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ABSTRACT OF THE DISSERTATION

On Shifted-Localized Derivators

by

John Min Zhang

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2019

Professor Paul Balmer, Chair

This dissertation investigates objects known as “shifted-localized derivators” through the

lens of algebraic geometry by building affine and projective space objects over an arbitrary

derivator. For affine space, we give a definition of An over a derivator D, and then show

a series of results identifying it as extending the An-construction in algebraic geometry,

including a universal property. We then note that this construction is not specific to the

choice of An but can be used for any choice of abelian, unital monoid.

In order to tackle the projective space case, first we prove some technical results on two

topics: compact generation of triangulated derivators, and a Day convolution structure on

symmetric monoidal derivators shifted by symmetric monoidal categories. To construct Pn,

we first shift by a symmetric monoidal category Qn to achieve an analogue of graded modules

over polynomial rings, and then localize by localizing to copies of An. We prove generation

and semiorthogonal decomposition results in Pn by using this formulation of localization,

and the aforementioned technical results.
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All that is gold does not glitter

Not all those who wander are lost
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CHAPTER 1

Introduction

Since the 1960s, category theory has developed into a multifaceted, multipurpose toolbox

for researchers in algebra, representation theory, algebraic geometry, topology, and myriad

other mathematical fields. Triangulated categories are one primary tool in this toolbox, as

discussed in [Nee01]. Triangulated categories arise in nature as derived categories of abelian

or exact categories (in algebraic geometry and representation theory), as stable categories

(in representation theory), or as homotopy categories of (stable) model categories or ∞-

categories (in algebraic topology), just to name a few examples.

One fundamental construction in a triangulated category T is the cone C(f) of a mor-

phism f : X → Y in T , viewed either as a mapping cone of complexes in homological algebra

or as the mapping cone in topology. This mapping cone is well-known to be nonfunctorial,

and in [Ver96] it is noted that if the cone is functorial, then the category is somewhat similar

to being abelian semi-simple. As almost all structure in a triangulated category is dependent

on the cone, this creates a problematic situation where many things exist up to non-unique

isomorphism. However, in most triangulated categories occurring in nature, there is a model

for the cone, which have led mathematicians to develop stronger structures beyond merely

triangulated categories. Two main approaches include dg-categories, see [Kel94] and sta-

ble ∞-categories, see [Lur09] or [Lur17]. Derivators, introduced by Grothendieck, Heller,

Franke, and others, see [Gro91], [Hel88], or [Fra96], are another attempt to clarify this issue.

Consider the construction of the mapping cone in the derived category of an abelian

category. Given the abelian category A and some category of chain complexes denoted

Ch(A), we would form the mapping cone in D(A) of a map f : B → C by choosing a
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representative for f : B → C in Ch(A), take the mapping cone in Ch(A), and then take a

representative in D(A). The lift back to the category of chain complexes creates functoriality

issues.

Based off this idea, we see that correctly speaking, the mapping cone of a map in the

derived category is not so much being taken in (D(A))[1], the arrow category of D(A), but

rather in the derived category D(A[1]). If we knew what A was we would be afforded access

to the category D(A[1]), but this is a fundamentally un-triangulated construction, as we

return to the underlying abelian category first before making another triangulated category.

On another note, it is a simple exercise to see that D(A)[1] is only triangulated if A is the

zero category 0.

Derivators provide a means of addressing this issue: specifically, to every category J in

a diagram category Dia, we assign a category D(J). These categories are connected by a

number of adjoints: for every functor u : I → J in Dia, there is a corresponding functor

u∗ : D(J)→ D(I), along with left and right adjoints given by u! a u∗ a u∗.

While the list of conditions may look imposing, derivators appear naturally in most

categorical contexts, such as:

1. The assignment I 7→ D(AI) gives a collection of derived categories building off the

derived category D(A).

2. The assignment I 7→ HO(MI), for a Quillen model category M gives a collection of

homotopy categories building off the homotopy category HO(M).

3. The assignment I 7→ CI for any bicomplete category C gives the usual collection of

presheaves with values in C.

Essentially all triangulated categories appearing in nature can be turned into derivators

instead, as we will see in the next section. As such, there is ample reason to investigate the

full structure of a derivator instead of the single triangulated category.
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In fact, derivators and triangulated derivators have been studied to great effect in al-

gebraic topology, see [Fra96], [GPS14a], [GPS14b], representation theory, see [GS16a] and

[GS16b], and algebraic geometry, see [Hor17a], [Hor17b], and K-theory, see [Pat17], [Tab08],

[CT11]. Our contribution to this field is in a more algebro-geometric direction, wherein

general affine and projective spaces are defined and studied. These constructions generalize

results known about triangulated categories of affine and projective space, while also provid-

ing new insights that triangulated categories presumably did not have sufficient structure to

conclude.

Moreover, similar to the study of stable∞-categories, in a series of papers [Cis03], [Cis04],

[Cis08] Cisinski shows that stable derivators are spectrally enhanced. In [Tab08] and [CT11]

this is used as a weapon to study the homotopy theory of dg-categories.

Apart from the aforementioned issues in the theory of triangulated categories, there are

precious few ways to make new triangulated categories out of old. Taking full triangulated

categories is a boring tool that also rarely yields anything new, and though the theory of

localization is well-developed, see [Kra10], the categories it can produce are still limited.

More recently there have been two other constructions to create new triangulated cate-

gories, namely modules of a separable monad, see [Bal11], and the theory of completion with

respect to a metric, see [Kra18], [Nee18], [Nee19]. These are more specialized and fragile

constructions that may not always exist, or give us a category that we know how to interpret.

Derivators give us a new tool of constructing new triangulated categories. In a triangu-

lated derivator D, typically one category D(e) will be the original triangulated category we

were interested in investigating. However, as a part of the axioms, every other category D(I)

is also triangulated in a compatible manner with D(e). For a derivator-oriented construction,

we could construct the shifted derivator DI , defined as DI(J) = D(I × J).

As in [Bal16], taking modules over a separable monad in a triangulated category is akin to

pulling back along an étale map, localization being a special case of this. Here we will describe

affine space An and projective space Pn-constructions over derivators, which combined with

the above can describe a large class of “schemes over a derivator.”
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We saw earlier that we wanted to access the derived category D(A[1]). This category

can be conceived of as the base of a shifted derivator. Alternatively, under the assignment

D(I) = D(AI), the derived category D(A[1]) would simply be D([1]), a part of the derivator.

Something that is difficult to access from a triangulated perspective occurs naturally in the

derivator world.

Shifted derivators DI or values of a derivator D(I) at I 6= e often carry meaning that

perhaps is not immediately apparent. We have seen this already with I = [1]. Other possible

choices of I allow us to construct affine and projective space constructions, as well as naive

for of G-equivariance for a group G.

In addition, there is a major philosophical reason to use derivators in lieu of triangulated

categories. With the definition of triangulated category, we speak of a chosen self-equivalence

Σ and a chosen choice of cones C(f) for every morphism f : X → Y , unique up to non-

canonical isomorphism. In practice, of course we have a single choice of Σ, either given to

us in the structure of a stable model category, or self-evidently a shift in degree for chain

complexes, and a clear choice of C(f) up to non-canonical ismorphism. The choices for the

triangulated structure are self-evident with no other alternative, so one would hope for a

way to have a canonical triangulated structure, see [Gro13] or [Gro18] for more details and

philosophical motivation.

In the world of derivators, most parts of the triangulated structure are canonically con-

structed. Assuming that we have a pointed derivator D, we can create a canonical suspension

morphism Σ by sending an element X ∈ D(I) to an element of the form

X −−−→ 0y
0

located in D(I×p), and then taking the homotopy pushout to get back to D(I). This can all

be done functorially, and the right adjoint Ω can be constructed in a similar fashion. Note

here the similarity to topological constructions as a justification for calling this suspension.

If we add the condition that (Σ,Ω) are not merely an adjunction but actually equivalences,
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the derivator is known as being stable. With a lifting condition known as strongness or (Der5),

values of the derivator D will have canonical triangulated structures. Notably, the lifting

condition (Der5) is satisfied in basically all examples of derivators in nature. See [Gro13]

for a deeper discussion of this axiom and precise justifications; we will simply sketch how to

construct triangles and only do so on the base D(e).

Given a morphism f : X → Y in D(e), the condition (Der5) guarantees that we can lift

it to an object of the form (X → Y ) in D([1]). From then on, we extend (X → Y ) via two

successive Kan extensions to an object of shape [2]× [1]:

X
f−−−→ Y −−−→ 0y y y

0 −−−→ Z −−−→ ΣX

Extending this in both directions gives the usual triangle

· · ·ΩZ → X → Y → Z → ΣX · · · .

From then on in [Gro13] it is shown why this gives a canonical triangulated structure on

D(e). Using shifts DI we extract each D(I) as the base of a triangulated derivator and endow

it with a canonical triangulated structure. Moreover, the usual functors u!, u
∗, u∗ that appear

will be triangulated functors also.

It is evident that due to the lift, the cone is also not functorial, not that we would expect

it to be. However, we can speak of a “functorial cone construction” from D([1]) → D(e),

which is sufficient for most purposes.

This poses a major philosophical difference with the usual ideas of triangulated categories;

instead of specifying the triangulated structure on the category, when using derivators all

of the triangulated structure appears canonically whenever the derivator satisfies certain

reasonable conditions. This is in contrast to, say, the use of dg-categories, which seek to

impose yet more structure on the triangulated category.

Starting from [Bal02] and [Bal05], Balmer and a succession of authors have defined and

implemented a program of tensor-triangular geometry. Broadly speaking, Balmer takes usual
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triangulated categories arising in nature with a compatible symmetric monoidal (tensor)

structure and creates a space that is similar to a Zariski spectrum, where the points are

so-called prime ideals in the tensor-triangulated category. Some core motivations of this

program are the classification of thick subcategories of derived categories of schemes, and

the study of Morava K-theories in algebraic topology.

The guiding principle in tensor-triangular geometry is that while we cannot hope to

classify all (compact) objects inside a given tensor-triangulated category, or perhaps even the

thick subcategories, we can hope to do so with aid of the tensor structure. This philosophy

has been successfully adapted to do computations in algebraic geometry, representation

theory, algebraic topology, C∗-algebras, and so forth. In particular, as in [Bal02] it is possible

to reconstruct a scheme X (not just the topological space, but also local data) from the

derived category D(X), thereby in theory subsuming scheme-theoretic study of algebraic

geometry into tensor-triangular geometry, the question was posed as to what the notion of

A1 of a triangulated category meant. This presents one motivating question of our research.

While we do not make direct tensor-triangulated computations here, we can still detect

strong connections to tensor-triangular geometry. As it stands it does not necessarily make

sense to make an attempt on the direct computation of the spectrum. Rather, we can

use other tools, for example developed in [Bal10a], to get a better grasp on how we have

A1-objects in tensor-triangular geometry.

Our approach to constructing Pn also nods to tensor-triangular concerns; sheaves on Pn

are graded modules that are equivalent if their restrictions to copies of An are the same.

However, in general it is not clear how universal properties in tensor-triangular geometry

and derivators relate, though the connection is undeniable.

The structure of the thesis is as follows. In Chapter 2, we give necessary definitions for

the rest of our work. Chapter 3 sets the technical stage with various results about shifted

derivators and monoidal structures, while Chapters 4-6 introduce the An-construction, de-

scribe its useful properties, and discusses a large class of shifting diagrams. In Chapter 7 we

describe a specific class of open subscheme and describe the relationship with the universal
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properties described in Chapters 5 and 6. Chapters 8 and 9 are devoted to discussing the

Pn construction.

Specifically, Chapter 2 will give a brief discussion of the definition of derivators, the use

of homotopy exact squares, and morphisms between derivators. Particular attention will

be paid to the homotopy exact squares, which arise repeatedly whenever computations are

needed. Chapter 3 concerns monoidal derivators and the interaction with the triangulated

structure, questions of generation of derivators, and the development of the homotopical

Day convolution as previously mentioned. Moreover, we make a brief foray into the theory

of localization of derivators, which will be important in the last three chapters. A mixture

of old and new technical results will be given in Chapter 3 and this chapter can be viewed

as a partial contribution to the foundational theory of derivators. Again we attempt to

restrict ourselves to purely necessary results. Many of these results will appear similar to

their triangulated analogues and indeed should be thought as generalizations of triangulated

results to the derivator world.

In Chapter 4, we define the A1 construction on a derivator D as the shifted derivator DN.

In fact, the usual A1-monoidal structure can be computed in one swoop using a homotopical

analogue of Day convolution. Moreover as we would expect, this extends naturally to An. In

Chapter 5, we see that there is an Eilenberg-Watts type Theorem for this An-construction.

However, one soon realizes that there is nothing special about N, and that other shifts by

categories with one object gives completely analoguous results, as we explain in Chapter

6. We will explore the interactions between various shifted derivators and their universal

properties in Chapter 7.

In Chapter 8 we move to the projective space construction. Starting here we will make

some assumptions on the triangulated nature of our derivator for technical reasons. In the

last two chapters we will prove a variety of results about the projective space construction,

using the previous chapters as basis.
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1.1 Notation

We fix some recurring notation throughout. The category e is the terminal category with

one object and the identity morphism. For a positive integer n, the poset 0→ 1→ · · · → n

will be denoted by [n]. If (M,+) is a monoid with unit, M will be the category with one

object and endomorphism monoid (M,+).

If a is an object in a category A, by abuse of notation we will also use a to refer to the

functor e→ A picking out the object. For any category A, the functor π : A→ e is the only

possible functor to the terminal category.
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CHAPTER 2

Technical Introduction and Definitions

2.1 Basic definitions

Derivators were simultaneously defined by a variety of authors. From an algebraic topology

perspective, in [Hel88] Alex Heller arguably gave the first definition of derivators, while

in [Gro91] Grothendieck defines them with an eye on the derived category of an abelian

category. Independently of both authors, Franke in [Fra96] also gives an effectively equivalent

definition.

There are two variance conventions on (pre)derivators. The definition by Grothendieck

considers (pre)derivators as systems of diagram categories as in [Gro91] and also authors

such as Moritz Groth in [Gro16] and other works. Alternatively, Heller and later Cisinski

consider them as CAT-valued presheaves, with an extra contravariance in the 2-direction; see

[Cis03], [Cis04]. Here we will adopt the former convention of diagram categories.

We first define the notion of prederivator.

Definition 2.1.1. A prederivator D is a strict 2-functor D : Catop−→CAT.

Here Cat is the 2-category of small categories, i.e. objects are categories with a set of

objects and Hom-sets, 1-morphisms are functors, and 2-morphisms are natural transfor-

mations. Similarly, CAT is the 2-category with objects consisting of large categories, 1

morphisms being functors, and 2-morphisms being natural transformations.

The op encodes the fact that a prederivator D reverses the direction of the 1-morphisms

(functors), that is, if we have a prederivator D and a functor u : I → J , then

D(u) := u∗ : D(J)→ D(I).
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For natural transformations, given two functors u, v : I → J and a natural transformation

α : u → v, we have an induced natural transformation in the same direction, α∗ : u∗ → v∗;

there is only contravariance in the 1-level.

For a functor u : A→ B, we call u∗ restriction along u or pullback along u. In particular,

if e denotes the terminal category with one object and the identity morphism, and a : e→ A

is the functor that sends the single object in e to a ∈ A, then we call a∗ the value at a

functor.

For X ∈ D(A) and a ∈ A, sometimes we may write Xa for a∗X. For a prederivator D,

the category D(e) is called the underlying category or base of D.

Example Let C be any (possibly large) category. The represented prederivator of C is de-

fined to be the 2-functor yC : Catop−→CAT to take I 7→ CI , with the usual pullbacks/natural

transformations on the functor categories for functors and natural transformations.

Definition 2.1.2. Let J be a small category. The shifted prederivator DJ is defined by

DJ(I) : = D(J × I).

We can call objects in D(A) coherent diagrams of shape A, to distinguish them from inco-

herent diagrams of shape A, which are objects in D(e)A. However, coherent and incoherent

diagrams are connected by the so-called “partial underlying diagram functor”:

Definition 2.1.3. Let D be a derivator and I be a small category. We define the partial

underlying diagram functor diaI : D(I)→ D(e)I as follows.

Let X ∈ D(I) be an object. For any object i ∈ I, we can evaluate X at i to get the

object i∗X. For a morphism α : i→ j in I, we have the corresponding natural transformation

α∗ : i∗ → j∗, which we can evaluate at X. Stitching all this data together gives us a functor

I → D(e), sending i ∈ I to i∗X. This gives a functor D(I)→ D(e)I that we call diaI .

Remark 2.1.4. Replacing D with a shifted prederivator DJ gives a similar partial underlying

diagram functor

diaI : DJ(I)→ DJ(e)I ,
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which we will denote

diaI,J : D(J × I)→ D(J)I .

That is to say, if we have an object in D(I × J), we can “remove the coherence” in one

direction while preserving it in the other direction.

Remark 2.1.5. While the functor diaI,J is useful for gaining an intuitive understanding, it is

almost never faithful. For certain I the functor may be full or essentially surjective.

Next we give the definition of a derivator.

Definition 2.1.6. A derivator is a prederivator D : Catop−→CAT satisfying the following

conditions.

Der1: D : Catop−→CAT takes finite coproducts to products, i.e.

D(
∐
i

Ji) ∼=
∏
i

D(Ji).

In particular, D(∅) is the terminal category.

Der2: For any A ∈ Cat, a morphism f : X → Y is an isomorphism in D(A) if and only if the

morphisms

a∗f : a∗X → a∗Y

are isomorphisms in D(e) for all a ∈ A.

Der3: For each functor u : A→ B, the corresponding functor D(u) := u∗ : D(B)→ D(A) has

a left adjoint u! and a right adjoint u∗. The two functors u! and u∗ are also referred to

as the (left/right) homotopy Kan extensions along u.

Der4: For any functor u : A → B and any object b ∈ B, let us identify b with the functor

b : e→ B. We have a natural transformation given by

(u/b)
pr //

π

��

A

u

��

⇒α

e
b
// B

11



Here (u/b) is the slice category whose objects are pairs (a ∈ A, f : u(a) → b), and

morphism

(a, f)→ (a′, f ′)

given by a morphism g : a → a′ in A such that f ′ ◦ u(g) = f . The projection

functor sending (a, f) 7→ a is denoted pr, and π the projection to e. Here the natural

transformation α is constructed as follows: for an object f : u(a)→ b, the composition

u ◦ pr sends it to u(a), while the composition b ◦ π sends it to b. Thus the natural

transformation α on the object (f : u(a)→ b) is given by the morphism f : u(a)→ b in

B. By definition of (u/b) it is easy to see that this patches to a natural transformation

u ◦ pr→ b ◦ π.

After applying D, since u∗ and π∗ have left adjoints u! and π! respectively, we obtain

the diagram.

D(e) D(u/b)
π!oo

⇒ε
D(A)

pr∗oo

⇒
α∗

⇒η

D(e)

π∗

OO

Id

WW

D(B)

u∗

OO

b∗
oo D(A)u!

oo

Id
kk

The morphisms in the two triangles are induced by the unit/counit transformations,

respectively. The combined transformation is a morphism

Hocolim(u/b) ◦ pr∗ → b∗ ◦ u!.

We require this to be an isomorphism. Similarly, we have a diagram

(b/u)
pr //

π

��

A

u

��
e

b
//

⇒α
B

and a similar natural transformation

b∗u∗ → Holim(b/u)pr
∗,

which we also require to be an isomorphism.

Remark 2.1.7. We may speak of left derivators, which are prederivators satisfying (Der1),

(Der2), and (Der3) and (Der4) but only for homotopy left Kan extensions u!.
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Similarly we may speak of right derivators who only have adjoints u∗. A prederivator

that is both a left and right derivator is simply a derivator.

In particular, from (Der1) and (Der3) we see that D(A) has all coproducts and products

and therefore also have initial and final objects.

There is sometimes a fifth axiom appended to the above list. We will give it separately as

it is orthogonal to the previous four, but it occurs frequently and is useful enough to warrant

a discussion here.

Definition 2.1.8. A prederivator D is said to be strong if it satisfies the following condition:

Der5: For every K ∈ Cat, the partial underlying diagram functor

dia[1],K : D([1]×K)→ D(K)[1]

is full and essentially surjective.

We can interpret this as the ability to lift arrows in D(K) to D([1]×K). This becomes

important in defining a triangulated structure.

Example The following are some examples of derivators.

1. Let C be a complete and cocomplete category. The represented prederivator y(C) : J 7→

CJ is a derivator.

2. Let M be a model category and W the subcategory of weak equivalences. Then we

have the homotopy derivator

HO(M,W) : I 7→MI [(WI)−1].

This is a theorem of Cisinski, see [Cis03, Theorem 1].

3. Let A be a Grothendieck abelian category. We can associate a derivator DA to A by

DA : I 7→ D(AI), where D denotes the derived category.

13



We can impose more categorical structures onto our derivators. For example, we can

require that a derivator D be pointed by asking the base D(e) be pointed. The existence of

adjoints guarantees that D(I) is pointed for all I.

We can also impose stronger structures, for example that the values of the derivator be

triangulated as in the third example. Since for any Grothendieck abelian category A the

category of complexes Ch(A) has a natural model structure, the case of Grothendieck abelian

categories is subsumed by the general model category case. Nevertheless, for the derivators

associated to Grothendieck abelian categories as in case (3), their values are triangulated

categories. Such derivators whose values are triangulated are called triangulated derivators,

and they are an important object of study in their own right. Triangulated derivators have

a big advantage over usual triangulated categories, because both the suspension Σ and class

of distinguished triangles are determined by the natural structure of the derivator, and this

makes cones functorial. For more information, see [Gro13, §4], where given a strong stable

derivator Groth constructs the natural triangulated structure.

We have the notion of pointed derivator as follows:

Definition 2.1.9. We say a derivator is D is pointed if D(e) is pointed, i.e. if it contains a

zero object.

Proposition 2.1.10. For a derivator D, if D(e) is pointed, every value D(I) is pointed.

Proof. Let π : I → e denote the projection functor for any category I. By definition π∗

is both a left and right adjoint. Therefore, π∗ : D(e) → D(I) preserves both initial and

final objects, which we know that D(I) has. Therefore, the initial and final objects in D(I)

coincide and π∗0D(e) is a zero object in D(I).

Next we sketch the notion of stability and its consequences.

Proposition 2.1.11. A pointed derivator D has canonical suspension Σ, loop Ω, and cone

and fiber functors.

We leave the definitions to [Gro13, §3].
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Definition 2.1.12. A pointed derivator D is stable if the adjunction (Σ,Ω) is actually an

equivalence.

We term a derivator triangulated if it is both strong and stable. See [Gro13, §4] for

a discussion of triangulated derivators and the construction of the canonical triangulated

structure. At this point it would be prudent to mention that the construction of cone, fiber,

suspension, and loop functors are all done from the internal structure of the derivator, i.e.

restriction functors and Kan extensions.

Another notion of importance is that of monoidal derivator, the situation where the values

of the derivator have compatible monoidal structures. Thematically, this is more in line with

the content of the next chapter and we reserve the definition for then. Putting together

the monoidal and triangulated sides of the equations gives us so-called tensor triangular

categories. [Bal10] gives a good summary on how we study these categories with geometric

techniques.

We have seen the notion of shifted prederivator. It turns out that the shift of a derivator

is a new derivator.

Proposition 2.1.13. Let D be a derivator and L be a small category. Then the prederivator

DL(I) := D(L× I)

is also a derivator.

