,t,) = hy(gn.a, Snoa., SO)(k, Ay, Wy);
10 end
11 concatenate into vector hg?k);
12 end
13 end
14 concatenate along (i, k) indices (by row) into vectors N, AU} and matrix h");
15 get € by running a logistic ridge regression logitN = logit(A\9)) + eh) subject to
lel| < le—2;
16 evaluate AU = expit[logit(AY)) + gnW)];
17 transform to SUTD;
18 Jt+=1
19 if ||| < le — 3 then
20 ‘ break
21 end
22 end

23 UH() = L5 SY), 6 =1, ..., tan;

Note: With abuse of notation, we define h(; ¢y = hy(gn,a, Snoa., Sun)(k, A, W;) to in-
clude an additional subscript ' referring to the clever covariate for estimating W (¢') evaluated
at observation O;.

Inference
The statistical inference of iterative and one-step TMLE at a single time point can be done
in the same procedure. The TMLE estimators, both iterative and one-step, solve the efficient
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influence curve equation:
]' . * *
— E D;(P)(O;) =0,t =1, ..., tymaa-
n
i=1

Thus, if all components are consistent and under regularity conditions, TMLE is asymp-
totically linear with influence curve Dj(Fp) [25]. Based on this result, TMLE inference is
based on the empirical variance of the efficient influence curve D} (P)), assuming the initial
estimators (S, g, S4,) are consistent. Thus, the asymptotic variance of n'/2[4} (t) — 1by(t)]
is estimated by:

~ 1 = * *
o = EthQ(Pn)(Oi)-
=1

Now a valid 100 x (1 — a)% confidence interval is constructed under the normal distribution
in the following way:

o

v

where ¢z is the S-quantile of the standard normal distribution.

¢Z(t) + q1—o/2

Simultaneous confidence interval
The simultaneous confidence bands for the survival curve estimates can be similarly con-
structed based on asymptotic linearity of the TMLE uniform in all time points considered.
Inference for 1, the vector of survival probabilities at t,,,, time points, a vector parameter,
is also based on the empirical variance of the efficient influence curve D* itself at the limit
of (S%,9a,54,). The asymptotic variance of n'/2(1p* — 1by) may be consistently estimated
by the t,,42 by tmae empirical covariance matrix of the efficient influence curve:

~ 1< -

3 =—) D(B)(0,)[D*(F;)(0))]".

n <
=1

By multivariate central limit theorem, we have
. d
n'2(3py, — 4ho) = N (0, o). (1.13)

As a result, an approximate 100 x (1 — a)% simultaneous confidence band is constructed
such that for each 1(t), the t" component of 1), the region is given by

Pn(t) £ g1 221/,

where 2(t) is the (¢, t)-th entry in the empirical covariance matrix, thus the empirical variance
of Df. qi_q is an estimate of the 1 — o quantile of max, v/n|t(t) — o (t)|/X"%(t). Here
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we need to use that the latter random variable behaves as the max over t of Z(t), where
Z ~ N(0, p) follows t,,4,-dimensional gaussian and p is the correlation matrix of the vector
influence curve D*(PF)(0;). We simulate Monte-Carlo samples of Z and calculate ¢;_,
using the empirical 1 — a quantile of max, |Z| of the random samples. Due to actual weak
convergence of the standardized TMLE as a random function in function space endowed
with supremum norm, these simultaneous confidence bands are valid even as we take a finer
and finer grid of time points as n increases.

1.6 Simulation

To provide an example of the finite sample properties of the estimators discussed in Sections
1.4 and 1.5, we simulate a univariate continuous baseline covariate WV, a binary exposure
A, a survival outcome T' with censoring time C'. We simulate data from the following data-
generating distribution so that 7', A, and C' are confounded by W:

W ~ Unif(0, 1.5),

A ~ Bernoulli(0.4 + 0.5I{W > 0.75}),

T ~ log-normal(y =2 —-W + A, 0 = 0.01),
C' ~ Weibull(1 4 0.5W, 75).

To analyze the above simulated data, we estimate the survival curves under the treatment and
control groups. For sample sizes n = 100 and 1000, we simulated 1000 Monte-Carlo repeti-
tions from the previous data-generating distribution, and estimated W 4_;(Py) and W 4_o(F)
using the following estimators: Kaplan-Meier; plug-in SuperLearner estimator of the condi-
tional survival curve [23]; IPCW; EE; classic (iterative) TMLE; one-step TMLE targeting
the whole curve. As initial estimators of the components of the likelihood (g, So,4,, o),
we used SuperLearner classification combining multiple classification algorithms so that we
know the estimates will be consistent. The SuperLearner library includes generalized lin-
ear model [39], generalized additive model [16], and multivariate adaptive regression splines
[11]. We used empirical distribution @, w to estimate Qo . One-step TML estimation was
performed using the R function ‘MOSS_hazard‘ in the open-source package MOSS [5], and
the code that reproduces this simulation is presented in Web Appendix. The average and
variance of the estimates across the 1000 samples was computed as an approximation to
the expectation and variance of the estimator, respectively. We report the bias, variance,
mean-squared error (MSE) of different estimators in Figure 1.2, and we use the MSEs to
further calculate the relative efficiencies (RE) against iterative TMLE for all estimators:

MSEiterative TMLE (t)

REes imator t =
timat ( ) M S Eestimator (t)

t=1, . tmas-

The simulation results reflect what is expected based on theory. Figure 1.1 are examples
in the simulation where the EE and classic TMLE methods do not produce monotone survival
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curves. Figure 1.2 computes the metrics at different time points of the entire survival curve.
One-step TMLE methods has lowest MSE under all sample sizes, with 33% smaller MSE
than the second best method (iterative TMLE) in small sample size. EE has a large variance
in small sample size (n = 100) and its MSE becomes more comparable to iterative TMLE in
larger sample size (n = 1000). Kaplan-Meier is not consistent and has large MSE especially
in large samples, although in finite samples its bias is not large compared to its variance.
IPCW has the largest variance and MSE under all sample sizes. As sample size increases
one-step TMLE converges to iterative-TMLE, and both TMLEs are better than IPCW, EE
and Kaplan-Meier.

In Section 1.5, we gave intuition that the universal least favorable submodel can be
viewed as a ridge logistic regression applied in the targeting step. Curious readers might
be interested in the performance if we use a LASSO logistic regression instead. We also
experiment this in the simulation (marked by ‘OS TMLE (lasso)’, while our proposed one-
step TMLE is denoted ‘OS TMLE (ridge)’), and we see that the difference between the
two kinds of penalizations is small: both types of one-step TMLE outperforms iterative
TMLE in finite sample and converge to iterative TMLE in the asymptotic. We find that
using LASSO logistic regression improves MSE in large ¢ (where there are fewer samples) at
the cost of a slightly larger MSE in small ¢. Therefore, we only recommend using LASSO
logistic regression for targeting step when minimax guaranteed improvement (across t) on
the iterative TMLE is preferred.

a) (b)

( 1.00 \ 1.00
2 2
= = 0.75
Z 075 =
[ ©
Qo Qo
o [}
20501 5050
2 g
> <
3 4 3 -
3025 3025
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KM — iter. TMLE
Super learner OS TMLE (ridge)
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— IPCW OS TMLE (lasso)

— EE

Figure 1.1: Examples of non-monotone EE and TMLE estimators in simulation data of
different sample sizes (plot a: n = 100, plot b: n = 1000). The target parameter is the
marginal counter-factual survival curve for the treatment group ¥, (P).
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Figure 1.2: Results for comparing different survival curve estimators at all time points. Row
1 is absolute bias times \/n, row 2 is variance times n, row 3 is MSE times n, row 4 is relative
efficiency (larger than 1 means more efficient than iterative TMLE), row 5 is the number of
simulations where follow up time is at least t. Within each row, the left plot is under sample
size 100 and the right plot is under sample size 1000. Note the relative efficiency value larger
than 4 are truncated so that the plot range around [0,1] can be easily interpreted.

1.7 Data analysis

To illustrate the finite sample performance of the one-step TMLE, we use a dataset from a
classic monoclonal gammopathy study, an observational survival analysis dataset that first
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established the predictive relationship between the initial concentration of serum monoclonal
protein and the progression to multiple myeloma or another plasma-cell cancer [19]. For each
subject, we define the (right-censored) outcome T as the time until progression to a plasma
cell malignancy or last contact, the treatment A as the monoclonal spike on serum protein
electrophoresis (1 = the spike is higher than 1.5 g/dL, 0 = the spike is lower than 1.5 g/dL),
and include all baseline covariates W (age, gender, hemoglobin, creatinine) that are mea-
sured upon enrollment of the subjects. The original study is on the predictive power of A on
the outcome and not the causal relationship, so there are definitely unmeasured confounders
left out from this dataset. Nonetheless, we use the data to illustrate the statistical properties
of different estimators. The trial measured 1338 complete cases after we discarded 46 sub-
jects with missing data. We find that there is a practical violation of positivity assumption
for time larger than 160 months. Therefore, we perform manual truncation of the dataset so
that observations with follow-up time beyond 160 months are censored. We also transform
the time unit of the dataset for ease of computation T, = [1/20], and we verify that this
transformation does not change the scientific results. The preprocessed data contain 405
patients in the treatment group and 933 patients assigned to control.

We first estimate the marginal survival curve for the treatment and control groups. We
compare a plug-in parametric fit using generalized linear model, plug-in Super learner fit,
IPCW, EE, classic TMLE, and one-step TMLE targeting the whole curve. The Super learner
initial fits combine main term generalized linear model, main term generalized additive model
[16], main term multivariate adaptive regression splines [11], and random forest [4]. The same
learner library is used for fitting the conditional survival for failure event and censoring event,
as well as the propensity score. The conditional survival functions estimated by Super learner
[23] are presented in Figure 1.3. There is a complex interaction effect between baseline
covariates (age and hemoglobin) and time in the conditional hazard of censoring event, so it
is crucial to use nonparametric regression methods such as Super learner to fully adjust for
the confounders.

