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Neutrino fast flavor instability in three dimensions
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(Received 17 September 2021; accepted 26 October 2021; published 18 November 2021)

Neutrino flavor instabilities have the potential to shuffle neutrinos between electron, mu, and tau flavor
states, possibly modifying the core-collapse supernova mechanism and the heavy elements ejected from
neutron star mergers. Analytic methods indicate the presence of so-called fast flavor transformation
instabilities, and numerical simulations can be used to probe the nonlinear evolution of the neutrinos.
Simulations of the fast flavor instability to date have been performed assuming imposed symmetries. We
perform simulations of the fast flavor instability that include all three spatial dimensions and all relevant
momentum dimensions in order to probe the validity of these approximations. If the fastest growing mode
has a wave number along a direction of imposed symmetry, then the instability can be suppressed. The late-
time equilibrium distribution of flavor, however, seems to be little affected by the number of spatial
dimensions. This is a promising hint that the results of lower-dimensionality simulations to date have
predictions that are robust against their the number of spatial dimensions, though simulations of a wider
variety of neutrino distributions need to be carried out to support this claim more generally.

DOI: 10.1103/PhysRevD.104.103023

I. INTRODUCTION

Neutrinos are produced in immense numbers in core-
collapse supernovae and neutron star mergers, but the
neutrino’s elusive nature and behavior currently limits
our understanding of these explosive astrophysical phe-
nomena. Core-collapse supernovae, produced when a
massive star collapses after exhausting its nuclear fuel,
rely on neutrinos to carry energy from the collapsed core to
the infalling material below the shock front, and do so on a
short enough timescale that they are able to propel the
shock through the star (see, e.g., [1,2] for reviews). When
two neutron stars or a neutron star and a black hole merge,
the neutrinos emitted from the resulting hot accretion disk
can enhance outflows that form heavy elements (see [3] for
a recent review). In both cases, the matter ejected pollutes
the surrounding environment with metals that later form
more metal-rich stars, planets, and life. Furthermore,
although mergers are the prime candidate source of some
of the heaviest elements in the Universe, neutrinos play a
deciding role in determining whether the ejecta is

sufficiently neutron rich to efficiently form these elements
(e.g., [4,5]).
Since we cannot directly see the interiors of supernovae

and mergers and have only seen neutrinos from a single
supernova [6–8], we resort to simulation to evaluate
whether fundamental physics as it is understood today is
capable of reproducing what we see in nature.
Understanding supernova and merger dynamics without
allowing neutrino flavor change is still an extremely active
and productive field, as some of the arguments that neutrino
flavor oscillations are not deeply important for the dynam-
ics of supernovae have been rather convincing (e.g.,
[9,10]). Promisingly, there is increasingly strong evidence
that such simulations may in fact be capable of yielding
explosions with energies trending toward those observed in
nature (e.g., [11–14]). Neutron star merger simulations are
also becoming increasingly sophisticated tools for predict-
ing the amount and composition of ejecta from compact
object mergers, their electromagnetic and gravitational
wave signals, and the type of compact central object left
behind (e.g., [15–21]). These simulations have matured to
include effects of general relativity, inviscid hydrodynam-
ics, magnetic fields (or viscosity mimicking the action of
magnetic fields), a dense nuclear equation of state, nuclear
reactions, and transport of energy by neutrinos.
However, understanding supernovae and mergers may

not be a simple matter of general relativistic neutrino
radiation magnetohydrodynamics; we must also include
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the quantum nature of neutrinos in this already long list of
relevant physics. There are three known species (flavors) of
neutrinos, and a given neutrino is generally in a quantum
superposition of all three states. Terrestrial experiments and
observations of solar neutrinos show that this quantum state
changes as the neutrino propagates according to the
Schrödinger equation (e.g., [22], among many other detec-
tions since). Contributing to the Hamiltonian that drives this
flavor change are the neutrino masses, the interactions of
neutrinos with the background matter, and the interaction of
neutrinos with other neutrinos (see, e.g., [23]). The latter of
these is special in that it leads to a fascinating and poorly
understood nonlinear evolution of the flavor whenever
neutrino-neutrino interactions are significant. Since differ-
ent neutrino flavors have significantly different rates of
interaction with matter, flavor-changing neutrinos can com-
plicate our already limited understanding of the dynamics of
supernovae and neutron star mergers (e.g., [20,24–27]).
Recent developments have suggested the exciting pos-

sibility that neutrinos are unstable to flavor change deep in
the engine of a supernova or neutron star merger [28,29]. In
fact, these instabilities are likely ubiquitous in both systems
[30–32]. The so-called fast flavor instability simply
requires that, at a given location, there be an overabundance
of neutrinos in some directions and an overabundance of
antineutrinos moving in other directions [33–35]. Such
conditions imply the “crossing” of the energy-integrated
lepton differential number density through zero, since
antineutrinos carry negative lepton number. This differ-
ential number density is often referred to as electron lepton
number (ELN), though the argument is equally valid for
any flavor. Searches for these conditions in data from
numerical simulations of both events that neglect flavor
transforming physics have suggested that there are unstable
conditions outside the supernova shock, inside the super-
nova shock, inside the turbulence supernova core, and
around the accretion disk from a neutron star merger
[25–27,30,31,36–44].
A first-principles global simulation of neutrino quantum

kinetics in a supernova or a merger event remains intrac-
table. However, it is still valuable to see how large an effect
neutrino flavor transformation could have based on some
computationally feasible prescription so as to help bound
the realm of possibility. Wu et al. [25] postprocess
simulation snapshots and tracer particle trajectories from
a simulation of a neutron star-black hole (NS-BH) merger
disk, modifying the neutrino interaction rates in locations
with unstable neutrino distributions and assuming complete
flavor mixing. The result was that the flavor conversion
resulted in a more neutron-rich neutrino-driven wind and
the formation of more heavy elements, though a similar
analysis of a NS-NS merger disk showed the opposite [26].
Li and Siegel [20] use the assumption of complete flavor
mixing for unstable neutrino distributions and dynamically
couple it to the hydrodynamics in simulations of a neutron

star merger disk (a scenario similar to [25]). This, too,
resulted in a more neutron-rich outflow than when neu-
trinos are assumed not to change flavor. Xiong et al. [27]
imposed multiple flavor transformation prescriptions on
parametric models of the neutrino-driven wind following a
core-collapse supernova. The flavor transformation resulted
in more mass lost and a more proton-rich ejecta. Although a
more robust parametric way to describe neutrino flavor
transformation is needed, these results already show that
neutrino flavor transformation can have a significant impact
on galactic chemical evolution, supernova neutrino signals,
and the properties of compact object mergers inferred from
observation.
To understand the effects of the fast flavor instability,

recent efforts have focused on directly simulating neutrino
quantum kinetics. To make the problem computationally
tractable, these simulations are performed using some
combination of a limited physical domain, imposed sym-
metries, fewer neutrino flavors, and finite resolution.
Dasgupta and Mirizzi [45] and Capozzi et al. [46] assume
a two-beam model, where neutrinos can only move radially
inward or radially outward. Abbar et al. [47] and Abbar and
Volpe [48] use a “line model” as a toy geometry that
permits one free spatial and one free angular dimension.
Padilla-Gay et al. [49] use a line-model-like symmetry but
also allow for temporal variations. References [50–57]
allow asymmetry in only one momentum dimension,
assuming homogeneity in the spatial dimensions. In [58]
they extend this to two momentum dimensions. Mirizzi
et al. [59] use a small number of neutrino directions,
assume spatial translational symmetry in one direction and
periodic symmetry in the other, and allow neutrinos to
move in both dimensions parallel to an emitting neutrino
plane. Bhattacharyya and Dasgupta [60] and Wu et al. [61]
assume translational symmetry in two spatial directions and
azimuthal symmetry in neutrino momentum around the
“free” spatial direction, and later extend the method to
consider two spatial dimensions and two momentum
dimensions [62]. Richers et al. [63] assume translational
symmetry in two dimensions and periodic boundaries in the
third, and allow both neutrino direction dimensions.
In this work, we attempt to take some of the guesswork

out of interpreting whether simulation results are valid
when symmetries are imposed. We simulate all dimensions
(three spatial, two direction dimensions) relevant for the
fast flavor instability where the neutrino potential domi-
nates other potentials, imposing only periodic boundary
conditions in all directions. In Sec. II we review the
particle-in-cell method for neutrino quantum kinetics and
describe enhancements made to the code since we pub-
lished the one-dimensional results in [63]. We describe the
three-dimensional nature of the instability growth, insta-
bility saturation, and eventual quasiequilibrium in Sec. III.
Finally, we conclude with Sec. IV and describe the major
results from this work that can be applied to global
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simulations of neutron star mergers and supernovae.
We discuss the most important aspects of numerical
convergence in the main text, but provide additional
convergence details in the Appendix.