We direct the reader to [Gro13, Theorem 1.31] for the proof of this result. This construc-

tion is of fundamental importance in the world of derivators, and is generally unavailable in

other homotopy-theoretic contexts (without passing back to the model).

2.2 Homotopy exact squares

Here we are broadly interested in the interactions of various left and right Kan extensions

along with restriction functors. Much of the material is drawn off of [Gro13].

15



Proposition 2.2.1. [Gro13, Prop 1.26] Let u : J → K be a fully faithful functor and D be

a derivator. Then the left and right Kan extension functors, u!, u∗ : D(J)→ D(K) are fully

faithful.

Next we define sieves and cosieves, which are very useful for calculations.

Definition 2.2.2. Let u : I → J be a fully faithful functor that is injective on objects.

1. Call u a cosieve if whenever we have a morphism u(i)→ j, then j lies in the image of

u.

2. Call u a sieve if whenever we have a morphism k → u(i), then k lies in the image of u.

Homotopy left Kan extensions along cosieves and homotopy right Kan extensions along

sieves are simple:

Proposition 2.2.3. [Gro13, Prop 1.29] Let D be a derivator.

1. Let u : I → J be a cosieve. Then the homotopy left Kan extension u! is fully faithful,

and X ∈ D(J) lies in the essential image of u! if and only if Xj
∼= ∅ for all j ∈ J−u(I).

2. Let u : I → J be a sieve. Then the homotopy right Kan extension u∗ is fully faithful,

and X ∈ D(J) lies in the essential image of u∗ if and only if Xj
∼= ∗ for all j ∈ J−u(I).

In particular, if D is pointed intuitively these Kan extensions are “extensions by 0.”

Moreover, there is an interesting alternative formulation of pointedness.

Definition 2.2.4. [Gro13, Definition 3.4] A derivator D is strongly pointed if it has the fol-

lowing two properties:

1. For every sieve j : J → K, the homotopy right Kan extension j∗ has a further right

adjoint j!. That is to say, we have a chain of four adjoints j! a j∗ a j∗ a j! for any

sieve j.
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2. For every cosieve i : J → K, the homotopy left Kan extension i! has a further left

adjoint j?. That is to say, we have a chain of four adjoints i? a i! a i∗ a i∗ for any

cosieve i.

Every strongly pointed derivator is pointed, and vice versa.

This alternative formulation of strongly pointed in lieu of pointedness will be useful for

us when we examine Pn.

Next we must define the notion of a homotopy exact square. The squares we produced in

(Der4) are one large class of examples, and they are useful in many computational contexts.

Definition 2.2.5. Consider a square with natural transformation:

D
v2 //

u1
��

A

u2
��

⇒α

B v1
// C

It is said to be homotopy exact if for every derivator D, the natural transformation below

is an isomorphism

D(B) D(D)
(u1)!oo

⇒ε
D(A)

(v2)∗oo

⇒
α∗

⇒η

D(B)

(u1)∗

OO

Id

WW

D(C)

(u2)∗

OO

(v1)∗
oo D(A)

(u2)!

oo

Id
kk

That is to say, we have a natural isomorphism (u1)!(v2)∗ ∼= (v1)∗(u2)! given by the whisker-

ing of the three natural transformations in the above diagram.

Example Given that Kan extensions along fully faithful functors are fully faithful in any

derivator, we know that if u : J → K is a fully faithful functor, the following square is

homotopy exact:

J //

��

J

u
��

⇒
1

J u
// K

[Gro13, §1.2] and [GPS14a, §3] discuss some specific classes of homotopy exact squares.

We mention one technical theorem that we will employ repeatedly.
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Definition 2.2.6. Let A be a small category. Call A homotopy contractible if the counit

(πA)!(πA)∗ → IdD(e)

is an isomorphism for all derivators D, where πA is the projection A→ e.

Equivalently, A is homotopy contractible if the square

A //

��

e

��

⇒
1

e // e

is homotopy exact.

Example 1. If A can be connected to e via a zigzag of adjunctions, then A is homotopy

contractible. For example, the category (Z, <) is homotopy contractible, as the inclu-

sion of (N, <) is a right adjoint, and then (N, <) has an initial element, so the inclusion

of 0 is a left adjoint.

2. For regular limits and colimits, a constant colimit of shape A evaluates to the common

element if A is connected. However, connectedness is not sufficient for homotopy

contractible, though it is a necessary condition.

Definition 2.2.7. Consider a homotopy exact square as in Definition 2.2.5. Let γ be a

morphism in C, a ∈ A and b ∈ B be objects. Define the category (a/D/b)γ to have objects

triples (d, f : a→ u1(d), g : u2(d)→ b) such that v1(g) ◦ α(d) ◦ v2(f) = γ.

The morphisms between two triples

(d, f : a→ u1(d), g : u2(d)→ b)→ (d′, f ′ : a→ u1(d′), g′ : u2(d′)→ b)

are morphisms h : d→ d′ in D such that u1(h) ◦ f = f ′ and g′ ◦ u2(h) = g.

Theorem 2.2.8. [GPS14a, Theorem 3.8] Consider a homotopy exact square

D
u1 //

u2
��

A

v2
��

⇒α

B v1
// C
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as in Definition 2.2.5. The square is homotopy exact if and only if for all morphisms

γ ∈ C and objects a ∈ A and b ∈ B, the category (a/D/b)γ is homotopy contractible.

We direct the reader to [GPS14a] for the proof. We will frequently appeal to this theorem

to check that squares are homotopy exact.

Next we define homotopy final functors.

Definition 2.2.9. [GPS14a, Definition 3.14] A functor f : A → B is homotopy final if the

following square is homotopy exact:

A
f //

��

B

��

⇒
1

e // e

Practically, this means that (πB)!
∼= (πA)!f

∗, i.e. we can compute the homotopy colimit

on B by restricting first to A and then computing the homotopy colimit.

Proposition 2.2.10. [GPS14a, Prop 3.15] A functor f : A → B is homotopy final if and

only if for each b ∈ B, the category (b/f) is homotopy contractible.

Example Every right adjoint f : A→ B is homotopy final. Let L be the left adjoint to f ,

then f ∗ ∼= L! and the definition is clearly satisfied.

We may employ homotopy final functors when we may not be interested in a specific

colimit computation but wish to identify its similarity with other colimits we do know.

2.3 Morphisms of derivators

Here we define morphisms of derivators. The category of prederivators forms a 2-category.

Definition 2.3.1. Let PDER denote the 2-category of prederivators. That is to say, the ob-

jects in this category are prederivators, the 1-morphisms are pseudonatural transformations

and the 2-morphisms are modifications.

We clarify the meaning of pseudonatural transformation:
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Definition 2.3.2. A morphism of prederivators F : D→ E is a pseudonatural transformation

of 2-functors. This means that for each I ∈ Cat, we have a functor FI : D(I) → E(I), and

for every u : A→ B in Cat, we have a chosen natural isomorphism

γFu : u∗FB → FAu
∗,

encoded in the following diagram with the usual coherence data.

D(B)
FB //

u∗

��

E(B)

u∗

��

⇒γFu

D(A)
FA
// E(A)

Here, both the functors FI and the natural transformations γFu are part of the data of

the morphism of prederivators.

This is what we would normally call a strong morphism of prederivators. There are similar

notions of lax morphism and strict morphism of prederivators with γFu merely being natural

transformations or identities, respectively. Some authors prefer to restrict their attention

to strict morphisms, but the inclusion of strong morphisms for this discussion is absolutely

essential. While it may be intuitive to look only at strict morphisms, the world of strict

morphisms is not rich enough and many examples are only strong rather than strict. For us,

a morphism of (pre) derivators will always refer to a strong morphism.

Definition 2.3.3. A morphism of derivators is simply a morphism of prederivators, except

that the source and target are derivators instead of merely prederivators.

Important classes of morphisms of derivators are given by the following:

Example For D a derivator, A,B ∈ Cat and a functor u : A→ B, there is a strict morphism

of derivators

u∗ : DB → DA,

which is defined at I ∈ Cat by

(u× 1I)
∗ : DB(I) = D(B × I)→ D(A× I) = DA(I).
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These morphisms are strict by the 2-functoriality of the derivator D.

Of course, if D is a derivator, then for a functor u : A→ B in Cat we also have left and right

Kan extensions u!, u∗. We can similarly define morphisms of derivators u!, u∗ : DA → DB.

These are not strict, and this is already one justification of why we should attempt to utilize

strong morphisms instead of strict morphisms.

The natural transformation γFu also induces natural transformations

γFu! : u!FA → FBu!, γ
F
u∗ : FBu∗ → u∗FA

by composing with the unit and counit transformations as needed for the definitions of

morphisms u!, u∗. These are typically refered to as the mates of γFu .

Definition 2.3.4. Let F : D → E be a morphism of derivators, u : A → B is a functor. The

morphism F preserves homotopy left Kan extensions along u if the natural transformation

γFu! is an isomorphism, and F preserves homotopy right Kan extensions along u if the natural

transformation γFu∗ is an isomorphism.

Similarly, F is cocontinuous if it preserves all homotopy left Kan extensions and F is

continuous if it preserves all homotopy right Kan extensions.

Example For a functor u : A → B, the morphism of derivators u∗ : DB → DA is a strict

morphism of derivators that is both continuous and cocontinuous.

The morphism of derivators u! : DA → DB is a cocontinuous strong morphism of deriva-

tors, while u∗ : DA → DB is a continuous strong morphism of derivators.

Proposition 2.3.5. A morphism of derivators preserves homotopy left Kan extensions if

and only if it preserves homotopy colimits, and preserves homotopy right Kan extensions if

and only if it preserves homotopy limits.

This result essentially follows from (Der2), (Der4), and the fact that morphisms of pred-

erivators interact well with restrictions.

Recall that a morphism of derivators is simply a morphism of their underlying prederiva-

tors. In this 2-categorical world, we also have a notion of adjoints.
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Proposition 2.3.6. [Gro13, Lemma 2.10] Suppose L : D→ E is a morphism of prederiva-

tors and that LK : D(K)→ E(K) is a left adjoint, with right adjoint RK for each K ∈ Cat.

Then there is a unique way to extend the collection {RK} to a lax morphism of prederiva-

tors, R : E → D such that the following diagram commutes for all u : J → K, X ∈ D(K),

Y ∈ E(K).

HomE(K)(LX, Y ) −−−→ HomD(K)(X,RY )

u∗

y u∗

y
HomE(J)(u

∗LX, u∗Y ) −−−→ HomD(J)(u
∗X, u∗RY )

γL

y γR

y
HomE(J)(Lu

∗X, u∗Y ) −−−→ HomD(J)(u
∗X,Ru∗Y )

Moreover, if D and E were derivators to begin with, we have the following:

Proposition 2.3.7. [Gro13, Prop 2.11] Let L : D → E is a morphism of derivators with

levelwise right adjoints, and let R be the lax morphism constructed above. Then L is a left

adjoint morphism of derivators if and only if L preserves homotopy left Kan extensions if

and only if R is a morphism of derivators.

In particular, a morphism of derivators is an equivalence if and only if it is a levelwise

equivalence of categories.

However, in tracing the proofs of these two assertions in fact only homotopy left Kan

extensions are needed in D and E. This will become relevant later.

Example Let u : J → K be a functor and D be a derivator. Then (v!, v
∗) and (v∗, v∗) are

two adjunctions of derivators between DJ and DK .

We may occasionally use PDER!(D,E) to denote the 1-category of cocontinuous mor-

phisms and all modifications between two derivators, and similarly for PDER∗. We rarely

consider the 2-category of all derivators, so we do not give a specific notation.
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CHAPTER 3

Results on Shifted Derivators

We split this chapter into several thematic sections: monoidal derivators and closed monoidal

derivators, generation results about derivators and a derivator Brown representability theo-

rem, and some basic localization theory of derivators.

3.1 Monoidal Derivators

Definition 3.1.1. Let D be a prederivator. We say that (D,⊗) is a monoidal prederivator

if it is a pseudomonoid object in the category of prederivators, i.e. there exists a (strong)

morphism of prederivators

⊗ : D× D→ D

along with unit morphism 1 : ye → D (recall that for any (possible large) category C, yC is

the represented prederivator associated to C).

Remark 3.1.2. The morphism of prederivators means that for each I ∈ Cat, D(I) is equipped

with a monoidal structure ⊗I arising from the two morphisms described above, and that the

monoidal structures are compatible via restriction functors u∗.

An alternative presentation of the monoidal structure is the external product. Take

A ∈ D(I), B ∈ D(J): we define the external product

A�B := (1× πJ)∗A⊗I×J (πI × 1)∗B.

That is to say, we lift A and B back to D(I×J) and then take the tensor product in D(I×J).

Then if objects X, Y are both in D(I), we can recover their tensor product from the
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above-defined external product by

X ⊗ Y = ∆∗I(X � Y ),

where ∆I : I → I × I is the diagonal functor ∆I(i) = (i, i) for all i ∈ I. Thus the external

product and the tensor products on various D(I) contain the same information, and we will

opt to use the former idea throughout.

Moreover, the usual identities needed to make D(I) a monoidal category in this case can

be checked using the fact that ⊗ is a morphism of prederivators, see [GPS14a, §3] for details.

One might expect that a monoidal derivator is a monoidal prederivator that also happens

to be a monoidal derivator. This is close, we just require an additional condition.

Definition 3.1.3. Let (D,⊗) be a derivator that is also a monoidal prederivator. We say that

(D,⊗) is a monoidal derivator if in addition the external product is cocontinuous in each

variable, i.e.

(u!X � Y ) ∼= (u× 1)!(X � Y )

for all X ∈ D(A), Y ∈ D(B), and functors u : A→ C, and similarly for X � v!Y .

Remark 3.1.4. We may call D braided or symmetric monoidal if the individual tensor prod-

ucts ⊗I induce braided or symmetric monoidal structures.

Remark 3.1.5. We can also consider partially external and partially internal tensor products:

for categories A,B,C and objects X ∈ D(A×C), Y ∈ D(B×C), we can consider the mixed

product

D(A× C)× D(B × C)→ D(A×B × C × C)→ D(A×B × C),

where the first arrow is the external product, and the second arrow is induced via the pullback

along the diagonal functor ∆C : C → C × C.

It is easy to see that if D is a monoidal (pre)derivator, since ∆∗ is a cocontinuous morphism

of derivators, this defines a monoidal structure on any shifted (pre)derivator DC . This is

sometimes referred to as the pointwise monoidal structure on DC , as opposed to the Day

convolution structure that we define below.
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We will see soon that this is a naive solution. If D is a symmetric monoidal derivator

and C can be given the structure of a symmetric monoidal category, then there is a Day

convolution model structure. We will demonstrate how this is more likely to be one that

arises “in reality.”

Proposition 3.1.6. Let (C,⊗C) be a symmetric monoidal category and let D be a symmetric

monoidal derivator. We can define a new monoidal structure on DC via the composition

morphism:

DC × DC �C // DC×C (⊗C)! // DC

Proof. This is clearly a morphism of derivators as each part of the composition is. By

construction, the morphisms �C and (⊗C)! are both cocontinuous. Since both �C and (⊗C)!

are invariant under the transposition τ12, we have a symmetric monoidal derivator structure.

In this symmetric monoidal derivator structure, the external product is given by

(X �C Y ) := (⊗C)!(X � Y ).

We call it the Day monoidal structure because it is effectively just Day convolution.

Proposition 3.1.7. Let C1 and C2 be two symmetric monoidal categories and let F : C1 → C2

be a monoidal functor. Then F! : DC1 → DC2 is a monoidal morphism of derivators with the

respect to the Day monoidal structure on the two shifted derivators.

Proof. The statement that F : C1 → C2 is a monoidal functor can be conveyed by the

commutative square:

C1 × C1
F×F−−−→ C2 × C2

⊗C1

y ⊗C2

y
C1

F−−−→ C2

Let X ∈ DC1(I), Y ∈ DC1(J). Assigning left Kan extensions and remembering that the

external product � for D is cocontinuous in both variables, we have
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F!(X �C1 Y ) = F!(⊗C1)!(X � Y )

= (⊗C2)!(F × F )!(X � Y )

= (⊗C2)!(F!X � F!Y )

= (F!X �C2 F!Y )

Hence F! is a monoidal morphism of derivators.

After discussing generation conditions on triangulated derivators, we will come back to

a perspective about why this Day convolution structure is useful from a tensor-triangular

geometry perspective.

3.2 Generation of derivators

Proposition 3.2.1. From [Nee01] let us recall the notion of perfectly generated triangulated

category (resp. compactly generated, well generated). Let D be a triangulated derivator. If

D(e) is a perfectly generated (resp. compactly generated, well generated) triangulated cate-

gory, then D(I) is perfectly generated (resp. compactly generated, well generated) triangulated

category for all I ∈ Cat.

See [Nee01], [Kra10] for a discussion of various types of generation on triangulated cate-

gories and the implications for the localization theory thereof.

Proof. We prove the case of compact generation. The other two cases follow similarly.

Suppose D(e) is a compactly generated triangulated category with generating set {Sλ : λ ∈

Λ} and let I ∈ Cat. Recall that a triangulated category T has a compact generating set G if

the following two conditions are satisfied:

1. If X is an object such that [ΣnG,X] = 0 for all G ∈ G and all n ∈ Z, then X = 0.
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2. For each object G ∈ G and any collection {Xα : α ∈ A}, the canonical morphism of

Hom-groups ∐
α∈A

[G,Xα]→ [G,
∐
α∈A

Xα]

is an isomorphism.

Under this setup, {i!Sλ : i ∈ I, λ ∈ Λ} is a compact generating set for D(I). Recall via the

theory of triangulated derivators that left and right Kan extension functors are exact, so

they commute with the suspension Σ and loop Ω.

1. Let X ∈ D(I) be an object such that [Σn(i!Sλ), X] = 0 for all i ∈ I, λ ∈ Λ. Fix an

i ∈ I for consideration. We have that

0 = [Σn(i!Sλ), X]

= [i!Σ
nSλ, X]

= [ΣnSλ, i
∗X]

And as {Sλ : λ ∈ Λ} is a generating set, this means i∗X = 0 for all i ∈ I. Hence X = 0

in D(I), as there is a natural morphism X → 0 that is pointwise 0 → 0, and so the

assertion follows by (Der2) .

2. Now let’s consider a coproduct
∐

α∈AXα along with an object of the form i!Sλ. We

have the following chain of isomorphisms

∐
α∈A

[i!Sλ, Xα] =
∐
α∈A

[Sλ, i
∗Xα]

= [Sλ,
∐
α∈A

i∗Xα]

= [Sλ, i
∗
∐
α∈A

Xα]

= [i!Sλ,
∐
α∈A

Xα]
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Therefore, D(I) is compactly generated for all I ∈ Cat and moreover a generating set on

D(I) can be constructed from a generating set on D(e). The cases of perfect generation and

well generation are similar, and we leave them to the reader. In each case, if {Sλ : λ ∈ Λ} is

a generating set for D(e), then {i!Sλ : λ ∈ Λ, i ∈ I} is a generating set for D(I).

Definition 3.2.2. Let D be a triangulated derivator. Call D a compactly generated (resp.

perfectly generated, resp. well generated) triangulated derivator if D(e) is a compactly

generated (resp. perfectly generated, resp. well generated) triangulated category. In this

case each D(I) is compactly generated (resp. perfectly generated, resp. well generated) and

the generating sets for D(I) can be constructed by taking a generating for D(e) and taking

a possible left Kan extensions i! over objects in I.

Proposition 3.2.3. Let D be a compactly generated triangulated derivator and E be another

triangulated derivator, and F : D→ E be an exact morphism commuting with all coproducts.

Then F is a left adjoint morphism of derivators.

Proof. Since each D(I) is a compactly generated triangulated category, FI is a left adjoint,

with right adjoints RI . We need to patch the RI to a strong morphism of derivators. From

[Gro13, Prop 2.10] we know that the RI can be patched to a lax morphism.

Accordingly, it will be sufficient to prove that F commutes with all homotopy left Kan

extensions. As F commutes with cones, it must also commute with homotopy pushouts per

[GPS14b, Theorem 6.1]. Since F also preserves coproducts, F will preserve all homotopy

colimits, or equivalentlly all homotopy left Kan extensions.

Therefore, F is a left adjoint morphism of derivators, and we call the patching of {RI}

its right adjoint R.

Remark 3.2.4. This may appear to be a facile restating of Brown representabiliy à la [Nee01],

but it will be useful to have the exact statement for use.
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3.3 Closed monoidal derivators

Our main goal in this section is to show that for a symmetric monoidal derivator D and

symmetric monoidal category (C,⊗C), the shifted derivator DC with Day monoidal structure

is closed and further that when applicable, compact and rigid objects in the respective

tensor-triangulated categories coincide.

Definition 3.3.1. A monoidal derivator D closed if the tensor product

⊗ : D× D→ D

is a two-variable left adjoint.

For a general discussion of two-variable left adjoints, we defer to [GPS14b, Section 8].

Theorem 3.3.2. If (D,�) is a closed symmetric monoidal derivator and (C,⊗C) is a sym-

metric monoidal category, then DC is a closed symmetric monoidal derivator with the Day

convolution structure.

Proof. We have already proven that DC admits the structure of a symmetric monoidal deriva-

tor. It remains to proved closed-ness.

Recall that the external product associated to this new derivator is�C : DC(I)× DC(J)→ DC(I × J)

defined as

D(C × I)× D(C × J)
�D−−−→ D(C × I × C × J)

(⊗C×1)!−−−−→ D(C × I × J)

To show this is a two-variable left adjoint, we see that

1. One two-variable adjoint is �[C,J ] : DC(J)op×DC(I × J)→ DC(I), given by the compo-

sition

�[C,J ] ◦ (Id× (⊗C × 1I×J)∗),

which we obtain by taking the right adjoints of �D and (⊗C×1)!. By abuse of notation,

we use �[C, J ] in the composition expression to also denote the two-variable adjoint of

�D.
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2. The other two-variable adjoint is �[C,I] : DC(I × J) × DC(I)op → DC(I), given by the

composition

�[C×I] ◦ ((⊗C × 1I×J)∗ × Id),

again obtained by taking right adjoints of �D and (⊗C × 1)!. Similar to the above, we

use �[C,I] in the composition to denote the two-variable adjoint of �D.

We should then have, for any X ∈ DC(I), Y ∈ DC(J), and Z ∈ DC(I × J), natural

isomorphisms

DC(I × J)(X �C Y, Z) ∼= DC(I)(X, Y �[C,J ] Z) ∼= DCD(J)(Y, Z �[C,I] X)

The first isomorphism above is given by the composition

DC(I × J)(X �C Y, Z) ∼= D(C × I × J)((⊗C × 1)!(X �D Y ), Z)

∼= D(C × C × I × J)(X �D Y, (⊗C × 1)∗Z)

∼= D(C × I)(X, Y �[J ] (⊗C × 1)∗Z)

∼= D(C × I)(X, Y �[C,J ] Z)

∼= DC(I)(X, Y �[C,J ] Z)

Here each step uses either the (⊗!,⊗∗)-adjunction or �D being an adjunction of two

variables. The second-to-last isomorphism is via abuse of notation, transitioning between

two-variable left adjoints for the D-monoidal structure and the shifted monoidal structure

on DC.