Figure 1.4(A) shows the different estimators’ results for the treatment and control group
survival curves. The one-step TMLE, TMLE, EE and Super learner fits are close to each
other, suggesting that the dataset is large. EE is slightly not monotone for the treatment
group survival curve. IPCW is drastically different from all other estimators, which is the
worst performing method. Second, the delta method is applied to obtain the estimators
for the difference in survival probabilities (treatment minus control). Wald 95% confidence
bands for EE and TMLE are calculated using the efficient influence curve. Super learner is
different from the parametric fit, suggesting that nonparametric regression is crucial for this
analysis. EE is not monotone. Lastly, to check how well the estimators perform in a finite
sample, we randomly subsample the pre-processed data into smaller sizes and re-compute all
methods. The procedure is repeated 100 times, and we count how frequent each estimator
yields a monotone curve. The percentages are reported in Table 1.1. We find that EE has the
highest probability of becoming not monotone when all other conditions held equal. Classic
TMLE outputs a monotone survival curve at least 80% of the times, and one-step TMLE is
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Figure 1.3: Partial dependency plots of the initial super learner fits for the conditional
survival curves, where the y-axis is the baseline covariate value, the x-axis is time. Column 1
is the conditional survival of censoring event for control group; Column 2 is the conditional
survival of censoring event for treatment group; Column 3 is the conditional survival of
failure event for control group; Column 4 is the conditional survival of failure event for the
treatment group. Row 1 plots have age on the y-axis; Row 2 plots have creatinine on the
y-axis; Row 3 plots have Hemoglobin on the y-axis; Row 4 plots have gender indicator on
the y-axis.

guaranteed to be monotone.

1.8 Discussion

In this paper, we provided a one-step TMLE for estimating the treatment-specific survival
curve while targeting the entire survival curve at once. The one-step estimator has implica-
tions for the survival analysis literature by allowing one to construct a TMLE for the infinite



CHAPTER 1. ONE-STEP TARGETED MAXIMUM LIKELIHOOD ESTIMATION FOR
TIME-TO-EVENT OUTCOMES 18

A S_{A=0}t) S_{A=1)(t)

1.00 T
\\ \ 0004-2
\\
N

0.254

2 4 6 8 2 4 6 8 2 4 6 8

— EE — linear model —— super learner
method
— IPCW — one-step TMLE — TMLE
Figure 1.4: Results for different counterfactual survival curve estimators on the Monoclonal
gammopathy data. Panel A is survival curve estimates for the control group and treatment
group, using different estimators. Panel B is the difference curve in survival probabilities

(treatment group minus control group), using different estimators.

n EE TMLE OS TMLE n EE TMLE OS TMLE

(a) 100 42% 91% 100% (b) 100 38% 81% 100%
500  74% 93% 100% 500  90% 93% 100%
1000 100%  100% 100% 1000 100%  100% 100%

Table 1.1: For each method and subsample size, the percentage of experiments when the
estimator outputs a monotone survival curve in the monoclonal gammopathy study (a: for
the treatment group; b: for the control group).

dimensional survival curve in a single step. The new method is asymptotically linear and
efficient, just as the iterative TMLE, which adjusts for baseline covariates and accounts for
informative censoring through inverse weighting. Additionally, the one-step estimator tar-
geting the entire survival curve respects the monotonically decreasing shape of the estimand.
On top of that, the new TMLE for the whole curve also yields a fully compatible TMLE for
any function of the entire survival curve, such as the median, quantile, or truncated mean.
Thus there is no need to compute a new TMLE for each specific feature of the survival
curve, or difference of survival curves. All of these advantages come without requiring any
parametric modeling assumptions and is robust to misspecification of the hazard fit. Our
simulation confirms the theory in the existing literature: that in situations where targeting
is difficult due to high-dimensional estimation scores, using one-step TMLE that fluctuates
universal least favorable submodel may provide more robustness and efficiency over iterative
TMLE. Under large sample sizes, iterative and one-step TMLE are comparable. We show



CHAPTER 1. ONE-STEP TARGETED MAXIMUM LIKELIHOOD ESTIMATION FOR
TIME-TO-EVENT OUTCOMES 19

that in practical finite sample situations for survival analysis, using universal least favor-
able submodel to target a multi-dimensional or even infinite-dimensional target parameter is
likely to result in a more efficient and stable estimator. It is not clear how our methods com-
pare with applying isotonic regression to the curve defined by the one-step TMLEs targeting
one survival probability repeated across all time-points, which represents another valid and
possible method to consider if getting the whole survival curve is the goal of the analysis.
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Chapter 2

Nonparametric Bootstrap Inference
for the Targeted Highly Adaptive
LASSO Estimator

2.1 Introduction

We consider the estimation of a pathwise differentiable real-valued target parameter based on
observations from a data distribution known to belong in a highly non-parametric statistical
model. Targeted Minimum Loss Estimator (TMLE) [27] is an asymptotically unbiased and
efficient (substitution) estimator. A TMLE that uses the highly-adaptive LASSO minimum
loss-based estimators (HAL-MLE, [1]) as initial estimators for the nuisance parameters is
called HAL-TMLE [28].

If the nuisance parameters are in the cadlag function space and have finite sectional varia-
tion norm, the HAL-MLEs will converge with respect to (w.r.t) the loss-based dissimilarities
at a rate faster than n~'/2. Therefore, the HAL-TMLE has been shown to be asymptotically
efficient under weaker regularity conditions than TMLE without using HAL [28]. Statistical
inference of TMLE (HAL-TMLE included) is usually made based on the normal limit dis-
tribution where the asymptotic variance is estimated with an estimator of the variance of
the efficient influence curve. This Wald-type confidence interval is asymptotically consistent
but directly applying this interval in the finite sample can lead to anti-conservative cover-
age when the second order remainder term can easily dominate the first order term in the
parameter expansion (i.e., the empirical mean of the efficient influence curve).

A natural idea is to perform bootstrap [10], but bootstrap had no theoretical asymp-
totic validation, due to use of cross-validation/ adaptive machine learning [8, 2, 15]. The
conventional approach is to still use the Wald-type interval for finite sample inference. In
non-doubly robust problems, the Wald-type interval is shown to be anti-conservative in finite
samples. For problems that we know are doubly-robust, the Wald-type interval can some-
times be anti-conservative as well, if one does not use a carefully crafted variance estimator,
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which resulted in the variance estimator to be sensitive to positivity. We direct readers
to [41, 22, 45, 40] for a detailed discussion, and current applications to longitudinal data
(longitudinal TMLE) is another example [41]. Even with a robust variance estimator, the
Wald-type interval is ignoring the second order term, so the curse of dimensionality could
easily cause trouble for finite sample coverage.

The literature on resampling machine learning algorithms to produce finite sample infer-
ence is usually algorithm-specific and only apply to limited families of parameters such as
prediction interval. For example, [49] develops infinitesimal jackknife method to create infer-
ence for random forest algorithm. Deep learning literature [12, 37] considers using stochastic
regularization and optimization techniques to approximate Bayesian inference of the neu-
ral network. An alternative approach performs parametric bootstrap that samples from a
nonparametric generative model, such as the targeted bootstrap proposed by [8]. Targeted
bootstrap performs resampling from a continuous distribution estimate rather than from
the empirical distribution as in non-parametric bootstrap. Another distinction between this
paper and targeted bootstrap is that [8] performs extra targeting practice to consistently
estimate the second moment of the parameter sampling distribution, while in this paper we
approximate all higher orders of the distribution, which can be used as a plug-in estimator
of all kinds of summary statistics of the sampling distribution.

Recent seminal work by [30] show that non-parametric bootstrap for HAL-TMLE is valid
in finite samples. The bootstrap methods in [30] are investigated and worked out in detail
in this article in particular examples, and our work results in a newly proposed modification
of the non-parametric bootstrap, which is very robust in finite samples respect to coverage.
To demonstrate the methods we consider one doubly-robust example and two non-doubly
robust examples. The examples can be easily generalized to existing applications of TMLE.
We evaluate based on finite sample interval coverage. Our results confirm theory in [30] that
the bootstrap HAL-TMLE interval is more effective than the Wald-type interval in finite
sample regarding having better confidence interval coverage, given that both of them are
asymptotically valid methods. On top of that, a tuning parameter selection method that
optimizes the bootstrap interval coverage is very crucial for non-doubly robust parameters as
we show in the examples. For doubly-robust problems, the regular bootstrap method works
well, and our modifications are less critical. This chapter contains part of the results by the
same authors [6].

Organization of article In Section 2.2 we formulate the statistical problem, review the
HAL-TMLE bootstrap estimator and present extensions using an example of the average
treatment effect estimation. In particular, Section 2.2 sets up the notation and motivates
the bootstrap problem. Section 2.2 outlines the HAL-TMLE bootstrap method. Section
2.2 presents the challenge of choosing the tuning parameter for optimal bootstrap inference
and gives intuition that motivates our procedure for choosing the optimal tuning parameter,
and we propose a “plateau tracking”method for choosing the optimal tuning parameter.
We also discuss an approach for improving coverage when the estimator has finite sample
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bias in Section 2.2. In addition to describing our method for a general estimation problem,
in Section 2.3 we work out how to implement our proposed HAL-TMLE bootstrap in three
target parameter examples and in Section 2.4 we put them into action using three simulations
and give our simulation results. We apply our method to two popular public datasets in
Section 2.5. Finally, we conclude our work and discuss potential extensions in Section 2.6.

2.2 Methodology

Set up: HAL-TMLE of a parameter

Let Oq,...,0, be n ii.d. copies of a random variable O ~ P, € M, where M is a non-
parametric statistical model. Define P, be the empirical probability measure of Oy, ..., O,,.
Let ¥ : M — R be a real-valued parameter that is pathwise differentiable at each P € M,
with canonical gradient D*(P), that is, the Taylor expansion of ¥ at each P € M is

U(P) = V(Ry) = (P — P)D"(P) + Re(P, Fy), (2.1)

where R is the second-order remainder of the expansion. For any pathwise differentiable
parameter ¥, we can find a function-valued parameter @ : M — Q(M) so that ¥(P) =
Uy (Q(P)) for some V. For notational convenience, we will refer to the target parameter
with U(Q) and ¥(P) interchangeably. Let G : M — G(M) be a function-valued parameter
so that D*(P) = Di(Q(P),G(P)) for some Di. Again, we will use notations D*(P) and
D*(Q, G) interchangeably. We can define the exact second-order remainder from (2.1) as

Ry(P, Ry) = W(P) = ¥(R) + (P — R)D*(P), (2.2)

where (P — Py)D*(P) = —FPyD*(P) since D*(P) has mean zero under P.