II. METHODS

We simulate neutrino flavor transformation using the
particle-in-cell code Emu [63,64]. In this method the neutrino
field is represented by a large number of individual computa-
tional particles distributed throughout the domain. Each
computational particle carries several quantities: the number
of neutrinosN and antineutrinos N̄ that theparticle represents,
the 3 × 3 density matrices for neutrinos (ρ) and antineutrinos
(ρ̄), the four-position xα of the particle, and the four-
momentumpα of each neutrino or antineutrino in the particle.
The particles move at the speed of light and the density
matrices evolve following the Schrödinger equation as a
collisionless approximation to the quantumkinetic equations:

dxα

dt
¼ c

pα

p0
;

dN
dt

¼ dN̄
dt

¼ dpα

dt
¼ 0;

dρ
dt

¼ −i
ℏ
½H; ρ�;

dρ̄
dt

¼ −i
ℏ
½H̄; ρ̄�: ð1Þ

The potentials H and H̄ contain contributions from the
neutrino masses, interactions with the surrounding matter,
and interactions with other neutrinos as detailed in [63],
although here we set the matter term to 0. All neutrinos in
these simulations have an energy of 10 MeV. We somewhat
arbitrarily assign the neutrino parameters as m1 ¼ m2 ¼ 0,
m3 ¼ 0.049 eV, θ12 ¼ 10−6°, θ13 ¼ 48.3°, θ23 ¼ 8.61°,
α1 ¼ 0, α2 ¼ 0, and δCP ¼ 222°. These parameters have
a small effect on the initial transient fluctuations as
described in Sec. III A 1, but they are completely over-
powered by the fast flavor instability. We have verified that
the conclusions in this paper are independent of these
choices as long as the vacuum potential remains small, and
also note that the vacuum potential is too weak to
significantly change the net lepton density (see the
Appendix). The neutrino contribution to the potential for
a neutrino moving in direction Ω is

Hneutrino;ab ¼
ffiffiffi
2

p
GF½ðnab − n̄�abÞ − ðfab − f̄�abÞ ·Ω�; ð2Þ

where a and b are flavor indices. Each particle contributes
to the number density n and number flux f in nearby grid
cells according to a third-order shape function. n and f are
then interpolated at third order from the background grid.
All of these steps are embedded in a fourth-order Runge
Kutta time integration scheme.

Although the original version of Emu was capable of
three dimensional simulations, we change the time-
integration procedure to be optimized for a larger number
of particles per cell. Previously, particles were transferred
between message passing interface (MPI) blocks at each
substep of the Runge-Kutta (RK) integration. We now
instead add an additional layer of ghost zones to the outside
of the domain (which do still get updated at every RK
substep). This increases the number of grid cells that must
be communicated between MPI ranks but decreases the
frequency with which particles need to be communicated
by allowing the particles to avoid transferring to a new
block until the end of the full time step.
For our spatial grid we use Cartesian coordinates and

uniform grid spacing. The particles are initialized in the
center of each cell and are distributed approximately
uniformly in direction such that each particle represents
the same amount of solid angle as described in [63]. We
place 64 particles in the x̂–ŷ plane in our production
simulations, which results in a total of 1506 particles per cell.

A. Initial conditions

We focus on three different physical conditions to
elucidate the role of symmetries in the outcome of the
fast flavor instability. In all cases, the simulations begin
with only electron neutrinos and antineutrinos, and no
heavy lepton neutrino content. The Fiducial case is the
same as that in [63], is described in the top grouping of
Table I, and is depicted in the top panel of Fig. 1. There are
an equal number of electron neutrinos and antineutrinos,
and the density of each depends linearly on the cosine of
the angle from the z axis:

dnνe
dΩ

¼ nνe
4π

ð1þΩ · ẑÞ;
dnν̄e
dΩ

¼ nν̄e
4π

ð1 −Ω · ẑÞ; ð3Þ

where dΩ is the solid angle differential and Ω is again the
direction vector. The 90Degree simulations have an iden-
tical initial electron neutrino distribution, but the electron
antineutrinos are instead distributed proportional to the
cosine of the angle from the x̂ direction:

dnνe
dΩ

¼ nνe
4π

ð1þΩ · ẑÞ;
dnν̄e
dΩ

¼ nν̄e
4π

ð1þΩ · x̂Þ: ð4Þ

This creates a distribution that is symmetric in the number
of neutrinos and antineutrinos, but there is no axis of
symmetry in momentum space. Finally, the TwoThirds
simulations have an initially isotropic distribution of
electron neutrinos with the same integrated number density
as the other two cases. The electron antineutrinos have the
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same linear dependence as in the Fiducial simulations but
with an overall density scaled by 2=3:

dnνe
dΩ

¼ nνe
4π

;

dnν̄e
dΩ

¼ nν̄e
4π

ð1 −Ω · ẑÞ: ð5Þ

This makes for an asymmetry between the numbers of
neutrinos and antineutrinos and makes the depth and size of
the ELN crossing significantly smaller than in the other
cases. Although none of these calculations are directly
representative of realistic astrophysical conditions, they
elucidate which features are likely accurately captured by
simulations with artificially imposed symmetries.
In practice, this means that the weight of a computational

particle (i.e., the number of physical neutrinos it represents)
is proportional to the angular distribution described above,
and we initialize the quantum density matrix for each
particle such that ρee ¼ ρ̄ee ¼ 1 and all other components
are zero. We then place a uniform random number in the
range ð−10−6; 10−6Þ in the real and imaginary components
of each off-diagonal matrix element and normalize the
diagonal elements to ensure a unit flavor vector length. This
choice of random initial conditions prevents us from
evaluating exact convergence, especially once the system
saturates and becomes chaotic. Changing the number of
particles necessarily changes the initial conditions in a
random way. However, in the same manner, this does also
prevent the results of the simulation from depending on the
precise functional form of the initial conditions, as all
modes are present at some amplitude in the randomized
initial conditions. It was also pointed out by [61] that the

final equilibrium distributions depend increasingly little on
the precise form of the initial perturbations, a point that we
reinforce in this work.
The spatial resolution of 1024 cells in the 1D simulations

follows the resolution requirements established in [63].
However, we found that the results of multidimensional
simulations are both less sensitive to spatial resolution and
more sensitive to angular resolution (see the Appendix). For
this reason, all of our production simulations for this work
have four times the number of particles per cell, but the
multidimensional simulations are only 128 cells on a side.
We find similar results down to a domain size of 8 cm on a
side for the multidimensional Fiducial and 90Degree sim-
ulations. The TwoThirds simulation set has a smaller
antineutrino density and crossing strength, and therefore
the dynamics are considerably slower and have longer
characteristic length scales. Because of this, we extend
the domain to 32 cm on a side for the multidimensional
TwoThirds simulations and 256 cm for the 1D TwoThirds
simulation.

