
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Graph Methods for Computational Pangenomics

Permalink
https://escholarship.org/uc/item/21v8x3rm

Author
Eizenga, Jordan M

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/21v8x3rm
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

GRAPH METHODS FOR COMPUTATIONAL PANGENOMICS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BIOINFORMATICS

by

Jordan M. Eizenga

September 2021

The Dissertation of Jordan M. Eizenga
is approved:

Professor Benedict Paten, Chair

Professor David Haussler

Professor R. Edward Green

Peter F. Biehl
Vice Provost and Dean of Graduate Studies

Copyright c© by

Jordan M. Eizenga

2021

Table of Contents

List of Figures vii

List of Tables xv

Abstract xvi

Dedication xvii

Acknowledgments xviii

I Introduction and background 1

1 Introduction 2

2 Background 6
2.1 Sequencing technology . 7
2.2 The human reference genome . 8
2.3 Read mapping . 9
2.4 Genome inference . 11

2.4.1 De novo assembly . 11
2.4.2 Variant calling . 13

2.5 Human population genomics projects . 15
2.6 Pangenome graphs . 16

2.6.1 Constructing pangenome graphs . 16
2.6.2 Alignment to sequence graphs . 17
2.6.3 Mapping to sequence graphs . 18

2.7 Transcriptomics . 19
2.7.1 Splicing-aware read mapping . 19
2.7.2 Expression quantification . 20
2.7.3 Differential expression . 21

iii

II Pangenomic analysis of the transcriptome 22

3 A pipeline for pantranscriptome analysis 23
3.1 Preamble . 23
3.2 Introduction . 24
3.3 Results . 27

3.3.1 Haplotype-aware transcriptome analysis pipeline 27
3.3.2 RNA-seq mapping benchmark . 28
3.3.3 Haplotype-specific transcript quantification 33
3.3.4 Assaying isoform-specific genomic imprinting 38

3.4 Discussion . 40
3.5 Acknowledgements . 43
3.6 Methods . 43

3.6.1 Sequencing data, transcript annotations and variation databases 43
3.6.2 Spliced pangenome graph construction 45
3.6.3 Pantranscriptome construction . 45
3.6.4 Read simulation model . 48
3.6.5 Simulating RNA-seq reads from haplotype-specific transcripts 49
3.6.6 Mapping and multipath alignment with VG MPMAP 50
3.6.7 RNA-seq mapping evaluation . 62
3.6.8 Haplotype-specific transcript quantification 65
3.6.9 Transcript quantification evaluation 75
3.6.10 Transcript quantification evaluation 77
3.6.11 Demonstration of analyzing genomic imprinting 80
3.6.12 Code and data availability . 81

III Algorithmic infrastructure for pangenomics 82

4 Interfacing with the linear reference-based software ecosystem 83
4.1 Preamble . 83
4.2 Introduction and motivation . 83
4.3 Design and implementation of VG SURJECT 84

4.3.1 Connection to the multipath alignment problem 85
4.3.2 Spliced alignments . 86

5 Memory-efficient dynamic sequence graphs 89
5.1 Preamble . 89
5.2 Introduction . 90
5.3 Implementation . 92

5.3.1 Data model . 92
5.3.2 The HANDLEGRAPH interface . 93
5.3.3 Graph implementations . 94
5.3.4 Python binding . 101

iv

5.3.5 Code availability . 101
5.4 Evaluation . 102

5.4.1 Human genome with structural variants 102
5.4.2 Genome graph collection . 103
5.4.3 1000 Genome Project chromosome graphs 106

5.5 Discussion . 109

6 Automated index coordination within the VG toolkit 111
6.1 Introduction . 111
6.2 Methods and implementation . 112

6.2.1 Planning index construction pipelines 113
6.2.2 Improving the computational performance of indexing pipelines 115

IV Graph theoretic contributions 117

7 Identifying hierarchical sites of variation in a pangenome graph 118
7.1 Preamble . 118
7.2 Introduction . 119
7.3 Methods . 120

7.3.1 Directed, Bidirected and Biedged Graphs 120
7.3.2 Directed Walks on Biedged and Bidirected Graphs 122
7.3.3 Superbubbles, Snarls and Ultrabubbles 123
7.3.4 Cactus Graphs . 125
7.3.5 Snarls and Cacti . 129
7.3.6 Compatible Snarl Families . 130
7.3.7 Ultrabubbles and Cacti . 133

7.4 Discussion and Conclusion . 133
7.5 Acknowledgements . 135

8 Walk-preserving transformation of overlapped sequence graphs into blunt sequence
graphs 136
8.1 Preamble . 136
8.2 Introduction . 137
8.3 Problem statement . 139
8.4 Notation . 140
8.5 Methods . 141
8.6 Implementation . 144
8.7 Results . 145
8.8 Discussion . 146

v

V Discussion 148

9 Discussion 149

VI Appendices 156

A Appendix A: Supplementary information for pantranscriptome paper 157
A.1 Preamble . 157
A.2 Supplementary Figures . 158
A.3 Supplementary Tables . 169
A.4 Supplementary Notes . 173

A.4.1 vg mpmap algorithm details . 173

B Appendix B: Proofs of theorems regarding snarl compatibility 184
B.1 Appendix 1 and 2 of Superbubbles, Ultrabubbles, and Cacti 184
B.2 Appendix 3 of Supperbubbles, Ultrabubbles, and Cacti 184

Bibliography 192

vi

List of Figures

1.1 An example of a sequence graph. Colored bars indicate the walk taken by
several haplotypes through the graph. The sequence of each haplotype can be
reconstructed by concatenating the labels of the DNA sequences along the walk.
Figure adapted from [70]. 4

3.1 Diagram of haplotype-aware transcriptome analysis pipeline The three ma-
jor steps in the pipeline. a VG RNA adds splice junctions derived from a tran-
script annotation to a pangenome graph to create a spliced pangenome graph.
It simultaneously creates a pantranscriptome composed of a set of haplotype-
specific transcripts (HSTs) using a panel of known haplotypes (not shown). b
VG MPMAP aligns RNA-seq reads to subgraphs of the spliced pangenome graph
represented as a multipath alignment. c RPVG uses the alignments from MPMAP

to estimate the expression of the HSTs in the pantranscriptome. 27
3.2 Mapping benchmark using RNA-seq data from NA12878 RNA-seq mapping

results comparing VG MPMAP and three other methods using simulated and real
Illumina data (“vg sim (ENC, uniform)” and “ENCSR000AED” in Supplemen-
tary Table A.4 and A.3, respectively). Solid and dashed lines show the results
using a spliced pangenome graph and spliced reference, respectively. a Map-
ping accuracy and sensitivity for different mapping quality thresholds (colored
numbers) using simulated data. An alignment is considered correct if it covers
90% of the true reference sequence alignment. b Mean fraction of mapped reads
supporting the non-reference allele for variants of different lengths in simulated
data. Negative lengths correspond to deletions and positive to insertions. The
colored numbers are the mean fraction for SNVs. c Mapping rate using real
data. The shaded bars show the mapping rate for all alignments and the solid
bars for only alignments with a mapping quality above 0. d Pearson correla-
tion between Illumina and Iso-Seq exon coverage using real data as a function
of mapping quality threshold. Exons are defined by the Iso-Seq alignments. e
Number of read pairs mapped per second per thread using real data. The map-
ping times were estimated using 16 threads on a AWS m5.4xlarge instance. f
Maximum memory usage for mapping in gigabytes using real data. 29

vii

3.3 Haplotype-specific transcript quantification benchmark using RNA-seq data
from NA12878 Haplotype-specific transcript (HST) quantification results com-
paring RPVG against three other methods using simulated and real Illumina data
(“vg sim (ENC, RSEM)” and “ENCSR000AED” in Supplementary Table A.4
and A.3, respectively). Solid lines with circles are results using a pantranscrip-
tome generated from 1000 Genomes Project (1000GP) European haplotypes
excluding the CEU population. Dashed lines with triangles and squares are
results using a pantranscriptome generated from all 1000GP haplotypes with-
out and with the CEU population, respectively. a Sensitivity and precision of
whether a transcript is correctly assigned nonzero expression for different ex-
pression value thresholds (colored numbers for “Whole (excl. CEU)” pantran-
scriptome) using simulated data. Expression is measured in transcripts per
million (TPM). b Number of expressed transcripts from NA12878 haplotypes
shown against the number from non-NA12878 haplotypes for different expres-
sion value thresholds (colored numbers) using real data. c Fraction of transcript
expression (in TPM) assigned to NA12878 haplotypes for different pantran-
scriptomes using simulated (left) and real (right) data. d Mean absolute relative
difference (MARD) between simulated and estimated expression (in TPM) for
different pantranscriptomes using simulated data. MARD was calculated using
either all HSTs in the pantranscriptome (solid bars) or using only the NA12878
HSTs (shaded bars). “Sample-specific (NA12878)” is a personal transcriptome
generated from 1000GP NA12878 haplotypes. 34