Example: (Average treatment effect)

Let O = (W, A)Y) ~ Py € M, where A € {0,1} is a binary treatment, and ¥ € R
is a continuous outcome. For a possible data distribution P, let Q(P) = Ep(Y|A, W),
G(P) = P(A = 1|IW) be the outcome regression, G(P) = P(A = 1|W) be the propensity
score, and let Qw (P) be the probability distribution of W. The average treatment effect
(ATE) parameter is defined by ¥(P) = Ep[Ep(Y|A = 1,W) — Ep(Y|A = 0, W)]. Let
Q = (Q,Qw) and note that the data distribution P is determined by (Q,G). The
canonical gradient of U at P is

:I(A:a)

GO Y~ QAW + QL) — ¥(Q).

D*(@Q,G)
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The second-order remainder Ry(P, Py) = V(P) — V(Fy) + PyD*(P) is given by:

(G - Go)(w) » A (G — Go)(0]w)

G(1|w) (@ = Qo)L w) - G(0[w) (Q — Qo) (0, w)dPy(w)

RQ(Qv G7 QO) GO) = /

The HAL-TMLE procedure consists of two steps: (1) HAL-MLE fitting of the @ and
G part of the likelihood and (2) TMLE step that update the initial fit for ). For step
1, given Ly and Ly are the loss functions that identify the true )y and Gy, we apply two
HAL-MLEs @,, and G,, that estimate ()g and G, where the tuning parameters A; and \, are
chosen with cross-validation. For the TMLE step, consider a local least favorable submodel
(LLFM) {Q@n.c : €} C Q(M) through @, at ¢ = 0 so that the linear span of the components
of d%Ll(Qn,g) at ¢ = 0 includes D*(Q,, G,). Let Qf = Qyc, for e, = argmin, P, L1 (Q,).
We assume that this one-step TMLE @ already satisfies

| P, D*(Qrh, Gy)| = op(n~'7?), (2.3)

when in practice one can iterate multiple times through the submodel until this condition
is satisfied. As shown in [28] this holds for the one-step HAL-TMLE under regularity con-
ditions. Alternatively, one could use the one-dimensional universal least favorable submodel
(ULFM) [31] or any other TMLE procedure compatible with the estimation problem. After
targeting, the HAL-TMLE of ¥ is now the plug-in estimator ¥ = ¥(Q:), and it have been
shown in [28] that U’ is asymptotically efficient under the same regularity conditions in [28].
We restate the sufficient conditions for HAL-TMLE to be asymptotically efficient [28]:

Theorem 1 (asymptotic efficiency of HAL-TMLE). Consider the statistical model M, tar-
get parameter ¥ : M — R and the model assumptions: (1) assume that the loss functions
are uniformly bounded in the sense that supgeqmyo | L1(Q)(0) |< oo and supgegmy.o |
Ly(G)(0) |< oo [Formula (2) in 6], (2) the canonical gradient map into functions with a sec-
tional variation norm bounded by some universal finite constant: Ms = suppe || D*(P)||3 <
00, (3) absolute value of the exact second order remainder is upper bounded [Formula (8) in
6/, (4) continuity of efficient influence curve as a function of P at Py [Formula (9) in 6].
Let Q,, Gy, be the above defined HAL-MLEs, where we know dy (Qn, Qo) and doa(Gr, Go) are
Op(n=1272/%Y (do1(Q, Qo) = PoL1(Q) — PoL1(Qo) is the loss-based dissimilarities for Q, and
do2(G, Go) is that for G) In addition, assume that the HAL-TMLE Q7 is such that it solves
the efficient influence curve equation (2.3) up until op(n=1/%).
Then the HAL-TMLE W(Q%) of v is asymptotically efficient:

n

U(Qr) — ¥(Qo) = (P, — Po)D*(Qo, Go) + Op(n~1/272/4).

The Wald-type 0.95-confidence interval is given by ¥* +1.960,,/n'/2, where 02 = P,{D*(Q*,G,)}?
is a consistent estimator of o7 = Py{D*(Qo, Go)}*>. The Wald-type interval is a first-order
asymptotic confidence interval and ignores the exact remainder in the Taylor expansion (2.2).

[30] shows that under high dimensions or complex models (in terms of large true sectional
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variation norm of the () and G functions), Ry can outnumber first order term. Since Wald
ignores the second-order term, directly applying Wald interval for finite sample inference
can lead to anti-conservative results. The key is to get a higher order approximation of the
sampling distribution of ),.

Example: (Average treatment effect)

For the ATE parameter, the @ function is the outcome regression E(Y|A, W), and

G = P(A = 1|W) is the propensity score. Let L;(Q)(0) = —{Y log Q(A, W) + (1 —
Y)log(l — Q(A,W))} be the negative log-likelihood loss for the outcome regression.
Similarly, Ly(G) is the negative-log-likelihood loss for propensity score. When, for some
§>0,G>6>0andd < Q < 1—4, then the loss functions are uniformly bounded
with finite universal bounds.

The HAL-MLEs Q,, and G,, of Q and G, respectively, can be computed with a lasso-
logistic regression estimator with large (approximately n2?) number of indicator basis
functions (see our example section for more details), where we can select the L'-norm of
the coefficient vector with cross-validation. The least favorable submodel through Q,, is

given by
logitQ,, . = logitQ,, +cC(G,), (2.4)

where C(G,)(A,W) & A/G,(W). Let g, £ argmin. P,L;(Q,.), which is thus com-
puted with a simple univariate logistic regression MLE, using as off-set logitQ,. This
defines the TMLE Qf = Q,.,. Recall that Qy, is already a nonparametric maxi-
mum likelihood estimate so that a TMLE-update based on a log-likelihood loss and
local least favorable submodel (i.e., with score Q, (W) — ¥(Q,,), will not change this

estimator. Let Q) = (Qwa, Q). The HAL-TMLE of v is the plug-in estimator
R EW(Q) =4 2, Qn(L W),

HAL-TMLE bootstrap

A valid method is the nonparametric bootstrap estimator of the sampling distribution of
HAL-TMLE. Let O#, .., Of be n iid. draws from the empirical measure P, (training
sample). Let P# be the empirical measure of this bootstrap sample. Applying the HAL-
TMLE algorithm on the bootstrap sample yields Q#" and G#, which can be used to construct
a bootstrap-sample specific U#". The whole procedure is repeated many times until a large
enough sample of U#" is collected and we use the bootstrap distribution as a proxy of the
sampling distribution of ¥, condition on P,. The bootstrap based 0.95-confidence interval
for ¥ is given by
[V, — 0#975,71/“1/27 v — Q#ozs,n/nlm]?

where ¢, = F# "' («) is the a-quantile of the bootstrap distribution of Z1# = n'/2(T(Q#")—

n

U(Qr)). [6] shows that this bootstrap confidence interval is asymptotically consistent for

n



CHAPTER 2. NONPARAMETRIC BOOTSTRAP INFERENCE FOR THE
TARGETED HIGHLY ADAPTIVE LASSO ESTIMATOR 25

the normal limit distribution of HAL-TMLE. We restate their theorem as follows:

Theorem 2 (Asymptotically consistency of HAL-TMLE bootstrap). Assumption: As-
sume the conditions of Theorem 1 providing asymptotic efficiency of V(QF); Consider the
above defined HAL-MLEs Q,, G, satisfying, with probability tending to 1, P,L1(Qn) <
P,L1(Qo) and P,Ly(G,) < P,La(Gy). Consider also the above defined bootstrapped HAL-
MLEs Q#, G# satisfying, with probability tending to 1, conditional on (P, : n > 1),
P*L(Q¥) < P,L(Q,) and P¥Ly(G#) < P¥Ly(G,). Consider the HAL-TMLE Q#* =
Qi# and assume v = P#*D*(Q#*, G#) = op(n~1/?).

TMLE is efficient: The standardized TMLE is asymptotically efficient: Z} = n*/?(VU(Q*
U(Qo)) =4 N(0,02), where 02 = PyD*(Qq, Go)*.

Bootstrapped HAL-MLE: dy, (Q7,Q,) = Op(n=Y?%/%)  dy(G#,Gy) = Op(n=1/2/4)
and d()l(Q#*, Qo) = Op(nil/zia/zl).

Bootstrapped HAL-TMLE: Conditional on (P, : n > 1), the bootstrapped TMLE is
asymptotically linear:

T(QH) — W(Q,) = (P* — P)D (Qn, Gy) + Op(n~ V2074,

As a consequence, conditional on (P, : n > 1), the standardized bootstrapped TMLE con-
verges to N(0,02): ZL# = n'2(W(QF*) — ¥ (Q*)) =4 N(0,02).

Consistency of the nonparametric bootstrap for HAL-TMLE at data adap-
tive selector C': Assume the extra model structure on M such that ) and G are both
cadlag functions with bounded sectional variation norm, and its corresponding definitions of
the HAL-MLEs indexed by sectional variation norm bounds C = (C*,C"). This theorem can
be applied to the bootstrap distribution at a data adaptive C, = (C*, C') such as one from
cross-validation.

Bootstrap HAL-TMLE using optimal tuning for inference

The nuisance parameter estimates ), and G,, are key inputs of the HAL-TMLE bootstrap.
The HAL estimations of these nuisance parameters depend largely on the selection of the
upper bound of the sectional variation norm C* = (C},C¥) (C} for @, and C¥ for G,,).
We will focus on a data adaptive selector of C}, (replacing C}'), for a given selector C¥ .
where the latter is chosen to be the cross-validation selector. Since our target parameter is
a function of () only, we suggest that the selection of C} is fundamentally more important
than C§, , and also creates enough room for our desired finite sample adjustment of the
nonparametric bootstrap. In the software implementation of LASSO, the L;-norm constraint
C1 is translated into a penalized empirical risk with L;-penalty hyper-parameter A\, where a
choice of C}' corresponds with a unique choice A. In the sequel, we will propose a selector of
A, and thereby of CY.