Meanwhile the isomorphism DC(I × J)(X �C Y, Z) ∼= DC(J)(Y, Z �[C,I] X) is similarly

given by

DC(I × J)(X �C Y, Z) ∼= D(C × I × J)((⊗C × 1)!(X �D Y ), Z)

∼= D(C × C × I × J)(X �D Y, (⊗C × 1)∗Z)
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∼= D(C × J)(Y, (⊗C × 1)∗Z �[J ] X)

∼= D(C × J)(Y, Z �[C,J ] X)

∼= DC(J)(Y, Z �[C,I] X)

Here again each isomorphism is either induced from the adjunction (⊗!,⊗∗) or the two-

variable adjunction for D, and is therefore natural.

For the canonical mates, fix Y ∈ DC(J), Z ∈ DC(I×J), and let u : I ′ → I be any functor.

Then we have

u∗(Y �[C,J ] Z) ∼= u∗(Y �[C×J ] ⊗∗CZ)

∼= (Y �[×J ] (u× 1)∗ ⊗∗C Z)

∼= (Y �[C×J ] (+∗(u× 1)∗Z)

∼= (Y �[C,J ] (u× 1)∗Z)

where the isomorphisms come from naturality and the known natural isomorphisms for

�[J ]. Similarly for the other mate we fix X ∈ DC(I) and Z ∈ DC(J), and a functor v : J ′ → J .

Then we have

v∗(Z �[C,J ] X) ∼= v∗(⊗∗CZ �[C×J ] X)

∼= ((1× v)∗ ⊗∗C Z �[C×J ] X)

∼= (⊗∗C(1× v)∗Z �[C×J ] X)

∼= ((1× v)∗Z �[C,J ] X)

This completes the verification the new tensor product is a two-variable left adjoint

and that the shifted derivator DC with this tensor product is a closed symmetric monoidal

derivator.

If (D,�,1) is a monoidal derivator, it comes equipped with a so-called “projection mor-

phism”: for objects A ∈ D(I), B ∈ D(J), and functor u : I → J , we have a morphism
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u!(A ⊗D(I) u
∗B) → u!A ⊗D(J) B defined to be the adjoint of the following morphism under

the u! a u∗ adjunction.

A⊗D(I) u
∗B −−−→ u∗u!A⊗D(I) u

∗B ∼= u∗(u!A⊗D(J) B)

The projection morphism is moreover an isomorphism if (D,�,1) is a closed monoidal

derivator, see [Gal14, Lemma 2]. Thus, DC is equipped with a projection isomorphism

whenever D is closed.

Recall the definition of rigid object in a closed symmetric monoidal category, see for exam-

ple [BDS16]. From [Bal10], recall the definition of compactly generated tensor triangulated

category:

Definition 3.3.3. [Bal10, Definition 44] Let T be a tensor-triangulated category with arbitrary

coproducts. The subcategory T c of compact objects is triangulated but not closed under

coproducts. We say that T is a compactly generated tensor triangulated category if

1. T c generates T , that is, T = Loc(T c) is the smallest localizing triangulated subcate-

gory of T that contains T c.

2. T c is essentially small, consists of strongly dualizable elements, and the unit 1 is

compact.

In this case, an object is compact if and only if it is strongly dualizable, and one should

apply the tensor-triangular geometric machine to the category T c.

Remark 3.3.4. If T = D(e) is the base of a symmetric monoidal triangulated derivator, then

T is a tensor-triangulated category. If C is a symmetric monoidal category, then D(C) has

two possible tensor products: the pointwise tensor product induced from D, and the Day

convolution structure induced by thinking of D(C) as the base of DC.

Operating under the added assumption that C is closed, an ideal monoidal structure on

D(C) is one such that if D(e) is compactly generated tensor triangulated, then so is D(C)

with this monoidal structure.
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Theorem 3.3.5. If D(e) is a compactly generated tensor triangulated category and C is

closed symmetric monoidal, then D(C) with the Day convolution monoidal structure is also

a compactly generated tensor triangulated category.

Proof. The compact objects evidently are defined independently of the monoidal structure.

Suppose {Xλ : λ ∈ Λ} is a set of rigid-compact generators for D(e). Then we know that

{c!Xλ : λ ∈ Λ, c ∈ C} is a set of compact generators for D(C). We endeavor to prove each

compact generator is also rigid. For an object c ∈ C, let ĉ denote its dual, and similarly let

X̂λ denote the dual of Xλ in D(e).

I claim that c!Xλ has dual (ĉ)!(X̂λ). This at least intuitively makes sense: we can con-

struct the evaluation c!Xλ ⊗C (ĉ)!(X̂λ)→ 1 by noting the isomorphism

c!Xλ ⊗C (ĉ)!(X̂λ) ∼= (c⊗ ĉ)!(Xλ ⊗D X̂λ)

and then evaluating twice, once on (c⊗ ĉ) and once on Xλ⊗ X̂λ. The coevaluation maps are

defined similarly, and one can check the triangle identities.

Thus it stands that the set of compact generators is also a collection of rigid generators.

As such, every compact object in D(C) is rigid with respect to this monoidal structure.

Remark 3.3.6. We will not trace the other monoidal structure. Instead, it is clear that the

compact objects do not depend on the monoidal structure, whereas the rigid objects do.

Thus given another monoidal structure, we would not expect the compact and rigid objects

to coincide on D(C).

3.4 Localization

Here we will collect some results on the localization theory of derivators. There are a variety

of standard tools at our disposal, many of which are motivated by localization theory of

categories, for example see [GZ67] or [Kra10].

We will begin with results that make limited assumptions on our underlying derivators.
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Lemma 3.4.1. [Cis08, Lemme 4.2] Let D be a derivator. A prederivator E is called a full

subprederivator of D if there is a morphism ι : E → D such that (ι)I is fully faithful for all

small categories I.

Let E → D be a full subprederivator of D. If the inclusion morphism ι admits either a

left or right adjoint, then E is also a derivator.

A proof is also given in [Col19, Lemma 3.3]. If ι admits a left adjoint we call E a

localization and if ι admits a right adjoint we call E a colocalization.

We also utilize the following notion of localization functor:

Proposition 3.4.2. [Kra10, Proposition 2.4.1] Let L : C → C be a functor, η : 1C → L be a

natural transformation. Then the following are equivalent.

1. ηL : L→ L2 and Lη : L→ L2 are natural isomorphisms.

2. There exists a functor F : C → D with fully faithful right adjoint G : D → C such that

L = GF and η : 1C → GF is the unit of the adjunction.

Then we call L a localization functor.

By naming abuse if the functor F has a fully faithful right adjoint G as above, we may

sometimes also refer to F as the localization functor.

We have introduced the notion of a shifted derivator, and so we would like to combine

that with localization-theoretic techniques. In [Col19] a large class of potential examples is

provided.

Definition 3.4.3. Let D be a pointed derivator, B a category, i : A → B a full subcategory.

Define D(B,A) to be the full subcategory of D(B) vanishing at A, i.e.

D(B,A) = {X ∈ D(B) : i∗X = 0 ∈ D(A)}.

In [Col19, Lemma 4.8, Theorem 4.10] Coley shows that this induces a localization and

colocalization of derivators.
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We now turn to the triangulated world for additional examples. Recall that we have

proven a derivator version of Brown representability.

Theorem 3.4.4. Let D be a compactly generated triangulated derivator and C ⊂ D(A) be

a localizing subcategory closed under homotopy colimits. By abuse of notation, let CI ⊂

D(A× I) be the subcategory whose objects are pointwise (in the I-direction) in C and let C

denote this prederivator.

By design, C is a left derivator that is also levelwise triangulated. Denote the resulting

localized prederivator as DA/C, where

(DA/C)(I) = D(A× I)/CI

This is another triangulated derivator.

Proof. We prove statements in the following order:

1. The localization is a well-defined left derivator because C is a left derivator.

2. The localization is a stable derivator by Brown representability.

So first, let’s show that DA/C is a left derivator. The conditions (Der1) and (Der2) are

satisfied easily. We prove that the left Kan extensions in DA/C are induced by those in

DA. Let f : I → J be a functor, and X ∈ DA/C(I) be an object; define f!X by picking a

representative of X in D(A× I), applying f!, and localizing at C.

We need to check that this is well-defined: let X̄, X̄ ′ be two different representatives for

X. This means that they are connected by a zigzag of morphisms in MorC. Let’s suppose

that X̄ and X̄ ′ are connected by a morphism α : X̄ → X̄ ′ with Cα ∈ CI . Then f!X̄ and f!X̄
′

have isomorphic images in the localization, as f! is an exact functor and C is a left derivator,

telling us that C(f!α) ∼= f!C(α) ∼= 0. Therefore, f!X̄ and f!X̄
′ have the same value in the

localization.

(Der4) follows easily for left Kan extensions as the computation can be done in DA prior

to localization by choosing representatives. Therefore, DA/C is a left derivator. Moreover,
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since the left Kan extensions are computed by choosing representatives in DA the localization

morphism is cocontinuous.

Now in particular, the localization morphism levelwise preserves coproducts. By Brown

representability, we have a levelwise right adjoint which therefore must be a levelwise inclu-

sion. The right adjoints are levelwise fully faithful inclusions, hence by [Cis08, Lemme 4.2],

the quotient is a derivator.

Remark 3.4.5. In this situation the left Kan extensions of the localized derivator can be

computed from the left Kan extensions of the shifted (but not localized) DA. However, we

do not know what the right Kan extensions are, nor do we expect the localization morphism

to preserve right Kan extensions.

Remark 3.4.6. We term new derivators obtained from a known derivator with a shift and

localization a shift-loc derivator, as it involves these two important operations.

Example As we will see, the construction of Pn on a (triangulated) derivator D is an example

of a shift-loc derivator.

Remark 3.4.7. Now let’s examine the ’composition’ of two shift-loc derivators. Let D be a

compactly generated triangulated derivator, DA/C1 a shift-loc derivator. Now let’s examine

another shift-loc derivator:

(DA/C1)B/C2.

Now, a priori the shift-loc derivator DA/C1 is not compactly generated, which might pre-

vent the composite shift-loc from being a derivator. However, this worry turns out to be

unfounded.

Let L1 : DA → DA/C1 be the localization morphism. Recall by construction that L1 is

cocontinuous. Then

(DA/C1)B/C2
∼= DA×B/(L−1

1 (C2)).

Here L−1
1 (C2) is the obvious object to localize at: the preimage of C2 in DA×B prior to

localization. We need only show that L−1
1 (C2) is a left derivator; in which case similar logic

will tell us that the composite shift-loc is another stable derivator.
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Proof. There are two things to prove here; first that the two localizations are equivalent and

then that L−1
1 (C2) is a left derivator.

For the equivalence of the localizations we can do this on the base and extend to the

entire derivator by placing the shifting diagram inside D. The category (DA/C1)B/C2(e) is

the universal with respect to morphisms out of (DA/C1)(B) sending C2 to 0, that is to say,

universal with respect to morphisms out of D(A × B) sending anything in the preimage of

C2 with respect to the localization to 0. That preimage is precisely L−1
1 (C2).

Therefore, the two localizations satisfy the same universal property and hence are equiv-

alent.

Next I show that L−1
1 (C2) is a left derivator. Recall that C2 is a left derivator and L1

is a cocontinuous morphism of (left) derivators. By those two conditions it’s clear that

(Der1) and (Der2) are satisfied. For (Der3), L−1
1 (C2) is closed under left Kan extensions as

C2 is a left derivator and L1 is cocontinuous. Then (Der4) is obviously satisfied as we are

in a full subderivator of DA×B. Therefore, this is an appropriate situation for our shift-loc

derivator.

Example Let X be a scheme, DX be the associated derivator. We will see that DA1
X

is the

shifted derivator DN
X . Let C be the subderivator of complexes with cohomology supported on

{0}×X. Then DN/C is the derivator associated to Gm,X , which is also the shifted derivator

DZ.

In diagrammatic form, the localization is the left Kan extension along the inclusion

iN : N→ Z while its right adjoint is i∗N.

Theorem 3.4.8. Let D be a compactly generated derivator, R ⊂ DA be a triangulated right

subderivator. Then the quotient DA/R is also a derivator.

Proof. This is symmetric with the left situation, and we use the dual statement of Brown

representability as prove in the previous chapter.
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CHAPTER 4

Affine lines and spaces over derivators

4.1 The definitions of A1 and An

We briefly recall the definition of A1 and An over a derivator, as drawn from [BZ17].

We want to follow the intuition that a module over a polynomial ring R[T ] is just an

R-module together with a chosen R-linear endomorphism corresponding to the action of T .

Of course, once T acts on an R-module then T n also acts for all n ∈ N. Consider then the

loop category

N = • Nee (4.1.1)

which has a single object with endomorphism monoid N = ({0, 1, 2, 3, . . .},+). Similarly, we

let Nn denote the n-fold product of N with itself.

Definition 4.1.2. Let D be a derivator. We define:

1. A1
D to be the shifted derivator DN.

2. For any natural number n ∈ N, An
D to be the shifted derivator DNn .

From this definition, some facts are clear about the A1-construction.

Proposition 4.1.3. 1. The An-construction on a derivator D is just the A1-construction

on D iterated n times.

2. If D is pointed or stable, so is An
D for all n ∈ N.

3. If D is a (symmetric) monoidal derivator, then An
D inherits a (symmetric) monoidal

structure from the pointwise tensor product on D.
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Proof. 1. This is clear from the definition of An and shifted derivators.

2. Pointedness is equivalent to asking that each value of the derivator has a zero object,

while stability asks for the Σ and Ω functors on each value to be an equivalence. Since

each value of the shifted derivator An
D is also a value for D, pointedness and stability

are also preserved.

3. This is clear from the definition of (symmetric) monoidal structure on a derivator, see

Chapter 3.

We invite the reader to peruse [BZ17] for a justification of why A1
D mirrors the usual A1

construction in algebraic geometry. Subsequently, we will discuss more parallels between the

derivator and algebraic geometric versions of A1.

4.2 Canonical morphisms between the base and the affine line

Let R be a commutative ring with unit. Remember then that A1
Spec R is just Spec R[t]. We

have three “natural” morphisms of rings and their Zariski spectra given by:

1. R ↪→ R[t], inducing the structure morphism

A1
Spec R → Spec R

2. R[t]→ R[t]/(t) ∼= R, inducing the evaluation at 0 morphism

Spec R→ A1
Spec R

3. R[t]→ R[t]/(t− 1) ∼= R, inducing the evaluation at 1 morphism

Spec R→ A1
Spec R

Precisely, we are applying the Spec functor to the ring homomorphisms above to get the

requisite morphisms of affine schemes. We note that for a quasi-compact, quasi-separated
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scheme X with affine cover X = ∪iSpec Ai, we can take the corresponding cover for A1
X as

∪iSpec Ai[t].

Definition 4.2.1. Let R be a ring. The prederivator DR : Cat−→CAT taking I 7→ D(R-ModI)

is a derivator, where we take derived categories. Its base DR(e) is the derived category of R,

and we call it the derivator extending the derived category of R.

Let X be a scheme. The prederivator DX : Cat−→CAT taking I 7→ D(QCoh(X)I) is a

derivator. Its base is the derived category of quasi-coherent sheaves on X, and we call the

derivator extending the derived category of X.

If X is further separated, recall that the derived category of quasi-coherent sheaves,

D(QCoh(X)), is equivalent to the usual derived category with quasi-coherent cohomology,

DQCoh(X), see [BN93, Corollary 5.5]. So with the mild additional condition of being sepa-

rated, we recover the “usual” derived categories of our scheme X.

Here we have equivalences of derivators between DR and DSpec R for a ring R, owing to

the isomorphism between QCoh(SpecR) and R-Mod.

Moreover, a ring homomorphism f : R→ S induces morphisms between the correspond-

ing derivators of R and S via derived extension of scalars along f and restriction of scalars

along f . Similarly, given a morphism g : X → Y of schemes, there are morphisms of deriva-

tors induced by the derived direct and inverse image functors along g. With R and R[t], we

can describe some of these functors in a diagrammatic manner.

The above ring homomorphisms between R and R[t] generate morphisms between the

categories R-Mod and R[t]-Mod via extension of scalars, which extend to morphisms of

derivators. These will be our models for the evaluation at 0, evaluation at 1, and structure

morphisms.

We first define the structure morphism.

Definition 4.2.2. The structure morphism of a derivator D and its affine line A1
D is given by

the left Kan extension morphism i! of derivators

i! : D→ DN,
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where i : e → N is the assignment of the single object in e to the single object in N, with

identities mapping to identities.

On affine schemes, the structure morphism is the map f : A1
R → SpecR induced by the

inclusion R ↪→ R[t]. Then i∗ is just the direct image f∗, while i! is the inverse image functor

f ∗, so in the case of derivators associated to affine schemes, our definition of structure

morphism extends the usual definition of structure morphism.

In particular, we should keep in mind the following:

DR
i! //

1

��

A1
DR

∼=
��

DR Specf∗
// DR[t]

which explains that the choice of i! is indeed appropriate.

Next, we have the evaluation at 1 morphism. It is also a homotopy left Kan extension.

Definition 4.2.3. The “evaluation at 1” morphism relating a derivator D and its affine line

A1
D is given by the homotopy left Kan extension morphism of derivators

p! : DN → D.

We can see this in case of an affine scheme SpecR, when we have the evaluation at 1 map

g : Spec R→ A1
R induced by the ring homomorphism

R[t]→ R[t]/(t− 1) ∼= R

The map p∗ : R-Mod → R-ModN = R[t]-Mod is the direct image functor g∗ and p! is the

inverse image functor g∗. For an affine scheme, our “evaluation at 1” map is induced from

the ring homomorphism R[t]→ R[t]/(t− 1) ∼= R.

Again, we have the following picture:

A1
DR

i! //

1

��

DR

∼=
��

DR[t]Specf∗
// DR
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Using the machinery of monoidal derivators, we will be able to give a unified definition

of evaluation at 0 and 1 along with other “coherent endomorphisms.” For now, we will have

to stick with a somewhat unwieldy definition for evaluation at 0. Let us assume that the

derivator D is now pointed, so that the right Kan extension i[1]∗ is just extension by zero.

Let u : [1] → N be the functor sending 0 → 1 to 1 ∈ N. Given a derivator D and

X ∈ D(N) we can restrict via the functor u : [1]→ N to obtain u∗(X) ∈ D([1]).

From there, we include i[1] : [1] → p and ip : p→ �. In terms of underlying diagrams,

the composition ip!i[1]∗u
∗ takes an element (M, f) in DN to the (coherent) homotopy pushout

square (i.e. element of D(�)) below. As i[1] is a sieve, the bottom left corner of the coherent

diagram is the 0 object. Left Kan extension along ip constructs a (coherent) homotopy

pushout square. Identifying the bottom right corner gives us the proposed evaluation at zero

mapev0 = (1, 1)∗ip!i[1]∗u
∗. Here the underlying diagram looks like

M
f //

��

M

��
0 //M/f(M)

ev0 is a morphism of derivators as each operation in the composition is a morphism of

derivators. We may simplify this one step further. The composition (1, 1)∗ip! is actually just

the homotopy colimit of the p-shaped diagram, and we can write it as πp!.

Proposition 4.2.4. The evaluation at 0 morphism is ev0 = (πp)!i[1]∗u
∗.

We see also that this fits the “evaluation at 0” morphism for affine schemes, in that case

being the map Specf : SpecR→ A1
R, induced by the homomorphism f : R[t]→ R[t]/(t). We

see directly that the construction emulates

M 7→M ⊗R[t] R[t]/(t) ∼= M/tM

for an R[t]-module M .

Specifically we are referring to the following diagram that commutes up to natural iso-

morphism: here DR is the derivator associated to the ring R as usual;
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A1
DR

i! //

1

��

DR

∼=
��

DR[t]Specf∗
// DR

4.3 Compatibility of canonical morphisms

In this section, we want to define a general evaluation at α morphism. As mentioned in

the introduction, our model for this is the extension by scalars via the homomorphism

R[t]→ R[t]/(t− r) ∼= R, i.e.

−⊗R[t] R[t]/(t− r) : R[t]-Mod→ R-Mod .

For rings, “scalars” are simply elements of R, but in the derivator there is no obvious analogue

of elements of the monoidal unit in D. However, it we examine R[t]-modules with underlying

R-module R, then the possibilities for the t-actions correspond precisely to elements of R.

Therefore, our intuition should be: scalars are endomorphisms of the unit.

In the derivator case, these evaluation at alpha morphisms ought to be strong monoidal.

Furthermore, the composition

R ↪→ R[t]→ R[t]/(t− r) ∼= R

is the identity. The structure morphism is a model for extension of scalars along R ↪→ R[t],

so the evaluation at α should form a section of the structure morphism.

First, we show that the structure morphism i! : D→ A1
D is a strong monoidal morphism

under the A1
D-monoidal structure as defined in the previous section.

Proposition 4.3.1. The structure morphism is strong monoidal, i.e.

i!(X �D Y ) ∼= (i!X �A1
D
i!Y )

Proof. This is a straightforward computation, we have

(i!X �A1
D
i!Y ) = +!(i!X �D i!Y )
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∼= +!(i× 1)!(X �D i!Y )

∼= +!(i× 1)!(1× i)!(X �D Y )

∼= (+ ◦ (i× 1) ◦ (1× i))!(X �D Y )

∼= i!(X �D Y )

The construction of the evaluation at α morphism strongly mirrors the ring case.

Definition 4.3.2. Let D be a derivator, and X be an object of D(N) = A1
D(e), such that

i∗X = 1D. Then call X an coherent endomorphism of the unit. We can write diaN,e(X) =

(1, α). In this case we call X the coherent α endomorphism.

The term coherent α endomorphism can be a bit deceptive, as there may be more than

one object with the same underlying diagram. Now we can define what the evaluation at α

morphism means.

Let D be a symmetric monoidal derivator and equip DN with the A1
D-monoidal structure.

We would take a coherent endomorphism of the unit, i.e. an object in D(N) whose underlying

diagram is (1, α), take its A1
D-external product with any object in some A1

D(I), and then

forget the endomorphism part originating in the (1, α)-direction. That is to say, for some

X ∈ DN(I) and letting evα denote our desired evaluation at α map, our formula for evα is

evα(X) = i∗ +! (X �D (1, α)).

We call p∗1 the coherent identity morphism, and evaluation at 1 means evaluating at this

particular element of D(N).

Definition 4.3.3. Let D be a symmetric monoidal derivator, and consider A1
D with the A1

D-

monoidal structure. The evaluation at (coherent) α for any Y ∈ A1
D(I) is

evα(Y ) = i∗(Y �A1
D

(1D, α)).
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We will show in due course that this is a strong monoidal morphism. First we show that

it coincides with our previous notion of evaluation at 1.

Lemma 4.3.4. The definition of “evaluation at 1” given by p! and the new definition of

evaluation at 1 coincide.

Proof. Using general definition of evaluation at 1, our coherent endomorphism is p∗1D. Thus

we have

ev1(X) = i∗ +! (X �D p
∗
1)

= i∗ +! (1× p)∗(X)

So the task at hand is now simply to prove the isomorphism i∗ +! (1 × p)∗ ∼= p!. We

will prove a related isomorphism, namely +!(1× p)∗ ∼= p∗p!. The required isomorphism now

follows from this one since i∗p∗ ∼= Id, and so post-composing both sides of +!(1× p)∗ ∼= p∗p!

gives precisely i∗ +! (1× p)∗ ∼= p!. Thus, we would like to show the following (commutative)

square is homotopy exact.