3.4 Exploratory demonstration of analyzing genomic imprinting using data
from GM12878 lymphoblastoid cell line Results of the VG MPMAP-RPVG

pipeline on RNA-seq data from a lymphoblastoid cell line from the ENCODE
Project, focusing on genes previously identified as imprinted in blood. a The
proportion of expression attributed to the higher-expressed allele of heterozy-
gous variants among the 20 most significantly imprinted genes from Zink’s,
et al. study [220] compared to all genes. The axes are scaled so that both
histograms have the same area. b Isoform-level allele specific expression in
NAA60, which was previously identified as imprinted but not as having isoform-
dependent reversals in the polarity of imprinting [220]. Isoforms with expres-
sion less than 0.25 transcripts per million (TPM) are not shown. 38

viii

5.1 Entities in the bidirected sequence graph. Top: a variation graph showing
nodes (yellow rectangles), each of which contain a forward and reverse strand
(red solid and dashed rectangles, respectively). Strands show the node identi-
fier, the direction (+ or −), and the sequence of the strand. Note that reverse
strands show the reverse complement sequence of the forward strand. All edges
are shown as connections between nodes, with forward-to-forward edges de-
noted by solid lines, and reverse-to-reverse edges denoted by dashed lines. Two
edges that invert from forward to reverse and reverse to forward are shown with
dotted lines. Edges run from the strand at their beginning to that at their end, as
indicated by the arrowhead. Bottom: an illustration of four paths. Each has a
name, and can be referenced by a handle, which are omitted for brevity. Each
path is shown in its natural direction as a series of connected steps that refer
to strands in the graph. The first two paths differ by a SNP, with one passing
through 2+:T, and the other through 3+:G. The third path is the reverse comple-
ment of the first. The fourth is the same as the first, but contains an inversion,
passing through 5-:AATC rather than 5+:GATT. 95

5.2 Performance on a graph of structural variants from the HGSVC. Abbre-
viations used here and in subsequent figures and tables: vg = VG, hg = HASH-
GRAPH, og = ODGI, pg = PACKEDGRAPH, xg = XG. All four new graph im-
plementations compare favorably to VG. PACKEDGRAPH tends to be the most
memory efficient, HASHGRAPH tends to be the fastest, and ODGI is balanced
in between. XG provides good performance on both memory usage and speed,
but it is static. 102

5.3 Memory requirements for model construction and loading. Memory costs
versus graph sequence size for the graph collection, colored by HANDLEGRAPH

model. The memory requirements for graph construction tend to be higher than
those for loading the graph model. All methods show fixed overheads of several
megabytes, seen in the flat tail to the left of both plots. Outside of this region,
all methods show roughly linear scaling in both build and load costs per input
base pair. The relative differences in memory costs appear to be stable between
different methods across many orders of magnitude in graph size. 104

5.4 Graph element enumeration performance. Iteration performance for edges,
nodes, and path steps for the full graph collection, shown in terms of elements
per second. HASHGRAPH provides the highest performance for all element it-
eration types on smaller graphs, but this performance falls of with larger graphs,
presumably due to scaling properties of the backing hash tables. The same pat-
tern can be seen for VG, although the overall performance is worse. Although
it has the worst edge iteration performance, PACKEDGRAPH provides good per-
formance on node and path step iteration. The relative path encoding in ODGI
yields poor performance on path iteration, and node decoding overheads appear
to reduce its node iteration performance, but it has good graph topology traver-
sal performance, perhaps due to cache efficiency of the edge encoding. XG
provides excellent iteration performance in all cases. 105

ix

5.5 Load memory versus node count for chromosome graphs built from 1000
Genomes Project variants and GRCh37. For each method, memory require-
ments are more strongly correlated with the number of nodes in the graph (R2 =
0.998) than with the graph sequence length (R2 = 0.986). Although the memory
requirements are dominated by graph sequence size, node count will increase
with variant density. Methods generally incur an overhead for each node that is
larger than the sequence length. Linear scales clarify that the absolute difference
in performance between VG and the other methods is substantial. 107

6.1 Two plans in the recipe graph. Plans for the indexes required by a vg mpmap
and rpvg and by b vg giraffe are highlighted in the recipe graph. Rectan-
gular nodes correspond to indexes or data files, and circular nodes correspond
to recipes. Lower numbers on the recipe nodes indicates higher priority. Gray
shading indicates provided data, and blue shading indicates the target indexes
being constructed. 113

7.1 (A) A digraph. (B) A bidirected graph. Each node is drawn as a box and
the orientation for each edge endpoint is indicated by the connection to either
the left or right side of the node. The graph excluding the dotted edges is the
equivalent bidirected graph for the digraph in (A); the dotted edges encode an
inversion that cannot be expressed in the digraph representation. (C) A biedged
graph equivalent to the bidirected graph shown in (B). 121

7.2 (A) Superbubbles in a digraph. The superbubbles are indicated by pairs of num-
bered arrows, numbered consistently with (B). (B) A biedged graph represen-
tation of the digraph in (A). The snarls are illustrated by numbered arrows, the
ultrabubbles are those numbered 1, 4, 9 and 12. Note, a side incident with a
black bridge edge may be in multiple snarls (see snarls numbered 10). 126

7.3 (A) A biedged graph B(D) with the snarls indicated by pairs of numbered ar-
rows. (B) The graph in (A) after contracting the grey edges. (C) The cactus
graph C(D) for B(D), constructed by merging the vertices in each 3-EC in (B).
(D) The bridge forest D(D), constructed by constracting the edges in simple
cycles in (C). 128

7.4 Overlapping snarls. (A) A bidirected graph, its corresponding (B) cactus graph.
The snarl numbered 2 contains the snarl numbered 4, similarly the snarl num-
bered 3 contains the snarl numbered 1. The snarls numbered 2 and 3 overlap. . 131

8.1 A: An overlapped sequence graph. B: A blunt sequence graph. 138
8.2 A: An overlapped sequence graph, and B: the blunt sequence graph that results

from transitively merging its overlaps. The highlighted walk in the blunt graph
does not correspond to any walk in the original overlapped graph. 140

8.3 An adjacency component in a larger sequence graph. Each of the indicated
affixes can reach the others by a sequence of overlaps. 141

8.4 A biclique cover of an adjacency component with three bicliques. 142

x

8.5 The domino graph. If either of the dotted edges are present, the induced sub-
graph is not a domino. 143

A.1 Diagram of a multipath alignment A diagrammatic comparison between the
multipath alignment output of vg mpmap and the single-path alignment output
of other graph aligners (such as vg map). a A read and b a sequence graph,
which have been colored to indicate which parts of the read could plausibly
align to which parts of the graph. c A single-path alignment. The read sequence
is aligned to one path from the graph. d A multipath alignment. The alignment
can split and rejoin to express the alignment uncertainty to different paths in the
graph. 158

A.2 Mapping benchmark to novel splice-junctions using RNA-seq data from
NA12878 RNA-seq mapping results comparing vg mpmap against three other
methods using simulated Illumina data (“vg sim (ENC, uniform)” in Supple-
mentary Table A.4). Shows mapping accuracy and sensitivity for different map-
ping quality thresholds (colored numbers). An alignment is considered correct
if it covers 90% (a) or 70% (b) of the true reference sequence alignment. Solid
lines show the results using a spliced pangenome graph (spliced reference for
STAR) generated using the complete transcript annotation. Dashed lines show
the results using a reference generated with a random subset of 80% of the
transcripts in the annotation. 159

A.3 Graph-based mapping benchmark using RNA-seq data from NA12878 Map-
ping accuracy and sensitivity for vg mpmap and three other methods using sim-
ulated Illumina data (“vg sim (ENC, uniform)” in Supplementary Table A.4).
Colored numbers indicate different mapping quality thresholds. An alignment
is considered correct if its start position is within 100 bases from the start po-
sition of the true alignment measured using any labeled transcript path in the
graph or the linear reference sequence. Solid and dashed lines show the results
using a spliced pangenome graph and spliced reference, respectively. 160