Ideally, we want to set C}' = Cf; equal to the sectional variation norm of @)y, so that
the bootstrap model for the HAL-MLE Q7 is large enough for unbiased estimation of Q,,.



CHAPTER 2. NONPARAMETRIC BOOTSTRAP INFERENCE FOR THE
TARGETED HIGHLY ADAPTIVE LASSO ESTIMATOR 26

Due to the asymptotic equivalence of the cross-validation selector Cf, -, with the oracle
selector that optimizes the loss-based dissimilarity, the cross-validation selector Cf,, oy, will
approximate Cf, as sample size increases. However, in finite samples, when the true sectional
variation norm Cfj of Qp is high () is small), the cross-validation selector CT,, - will tend
to be smaller than the oracle value Cfy (Acv > o), That is, C},, -y, optimally trades off bias
and variance for estimation of (g, but fixing Cf" at this choice CY,, oy, might oversimplify the
complexity of the target () of the bootstrap distribution, and thereby causes the bootstrap
to under-estimate the variability of the true sampling distribution of the TMLE. As a result,
the bootstrap confidence interval will potentially still be anti-conservative.

Since the oracle choice )\ is unknown, we propose to estimate Ao with a plateau selection
method. Consider a pre-specified ordered (from large to small) sequence of lambda can-
didates A = (A1, Az, ..., Ay) with corresponding HAL-MLEs @, ;, and HAL-TMLEs A
j=1,...,J. Weset \; = A, cv so that we only consider sectional variation norm constraints
larger than the cross-validation selector CY, ~y,. The sectional variation norm of @y, will
thus be increasing in j. For each A\; we compute the width w; = (q(;)%975,n,,\j —qg%o%mv\j o, of the
nonparametric bootstrap confidence interval based on bootstrapping the standarized TMLE
n1/2<‘I’(QZ,,\j)_‘I’(QO))/Um given by [‘I’(Q;)+q#oz5,n,/\j0m ‘P(Q2>+q(;)%975,n,/\j‘7n]7 =1
The interval widths monotonically increase and should generally show de-acceleration around
Ao where it will move towards a plateau, and, eventually it might becoming erratic. Through
numerical simulations, we indeed observed that \g is close to where the forming of the plateau
begins. This method for selecting a tuning parameter was proposed in another context in
[9]. It remains to decide on a method for determining the location of the start of the de-
acceleration. A variety of methods could be proposed here. In our concrete implementation
demonstrated in our simulation study, we compute the location of the start of the plateau as
the location at which the second derivative is maximized, where we use the log A-scale (due
to A having very small values). Specifically, A\jatean = Aj, where

: (wj+1 — wy) — (w; —wj1)
P8 0 (log (N 1) — log()) (log(Ay) — log (A1)
Figure 2.1 illustrates a simulated example of the curve log(A) — w(\). As the value of

A decreases starting at Acy, we observe a slow increase initially (almost a flat area around
Acv), then an accelerated increase, till it starts reaching its plateau right after Ag. Our
method looks for the reflection point, where the function starts moving towards the plateau.
Another method might be to look for the actual start of the plateau, but our concern is
that this might corresponds with a plateau due to pure overfitting the data (where the finite
sample only allows so much overfitting).

Increasing the scaling o,-factor by taking into account bias of
bootstrap sampling distribution

Another modification we propose concerns the bias of the bootstrap distribution. We assume
that we used the above method for selecting a A\, = Apigteqn- We will use as point estimate
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Figure 2.1: A simulated example of Wald-type interval width as a function of A. Dotted line
indicate )\, dashed line indicate Acy and solid line indicate Apqtequn

U(QF), where QF = nncyo 1€, the TMLE using the cross-validated HAL-MLE. So the
role of the bootstrap is to determine a confidence interval around this point estimate. Our
confidence interval will be of the form [W(Q%) + ¢/ 0507 /02, U(Q%) + i g 97507 /02,
where we use the nonparametric bootstrap at fixed sectional variation norm implied by A,
but centered to have mean zero, to obtain these two quantiles. The bias in the bootstrap
distribution will instead be incorporated in o by defining 672 as the MSE of the bootstrap
realizations \I/(ij) relative to U(Q%), i = 1,..., N, where N is the number of bootstrap
samples drawn from P,.

The motivation is that in general the nonparametric bootstrap will also inherit bias of
the sampling distribution of n'/2(¥(Q*) — ¥(Qo)) /0. For example, if there is finite sample
bias of ¥(Q*) that is hurting the coverage of a Wald-type confidence interval, the bootstrap
distribution (i.e., its quantiles) will likely further bias in the same direction. We choose not to
estimate the bias with the bootstrap and compensate the bootstrap distribution accordingly
through shifting it, since estimates of bias are typically unreliable. Instead, we widen the
bootstrap confidence interval by replacing the scaling factor ¢, by the square root of the

MSE of ¥(Q#*) w.r.t. ¥(Q). Specifically, the “RMSE-scaled bootstrap” takes the form

[W(Qr) + U#qzﬁ,o.O%/nlﬂa v (Qy) + U#Qio.gm/nlm]a (2.5)
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where (using short-hand notation)

1 N

T AN Zl (W5, — (@) = \/blas(\lim)2 + stddev (W72

is the estimated RMSE of the bootstrap estimator \Iffé; = lIf(QZfE 1), and ¢, is the a-quantile
of the bootstrap distribution of standardized Z},, = n/2(W¥r — L S°N 0¥ /stddev(W7)).
The full modified HAL-TMLE bootstrap procedure we propose in this article can be
summarized in the following pseudo-algorithm:
Algorithm 3: modified HAL-TMLE bootstrap procedure

pre-specify a grid of \ values, A;

for A € A do
fit HAL-MLE @,, using tuning parameter \;
perform HAL-TMLE and record point TMLE W} (\);

end

perform cross-validation to select Aoy ; record the HAL-TMLE point estimate U(Q)

with @, = @, \..;

7 Compute the plateau selector Ajjgteqn, among A < Ay based on running the
nonparametric bootstrap for n1/2(\IJ(Qf§) — 27/\))/0#7)\;

8 Set A = A\jiatean, Perform HAL-TMLE bootstrap N times to obtain quantiles

‘1#,0.0257 Qﬁo.975 of nl/Q(‘Ij(QZED - EPn‘I’(Qf;))/U#,A?

o compute of = /L S, (W(QF) — w(Qy)?
10 report U(Q*) as the final point estimator; report the 95% confidence interval of the

n

target parameter as [¥(Q;) + U#Q#,O.O%/”lﬂa v(@Qr) + U#Qioms/nlm]-

[ B U VI

2.3 Examples

Average treatment effect

We have illustrated all components required for performing HAL-TMLE bootstrap on average
treatment effect parameter alongside the general method description in Section 2.2. In HAL-
TMLE, we update the part of the likelihood that is relevant to the target parameter ¥, which
are () and Qy . The estimation routine including the tuning parameter search is implemented
in the ‘ateBootstrap’ function in the open-source R package “TMLEbootstrap” [7].

Average density value

One example of a non-doubly robust target parameter is the average density value parameter,
whose second-order remainder takes the form of a quadratic function bounded away from
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zero. Let O € R? be a multivariate random variable with probability distribution P,. Let
M be a nonparametric model dominated by Lebesgue measure p, where we assume that
for each P € M its density p = dP/du is bounded away from below by 0 and from above
by M. The average density value parameter is defined as U(P) = Epp(O) = [ p*(0o)du(o).
This target parameter is pathwise differentiable at P with canonical gradient D*(P)(O) =
2(p(0O) — U(P)). The second-order remainder Ry = — [ (p — po)?dp.

The HAL-TMLE consists of a HAL density learner, combined with a targeting step
through the universal least favorable submodel. The HAL density learner first transforms
the density estimation task to a longitudinal data format, thus transforming the density
estimation task into a classification task. Predicting the probability of the classification
surrogate retrieves the HAL density estimator. The software implementations can be found
in the ‘cv_densityHAL’ function in the open-source R package “TMLEbootstrap” [7]. We
update the initial density estimator (HAL-MLE) p, by constructing the universal least fa-
vorable submodel p,, .

Pne = Dn exp(/ D*(pn,r)dx) (26)
0

The HAL-TMLE is defined by the p* £ Dn.e,, Where €, is the optimal € along the submodel.
Finding the optimal ¢, involves either moving infinitesimal steps along the integration for-
mation (2.6), or recursively applying local least favorable submodels

lfm
Pretde = pnf,&dga (27)
where pibf :?de 2 (1+ deD*(pn))pn:. The two approaches are mathematically equivalent
and will both solve the influence curve equations. We direct readers to [31] for technical
details. Once p; is obtained, the HAL-TMLE of the average density parameter is the plug-
in estimator W% = W(p:) £ [ pidpu.

Blip variance

Under the same data generating distribution and notations as in Section 2.3, we can also
estimate the blip variance parameter using HAL-TMLE [36]. Define the blip function at
P =(Q,G) as Bp = Ep[Y|A = 1,W] — Ep[Y|A = 0, W], the blip variance parameter is
defined as ¥(P) = Ep(B%) — (EpBp)?. The canonical gradient of blip variance ¥ at P is

D*(P) = D{(P) + D;(P) (2.8)
—2(Bp(W) — EPBP)%(Y ~QAW)) +(Bp(W) ~EpBp)® ~ U(P) (29)
h ~~ g D3(P)

Di(P)



CHAPTER 2. NONPARAMETRIC BOOTSTRAP INFERENCE FOR THE
TARGETED HIGHLY ADAPTIVE LASSO ESTIMATOR 30
The second-order remainder is given by:
Ry (P, Fy) = ¥ (P) — ¥(Fy) + B D*(P)
= (EoBo(W) — EB(W))? = Eo(Bo(W) — B(W))?