III. RESULTS

We present a series of simulations described in Sec. II A
designed to elucidate the differences between simulations
with and without imposed spatial symmetries. All three
distributions are unstable to the fast flavor instability, so
their evolution is initially characterized by a linear
growth phase, where unstable modes grow exponentially.
Following this, the amplitude of the growing modes
approach their maximal values, the evolution equations
stop being well approximated by their linearized form, and
power moves from the fastest growing mode to many
other modes. Eventually, the distribution settles into a

TABLE I. List of simulation parameters. N x, N y, and N z are the number of grid cells in each direction. All boundary conditions are
periodic, so a grid size of 1 implies imposed homogeneity in the corresponding direction. Similarly, Lx, Ly, and Lz denote the physical
extent of the domain in each direction, although the domain size in the direction of unit grid size carries no actual meaning. The 1D
simulations have a larger domain size to be in line with the convergence criteria established in [63], and the multidimensional
simulations are based on the convergence criteria established in the Appendix. All simulations were done with an angular resolution of
64 particles in the x̂–ŷ plane, corresponding to 1506 particles per cell. nνe , nν̄e , and nνx denote the initial number density of electron
neutrinos, electron antineutrinos, and heavy lepton neutrinos, respectively. These are all three-flavor calculations, and both mu and tau
neutrino and antineutrino densities are set to 0. The initial flux factor and flux direction of each neutrino species is listed in the final
column. Graphical representations of the Fiducial, 90Degree, and TwoThirds initial conditions are shown in Fig. 1.

Name N x ×N y ×N z Lx × Ly × Lz (cm) nfνe;ν̄e;νμg (1032 cm−3) ðf=nÞfνe;ν̄e;νμg
Fiducial_3D 128 × 128 × 128 8 × 8 × 8

f4.89; 4.89; 0g f1=3ẑ; − 1=3ẑ; −gFiducial_2D 128 × 128 8 × 8
Fiducial_1D 1024 64

90Degree_3D 128 × 128 × 128 8 × 8 × 8
f4.89; 4.89; 0g f1=3ẑ; 1=3x̂;−g90Degree_2D 128 × 128 8 × 8

90Degree_1D 1024 64

TwoThirds_3D 128 × 128 × 128 32 × 32 × 32
f4.89; 3.26; 0g f0;−1=3ẑ;−gTwoThirds_2D 128 × 128 32 × 32

TwoThirds_1D 1024 256
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quasiequilibrium with increasingly small fluctuations
around average values. We will go through each of these
three phases in detail and show that while artificially
imposed spatial and directional symmetries can suppress
instability by limiting which modes can be expressed, the
final abundances of each flavor are the same between 1D,
2D, and 3D simulations for each of our three initial neutrino
distributions. There are also some more subtle differences

in the evolution of the Fourier and angular power spectra,
but interpreting these details requires significant care in the
context of numerical limitations.

A. Overall appearance

We found that the complex phase of neμ is particularly
useful in visualizing the complex matrix-valued solution,
especially during the growth phase, as it clearly shows
wavefronts of the flavor-transforming modes. In Fig. 2 we
render surfaces of constant complex phase of this quantity
at three points in time (each column corresponds to a
snapshot time) and for 1D (top row), 2D (middle row), and
3D (bottom row) simulations. The Fiducial_1D simulation
(top row) only has a finite computational extent in the ẑ
direction, but it is visualized by extruding the data in the x̂
and ŷ directions. Similarly, the Fiducial_2D simulation
(middle row) is simulated with finite computational extent
in the ŷ and ẑ directions, but it is visualized by extruding in
the x̂ direction.

1. Linear growth

During the growth phase of the Fiducial_1D simulation
(top left panel), we see evenly spaced flat sheets of constant
phase, indicating that the phase is varying in the ẑ direction
with a wavelength corresponding to the fastest growing
mode (this was demonstrated in greater detail in [63]). Due
to the symmetry between the �ẑ directions of the Fiducial
initial conditions, the real part of the frequency of the
fastest growing mode is zero and this is a standing wave;
even as the mode amplitude grows, the surfaces of constant
phase do not move until the instability saturates.
The same structure exists in the multidimensional

simulations, though the planes are distorted and intercon-
nected. The center-left panel shows the equivalent data
from the Fiducial_2D simulation. In the bottom left panel is
the data from the Fiducial_3D simulation. The wavelength
of the fastest growing mode in the ẑ direction in the
multidimensional simulations matches that expected from
the 1D analysis in [63] even though the one-dimensional
dispersion analysis does not account for the existence of
variations in the x and y directions. Animations of these
visualizations show that the kinks and holes in the phase
contours of the multidimensional simulations are also
essentially unchanging until the instability saturates. The
exact form of these features is nonunique and randomly
determined by the perturbations to the initial conditions. In
summary, shortly after the start of the simulation, the
distribution settles into a particular multidimensional
eigenmode that grows with the same characteristic growth
rate and wavelength as the purely planar solution in the 1D
simulation.
There are also small transient effects due to our choice of

neutrino mixing parameters. The data plotted in the left
column of Fig. 2 is entirely unpolluted by neutrino mass
effects, since we choose m1 ¼ m2 ¼ 0. However, neτ (not

FIG. 1. Graphical representation of the three initial conditions
considered in this work. The radial extent of the curves represents
the differential number density of that species of neutrino in the
corresponding direction. The real initial conditions are distributed
in all three directions and we only show the part in the x̂–ẑ plane;
the full distribution can be visualized by rotating each curve
around its axis of symmetry.
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shown) quickly overcomes its random initial phases and
establishes a constant phase throughout the domain instead
of the planar structure seen in neμ. This is a result of the
1 ↔ 3 vacuum mixing that grows linearly regardless of the
amplitude of the initial perturbations. The fastest growing
mode, however, still grows on top of the vacuum oscil-
lations. Within 0.2 ns the fastest growing mode overtakes
the vacuum oscillations and creates a phase pattern just like

in neμ. On the other hand, nμτ (also not shown) has a phase
distribution that is negative the phase neμ for the first 0.2 ns.
This reflects the fact that some of neμ induced by the fast
flavor instability is subsequently being pushed into nμτ by
the vacuum potential. After t ¼ 0.2 ns, the phase of nμτ also
transforms to an altogether different distribution, instead
varying on length scales comparable to 8 cm size of the
domain.

FIG. 2. Volume rendering of contours of constant phase of neμ for the Fiducial_1D (top row), Fiducial_2D (center row), and
Fiducial_3D (bottom row) simulations. Phases of −2π=3, 0, and 2π=3 are shown in blue, white, and red, respectively. The left column
shows the results at t ¼ 0.29 ns during the linear growth phase of the fast flavor instability, the center column shows the results at
t ¼ 0.77 ns after the instability saturates, and the right column shows the results at t ¼ 2.2 ns as the distribution is building power on
small scales. The phase of neμ demonstrates wavefronts of the fastest growing unstable mode. The Fiducial_1D data is copied into the
x and y dimensions and the Fiducial_2D data is copied into the x direction for visualization purposes. Although there is significant
multidimensional structure, the 3D results are qualitatively and quantitatively similar to the 1D and 2D results.
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The 90Degree_3D simulation (not shown) proceeds
quite similarly, except that the wave vector of the
fastest growing neutrino mode points in the direction of
ðẑ − x̂Þ= ffiffiffi

2
p

(and in the opposite direction for antineutri-
nos). The phase pattern is again stationary, but with a longer
wavelength due to the smaller magnitude of the self-
interaction potential resultant from neutrino and antineu-
trino distributions with a smaller angle between them. In
the 1D and 2D simulations, the x̂ direction is assumed to be
homogeneous, so the fastest growing is instead one with a
wave vector in the ẑ direction. The TwoThirds simulation
instead has a fastest growing mode with nonzero real
frequency. The phase pattern (also with a wave vector
parallel to ẑ) of neμ and neτ drift along ẑ with time. The
effects of the vacuum potential are identical in these
simulations as in the Fiducial simulation described above.

