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Abstract

In earlier work, we presented results from an empirical
study that examined subjects’ learning and browsing
strategies as they explained instructional materials to
themselves that were contained in a hypertext-based in-
structional environment. We developed a Soar model
that, through parameter manipulation, simulated the
strategies of each individual subject in the study. In
this paper, we explore the parameters of these simula-
tions and contribute several new results. First, we show
that a relatively small proportion of strategies captured
a large percentage of subjects’ interaction behaviors,
suggesting that subjects’ approach to the learning task
shared some underlying strategic commonalities. Sec-
ond, we show that lower performing subjects employed
a high proportion of working memory intensive strate-
gies, which may have partially accounted for their in-
ferior performance. Third, clusters of subjects identi-
fied through parameters analyses continued to exhibit
similar behaviors during subsequent problem solving,
suggesting that the clusters corresponded to genuine
strategy classes. Furthermore, these clusters appeared
to represent general learning and browsing strategies
that were, in some sense, adaptive to the task.

Introduction

Possessing a diverse, flexible set of problem solving
strategies is a well-recognized hallmark of an effec-
tive problem solver. Clearly, a person who can avail
him/herself to more than one problem solving strategy
has more potential power than someone possessing only
one method. The same kind of argument applies to
learning: A learner with a repertoire of learning strate-
gies — and who can effectively select and apply them -
should better profit during learning situations.
Identifying and understanding the various strategies
that are drawn upon during learning tasks is receiv-
ing increased attention in both artificial intelligence and
cognitive science. For example, in Al, recent research
has focussed on building multi-strategy learning sys-
tems (e.g. Ram & Cox, 1992). Examples in cogni-
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tive science include studies that have focussed on un-
derstanding the strategies that learners bring to bear
while explaining instructional materials to themselves,
in a learning strategy called self-ezplanation. Prior re-
search has found considerable individual differences in
learners’ self-explanation strategies, and these appear to
significantly affect their initial understanding and their
subsequent problem solving performance (Chi, Bassok,
Lewis, Reimann, & Glaser, 1989; Pirolli & Recker, in
press).

In earlier work, Recker & Pirolli (in press) presented
a computational model that captured individual dif-
ferences in learners’ self-explanation strategies. The
model, called SURF, was based on results from a study
in which computer-based instructional situations were
manipulated in order to measure their effects on learn-
ers’ self-explanation strategies. The modelling approach
involved coupling simulations of subjects’ interface in-
teractions strategies with opportunities for action sup-
ported by the interfaces of the instructional environ-
ments. By setting parameters in the model, it was fit
to the learning behaviors of individual subjects. Specifi-
cally, for each subject, the corresponding simulation was
required to perform, in exactly the same temporal order,
the subject’s mouse actions and self-explanations.

In this paper, we present analyses of the parameters
used by the model to fit individual subject data. As we
will discuss, these parameters can be seen as represent-
ing the subjects’ learning strategies as they interacted
with the computer-based instructional systems. In the
next section of the paper, we describe the SURF model
and review the empirical results that provided its moti-
vation. We then present analyses of the model parame-
ters that were used to fit subject data.

The SURF Model

Empirical Motivation

We recently conducted a study in which the structure
of instructional materials was manipulated in order to
examine effects on learners’ self-explanations strategies
(Recker & Pirolli, in press). In this study, 16 subjects
went through five lessons on programming in Lisp. Each
lesson had two parts: studying instructional material
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(learning), followed by programming (problem solving),
using an intelligent tutoring system for Lisp, the Lisp
Tutor (Anderson, Boyle, Corbett; & Lewis, 1990). For
the target lesson, the lesson on recursion, two sets of
computer-based instructions were developed. Subjects
were randomly assigned to one of the two environments
to learn about the concepts of recursion prior to pro-
gramming recursion with the Lisp Tutor. The first en-
vironment was embedded in a hypertext system, which
allowed subjects to browse the material in a non-linear
way. In addition, the instructions were annotated with
explanatory elaborations that subjects could choose to
view if they were unable to generate their own self-
explanations. Subjects who were able to generate their
own self-explanations could choose to ignore these addi-
tional textual elaborations. A second, control instruc-
tional environment was also implemented, which mir-
rored more standard, linearly structured instruction.
Subjects navigated through both environments by click-
ing on buttons. These mouse actions provided addi-
tional data on subjects’ strategies for learning from in-
struction.