N× N 1×p //

+

��

N
p

��

⇒Id

N p
// e

Here we check this directly via [GPS14a, Theorem 3.8]. In our good fortune, because

we have the terminal category in the lower right corner, we need only check that a single

category is homotopy contractible. The category (•/N × N/•)id as stated in the theorem,

where both objects • are the sole objects in the two copies of N, has objects triples

(m ∈ N = HomN(•, •), • ∈ N× N, n ∈ N = HomN(•, •)),

which we view as merely a pair of natural numbers (m,n).

The morphisms in this category are morphisms (a1, a2) ∈ N×N such that (1×p)(a1, a2)+

m = m′, and +(a1, a2) + n′ = n, i.e. we have a morphism (a1, a2) : (m,n) → (m′, n′) if
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a1 +m = m′ and a1 + a2 + n′ = n. Between any two objects of this category (•/N×N/•)id,

there is at most only a single morphism. There is a morphism (m,n)→ (m′, n′), if m ≤ m′

and n− n′ ≥ m′ −m, and in particular we must have m ≤ m′ and n ≥ n′.

Thus, we may view (•/N × N/•)id as a subcategory of (N,≤) × (N,≥) containing all

objects but not all morphisms, where we have a morphism (m,n) → (m′, n′) if and only if

m ≤ m′ and n ≥ n′, and m + n ≤ m′ + n′. However, we may view this as a subcategory

of (N,≤) × (N,≥) by taking (m,n) 7→ (m + n, n). Being a fully faithful functor, it is an

equivalence onto its image, and this second category is a full subcategory of (N,≤)× (N,≥)

consisting of objects (k, l) with k ≥ l. Call this subcategory L ⊂ (N,≤)× (N,≥).

There is an adjunction connecting L and (N,≤) × (N,≥). The right adjoint is the

inclusion, and the left adjoint takes (m,n) ∈ (N,≤) × (N,≥) to (m,n) ∈ L if m ≥ n and

(n, n) ∈ L if m < n. Then (N,≤) × (N,≥) is a product of two homotopy contractible

categories, since (N,≤) has an initial object while (N,≥) has a final object, and hence

homotopy contractible.

This category L is then connected via adjunction to the terminal category, hence it is

homotopy contractible. Therefore, our commutative square is homotopy exact and the two

definitions of evaluation at 1 coincide.

Lemma 4.3.5. Let Y = (1, α) be a coherent endomorphism in D(N) and let M,N ∈ D(e).

Then (M �D Y )�A1
D

(N �D Y ) ∼= (M �D N)�D Y .

Proof. This can be proven by showing that +!+
∗ ∼= Id, or equivalently that the square

N× N
1
��

1 // N× N
+

��

⇒Id

N× N + // N
is homotopy exact. However, this statement is certainly true if D is a model category, so

by [GPS14a, Theorem 3.16], it holds for all derivators D.

Proposition 4.3.6. The general “evaluation at α” morphism is a strong monoidal morphism

of derivators for any coherent endomorphism (1, α) ∈ DN(e).
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Proof. Again we simply restrict to examining the evaluation at α morphism on A1
D(e). Con-

sider objects X and Y in D(N)-we wish to show

evα(X)�D evα(Y ) ∼= evα(X �A1
D
Y ).

Let us use the formulation of evα(−) = i∗ +! (−�D (1, α)). Then we have

evα(X �A1
D
Y ) = i∗ +! ((X �A1

D
Y )�D (1, α))

= i∗((X �A1
D
Y )�A1

D
(1, α))

∼= i∗((X �A1
D
Y )�A1

D
((1, α)�A1

D
(1, α)))

∼= i∗(X �A1
D

(1, α))�A1
D

(Y �A1
D

(1, α))

∼= i∗(X �A1
D

(1, α))�D i
∗(Y �A1

D
(1, α))

= (i∗+!)(X �D (1, α))�D (i∗+!)(Y �D (1, α))

= evα(X)�D evα(Y )

Here the last isomorphism comes from the preceding lemma.

Therefore, the monoidal structures on A1
D and D are compatible, in that the structure

and evaluation morphisms are all strong monoidal.

Proposition 4.3.7. The evaluation at α morphisms are cocontinuous.

Proof. To be precise, we would like to show that for any functor f : A → B, the diagram

below commutes.

A1
D(A)

f! //

evα
��

A1
D(B)

evα
��

⇒∼=

D(A)
f!
// D(B)

Remember that evα(X) for any X ∈ A1
D(I) is the composition i∗+! (X�D (1, α)). Taking

an external product with (1, α) commutes with f! since external products are cocontinuous.

The homotopy left Kan extensions +! and f! commute as they occur in different variables,

and similarly i∗ and f!.
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This last result will be of importance when we discuss the “universal property” of the

affine line.
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CHAPTER 5

The universal property of An

Recall that our definition for the affine line over a derivator rested upon the intuition that

if R is a commutative ring, an R[t]-module is nothing more than an R-module with an

R-module endomorphism, allowing us to define A1
D = DN for any derivator D. For rings,

a homomorphism R[t] → S can be broken down into a two simple parts, the “underlying

morphism” R → S and the value of t ∈ R[t] under the homomorphism, while conversely

the combination of a ring homomorphism R → S and a value s ∈ S for the assignment of

t is sufficient to determine a ring homomorphism R[t] → S. We expect a similar bijective

compatibility for (symmetric monoidal) derivators, that a (cocontinuous) strong monoidal

morphism F : A1
D → E for symmetric monoidal derivators D, E can be determined by an

“underlying morphism” D→ E and the value of an object in E(N).

We note that in the setting of noncommutative rings there is no expectation of a simi-

larly clean bijection, and indeed our proof relies significantly upon heavily on the monoidal

structures that we have previously defined.

5.1 Two technical lemmas

We will begin by proving two results that will be frequently used.

Lemma 5.1.1. Let F : D → E be a cocontinuous strong monoidal morphism between

monoidal derivators. Then FN : A1
D → A1

E is again strong monoidal for the A1
D, A1

E-monoidal

structures on DN, EN, respectively.

Proof. The following diagram commutes up to natural isomorphism:
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DN × DNFN×FN
//

�D
��

EN × EN

�E
��

⇒∼=

DN×N

+!
��

FN×N
// EN×N

+!
��

⇒
∼=

DN
FN

// EN

Here the commutativity of the top square up to natural isomorphism expresses that F

is strong monoidal on the An monoidal structures, while the commutativity of the bottom

square is a consequence of F being cocontinuous.

Note that in this case FN is again a cocontinuous strong monoidal functor, so we can

iterate this construction.

Now we take some steps towards the decomposition discussed above. If we are given a

morphism of derivators F : A1
D → E, composing with i! : D → DN gives us the “underlying”

morphism of derivator F0 : D → E. Indeed this is what we would expect if D and E are

derivators associated to rings.

We define two pieces of terminology.

Definition 5.1.2. Let D, E be two symmetric monoidal derivators, and F : A1
D → E be a

monoidal morphism of derivators.

1. Call the composition F0 := F ◦ i! : D→ E the base of the morphism F .

2. The image of the object +∗i!1D in D(N × N) = A1
D(N) under F evaluated at N, i.e.

FN(+∗i!1D) is the type of F .

Later we will show that the type of F is a coherent endomorphism of the unit.

Lemma 5.1.3. Let F0 : D → E be a cocontinuous strong monoidal morphism of derivators

and (1, α) ∈ E(N) be any coherent endomorphism. Then the composition

evα ◦ FN
0 : A1

D → E

is also a cocontinuous, strong monoidal morphism.
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Proof. This is clear, since both evα and FN
0 were known to be strong monoidal and cocon-

tinuous.

Moreover, such a morphism evα ◦ FN
0 has underlying morphism F0, since

evα ◦ FN
0 ◦ i! ∼= evα ◦ i! ◦ F0

∼= F0

by co-continuity of F0, and then by noting that evα ◦ i! is just the identity morphism.

5.2 Main Theorem and proof

The main theorem regarding the A1-universal property is given below.

Theorem 5.2.1. Let D, E be two monoidal derivators, and let F : A1
D → E be a cocontinuous

monoidal morphism. The only cocontinuous monoidal morphism with base F0 and type α is

evα ◦ FN
0

That is to say, every cocontinuous monoidal morphism of derivators

F : A1
D → E

can be obtained as a composition evα◦FN
0 for some coherent endomorphism (1E, α) and some

strong monoidal morphism

F ◦ i! = F0 : D→ E.

First we see where the information of the coherent endomorphism α can be obtained.

Lemma 5.2.2. The following diagram commutes up to isomorphism:

DN×N FN
// EN

i∗

��

⇒∼=

DN

+∗

OO

F
// E
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Proof. Since the composition

N 1×i−−−→ N× N +−−−→ N

is the identity, so too is the composition (1 × i)∗+∗. Therefore, the below diagram

commutes (without isomorphism):

DN×N Id−−−→ DN×N

+∗

x (1×i)∗
y

DN Id−−−→ DN

Then, for any morphism DN → E, we have a commutative diagram

DN×N

(1×i)∗
��

FN
// EN

i∗

��

⇒∼=

DN
F

// E

Pasting the two squares horizontally gives precisely our desired diagram.

In the specific case of FN(+∗1A1
D
), since F is strong monoidal we know that i∗FN(+∗1A1

D
)

is just 1E. Therefore, FN(+∗1A1
D
) is equal to (1E, α) ∈ E(N) for some α.

So let F : A1
D → E be a morphism of derivators. We wish to determine the image of

FN(+∗X) for any X ∈ DN. First we give a decomposition of +∗X as the A1
A1
D
-tensor product.

Proposition 5.2.3. +∗X is the A1
A1
D
-tensor product of (1× i)!X and +∗i!1D.

Proof. Recall the definition of the A1-monoidal structure. Here we end up taking a A1
A1
D
-

tensor product, i.e. doing the Day convolution product on DN×N.

Consider 1D ∈ D(e) and X ∈ A1
D(I) = D(N× I).

First we re-write +∗X = +∗(X�A1
D
i!1D). Here we can draw upon the following diagram,

expressing the definition of the A1-monoidal structure.
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D(N)× D(N)
�D //

Id
��

D(N× N)

+!

��

⇒Id

A1
D(e)× A1

D(e)
�A1D

// D(N) ∼= A1
D(e)

So we can write +∗(X �A1
D
i!1D) = +∗ +! (X �D i!1D). Now, we also have

(1× i)!X �A1
A1D

+∗i!1D = +!((1× i)!X �A1
D

+∗i!1D)

∼= +!(1× i)!(X �A1
D

+∗i!1D)

∼= X �A1
D

(+∗i!1D)

= (+× 1)!(X �+∗i!1D)

∼= (+× 1)!(1×+)∗(X � i!1D)

The individual isomorphisms are as follows. The first equality is just the definition of the

A1
A1
D
-external product relative to the A1

D-external product. The second isomorphism is from

co-continuity of the external product. Therefore, ((1 × i)!X �A1
D

+∗i!1D) ∼= (i × 1)!(X �A1
D

+∗i!1D),

For the third isomorphism, by naturality we know that +!(1 × i)!
∼= (+ ◦ (1 × i))!, but

+ ◦ (1 × i) is just the identity functor on N. Thus, +!(1 × i)!
∼= 1!, and 1!

∼= Id. Hence we

can simply remove +!(1× i)! for the third isomorphism.

The fourth equality is once again a definition of the A1
D-external product relative to the

D-external product, while the fifth isomorphism is a reflection of the fact that taking the

external product with any object is a morphism of derivators.

Thus, we have (1 × i)!X �A1
A1D

+∗i!1D = (+ × 1)!(1 × +)∗(X �D i!1D). We would like to

show it to be isomorphic to +∗(M, f) = +∗+! (i!1D�D (M, f)). A sufficient statement would

be simply that (+× 1)!(1×+)∗ ∼= +∗+!.

Lemma 5.2.4. The following square is homotopy exact:
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N× N× N1×+ //

1×+
��

N× N
+

��

⇒Id

N× N
+

// N
(5.2.5)

Here the natural transformation in the middle is just the identity, as both compositions

are just

N× N× N→ N,

taking a map (a, b, c) 7→ a+ b+ c.

Proof. Using (Der4), we know that the square

(+× 1)/e
pr //

π

��

N× N× N
+×1

��

⇒α

e
i

// N× N
(5.2.6)

is homotopy exact. Our original square is homotopy exact if and only if its pasting with the

above is homotopy exact, as homotopy exactness can be checked pointwise and N × N has

precisely one object.

The category (+ × 1/e), by definition has objects (• ∈ N × N, (a, b) : • → •), of which

the information we can just condense to (a, b) ∈ N×N. A morphism (a, b)→ (c, d) will be a

morphism (j, k, l) in N×N×N such that (+×1)(j, k, l) = (a−c, b−d)-i.e. that j+k+c = a

and l + d = b.

Hence, if the pasting of (5.2.5) and (5.2.6) can be shown to be homotopy exact, as (5.2.6)

we see that (5.2.5) is homotopy exact. This pasting of (5.2.5) and (5.2.6) looks like
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(+× 1)/e
pr //

π

��

N× N× N1×+ //

+×1

��

⇒α
N× N

+

��

⇒Id

e
i

// N× N + // N
(5.2.7)

Then we can whisker the natural transformations, to make this a single square with

natural transformation. Below, we take the functor p to be the composition of the top line

in (5.2.7):

(+× 1)/e→ N× N× N→ N× N

(+× 1)/e
p //

π

��

N× N
+

��

⇒α

e
i

// N
(5.2.8)

It is not clear why this square would be homotopy exact given its current description.

From (Der4) we consider the square

(+/e)
pr //

π

��

N× N
+

��

⇒α

e
i

// N
(5.2.9)

which we know to be homotopy exact. Here an object of the category (+/e) has objects

(• ∈ N,m : • → •), information that we can just condense to m ∈ N. A morphism (m)→ (n)

is a morphism (i, j) in N× N such that +(i, j)) = m− n. We would like to write (5.2.8) as

a pasting of (5.2.9) with another square, i.e. obtain a pasting of the form
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(+× 1)/e G //

π

��

(+/e)
pr //

π

��

⇒α
N× N

+

��

⇒Id

e
Id

// e
i

// N
(5.2.10)

such that pr(+/e)◦G = (1×+)◦pr(+×1)/e, i.e. we want to find a functor G : (+×1/e)→ (+/e)

such that the below square commutes:

(+× 1/e)
G−−−→ (+/e)

pr

y pr

y
N× N× N 1×+−−−→ N× N

Upon further examination, such a functor will be induced by (1×+) in the following way;

taking an object (a, b) in (+×1/e) to (a+b) ∈ (+/e), and a morphism (j, k, l) : (a, b)→ (c, d)

to (j, k+ l) : (a+b)→ (c+d). Checking that the above commutes tells us that G is precisely

what is required. Thus, we can re-write (5.2.8) in the guise of (5.2.10).

The right-hand square of this pasting (5.2.10) is homotopy exact by (Der4), so it simply

suffices to prove the left-hand square is homotopy exact. This most obvious step would be

to check that the the functor G is a right adjoint, by [Gro13, Proposition 1.24], but this fails.

Instead, let us denote (+ × 1/e) = C, (+/e) = D, and let C0 ⊂ C be the full subcategory

with objects (a, 0). We form the pasted square

C0
i0 //

π

��

C

π

��

G //
⇒Id

D

π

��

⇒Id

e
1
// e

1
// e

(5.2.11)

Here, I claim that both the inclusion i0 : C0 ↪→ C and G ◦ i0 are right adjoints. This will

prove that both the left-hand square and the pasting are homotopy exact squares, and hence

that the right-hand square is. We detail the respective adjunctions.
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The left adjoint L to i0 : C0 ↪→ C takes (a, b) ∈ C to (a, 0) ∈ C0 and a map (j, k, l) : (a, b)→

(c, d) to (j, k, 0) : (a, 0)→ (c, 0). So we take (a, b) ∈ C and (c, 0) ∈ C0, then HomC0((a, 0), (c, 0)) ∼=

HomC((a, b), (c, 0)). The former consists of maps of the form (j, k, 0) with j + k + c = a,

while the latter consists of maps of the form (j, k, b) with j+k+ c = a, rendering an obvious

bijection.

The left adjoint F to C0 ↪→ C→ D takes (m) ∈ D to (m, 0) ∈ C0 and a map (a, b) : (m)→

(n) to (a, b, 0) : (a, 0) → (c, 0). Take (a, 0) ∈ C0 and (n) ∈ D. Then HomC0((n, 0), (a, 0)) ∼=

HomD((n), (a)), as the former consists of maps (j, k, 0) where j + k+ a = n, while the latter

consists of maps (j, k) where j + k + a = n, with the obvious bijection. Therefore, both

i0 : C0 ↪→ C and G ◦ i0 are both right adjoints.

Therefore, the square

C
G //

π

��

D

π

��

⇒α

e
1
// e

(5.2.12)

is homotopy exact. This implies that (5.2.10) is homotopy exact, which is the same

square as (5.2.8). Therefore, our original square (5.2.5) is homotopy exact, and we rewrite

it below:

N× N× N1×+ //

+×1
��

N× N
+

��

⇒Id

N× N
+

// N
(5.2.13)

Taking the respective adjoints, we have an isomorphism

(+× 1)!(1×+)∗ ∼= +∗ +! .
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Now we can complete the proof of the proposition.

Proof. From the previous lemma we have

+∗X = +∗(i!1D �A1
D
X)

= +∗ +! (i!1D �D X)

As +∗+!
∼= (+× 1)!(1×+)∗, we have

+∗ +! (i!1D �D X) ∼= (+× 1)!(1×+)∗(i!1D �D X).

We also have that

(1× i)!X �A1
A1D

+∗i!1D = (+× 1)!(1×+)∗(X �D i!1D).

The proof of the theorem will rely on the two isomorphic representations of +∗X that we

have produced.

Lastly, we can tackle the proof of the Theorem.

Proof. We know that FN((1× i)!X) = FN
0 X, while FN(+∗i!1D) = (1E, α) by characterization

of having type α. Therefore, FN(+∗X) = FN
0 X �A1

E
(1E, α). Thus,

F (X) ∼= i∗FN(+∗X)

∼= i∗FN(i!X �A1
A1D

(+∗(i!1D)))

∼= i∗(FN(i!X)�A1
E
FN(+∗1A1

D
))

= i∗(FN
0 X �A1E (1E, α))

= evαF
N
0 X

Above, the first isomorphism F (X) ∼= i∗FN(+∗X) is since F is a morphism of derivators.

The second isomorphism is the decomposition

+∗X = +∗i!1D �A1
A1D

(1× i)!X,
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and the third just follows by co-continuity of F .

Our very last equality is precisely the definition of the evaluation at α morphism.

Therefore, cocontinuous monoidal morphisms of derivators F : A1
D → E can be deter-

mined simply by their base F0 and their type α, in that a morphism F with designated base

F0 and type α is simply evαF
N
0 .

Definition 5.2.14. Let D, E be two derivators. Let PDER(D,E) denote the category whose

objects are strong morphisms of prederivators D→ E and morphisms are modifications.

Let PDER!(D,E) denote the full category whose objects are cocontinuous morphisms

of derivators D → E. Similarly, if D and E are monoidal derivators, then we can let

PDER⊗(D,E) denote the category of monoidal morphisms and pseudonatural transforma-

tions. Finally, if we are looking at PDER(A1
D,E) we can let PDER⊗,!,D(A1

D,E) denote the

cocontinuous, monoidal morphisms F : A1
D → E such that F ◦ i! is a given morphism D→ E.

Theorem 5.2.15. We describe (5.2.1) via a more global perspective.

1. There exists a functor

PDER⊗,!(A1
D,E)→ E(N)

that sends a cocontinuous, monoidal morphism F : A1
D → E to F (+∗i!1D).

2. Fix a cocontinuous monoidal morphism of derivators F0 : D→ E. If we restrict to co-

continuous monoidal morphisms with base F0, this induces an equivalence of categories

PDER⊗,!,D(A1
D,E) ∼= {X : i∗X = 1E} ⊂ A1

E(e).

Call the latter category E1, which we can also think of as all the coherent endomor-

phisms of the identity in E. Here PDER⊗,!,D(A1
D,E) consists of cocontinuous, strong

monoidal morphisms F of derivators between A1
D → E with Fi! equal to some fixed F0.

In the above equivalence, the forward direction functor

PDER⊗,!,D(A1
D,E)→ E1

is the functor in the first part. Its inverse takes (1, α) to evα ◦ FN
0 .
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3. Alternatively, we have an equivalence of categories

PDER⊗,!(A1
D,E) ∼= E1 × PDER⊗,!(D,E).

The forward direction functor splits F into the information of its type α and its base

F0. Its inverse takes a coherent endomorphism (1E, α) plus a cocontinuous, monoidal

morphism F0 : D→ E to evαF
N
0 .

Proof. 1. The first part is clear: every pseudonatural transformation between two mor-

phisms F,G : A1
D → E gives a morphism in E(N),

F (+∗i!1D)→ G(+∗i!1D).

2. It clear by (5.2.1) that the functor in part (1) can have its codomain restricted to to

E1.

The two functors between PDER⊗,!,D(A1
D,E) and E1 are as follows. Given F : A1

D → E,

we send it to FN(+∗i!1D) ∈ E1. For a monoidal natural transformation F → F ′, we

send it to the morphism

FN(+∗i!1D)→ F ′N(+∗i!1D).

Conversely, given (1, α) ∈ E1 we send it to evα ◦FN
0 : A1

D → E, which we know to be in

PDER⊗,!,D(A1
D,E). Given a morphism (1, α)→ (1, β) ∈ E1, there is the corresponding

monoidal natural transformation evα → evβ. Recall the definition of the evaluation

at α morphism, (4.3.3); given a morphism g : (1, α) → (1, β) there is a corresponding

morphism, i∗(IdX �A1
D
g) from

i∗(X �A1
D

(1, α))→ i∗(X �A1
D

(1, β))

and these paste to become a monoidal natural transformation evα → evβ. Hence we

also obtain a monoidal natural transformation evαF
N
0 → evβF

N
0 .

The compositions

PDER⊗,!,D(A1
D,E)→ E1 → PDER⊗,!,D(A1

D,E)
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E1 → PDER⊗,!,D(A1
D,E)→ E1

are both seen to be isomorphisms, showing that there is actually an equivalence between

the two categories.

3. As in the previous part, given F ∈ PDER⊗,!(A1
D,E) we map it to

(F (+∗i!1D), F ◦ i!).

For a modification F → G in PDER⊗,!(A1
D,E), wesend it to the morphisms F (+∗i!1D)→

G(+∗i!1D) and F ◦ i! → G ◦ i! in the categories E1 and PDER⊗,!(D,E) respecitvely.

In the opposite direction, we take a pair (1E, α) and F0 : D→ E and send it to

evα ◦ FN
0 : A1

D → E.

Given a pair of morphisms

(1E, α)→ (1E, β), F0 → G0,

we have a transformation

evαF
N
0 → evαG

N
0 → evβG

N
0

where the first arrow is given by the transformation F0 → G0 and the second induced

by the transformation evα → evβ as described in the previous part. From (5.2.1), we

know that these two functors are essential inverses to each other.

We note one special case below, when the base is the identity.

Corollary 5.2.16. The only monoidal morphisms F : A1
D → D that F ◦ i! is the identity are

the evaluation at α morphisms evα.

Indeed it’s clear by the definition of the evaluation at α morphism that each one is a

section to the structure morphism i!. Now we have seen that these are the only sections.
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5.3 Universal property of affine space An

Now we aim to extend this result to An
D in a natural way. Let us fix the following notation.