2. Saturation

Flavor transformation is only able to rotate each neu-
trino’s quantum density matrix. Since our particles start in a
pure electron flavor state, the nonzero components of the
eight-dimensional SU(3) polarization vector (i.e., coeffi-
cients of the Gell-Mann matrices) are P3 ¼ 1=2 and
P8 ¼ 1=2

ffiffiffi
3

p
. The magnitude of this polarization vector

is then jPj ¼ 1=
ffiffiffi
3

p
, so the maximum possible value for a

flavor off-diagonal component of the particle’s density
matrix is also 1=

ffiffiffi
3

p
.

When the particle quantum states approach this limit in
the Fiducial simulations at t ≈ 0.3 ns, the evolution
equations begin to manifest their nonlinearity and the
fastest growing modes cease to approximate the solution.
The bottom-center panel of Fig. 2 shows the state of the
Fiducial_3D simulation at t ¼ 0.77 ns, well after the
saturation of the instability has dismantled the fastest
growing mode. The main features have a size scale larger
than the wavelength of the fastest growing mode, but with
no preferred direction. We will describe this more quanti-
tatively in Sec. III C. Quasiplanar structures occasionally
spontaneously form in the phase of neμ with a random
orientation, but are again destroyed within a few tenths of a
nanosecond. The Fiducial_2D (middle center panel) sim-
ulation qualitatively (and we will later see, also quantita-
tively) reproduces this analogously in two dimensions.
Although the Fiducial_1D (top center panel) simulation is
still restricted to one spatial dimension, this chaotic, non-
linear behavior is also consistent with multidimensional
simulations, though it is more obvious in the curves plotted
in [63] than in the volume renderings in Fig. 2.
After t ≈ 1 ns, the distribution develops significantly

more structure at smaller scales (e.g., bottom right panel of
Fig. 2). Although we are able to demonstrate convergence
of the shape of this distribution (see the Appendix), the
time at which this high-frequency structure arises depends
on the angular resolution. We will try to argue in

Secs. III C and III D that this is a result of the interplay
between modes of small spatial and angular scales, and that
adding more particles delays the onset of these high-
frequency fluctuations by reducing the initial amplitude
of the angular modes. However, a full understanding of the
origin of this feature requires further investigation. The
same process occurs in the 1D (top right) and 2D (center
right) simulations.
The same comments can be made about the 90_Degree

simulations, except that the smaller potentials lead to a later
time of saturation at t ≈ 0.5 ns and the onset of high-
frequency structures at t ≈ 1.5 ns. The TwoThirds simu-
lations, in turn, saturate at t ≈ 1.5 ns and do not develop a
strong high-frequency component in neμ over the 5 ns of the
simulation. The fastest growing mode in the TwoThirds
simulations is however not completely destroyed and
continues to dominate the solution of neμ and neτ, though
with some random fluctuations on top of it. This is a
reflection of the fact that the amount of possible flavor
transformation is much smaller, so the postsaturation
distribution remains much more similar to the presaturation
distribution than in the Fiducial or 90Degree simulations.

B. Average flavor evolution

Perhaps the most important metric of flavor transforma-
tion is the expectation value of the amount of each flavor of
neutrino. We represent this by averaging the density
matrices of particles as

hρi ¼
P

pNρP
pN

; ð6Þ

where the sum is over computational particles. As
described in Sec. II, each particle has a unit-trace density
matrix ρ representing the flavor state of each neutrino and a
scalar N indicating the number of physical neutrinos that
particle represents (and similarly for antineutrino quan-
tities). In these simulations, all neutrinos and antineutrinos
begin in electron flavor states, so hρeei is equivalent to the
survival probability.
The evolution of hρeei plotted in the top panel of Fig. 3

further shows the dimension independence of the solution
for the Fiducial simulations. The values start on the left side
of the plot at 1 because all neutrinos begin in electron
neutrino states (modulo small perturbations). The ampli-
tude of these perturbations grows exponentially until
t ≈ 0.3 ns, where the amplitudes have grown to order
unity, characterized by a steep drop in hρeei. This happens
at a very similar time for 1D, 2D, and 3D simulations, as
the fastest growing mode can manifest in all three with the
same growth rate. Progressing farther to the right on the
plot, the averaged survival probabilities of the 1D, 2D, and
3D simulations all approach the equilibrium value of 1=3
(horizontal green line indicating complete flavor mixing)
at the same rate, albeit with random fluctuations.
The nonlinearity of the equations after the saturation of
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the instability cause the precise solution to be chaotic, so
this randomness is expected. The simulations of lower
dimensionality have larger fluctuations, though this is
simply a result of the fact that there are fewer grid cells
to average over in the domain.
We note that for the 2D and 3D Fiducial simulations, the

time to saturation is remarkably close to the light crossing

time of the domain (8 cm=c ¼ 0.27 ns), though this turns
out to be coincidental. We investigate the dependence of the
domain size in 1D simulations in [63] and in 2D simu-
lations in the Appendix, and find no effect. Indeed, even the
1D simulations presented here live on a domain size of
64 cm. In addition, the 90Degree simulations (center panel)
live on the same grid structure but show a different time to
saturation. The domain size of the multidimensional
simulations is effectively determined by requiring that
the fastest growing modes be able to fit in the domain.
The ratio of the growth rate and the wave number for the
fastest growing mode in the Fiducial simulations is
ImðωÞ=k ¼ 2.3 × 1010 cm s−1. This is indeed close to the
speed of light and likely to cause such coincidences when
the domain size is comparable to the fastest growing
mode’s wavelength.
The slight spread in the time of the drop for the Fiducial

simulations is due to differences in the initial amplitude of
the fastest growing mode and not due to differences in the
instability growth rate (all three clock in at 6.3 × 1010 s−1).
Higher-dimensional simulations have more grid cells,
which implies a larger number of possible modes, but
the contribution to each of those modes from the random
perturbations is smaller. The TwoThirds simulation (bottom
panel of Fig. 3) is much more sensitive to this effect, as the
saturation of the instability in the 3D simulation is about
0.2 ns later than in the 1D simulations, even though the
growth rate in all three TwoThirds simulations is measured
at 1.3 × 1010 s−1. Following the saturation of the instability
in the TwoThirds simulations, about 30% of the neutrinos
and 45% of the antineutrinos have converted to a heavy
lepton flavor. We will get to the 90Degree simulations
shortly.
The inability of the TwoThirds simulations to undergo

complete flavor transformation is understandable intui-
tively. Since the exponential growth from the fast flavor
instability is entirely a result of the self-interaction terms
(assuming of course that other contributions to the
Hamiltonian are small), we can rely on the symmetries
in that portion of the Hamiltonian. Specifically, the self-
interaction term has no preferred flavor, owing to the fact
that it arises only from neutral current interactions. The
antineutrino Hamiltonian is also trivially related to the
neutrino Hamiltonian (H̄neutrino ¼ −H�

neutrino). As a result,
the system must conserve the total flavor charge qa ¼
na − n̄a for each flavor a and the evolution of the anti-
neutrinos mirrors that of neutrinos. In the TwoThirds
simulations, there is an excess of electron neutrinos over
antineutrinos in the þẑ direction. If neutrinos and anti-
neutrinos moving in this direction begin transforming
flavor to a heavy lepton flavor, the total number of electron
neutrinos would decrease faster than the number of electron
antineutrinos, which on its own would result in a change in
qa. This transformation must be complemented by flavor
transformation on the other side of the crossing, where