When we contrasted subjects’ performance while pro-
gramming with the Tutor, we did not find any signifi-
cant differences in outcome between subjects using the
hypertext-based instructional system and those in the
control. However, we did find a significant aptitude-
treatment interaction. Post-hoc analyses showed that
the higher-ability subjects (those that performed well
in the pre-intervention lessons) in the hypertext condi-
tion made significantly less errors while programming
than the low-ability subjects. Subjects in the control
condition did not show significant ability-based differ-
ences.

Model Overview

Data from the empirical study formed the motivation
for a computational model, called SURF (Strategies for
Understanding Recursive Functions). SURF was im-
plemented within the Soar architecture (Laird, Rosen-
bloom, & Newell, 1987). Soar is a production system
architecture in which problem solving is carried out by
search through problem space in order to achieve par-
ticular goals. Soar also includes an experience-based
learning mechanism, called chunking, which summarizes
problem solving experiences into a more efficient form.

In the interest of space, we can only present an
overview of the SURF model. In addition, since we
will only discuss the simulations of the eight subjects in
the hypertext condition, the model of the control con-
dition will not be presented. More details can be found
elsewhere (Recker & Pirolli, in press).

The primary goal of the SURF model was to model
the learning behavior of individual subjects in terms
of two criteria. The first criterion required that every
mouse clicking action by all subjects be simulated in the
exact order that it occurred. This formed the fine mod-
elling criterion. Subjects’ self-explanations formed the
secondary, coarse modelling criterion. This meant that
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subjects' self-explanations were modelled at a rough
level, in the sense that their exact natural language
statements were not simulated. More specifically, at
each screen in the instructional environments, a sub-
ject could attempt to self-explain the instruction. The
subjects’ verbal protocols were consulted to determine
when domain-related self-explanations were exhibited.
At each of these instances, the corresponding simulation
would apply what was called the comprehension oper-
ator. The application of the comprehension operator
resulted in the creation of chunks, representing newly
acquired knowledge. Thus, the SURF model, though
not yet a complete model, focussed on exactly capturing
the temporal sequence of subjects’ interface interactions
and domain-related self-explanations.

In the SURF model, subject-environment interactions
are modelled as three components: (1) a simulation of
the instructional interface, (2) a model of the space of
possible interactions, and (3) simulations of individual
subjects’ interaction strategies.

The interface of the instructional environment was
a Lisp simulation of the buttons and instructions that
were displayed in each screen context. These buttons
and instruction snippets represented opportunities for
actions. The last two components were Soar simulations
and are described in the following sections.

Modelling Interactions

We have defined an interaction as occurring between en-
vironmental features (the interface) and subjects’ learn-
ing strategies and prior knowledge (jointly called capa-
bilities). Taking environment and learner factors to-
gether defined a space of interaction possibilities. In
order to build a model of this space separately from the
influence of individual learners’ capabilities, it was im-
plemented such that it included the entire space of pos-
sibilities. In practice, when the model of interactions
was loaded with a particular learner profile, a subset of
this space was explored.

Learners’ Capabilities

The last component of the model involved simulating in-
dividual learners’ capabilities. A set of production rules
was created for each subject, called the profile, which
represented each subject’s learning strategies and prior
knowledge. Each subject’s profile was implemented such
that when it was loaded in with the interface and in-
teraction models, the resulting Soar run would fit that
subject’s behavior. Recall that the fit had to meet two
criteria: the fine criterion required that every mouse
clicking action had to be captured in the order that
it occurred and the coarse criterion modelled subjects’
self-explanations at a rough grain-size.

Two kinds of methods existed for modelling learners’
capabilities. First, a set of production rules represented
the learner’s prior knowledge that was used while gen-
erating a self-explanation. A second set of production
rules represented how the learner selected among pos-
sible available actions (or operators). In Soar, the de-



sirability or acceptability of possible alternatives is de-
scribed in terms of a fixed language of preferences (e.g.,
best, better, reject). Preference knowledge is stored in
production rules, and is added during the problem solv-
ing decision cycle. In SURF, preference productions are
used to express the value of available operators (e.g.,
selecting a particular button is desirable) in order to
simulate a subject’s action in the exact order that these
actions occurred. Since preference productions deliber-
ately choose among available operators (and thus are
knowledge about knowledge), they can be seen as rep-
resenting strategic or metacognitive knowledge.

For example, one subject always exhibited a prefer-
ence for viewing examples when they were available.
That 1s, he showed a consistent preference for select-
ing the “See Example” button over all other buttons.
This kind of strategy was implemented by the follow-
ing preference production rule (shown in pseudo-Soar
notation):

If the context involves reading instruction
And the instruction is contained on a screen
And the screen contains buttons
And a button is labelled ‘‘See Example’’

And the button can be selected

Then

This button selection is the best

Another kind of preference might express the high de-
sirability of self-explaining instructional examples. This
would translate into a preference for selecting the com-
prehension operator when an example is displayed on
the screen.