1. Let in : Nn−1 → Nn denote the functor 1Nn−1 × i

2. Let 0 ≤ m < n be two integers. Let im,n denote the composition

in ◦ in−1 ◦ · · · ◦ im+1 : Nm → Nn

3. Let F : An
D → E be a cocontinuous monoidal morphism of derivators. Let Fm,n denote

the morphism

F ◦ (im,n)! : Am
D → E

for 0 ≤ m < n.

We generate the universal property for An essentially by iterating the universal property

for A1 along the inclusions ik. Note that if we think of An
D as A1

An−1
D

, then with the above

notation Fn−1,n is the base of the morphism of derivators F : An
D → E, and more generally

Fm−1,n is the base of the morphism

Fm,n : Am
D → E.

So we can use the universal property of A1 ((5.2.1), (5.2.15)) to bootleg up to An.

Corollary 5.3.1. We have the following analogues of (5.2.15).

1. There is a functor

PDER⊗,!(An
D,E)→ ΠnE(N),

sending a cocontinuous monoidal morphism F ∼= An
D → E to the product of the types

of Fm,n for each 1 ≤ m ≤ n, from the universal property of A1.

2. Fix a cocontinuous, monoidal morphism of derivators G : D → E. Consider the sub-

category

PDER⊗,!,D(An
D,E) ⊂ PDER⊗,!(An

D,E)
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consisting of morphisms F with F0,n = G. The functor in part (1) induces an equiva-

lence of categories with ΠnE1.

3. From (2) we have an equivalence of categories PDER⊗,1(An
D,E) with the category

PDER⊗,!(D,E)× ΠnE1.

Proof. First we will describe how to generate the product ΠnE1 by induction. The main the-

orem (5.2.15) is the case for n = 1. Inductively, note that we have the following commutative

diagram of two commuting triangles:

A1
E

evαn
��

An
D

F
N
n−1,n

<<

F
// E

An−1
D

(in)!

OO

Fn−1,n

==

The evαn is obtained from the universal property of A1 on for the derivator An−1
D , which

gives the commutativity of the top triangle. So for An we get the information of n evaluation

at α morphisms giving us the requisite functor for (1).

For (2) it’s clear that one can restrict the codomain of the functor in (1) to ΠnE1. Note

that suppose we are given a cocontinuous monoidal morphism F : An
D → E with F0,n = G.

Then Fn−1,n : An−1
D → E again has base G and we can write F = evαn ◦ F

N
n−1,n. Then one

can write Fn−1,n = evαn−1 ◦ F
N
n−2,n, and so forth.

So given a product Πn
i=1(1E, αi) and a morphism G which should be equal to F0,n for

some F : An
D → E, we can recursively define Fk+1,n as evk ◦ (Fk,n)N, until we get to Fn,n which

is simply our desired morphism of derivators.

This gives the inverse to our stated equivalence in part (2), while (3) is simply a re-writing

of (2).

For us, this is the most telling signal that the definition of A1
D and more generally An

D

is a reasonable one. It mirrors behavior that we would expect polynomial algebras over a

commutative ring or the affine spaces over a reasonable scheme to have.
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CHAPTER 6

Derivators shifted by other monoids

Here we consider the general case where M is a cancellative, abelian monoid with unit. We

can consider the associated category M , which has one object • and endomorphism monoid

M . For a derivator D, we can form the derivator DM and ask whether it has similar properties

as outlined for A1
D. Generally speaking, the answer is yes, and below we outline four main

aspects of the relationship between DM and D:

1. Agreement: i.e. if D is the derivator DR associated to a commutative ring R, then DM

is the derivator DR[M ] associated to the (commutative) monoid ring R[M ]

2. Canonical morphisms: that (iM)! and (pM)! where iM and pM are the canonical monoid

maps from a point into M and M to a point, correspond to extension of scalars along

the ring homomorphisms R ↪→ R[M ] and R[M ] → R, where the latter map sends

every element of M to 1

3. Monoidal structure: the verification that if D is a symmetric monoidal derivator, then

the Day convolution formula gives a symmetric monoidal structure on DM such that

if D is the derivator associated to a commutative ring R and its monoidal product is

induced by −⊗R −, then the monoidal structure on DM is induced by −⊗R[M ] −

4. Universal property: the verification that a cocontinuous, monoidal morphism of deriva-

tors

F : DM → E

can be determined by its pre-composition with (iM)! and an element in X ∈ E(M)

such that (iM)∗X = 1E.
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In the following subsections we will outline why each aspect is true. All proofs are very

similar to the proofs for A1
D or M = N and can be obtained by simply substituting M for N

in the relevant steps, so we do not repeat them for the sake of brevity.

6.1 Agreement

As with the case of A1, we have an isomorphism on categories of modules,

R-ModM ∼= R[M ]-Mod .

Therefore, it follows also that we have an isomorphism on the chain complexes,

Ch(R-ModM) ∼= Ch(R[M ]-Mod).

Moreover, the quasi-isomorphisms in both categories are the same. We recall the proofs

in [BZ17], specifically [BZ17, Theorem 5] with N replaced by M and the general [?, Lemma

8], touching on the first and secon assertions above.

Example We give some basic examples of shifts by monoids that produce meaningful re-

sults.

1. If M = Nn, then we recover affine space constructions of the previous two chapters.

2. If M is an abelian group G, then R-ModM ∼= R[G]-Mod, with potential representation-

theoretic value. Again, here the Day convolution product is the usual tensor of R[G]-

modules, while the usual shifted tensor product gives the tensor product of underlying

R-modules with the diagonal G-action.

3. Again if M is an abelian group G, and Top denotes a model for topological spaces,

then TopG consists of G-equivariant topological spaces. Top can be replaced with

pointed spaces, a model for spectra, etc, and in the case of spectra we obtain naive

G-equivariant spectra.
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6.2 Canonical morphisms

Here we note merely that the structure morphism and the evaluation at 1 morphism are

constructed in a similar fashion.

Proposition 6.2.1. The structure morphism for DM is

(iM)! : D→ DM .

The adjoint of this functor, (iM)∗, is the morphism of derivators induced by the forgetful

functor

R[M ]-Mod→ R-Mod

that takes an R[M ]-module and forgets all structure apart from the R-module. Equivalently

it is the restriction of scalars functor along R ↪→ R[M ]. Hence (iM)! is the extension of

scalars functor along R ↪→ R[M ].

Proposition 6.2.2. The “evaluation at 1” morphism for DM is

(pM)! : DM → D.

Again, the right adjoint (pM)∗ is the morphism of derivators induced by restriction of

scalars along the ring homomorphism R[M ] → R, sending each m ∈ M to 1 and is the

identity on R. So its left adjoint is the extension of scalars along the same homomorphism.

6.3 Monoidal structures

We first define the monoidal structure on DM . Recall that we can think of M as a symmetric

monoidal category; it has only one object, and the tensor product of maps m1,m2 ∈ M is

the composition m1 + m2 = m2 + m1 ∈ M . Then we can use a construction akin to Day

convolution:

Proposition 6.3.1. Let (D,�) be a symmetric monoidal derivator. Then (DM ,�DM ) is a

symmetric monoidal derivator where

(X �DM Y ) = (+M)!(X �D Y ).
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The proof that this defines a symmetric monoidal derivator is precisely analoguous to

the case of M = N. As for why this is the “correct” construction, we have as usual that if D

is the monoidal derivator associated to a ring R then DM should be the monoidal derivator

associated to R[M ].

The external product of two elements of R-ModM gives an object in R-ModM×M , i.e.an

R[M ×M ]-module. The functor +∗ induced by

+ : M ×M →M

takes an R[M ]-module and turns it into an R[M ×M ]-module by pulling back the actions

of elements of M along + and hence +!, as the left adjoint, is the correct option.

Definition 6.3.2. We define a coherent M -endomorphism of the unit to be an element X of

D(M) such that (iM)∗X = 1D. In terms of the underlying diagram functor these look like

(1D, αm : m ∈M)

such that αm ◦ αn = αm+n.

For each coherent M -endomorphism (1D, αm : m ∈ M) we can define an evaluation at

{αm : m ∈M} as follows:

Definition 6.3.3. Define

ev{αm:m∈M} : DM → D

to take

X 7→ (iM)∗(+M)!(X � (1, αm : m ∈M))

The two main properties we need about these morphisms are as follows:

1. evαm is a section to (iM)!

2. evαm is a strong monoidal morphism of derivators, when utilizing the Day convolution

monoidal structure on DM and the monoidal structure on D.

As usual, the proofs are analoguous to the case for M = N.
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6.4 Universal properties

We enumerate the universal property of DM with respect to D when D is a symmetric

monoidal derivator.

Theorem 6.4.1. The main result is as follows. Let D, E be two symmetric monoidal deriva-

tors;

F : DM → E

be a cocontinuous, monoidal functor.

As in the A1-case, the object F ((+M)∗1DM ) is a coherent M-endomorphism of the unit.

Let F0 = F ◦ (iM)!. Then

F ∼= evF ((+M )∗1DM ) ◦ FM
0 .

An equivalent assertion would be that any cocontinuous, monoidal morphism from DM

to E can be characterized by its composition with (iM)! and the image of a certain element,

namely (+M)∗1DM .

We omit the proof of this assertion: the discussion with homotopy exact squares for the

product of A1 indicates that having an abelian, cancellative monoid M with unit will be

sufficient for the proof; there was nothing special about N or Nn.
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CHAPTER 7

Group Completion and Localization

Given a commutative monoid M , it is natural to consider the group completion which we

denote as g(M). In our algebro-geometric intuition, going from DM to Dg(M) is akin to taking

an open subscheme by removing the origin.

We will tackle some general results about the localization theory of derivators, and then

restrict to our specific case.

7.1 Localization Theory of Derivators

We will give some more specialized methods for localization of derivators, in relation to the

shifted derivators we have discussed in the previous three chapters.

Here we give an attempt to summarize the theory of localizations of derivators. For a

discussion of localizations of categories, see [GZ67]. In CAT, the mechanism is simple: we

have a class of morphisms W ⊂ C [1] satisfying reasonable properties for some category C,

and we ask whether there is a category C[W−1] along with a functor L : C → C[W−1]

inverting all morphisms in W and admitting a fully faithful right adjoint.

In this case both the functor L and the category C[W−1] are unique up to equivalence as

they satisfy a universal property in CAT. While more special localization theories exist, for

example with model categories or triangulated categories, we will stick to a base model of

localization that is applicable to more derivators. Later we will make some generalizations

from the case of triangulated categories to triangulated derivators.

Proposition 7.1.1. [Col19, Proposition 3.5] Let F : D→ E be a localization of derivators,
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WF ⊂ D(e)[1] be the collection of morphisms in D(e) such that F (f) is an isomorphism. Let

T be another derivator. Then precomposition by F ,

F ∗ : PDER(E,T)→ PDER(D,T)

is fully faithful with essential image consisting of morphisms ξ : D → T such that ξe sends

every morphism in WF to an isomorphism.

Remark 7.1.2. As usual let PDER!(D,E) ⊂ PDER(D,E) denote the full subcategory consist-

ing of cocontinuous morphisms. A subscript WF still denotes the subcategory of morphisms

inverting WF on the base.

Proposition 7.1.3. [Col19, Proposition 3.7] In the situation of the above Proposition, if we

restrict to the category of cocontinuous morphisms we obtain an equivalence

F ∗ : PDER!(E,T) ' PDER!,WF
(D,T).

Moreover, we can give the inverse.

Lemma 7.1.4. If F : D → E is a localization of derivators with fully faithful right adjoint

G, then

G∗ : PDERWF
(D,T)→ PDER(E,T)

is a quasi-inverse to F ∗. This equivalence also restricts to the collection of cocontinuous

morphisms.

Moreover it is also clear that we have categorical localizations:

Proposition 7.1.5. If F : D → E is a localization of derivators by the collection WF in

D(e)[1], then FI : D(I)→ E(I) is a localization of categories by the collection WF (I).

Normally it may not be necessary to know what the collection of inverted morphisms

is. In the future we hope to give in the case of D a stable derivator what the subcategory

being quotiented out is on the base. The associated subderivator will be the analogue of a

“subcategory supported on a closed subset.”
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7.2 A1 and Gm

Recall that we have defined A1
D of a derivator as DN, using the intuition of the scheme case.

Similarly, we may define Gm of a derivator as follows.

Definition 7.2.1. The punctured affine line Gm of a derivator D is DZ, where Z is the category

with one object • and Hom(•, •) = (Z,+).

The intuition for this definition is like the definition for the affine line: given a ring R,

Gm,R is defined as SpecR[t, t−1]. We note that R[t, t−1]-Mod ∼= R-ModZ, indicating that a

shift by Z is the correct intuition for (Gm)D.

Let gN denote the categorification of the usual monoid map N ↪→ Z. Note that

(gN)∗ : R[t, t−1]-Mod→ R[t]-Mod

is the restriction of scalars functor along the usual inclusion R[t] ↪→ R[t, t−1]. Thus the

left adjoint (gN)! presents the extension of scalars functor along R[t] ↪→ R[t, t−1]. As usual,

we note that this is a monoidal functor and that it extends to a cocontinuous monoidal

morphism of derivators

(gN)! : DR[t] → DR[t,t−1].

Proposition 7.2.2. The morphism of derivators (gN)! is a localization of derivators.

Proof. A result of Cisinski indicates that if one has a left adjoint morphism of derivators

L : D→ D′ and that R : D′ → D is a fully faithful right adjoint, then L is a localization. In

our case, (gN)! has right adjoint (gN)∗, so we merely need to show that it is fully faithful.

This is equivalent to showing that (gN)!(gN)∗ ∼= Id. Equivalently, we show that

i∗(gN)!(gN)∗ ∼= i∗.

But we can understand i∗(gN)! via a (Der4) square as follows:

(gN/•)
pr //

π

��

N
gN
��

⇒α

e
i
// Z
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telling us that i∗(gN)!
∼= (πgN/•)! ◦ pr∗. Thus

i∗(gN)!(gN)∗ ∼= (πgN/•)!pr∗ ◦ (gN)∗.

However, let us actually consider pr∗(gN)∗(X) for some X ∈ D(Z). First let us construct

(gN/•): this category has objects indexed by Z, corresponding to the maps • → •. We see

that there is a map (m : • → •)−→(n : • → •) if and only if m ≥ n. Thus (gN/•) is actually

just the poset (Z,≥).

Lemma 7.2.3. The poset (Z,≥) has contractible nerve.

Proof. First we consider the subcategory (N,≥) ⊂ (Z,≥). This full subcategory evidently

has contractible nerve, as 0 is a terminal object. I claim that the inclusion here is a left

adjoint, with right adjoint

R : (Z,≥)→ (N,≥)

defined as follows: R(n) = n if n ≥ 0 and R(n) = 0 if n < 0.

One can check directly that this constitutes an adjunction. Let m ∈ N and n ∈ Z. Then

Hom(inc(m), n) consists of a single map if m ≥ n and of no maps if m < n. Similarly

Hom(m,R(n)) consists of a single map if n < 0 or if m ≥ n, and of no maps if m < n.

Therefore, we have a natural isomorphism

Hom(Z,≥)(inc(m), n) ∼= Hom(N,≥)(m,R(n))

for all m ∈ (N,≥) and n ∈ (Z,≥).

As mentioned above (N,≥) is connected to e via inclusion to the terminal object and

the projection to e. Thus, (Z,≥) is connected via a series of adjunctions to the terminal

category.

This proves that (Z,≥) is contractible.

Proof. Now we continue the proof that our morphism of derivators is a localization. Recall

that an object in D(Z) is an underlying object X with a collection of morphisms ωn for each
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n ∈ Z, such that ω0 is the identity and ωn ◦ ωm = ωn+m. This implies that each ωn is an

isomorphism. We denote such an object then as {X,ωn : n ∈ Z}. Applying pr∗(gN)∗ to this

object gives a diagram of the form

...
ω1−−−→ X

ω1−−−→ X
ω1−−−→ X

ω1−−−→ ...

where recall that each ω1 is an isomorphism. However, this is pointwise equivalent to π∗X.

Recall that π∗X is a diagram of the form

...
id−−−→ X

id−−−→ X
id−−−→ X

id−−−→ X...

The pointwise isomorphism is given as follows: for n ∈ Z we have the isomorphism

ωn : (π∗X)n → pr∗(gN)∗{X,ωn : n ∈ Z}

One checks that this is a pointwise isomorphism, and hence we can replace pr∗(gN)∗{X,ωn :

n ∈ Z} by π∗X in future computations.

Our task then reduces to proving that π!π
∗X ∼= X. This is precisely the case if the

category (Z,≥) is contractible, which was proven above. Therefore, π∗ is a fully faithful

functor.

Then the same [Cis08, Lemme 4.2] indicates that DZ will be a localization of DN.

7.3 The general case

Here we let M be a finitely generated, cancellative, abelian, unital monoid, where we denote

the monoid operation as +. Let {x1, · · · , xk} be a collection of generators (i.e. each element

of M can be written as an N-linear combination of {x1, · · · , xl}), and let g(M) denote

the Grothendieck group of M . Then because M is cancellative, the canonical morphism

M → g(M) is an inclusion. Let gM : M → g(M) be the corresponding functor on the

categories.
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Let D be a derivator, then we have a cocontinuous morphism of derivators

(gM)! : DM → Dg(M).

Theorem 7.3.1. This morphism of derivators (gM)! is a localization of derivators.

The proof of this result is akin to that of the previous result. We split it up into two steps,

first by making an approximation of the (gM)!(gM)∗ via a (Der4) square and then replaing

it with an isomorphic object, as in the case of M = N. This part is no different from the

previous portion. The second step is to show that the category (gM/•) is has contractible

nerve. This procedure is a bit different. We did not find a connection between (gM/•)

and the terminal category via adjunctions, but we will write it as a colimit of contractible

categories.

Proposition 7.3.2. The category (gM/•) has contractible nerve.

Proof. The category (gM/•) is defined as follows: its objects are indexed by elements of the

abelian group g(M), and if m1, m2 are elements of g(M) or equivalently (gM/•), there is a

map m1 → m2 if and only if the difference m1 −m2 lies in M ⊂ g(M).

We first define the subcategory C0 ⊂ (gM/•) as the full subcategory consisting of all

objects in M . This category has a terminal object, namely 0 as clearly each object of C0

admits a unique map to 0. Thus its nerve is contractible.

Now for each n ≥ 0, define Cn to be the full subcategory consists of objects m such that

m+ n(x1 + · · ·+ xk) ∈M . We have an increasing union

C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · (gM/•),

as {x1, · · · , xk} also generate g(M) as a group (since each element of g(M) is a Z-linear

combination of {x1, · · · , xk}).

Thus, (gM/•) is the colimit of the Cn along inclusions Cn ↪→ Cn+1 for all n ∈ N. We see

that the colimit diagram is the shape (N,≤) and hence this is a directed colimit. As nerves

preserve directed colimits, we obtain that

N(gm/•) ' colim(N,≤)N(Cn)
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Now, each Cn has contractible nerve as Cn has a terminal object, namely−n(x1+· · ·+xk).

Indeed it is clear that C0 and Cn are isomorphic for each n, via functors C0 → Cn sending

m 7→ m− n(x1 + · · ·+ xk) and Cn → C0.

Since our colimit is in sSet using the Quillen model structure, we know that homotopy

colimits and colimits are equivalent. Hence

N(gM/•) = colim(N,≤)N(Cn) ' hocolim(N,≤)N(Cn) ' hocolim(N,≤)∗ = ∗.

This proves that (gM/•) has contractible nerve.

Now we proceed to the proof of the theorem.

Proof. As usual we wish to determine that (gM)!(gM)∗ ∼= Id. This can be accomplished by

proving that i∗(gM)!(gM)∗ ∼= i∗. We can switch out i∗(gM)! via a (Der4) square:

(gM/•)
pr //

π

��

M

gM
��

⇒α

e
i
// g(M)

(7.3.3)

From (Der4), we see that i∗(gM)!
∼= π!pr

∗. Thus, i∗(gM)!(gM)∗ ∼= π!pr
∗(gM)∗. Let us examine

this second composition π!pr
∗(gM)∗.

As usual, consider an object in D(g(M)). It consists of an underlying object X along

with a collection of coherent maps ωm indexed by elements of the group g(M), satisfying the

condition that ω0 = id and ωn ◦ ωm = ωn+m. We write it as {X,ωm : m ∈ g(M)}.

I claim that pr∗(gM)∗{X,ωm : m ∈ g(M)} is isomorphic to just π∗X. The proof here

mirrors the case of M = N. The pointwise isomorphism is given at the point m ∈ g(M) by

ωm : (π∗X)m → (pr∗(gM)∗{X,ωm : m ∈M}). Hence again we may replace pr∗(gM)∗{X,ωm :

m ∈ g(M)} with π∗X.

The proof now boils down to showing that π!π
∗X ∼= X, which is the case as the category

(gM/•) has contractible nerve.
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We remark that an alternate formulation of this is that the classifying spaces of N and

Z are homotopy equivalent, and that the map of classifying spaces induced by the inclusion

iN : N→ Z

is a homotopy equivalence.

But in fact more is true: both conditions of finite generation and cancellative can be

removed.

7.4 In relation to the universal property

Let us now return to the case that M is a cancellative, abelian monoid. Recall that in this

case, if D is a symmetric monoidal derivator, then DM is governed by a universal property,

roughly stating that (cocontinuous, monoidal) morphisms from DM to E are governed by a

morphism D→ E and the image of a specific element.

Given the morphism

(gM)! : DM → Dg(M)

for a symmetric monoidal derivator D and another symmetric monoidal derivator E, we have

the induced morphism on Hom-categories:

((gM)!)
∗ : PDER⊗,!(Dg(M),E)→ PDER⊗,!(DM ,E).

Due to the universal property in question, the induced functor can instead be thought of

as a functor

((gM)!)
∗ : PDER⊗,!(D,E)× E(g(M))1 → PDER⊗,!(D,E)× E(M)1.

We can ask whether it admits a simple characterization; and the answer is that

((gM)!)
∗ = IdPDER⊗,!(D,E) × (gM)∗.

Proof. We first note that the functor onto the first component is indeed the identity. This is

obvious, as (gM) ◦ (iM) = ig(M). The functor onto the second component is more interesting:
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let F : Dg(M) → E be a cocontinuous, monoidal morphism of derivators (i.e. one under which

the universal property holds). Recall the element we care about is

Fg(M)(+
∗
g(M)1Dg(M)) ∈ E(g(M))

and that this particular element gets mapped to

(F ◦ (gM)!)M(+∗M1DM ) ∈ E(M).

Furthermore, recall that when we merely examine their underlying objects they are both 1E,

hence we have a functor between the described categories.

We aim to show that it is indeed just (gM)∗.

First, we can get from (+∗M1DM ) to (+∗g(M)1Dg(M)) via the application of the functor

((+g(M))
∗(gM)!(1×iM)∗. So knowing this, it would suffice to show that (1×gM)∗+∗g(M)1Dg(M)

and (gM × 1)!((+
∗
M1DM ) are isomorphic.