A.4 Mapping benchmark using RNA-seq training data from NA12878 RNA-
seq mapping results comparing vg mpmap and three other methods using the
simulated and real Illumina data that was used in the optimization of vg map
and vg mpmap (“vg sim (SRR, uniform)” and “SRR1153470” in Supplemen-
tary Table A.4 and A.3, respectively). Solid and dashed lines show the results
using a spliced pangenome graph and spliced reference, respectively. a Map-
ping accuracy and sensitivity for different mapping quality thresholds (colored
numbers) using simulated data. An alignment is considered correct if it covers
90% of the true reference sequence alignment. b Mapping rate using real data.
The shaded bars show the mapping rate for all alignments and the solid bars for
only alignments with a mapping quality above 0. c Pearson correlation between
Illumina and Iso-Seq exon coverage using real data as a function of mapping
quality threshold. Exons are defined by the Iso-Seq alignments. 161

xi

A.5 Mapping benchmark using RNA-seq training data from CHM13 RNA-seq
mapping results comparing vg mpmap against three other methods using real
Illumina data that was used in the optimization of vg mpmap (“CHM13” in
Supplementary Table A.3). a Mapping rate. The shaded bars show the mapping
rate for all alignments and the solid bars for only alignments with a mapping
quality above 0. b Number of read pairs mapped per second per thread. The
mapping times were measured using 16 threads on a AWS m5.4xlarge instance.
c Maximum memory usage for mapping in gigabytes. 162

A.6 Haplotype-specific transcript uniqueness in a 1000 Genomes Project pantran-
scriptome The fraction of HSTs that are unique to each sample in the 1000
Genomes Project (1000GP) when compared to different subsets of samples in
the 1000GP. Left box plots show the fraction unique when comparing to all
other samples, middle box plots show the fraction unique when comparing to
all other samples excluding the samples’ population, and right box plots show
the fraction unique when comparing to all other samples excluding the samples’
super population. AFR: African, AMR: Admixed American, EAS: East Asian,
EUR: European, SAS: South Asian. 163

A.7 Haplotype-specific transcript expression correlation benchmark using RNA-
seq data from NA12878 Haplotype-specific transcript (HST) quantification re-
sults comparing rpvg and three other methods using simulated Illumina data
(“vg sim (ENC, RSEM)” in Supplementary Table A.4). Shows Spearman cor-
relation between simulated and estimated expression (in transcripts per million
(TPM)) for different pantranscriptomes. Correlation was calculated using either
all HSTs in the pantranscriptome (solid bars) or using only the NA12878 HSTs
(shaded bars). “Sample-specific (NA12878)” is a personal transcriptome gen-
erated from 1000 Genomes Project (1000GP) NA12878 haplotypes. “Europe
(excl. CEU)” is a pantranscriptome generated from European 1000GP haplo-
types excluding the CEU population. “Whole (excl. CEU)” and “Whole” are
pantranscriptomes generated from all 1000GP haplotypes without and with the
CEU population, respectively. 164

xii

A.8 Multipath alignment benchmark using RNA-seq data from NA12878 Haplotype-
specific transcript (HST) quantification results comparing rpvg with single-
path and multipath alignments using simulated and real Illumina data (“vg sim
(ENC, RSEM)” and “ENCSR000AED” in Supplementary Table A.4 and A.3,
respectively). Solid lines with circles are results using a pantranscriptome gen-
erated from 1000 Genomes Project (1000GP) European haplotypes excluding
the CEU population. Dashed lines with triangles and squares are results us-
ing a pantranscriptome generated from all 1000GP haplotypes without and with
the CEU population, respectively. The single-path alignments were created by
finding the best scoring path in each multipath alignment. a Sensitivity and pre-
cision of whether a transcript is correctly assigned nonzero expression for dif-
ferent expression value thresholds (colored numbers for “Whole (excl. CEU)”
pantranscriptome) using simulated data. Expression is measured in transcripts
per million (TPM). b Number of expressed transcripts from NA12878 haplo-
types shown against the number from non-NA12878 haplotypes for different
expression value thresholds (colored numbers) using real data. c Fraction of
transcript expression (in TPM) assigned to NA12878 haplotypes for different
pantranscriptomes using simulated (left) and real (right) data. d Mean absolute
relative difference (MARD) between simulated and estimated expression (in
TPM) for different pantranscriptomes using simulated data. MARD was calcu-
lated using either all HSTs in the pantranscriptome (solid bars) or using only
the NA12878 HSTs (shaded bars). “Sample-specific (NA12878)” is a personal
transcriptome generated from 1000GP NA12878 haplotypes. 165

A.9 Haplotype-specific transcript quantification benchmark using RNA-seq train-
ing data from CHM13 Haplotype-specific transcript (HST) quantification re-
sults comparing rpvg against two other methods using real Illumina data that
was used in the optimization of rpvg (“CHM13” in Supplementary Table A.3).
All experiments used a pantranscriptome generated from all 1000 Genomes
Project (1000GP) haplotypes. Each HST is either classified as major or minor.
Major HSTs are defined as the highest expressed haplotype for each transcript;
the rest are defined as minor. As CHM13 is effectively haploid, the fraction
of expression from minor HSTs is a lower bound on the fraction of incorrectly
inferred transcript expression. a Number of major expressed transcripts against
the number of minor expressed for different expression value thresholds (col-
ored numbers). Expression is measured in transcripts per million (TPM). b
Fraction of transcript expression (in TPM) assigned to major transcripts for dif-
ferent methods. 166

xiii

A.10 Haplotype-specific transcript quantification benchmark using RNA-seq train-
ing data from NA12878 Haplotype-specific transcript (HST) quantification re-
sults comparing rpvg against three other methods using simulated and real Illu-
mina data that was used in the optimization of rpvg (“vg sim (SRR, RSEM)” and
“SRR1153470” in Supplementary Table A.4 and A.3, respectively). Solid lines
with circles are results using a pantranscriptome generated from 1000 Genomes
Project (1000GP) European haplotypes excluding the CEU population. Dashed
lines with triangles and squares are results using a pantranscriptome generated
from all 1000GP haplotypes without and with the CEU population, respec-
tively. a Sensitivity and precision of whether a transcript is correctly assigned
nonzero expression for different expression value thresholds (colored numbers
for “Whole (excl. CEU)” pantranscriptome) using simulated data. Expression
is measured in transcripts per million (TPM). b Number of expressed transcripts
from NA12878 haplotypes shown against the number from non-NA12878 hap-
lotypes for different expression value thresholds (colored numbers) using real
data. c Fraction of transcript expression (in TPM) assigned to NA12878 hap-
lotypes for different pantranscriptomes using simulated (left) and real (right)
data. d Mean absolute relative difference (MARD) between simulated and es-
timated expression (in TPM) for different pantranscriptomes using simulated
data. MARD was calculated using either all HSTs in the pantranscriptome
(solid bars) or using only the NA12878 HSTs (shaded bars). “Sample-specific
(NA12878)” is a personal transcriptome generated from 1000GP NA12878 hap-
lotypes. 167

A.11 Diagram of haplotype-specific transcript quantification in rpvg Diagram
showing an overview of how rpvg infers expression of haplotype-specific tran-
scripts (HSTs) in a pantranscriptome from a set of paired-end multipath align-
ments (see Supplementary Figure 10). The colored thin lines correspond to HST
paths, and the blue transparent regions correspond to aligned read sequences. a
For each fragment, all paths through the multipath alignment graphs are iden-
tified using a depth-first-search (DFS). For paired-end reads, the DFS also tra-
verses the fragment insert creating alignment paths of the whole fragment. Only
alignment paths that follow an HST path in the pantranscriptome are kept. b The
probabilities that each fragment originated from each of the HSTs in a cluster
are calculated using the score and length of the fragment alignment paths, and
the mapping quality. c The fragment-HST probability matrix is used to infer
the expression of the HSTs using a nested inference scheme. First, a distribu-
tion over diplotypes (if sample is diploid) is inferred. A haplotype combination
is then sampled from this distribution and expression is inferred conditioned
on the sampled haplotypes using expectation-maximization. This procedure is
repeated a 1,000 times to account for the uncertainty in the haplotype estimates. 168

xiv

List of Tables

5.1 Comparison of features between libbdsg graph implementations. The three
graph implementations all use adjacency lists to encode graph topology and
linked lists to encode paths. The differences in encoding these structures reflects
different design goals for each implementation. 101