FIG. 3. Time evolution of fraction of electron flavor neutrinos
for the Fiducial (top), 90Degree (center), and TwoThirds (bottom)
simulations. The 1D, 2D, and 3D simulation data are plotted in
gray, black, and blue, respectively. The green line marks the
equilibrium fraction of electron neutrinos (1=3 for Fiducial and
90Degree, 0.7 for TwoThirds). Equilibrium abundances (at late
times) of each neutrino species seems to be independent of
simulation dimensionality. The instability growth rates show
weak dimensionality dependence in the 90Degree simulations,
indicated by a slight offset in the time of the drop. The offsets in
the drop for the TwoThirds simulation reflects initial mode
amplitude differences in 1D, 2D, and 3D.
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electron antineutrinos are more abundant than electron
neutrinos, in a way that prevents qa from changing. This is
another way of stating that the fast flavor instability is
fundamentally a multidirection phenomena. However, it
is not yet clear to us how to predict the final abundances
without carrying out a simulation.
The 1D and 2D 90Degree simulations do, however,

differ slightly in their measured growth rate
(3.6 × 1010 s−1) from the 3D simulation (4.3 × 1010 s−1)
because the former are unable to support the true fastest
growing mode. The electron antineutrino distribution is
pointed in the x̂ direction, but the 90Degree_2D simulation
only allows inhomogeneity in the ŷ and ẑ directions and the
90Degree_1D simulation allows inhomogeneity only along
ẑ. That is, the antineutrino distribution is pointing out of the
plane of the 2D computational domain, and the fastest
growing mode has a wave vector in a direction between
the two distributions. As part of our numerical tests (see the
Appendix), we did try simulations with a grid instead in the
x̂ − ẑ plane, which resulted in a growth rate that matched
the 3D simulation. Despite the differences in growth rate,
the 1D, 2D, and 3D simulations all approach the same
equilibrium value of hρeei ¼ 1=3.
The Fiducial and 90Degree simulations of all dimen-

sionalities approach an equilibrium characterized by com-
plete flavor mixing. This is reflected in the tendency of
hρeei toward 1=3 in Fig. 3. We also show the azimuthally
integrated equilibrium distributions for the Fiducial simu-
lations in the top panel of Fig. 4. The gray vertical line
shows the polar angle where the crossing in the original
distribution was, and the blue curve, black marks, and gray
marks, respectively show the 3D, 2D, and 1D averages at
that polar angle at t ≈ 5 ns. At this point, there still are
some fluctuations, but it is clear that all polar angles show
even flavor mixing. The asymmetry of the 90Degree
simulations would require a Mollweide projection color
plot to show the spatially averaged survival probability
for each direction, since there is no reason to expect
azimuthal symmetry around any particular axis. We
do not show the resulting plot because it is exceedingly
boring—the survival probabilities also all lie near 1=3 for
all dimensionalities.
The TwoThirds simulation (bottom panel) is more

interesting. The location of the crossing in the original
distribution is closer to the −ẑ direction (also apparent in
Fig. 1). The result is a distribution that has a much smaller
region where there is an excess of antineutrinos over
neutrinos, and in that region the difference between the
differential neutrino and antineutrino densities are smaller.
We see that in simulations of all three dimensionalities, the
region “inside” the crossing completely mixes, and the
region outside the crossing compensates in a way that
preserves the total neutrino-antineutrino asymmetry. This
independently corroborates similar results found in [61].
However, an explanation of the precise functional form of

the compensating flavor transformation to the right of the
gray line still eludes us. The 1D results seem to have
significant scatter from the 2D and 3D results, but this
appears to be because the 1D simulations have more
difficulty relaxing. If the simulation is run for a longer
period of time (not shown to preserve the common time
snapshot), then the points do fluctuate around the multi-
dimensional results.

C. Power spectrum

We now turn our attention to the evolution of the Fourier
power spectrum of the neutrino distribution. In particular,
we assume the convention that

ñabðkÞ ¼
Xnx−1
l¼0

Xny−1
m¼0

Xnz−1
n¼0

e−ik·xlmnnabðxlmnÞ; ð7Þ

where we use l,m, and n to denote the index of the x, y, and
z position of the grid cell and a and b to denote the flavor

FIG. 4. Probability that a neutrino (top) or antineutrino (bot-
tom) starting in the electron flavor ends up in the electron (left),
muon (center), or tauon (right) flavor state as a function of polar
angle. Blue lines, black crosses, and gray circles are from 3D, 2D,
and 1D simulations, respectively. The vertical gray line shows the
angle of the crossing; to the left of this line there are more
antineutrinos than neutrinos. The green horizontal line is at
hρeei ¼ 1=3, marking complete flavor mixing. Flavor content
equilibrates between the flavors in the antineutrino-dominated
region, but no flavor transformation occurs far from the crossing.
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index. The above is evaluated as a discrete fast Fourier
transform using SciPy [65], and we use the resulting grid of
wave numbers k from 0 to π=Lz with spacing Δk ¼ π=Δz
(where Δz ¼ Lz=nz is the spatial grid size). We integrate
power in shells of magnitude of k according to

jñabj2ðkÞ ¼
X

kmin<jkj≤kmax

jñabðkÞj2: ð8Þ

kmin ¼ k − Δk=2 and kmax ¼ kþ Δk=2 define the inner
and outer radius of the spherical shell (in k space) over
which power is integrated for each value of k.
Returning to the Fiducial_3D simulation, the spectra of

nee and neμ are shown in the left column of Fig. 5. The color
denotes the time at which the spectrum was calculated; all
of the dark blue curves are from t ∈ ½0; 0.25Þ ns and hence
all represent points in time in the linear growth phase
(which ends at t ≈ 0.3 ns). The results are essentially
identical to those in the 1D simulations of [63] during
this phase. The fastest growing mode, characterized by a
wavelength of λ ¼ 2.2 cm, is visible as an exponentially
growing bump in jñeμj2. jñeej2 also grows sympathetically,
since an increase in jneμj requires a decrease in nee (the
quantum state “rotates” away from the pure electron flavor
state). Meanwhile, the noise floor (k≳ 1.5 cm−1) increases
linearly (indicated by horizontal lines that become increas-
ingly dense) at a scale that is not visible on the bottom
panel, and slows down toward jñeej ≈ 1044 cm−6. This
reflects the behavior of the spectrum of nμτ (not shown),

which grows because the vacuum part of the Hamiltonian
rotates perturbations into neμ. The subsequent exponential
growth of the flat part of the spectrum (indicated by evenly
spaced light blue horizontal lines) is likely a numerical
artifact that tracks the exponential growth of the physical
instability peak. The increasingly large amplitude of the
physical instability excites artificial vibrations throughout
the domain, but at amplitudes more than ten orders of
magnitude smaller than the peak itself. Higher-resolution
simulations have a lower noise floor, and the floor stops
growing exactly when the amplitude of the peak ceases to
be able to grow.
When the instability saturates (light blue curves), power

rapidly spreads to larger wave numbers and immediately
establishes an exponential distribution that intersects the
noise floor at k ≈ 25 cm−1 (for the resolution described in
Table I). This (still light blue) tail remains static for around
a tenth of a nanosecond before the high-k part of the
spectrum suddenly kicks out to intersect the noise floor at
k ≈ 33 cm−1 (rightmost light blue curves). As time pro-
gresses (orange curves), this feature travels up the slope.
The multidimensional simulation spectra differ signifi-

cantly from the 1D simulation spectra after saturation. First,
the much larger number of cells results in a significantly
smoother spectrum due to the summation in Eq. (8).
Second, the multidimensional simulations are both much
more sensitive to the fidelity of the simulation (especially
the angular resolution; see the Appendix), and converge
more quickly with resolution. Because of this, the