Let us parse these two objects: the first object (1× gM)∗ +∗g(M) 1Dg(M) can be expanded

as

(1× gM)∗ +∗g(M) 1Dg(M) = (+g(M),M)∗(ig(M))!1D

= (+g(M),M)∗(gM)!(iM)!1D

While the second object (gM × 1)!((+
∗
M1DM ) can also be expanded as

(gM × 1)!((+
∗
M1DM ) = (gM × 1)!(+M)∗(iM)!1D

As such, it would be sufficient to show that

(+g(M),M)∗(gM)!
∼= (gM × 1)!(+M)∗

for all commutative, cancellative monoids M . We define the functor

+g(M),M : g(M)×M → g(M)

77



to be the restriction of the functor +g(M) to the subcategory

g(M)×M ⊂ g(M)× g(M).

We note that this is equivalent to asking the square below

M ×M +M //

gM×1

��

M

gM
��

⇒id

g(M)×M
+

// g(M)

(7.4.1)

to be homotopy exact. Here the + at the bottom is addition of elements of g(M) and

M ⊂ g(M) as M is cancellative.

As usual, this can be done via a direct verification using Theorem 3.8 of [GPS14a]. As all

categories in this diagram only have a single object, we need to verify that categories of the

following form are contractible: for each g ∈ g(M), the objects are a pair (g1,m1) ∈ g(M)×M

along with m2 ∈M , such that g1+m1+m2 = g, and a morphism (g1,m1,m2)→ (g′1,m
′
1,m

′
2)

is indexed by a pair (k, l) both in M , where g1+k = g′1 and m1+l = m′1 (the third coordinate

is resolved by the fact that g1 + m1 + m2 = g′1 + m′1 + m′2). There is at most only a single

map from one object to another, as M is cancellative.

This means that all such categories we need to check are directed sets, and we know that

directed sets have contractible nerve.
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CHAPTER 8

Definition of projective space

Next we move on to constructing projective space. There is an intuitive model of projective

space Pn as being the gluing of n+1 different copies of An along various copies of An−1×Gm

with cocycle conditions. In theory, since we know how to construct all of the objects that

gluing needs to be taken along, we could attempt to define Pn in the above fashion.

However, in light of how we attacked the An-problem, we should consider an approach

based on quasicoherent sheaves on Pn. Again, we will begin with the case of a projective

space over a ring, and then we generalize to projective space over a scheme. Recall that

a quasicoherent sheaf on PnR can be given by a graded module over R[t0, · · · , tn] with two

graded modules representing the same sheaf under some localizing conditions. This will form

the starting point of our inquiry.

8.1 A step to constructing projective space

As discussed above, we begin by constructing the category of N-graded modules overR[t0, · · · , tn],

where each tn has degree 1.

Definition 8.1.1. Let n ∈ N be a natural number. Define Qn to be the category with:

1. Objects 0, 1, · · · indexed by N

2. Maps i → i + 1 given by x0, x1, · · ·xn, with the commutativity relation xjxk = xkxj

for composable maps where the composition has the same domain and codomain.

Due to this commutativity relation, when we write a composition of maps in Qn we
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simply do so as a monomial. Composition in Qn is given by multiplication of monomials,

and so we see that Hom(i, i + k) is given by the set of monomials in n + 1 variables with

total degree k.

Further, because of the commutativity relation as long as the morphisms are composable

the superscripts are irrelevant.

Proposition 8.1.2. Let D be a derivator associated to R-Mod (represented or derived), then

DQn is the derivator associated to the category of N-graded R[t0, · · · , tn]-modules.

Proof. Let us first litigate the content of the category of graded modules. By an N-graded

R[t0, · · · , tn]-module I mean to treat R[t0, · · · , tn] as a graded ring, with each ti graded in

degree 1 and R in degree 0. Recall that an N-graded module over a N-graded ring ⊕i∈NRi is

a module ⊕i∈NSi where RiSj ⊂ Si+j.

Of course, our specific graded ring tells us that a graded module ⊕i∈NSi should have

RSi ⊂ Si, so that each Si is an R-module. Furthermore, due to additivity inherent in

looking at categories of modules we can simply consider the generators ti, and note that we

have maps ti : Sj → Sj+1 for all j ∈ N, 0 ≤ i ≤ n such that the maps titk and tkti are equal

due to commutativity.

So this gives for us a diagrammatic shape we desire: for each i ∈ N we have an R-module

Si, and between each Si and Si+1 there is a map tj : Si → Si+1 for each 0 ≤ j ≤ n.

Conversely, given the additive structure on module maps it is clear that the information of

R-modules Si for each n ∈ N along with the maps tj : Si → Si+1 is sufficient to determine

the structure of the R[t0, · · · , tn]-module ⊕i∈NSi.

The desired Homs are degree 0 maps of graded modules, so given two R[t0, · · · , tn]-

modules ⊕i∈NSi and ⊕i∈NS ′i, a morphism of graded modules consists of maps fi : Si → S ′i

such that tjfi ∼= fi+1tj for all i ∈ N, 0 ≤ j ≤ n. This is precisely a morphism between two

Qn-shaped diagrams of R-modules.

Hence we have an isomorphism of categories R-ModQn and R[t0, · · · , tn]− grMod. This

means that their represented derivators are equivalent.
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R-Mod is a Grothendieck abelian category, hence also R-ModQn . In addition, the iso-

morphism above that we have described R[t0, · · · , tn] − grMod → R-ModQn is a left and

right exact functor between abelian categories.

Hence the isomorphism on abelian categories extends to a Quillen equivalence on model

categories of unbounded chain complexes that also happens to be an isomorphism, and so

they induce equivalent derivators of unbounded derived categories.

8.2 The monoidal structure

In fact, the above equivalence is a monoidal equivalence. First we describe the monoidal

structure on R-ModQn , which will be done via Day convolution. Then we will see that this

is the same as the tensor product of graded modules.

Definition 8.2.1. Qn is a symmetric monoidal category, with tensor product

⊗ : Qn ×Qn → Qn

given by (m,n) 7→ m + n and tensor product of morphisms given by multiplication of

monomials.

The unit in the category is the object 0. The various coherence conditions for the sym-

metric monoidal structure are clear.

We note of course that the monoidal product is symmetric due to the aforementioned

commtuativity relation.

Therefore, we can use Day convolution to define another symmetric monoidal structure

on R-ModQn and a corresponding shifted monoidal derivator DQn .

We note that the monoidal structure induced via Day is the same as the graded tensor

product.

Proposition 8.2.2. The induced monoidal structure on R-ModQn is the same as the tensor

product of N-graded R[t0, · · · , tn]-modules, where the R-part of the the diagram corresponds

to the k-part of the graded module.
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Proof. Recall first the monoidal structure on N-graded R[t0, · · · , tn]-modules. Let ⊕i∈NMi

and ⊕j∈NNj be two graded R[t0, · · · , tn]-modules. The R-graded part of ⊕i∈NMi ⊗ ⊕j∈NNj

is given by ⊕i+j=kMi ⊗Nj modulo the relation m⊗ rn = rm⊗ n, for the degrees of r,m, n

adding up to k.

Now let’s consider the Day monoidal structure on R-ModQn . According to (Der4), we

have the following square for a pointwise computation of the colimit:

(⊗/k)
pr //

π

��

Qn ×Qn

⊗
��

⇒α

e
k

// Qn

The category (⊗/k) can be described as follows: Its objects are pairs (i, j) with i+j ≤ k,

along with a map
∏
xtkk : (i+ j)→ k. A map {(i, j) : (i+ j)→ k} → {(i′, j′) : (i′+ j′)→ k}

is given by a pair of maps i→ i′ and j → j′ such that the maps under ⊗ commute. Taking

⊕i∈NMi and ⊕j∈NNj as our inputs, the object at {(i, j) : i+j → k} in the colimit is Mi⊗Nj.

The maximal elements of this set are at the points {(i, j) : i+j = k → k}, i.e. Mi⊗Nk−i.

However, given another {(i, j) :
∏
tm

nm : i+ j → k}, there are maps

(
∏

tnmm , id) : {(i, j),
∏

tm
nm : i+ j → k} → {(i, k − i), id : k → k}

(id,
∏

tnmm ) : {(i, j),
∏

tm
nm : i+ j → k} → {(k − j, j), id : k → k}

which need to commute under the canonical map to the colimit. This gives precisely the

relation m ⊗ rn = rm ⊗ n. Therefore, this gives precisely the same monoidal structure as

the tensor product of N-graded R[t0, · · · , tn]-modules.

We also compute the structure of the monoidal unit, which will be 0!1. In fact, we

compute 0!X for any X ∈ R-Mod using a (Der4) computation: the relevant square is

(0/k)
pr //

π

��

e

0
��

⇒α

e
k
// Qn

The objects of (0/k) are just the maps from 0 to k in Qn. As 0 has no endomorphisms we
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can view this category as merely a set. Morphisms 0→ k correspond precisely to monomials

of degree k in n+ 1 variables. Therefore, the degree k portion of i!X is a coproduct of
(
n+k
k

)
X’s.

In particular, if X is the base ring, then the degree k part is the degree k part of the

graded polynomial ring, showing that i!1 is the monoidal unit here.

Therefore, we can see that 0!1 plays the role of O in general, as it is the monoidal unit

for the shifted derivator DQn with Day convolution monoidal structure, .

Remark 8.2.3. One can use both N-graded modules or Z-graded modules for part of the

Pn-construction, since the localization will not be able to tell the difference. For doing

everything with a Z-grading, we utilize the category QZ
n, which has objects indexed over Z

and morphisms defined the same way. It also has a symmetric monoidal structure, and there

is no particular reason why one setup is superior to the other purely for the definition of Pn.

We will stick with N-indexing as that was our original intuition, and because it simplifies

some auxiliary computations.

The twisting sheaves/modules O(i) come from shifting the module degree by i. We can

produce the twisting in a diagrammatic manner: let τ : Qn → Qn be the map sending

k 7→ k + 1 and xi 7→ xi.

Proposition 8.2.4. τ : Qn → Qn can also be considered as the inclusion of the full subcat-

egory on objects {1, 2, 3, · · · , }.

Similarly, τ k is the inclusion of the full subcategory on objects ≥ k.

Proposition 8.2.5. The pointwise computations for (τ k)!X are as follows: if l < k, l∗(τ k)!X ∼=

0, and if l ≥ k, l∗(τk)!X ∼= Xk−l.

Proof. This is a simple exercise in (Der4). So we see that (τ k)! just shifts the object k degrees

upward and inserts k zeroes at {0, 1, · · · , k − 1}.

This is therefore akin to “twisting” the module by k degrees or by O(−k), as we would

usually denote it. We would expect its adjoint τ ∗ to twist the module in the other direction.
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However, because our indexing is on N, the statement does not quite work the way we want.

Rather, obtaining the desired equivalence from (τ!, τ
∗) will occur after we localize to Pn.

Moreover, the twist τ! respects tensor products in a certain sense. By this, I mean that

for two objects X, Y ∈ DQn , τ!X �Qn Y ∼= τ!(X �Qn Y ). We can see this through the below

computation.

(τ!X �Qn Y ) ∼= (⊗Qn)!(τ!X � Y )

∼= (⊗Qn)!(τ × 1)!(X � Y )

∼= τ!(⊗Qn)!(X � Y )

∼= τ!(X �Qn Y )

Putting τ! on the other side is the same by symmetry. This also fits with our usual

intuition about twisting sheaves.

8.3 Projective space as a localization of DQn

Now, recall that every quasi-coherentOPn-module over PnR comes from a N-gradedR[t0, · · · , tn]-

module. In addition, as Pn is covered by n+1 copies of An, a sheaf on Pn can be determined

by its local presence on the n+1 An’s that cover it.

Proposition 8.3.1. The restriction from a sheaf on Pn to one of the component An’s that

cover it is the left Kan extension along a specific localization functor.

Proof. Suppose we want to examine the component of An with xk = 1. The coordinates on

An are (x0
xk
, x1
xk
, · · · , x̂k

xk
, · · · , xn

xk
), i.e. xk

xk
is omitted.

Now recall how the restriction on the sheaf level works: letM be a N-graded k[x0, · · · , xn]-

module and M̃ be the associated sheaf on Pn. The restriction on An is the sheaf associated

to (M(xk))0, which we can just think of as the module (M(xk))0.
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This can be constructed in two steps: first given the category Qn, we invert all maps of

the form xk and call the resulting localization Qn[x−1
k ].

Let’s examine the structure of Qn[x−1
k ]. First we note that all the objects in this new

category are isomorphic, as the maps xk have become isomorphisms. Secondly, in Qn two

composable xi, xj commute, so xix
−1
k = x−1

k xi as long as they are composable in Qn[x−1
k ],

i.e. left or right fractions don’t matter.

Now let’s look at a morphism a → b in Qn[x−1
k ]. For ease of notation, we will describe

the case k = 0 but naturally the case for 1 ≤ k ≤ n are exactly similar.

Each morphism x0, · · · , xn increases the object number by 1, and x−1
0 decreases it by 1.

Therefore, a map a→ b can be written as a fraction
∏n
i=0 x

ti
i

xm0
, where

∑n
i=0 ti −m = b− a.

Equivalently, this can be determined by some (nonnegative) powers of x1, x2, · · · , xn, and

the remaining degrees must be made up by positive or negative powers of the isomorphism

x0. Thus we easily see that HomQn[x−1
k ](a, b) = (Nn,+). Indeed, ei in Nn corresponds to xi

x0
.

Now we have an equivalence of categories Nn ∼= Qn[x−1
k ]. The functor F : Qn[x−1

k ]→ Nn

sending each object to • ∈ Nn and xi to ei ∈ Nn, x0 to the identity map, is an obvious

equivalence, while any functor Nn → Qn[x−1
k ] sending • to any i ∈ Qn with Nn mapping

appropriately to Hom(i, i) in a manner described above will be a quasi-inverse.

The above description we can check gives us a functor Qn[x−1
k ] → Nn, sending k ∈ Qn

to • ∈ Nn. This functor is surjective and fully faithful according to the above description,

hence an equivalence.

Conversely, one quasi-inverse Nn → Qn[x−1
k ] sends • to 0 and ei to xi

x0
. We can check that

this is in fact a quasi-inverse.

Let’s now check the left Kan extension functor along (xk)
−1 : Qn → Qn[x−1

k ], or rather

just the part at index 0. Once again, consider the relevant (Der4) square:

((xk)
−1/0)

pr //

π

��

Qn

(xk)−1

��

⇒α

e
0
// Qn[x−1

k ]
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Let’s examine the category ((xk)
−1/0). The objects in this category are i ∈ N, along

with a map i → 0 in Qn[x−1
k ]. Again for simplicity we assume k = 0, noting the symmetry

here. Then a map i→ 0 can be written as a monomial
∏n
j=1 t

mj
j

(x0)m
, where

∑
mj −m = −i, so

an object in our category is i ∈ N along with such a monomial.

This category is rather complicated; however, we note that we have a homotopy final

subcategory, which is the full subcategory consisting of the objects {m, (x0)−m}, i.e. a copy

of (N, <). Indeed, given an object (i,
∏n
j=1 t

mj
j

(x0)m
), there is a unique map to (i+

∑n
j=1 mj, (x0)−m)

induced by
∏n

j=1 t
mj
j .

We can check that this is an adjunction, with the inclusion from (N, <) to ((x−1
0 /0) the

right adjoint and the functor mapping (i,
∏n
j=1 t

mj
j

(x0)m
) 7→ (i+

∑n
j=1mj) the left adjoint.

Viewing (N,≤) as a subcategory that is homotopy final, we find that the colimit along

((x0)−1/0) is isomorphic to the sequential colimit along the given subcategory.

Nonetheless, this is just a sequential colimit. Now, suppose we are given a graded

k[t0, · · · , tn]-module, ⊕i∈NMi. The relevant colimit is just

M0
t0−−−→ M1

t0−−−→ · · · t0−−−→

and if we compute via elements, we see that this is nothing more that (Mt0)0, as a ∈Mi

and tm0 a ∈ Mm+i are identified, so if we identify a ∈ Mi with a
(t0)i

then a ∈ Mi and tm0 a ∈

Mm+i are equivalent.

Proposition 8.3.2. The passage from a sheaf on Pn (thought of as a module) to a sheaf on

An (also thought of as a module) is induced via the left Kan extension given above.

Let’s just remember that the associated sheaf on An (localizing at x0) has associated

maps x−1
0 xi for 1 ≤ i ≤ n, although we may also consider the entire category Qn[x−1

0 ] which

is equivalent.

Remark 8.3.3. A morphism between N-graded k[t0 · · · , tn]-modules is an isomorphism of

sheaves on Pn if they induce isomorphic sheaves (modules) on the n+ 1 copies of An.
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Moreover, let’s consider not just localizing at one xk, but two coordinates, say x0, x1.

Then indeed, we can either first invert x0 or then x1, or vice versa. If we view the localization

at x0 as just Nn, then subsequent localization at x1 is equivalent to the localization of the

map x−1
0 x1, or equivalently e1 ∈ Nn, to induce a copy of Z× Nn−1.

Needless to say, inverting some collection of {xi} and looking at inverting them one

at a time gives me a collection of gluing data on the copies of An and their double/triple

intersections, etc. Specifically, the n+1 copies of An referred to here are the shifted derivators

DQn[x−1
i ] with Qn[x−1

i ] equivalent to Nn. Inverting xi and xj gives Qn[x−1
i , x−1

j ], which is

equivalent to Nn−1 × Z, and DNn−1×Z is nothing more than Gm × An−1.

A sheaf on Pn is zero if and only if its restriction to each An is zero.

Definition 8.3.4. Let n ∈ N. Call an object in DQn nilpotent if (xi)
−1
! X = 0 for all 0 ≤ i ≤ n

and denote the full subderivator of pointwise nilpotent objects Nilp(D)(I). By definition,

we obtain a full subprederivator of D from this, which we term Nilp(D).

Call a morphism f : X → Y in DQn an Pn-equivalence if (x−1
i )!f is an isomorphism for

all 0 ≤ i ≤ n.

Now suppose in addition that D is a compactly generated triangulated derivator. Then

Proposition 8.3.5. The full subderivator Nilp(D) evaluated at e, Nilp(D)(e) is a localizing

triangulated subcategory of DQn(e).

Proof. Clearly 0 ∈ Nilp(D)(e). We need only prove that Nilp(D)(e) is closed under taking

cones. However, this is obvious as all Kan extensions here viewed as morphisms are exact

morphisms. So we need only take a triangle

X → Y → Z → · · ·

in Nilp(D)(e) and apply (x−1
i )! to it, which gives us the triangle

0→ 0→ 0→ (x−1
i )!Z → · · ·

hence naturally (xi)
−1
! Z = 0.
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The category contains all coproducts as (x−1
i )! is cocontinuous. It is also thick. Suppose

X = X1 ⊕ X2 is in Nilp(D)(e). Because left Kan extensions commute with coproducts,

indeed

0 = (xi)
−1
! X = (xi)

−1
! X1 ⊕ (xi)

−1
! X2,

hence both (xi)
−1
! X1 and (xi)

−1
! X2 are also 0.

By a simple shifting argument, this means we can take the levelwise Verdier localization

D(I)/Nilp(D)(I) for every I ∈ Cat. We would like to show that PnD defines a derivator.

Proposition 8.3.6. Let D be a compactly generated triangulated derivator. The assignment

I 7→ DQn(I)/Nilp(D)(I)

defines a triangulated derivator. We call this new derivator PnD.

Proof. With the additional assumption of compact generation, the statement is nearly trivial.

We can apply our derivator version of the Brown reprsentability theorem, and then an

application of [Cis08, Lemme 4.2] using the fully faithful right adjoint will guarantee that

we have a derivator.

Without the compact generation of D, we would still obtain that our derivator is a left

derivator with triangulated values. We will prove this result separately, as it is indicative of

how we would approach such issues without applying a cudgel such as Brown representability.

Remark 8.3.7. However, we note in fact that this localization will already have all finite

homotopy right Kan extensions also. Since our categories are additive, finite products and

coproducts coincide. Furthermore, one condition of being a triangulated derivator is that

it is regular, i.e. that sequential colimits and pullbacks (since we are additive, equivalently,

finite limits) commute.

Therefore, to obtain that all right Kan extensions exist for this derivator, it would be suf-

ficient to prove that the (x−1
i )! commute with all products. Generally speaking we probably
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should not expect for sequential colimits to commute with all products. Luckily for us, the

assumption of compact generation (perfect generation seems to be sufficient) circumvents

this problem as discussed above.

For the general approach without assuming Brown representability, we take the following

steps.

1. PnD is a left derivator, the left Kan extensions come from left Kan extensions of DQn .

2. The localization functor preserves left Kan extensions and homotopy finite right Kan

extensions.

3. Prove that PnD is strong.

Lemma 8.3.8. As long as D is triangulated, PnD is a left derivator.

Proof. It is clear that D is a prederivator as the localizing subcategories are defined pointwise.

We need to check (Der1), (Der2), (Der3) for left Kan extensions, and (Der4) for left Kan

extensions.

(Der1): This is clear as,

PnD(
∐
λ∈Λ

Iλ) := DQn(
∐
λ∈Λ

Iλ)/Nilp(D(
∐
λ∈Λ

Iλ)).

However, due to the presence of (Der1) for the derivator DQn , we see that

DQn(
∐
λ∈Λ

Iλ)/Nilp(D(
∐
λ∈Λ

Iλ)) ∼=
∏
λ∈Λ

DQn(Iλ)/(
∏
λ∈Λ

Nilp(D(Iλ))) ∼=
∏
λ∈Λ

PnD(Iλ).

(Der2): Suppose f : X → Y is a morphism in PnD(A) such that a∗f was an isomorphism

in PnD(e) for all a ∈ A. If so, this means that (x−1
i )!(a

∗X) and (x−1
i )!(a

∗Y ) are isomorphic for

all 0 ≤ i ≤ n. However, a∗ is a bicontinuous morphism of derivators for all a ∈ A, so in fact

(x−1
i )!(a

∗X) ∼= a∗(x−1
i )!X, (x

−1
i )!(a

∗Y ) ∼= a∗(x−1
i )!Y,
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so in fact we have we have an isomorphism a∗(x−1
i )!X and a∗(x−1

i )!Y for all a ∈ A and all

0 ≤ i ≤ n, hence an isomorphism of (x−1
i )!X and (x−1

i )!Y for all 0 ≤ i ≤ n, by (Der2).

Therefore, the f we started off with is an isomorphism.

(Der3L): Here we only attempt to prove the existence of left adjoints. Let u : J → K be

any functor. I claim that the left Kan extension u! : DQn(J) → DQn(K) induces a left Kan

extension u! : PnD(J)→ PnD(K).

Firstly, as u! is a cocontinuous morphism of derivators it commutes with (x−1
i )! for all

0 ≤ i ≤ n. So naturally u! (simply as a functor) from DQn(J)→ DQn(K) to PnD(J)→ PnD(K).

Now I do now know whether this functor is a left adjoint to u∗ or not. However, u∗ for Pn

is also induced by restrictions u∗ from DQn . Since adjunctions can be defined via the triangle

identities, those descend naturally from DQn to PnD, hence this u! we have constructed is an

actual left adjoint to u∗ on PnD.

(Der4L): Since the homotopy left Kan extensions u! were defined by lifting them to DQn ,

computing there, and then localizing, (Der4L) holds for this definition of u! on PnD.

Collectively, we have managed to show that PnD is a left derivator.

Corollary 8.3.9. The localization morphism L : DQn → PnD is a cocontinuous morphism of

(left) derivators.

Proof. This is obvious by the construction of left Kan extensions in PnD as coming from left

Kan extensions in DQn .

Proposition 8.3.10. Suppose now that D is a compactly generated derivator. Then the

localization morphism L : DQn → PnD has a fully faithful right adjoint.