5.2 Performance on 1000 Genomes Project chromosome graphs. Average build
memory, load memory, and iteration times for graph elements for the chromosome-
level graphs built from all the variants in the 1000 Genomes Project and the
GRCh37 reference genome against which the variant set was originally re-
ported. VG requires∼ 20 times as much memory to load the graphs as PACKED-
GRAPH, while even the most costly libbdsg model (HASHGRAPH) requires∼ 1/3
as much memory. In these graphs, ODGI provides the lowest performance for
handle iteration. However, in all other metrics, VG performs much worse than
the other models. 108

8.1 Table of speed and memory usage of bluntifing tools run on a single core of an
AWS server. 146

A.1 Genomic variant (haplotype) sets 1000GP: 1000 Genomes Project 169
A.2 Pantranscriptomes †See Supplementary Table A.1 for more details on the hap-

lotype sets . 169
A.3 Read sets and alignments †Downloaded from the T2T consortium data repos-

itory: https://github.com/nanopore-wgs-consortium/CHM13 170
A.4 Simulated read sets †See Supplementary Table A.3 for more details on the

training read sets ‡See Supplementary Table A.2 for more details on the haplotype-
specific transcript sets . 171

A.5 Versions of internal software used †Different subcommands in the vg toolkit
and parts of the pipeline stabilized at different times during our development
process, hence the variety of commits used. 172

A.6 Versions of external software used . 173

xv

Abstract

Graph methods for computational pangenomics

by

Jordan M. Eizenga

In most sequencing experiments, sequencing reads are mapped to a reference genome

assembly in order to identify the genomic elements that the reads originated from. The mapping

process becomes less accurate when the sample’s genome differs from the reference genome.

This introduces a pervasive reference bias in which genomics analyses are systematically less

accurate for non-reference alleles. In the field of pangenomics, it has been proposed that more

general reference structures could mitigate reference bias. The fundamental idea is to incor-

porate population variation into the reference itself. The result is naturally expressible as a

sequence graph. This dissertation presents the research I performed to develop methods for

graph-based pangenomic analyses. First, I describe a read mapping and inference pipeline to

perform haplotype-resolve transcriptomic analyses using pangenomics techniques. Next, I de-

scribe several contributions I have made to the ecosystem of pangenomic software: an interface

to conventional reference methods, a software library of pangenome graph data structures, and

a usable interface for indexing pangenome graphs. Finally, I describe some applications of

graph theory to pangenome graphs to perform practical pangenomics tasks: identifying sites of

variation and converting overlapped sequence graphs to blunt ones.

xvi

To my parents,

Douglas and Lori Eizenga,

who I can always count on,

and to my dear friend,

Corrie Janssens,

my moral North Star

xvii

Acknowledgments

I would like to thank the members of my committee, Benedict Paten, David Haussler,

and Ed Green for their insight and critique of the work presented in my dissertation and defense.

I am particularly grateful to Benedict Paten for the years of mentorship he has provided me in

the Computational Genomics Lab. His guidance taught me how to conduct science and led me

to a challenging and rewarding area of study.

My lab mates have been my collaborators, commiserators, and friends. I am grateful

to have worked alongside Art Rand, Miten Jain, Joel Armstrong, Ian Fiddes, Arjun Rao, Adam

Novak, Glenn Hickey, John Vivian, Audrey Musselman-Brown, Trevor Peasout, Molly Zhang,

Yohei Rosen, Xian Chang, Jouni Sirén, Marina Haukness, Kishwar Shafin, Andrew Bailey,

Colleen Bosworth, Ryan Lorig-Roach, Jean Monlong, Jonas Sibbesen, Robin Rounthwaite,

James Casaletto, Yatish Turakhia, Melissa Meredith, Cecilia Cisar, and Mobin Asri. For the

last six years, they have provided me with an intellectually stimulating environment and with

a sense of community. Outside of my lab, I feel I should also specifically thank my friend

and collaborator Erik Garrison, whose vision and leadership were motive forces in the research

community I belong to.

The route I took into bioinformatics was rather circuitous. In my mind, the most

crucial determinative period was my mid-twenties, when I was broke, depressed, and unable

to work after developing a chronic medical condition. I ended up getting the lifeline I needed

from the burgeoning availability of free online college-level educational materials. Engaging

in these courses pulled me out of that slump and completely reshaped my interests, which is

xviii

ultimately what led me to graduate school in bioinformatics. Because of this, I feel grateful to a

number of professors I have never personally met, and who yet profoundly impacted my life. In

particular, I would like to thank David J. Malan, Eric Lander, Pavel Pevzner, Phillip Compeau,

Tim Roughgarden, Leonard E. White, Andrew Ng, Marnie Blewitt, Rob Tibshirani, Trevor

Hastie, Eric Grimson, and Alma Novotny for their generosity with their time and expertise.

The University of California Santa Cruz has been my home for six years, and I am

grateful to the people in the campus community who are working to make it a fairer and juster

place. I want to thank the COLA wildcats for the risks they took and the sacrifices they made

on behalf of all UCSC graduate students. I would particularly like to thank Carlos Cruz who

continues to face unjust retaliation for his participation in the movement. The mobilization that

the wildcats galvanized has borne further fruit in the Student Researchers United campaign,

which I am proud to have been a part of. I am grateful for my fellow members of the organizing

committee, as well as the 1000+ graduate students who have contributed to the campaign across

the UC system.

Many more people have made the last six years of my life feel rich and meaningful.

I am grateful for my community of friends, both in Santa Cruz and Michigan; I am grateful

for my students, whose curiosity reinvigorates my own interest; I am grateful for and proud of

the undergraduate researchers I have had the pleasure of mentoring; and I am grateful for the

administrative staff who shepherded me through the whole process.

Finally and most of all, I would like to thank the members of my family. My mom and

dad have supported my love of learning for my entire life. They have demonstrated over and

over again that if I ever slip, someone will always be there to catch me. My brother Quentin’s

xix

relentless enthusiasm and dedication inspired me to take the plunge into graduate school in the

first place. My brother Nate is a dependable match to my own nerdiness and sense of humor. My

dear friend Corrie, who I consider family, is my personal hero, and I am continually impressed

with her wisdom and growth.

In sum, this thesis is very much a group project. In most group projects, one student

does all the work, and then the entire group shares the benefit. The situation here is the inverse.

I highly doubt I will be allowed to share my doctorate with my collaborators and supporters,

but I hope they understand that in a very real sense it is theirs too.

xx

Part I

Introduction and background

1

Chapter 1

Introduction

Modern biologists can ask and answer a qualitatively greater set of questions at a

quantitatively greater scale than their predecessors. Much of this expansion is reflected in the

growing use of so-called omics methods. This term cheekily refers to a variety of methods that

attempt to characterize the entirety of some class of biomolecular entity in a sample: all DNA

in genomics, all proteins in proteomics, all metabolites in metabolomics, etc. Earlier methods

in molecular biology that focused on individual entities (e.g. one gene) sometimes suffered

a tunnel vision that could seriously slant the scientific understanding of a biological process.

The widened lens of omics methods alleviates this risk, and thus they are often referred to as

unbiased methods (although it may be more accurate to call them less-biased methods—more

on this soon).

Undergirding the growth of omics methods is a deepened arsenal of technologies, and

DNA sequencing is undoubtedly one of the most fundamental among them. The centrality of

sequencing is due in part to the fundamental importance of DNA in biology; DNA is the (nearly)

2

universal medium of heredity and the primary object of evolutionary change. In addition, DNA

sequencing has proven to be highly adaptable for assaying various biological processes. Many

unbiased assays consist mainly in a method to imprint the effects of some process onto DNA

molecules, which is then followed by sequencing.

The vast majority of sequencing experiments involve resequencing: generating se-

quencing data from an organism for which some individual’s genome has been previously se-

quenced and assembled. For humans and model species, the assembled genomes are maintained

as high-quality public data resources, referred to as reference genomes. In practice, this turns

out to be crucial for two interrelated reasons. First, the reference serves as a technical tool to

identify the genomic element corresponding to raw sequencing data. Second, the reference co-

ordinate system acts as a proxy for homology between individual haplotypes. Together, these

features allow sequencing experiments to be interpreted and generalized beyond the individual

sample so that they can contribute to scientific understanding of biology.