Comparing subjects and simulations

A profile for each subject was implemented according
to the modelling criteria and then run. When run, each
simulation would learn different amounts and kinds of
chunks, representing new knowledge gained from the in-
struction. Presumably, a simulation that acquired many
chunks represented good learning from instruction. We
would then expect that the corresponding subject would
exhibit successful problem solving performance and thus
record a low number of programming errors. In fact, a
Spearman rank order correlation between the number of
chunks created and the mean number of errors on the
recursion lesson showed a significant negative relation-
ship between number of chunks and error rates (rho =
-.76; p < .05).

An Ideal Strategy

This modelling framework allowed us to run experimen-
tal simulations. A profile was implemented that per-
formed an “ideal” walk through the instruction. This
simulation viewed every screen of instruction and ap-
plied the comprehension operator in every possible con-
text. Its profile contained nine preference production
rules and did not represent an actual subject.

Parameter Analyses

Essentially, SURF is a model of when to self-explain,
and less a model of how to self-explain. The prefer-
ence production rules contained in the subjects’ pro-
files provided search control knowledge that modelled
its corresponding subject’s mouse clicking actions and
(roughly) self-explanations, in the exact temporal or-
der that they occurred. As such, the preference pro-
ductions represented subjects’ strategic knowledge for
explicitly choosing among available actions (i.e., their
learning strategies). They can also be seen as parame-
ters used to fit a model of individual differences. They
thus provide a tangible means of measuring the space of
individual differences in strategy use. In this section, we
present several analyses based on the set of preference
productions contained in each subject’s profile.

Preference Productions

Table 1 shows the number of preference productions
contained in subjects’ profile. The table is sorted in as-
cending order by subjects’ mean number of errors while
programming with the Lisp Tutor.

Overall, 149 preference productions were required to
simulate the behaviors of the eight subjects in the hy-
pertext learning condition, according to the modelling
criteria. At first glance, this might seem like a large
number, reflecting a random or highly variable behav-
ior on the part of the subjects. However, if we exclude
preference productions that only occur once, we are left
with a total of 26 preference productions. Furthermore,
this core set accounts for a large proportion of the pref-
erence productions contained in the profiles. As can be
seen in Table 1, the percent of coverage provided by the
core set of productions for each of the profiles is above
65% for all but two subjects.

The fact that the learning strategies of subjects could
be accounted for fairly well with a small number of pref-
erence productions suggests that, overall, subjects were
approaching the task with a non-random and common
underlying set of strategies. This result is not surprising
if we consider the fact that learning from instruction is
a well-practiced activity for students. The two subjects
with a low degree of coverage will be returned to later.

Working Memory Load

We conjectured that the low-performing subjects may
have been overwhelmed by the complexity of the
hypertext-based environment. In order to examine this
hypothesis, we identified the preference productions in
the core set that made high working-memory demands.
Operationally, these were preference productions that
contained at least on condition element that consulted
the state context. We assumed that high working mem-
ory preference rules imposed a high cognitive load,
which may have interfered with learning effectiveness
(Sweller, 1988) and hence reflect a subject with poor
programming performance.



Subject | Prods 7%Shared 7oHigh W.Mem.
Ideal 9 Tl bl 14.28
MHT74 7 71.42 0
HL63 16 68.75 18.16
CC69 31 25.80 12.50
LP68 23 52.17 33.33
KB70 13 84.61 40.00
MWs55 19 73.68 57.14
WP58 19 84.21 50.00
SP73 12 83.33 20.00
Mean 15.55 69.08 27.26

Table 1: The number of preference productions per pro-
file, the percent coverage provided by productions in the
core set, and the percentage of working memory inten-
sive productions in a profile. The table is sorted in in-
creasing order of subjects’ mean number of errors while
programming with the Lisp Tutor.

The preference production presented in the previous
section is an example of a production that was not con-
sidered working memory intensive in that it did not re-
fer to the state context. However, the following exam-
ple production was considered working memory inten-
sive. The production required that the state context
keep track of the instructional screens that have been
viewed.

If the context involves reading instruction
And the instruction is contained on a screen
And the screen has previously been viewed
And the screen contains a button
And the button can be selected
And the button is labelled ‘‘See Example’’

Then
This button selection is the best

The following is another example of a working mem-
ory intensive preference production. This production
rule required that the state context keep track of all
operators that have been applied.