Proof. We already know that DQn(I) is compactly generated for all small categories I. In

the previous corollary we have noted that the localization morphism L is cocontinuous, so

in particular it preserves all coproducts. Therefore, by Brown representability LI has an

adjoint RI for each I ∈ Cat.
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By [Gro13, Lemma 2.10], we know that in this case, the RI patch to a lax morphism

of prederivators. However, since in this the morphism L is cocontinuous essentially by

definition, the lax morphism of derivators is actually a strong morphism. This is the right

adjoint in question.

Moreover, since LI are localization functors, their right adjoints RI are fully faithful

inclusions.

Corollary 8.3.11. PnD is a derivator when D is a compactly generated triangulated derivator.

Proof. By [Cis03, Lemme 4.2], any full subderivator of a derivator that is either reflective or

coreflective is a derivator. We have indicated above that PnD is a full subderivator of DQn , and

the inclusion via RI is a right adjoint, hence it is reflective. Therefore, PnD is a derivator.

Proposition 8.3.12. PnD is a strong stable derivator. The triangulation on PnD that we have

constructed via the localization of DQn coincides with the triangulation arises on PnD due to

its structure as a strong stable derivator.

Proof. Since the localization L : DQn → PnD is a Bousfield localization, (Der5) follows imme-

diately, by simply including the morphism f : X → Y in PnD(I) via the inclusion RI , noting

(Der5) from DQn , and localizing back down to PnD.

The construction of Σ and Ω morphisms on PnD are precisely induced by the localization

functor. Since the LI are all triangulated, by definition the RI are also all triangulated, i.e.

the triangles in PnD as well as the (Σ,Ω) adjunction are precisely those that arise in DQn .

Now we examine monoidal structures. We show that the monoidal structure on DQn

descends to PnD and that this models the tensor product of shaves on PnA if D is the derivator

associated to a ring A.

Definition 8.3.13. Recall the monoidal structure on Qn as described above. Let D be a

symmetric monoidal derivator. Then there is a symmetric monoidal structure on DQn given

by

X �Qn Y := (⊗Qn)!(X � Y ).
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We remember that this is a standard construction mimicking the Day convolution. Re-

call that this makes each value DQn(I) a symmetric monoidal category. This part of the

construction does not depend on stability.

From now on, assume D is a compactly generated symmetric monoidal triangulated

derivator.

Lemma 8.3.14. With the monoidal structure defined above, Nilp(D) ⊂ DQn(e) is a localizing

tensor-ideal.

Proof. We have already proven above that the category is a thick triangulated subcategory.

Therefore, it just remains to check that if X ∈ Nilp(D) and Y ∈ DQn(e), then X ⊗ Y ∈

Nilp(D).

First, let us note that Qn[x−1
i ] is still a symmetric monoidal category, with tensor product

induced by addition on elements and multiplication on maps. We note that the localization

functor (xi)
−1 : Qn → Qn[x−1

i ] is a monoidal functor. Therefore, the associated left Kan

extension

(xi)
−1
! : DQn → DQn[x−1

i ]

is a monoidal functor.

Hence in fact

(x−1
i )!(X ⊗ Y ) = (x−1

i )!X ⊗ (x−1
i )!Y

= 0⊗ (x−1
i )!Y

= 0

Therefore, since we take the quotient of a thick tensor-ideal, the tensor product descends

to the quotient.
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Remark 8.3.15. There is an “alternative” definition of taking projective space to be DQn

localized at the collection of Pn-equivalences. This may be a vehicle for defining PnD in non-

triangulated settings, and it has the same intuitive basis that two modules are Pn-equivalent

precisely when they are isomorphic on each open An-component.

There is a potential size issue here if D is not triangulated, not to mention that the two

localizations may not be equal in this case, but certainly if D is triangulated then it is an

equivalent definition.

8.4 Twisting in Pn
D

Now we explore the twisting functors τ! and τ ∗. Recall that in the case of sheaves on Pn,

what we call twisting up or down is a tensor product by O(k) for an integer k.

There are two main things that ought to be true for our derivator analogue of twisting.

First, the twisting should respect the tensor product in a certain way, i.e. (τ!1⊗X) and τ!X

ought to be isomorphic, and this we saw in the previous section. Secondly, the twisting τ!

should be an equivalence, and this statement was not true for DQn , partly because there is

no strong analogue of O(1) in DQn in the sense of an object in DQn that is a tensor-inverse

to O(−1) or τ!1.

Therefore, we have an adjunction (τ!, τ
∗), and the left adjoint is fully faithful, but τ ∗ is

not an equivalence. We hope that the adjunction descends to PnD, which is sufficient for our

needs.

We first give some preparatory results for these two points. Recall that the underlying

object after applying (xi)
−1
! is actually computed via a sequential colimit in the xi-direction.

Note that τ restricts to this (N, <)-shaped subcategory, and is simply i 7→ i+ 1 on (N, <).

Lemma 8.4.1. τ : (N, <)→ (N, <) induces an isomorphism (π(N,<))!τ
∗ ∼= (π(N,<))!.

Proof. We verify that the square below is homotopy exact.
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(N, <) τ //

π

��

(N, <)

π

��

⇒α

e
id

// e

Fix an n ∈ N, we need to verify simply that the category with objects x equipped with a

morphism n→ τ(x) with morphisms induced by those in (N, <) is contractible. However, if

n 6= 0 there is an obvious initial object for these categories given by x = n− 1 and at n = 0

the category is simply (N, <) which is also contractible. Therefore, by [GPS14b, Theorem

3.8], the square above is homotopy exact, and checking the definition yields the appropriate

isomorphism in the lemma.

This makes good intuitive sense; putting an extra 0 at the beginning of a homotopy

colimit should not change the homotopy colimit in any way.

Therefore, if X ∈ Nilp(D), then τ ∗(X) ∈ Nilp(D). Hence the morphism τ ∗ on DQn

descends to a similar morphism that we also call τ ∗ on PnD.

We have explored how τ ∗ on DQn is analoguous to the twist by degree 1, and so τ ∗ is also

a twist by degree 1, hence tensoring with O(1).

Obviously, τ ∗ has left and right adjoints τ! and τ∗. We specifically examine τ!, and claim

that it too descends to PnD and that actually the adjunction (τ!, τ
∗) are equivalences on PnD.

Lemma 8.4.2. τ : Qn → Qn is a cosieve.

Proof. τ is evidently fully faithful, and we can easily verify that it is a cosieve as there are

no maps n→ 0 if n > 0.

Equivalently, we can think of τ being the inclusion of the full subcategory of elements

except from 0 in Qn. The left Kan extension along τ is fully faithful, and an extension of

zero. Therefore, we know already that τ ∗τ! is the identity on DQn . We seek to prove that

τ!τ
∗ is also isomorphic to the identity on PnD.

Proposition 8.4.3. τ!τ
∗ is isomorphic to the identity on PnD.
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Proof. Recall that τ! is an extension by 0. The compositionτ!τ
∗ takes an object in DQn ,

which pointwise is {Xn, n ∈ N} with maps xi : Xn → Xn+1, and sends it to an object in

DQn , which is equal to Xn for all n ≥ 1 along with associated maps xi : Xn → Xn+1, but

sets X0 = 0, due to τ! being an extension by 0.

Let’s consider the counit τ!τ
∗X → X, and extend this to a distinguished triangle

τ!τ
∗X → X → Z → Σ(τ!τ

∗X)→ · · · .

We note that applying τ ∗ to the counit is an isomorphism (as the unit of the adjunction is

an isomorphism), so applying n∗ for each n ≥ 1, we in fact have isomorphisms there.

Furthermore, recall that triangles in D(Qn) are built pointwise out of triangles in D(e).

At n ≥ 1, our triangles look like

Xn
iso−−−→ Xn

0−−−→ 0 −−−→ ΣXn · · ·

While at n = 0 the triangle is

0 −−−→ X0
id−−−→ X0 −−−→ 0 · · ·

Therefore, reconstructing the object Z we see that it is only supported in degree 0 where

0∗Z0 = X0. Note that τ ∗(xi)
∗Z = 0, hence (πN)!Z ∼= (πN)!τ

∗Z ∼= (πN)!0 = 0.

What we have proven then is that the cone of any counit map is in fact in the localizing

subcategory, so in fact in PnD all the counit maps for the (τ!, τ
∗) adjunction are isomorphisms.

This proves that descending to PnD, τ! and τ ∗ form an adjoint equivalence pair.

Corollary 8.4.4. Similarly, τ∗ descends to PnD and is isomorphic to τ!.

Proof. One can check that τ∗ also descends to PnD via a similar argument to τ!.

τ ∗ is an equivalence on PnD, hence its quasi-inverse τ! is both a left and right adjoint. The

right adjoint τ∗ will then be equivalent to the quasi-inverse τ!.

Now we verify that the twisting respects the monoidal structure.
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Proposition 8.4.5. In PnD, τ!(X) ∼= X �O(−1).

Proof. This is clear, as τ ∗ models the twist by O(1) and τ! is a quasi-inverse to τ ∗.

Proposition 8.4.6. τ ∗ respects the monoidal structure on PnD, in the sense that (τ ∗X⊗Y ) ∼=

τ ∗(X ⊗ Y ).

Proof. We verify that τ! respects the monoidal structure on PnD. This is akin to the verification

for DQn , as it follows from verifying the commutativity of the square

Qn ×Qn
τ×1−−−→ Qn ×Qn

⊗
y ⊗

y
Qn

τ−−−→ Qn

The requisite assertion on τ! follows, noting that in DQn ,

τ!(X ⊗ Y ) = τ!(⊗)!(X � Y )

∼= (⊗)!(τ × 1)!(X � Y )

= (⊗)!(τ!X � Y )

= (τ!X ⊗ Y )

Therefore this also descends to PnD. τ ∗ is a quasi-inverse to τ!, so indeed we also have

(τ ∗X ⊗ Y ) ∼= τ ∗(X ⊗ Y ).

Recall that we had a collection of derivator morphisms

(x−1
i )! : DQn → An

D

for 0 ≤ i ≤ n. Note that if X ∈ Nilp(D), then by definition (x−1
i )!X = 0, therefore these

morphisms factor through PnD.

Proposition 8.4.7. (x−1
i )! : PnD → An

D models the restriction of a sheaf from Pn to the

canonical open set D(xi) ∼= An.
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Proof. The above discussion indicates that (x−1
i )! factors through PnD. On the level of graded

modules we proved above that this precisely takes a graded module, views it as a sheaf, and

constructs the restriction on D(xi) ∼= An.

Moreover, as above we have gluing data that (xi)
−1(xj)

−1 ∼= (xixj)
−1 ∼= (xj)

−1(xi)
−1 (the

functors are actually equal). We can take left Kan extensions of these (equal) functors and

they are naturally equal. But what does this actually mean?

Proposition 8.4.8. The localization Qn[(xixj)
−1] is equivalent to Nn−1 × Z.

Proof. This localization is just Qn[(xi)
−1][x−1

j ]. The canonical identification we will use of

Qn[x−1
i ] with Nn is going to be the object at 0 and with the map ej given by x−1

i xj, with

0 ≤ j ≤ n and i 6= j.

To take an additional x−1
j means I’m inverting the map ej in Nn, giving us the category

Nn−1 × Zj. We write Zj to remind us that the Z sits in the j-th coordinate.

Remember that derivator shifted by Nn represents affine n-space, while the derivator

shifted by Nn−1 × Zj represents the open subset of affine n-space with j-th coordinate

nonzero, i.e. an appropriate copy of An−1 × Gm, which is naturally the intersection of

opens D(xi) and D(xj).

Proposition 8.4.9. There is a canonical morphism of derivators going from PnD to the gluing

of n+1 copies of An
D with the gluing between the i-th and j-th copy along a copy of An−1×Gm

in the correct way that gives a gluing of Pn if one thinks of these as simply their underlying

topological spaces.

Proposition 8.4.10. The restriction (x−1
i )! : DQn → An

D is a Bousfield localization of deriva-

tors.

Proof. By a Bousfield localization we mean that the functor (x−1
i ))! has a fully faithful right

adjoint. We will show the case i = 0, enabling simplicity in notation, and note that the cases

1 ≤ i ≤ n are all equivalent.
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Recall that the equivalence between Qn[x−1
0 ] and Nn is given by sending all n ∈ N to

the single object • in Nn, while x1, · · · , xn are sent to e1, · · · , en ∈ Nn, respectively, while

the isomorphisms x0 and x−1
0 are sent to the identity. A quasi-inverse going in the other

direction can embed the single object • ∈ Nn as any n ∈ N, but we will choose to embed at

0, and send the maps ei to x−1
0 xi. It can be easily verified that these two maps are mutual

quasi-inverses. Of course, we have also that i ∼= j for any i, j ∈ Qn[x−1
0 ], with isomorphisms

given by the correct powers of x0 in each direction.

So we aim to compute (x−1
0 )!(x

−1
0 )∗. Let X ∈ An

D be an object, which we write as an

underlying object X0 along with n compatible maps fi, 1 ≤ i ≤ n. The object (x−1
0 )∗X has

at each level n the object X0, with map x0 the identity, and xji the maps fi for all j ∈ N.

Now we give the calculation of (x−1
0 )! at the object 0, via a (Der4) calculation. The rele-

vant square is: (x−1
0 /0)

pr //

π

��

Qn

x−1
0
��

⇒α

e
0
// Qn[x−1

0 ]

Recall the definition of slice category; the objects of (x−1
0 /0) are given by an integer j ∈ N

along with a map j → 0 in Qn[x−1
0 ], i.e. a monomial

∏
0≤i≤n x

ki
i of total degree −j, where

ki ≥ 0 for 1 ≤ i ≤ n and k0 being any integer. It is easily seen that the maximal possible k0

in such an object will be −j. A morphism (j,
∏

0≤i≤n x
ki
i )→ (j′,

∏
0≤i≤n x

k′i
i ) is induced by a

morphism in Qn

∏
0≤i≤n x

k′′i
i , such that the diagram below commutes:

j ∏
x
ki
i

��∏
x
k′′i
i

��

0

j′
∏
x
k′i
i

@@

Now let us consider the full (N,≤)-shaped subcategory of (x−1
0 /0) consisting of the objects

(j, x−j0 ). We can easily see that any object (j,
∏
xkii ) has a canonical map induced by

∏n
i=1 x

ki
i

to (k0, x
−k0
0 ).

Furthermore, such an assignment is functorial. So this induces a functor from (x−1
0 /0) to
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(N,≤) by viewing the designated subcategory of (j, x−j0 )-s as a copy of (N,≤). It is easily

checked that this functor is a left adjoint and that the inclusion i0 of (N,≤) by sending

j 7→ (j, x−j0 ) is the right adjoint.

Therefore, i0 is a “homotopy final” functor, i.e. the square below is homotopy exact.

(N,≤)
i0 //

π

��

(x−1
0 /0)

π

��

⇒
id

e
1

// e

The implication of this is that for Y ∈ D(x−1
0 /0), π!Y ∼= π!(i0)∗Y . However, if Y is

an object of the form pr∗(x−1
0 )∗X, then in fact (i0)∗Y is in fact just a constant diagram:

(π(N,≤))
∗X0. However, (N,≤) obviously has contractible nerve as it contains an initial object

0. Therefore, this colimit is just X0.

This gives the underlying object for applying (x−1
0 )!(x

−1
0 )∗ to X ∈ An

D. The various

coherent morphisms in the diagram Nn can be induced by on the colimit. Utilizing the

equivalence Nn with Qn[x−1
0 ], the action of maps ei ∈ Nn are induced by the maps π∗(N,≤)fi

on the diagram π∗(N,≤)(X0), i.e. simply fi. Therefore, we see that (x−1
0 )!(x

−1
0 )∗X ∼= X for all

X ∈ An
D.

Proposition 8.4.11. The induced morphism (xi)
−1
! : PnD → An

D is also a Bousfield localiza-

tion.

Proof. While we can’t use Brown representability, we can precompose with the localization

from DQn to PnD. The assertion is then clear.

Proposition 8.4.12. The shifting diagram over Z or over N give equivalent derivators/constructions

for Pn.

Proof. Consider the embedding iN : QN
n ↪→ QZ

n. The left Kan extension along this is fully

faithful and an extension by 0. One can check that the embedding (iN)! induces an equiva-

lence after localization.
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8.5 Compatibility

Naturally, after discussion of various forms of Pn-like activity, it is incumbent upon us to

prove that we have actually recovered the usual Pn.

Proposition 8.5.1. This model gives a construction for the (left) derivator of projective

space over any additive derivator. By this we simply mean to take the localization of DQn at

the collection of morphisms f such that (x−1
i )!f is an isomorphism. In the proof above we

would have that this is a left derivator as the left Kan extensions in PnD can be taken in DQn

prior to localization.

Proof. We realize that sheaves on PnR are precisely N-graded modules over R[t0, · · · , tn] with

the relation that the restrictions of the modules to the n + 1 copies of An
R covering PnR are

isomorphic. As described in the construction section, if a morphism f in DQn has (x−1
i )!f

an isomorphism, this means that f restricted to the i-th copy of An
R is an isomorphism.

It is now apparent that the localization DQn/Nilp(D) represents the derivator of projective

space if D is the represented derivator of R-modules. Taking the derived categories gives the

analoguous result for triangulated derivators.

8.6 Embeddings of Projective Space

Recall from basic algebraic geometry the following two embeddings:

1. The Segre embedding

σ : Pn × Pm → P(n+1)(m+1)−1

via σ([X], [Y ]) = [{XiYj}].

2. The degree d Veronese embedding

σ : Pn → P(n+dd )−1

via [X0 : X1 : · · · : Xn] to all monomials of total degree d.
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Owing to the “uniform” nature of these functions, each of these embeddings can be

realized in the world of derivators. Specifically, we will construct inverse image morphisms

on the shifted derivators DQn while verifying that the kernels of the localization to projective

space map to kernels.

Let us begin with the Segre embedding. We should construct a monoidal morphism

P(n+1)(m+1)−1
D → (Pn × Pm)D by constructing a morphism

DQ(n+1)(m+1)−1 → DQm×Qn

and then checking that it descends.

First we describe what the product of projective spaces would be.

Theorem 8.6.1. The derivator (Pn × Pm)D is the shifted derivator DQn×Qm localized at the

following set of morphisms f such that (xi × xj)−1
! (f) is an isomorphism for all 0 ≤ i ≤ n,

0 ≤ j ≤ m.

Proof. Beginning with just Qn is the original proof of Pn; we can view this construction as

Pm-construction on PnD, and hence this represents the correct construction.

Definition 8.6.2. Define a functor Sn,m : Q(n+1)(m+1)−1 → Qm ×Qn as follows: for each k in

the domain we send it to (k, k) ∈ Qm ×Qn, and for a morphism of the form xi : k → k + 1,

we make an assignment of a morphism (xl1 , xl2) : (k, k)→ (k + 1, k + 1), where 0 ≤ l1 ≤ m

and 0 ≤ l2 ≤ n.

It is easy to see that this is sufficient to ensure functoriality on compositions inQ(n+1)(m+1)−1,

and the commutativity of xi and xj ensures that it is well-defined.

Proposition 8.6.3. The above functor is monoidal and fully faithful.

Proof. By construction we see that the functor is an equivalence onto the subcategory of

Qm × Qn with objects (k, k). Moreover, the functor is clearly monoidal given the product

monoidal structure on Qm ×Qn.
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Remark 8.6.4. We can think of an object of DQm×Qn as a bigraded module inR[x0, · · · , xm, y0, · · · , yn]

where each xi has bidegree (1, 0) and each yj has bidegree (0, 1).

Now I claim that left Kan extensions on the above two functors, after localization to PnD,

give models of Segre and Veronese embeddings. Let’s begin with the Segre embedding.

Proposition 8.6.5. The descended morphism of derivators Sn,m! from P(n+1)(m+1)−1
D → (Pn×

Pm)D represents the inverse image of the Segre embedding.

Proof. As with some of our A1-related proofs, we examine the right adjoint Sn,m
∗
. Recall

that this takes an object in DQn×Qm and restricts it to the full subcategory on the diagonal

component, i.e. objects of the form (k,k).

Now we examine the Veronese embedding.

Similarly, we have a monoidal functor that will realize the Veronese embedding.

Definition 8.6.6. For each n, d > 0, we have a functor

Vn,d : Q(n+dd−1)
→ Qn,

sending k 7→ dk and assigning each morphism xi in Q(n+dd )−1 to a degree d monomial in Qn.

Proposition 8.6.7. The above functor is monoidal.

Proof. This is clear from the definition on both objects and morphisms.

Proposition 8.6.8. The descended morphism of derivators Vn,d! from P(n+dd )−1 → PnD rep-

resents the inverse image of the Segre embedding.

Proof. Again, the right adjoint V ∗n,d takes an object X in DQn to V ∗n,d(X) in D
Q

(n+dd )−1 , where

V ∗n,d(X)k is Xdk, and the degree 1 morphisms on V ∗n,d(X) are precisely degree d monomials,

which is precisely what we’d expect for the direct image.

Therefore, its left adjoint Vn,d! is indeed a model for the inverse image.
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CHAPTER 9

Generation of projective space

One extremely interesting result about the derived category of Pn is that it is generated by

n + 1 consecutive twisting sheaves. Since our Pn is defined as a localization, we don’t have

a great grasp on the morphisms inside PnD(e) (unless we better understood the embedding

back to DQn , which is an issue in and of itself).

Rather, our strategy is to obtain a skeleton of this result in the unlocalized DQn , and

then to push the generators down via the localization to PnD. Since ultimately our interest is

more in objects of PnD, there is no substantive worry of having an incomplete understanding

of morphisms in PnD.

We begin with a discussion of the case where D has a symmetric monoidal structure.

There is no strong obligation for this assumption, but the construction of the Koszul complex

is more intuitive and generalizable in the monoidal case. However, the assumption of compact

generation is paramount here, since this is what allows us to transition between two notions

of generation (the Hom-set notion versus the localizing category notion).

After we see how PnD is generated when D(e) is compactly generated and D is a symmetric

monoidal triangulated derivator, we may drop the symmetric monoidal assumption. This is

due to the fact that by definition, taking the external product with an object in a symmetric

monoidal triangulated derivator is a triangulated functor, certain constructions that we made

in the symmetric monoidal case can be replaced by cofibers when a monoidal structure is

lacking.

103



9.1 The monoidal case

As said above, here we assume that D admits a monoidal structure compatible with its

tensor-triangulated structure.

Remark 9.1.1. From now on let D be a tensor-triangulated derivator that is generated by the

monoidal unit 1. As we mentioned, there is no reason for this apart from ease of presentation.

However, everything done with 1 can be replaced by twisted versions of X, as everything

in this section can simply be done by tensoring with X. After the next proposition we can

explain why this simplification is sufficient.

Proposition 9.1.2. DQn(e) is generated by {k!1D : k ∈ N}.

Proof. We made the simplifying assumption that D(e) is generated by 1. Therefore, from

3.2.1 it is clear that a generating set for D(Qn) is given by {k!1 : k ∈ N}. The presentation

of DQn(e) is immaterial here.

The reasoning for the assumption with 1 is as follows. Suppose D(e) had a generating

set consisting of {Xλ : λ ∈ Λ}, then we know DQn(e) has a generating set consisting of

{k!Xλ : λ ∈ Λ, k ∈ N}. For PnD we are interested in truncating this generating set for each

λ ∈ Λ, i.e. by only taking {k!Xλ : 0 ≤ k ≤ n} is sufficient to obtain {k!Xλ : k < n}. It would

be sufficient to look at Xλ = 1, and then tensor with Xλ, knowing that tensoring respects

left Kan extensions.