FIG. 5. Time evolution of the Fourier power spectra as defined in Eq. (8) for the Fiducial_3D (left column), 90Degree_3D (center
column), and TwoThirds_3D (right column) simulations. The color indicates the time of the snapshot for which the power spectrum was
evaluated. Early times are characterized by a rising bump with a peak at the fastest growing wave number, and late times show an
exponential distribution centered at k ¼ 0. The slow spread of the exponential tail is a numerical artifact (see the Appendix).
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long-term spread of the exponential tail (orange and beyond
in the left column of Fig. 5) seems to be a numerical
artifact. As the angular resolution increases this spread
slows, and including more spatial dimensions makes the
difference between simulations of different resolutions
more severe.
We will argue in Sec. III D that this feature is a result of

high-k modes interacting with high-l angular modes,
though we still lack a complete description. Even so, at
this point we can provide some numerical evidence
suggesting the credibility of the tail kick. The size, shape,
and speed, and timing of this feature is consistent between
the 2D and 3D simulations of the same resolution. This is
indicated by the overlap of the solid black and blue curves
in Fig. 6, which shows both spectra at t ≈ 1 ns. The size,
shape, and speed are consistent between simulations of
different resolutions as indicated by the series of black
curves in Fig. 6, which show the spectra from the
Fiducial_2D simulation, along with simulations at
higher angular resolution (Fiducial_2D_128d and
Fiducial_2D_256d). Note that the slope of the spectrum
on either side of the bump is the same. The sole difference
is the location of the bump, an indication that the feature
was launched sooner in the lower-resolution simulations.
Looking at the 1D data (gray), this feature is not at all

apparent, though the (significantly noisier due to fewer
cells to average over) spectrum appears to already match
the slope in the multidimensional simulations from after the
tail kick is launched. The lower resolution 2D and 3D
simulations (dashed black and blue, respectively) differ
greatly for k≳ 5 cm−1, even though they were quite similar
for the standard resolution. This is because, since even at
this early time, the artificial rapid spread of the exponential
tail is significantly faster in the 2D simulation than in the
3D simulation (see the Appendix).
A similar process occurs in the 90Degree_3D simula-

tions (middle column of Fig. 5). The fastest growing mode
has a slightly longer wavelength (smaller k). This is a result
of the smaller average angle between neutrinos and anti-
neutrinos compared to the Fiducial simulation, which
results in a smaller average strength of the self-interaction
Hamiltonian. The instability saturates at t ≈ 0.5 ns (dark
orange curves), and a similar tail kick travels up the
exponential tail.
The TwoThirds simulation (right column of Fig. 5)

shows two separate modes growing, and in this case the
azimuthally asymmetric mode dominates the symmetric
mode. In the top right panel, the amplitude of the k ≈
0.4 cm−1 mode is initially imperceptible for t ≤ 0.5 ns
(dark blue and light blue curves), but by t ¼ 0.8 ns (light
orange), it has overtaken the amplitude of the mode at
k ≈ 1.5 cm−1. That is to say that the mode causing the low-
k feature is initially smaller amplitude than the high-k
feature but has a faster growth rate. However, the bottom
right panel shows that the mode amplitude remains very
small in ñeμ.
This is naturally explained by a rapidly growing,

azimuthally odd mode with a long wavelength. If the value
of hρeμiðx̂Þ ¼ −hρeμið−x̂Þ, when neμ is calculated these two
contributions cancel out. However, in both cases hρeeimust
decrease as the flavor vector rotates away from the electron
flavor axis, so the mode invisible in ñeμ is still represented
in ñee. If we compute the cell-integrated transverse neutrino
flux feμ;x ¼

P
Nρeμpx=jpj (where the sum is over all

particles in a grid cell), the factor px=jpj itself is odd in
direction, so feμ;x is not sensitive to isotropic modes and
only shows direction-odd modes. Indeed, plots of the phase
of this quantity (not shown) exhibit a wave with a wave-
length of 16 cm and wave vector along ẑ, consistent with
the low-k peak.
The behavior of the exponential tail in the TwoThirds

simulation is similar to that of the Fiducial and 90Degree
calculations in that it also temporarily freezes (t ≈ 1.8 ns,
salmon curves) before the high-k part of the tail kicks out
and sends a bump traveling up the slope. Finally, the main
peak in the bottom right plot is slowly moving toward
k ¼ 0 as in the other simulations. The movement of the
peak is slower in the TwoThirds simulation because of the
overall longer average timescale from the weaker self-
interaction potential.

FIG. 6. Snapshot of the power spectrum of neμ at t ¼ 1 ns for
the 1D, 2D, and 3D Fiducial simulations under variations in the
number of particles per cell; 32d means 32 equatorial directions
or 378 particles per cell, 128d means 6022 particles per cell, and
256 means 24088 particles per cell. Solid curves reproduce a
single snapshot of the data shown in Fig. 5. The 2D and 3D
results at similar resolutions have very similar peak behavior, and
the resolution dependence is similar for 2D and 3D simulations
(though 1D simulations behave differently). The four black
curves show that the slope of the exponential tail on either side
of the upward-propagating feature is robust, but the time at which
that feature is launched is increasingly late with increasing
resolution.
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D. Angular structure

None of the simulations in this work restrict any angular
dimensions; every simulation in Table I has 1506 particles
in each cell with momenta distributed evenly over the full
4π steradians of solid angle. Even so, restrictions in spatial
dimensions can have some impact on the angular structure
of the results, and restrictions in angular dimensions can
prevent modes from growing even if all three spatial
dimensions are included.
The imposed symmetries significantly affect the structure

of the fastest growing mode in the 90Degree simulations,
since the distribution itself does not have any axis of
symmetry. We show in Fig. 7 a mollweide projection of
the spatially averaged value of ρee for each particle direction
in the three 90Degree simulations at t ¼ 0.56 ns, shortly
before the instability saturates. The precise colors should not

be compared directly, as they can differ between panels due
to slightly different simulation output times. Instead, the
valuable information is in the shape of the regions that
exhibit strong flavor transformation. In the 3D simulation
(bottom panel), the fastest growing mode exhibits neutrinos
in the directions near the original ELN crossing (gray curve)
transforming flavor most quickly. In the 1D calculation (top
panel), the band of maximal flavor transformation does tend
slightly toward the ELN crossing, but appears much more
tightly bound to the equatorial plane as a result of the
influence of the imposed translational symmetry. The 2D
calculation (center panel) is quite similar to the 1D calcu-
lation, since the imposed symmetry results in themajority of
the antineutrino distribution being pointed in a direction (x̂)
that is assumed to be homogeneous. Indeed, repeating the
90Degree_2D simulation with the imposed symmetry
instead in the ŷ direction (not shown) yields a growing
mode with an angular structure matching that of the 3D
simulation. This corroborates the argument in Sec. III B that
because the fastest growing mode cannot exist in the
90Degree_1D and 90Degree_2D simulations, a different,
more slowly growing mode compatible with the imposed
symmetry takes the mantle during the growth of the
instability.
We can describe the angular structure of the neutrino

radiation field in terms of a spherical harmonic power
spectrum. A continuous angular distribution function can
be decomposed into spherical harmonics as

fabðcos θ;ϕÞ ¼
X∞
l¼0

Xl

m¼−l
fab;lmYlmðcos θ;ϕÞ: ð9Þ

In this section, fab refers to the angular distribution
function flavor matrix, which is related to the number
density matrix via

R
dΩfab ¼ nab, rather than the number

flux vector. We can approximately evaluate the coefficients
fab;lm as [66]

fab;lm ¼
Z

dΩfabðcos θ;ϕÞY�
lmðcos θ;ϕÞ;

≈
1

V

X
p

Npρp;abY�
lmðcos θp;ϕpÞ: ð10Þ

We have assumed that all particles occupy the same solid
angle in this direction, which they do approximately by
construction. We then evaluate a one-dimensional angular
power spectrum as

jfab;lj2 ¼
Xl

m¼−l
jfab;lmj2: ð11Þ

Looking first at the power spectrum of feμ in the
90Degree_3D simulation (bottom panel of Fig. 8), we
see that the initial random perturbations have a power