(G — Go)(1[W)
W(Q —Qo)(1L, W) —

(G —Go)(0]W)

+Eo[2(B(W) — EB(W))( G(0|W)

(Q = Qo)(0, W))]

Blip variance is known to have a large non-zero second-order remainder term, which adds
to the difficulty of finite sample inference.

The HAL-TMLE consists of a HAL initial estimator of the 0y and GGy nuisance functions,
followed by an iterative TMLE (local least favorable submodel). The HAL-MLE for )y and
(G are done in the same steps as in Section 2.3. The targeting step updates along the local
least favorable submodel as

logith,e = logthn - CQ(Gn7 Qn)a (210)
where Cy(G,,, Q) = 2(Bp, (W) —Pann(W))%Pan(Pn)/HPan(Pn)]|2, where D3(P,)

is the canonical gradient (2.9) evaluated at the empirical distribution P,. The targeting
requires recursion of the submodel (2.10) until convergence. Each step the @, . is updated
using @, ., from the last iteration, and the stopping criteria is that P,D;(P,.) = 0. Once
converge, the HAL-TMLE of V¥ is just the plug-in estimator ¥* £ W(P*). There are other
variants of the TMLE of blip variance parameter, such as using a universal least favorable
submodel [31], using cross-validated TMLE [50]. These methods can all fit into the bootstrap
framework we propose and we direct readers to [36] for details. The software implementations
can be found in the ‘blipVarianceBootstrap’ function in the “TMLEbootstrap” package [7].

2.4 Simulations

Average treatment effect

To illustrate the finite sample performance of the proposed bootstrap method, we simulate a
continuous outcome Y, a binary treatment A, and a continuous covariate W that confounds
Y and A. The random variables are drawn from a family of distributions indexed by a1, which
characterizes the conditional distribution of Y, given A and W. The distribution of variables
are as follows: W ~ N(0,42, —10,10) is drawn i.i.d. from a truncated normal distribution
with mean equals 0, standard deviation 4, bounded within [—10,10]. A ~ Bernoulli(p(W))
is a Bernoulli binary random variable, with a probability p(WW) as a function of W, given by

0.3, if 0.3 + 0.1 sin(0.1W) + &, < 0.3
p(W) =107, if 0.3+ 0.1W sin(0.1W) + £, > 0.7
0.3+ 0.1Wsin(0.1W) 4+ €1, otherwise

where €, ~ N(0,0.05%). Y = 3sin(a;W) + A + & is a sinusoidal function of W, where
gg ~ N(0,1). a; controls the amplitude of the sinusoidal function. It can be shown that
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increasing a; (frequency) of the sin function increases the sectional variation norm (if Gy
is fixed, which is our setting). The value of the parameter of interest, ATE 1, is 1. The
experiment is repeated 500 times.

To analyze the above simulated data, we computed coverages and widths of (i) the Wald-
type confidence interval where the nuisance functions (Qo, Gy) are estimated using HAL(Acv)
and (ii) bootstrap confidence interval discussed in Section 2.2 where HAL(Ajateqn) is used
for nuisance function estimators. Method (i) reflects common practice in making TMLE
inference. We used correctly specified HAL regression and classification models to ease
computations and focus ideas, but in practice, we suggest using a SuperLearner [24] which
include HAL as part of the learner library to achieve the best out-of-sample generalizability.
Results under samples sizes 500 and 1000 are shown in Figure 2.3.

405 0 5 1010 5 0 5 1010 5 0 5 10-10 -5 0 5 1010 5 0 5 10-10 5 0 5 10 405 0 5 10
W W

Figure 2.2: (A) True conditional outcome functions F(Y|A = 1,W) and E(Y|A=0,W) at
a; = 0.5,1,3,5,10, 15 and (B) true propensity score function

The simulations results reflect what is expected based on theory. In particular, since the
sectional variation norm of the Qo function is large (relative to sample size), HAL regression
fit in the finite sample is not ideal, which leads to a below than nominal coverage of Wald-
type interval. Bootstrap intervals pick up the second-order remainder, and the coverage is
very close to nominal and is robust to increasing sectional variation norm (a;). The results
for sample size 500 confirm our asymptotic analysis of the methods, with Wald-type coverage
improving and two methods eventually converging to nominal.

Average density value

It is known that the average density value parameter has non-zero second-order remainder
term after Taylor expansion. To illustrate our proposed method and explore finite-sample
performance, we simulate a family of univariate densities with increasing sectional variation
norm.

K
f(x;0K) = Z T s, Ok ),

where
1

1
g(x;ﬂk,UK) = \/%O’ eXP[_g(ﬁ_Nk)Q/Ui]
K
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Figure 2.3: Results for ATE parameter comparing our bootstrap method and classic Wald-
type method as a function of the a; coefficient (sectional variation norm) of the @y function.
Panel A is the coverage of the intervals, where dashed line indicate 95% nominal coverage.
Panel B is the widths of the intervals. Within each panel, the upper plot is under sample
size 500 and the lower plot is under sample size 1000.

For a given K, py, k = 1,..., K are equi-distantly placed in interval [—4,4]. ox = 10/K/6.
The true sectional variation norm of the density increases roughly linearly with K, that is
| fxll = K||fill, K = 1,...,13. Examples of the density family for K values used in the
simulation are shown in Figure 2.4. We simulate from univariate densities for the sake of
presentation and we expect the results under high dimensional densities to hold true, as the
sectional variation norm can increase more rapidly with increasing number of dimensions.
The estimand ) is not too variant with K. The experiment is repeated 500 times. Similar
to the analysis for ATE, we compute interval coverages and widths for (i) Wald-type (Acv)
and (ii) HAL-TMLE bootstrap (Apiateau)

The simulations reflect what is expected based on theory: bootstrap methods control
type-I error better than Wald-type confidence interval, uniformly across different sample
sizes. In particular, when true sectional variation norm increases (with the number of modes
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Figure 2.4: True probability density function f(z;0x) at K =1,3,5,7,9,11,13
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Figure 2.5: Results for average density value parameter comparing our bootstrap method
and classic Wald-type method as a function of the number of modes in true density (sectional
variation norm). Panel A is the coverage of the intervals, where dashed line indicate 95%
nominal coverage. Panel B is the widths of the intervals. Within each panel, the upper plot
is under sample size 500 and the lower plot is under sample size 1000.

in the density), non-zero second-order remainder term increases and Wald-type interval
coverage declines. On the other hand, bootstrap can pick up the non-zero second-order
remainder. Bootstrap confidence interval controls the coverage close to nominal rates and
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is less sensitive to the true sectional variation norm of the density function. When sample
size increases to 500, the Wald-type interval coverage increases, and in simple cases where
the true sectional variation norm is small, Wald-type coverage can reach nominal. Bootstrap
confidence interval keeps nominal and is robust to the true sectional variation norm.

Blip variance

We illustrate the proposed bootstrap method with one more non-doubly robust parameter,
the blip variance. We simulate a continuous outcome Y, a binary treatment A, and a
continuous covariate W that confounds Y and A. The random variables are drawn from a
family of distributions indexed by .J, which characterizes the blip function f(W) £ E(Y|A =
1,W)—E(Y|A = 0,W). The distribution of variables are as follows: W ~ Unif(—4,4) is
drawn i.i.d from a uniform distribution between -4 and 4. A ~ Bernoulli(0.5) is a Bernoulli
random variable. Y ~ N(A x f(1/),0.1?) is continuous with conditional mean A x f(W), so

J
that the blip function f(W) =25 ﬁ exp{—5z (z — p1;)*}, which is mixture of gaussian

density function with J (non-overlapping) modes. Each mode is a normal density function.
The p; are chosen equi-distantly in the interval [—2, 2], the spread of the bell-shaped curve
oy = 10/J/8 is chosen so that the modes are not overlapping each other. We multiply the
density function by 2, so that the modes are not overwhelmed by Gaussian noise added to
Y. Examples of true blip function f(W') with different J used in the simulation are shown in
figure 2.6. The value of the true blip variance 1 is not too variant with J. The experiment
is repeated 500 times. We compute interval coverages and widths for Wald-type (using Acy )
and HAL-TMLE bootstrap (using Apiateau)

Figure 2.6: True conditional average treatment effect function f(W) at J = 1,2,5,10,20

With the non-forgiving second-order remainder term of blip variance, we expect both
bootstrap and Wald-type interval to perform poorly at a limited sample size 100. Under
a data generating distribution with a small sectional variation norm (number of modes),
bootstrap can achieve near nominal coverage. When the blip function becomes more complex,
the coverages of both methods start to decline, although bootstrap always has better coverage
than Wald-type. At sample size 500, more asymptotic kicks in and the bootstrap coverage
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Figure 2.7: Results for blip variance parameter comparing our bootstrap method and classic
Wald-type method as a function of the number of modes in true blip function f(W) (sectional
variation norm). Panel A is the coverage of the intervals, where dashed line indicate 95%
nominal coverage. Panel B is the widths of the intervals. Within each panel, the upper plot
is under sample size 500 and the lower plot is under sample size 1000.

quickly achieves nominal, while Wald-type fails to have nominal coverage at a larger number
of modes.

2.5 Application

We evaluate the finite sample coverage of the proposed bootstrap method on two publicly
available datasets: the UCI salary data and the MNIST image data.

UCI salary data

The UCI salary data [47] collects the annual salaries of 848 professors from the University
of California at Irvine in 2007 as well as their demographic and work information. We study
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the ATE of gender on salary, controlling for their education history, ethnicity, and years of
university service. Although we know gender cannot be intervened and thus the parameter
is not an interesting causal parameter, we treat ATE as a statistical parameter to illustrate
our bootstrap method. We use HAL regression to fit the outcome regression and use HAL
logistic regression to fit the propensity score, both controlling for all pre-treatment variables.
We apply the modified HAL-TMLE bootstrap in Section 2.2.

We evaluate the coverage of the bootstrap interval and that of the Wald-type interval
from HAL-TMLE on subsamples of the dataset with different sizes. Since we do not know
the actual parameter value, we reserve a large and separate test set of the data, apply HAL-
TMLE on the test set, and treat the estimated parameter on the test set as the ground truth
of the parameter value. We also compute the width of the two intervals for reference. We
repeat the procedure by subsampling the training set into sizes of 50, 100, 200 and repeat
each setting 1000 times to compute coverage of intervals.