If the context involves reading instruction
And an operator is available

And the operator has previously been applied
Then

Reject the operator

The last column in Table 1 shows the percentage
of preference productions in subjects’ profile that were
considered working memory intensive. As can be seen,
except for the lowest performing subject, the percent-
age generally increases as the performance of subjects
decreases, suggesting that high working memory strate-
gies interfered with learning effectiveness.

Adaptive Strategies

Maximal generation of self-explanations during the
learning phase is not necessarily the most effective or ef-
ficient means for achieving understanding. Subtle trade-
offs exist the costs of elaborating the instruction and
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the gains resulting from knowledge acquisition. These
trade-offs also probably interact with learners’ prior
knowledge. Moreover, we can assume that different in-
structional resources have different gain functions asso-
ciated with them (Pirolli, 1993). For instance, examples
are often more instructive than plain text, that is, they
have higher information gain functions. This is a fact
that many learners seem to have caught onto: novices’
preferences for examples in the early phases of learning a
new domain is a robust finding in the literature (LeFevre
& Dixon, 1986; Pirolli & Anderson, 1985). Furthermore,
these gain functions are negatively accelerating and thus
show diminishing returns with continued elaborations
(Pirolli & Recker, in press).

Therefore, the learner must decide how to allocate
time and self-explanation effort on different kinds of
instructional resources with the goal of maximizing
(within computational constraints) understanding. If
we view the learner as adapted to the task, these kinds
of decisions are cached out in learners’ overall strategic
approach to the task!.

With this simple model in mind, we can identify gen-
eral strategy classes that are attempting to adapt to
the demands of this learning task. In the first strategy
class, gains are maximized during understanding by ex-
pending time and effort to extract information from the
instruction in order to be prepared for problem solv-
ing. In the second strategy class, costs are minimized
by minimizing cognitive effort. Here, the structure of
the environment is used to suggest actions, in a strat-
egy we call interface-driven. In the third strategy class,
costs and gains are balanced. The instruction is first
skimmed; then during problem solving, after task goals
have become more concrete, the instruction can be re-
studied with these as constraints. Evidence for the ex-
istence of such strategy classes is presented in the next
section.

Strategy Clusters

The subjects’ profiles can be used to identify strategy
clusters among different subjects. In order to accom-
plish this, a matrix was constructed where the rows of
the matrix represented subjects. The columns repre-
sented each of the preference productions contained in
the profiles. The profile for the “ideal” simulation was
also included in this matrix. For each preference produc-
tion, a “1” was entered in subjects’ row if their profile
contained that production. If the production was not in
a subject’s profile, the corresponding matrix entry was
“0.” The resulting matrix was 9 (8 subjects plus the
“ideal” profile) by 26 (core preference productions).
Based on this matrix, a hierarchical cluster analysis
was performed, using the normalized percent disagree-
ment as the distance metric. Figure 1 shows similar
profiles as nodes grouped on branches that begin to-
ward the left side of the figure. As the branches extend

!See (Pirolli, 1993) for a discussion of rational analysis
(Anderson, 1991) applied to sense-making tasks.
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Figure 1: Hierarchical cluster analysis of subjects’ profiles.

to the right, toward the origin of the tree, nodes on these
branches are increasingly dissimilar.

Do these clusters represent subjects who share an
underlying common strategy, and do they map onto
the previously identified strategy classes? To examine
these questions, we considered subjects whose profiles
were grouped within clusters in order to determine if
they exhibited similar behaviors during the program-
ming (problem solving) phase.

As can be seen in Figure 1, the cluster analy-
sis grouped together the highest performing subject
(MH74) and the “ideal” profile. Because the “ideal”
profile was intended to represent maximal gains dur-
ing the learning phase, this cluster was assumed to fit
within the first strategy class. Accordingly, we would
expect minimal reliance on the instruction during prob-
lem solving. In fact, this subject did not rely at all on
the instruction during problem solving.

In the second strategy class, cognitive costs are min-
imized. We defined this as learners whose actions were
decided on the basis of the features present on the in-
terface, which we dubbed the interface-driven strategy.
In order to determine subjects who may have fit into
this category, we examined the verbal protocols of sub-
jects during the instruction-studying phase to identify
those subjects who made a large number of elaborative
statements about navigation. These kinds of statements
suggest that a subject was driven more by features of
the interface. That is, the self-explanation process was
decided on the basis of buttons available on the screen.