Reference-based analysis is an expedient and well-developed methodology, but it

does have downsides. For one, there is a fundamental limitation in using a single genome

as a reference for an entire species. At best, a reference assembly can accurately represent the

genomic sequence of a single haplotype of a single individual. Every other individual will have

genetic differences so that their genome mismatches the reference in many locations. This in-

troduces some ambiguity into the reference’s role as a coordinate system. More subtly, it also

diminishes the reference’s ability to serve as a technical tool. The way that sequencing data is

identified with a genomic element in the reference is by looking for sequences in the reference

that match the data. If in fact the reference mismatches the genome that generated the data, it is

3

more difficult to identify the correct element, and the accuracy of this process deteriorates. This

problem is known as reference bias: the systematic tendency for analyses to reduce in accuracy

when a sample genome sequence differs from the reference.

Recently, pangenomics has emerged as a methodology to mitigate these shortcom-

ings. The core idea is to replace reference genomes with more general reference structures that

incorporate genomic variation across individuals. Including alternate alleles in the reference

structure eliminates the privileged role of the reference allele, which is what leads to reference

bias. Various approaches for doing so have been proposed, the majority of which have been

based on sequence graphs (Figure 1.1). These graphs consist of vertices labeled with DNA se-

quences, which are connected by edges that indicate adjacency within a single DNA molecule.

This structure allows sequences to split and rejoin around sites of variation. A full genome

sequence can then be formed by concatenating sequences along a walk through a graph. In this

way, the graph encodes a space of sequences rather than a single genome sequence.

Figure 1.1: An example of a sequence graph. Colored bars indicate the walk taken by sev-

eral haplotypes through the graph. The sequence of each haplotype can be reconstructed by

concatenating the labels of the DNA sequences along the walk. Figure adapted from [70].

4

My thesis research has centered on developing methods for graph-based pangenomic

analysis. Taken as a whole, the pangenomics project is rather ambitious. Reference genomes

occupy a central role in genomics. Changing this core underlying formalism requires virtually

every aspect of genomics analysis to be reconsidered, redesigned, and reimplemented. For

this reason, it has been very satisfying to see field of pangenomics evolve over the course of

my graduate education from a largely theoretical exercise to a mainstream methodology with

growing practical significance, and I am humbled to have played a part in this maturation.

This dissertation summarizes what I consider to be my most significant contributions

to pangenomics. Most of the chapters correspond to published works for which I share au-

thorship. All of the chapters are intended to be standalone documents, and as such they can

be read independently from each other. Chapter 2 provides a general overview of the field of

pangenomics as well as some related fields. Chapter 3 describes methods I developed to apply

pangenomic analysis to transcriptomics. Chapters 4, 5, and 6 describe contributions I made

to the ecosystem of pangenomics software. Chapters 7 and 8 describe some of my research

on applying graph theory to problems in pangenomics. Finally, Chapter 9 concludes with a

discussion of the current state of pangenomics and its future outlook.

5

Chapter 2

Background

Pangenomics practitioners are exceptional borrowers. The field has thrived off of

repurposing and recombining results from a range of adjacent fields. As a result, a background

chapter for pangenomics tends to read like a primer on several distinct disciplines. In order to

restrain the cacophony, I restrict my attention in this chapter to human genomics. This comports

with my thesis research, which has similarly focused on humans.

Fittingly, parts of this chapter are also borrowed. The borrowed content comes from

two review papers that I co-authored. The first, “Genome graphs and the evolution of genome

inference”, appeared in Genome Research. I was one of the primary co-authors along with

Adam M. Novak and Benedict Paten [155]. The second, “Pangenome graphs”, appeared in

Annual Review of Genomics and Human Genetics. I co-authored this review primarily with

Erik Garrison, along with smaller contributions from many co-authors [63].

6

2.1 Sequencing technology

The problem of sequencing DNA was first solved by Frederick Sanger in 1977 by us-

ing low-frequency incorporations of a modified, chain-terminating nucleotide into synthesizing

DNA molecules [179]. The resulting shortened products could be separated and distinguished

using electrophoresis and radiolabeling. Subsequent improvements to Sanger sequencing al-

tered the method of separation and detection while preserving the underlying mechanism of

chain-termination. The radiolabeling was replaced by fluorescent chain terminators, and gel

electrophoresis was replaced by capillary electrophoresis [193]. The resulting technology pro-

duced highly accurate reads up to about 1000 bp in length.

Sanger sequencing remains useful and cost-effective for small-scale, targeted se-

quencing, but its low throughput is poorly matched to the scale of most problems in genomics.

In most common genomics analyses, Sanger sequencing has now been largely supplanted by so-

called next-generation sequencing (NGS) [136]. The term NGS initially encompassed several

similar technologies, but today the market is dominated by Illumina’s platform. This platform’s

chemistry generates clusters of identical copies of a DNA molecule using a variant of poly-

merase chain reaction (PCR). The clusters are then observed during a final round of synthesis in

which the DNA molecules are reversibly terminated with a fluorophore-labeled nucleotide, one

base at a time. This allows each subsequent nucleotide to be detected optically by its fluores-

cence. In addition, this process is massively parallel, yielding millions of 50-300 bp sequencing

reads from a single sample.

Finally, two newer third-generation sequencing technologies achieve both high through-

7

put and long read length by sensing individual molecules rather than PCR products. The

first from Pacific Biosciences (PacBio) uses sensitive optics to detect fluorescently-labeled nu-

cleotides as they are incorporated into a DNA strand by an immobilized DNA polymerase [61].

The other from Oxford Nanopore Technologies (ONT) detects current fluctuations through a

protein nanopore as a DNA molecule is pulled through it electrophoretically [138]. In both

cases, the cost of the longer read length is much higher error rates, although it is possible to

improve the accuracy of PacBio sequencing at the expense of some read length using a circu-

lar sequencing template [214]. Accordingly, NGS and third-generation technologies currently

coexist on the sequencing landscape, each with their own niche of applications.

2.2 The human reference genome

The sequencing of a human genome was a landmark achievement. Over the span of

decades, it was painstakingly sequenced using a combination of bacterial artificial chromosomes

(BACs) and capillary Sanger sequencing [106]. In the following years, the genome assembly

steadily improved [35,90] to the point that the Genome Reference Consortium’s human genome

assembly, GRCh38 [181], was arguably the best assembled mammalian genome in existence

at the time of its release, with just 875 remaining assembly gaps and fewer than 160 million

unspecified ‘N’ nucleotides (as of GRCh38.p8). In the near future, it is likely that this will

be replaced by a reference that is essentially fully complete. The T2T Consortium recently

announced a gapless telomore-to-telomere human genome assembly using a haploid human

cell line [149].

8

Perhaps one reason the reference genome has been so effective as an organizing sys-

tem is that the average human genome is remarkably similar to it. From short-read-based assays,

it is estimated that the average diploid human has between 4.1 and 5 million small mutations

(either single nucleotide variants (SNVs), multi-nucleotide variants (MNVs), or short indels),

which is only around one variant every 1450 to 1200 bases of haploid sequence [39]. Such an

average human would also have about 20 million bases—about 0.3% of the genome—affected

by around 2,100-2,500 larger structural variants [39]. It should be noted that both these es-

timates are likely somewhat conservative as some regions of the genome are not accurately

surveyed by the short read technology used. Indeed, long read sequencing demonstrates an

excess of large variation not found by earlier short read technology [30, 183].

2.3 Read mapping

The first step in reference-based resequencing experiments is usually read mapping:

the process of identifying the element of the reference genome that corresponds to each se-

quencing read. Generally speaking, a read’s element-of-origin cannot be observed directly.

Instead, read mapping tools use sequence similarity as a proxy. Mismatches between reads and

the reference arise for two reasons: sequencing errors and genomic variation. Between hu-

mans’ low rate of polymorphism and modern sequencing technologies’ low error rates, the use

of similarity as a proxy for identity usually works well.

Classical sequence alignment algorithms like Needleman-Wunsch [146] and Smith-

Waterman-Gotoh [76,194] can identify similar DNA sequences. Moreover, the statistical theory

9

surrounding these algorithms is rich and well-developed [98, 196]. Unfortunately, these algo-

rithms are unsuited to the scale of the read mapping problem. The run time of the classic

algorithms scales with the product of the lengths of the sequences being compared. With a

reference genome of ∼3 billion bp and sequencing data sets of >50 billion bp, they are clearly

intractable.

Practical read mapping tools are invariably based on the seed and extend paradigm.

This paradigm is built on two observations. First, the reference genome is static and repeatedly

reused while mapping a set of reads. This makes it amenable to preprocessing techniques that

accelerate the computation. Second, correct mappings are expected to be highly similar to

the reference. Accordingly, the seed and extend paradigm begins by creating indexes of the

reference genome that make it efficient to query exact matches. Then, each read can be used

to query exact-match seeds, which are clustered and subsequently extended into full alignments

using the classical algorithms. In the process, most of the reference genome can be filtered

away and ignored.