Results are displayed in Figure 2.8. The results indicate that the bootstrap interval
maintains the nominal coverage at different sizes of the training set, while the Wald-type
interval under-covers across all sample sizes. The widths of the bootstrap intervals are
slightly wider than those of the Wald-type intervals.
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Figure 2.8: Results for UCI salary dataset comparing our bootstrap method and classic Wald-
type method as a function of the subsample size. Plot A is the coverage of the intervals,
where dashed line indicate 95% nominal coverage. Plot B is the widths of the intervals.

MNIST image summary statistics

The MNIST data [35] consists of 60,000 images of handwritten digits. We transform each
image into a real-valued scalar X € (0, 1) representing the proportion of the image pixels
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which are occupied by writing. We treat these univariate features X drawn i.i.d. from a
1-dimensional population density p(x), and we analyze the average density value from data.

08

02

0.0

0.0 02 04 08 08 10

Figure 2.9: An example MNIST image of digit 5. By counting how many pixels in the image
are covered by writing, the summary statistic of this image is roughly 10%

We use the HAL density learner as implemented in Section 2.3 to estimate the 1-
dimensional density and perform targeting to construct the HAL-TMLE estimator. Similar
to our procedure in the salary data analysis, we evaluate the coverage and width of our
proposed bootstrap interval and compare with the Wald-type interval from HAL-TMLE.
Similar to the previous data analysis, we hold out a large test set of size 10,000 and treat
the HAL-TMLE applied on the massive test set as the ground truth parameter value in our
evaluation. We repeat the procedure by subsampling the training set into different sizes and
repeat each setting 1000 times to compute coverage of intervals.

Figure 2.10 depicts the results. The bootstrap interval coverage is better than Wald-type
and closer to nominal 95% at all sample sizes. As sample size increases, bootstrap quickly
becomes nominal, while Wald-type coverage converges to nominal more slowly. The widths
of the bootstrap intervals are slightly wider than those of the Wald-type intervals.

2.6 Discussion

The article investigated bootstrap inference of HAL-TMLE. The finite-sample confidence
interval is constructed by grabbing empirical quantiles of the bootstrap distribution. We
proposed a ‘plateau tracking” method to approximate the optimal tuning parameter of the
highly-adaptive LASSO so that the bootstrap confidence interval coverage is optimized. In
the case of non-doubly robust target parameter when the point estimate has finite sample
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Figure 2.10: Results for MNIST dataset comparing our bootstrap method and classic Wald-
type method as a function of the subsample size. Plot A is the coverage of the intervals,
where dashed line indicate 95% nominal coverage. Plot B is the widths of the intervals.

bias, we proposed a scale adjustment post-processing method such that the bootstrap confi-
dence intervals are at least as wide as the Wald-type interval that we would conventionally
compute. We presented exact formulations and simulations for average treatment effect, av-
erage density value, and blip variance parameter and showed that our bootstrap confidence
intervals have optimal coverage that is robust to sizeable sectional variation norm of the
distribution function. We expect our work to be important for both randomized trials and
observational studies and feel our finite-sample valid non-parametric bootstrap method fills
an important gap in the machine learning theory literature.

There are some important future directions to this research. We will apply the method
to explore effects in a real data application. It will also be useful to develop a theory that
explains the connection between our ‘plateau tracking' method and the tuning parameter
selection method for non-pathwise differentiable parameter CV-TMLE [20], where the opti-
mal tuning parameter is chosen at the point where the derivative of the estimator equals the
derivative of the estimator standard error, because the two methods both look for tuning
parameter based on the second moment of the parameter. We also wish to explore applying
this method to other TMLE applications in addition to the three examples we present in
this article, such as longitudinal TMLE studies or TMLE of high dimensional parameters
where the second order remainder term can easily outnumber the first order term.
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Chapter 3

Efficient Causal Inference Based on
the Highly Adaptive Lasso:
Undersmoothing and Targeted HAL

3.1 Introduction

Nonparametric structural causal models provide statistical models for the data generating
distribution and allow the formal definition of causal impact of an intervention on an outcome
of interest. Formal identification results establish non-testable assumptions that allows one
to identify the causal quantity of interest as an estimand of the data distribution. Once we
accept this estimand as a best or perfect approximation of the causal quantity of interest, we
are left with a pure statistical estimation problem of learning the estimand based on knowing
that the true data distribution falls in a specified infinite dimensional statistical model.

Semiparametric efficiency theory teaches us that the nuisance parameter regression need
to be root-n consistent, combined with solving the additional critical efficient score equation,
to make the statistical estimator efficient [46]. Seminal work by [1] proposed highly-adaptive
LASSO (HAL) algorithm and showed it is a regression that will guarantee this rate in the
asymptotic, if the true function is cadlag and has finite sectional variation norm. Once
such rate is achieved, the second order remainder has root-n rate. The researcher can then
perform estimating equation method or targeted maximum likelihood estimator (TMLE) to
solve the efficient influence curve (EIC) equation (estimating equation), so that the final
estimator is asymptotically linear (and efficient) [32].

In this article, we present two alternatives to solving the EIC equation by using HAL:
targeted HAL and under-smoothed HAL. Targeted HAL augments an additional covariate
in the design matrix for the regression and takes advantage of the linear regression property
to solve the EIC equation. Under-smoothed HAL selects the Li-norm of the vector of
coefficients associated with the collection of 0-th order spline basis functions larger than
the value from cross-validation. [29] showed sufficient conditions so that it will solve EIC
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equation for any desired pathwise differentiable statistical parameter, while preserving root-n
consistency from HAL. Our contribution is to propose an automated tuning method called
“multi-task tuning” that satisfies these conditions, which uses a family of proxy tasks to
tune the Li-norm. We show that the methods perform better than plug-in HAL regression
(HAL-MLE) and TMLE using HAL regression as initial estimator (HAL-TMLE) in scenarios
that are do not favor EE and TMLE method [18].

Organization of the paper We set up the statistical estimation problem in section 3.2
and review the highly-adaptive LASSO in section 3.2. And then present targeted HAL in
section 3.2 and under-smoothed HAL in section 3.2. In section 3.3, we use two simulations
to illustrate the finite sample performance of the proposed methods.

3.2 Methodology

Statistical Estimation of Target Parameter

Suppose we observe Oq,...,0, ~iq Py € M, where O is a Euclidean random variable of
dimension k with support O contained in [0,7,] C R*. Let Q : M — Q(M) = {Q(P) :
P € M} be a functional parameter of the data distribution. It is assumed that there
exists a loss function L(Q) so that PyL(Q(Fy)) = minpepy PoL(Q(P)), where we use the
notation Pf = [ f(0)dP (o). Thus, Q(P) can be defined as the minimizer of the risk func-
tion @ — PL(Q) over all @) in the parameter space. Let do(Q, Qo) = B L(Q) — PoL(Qo)
be the loss-based dissimilarity, which for most loss functions behaves as a square of an
L?(P)-type norm (e.g., Kullback-Leibler divergence for the log-likelihood loss). We assume
that Mz = suppery D{L(Q(P)) — L(Qo)}?/do(Q(P), Qo) < oo and M; = sup,copem |
L(Q(P))(0) |< co. These latter two assumptions are sufficient to guarantee good theoretical
behavior of cross-validation-based estimator selection. In particular, these assumptions pro-
vide conditions whereby the a cross-validation-selected estimator is asymptotically equivalent
with an oracle selector [24].

Let U : M — R represent the statistical target parameter of interest, so that W(F) is
the estimand we aim to learn. We assume that ¥ is pathwise differentiable at P € M in the
sense that d%qj(ﬂ)lg:o = PD(P)S for a rich collection of submodels {P. : €} through P at
e = 0 with score S. If the gradient D(P)(O) is chosen to be a score itself (or an arbitrarily
fine approximation of a score), then it is called the canonical gradient, which we denote by
D*(P). As above, let Q : M — QM) = {Q(P) : P € M} be a functional parameter
such that W(P) = U(Q(P)) for some ¥;: we will abuse notation, and simply use ¥(Q)
and W(P) interchangeably. Let G : M — G be a functional nuisance parameter so that
the canonical gradient D*(P) only depends on P through (Q(P),G(P)). Let Ry(P, Py) =
U(P) — V(Fy) + PyD*(P) be the exact second-order remainder for the target parameter
expansion. This remainder Ry(P, P) only involves differences between (Q, G) and (Qo, Go)
so that we will use notation D*(P) = D*(Q(P),G(P)) and Ry(P, Fy) = R2(Q, G, Qo, Go).
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Consider that for a plug-in estimator ¥(Q,,) of ¥(Qy),

qj(@n) - \P(QO) = (Pn - P(J)D*(Qna GO) - PnD*(Qn> GO) + R2(Qn> GO> Q07 GO)

Assuming that {D*(Q, G) : @, G} falls in a class of cadlag functions with a universal bound
on the sectional variation norm (which is, importantly, a Donsker class), using empirical pro-
cess theory we can establish a simple L?( Fy)-consistency Po{D*(Qy, Go)—D*(Qo, Go)}*> —, 0
implies (P, — Py)D*(Qn, Go) = (P, — Py) D*(Qq, Go) +op(n~"/?) [48]. In addition, the above
stated convergence do(Q,, Qo) = op(n~'/?) will generally imply (under a strong positivity
assumption) that Ry(Qn, Go, Qo, Go) = op(n~'/?). In so-called double-robust causal infer-
ence or censored data problems the second-order remainder only involves cross-terms like

(Qn — Qo) (G, — Gy) so that we even have Ry(Q,, Go, Qo, Go) = 0 [34]. Thus,

lI](Qn) o \D(QO) = PnD* (Q07 GO) - PnD*<Qn7 GO) + OP(n71/2).