The verbal protocol analysis revealed two subjects,
MW55 and WP58, who made a large number of
navigation-related elaborations. The profiles of these
subjects were also grouped together by the cluster anal-
ysis. In order to determine if these subjects genuinely re-
flected the interface-driven strategy class, we examined
their behavior during programming to record the ex-
tent that they relied upon the Tutor’s interface. Specifi-

cally, we counted the number of times that subjects used
a special Lisp Tutor menu feature that allowed them
to ask the Tutor to perform the next problem solving
step. In a striking difference, the two subjects defined
as interface-driven used this feature a total of 15 times,
while the remaining six subjects only used it a total of
3 times. Thus, it appears that the interface-driven sub-
jects continued to employ this strategy during subse-
quent problem solving, suggesting that it corresponded
to a genuine strategy class.

Furthermore, we note that the profile of these two
subjects recorded the highest proportion of working
memory intensive preference productions. At first
blush, this may seem contradictory since it could be
argued that in the interface-driven strategy, the inter-
face itself acts as an external memory. In short, buttons
serve as external cues for actions, and hence should min-
imize memory demands. However, for this kind of strat-
egy to be effective, the external environment needs to
display regularities. As we argued elsewhere, the inter-
face of the hypertext-based instructional environment
was somewhat idiosyncratic and probably imposed a sig-
nificant cognitive load on its users (Recker & Pirolli, in
press). Thus, in the case of this hypertext interface, of-
floading computations onto the environment had unan-
ticipated negative consequences.

The third general strategy involved skimming the in-
struction first, then reviewing the instruction during
problem solving when task goals are concrete. The clus-
ter analysis suggested two subjects that fit within this
strategy class, KB70 and SP73. These subjects gener-
ated the lowest number of self-explanations during the
learning phase. As expected, these subjects relied heav-
ily on the instruction while solving the first program-
ming problem. Furthermore, their search of the instruc-
tion was not very directed, since the content of the in-
struction was less familiar to them. This suggests that
subjects did not gain much knowledge during the learn-



ing phase and the difficulties they encountered during
the first problem caused them to re-study the instruc-
tion.

Finally, two subjects, LP68 and CC69, did not fit
within any well-defined strategy class. Note also that
the profiles of these two subjects showed the lowest cov-
erage by the core set of preference productions. Their
profiles also contained the highest number of preference
productions. Inspection of these subjects’ protocols re-
vealed that they made a high number of monitoring
and strategy-related elaborations and thus seemed very
metacognitively-driven in their self-explanation strate-
gies. As reflected in the high number of preference pro-
ductions and low coverage by the core set (see Table
1), such a strategy was not adequately accounted for
in the present modelling framework. While these sub-
jects may have been employing adaptive strategies, the
SURF model and parameter analyses failed to captures
these.

Discussion

Much modelling work in cognitive science has focussed
on constructing one normative model of a behavior,
typically representing a single or a composite subject.
However, in this paper, we deliberately concentrated on
strategy differences between subjects. This focus al-
lowed an analysis of the parameters involved in fitting
a model to individual differences in strategy use, and
to make several new contributions toward understand-
ing subjects’ strategies for learning in a computer-based
instructional context.

The analyses presented suggest that, overall, subjects’
approach to the learning task shared some strategic
commonalities. This is not surprising when we consider
that, although the technology is novel, learning from
instruction is a familiar activity for most students.

We showed that lower performing subjects employed a
high proportion of working memory intensive strategies.
The use of working memory intensive strategies perhaps
interfered with learning effectiveness, and therefore par-
tially accounted for the aptitude-treatment interaction
reported in the empirical results.

Finally, clusters of subjects identified by parameters
analysis appeared to exhibit similar behavior types dur-
ing subsequent problem solving, suggesting that the
clusters correspond to valid strategy classes. We also
argued that subjects within clusters may be attempting
to use strategies that are adaptive to the overall task
demands.

However, we note that while the strategies may be
adaptive, they are not necessarily optimal. Instead, they
may represent local maxima within the space of strate-
gies. Any claims about the optimality of a particular
approach rest upon an analysis of the gain functions as-
sociated with different instructional resources, the pos-
sible interaction of these functions with learners’ prior
knowledge, and their elaboration costs.

This approach differs from another model of self-
explanation, the Cascade model (VanLehn & Jones, in
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press). Cascade modelled the self-explanation strategies
and subsequent problem solving of individual subjects’
in the physics study of Chi et al. (1989). In the Cascade
model, the primary focus was on modelling the con-
tent of subjects’ self-explanations. While clearly SURF
needs to better incorporate how to self-explain, this pa-
per took some steps to answering when to self-explain
and why.
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