FIG. 7. Mollweide projection of the electron neutrino abun-
dance in the 90Degree simulation at t ¼ 0.56 ns, or shortly
before the flavor instability saturates. The 1D (top) and 2D
(center) show similar mode structure, though the mode in the 3D
simulation (bottom) much more closely tracks the initial ELN
crossing (gray curve).
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spectrum characterized by less power on smaller angular
scales (lowest dark blue curve), as low-l modes effectively
average over a large number of incoherently random values.
The fastest growing mode begins to emerge in the next two
dark blue curves corresponding to t < 0.25 ns, exhibited
by an angular spectrum peaked at l ¼ 0 and that extends
out to l ¼ 10. The mode then grows in amplitude with the
same spectral shape for the next 0.25 ns (light blue curves),
bringing up an artificial the high-l plateau with it, similar
to the exponential of the Fourier plateau discussed in
Sec. III C. It is once again important to note that the level
of the artificial plateau is several orders of magnitude below
the peak. After t ¼ 0.5 ns (dark orange curves), the angular
power spectrum stops growing and power cascades away
from l ¼ 0 to smaller angular scales.
The time during which the angular spectrum is extending

to higher l (dark orange curves) corresponds to the time of
the “tail-kick” feature in Fig. 5 (see Sec. III C). It is not until
t ≈ 0.75 ns (light orange curves) that this cascade hits
l ¼ 32, the highest-l mode representable by our 1506
particles per cell (64 particles in the x̂–ŷ plane in momen-
tum space). By this point, the tail-kick feature is already
halfway up the Fourier power spectrum slope in Fig. 5.
Hence, we believe the tail-kick feature is a physical result
of modes of high l interacting with modes of high k, rather
than a numerical artifact of our limited angular resolution.
We commented in Sec. III C that the tail kick occurs later

for simulations with higher angular resolution (more
particles per cell). In the top panel of Fig. 8 we also see
dashed lines that depict the spectra from otherwise equiv-
alent simulations performed with fewer particles per cell.
Since these low-resolution simulations have only 32
particles in the x̂–ŷ plane in momentum space, the high-
est-l mode that is represented in the data is l ¼ 16. The
initial noise level (bottom dashed blue curve) is a factor of 4
higher because each mode now represents an average over a
factor of 4 fewer particles. This factor of 4 is maintained
throughout the growth phase (dark blue and light blue,
note that there are fewer dashed curves because the data
output frequency was a factor of 2 lower), so it reaches its
maximal amplitude sooner than the standard resolution
simulation.
For t≳ 0.75 (light orange and later solid curves), power

continues flowing from low l to high lmodes. By the end of
the simulation (solid black curve), the angular power
spectrum again takes on the shape representative of
incoherent random noise, much like the random initial
conditions (lowest dark blue curve), but with a much larger
amplitude. Once again, the power in the lower-resolution
simulation (dashed black curve) is a factor of 4 larger
because each mode averages over a factor of 4 fewer

FIG. 8. Evolution of the angular power spectrum of feμ as
defined in Eq. (11) for the 1D (top panel) and 3D (bottom
panel) 90Degree simulations. Solid lines show data from the
standard simulations listed in Table I with 1506 computational
particles per cell, while dashed lines show data from otherwise
identical simulations with 378 particles per cell. The standard
simulations contain significant information up to l ¼ 32,
while the low-resolution simulations only contain significant
information up to l ¼ 16. The time of the snapshot used to make
the curve is indicated by color in the same way as in Fig. 5. The
“tail kick” in Fig. 5 corresponds to the saturation of low-l angular
power (dark orange curves) and not to power cascading to smaller
scales than the angular resolution can support (light orange
curves).
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incoherent particles. This spread to small angular scales is
consistent with that observed by Johns et al. [50], though
our method is not susceptible to the same kind of spurious
oscillations associated with a boundary condition imposed
at small angular scales. Since all of these results are
distributed from a set of computational particles, there is
no explicit angular boundary condition enforced. Rather, it
just arises naturally (though no less artificially) as a limited
number of particles are less able to provide the angular
detail that a larger number of particles could.
Looking briefly at the top panel of Fig. 8, we see that the

same line of reasoning applies to the 90Degree_1D
simulation. The exception is the form of the angular power
spectrum at the end of the simulation (solid black curve).
The shape is mostly flat, unlike the monotonically rising
power spectrum indicative of incoherent random noise (like
the bottom most dark blue curve). This is a result of the fact
that the restricted spatial dimensions suppresses angular
anisotropy, as was reported in [63].
The Fiducial and TwoThirds simulations have initial

conditions that are initially symmetric around the ẑ direc-
tion, but the evolution of the angular spectrum (not shown)
is still very similar to the 90Degree simulation. In [63], we
reported that in the Fiducial_1D simulation, this azimuthal
symmetry is very well preserved through the entirety of the
simulation, even though the initial perturbations are ran-
dom and not axisymmetric. When we relax the assumption
of homogeneity in x̂ and ŷ, the Fiducial_2D and
Fiducial_3D simulations are similarly characterized by a
fastest growing mode that is azimuthally symmetric around
the ẑ axis. However, the high degree of azimuthal symmetry
begins to breaks down even before the instability saturates,
and fluctuations begin to exist on increasingly smaller
angular scales. The fastest growing mode in the TwoThirds
simulations is azimuthally asymmetric (see Sec. III C), but
fluctuations once again move from large to small angular
scales upon saturation of the instability. In the case of the
TwoThirds simulations, it is clear that if axial symmetry
were imposed, only the slower modewould be able to grow.

IV. CONCLUSIONS

We perform the first simulations of the fast flavor
instability in three spatial dimensions and two momentum
dimensions (i.e., all dimensions relevant when the vacuum
Hamiltonian is negligible). We simulate each of three
idealized initial conditions in one, two, and three spatial
dimensions in order to probe for effects of artificially
imposed symmetries. In all cases, the simulations are
characterized by a linear growth phase where unstable
modes grow exponentially, followed by saturation of the
instability, where power cascades to smaller spatial (Fig. 2)
and angular (Fig. 8) scales. For our choice of initial
conditions, the predictions of the abundance of each
neutrino flavor after the fast flavor instability saturates
are independent of the dimensionality of the simulation

(Figs. 3 and 4). This is a very welcome result that supports
the validity of the many previous simulations performed
with imposed symmetries, though our set of three initial
conditions is far from exhaustive.
However, imposed symmetries are not without impact.

The growth rate of the instability is mildly dependent on
simulation dimensionality when the fastest growing mode
has a wave vector with some component along a direction
assumed to be homogeneous (Fig. 5). When spatial
symmetries are imposed, the angular structure of the fastest
growing mode can also be significantly different (Fig. 7). In
addition, the fastest growing mode in our “TwoThirds” set
of simulations is axially asymmetric. Imposing axial
symmetry would preclude this mode from existing, and
one would only see the more slowly growing axially
symmetric mode (right column of Fig. 5).
Similar to the 1D calculations in [63], Fourier transforms

of the neutrino distribution show exponentially growing
perturbations in agreement with the dispersion relation.
When the instability saturates, power quickly jumps to
higher wave numbers, establishing an exponential tail
(Fig. 5). Our multidimensional simulations show a slower
growth of this tail and stronger dependence on the angular
resolution. From these data, we expect that physical
distributions would be characterized by a power distribu-
tion at late time centered at k ¼ 0 and with a static
exponential tail. The much larger number of grid cells
also make the power spectrum much clearer, such that we
can identify a “tail-kick” feature in the spectrum, where
shortly after saturation of the instability, the high-k part of
the spectrum suddenly grows, sending a bump up the slope
of the power spectrum toward small wave numbers. We
believe this is related to the growth of modes at small
angular scales interacting physically with modes of small
spatial scales, though more work is required to confirm and
explain this on a fundamental level.
The particle-in-cell method keeps some features of a

multibody quantum system in that the flavor vector length
of each particle cannot change or average out, but only
rotate. However, the largest physical shortcoming of this
work is the lack of multibody entanglement. There have
been significant advances on this front recently (e.g.,
[67–71]), and if entanglement proves to be be important
in general in the limit of many particles, these results will
likely need to be reconsidered.
In the future it will be important to simulate a larger

variety of initial conditions to map out the steady-state
flavor distribution induced by each. A confidence that the
abundances of each neutrino flavor is independent of any
numerical choices will make sub-grid modeling a much
more attractive and feasible prospect. In addition, it will be
interesting to simulate cases where the matter and vacuum
potentials are relevant in order to determine if multidimen-
sional effects are relevant more broadly. Finally, as with any
local simulation, it is not clear how well simulations
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performed with a particular choice of initial perturbations
and boundary conditions represent reality. Although we do
ensure that our flavor abundances are independent of our
domain size, simulations following an single local pertur-
bation (as opposed to our random perturbations) lead to
qualitatively different behavior if not allowed to interact
with other perturbations [55,61]. While we believe the
randomized perturbations are more easily interpreted as
natural, more work is required to understand how to map
simulation results to natural intuition.
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APPENDIX: CONVERGENCE STUDY