The only remaining obstacle in proving efficiency of the HAL-MLE is that we need P, D*(Q,,, Go) =
op(n~'/2). We can show that this can be proven under two fundamental conditions: 1) the
loss function L((Q)) must generate the canonical gradient as a score; 2) C,, must be selected
“large enough”. We discuss these two conditions in Section 3.2.
Canonical gradient of target parameter in tangent space of loss function: We

assume that the loss function L(Q) is such that there exists a class of submodels {Q" :
€} C Q(M), indexed by a choice h,through @ at e = 0, so that for any G € G, one of
these h-specific submodels generates a score that equals the canonical gradient D*(Q, G) at
(@Q,G):

d h x

SL@| =DQ0).

€ e=0
Since the canonical gradient is an element of the tangent space and thereby typically a
score of a submodel, this generally holds for () defined as the density of P and the log-
likelihood loss L(Q) = — log Q. However, for any ) so that W(P) depends on P only through
@ there are typically more direct loss functions L(Q), so that the loss-based dissimilarity
do(Q, Qo) = PyL(Q) — PyL(Qy) directly measures a dissimilarity between @ and @y, for
which this condition holds as well.

HAL-MLE

Parameter space for functional parameter (): Cadlag and uniform bound on
sectional variation norm. We assume that the parameter space Q(M) = {Q(P) : P €
M} is a collection of multivariate real-valued cadlag functions on a cube [0,7] C R¥ with
finite sectional variation norm ||Q(P)|| < C* for some C* < oo [13, 33, 28]: i.e., for all P,
Q(P) is a k-variate real-valued cadlag function on [0, 7] C R, with ||Q(P)||} < C*, where
the sectional variation norm is defined by -

Q=0+ Y / dQu(u.) | -
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For a given subset s C {1,...,k}, Qs : (05, 7s] — R is defined by Qs(zs) = Q(zs,0_5). That
is, ()5 is the s-specific section of ) which sets the coordinates in the complement of subset
s C {1,...,k} equal to 0. For a given vector z € [0,7], we define z;, = (z(j) : j € s).
Sometimes, we will also use the notation x(s) for .

Note also that [0, 7] = {0} U (Us(0s, 75]) is partitioned in the singleton {0}, the s-specific
left-edges (0s, 75] X {0_s} of cube [0, 7], and, in particular, the full-dimensional inner set (0, 7]
(corresponding with s = {1,...,k}). Therefore, the above sectional variation norm equals
the sum over all subsets s of the variation norm of the s-specific section over its s-specific
edge. It is also important to note that any cadlag function () with finite sectional variation
norm can be represented as

A =eoy+ Y [ douw).

That is, Q(z) is a sum of integrals up to z, over the s-specific edges with respect to the
measure generated by the corresponding s-specific section ;. Thus, we refer to ), both
as a cadlag function and as a measure. We note that this representation represents () as
an infinitesimal linear combination of indicator basis functions * — ¢, (z) = [(xs > us)
indexed by knot-point u, with coefficient dQ(us):

Q)=o)+ 3 / Do (2)dQu (1),
}

sC{1,....k

Note that the Li;-norm of the coefficients in this representation is precisely the sectional
variation norm ||Q||%.

Let Q(C*) = {Q € D|0,7] : |Q]|; < C*} be the class of cadlag functions with sectional
variation norm bounded by C*, which is thus the parameter space for Q). Let Cy = ||Qoll|%
be the sectional variation norm of the true @)y, and let C* be an upper bound guaranteeing
that Cy < C*". For a data adaptive selector C,,, we define the HAL-MLE as

n=arg min P,L(Q). 3.1

Q 8,0 FL(Q) (3.1)
We will restrict the minimization to @ for which for all subsets s C {1,...,k}, dQs(us) is
a discrete measure with a finite support {z,, : j = 1,...,ns}, where this support is chosen

fine enough so that its resulting bias is negligible. Typically, one can actually prove that the
unrestricted HAL-MLE (3.1) is attained at a discrete @),,. Generally, if O includes observing
X where L(Q)(O) depends on @ through Q(X), we recommend to select the support of dQ
as a subset (or whole set) of the observed data X;(s),i =1,...,n. The above representation
for functions in D[0, 7] shows that all such discrete ) are represented by a finite dimensional
linear combination of basis functions indexed subset s and knotpoint z, ;. Therefore, in this
case the HAL-MLE can be represented as @,, = Zs,jejn(s) Bn(s,7)¢s,;, where

B, =arg min L Z B(s.7)o(s,3) | -

; <Chn
BBl T
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and J,(s) is the collection of support points of the s-specific section @, s of Q.
The data adaptive selector C), defining the L;-norm restriction will be selected larger or
equal than the cross-validation selector

\%4
. 1 1 A
Cn,cv = arg mcl,n V UZ:; Pn,vL(QC(Pn,U)) )

where Pﬁ,v, P, , are the empirical distributions of the validation and training sample, respec-
tively, corresponding with the v-th sample split in a typical V-fold cross-validation scheme.
Here QC(PW,) is the HAL-MLE applied to the training sample corresponding with the v-th
sample split. For any selector C,, < C* < oo for which P(C,, > Cjy) — 1, we have that
do(Qn, Qo) = op(n™1272®)) for a(k) = 1/(2(k + 2)) [28]. In particular, we have this rate
of convergence for the cross-validation selector, which is optimal for estimation of )y as a
whole.

HAL-TMLE for the Treatment-specific Mean

Consider a finite dimensional local least favorable model {Q,,, : €} C Q(M) through @, at
€ = 0 so that the linear span of the components of %Ll(Qnye) at € = 0 includes D*(Q,, Gy,).
Let Q; = Qn., for ¢, = argmin, P,L;(Q,.). We assume that this one-step TMLE Q;
already satisfies

rn = P,D*(Q%,Gr) = op(n=1?). (3.2)

Since do;(Qn, Qo) = op(n~/2) we will have that €, = op(n~'/*), and ¢, solves its score
equation %PnLl(Qn,en) = 0, which, in first order, equals its score equation P, D*(Qy.,, Gy)
at € = 0 (with a second order remainder O(e?) = op(n~/?)). This basic argument allows
one to prove that (3.2) holds under the assumption do; (Q,, Qo) = op(n~'/?) and regularity
conditions, as formally shown in the Appendix of [28]. The HAL-TMLE of 4 is the plug-in
estimator ¢ = U(Q5).

n

Example: (Treatment-specific mean)

Let O = (W, A,Y) ~ Py, where Y € {0,1} and A € {0, 1} are binary random variables.
Let (A, W) have support in [0,7] € R¥ where various of its components are discrete
and thereby supported on a finite grid within [0,7]. Let G(W) = Ep(A | W) and
Q(A, W) = Ep(Y | A,W). Assume the positivity assumption Go(W) > & > 0 for some
§ > 0; Qo and Gy are cadlag functions with [|Q || < C* and |G|z < C¥ for some finite
constants C%, C%: § < Qy < 1 — 6 for some & > 0. This defines the statistical model M
for F.

Let U : M — R be defined by ¥(P) = EpEp(Y | W, A = 1). For simplicity, we focus
on estimation of this treatment specific mean, but the presentation trivially generalizes
to the average treatment effect (ATE) W(P) = EpEp(Y | W,A = 1) — EpEp(Y |
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A =0,W). Let Q (Qw, Q), where Qy is the probability distribution of W. Note
that U(P) = ¥(Q) = QwQ(-, 1). We have that ¥ is pathwise differentiable at P with
canonical gradient given by D*(Q,G) = AJGW)Y —Q(A, W) +Q(1, W) — U(Q). Let
L(Q)(0) = —{Y1ogQ(A, W)+ (1 —Y)log(l — Q(A,W))} be the log-likelihood loss
for , and note that by the above bounding assumptions on @, we have that this loss
function has finite bounds M; < oo and My, < oco. Let Di(Q,G) = A/G(Y — Q)
be the @Q-component of the canonical gradient, D3(Q) = Q(1,W) — ¥(Q) the Qu-
component, and note that D*(Q,G) = Di(Q,G) + D3(Q). We have ¥(Q) — ¥(Qp) =
—PyD*(Q, G) + Ryo(Q, G, Qo, Go), where

Ro(0, G, G0, 00) = P 2= — 0).

We have suppe [|D*(Q(P), G(P))||: < C(C*, CY¥) for some finite constant C' implied
by the universal bounds (C*%, C¥) on the sectional variation norm of @, G. We also note
that, using Cauchy- Schwa,rz inequality, Roo(Q,G,Qq, Go) < %HQ — Qollp |G — Goll gy,
where |, = | f2(0)dPy(o ]

The least favorable submodel through @, is given by

logit@Q, . = logitQ,, +cC(G,), (3.3)

where C(G,)(A, W) & A/G,(W). Let g, £ argmin, P, L;(Q,.), which is thus computed
with a simple univariate logistic regression MLE, using as off-set logitQ,,. This defines
the TMLE Q,’; = an. Recall that Qw,, is already an NPMLE so that a TMLE-
update based on a log-likelihood loss and local least favorable submodel (i.e., with score
Qn(W)—¥(Q,), will not change this estimator. Let Q% = (Qw.,, Q). The HAL-TMLE
of 1y is the plug-in estimator ¢ £ W(Q:) = 23" Qx (1, W;).

Targeted HAL

For a large number of target parameters (such as average treatment effect, treatment effect
among the treated, counterfactual mean outcome in a longitudinal trial), the least favorable
submodel can be expressed as a generalized linear model with a univariate outcome, regressed
onto a clever covariate C'(G,,) with an offset (for example, (3.3) for the treatment-specific
mean). Targeted HAL append the clever covariate vector C'(G,,) into the HAL design matrix
gg&j (basis-expanded). When we run the LASSO regression, we do not put penalization on
this special column, which guarantees our regression to solve the estimating equation without
doing an additional targeting step. Targeted HAL takes the following form:

Qn = Z 5n(57j)¢s7j + 7n0<Gn)7

svjejn(s)
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where

(Bu)=arg  min  L| > B(s,7)é(s,5) +7C(Gn) |,
Bv”ﬂ”lgcnﬁ s jGJn(S)

To show that this Targeted HAL solves the estimating equation, we can use the property of
OLS, where

n n

Z(C(Gn)(oﬂﬁ) = Z(C(GO(O@')(Y; - Qn<Aia W) = ZD*<Qna G)(Oi) = 0.

i=1 =1

Targeted HAL has the same assumptions and asymptotic efficiency of HAL-TMLE, while
fitting a single outcome regression.