Proposition 9.1.3. The category PnD(e) is generated by the same collection in the image

{k!1D : k ∈ N}.

Proof. The shifted derivator DQN
n is generated by that set {O(−k) : k ∈ N}. So the localiza-

tion is also generated by the same set.

Theorem 9.1.4. In fact, it is sufficient to use the equivalent of O, · · · ,O(−n), as O(−n−

1) ∈ 〈O,O(−1), · · · ,O(−n)〉 in Pn. Equivalently, in PnD(e), O(−n−k−1) ∈ 〈O(−k), · · · ,O(−n−
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k)〉. Here when we use 〈X, · · · , 〉 we mean the thick subcategory generated by the collection

of objects.

Therefore, PnD is generated by {O(−k) : 0 ≤ k ≤ n}.

We will attack this by building O(−n− 1) out of {O(−k), 0 ≤ k ≤ n} and an element in

Nilp(D).

Recall the functor τ : Qn → Qn. We proved that τ! is fully faithful, i.e. τ ∗τ!
∼= Id.

There are natural transformations Id → τ given by mapping along xi for a specified

0 ≤ i ≤ n. Therefore, for any X ∈ DQn and any 0 ≤ i ≤ n, there is a natural transformation

x∗i : τ!X → τ ∗τ!X ∼= X.

Let KosX(xi) denote the cone of this morphism. If X = 1 we drop the X label.

Remark 9.1.5. Note that we can also make sense of the natural transformation xi in Qn[x−1
i ],

where it is a natural isomorphism for the corresponding i.

Proposition 9.1.6. For any 0 ≤ i ≤ n we have that (x−1
i )!Kos(xi) = 0 in DQZ

n [x−1
i ] ∼= An

D,i.

Proof. The map xi : O(−1)→ O is an isomorphism after applying the functor (xi)
−1)!, and

the left Kan extension is exact, so the cone of (x−1
i )!xi is (x−1

i )!Kos(xi).

Proposition 9.1.7. In PnD, the object ⊗ni=0Kos(xi) is zero.

Proof. Each (xi)
−1
! is a monoidal functor. Furthermore, (xi)

−1)!Kos(xi) is a zero object,

hence applying the functor (x−1
i )! to ⊗ni=0Kos(xi) is zero. Therefore, ⊗ni=0Kos(xi) is a zero

object in PnD.

Now we go back to proving Theorem 9.1.4 by giving a precise reformulation.

Theorem 9.1.8. In DQn(e), the object O(−n− 1) lies in 〈O, · · · ,O(−n),⊗ni=0Kos(xi)〉.

Proof. Let us fix an n ∈ N and proceed by induction on k (k ≤ n). The base case k = 0 is

clear, as the triangle
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· · · O(−1)
x0−−−→ O −−−→ Kos(x0) · · ·

indicates that O(−1) lies in 〈O, Kos(x0)〉.

Next, let us suppose that O(−k) ∈ 〈O,O(−1), · · · ,O(−k + 1),⊗k−1
i=0Kos(xi)〉. Then we

will show that O(−k − 1) ∈ 〈O,O(−1), · · · ,O(−k),⊗ki=0Kos(xi)〉.

Let us first note that given the triangle

· · · O(−1)
xk−−−→ O −−−→ Kos(xk) · · ·

we can twist everything by O(−i) to obtain the triangle

· · · O(−i− 1)
xt−−−→ O(−i) −−−→ Kos(xk)(−i) · · ·

Therefore, if 0 ≤ i ≤ k − 1, we see that Kos(xk)(−i) ∈ 〈O,O(−1), · · · ,O(−k)〉. So we

see that the objects Kos(xk)⊗O, Kos(xk)⊗O(−1) · · · , Kos(xk)⊗O(−k + 1), Kos(xk)⊗

(⊗k−1
i=0Kos(xi)) all lie in 〈O,O(−1), · · · ,O(−k),⊗ki=0Kos(xi)〉.

However, the collection of objects we’ve picked up are justKos(xk) tensored withO,O(−1), · · ·

,O(−k+1),⊗k−1
i=0Kos(xi). By the inductive hypothesis, we know that O(−k) is in the trian-

gulated subcategory generated by those objects, hence Kos(xk)(−k) lies in the triangulated

subcategory 〈O,O(−1), · · · ,O(−k),⊗ki=0Kos(xi)〉. Now note that when we twist the trian-

gle defining Kos(xk) by O(−k), we get

· · · O(−k − 1)
xk−−−→ O(−k) −−−→ Kos(xk)(−k) · · ·

So we see that O(−k − 1) is generated by O(−k) along with Kos(xk)(−k), hence by

〈O,O(−1), · · · ,O(−k),⊗ki=0Kos(xi)〉. By induction, this proves the proposition.

This gets us the original reformulation. Now we turn to proving the original statement

of theorem 9.1.4.

Proof. First note that after localizing, the claim in the theorem reduces to the statement that

O(−n−1) ∈ 〈O,O(−1), · · · ,O(−n)〉 in PnD(e), as ⊗ni=0Kos(xi) has been sent to 0. Therefore,
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O(−m) for all m > n lies in 〈O,O(−1), · · · ,O(−n)〉 simply by taking the triangles to

generate O(−n− 1) and begin twisting down by O(−1). Therefore, O, · · · ,O(−n) together

generate PnD.

Proposition 9.1.9. Theorem 9.1.4 is a mechanism to “twist down” in PnD(e). We can

also move in the reverse direction in PnD(e). In particular, O ∈ 〈O(−1), · · · ,O(−k −

1),⊗ki=0Kos(xi)〉.

Proof. Again we prove the statement by induction. k = 0 is obvious by definition of Kos(x0).

The induction follows easily again. If the inductive hypothesis is thatO ∈ 〈O(−1), · · · ,O(−k−

1),⊗ki=0Kos(xi)〉, then changing k to k+1 we ought to look at the category 〈O(−1), · · · ,O(−k−

2),⊗k+1
i=0 Kos(xi)〉. We first note that Kos(xk+1)⊗O(−1), · · · ,Kos(xk+1)⊗O(−k − 1) lie in

the thick subcategory generated by those elements.

It now follows that Kos(xk+1) lies in this thick subcategory, and hence O can be built

out of that and O(−1).

Corollary 9.1.10. Let k be any integer. Then O(k), · · · ,O(k + n) also generate PnD.

Proof. If k ≥ −n we simply begin twisting down to obtain O(k − 1), etc until we obtain

O(−n), · · · ,O, which we know does generate PnD.

Otherwise we start twisting up until we obtain (O(−n), · · · ,O) by similar logic.

Now if D is not generated by the unit 1 but instead by some collection of generators

G = {Gλ : λ ∈ Λ}. Then DQN
n is generated by {k!Gλ : λ ∈ Λ, k ∈ N}. But in fact again we

can restrict the k to 0, 1, · · · , n again by the above proof. The proof proceeds as follows:

Proof. We have that for PnD, O(−m) ∈ 〈O, · · · ,O(−n)〉 for all m ≥ 0. Tensoring with any

object G, the object G�O(−m) ∈ 〈G�O, · · · , G�O(−n)〉. Therefore, we take G to range

over a set of generators for D to ensure that the set {G � O(−k) : 0 ≤ k ≤ n} forms a

generating set for PnD.
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9.2 An adaptation for the non-monoidal case

In fact, everything can be done without the use of a monoidal structure. The question is

how to transpose the analogues of the tensor products of the Koszul objects.

Proposition 9.2.1. ⊗ki=0Kos(xi) can be constructed by the formula Ck+1γ∗k(τ
k+1)!(1) (es-

sentially, by non-monoidal means).

Proof. First we explain what the composition Ck+1γ∗k(τ
k+1)! is.

Let γk be the functor from [1]k+1×QN
n → QN

n sending (e0, · · · , ek), l 7→
∑
ei+l on objects,

and it sends (0→ 1) in coordinate i to the map xi between two neighboring objects in QN
n .

Let G ∈ DQN
n be an object, and consider the object γ∗k(τ

k+1)!G.

For an object (e0, · · · , ek) ∈ [1]k+1, theQN
n-shaped object (i.e. with (e0, · · · , ek)∗ evaluated

at the result) at this point is (τ
∑k
i=0 ei)∗(τ k+1)!G.

However, that object is precisely (τ k+1−
∑k
i=0 ei)!G as each ei is either 0 or 1. According to

the definition of the functor (0→ 1) in coordinate i corresponds to the map xi as previously

mentioned. To wit, taking the case k = 1 and applying γ∗1 ◦ (τ 2)! to an object G we get a

coherent diagram of the form

τ 2
! G

x0−−−→ τ!G

x1

y x1

y
τ!G

x0−−−→ G

How would we obtain such a tensor product? First recall that xi is a canonical morphism

that exists for any object X, there exists a morphism xi : τ!X → X induced by the isomor-

phism X ∼= τ ∗τ!X, so Kos(xi) is the cone of that morphism applied at X = O. For any X

we have a similar object Kosxi(X) via this construction and Kos(xi) is just Kosxi(1).

Now let’s examine Kos(x0)⊗Kos(x1). We have a triangle

· · ·Kos(x0)⊗O(−1)
1⊗x1−−−→ Kos(x0)⊗O −−−→ Kos(x0)⊗Kos(x1) · · ·
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But remembering of course that Kos(x0) itself was the cone of x0 : O(−1) → O, so in

fact we have the following 3× 3 diagram where every‘second arrow’ is the cofiber morphism

of the first and vice versa:

O(−1)⊗O(−1)
x0⊗1−−−→ O ⊗O(−1) −−−→ Kos(x0)⊗O(−1)

1⊗x1

y 1⊗x1

y 1⊗x1

y
O(−1)⊗O x0⊗1−−−→ O ⊗O −−−→ Kos(x0)⊗Oy y y

O(−1)⊗Kos(x1)
x0⊗1−−−→ O ⊗Kos(x1) −−−→ Kos(x0)⊗Kos(x1)

That is to say, given a coherent diagram

O(−2)
x1−−−→ O(−1)

x0

y x0

y
O(−1)

x1−−−→ O

we can first take cones in the x1-direction and then in the x0-direction, or vice versa to

obtain the object Kos(x0) ⊗Kos(x1). This provides a natural means to obtain the object

Kos(x0)⊗Kos(x1) without needing any monoidal structure.

We can tensor the entire diagram with G to construct the object Kos(x0)⊗Kos(x1)⊗G,

for instance. To achieve the tensor product ⊗ki=0Kos(xi), we would have to construct a

k+ 1-dimensional cube where each object was of the form τ j! G and each map of the form xi,

before taking the cone simultaneously along all n+ 1 coordinates.

Therefore, in the presence of the monoidal structure, ⊗ki=0Kos(xi) is Ck+1γ∗k(τ
k+1)!(1)

and X⊗ (⊗ki=0Kos(xi)) is Ck+1γ∗k(τ
k+1)!(X). However, this is obviously defined without the

use of any monoidal structure.

Moreover, above we have verified that (x−1
i )!Kos(xi) = 0, and indeed (x−1

i )!Kosxi(G) is

0 by similar logic. Now we can verify that

Proposition 9.2.2. In PnD the object Cn+1γ∗n(τn+1)!(X) is zero for any X.
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Proof. This is equivalent to checking that (x−1
i )!C

n+1γ∗n(τn+1)!(X) is zero for any X and all

0 ≤ i ≤ n.

First it’s clear that the cone morphism, γ∗n, and (τn+1)! are all cocontinuous since they

are a composition of left adjoint morphisms. But after applying (x−1
i )! we see that the maps

xi are all isomorphisms, hence applying only the cone in the i-direction we get all 0s. This

proves the requisite statement.

Therefore, the proofs in the previous section requiring a monoidal structure can be done

without a monoidal structure. We will not repeat them here as no new insight would be

gained by it.

Proposition 9.2.3. With the assumptions above,

DQ
N
n = Loc〈O,O(−1), · · · ,O(−n), (τ k)! ⊗ni=0 Kos(xi)〉

for k ∈ N.

Proof. This is evident as DQN
n = Loc〈O(−k), k ∈ N〉 and we have indicated how to build

O(−n−1) out of {O, · · · ,O(−n),⊗ni=0Kos(xi)} and then we can obtain higher O(−n−k−1)

by twisting the construction for O(−n− 1) by O(−k).

We also have a Z-version.

Proposition 9.2.4. With the assumptions above,

DQ
Z
n = Loc〈O,O(−1), · · · ,O(−n), (τ k)! ⊗ni=0 Kos(xi)〉

for k ∈ Z.

The proof is similar, since the inclusion left Kan extension inc! : DQ
N
n → DQ

Z
n is a fully

faithful morphism as are τ! on both DQ
N
n and DQ

Z
n . τ is an equivalence on QZ

n.

We’d like to gain an understanding of the object ⊗ni=0Kos(xi). In the ring-theoretic world,

we know that the only homology of the total Koszul complex is the base ring R concentrated

in degree 0. This turns out to be a purely diagrammatic fact, as we demonstrate below.
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Proposition 9.2.5. ⊗ni=0Kos(xi) ∼= 0∗1.

We attempt to compute the pointwise values l∗⊗ni=0 Kos(xi) for l ∈ N and find that they

are 0 except when l = 0, and there the value is 1.

Proof. Recall that an alternate characterization of this Koszul object is the total cofiber

of the diagram Θ∗n(n + 1)!1D, where Θn : Qn × [1]n+1 → Qn is the functor that sends

(K, e0, e1, · · · , en) to K +
∑n

0 ei on objects and (
∏n

i=0 x
ai
i , c0, · · · , cn) to

∏n
i=0 x

ai+ci
i on mor-

phisms.

For example, in DQ1 , Θ∗12!1D is an object in DQn([1]2) with the following underlying

diagram:

2!1
x∗1−−−→ 1!1

x∗0

y x∗0

y
1!1

x∗1−−−→ 0!1

Total cofibers can be computed pointwise: if we first apply 0∗ to any diagram Θn
∗(n +

1)!X, then only the (1, · · · , 1)-entry of the (n+ 1)-cube is X, and hence the total cofiber is

the cone of 0→ X, or X.

Now apply i∗ to the diagram for i > 0: we know that i∗k!X = 0 if i < k, and that

we can simplify i∗k!X = (i − k)∗0!X owing to the full faithfulness of τ!. We know that

l∗0!X =
∐∑n

0 aj=l,aj≥0Xx
a0
0 x

a1
1 ···x

an
n

. A map x∗j is the map l∗0!X → (l + 1)∗0!X obtained by

multiplying by xj on all X-subscripts.

Therefore, when i > 0 the (n+1)-cube can be decomposed thusly: (this is not techni-

cally proper, but the cofiber is also the composition of iterated cones, which can be taken

incoherently). Examine m∗0!X =
∐∑n

0 aj=i,aj≥0Xx
a0
0 x

a1
1 ···x

an
n

and take a single Xx
a0
0 x

a1
1 ···x

an
n

therein.

There is a subset S of {0, · · · , n} where the power of xi is 0, consider the (n + 1)-cube

which has objects 0 if any of the S-coordinates are 0, and X otherwise. The total (n+1)-cube

is the direct sum of all such (n+1)-sub-cubes, taken over all monomials xa00 x
a1
1 · · ·xann of total
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degree m. Each such cube is cocartesian (take first the iterated cones in the Sc-direction to

get 0, then cones in the S-direction, which are subsequently trivial.

Therefore, l∗Θ∗n(n+ 1)!X is 0 if l > 0, and equal to X if l = 0.

This admits a map to 0∗X, i.e. the adjoint of the identity 0∗Θ∗n(n + 1)!X ∼= X. The

adjoint is the identity after applying 0∗ and must be an isomorphism for l > 0 since objects

on both sides are 0. By (Der2), the total cofiber is isomorphic to 0∗X.

Example We give an example computation in the case n = 1. Recall that we were com-

puting pointwise the total cofiber of

2!X
x∗1−−−→ 1!X

x∗0

y x∗0

y
1!X

x∗1−−−→ 0!X

Applying 0∗ to the diagram gives:

0 −−−→ 0y y
0 −−−→ X

which obviously has total cofiber X. Applying 1∗ gives:

0 −−−→ X1y x0

y
X1

x1−−−→ Xx0

∐
Xx1

and this has total cofiber 0.

Applying 2∗ gives:

X1
x1−−−→ Xx0

∐
Xx1

x0

y x0

y
Xx0

∐
Xx1

x−1−−−→ Xx20

∐
Xx0x1

∐
X2
x1
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and this decomposes into three squares (one constant, one zero in the left-hand column,

one zero in the top row) that are each cocartesian and thus have total cofiber 0. Further

computations are similar.

Proposition 9.2.6. For any X ∈ D(e), Hom((τn)!0∗X, 0∗X) = 0 in DQn(e).

Proof. This is evident by switching τn to the other side and noting that (τn)∗0∗X = 0, since

0∗X is an object that pointwise is X at 0 ∈ Qn and 0 otherwise. Applying any number of

operations of τ ∗ thus gives 0.

9.3 The localization for projective space

Starting from a compactly generated triangulated derivator D, we have created a triangulated

derivator PnD and exhibited a set of generators. Moreover, we have demonstrated twisting

phenomena.

Theorem 9.3.1. The canonical generating set {0!D, 1!D, · · · , n!D, (τ k)!0∗D : k ∈ N} splits

DQn into two components:

Loc{(τ k)!0∗D}⊥ = Loc(i!D : 0 ≤ i ≤ n}

and vice versa,

Loc{(τ k)!0∗D} =⊥ Loc(i!D : 0 ≤ i ≤ n}

We are effectively tasked with the following: for each k ∈ N and each 0 ≤ i ≤ n, to show

that Hom((τ k)!0∗X, i!Y ) = 0. This admits a slight reduction once we allow us to set either

k or i to be 0 by noting that τ! is a fully faithful functor. In each case, we utilize a (Der4)

calculation to obtain the desired orthogonality result.

Lemma 9.3.2. Hom((τ k)!0∗X, 0!Y ) = 0 for every k ∈ N, X, Y ∈ D.

Proof. Here we can move the τ k over to the right side, whence the Hom becomes
∏

(n+kn ) Hom(0∗X, 0!Y ).
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The key is to remember that 0∗X is equivalently Cn+1Θ∗n(n+ 1)!X. Therefore,

HomD(Qn)(0∗X, 0!Y ) = HomD(e)(X, (n+ 1)∗(Θn)∗(1
n+1)!(τ

k)∗0!Y ).

The outer two morphisms we can compute via (Der4). We have the following (Der4)

square:

((n+ 1)/Θn)
pr //

π

��

Qn × [1]n+1

Θn
��

e
n+1

//

⇒α
Qn

Consider the structure of the slice category: it is a subcategory of Nn+1× [1]n+1 consisting

of points whose summed coordinates is at least n+ 1 (moving in the Nn+1 direction looks at

morphisms in Qn, and moving in [1]n+1-direction are naturally morphisms in [1]n+1), and a

homotopy initial subcategory of the slice category consists of the minimal join of elements

whose coordinates actually sum to n+ 1, as the slice category is a poset.

The homotopy initial subcategory is a subcategory of [1]n+1× [1]n+1, and we can compute

the limit by taking partial fibers. Everything off of the (1, · · · , 1)× [1]n+1 is naturally 0 and

we need not worry about it. The information of the (1, · · · , 1)× [1]n+1 is homotopy cartesian,

see [BG18, §7] for a discussion of the notion. Therefore, all total fibers in the second [1]n+1

are 0, and therefore the limit is 0.

This proves that the Hom-sets in question are in fact 0.

Lemma 9.3.3. Hom(0∗X, i!Y ) = 0 for every 0 ≤ i ≤ n.

Proof. We use the same tactic of redefining 0∗. The discussion of the slice categories is the

exact same as the previous lemma and we do not reproduce it.

For this limit, it is a short combinatorial exercise to see that the (1, · · · , 1)× [1]n+1-slice

is also homotopy cartesian as long as 0 ≤ i ≤ n (also when i > n + 1, as then the entire

n+1-cube consists of zero entries).

Remark 9.3.4. We give an illustration of the case n = 0, as this is the only case that is

amenable to diagram-drawing. In this case, Qn is just N viewed as a poset. We need to
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prove the following assertions for all X, Y ∈ D(e):

1. Hom((τ k)!0∗X, 0!Y ) = 0 for every k ∈ N

2. Hom(0∗X, 0!Y ) = 0

We can comfort ourselves in knowing these statements are true without (Der4), as 0!
∼= π∗

in this case and then we may move π∗ over the left as a homotopy colimit, and all left-hand

expressions above have homotopy colimit equal to 0. However, we will use (Der4) to show

them anyways.

Θ0 is the functor N × [1] → N taking (n, k) 7→ n + k with the only choice available on

objects. We compute (1/Θ0): its objects are morphisms (1 → Θ0(n, k)) and this is the full

subcategory of N × [1] with (0,0) removed. A homotopy initial subcategory is given by the

full subcategory with objects (0, 1), (1, 0), (1, 1).

Accordingly, the relevant homotopy limit will have shape

0 −−−→ Xx
X

and naturally the homotopy limit is 0. The entire homotopy limit has shape

· · · −−−→ · · ·x x
0 −−−→ Xx x
0 −−−→ Xx

X

where every map in the diagram is 0 or an identity of X, and we see that the truncated

portion is obviously sufficient to compute the homotopy limit.
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We can also see in this example that since n = 0, a natural triangle that arises is

· · · → 1!X → 0!X → 0∗X → Σ1!X · · · ,

and since 1!X → 0!X is not a split monomorphism, the map 0∗!X → Σ1!X is not zero,

thereby providing an example to the obstacle at n+ 1 that was presented.

This gives rise to the following corollaries.

Corollary 9.3.5. The localization DQn/Loc{(τ k)!0∗D} is PnD. Moreover, PnD can be visualized

as the subderivator generated by {0!D, · · · , n!D} in DQn.

Corollary 9.3.6. The above localization is finite.

Proof. We are localizing the localizing subcategory generated by a set of compact objects.

Corollary 9.3.7 (Derivator semiorthogonal decomposition). There exists the usual semiorthog-

onal decomposition to PnD. By this we mean that we have a semiorthogonal decomposition

Loc〈0!D〉 ⊂ Loc〈0!D, 1!D, 〉 · · · ⊂ Loc〈0!D, · · ·n!D〉 = PnD.

Equivalently, looking on an object level this just replicates the result that HomDQn (k!X, l!Y ) =

0 if k < l, and then using Lemma 9.3.2 and Lemma 9.3.3 to push this down to the localization.

This is intended to mirror the existence of a strong full exceptional sequence in PnD,

however the actual definition of strong full exceptional sequence makes some assumptions

about generation and how morphisms work in D(e) that we would like to avoid making, so

we have this marginally weaker version.

Proof. There is a semiorthogonal decomposition 0!X a 1!X a · · · a (n − 1)!X a n!X in

Loc〈n!X, · · · , 0!X〉 for any X ∈ D(e). By construction of PnD the statement is clear.

This gives rise to a Projective Bundle Formula for K0 on projective space; recall that we

need to restrict to the compact part for Eilenberg swindle reasons.
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Corollary 9.3.8 (Projective Bundle Formula). Let D be a compactly generated triangulated

derivator. Then from the semiorthogonal decomposition of PnD we know that

K0(PnD(e)c) = ⊕n+1K0(D(e)c)
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