The indexes used by seed-and-extend mappers can be divided into two main cate-

gories: k-mer tables and variants of the suffix tree. k-mer tables are usually implemented as

hash tables that record the locations of k-mer sequences (subsequences of a fixed length k) in

the reference [119, 123]. Various optimizations are used to restrain the hash tables’ memory

use and accelerate queries [59, 175]. The suffix tree is a classical data structure that encodes

every suffix of a string as a walk from the root of a directed tree. If any such walks have match-

ing prefixes, they are merged together. Suffix trees can locate matches of any length in linear

time. They also require linear time and memory to construct [207], but the constant factor on

10

the memory usage can be prohibitive with large genomes [105]. Suffix arrays provide a more

memory-efficient alternative that encodes the topology of the tree implicitly using only an array

of integers [130]. The FM-index provides further space savings by allowing the reference to be

stored in compressed form while still supporting suffix array queries [65]. This index has been

widely used in read mapping software [107, 118].

2.4 Genome inference

Genome inference is the problem of determining an individual’s genome sequence

from DNA sequencing data. This process depends heavily on the characteristics of the sequenc-

ing technology being used. The most successful successful genome inference methods marry

knowledge about the sequencing technology to computational and statistical techniques. These

computational methods can be coarsely divided into two major categories: de novo assembly

and variant calling.

2.4.1 De novo assembly

De novo genome assembly is the computational task of determining a sample’s genome

sequence directly from sequencing data without using a reference genome. For instance, the

original human reference genome was produced by genome assembly techniques. In general,

accurate genome assembly is considered a challenging problem. The core reason is that se-

quencing reads are much shorter than full chromosomes. Thus, to produce a full genome se-

quence, it is necessary to identify reads that originate from overlapping segments of the genome

11

so that they can be combined into longer sequences.

All modern assembly methods use sequence graphs to model uncertainty involved in

process of identifying overlaps. The primary indication that two reads originate from overlap-

ping segments of the genome is that their sequences match along an overlap. However, not all

matches indicate that the reads originated from overlapping segments of the genome. Matches

can also occur due to sequencing errors and repeated sequences in the genome. Thus, the

matches between reads indicate a space of potential overlaps, and this space can be compactly

summarized as a graph.

Two sequence graph formalisms are in common use for genome assembly: overlap

graphs and de Bruijn graphs. In overlap graphs, each vertex corresponds to sequencing read,

and edges are added whenever there is match between reads that is deemed statistically signifi-

cant. These graphs are closely associated with the overlap-layout-consensus (OLC) framework

for producing an assembly [142]. OLC formulates the assembly problem as producing a linear

layout of the reads that respects the overlaps and produces consistent coverage across the lay-

out. The read sequences can then be combined into a consensus sequence. String graphs are a

closely-related variant that can be formulated as a modification of an overlap graph. First, nodes

whose sequences are strictly contained in other nodes are removed, and then transitive edges

are removed to produce a minimum equivalent graph (often incorrectly described as a transitive

reduction) [143]. In this simplified graph, sequences that can be assembled unambiguously are

easily identifiable as non-branching paths.

In de Bruijn graphs, each node’s sequence corresponds to a k-mer found on a read.

Edges are added whenever two k-mers are adjacent on some read [159]. The structure of a de

12

Bruijn graph contains strictly less information than an overlap graph. De Bruijn graphs only

detect overlaps between reads when their k-mers match exactly, and they discard information

about which k-mers co-occur on the same read, with the exception of directly adjacent pairs.

However, the regular structure of de Bruijn graphs provides attractive benefits in computational

efficiency.

2.4.2 Variant calling

In variant calling, genome inference is performed implicitly by describing the sam-

ple’s genome as a collection of differences from a reference genome. This generally begins

by mapping reads to the reference genome. The read sequences can then be compared to the

reference sequence to identify differences. Compared to de novo assembly, the main advantage

of variant calling is that it leverages the considerable information embodied in the reference.

However, it also incurs reference bias for the same reason.

With NGS reads, small variants can be detected simply by counting the occurrences

of a given reference mismatch among the mapped reads. This lends itself to count-based prob-

abilistic models, which formed the basis of many successful early variant callers [73,121]. The

current state-of-the-art tools use the same underlying input, but replace explicit statistical mod-

eling with deep neural networks [160].

The approach of counting instances of mismatches tends to fail with larger variants.

Short reads containing large variants frequently cannot be successfully mapped to the reference

(an example of severe reference bias). This fact motivates the distinction between point variants

and structural variants, which are distinguished chiefly by their size. Conventionally, point

13

variants consist of variants that affect at most 50 bp, and structural variants are all larger variants.

The boundary between the two is somewhat arbitrary, but it does mark the approximate size at

which mapping biases make direct comparison of the read sequence untenable in NGS data.

Despite the difficulties in mapping, there are several strategies to call structural vari-

ants with NGS reads. Often these methods identify regions where a structural variant might

exist by identifying aberrant features of read mappings. For example, copy number alterations

(deletions or duplications) can be detected by abnormal coverage, which is actually an arti-

fact of the reference having the wrong number of copies for the sample [1]. Other methods

identify structural variants by finding regions where many reads align poorly. Sometimes it is

possible to re-map the parts of the reads that are poorly aligned to identify deletions and in-

versions [110, 169]. Alternatively, the poorly-mapped reads can be used for local assembly: de

novo assembly of a subset of reads based on their mapped location [161, 164, 174].

In contrast to NGS methods, long reads excel at detecting structural variants but strug-

gle with point variants. The long read length often makes it possible to map reads containing

structural variants. Thus, the basic strategy of counting mismatches in reads that is used to de-

tect point variants in NGS can be used to detect structural variants [87,182]. However, the high

error rate makes it challenging to distinguish point variants from sequencing errors. A notable

counterexample is PacBio HiFi reads, which are sufficiently high quality to detect small vari-

ants accurately [214]. It is also possible to obtain good point variant calling from ONT reads by

leveraging haplotype phase [184].

14

2.5 Human population genomics projects

Many large-scale research efforts have undertaken the task of cataloguing the extant

genomic variation across the human population using genome inference methods like the ones

described above. The International HapMap Project was the first major example. It used largely

array-based technologies in four geographically-diverse populations [42, 89], later expanded to

11 [43], with a total of 1,184 samples. The 1000 Genomes Project (1000GP) followed using

low-coverage NGS in combination with other data types, which held the promise of discov-

ering novel variants in addition to genotypes [37, 38]. The 1000GP eventually sampled 2,504

individuals across 26 populations [39].

No subsequent effort has matched the impact of the 1000GP, but further studies have

expanded and refined the picture of global variation. This was done in part by using higher-

coverage sequencing to ascertain rare variants [203] (including on the samples from the 1000GP

[27]). Later projects also greatly expanded the number of populations included in global panels

[18, 129, 152]. Finally, a growing number of regional and national sequencing projects have

assayed variation intensively in specific geographic regions, including in Sweden [6], Mongolia

[14], China [34], the Netherlands [21], Asia [41], Iceland [81], Africa [82,186], Denmark [132],

Japan [144], the United Kingdom [45], and others.

The vast majority of these projects have assayed variation using NGS data. Accord-

ingly, they have made comparatively little progress at cataloguing structural variation relative

to point variation [199]. However, studies are beginning to appear that use newer technolo-

gies. Several of these applied intensive sequencing efforts and de novo assembly methods to a

15

small number of sample genomes [12, 31, 57] (or even just one [183, 216]) to avoid reference

bias. Only two population-scale long read sequencing projects have been conducted so far: one

in Iceland with 3,622 samples [19] and another in China with 405 samples [216]. One further

study used optical mapping, which does not produce sequence-resolved variant calls, to identify

structural variation in 156 samples from across the 26 populations from the 1000GP [113].

Between these studies, the landscape of human population variation has been very

well characterized. However, challenges remain that make it difficult to combine these data

resources. Differences in assays and processing sometimes make the data incomparable. Fur-

thermore, not all of the data are publicly available.

2.6 Pangenome graphs

As discussed in Chapter 1, most pangenomics methods substitute conventional ref-

erence genomes with sequence graph references. Full haplotype sequences can be formed by

concatenating the DNA labels of the nodes along a walk through the graph. The sequence

graphs used in pangenomics are very similar to those used in genome assembly. The most sig-

nificant difference is that, unlike assembly graphs, the adjacencies in pangenome graphs are

blunt, meaning that edges indicate direct adjacency between sequences with no overlap.