Under-smoothed Highly Adaptive LASSO

Theorem 1 in [29] showed that undersmoothing HAL-MLE will result in efficient plug-in
estimator for all pathwise differentiable parameters if

min  Pyds : = op (n~ V24 3.4
siedn(s) 00 3J P( ) ( )

Here we propose one criterion to select the tuning parameter of HAL called “multi-task
tuning”. Our proposed selector operates under the setting where the target parameter of
interest is known (same as when we apply HAL-TMLE), instead of trying to under-smooth
the HAL for any arbitrary target parameter. Given the parameter ¥ (and its corresponding
EIC D*), we (automatically) come up with a large family of tasks P,D}(Qn.x, G,) that are
“section-specific EIC equations”, where D}(.)(O) = D*(.)(0)¢;(0) is the j-specific efficient
influence curve for basis ¢;. Solving this family of EIC equations implicitly correspond to
solving the estimating equation for a family of “section-specific target parameters”. We tune
Ly-norm (larger than the cross-validation chosen value) such that the all of the set of “section-
specific EIC equations” are approximately solved (with tolerance level carefully chosen as a
function of sample size guided from semiparametric efficiency theory). The criteria cover a
large family of data structures and statistical parameters, and we demonstrate using ATE
parameter as follows.
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Algorithm 4: Under-smoothed HAL for ATE

1 Perform HAL regression for the Qo function using cross-validation tuning of HAL
hyper-parameter (sectional variation norm) C, giving us C), ,. On the training data
and under C' = C,, ., denote the set of spline bases with non-zero coefficients as J;

2 For our target parameter W. We propose a new family of target parameters
U,(Q) = E[(Q(1,W) — Q(0,W))p;(W)],j € J as the surrogate tasks to perform
undersmoothing. The undersmoothing criteria is

C" = maxarg max |B,Dj(Qnc,Gn)| < Cay,5/v/n/log(n),
where D3(.)(A, W) = D*(.)(A, W)a;(W) is the j-specific efficient influence curve and

00, 1s estimated by the standard error of D7 in sample:

Ons =\ PalD;} Quic G)?) = [PaD} (@Quc G

3 Note that there is a multiplicative constant C' that controls the finite sample behavior
of multi-task tuning. We recommend choosing the constant C' not too small.
Empirical study shows that the performance of the whole pipeline is not sensitive to
too large a C, but too small a C' can make the learner have a large variance in finite
sample. The choice of C' will not affect its asymptotic performance;

4 This defines our under-smoothed HAL using multi-task tuning: @, c-;

5 Optionally, one can perform a targeting step on top of Q, ¢+ towards the main target
parameter of interest W;

We use the simulation study to show that “multi-task tuning” satisfies the sufficient
condition (3.4) defined in Theorem 1 of [29].

Theorem 3. For an undersmoothed HAL anc* that satisfies
max  Po,¢; (Y — Quer) < 0,i/v/n/logn. (3.5)

je‘](Qn,Cnycv)
Assume that we can choose o such that

1Y a0, — —||po Op(n™1) (3.6)

jedJ

and that

)(Y Qnc+) s a} (3.7)

Z p; —

jeJ n

is Py-Donsker, which holds when Qo, Qnc~ and G, are functions with finite sectional vari-

ation norm.
Then

24 -1
G

P, (Y = Que) = Op(n2) (3.8)
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Proof: For any . ;a;¢; such that >, ; |o;[ < M, we have

P.(d " 0;o)) (Y = Ques) = Y a;Pugi(V = Quc-)

jeJ JjeJ
< al[Pagi(Y = Que)
jeJ
< laglon;/vn/logn
jeJ

S Mo—n,max/\/ﬁ/ IOgTL
so that
P.(>" 0;¢)(Y = Que+) = Op(n72). (3.9)
JjeJ

We now are left to show that

P>y — H)(Y = Quee) = Op(n2), (3.10)

jed

where H,, = %, so that P, H, (Y —Qn.c+) = Op(n~2) (the efficient influence curve equation
is solved). )
Assume we can choose o such that (3.6) is satisfied, we have (by denoting H, =

> jes 49;)
Pn(f{n - Hn)<Y - Qn,C*) = (Pn - PO)[(}N[H - Hn)<Y - Qn,C*)]+
Po[(Hn = Hy)(Y = Qnev)]

= Po[(H, — H,)(Qo — Que-)] + Op(n73) (3.11)
< Hﬁ[n — H,|lp Qo — Qu.o+lpy + OP(Tf%) (3.12)
= Op(n~2) + Op(n™?) (3.13)
= Op(n2),

where (3.11) is by the property of Donsker class (3.7), (3.12) is by Cauchy-Schwartz inequal-
ity, and (3.13) is due to (3.6) and that ||Qy — Qnc+|lp, = Op(n~ 1) (undersmoothed HAL
preserves the rate of the HAL). O

Theorem 3 proves that the undersmoothed HAL is efficient for the target parameter W
by performing the ‘multi-task tuning’, as long as the clever covariates can be expressed as
a linear combination of the basis in the set J with finite I.-1 norm on the coefficients. The
general implication of this Theorem is that any target parameter whose clever covariates can
be expressed as such a linear combination can be estimated with the undersmoothed HAL
plug-in estimator efficiently.
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3.3 Simulation

We evaluate the proposed estimators via two simulations. In the first data generating dis-
tribution, we mimic a case where the positivity assumption holds and where there is a
non-linear relationship between the outcome, the treatment, and the baseline covariate. In
the second simulation, we simulate the often cited Kang & Schafer design [18] where there
is violation of posivitiy assumption and strong interaction between the baseline covariates.
In addition to the targeted HAL and under-smoothed HAL methods we proposed, we also
include in comparison the plug-in estimator HAL-MLE and the classic HAL-TMLE [32].
We evaluate the bias, variance, mean-squared error, the EIC equation value, as well as the
sampling distribution of the estimates.

In the first simulation, we draw 1000 samples of size n € {100,500,1000} from the
following data generating distribution. We simulate a univariate W ~ N(0, 42, —10,10) i.i.d.
from a truncated normal distribution with mean equals 0, standard deviation 4, bounded
within [—10, 10]. A binary treatment A ~ Bernoulli(p(WW)) is a Bernoulli binary random
variable, with a probability p(1W) as a function of W, given by

0.3, if 0.3 + 0.1 sin(0.1WW) < 0.3
W) =207, if 0.3+ 0.1 sin(0.1W) > 0.7 .
0.3+ 0.1Wsin(0.1W), otherwise

Continuous outcome Y ~ N(3sin(0.5W) + A, 1) has the conditional expectation equal a
sinusoidal function of W.

As predicted by theory, all methods except HAL-MLE are root-n consistent in this data
generating distribution. the MSE of targeted HAL, HAL-TMLE, undersmoothed HAL (tar-
geted) and undersmoothed HAL are all very similar in the asymptotic. Note that under-
smoothed HAL (not targeted) is already asymptotically efficient and normal, and additional
targeting further improves its performance.

In the second simulation, we draw 1000 samples of size n € {100, 500,1000} from the
following data generating distribution. We let W, = 47 — 2, where Z was drawn from a
Beta(0.85,0.85) distribution. W; was independently drawn from a Bernoulli(0.5) distribution.
Given W = (wy,wy) we drew A from a Bernoulli distribution with the probability A = 1
equal to Go(wy, ws) = expit(w; — 2wywy). Given A = a, and W = (wy, w;) we drew Y from
a Normal(Qq (w1, wy), 0.33%) distribution with Qo(wy,w;) = expit(w; — 2wywy). The true
ATE is zero and the true propensity score falls between (0.023, 0.921).

In this design, HAL-TMLE and targeted HAL (based on using inverse propensity score
weighting) are no longer root-n consistent for the target parameter, but under-smoothed HAL
is still root-n consistent and is approaching the efficiency bound at the fastest rate. The bias,
variance and MSE of under-smoothed HAL all outperform HAL-MLE, which used to be the
best performing method in this scenario. The targeted variant of under-smoothed HAL has
less bias, larger variance and overall larger MSE in finite sample. In larger sample sizes,
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Figure 3.1: Results for simulation 1 comparing targeted HAL, under-smoothed HAL, under-
smoothed HAL (plus targeting), HAL-TMLE and HAL-MLE. Each panel displays a different
performance metric. Panel A: y/n times bias of the estimators. Panel B: n times Variance
of the estimators. Panel C: n times MSE. Panel D: Kernel density estimates of sampling
distributions using a Gaussian kernel and Silverman’s rule of thumb bandwidth (Silverman,
1986). The black lines in the variance and MSE plots denote the efficiency bound. The
reference sampling distribution for the estimators is a mean-zero Normal distribution with
this variance (in black).

the additional targeting step is almost not updating the under-smoothed HAL, resulting in
almost identical performance.

The surprisingly good performance of under-smoothed HAL in both scenarios, one which
favors inverse probability weighting estimators and one which violates the assumption of
inverse probability weighting, indicate that the under-smoothed HAL method is not another
trade-off between fully solving the estimating equation v.s. using plug-in estimator. The
majority of benefit comes from the first under-smoothing step which is very robust to pos-
itivity violation. The optional targeting step can affect finite sample performance but will
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Figure 3.2: Scaled empirical average of efficient influence curve from targeted HAL, under-
smoothed HAL, under-smoothed HAL (plus targeting) and HAL-TMLE. Computed under
simulation 1.

not affect its asymptotic.
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Figure 3.3: Results for simulation 2 comparing targeted HAL, under-smoothed HAL, under-
smoothed HAL (plus targeting), HAL-TMLE and HAL-MLE. Each panel displays a different
performance metric. Panel A: y/n times bias of the estimators. Panel B: n times Variance
of the estimators. Panel C: n times MSE. Panel D: Kernel density estimates of sampling
distributions using a Gaussian kernel and Silverman’s rule of thumb bandwidth (Silverman,
1986). The black lines in the variance and MSE plots denote the efficiency bound. The
reference sampling distribution for the estimators is a mean-zero Normal distribution with
this variance (in black).
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