The symmetries of the self-interaction Hamiltonian guar-
antee that, if the vacuum andmatter parts of the Hamiltonian
are neglected, the difference between the number of neu-
trinos and antineutrinos remains a constant. This is not
explicitly enforced in our code, and in fact we do include a
vacuum contribution to the Hamiltonian, but it is so weak to
be of little consequence. Figure 9 shows the violation of this
conservation of electron lepton number, computed as
ðδnee − δn̄eeÞ=Trðnþ n̄Þ and δn ¼ nðtÞ − nð0Þ. In all sim-
ulations, the integrated electron lepton number is preserved
to approximately one part in 106.
The most obvious relevant prediction from these simu-

lations is the expectation value of the number of electron
neutrinos present. In Fig. 10 we show the evolution of the
abundance of electron neutrinos for 2D (top) and 3D
(bottom) simulations of all three initial conditions, similar
to Fig. 3. We performed a much larger set of numerical
studies for 2D simulations because of their relatively lower
computational cost. The growth rates of the instability and

the equilibrium abundances are quite robust to changes in
the number of particles per cell (comparing to simulations
labeled “32d,” “128d,” and “256d” after the number of
directions in the x̂–ŷ plane in momentum space), the size of
the domain (comparing to simulations labeled “16 cm” and
“64 cm” indicating the cube size), and the number of grid
cells in each direction (comparing to simulations labeled
“nx256” and “nx1024” indicating the number of grid cells
in each nonhomogeneous direction). The results seem to be
most strongly dependent on the number of particles per
cell. For the 2D 90Degree simulations, the growth rate of
the instability can be enhanced by making the computa-
tional plane in the x̂ − ẑ direction to match the principal
directions of the neutrino and antineutrino distributions
(labeled by “inplane”). This permits the growth of the true
fastest growing mode, which has a wave vector that is
between those two directions.
The evolution of the power spectrum is a telling indicator

of numerical effects, so we investigate it in some detail.
Figure 11 shows the evolution of the power spectrum of neμ
for the standard-resolution Fiducial_3D simulation (bottom
panel), along with an otherwise identical simulation where
we set the number of equatorial directions to 32 (top panel,
corresponding to 378 particles per cell and the “32d”
dashed blue curve in the bottom left panel of Fig. 10). The
top panel has a higher line density simply as a result of
more frequent data output. The most obvious difference is
that with more particles per cell, the exponential tail spreads
more slowly. In addition, looking at the lowest orange
curve in each panel, it is clear that the “tail-kick” feature
described in Sec. III C occurs at a later time in the higher-
resolution simulations (e.g., the bump in the lowest orange

FIG. 9. Violation of the conservation of integrated electron
flavor content, computed as ðδnee − δn̄eeÞ=Trðnþ n̄Þ and δn ¼
nðtÞ − nð0Þ. The symmetry of the neutrino self-interaction part of
the Hamiltonian requires this to be zero, but this is not enforced
by the code.
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curve is farther up the slope in the top panel than in the
bottom panel). We argue in Sec. III D that this timing
difference is because more particles per cell means that the
low-l part of the angular power spectrum has a smaller
amplitude. It then takes slightly longer for the angular
power spectrum to grow to the point that it interacts
significantly with the high-k part of the Fourier spectrum.
In both cases, the peak of the distribution drifts toward
k ¼ 0 at the same rate for the first 1 ns, but beyond that the
Fiducial_3D simulation develops a peak at a single k not
evident in the Fiducial_3D_32d simulation. We do not
believe that feature is physical. The details of the spectrum
this close to k ¼ 0 show limitations from the domain size—
a larger domain would afford finer resolution in k.
The same can be said about the 2D simulations shown in

Fig. 12. From top to bottom we show simulations with 32,
64, 128, and 256 equatorial directions (378, 1506, 6022,
and 24088 particles per cell, respectively). As before,
higher angular resolution causes the exponential tail to
drift more slowly. In addition, higher angular resolution

also causes more choppy features in the spectrum near
k ¼ 0 at the scale of the k resolution. The limiting
numerical factor for the 0 ≤ k ≤ 10 part of the spectrum
for the Fiducial_2D_256d simulation at t ¼ 5 ns is likely
the domain size.
We will focus on the drift of the exponential tail as a

probe of numerical artifacts. Interestingly, for the same
angular resolution the 3D results in Fig. 11 perform better
than the 2D results in Fig. 12 in that the exponential tail
drifts more slowly. The spread of the exponential tail after
t ¼ 1 ns is significantly smaller for the Fiducial_3D
simulation than for the Fiducial_2D simulation. In addition,
the difference between the Fiducial_3D_32d and
Fiducial_3D exponential tails is much greater than the
difference between the Fiducial_2D_32d and Fiducial_2D
tails. This pattern extends down to 1D simulations—there
is a small difference between simulations of different
angular resolution, which led us to expect that the expo-
nential drift was not a numerical artifact in [63]. The
numerical origin of this drift is not clear.

FIG. 10. Evolution of the domain-averaged electron neutrino abundance considering various numerical choices. Solid curves
reproduce data shown in Fig. 3. The top row shows results from 2D simulations while the bottom shows those from 3D simulations.
Each column shows results from each of our three initial conditions. Labels with a “d” refer to equatorial directions to be compared to the
standard resolution of 64: 32d means 32 equatorial directions or 378 particles per cell, 128 means 6022 particles per cell, and 256d
means 24088 particles per cell. “nx” labels the number of grid cells on each extended dimension of the simulation, keeping the domain
size constant, where “nx128” is the standard resolution for the multidimensional simulations. “cm” labels the domain size of each
dimension of the cube in centimeters. The horizontal green line marks complete flavor mixing. “inplane” for the 2D 90Degree
simulations means the computational domain extends over the x̂ − ẑ plane instead of the ŷ − ẑ plane, slightly increasing the instability
growth rate. Overall, our numerical choices have little effect on the instability growth rates and the late-time electron neutrino
abundances.
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Finally, we look at the evolution of the peak of the power
spectrum with time in Fig. 13. Initially, the randomized
initial conditions result in a peak at high wave number, but
almost immediately shoots down to the value of k ≈ 3 cm−1

corresponding to the fastest growing wavelength of
λ ¼ 2.2 cm. After the instability saturates at t ≈ 0.3 ns,
the peak begins to drift toward k ¼ 0 over the next few
tenths of a nanosecond, and should remain there for the rest
of the simulation. Looking first at the standard resolutions
(solid curves), all three dimensionalities agree well until
t ≈ 2 ns, at which point all three dimensionalities show
peaks drifting away from k ¼ 0. The higher-resolution 2D
results (red and green dashed curves) tend to stay much
closer to k ¼ 0 at late times, while the lower-resolution 2D
and 3D results (dashed black and blue, respectively) drift
upward as early as t ≈ 1 ns.

FIG. 11. Time evolution of the power spectrum of neμ for the
Fiducial_3D simulation (bottom panel) employing 64 equatorial
directions (i.e., 1506 particles per cell) and then an otherwise
identical simulation employing only 32 equatorial directions (top
panel, 378 particles per cell). The spread of the exponential tail
toward higher values of k is more strongly affected by this angular
resolution than any other numerical choice.

FIG. 12. Time evolution of the power spectrum of neμ for the
Fiducial_2D simulation (second panel) employing 64 equatorial
directions (i.e., 1506 particles per cell). The other panels show the
equivalent results from simulations employing only 32, 128, and
256 equatorial directions (378, 6022, and 24088 particles per cell,
respectively). The spread of the exponential tail toward higher
values of k is more strongly affected by this angular resolution
than any other numerical choice.
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