2.6.1 Constructing pangenome graphs

Most pangenome graphs are derived from either haplotype assemblies or population

variant call data sets. With assemblies, the major challenge is identifying which regions of the

16

assemblies are homologous so that they can be merged in the final graph. Tools and techniques

for interspecific whole genome alignment have be repurposed for this task [11,120,139]. Variant

call data sets are generally more straightforward since the reference genome serves as a proxy

for homology. Non-reference alleles can simply be added as diverging paths from the reference

sequence [74,167]. Counterbalancing the simplicity of this process, variant call-derived graphs

carry greater risk of reference bias, and they may not be able to represent complex variation.

2.6.2 Alignment to sequence graphs

Classic algorithms like Smith-Waterman-Gotoh [194] do not directly apply to se-

quence graphs. However, the recurrence relations that drive their scoring and traceback routines

can be extended to allow the alignment of sequences to acyclic sequence graphs, as popular-

ized in partial order alignment (POA) [111]. Further generalizations support the alignment of

sequences graphs to sequence graphs [78] and sequences to cyclic graphs [8, 141, 145]. It is

notable that many of these findings have been independently rediscovered or refined by con-

temporary researchers [9, 94, 172]. Some earlier algorithms require restricted scoring functions

to achieve efficiency [172], but recent contributions have used less restricted functions that pro-

duce more biologically meaningful alignments [94].

The graph alignment algorithms used in practice have become faster over time. POA

had equivalent asymptotic run time to linear alignment but required acyclic graphs [111]. Later

optimizations simply ran slower on general graphs [100]. Algorithms are now known with

equivalent asymptotic run time even on general graphs [94]. In addition, researchers have de-

veloped modified algorithms that run quickly in the practical context of real-world computer

17

architectures [91, 93, 171].

2.6.3 Mapping to sequence graphs

One of the most significant drivers of recent progress in pangenomics has been the de-

velopment of efficient mapping tools for pangenome graphs. Although these mapping tools all

target sequence graphs, there are significant differences in the types of graphs that they handle.

Several tools apply only to acyclic variation graphs formed by adding variants to a linear refer-

ence. Examples include GENOMEMAPPER [180], Seven Bridges’ GRAPH GENOME ALIGNER

[167], HISAT2 [103], and V-MAP [208]. In contrast, VG [74] and GRAPHALIGNER [173] ap-

pear to be the only tools with open ambitions of mapping to arbitrary variation graphs, including

complex local and global topologies.

The majority of these tools emphasize mapping NGS data. GRAPHALIGNER and V-

MAP are the only graph mapping tools designed long read sequencing data. While V-MAP

also supports NGS reads, GRAPHALIGNER’s seeding strategy limits it to long reads.

For indexing, most graph mapping tools have opted for some variation of a k-mer

table. GRAPHALIGNER, GENOMEMAPPER, Seven Bridges’ mapper, and V-MAP all use this

strategy. The remaining mappers use succinct text indexes analogous to the FM-index. VG-

MAP uses the GCSA2 [189] and a longest-common-prefix array, which enable very specific

queries at the expense of high memory utilization. HISAT2 uses a modified GCSA [192] that

also encodes the graph structure itself. This helps give HISAT2 an impressively low memory

footprint at the expense of a somewhat more limited set of queries.

Most graph mappers also employ graph-based alignment algorithms. The exceptions

18

are GENOMEMAPPER, which aligns to all paths out from a seed, and HISAT2. The HISAT2

alignment algorithm relies on a complex set of heuristics that depend heavily on its exact match

index. VG and V-MAP both employ some version of partial order alignment. Seven Bridges

first searches for a near-exact match using an exponential depth-first search, applying partial

order alignment if this fails. GRAPHALIGNER is the only mapper to incorporate the most recent

research into cyclic graph alignment algorithms.

2.7 Transcriptomics

Transcriptome profiling with RNA-seq is one of the most common uses of NGS tech-

nology [140]. RNA-seq protocols first isolate RNA molecules and then reverse-transcribe them

into cDNA molecules, which can be sequenced. Whereas genomic DNA sequencing protocols

sample reads more-or-less uniformly across the genome, RNA-seq samples a genomic element

proportionately to its transcript expression, which varies greatly from gene to gene. Thus, RNA-

seq is a much more quantitative assay. This introduces a number of bioinformatic challenges

that are tackled by different tools.

2.7.1 Splicing-aware read mapping

In eukaryotes, intronic sequences are spliced out of mRNA before it is translated into

protein. Therefore, the correct mapping for a corresponding RNA-seq read should align to

the elements on both sides of the splice junction. Classic sequence alignment algorithms are

not well-suited to discover this kind of alignment. Their optimization functions would score

19

the splicing event as a long deletion, which would be strongly penalized. Instead, specialized

mapping tools are required for RNA-seq data [54, 102, 104].

Several sources of information can be used to restrain the search space of alignments

to make splicing-aware mapping practical. First, splice junctions occur only at specific, well-

defined sequence motifs [25]. Second, intron lengths tend to be within a certain range of val-

ues [77]. Third, existing gene model annotations identify known splice junctions [54], and

some read mapping tools can aggregate information across reads to identify unannotated splice

junctions as well [104]. Most importantly, splice junctions are only plausible if there is a high-

scoring alignment of the read sequence bridging them.

2.7.2 Expression quantification

The number of RNA-seq reads assigned to a transcript is a quantitative measure-

ment of its expression. In order to make this measurement comparable across transcripts, it

is also necessary to normalize the read counts by the length of the transcript [157, 211]. Es-

timating these normalized expression values can be formulated as mixture model and fit us-

ing the expectation-maximization (EM) algorithm [115]. Moreover, the EM algorithm also

gracefully handles read mapping uncertainty. Some widely-used methods skip read mapping

altogether and integrate an alignment-free assignment of reads to transcripts into the EM al-

gorithm [23, 157]. This dramatically reduces the pipeline’s computational requirements at the

expense of some information loss.

20

2.7.3 Differential expression

The goal of many RNA-seq experiments is to identify differences in expression across

different conditions. These conditions can be experimental perturbations or uncontrolled bio-

logical variables (such as tissues). Expression quantification is typically insufficient to identify

differential expression on its own. Instead, point estimates of expression must be analyzed in

statistical models that take into account technical and biological variability. A variety of statis-

tical methodologies have been applied to this problem [109, 127, 176, 202].

21

Part II

Pangenomic analysis of the

transcriptome

22

Chapter 3

A pipeline for pantranscriptome analysis

3.1 Preamble

What follows is the majority of the text of my preprint, ”Haplotype-aware pantran-

scriptome analyses using spliced pangenome graphs”, for which I share first-authorship with

Jonas Sibbesen [187]. The paper details three components of a pantranscriptomic pipeline.

The first component builds spliced pangenome graphs, the second component aligns RNA-seq

data to these graphs, and the final component infer haplotype-specific isoform analysis from

the mapping results. My primary contributions were to design and implement the mapping al-

gorithm. In addition, I performed the genomic imprinting experiments, implemented the read

simulation model, and contributed extensively to the writing and editing. The software devel-

opment featured minor contributions from our co-authors Adam M. Novak, Xian Chang, Jouni

Sirén, and Erik Garrison.

23

3.2 Introduction

Transcriptome profiling by RNA-seq has matured into a standard and essential tool

for investigating cellular state. Bioinformatics workflows for processing RNA-seq data vary,

but they generally begin by comparing sequencing reads to the sequence of a reference genome

or reference transcriptome [23,54,114,157]. This is an expedient method that makes it practical

to analyze the large volume of data produced by modern high-throughput sequencing.

Reference-based methods also have costs. When a sample’s genome differs from the

reference, bioinformatics tools must account for the resulting mismatches between the sequenc-

ing data and the reference. This results in reduced ability to correctly identify reads with their

transcript-of-origin, with larger genomic variation leading to a greater reduction in accuracy.

This problem is known as reference bias [198].

Computational pangenomics has emerged as a powerful methodology for mitigat-

ing reference bias. Pangenomics approaches lean heavily on abundant, publicly-available data

about common genomic variation for certain species (notably including humans). These meth-

ods incorporate population variation into the reference itself, usually in the form of a sequence

graph [40, 63]. Mapping tools for pangenomic references have demonstrated reduced reference

bias when mapping DNA reads [33, 74, 167]. This in turn facilitates downstream tasks that are

frustrated by mapping biases, such as structural variant calling [86, 188].

The sequence graph formalism used in pangenomics has an additional attractive fea-

ture for RNA-seq data: it can represent splice junctions with little modification. Without this

benefit, RNA-seq mappers for conventional references must make use of sometimes elaborate

24

algorithmic heuristics to align over known splice junctions [54, 215]. Alternatively, they can

map to only known isoforms, but this technique has difficulty estimating mapping uncertainty

due to the re-use of exons across isoforms [107]. There is also evidence that population in-

formation can reduce reference bias problems that are particular to RNA-seq data. Accounting

for population variation at splice-site motifs has been shown to aid in identifying novel splice

sites [197].

The current methodological landscape in pangenomics is ripe to be extended to pantran-

scriptomics: using populations of reference transcriptomes to inform transcriptomic analyses.

There is some precedent in a few existing transcriptomic methods that have used sequence

graphs. AERON [170] uses splicing graphs and GRAPHALIGNER [173] to identify gene fu-

sions. ASGAL [53] uses splicing graphs to identify novel splicing events. Finally, the pange-

nomic aligner HISAT2 [103] has its origins in the RNA-seq aligner HISAT [102], and it retains

many of HISAT’s features for RNA-seq data. The performance of HISAT2 for pantranscrip-

tomic mapping has not yet been characterized in published literature.

One transcriptomic analysis that is particularly prone to reference bias is allele-specific

expression (ASE). ASE seeks to identify differences in gene expression between the two copies

of a gene in a diploid organism. These differences are indicative of various biological pro-

cesses, including cis-acting transcriptional regulation, nonsense-mediated decay, and genomic

imprinting [28, 220]. The differences are identified by measuring the ratio between RNA-seq

reads containing each allele of a heterozygous variant. However, the reads containing the non-

reference allele are systematically less mappable because of reference bias, which can lead to

both degraded and illusory signals of ASE [52]. Several approaches have been developed to

25

deal with reference bias for ASE detection. Some methods filter out biased sites [209]. Others

can mitigate bias at the read mapping stage, but require variant calls, often with phasing, for

the individual being analyzed [137, 166, 178]. The variant information is either incorporated

into the mapping algorithm to reduce reference bias or used to create a sample-specific diploid

reference to map against. PHASER phases called genotypes using read-backed and population-

based phasing to produce estimates of haplotype-specific gene expression [29].

Pantranscriptomic approaches using existing haplotype panels for inferring haplotype-

specific expressions have also been developed. ALTHAPALIGNR maps reads to the linear ref-

erence genome and seven alternative HLA haplotypes to infer haplotype-specific transcript ex-

pression in the HLA region [112]. HLAPERS first aligns reads against all known HLA hap-

lotypes to estimate the most likely haplotypes and then infers haplotype-specific gene expres-

sion [2]. However, both of these pantransciptomic approaches are limited to smaller genomic

regions.

In this work, we present a novel bioinformatics toolchain for whole genome pantran-

scriptomic analysis, which consists of additions to the vg toolkit and a new standalone tool,

RPVG. First, the VG RNA tool can combine genomic variation data and transcript annotations

to construct a spliced pangenome graph. Next, VG MPMAP can align RNA-seq reads to these

graphs with high accuracy. Finally, RPVG can use the alignments produced by VG MPMAP to

quantify haplotype-specific transcript expression. Moreover, the information about population

variation that is embedded in the pantranscriptome reference makes it possible to do so without

first characterizing the sample genome, and without restricting focus to SNVs.

26

3.3 Results

Transcript annotations

Pangenome graph

Spliced pangenome graph

RNA-seq reads

Multipath graph alignments

A

C

A

C

A

C

G

T

G

T

G

T

A G

Haplotype-speci�c transcripts

GC

C T

A G

GC

C T

Expression estimates

a

b

c

Figure 3.1: Diagram of haplotype-aware transcriptome analysis pipeline
The three major steps in the pipeline. a VG RNA adds splice junctions derived from a transcript
annotation to a pangenome graph to create a spliced pangenome graph. It simultaneously creates
a pantranscriptome composed of a set of haplotype-specific transcripts (HSTs) using a panel of
known haplotypes (not shown). b VG MPMAP aligns RNA-seq reads to subgraphs of the spliced
pangenome graph represented as a multipath alignment. c RPVG uses the alignments from
MPMAP to estimate the expression of the HSTs in the pantranscriptome.

3.3.1 Haplotype-aware transcriptome analysis pipeline

In short, our pipeline works as follows (see Methods for a more detailed descrip-

tion). First, we construct a spliced pangenome graph using VG RNA, a method developed as

27

part of the vg toolkit [74]. VG RNA adds splice junctions from a transcript annotation into a

pangenome graph as edges and then labels the paths in the graph that correspond to transcripts

(Figure 3.1a). Simultaneously, VG RNA constructs a set of haplotype-specific transcripts (HSTs)

from the transcript annotation and a set of known haplotypes by projecting the transcript paths

onto each haplotype. VG RNA uses the Graph Burrows-Wheeler Transform (GBWT) to effi-

ciently store the HST paths allowing the pipeline to scale to a pantranscriptome with millions

of transcript paths [190]. Next, RNA-seq reads are mapped to the spliced pangenome graph

using VG MPMAP, a new splice-aware graph mapper in the vg toolkit that can align across

both annotated and unannotated splice junctions (Figure 3.1b). VG MPMAP produces multipath

alignments that capture the local uncertainty of an alignment to different paths in the graph

(Supplementary Figure A.1). Lastly, the expression of the HSTs are inferred from the multipath

alignments using RPVG (Figure 3.1c). RPVG uses a nested inference scheme that first samples

the most probable underlying haplotype combinations (e.g. diplotypes) and then infers the HST

expression using expectation maximization conditioned on the sampled haplotypes.

3.3.2 RNA-seq mapping benchmark

We compared VG MPMAP against three other mappers: STAR [54], HISAT2 [103]

and VG MAP [74]. STAR and HISAT2 can both use splicing information to guide mapping, but

of the two only HISAT2 is able to also utilize genomic variants. VG MAP is not a splice-aware

mapper, but it is still able to map to spliced pangenome graphs, which contain both splicing and

genomic variation edges.

We used two different references for the comparison: the standard reference genome

28

with added splice junctions (spliced reference) and a spliced pangenome graph containing both

splice junctions and variants (spliced pangenome graph). For STAR only the spliced reference

was used.

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Real reads

0 20 40 60
0.525

0.550

0.575

0.600

0.625

Mapping quality threshold

Is
o−

Se
q

ex
on

 c
ov

er
ag

e
co

rre
la

tio
n

Method
●

●

●

●

HISAT2
STAR
vg map
vg mpmap

Graph
● Spliced pangeome graph

Spliced reference

●

●●

●

●

●

●

●

●

60

1
0

60

1
0

255

1

0

60

1

0

60

1

0

60

1

0

60

1

0

Simulated reads

0.94 0.96 0.98 1.00

0.99

0.999

Mapping sensitivity

M
ap

pi
ng

 a
cc

ur
ac

y

Method
●

●

●

●

HISAT2
STAR
vg map
vg mpmap

Graph
● Spliced pangenome graph

Spliced reference

●●●

0.500

0.501

0.500

0.488
0.495

0.496
0.497

Simulated reads

Spliced pan−
genom

e graph
Spliced reference

<−15 −10 −5 SNV 5 10 >15

0.3

0.4

0.5

0.6

0.7

0.3

0.4

0.5

0.6

0.7

Allele length

M
ea

n
fra

ct
io

n
of

 re
ad

s
on

 a
lt

al
le

le

Method
●

●

●

●

HISAT2
STAR
vg map
vg mpmap

Real reads

Spliced
reference

Spliced pan−
genome graph

0.80

0.85

0.90

0.95

1.00

M
ap

pi
ng

 ra
te

Method
HISAT2
STAR
vg map
vg mpmap

Filter
Unfiltered
MapQ > 0

a b

c d Real reads

Spliced
reference

Spliced pan−
genome graph

0

1000

2000

3000

4000

R
ea

d
pa

irs
 m

ap
pe

d
pe

r s
ec

on
d

Method
HISAT2
STAR
vg map
vg mpmap

Real reads

Spliced
reference

Spliced pan−
genome graph

0

10

20

30

40

50

M
ax

im
um

 m
em

or
y

us
ag

e
(G

iB
)

Method
HISAT2
STAR
vg map
vg mpmap

e f

Figure 3.2: Mapping benchmark using RNA-seq data from NA12878
RNA-seq mapping results comparing VG MPMAP and three other methods using simulated
and real Illumina data (“vg sim (ENC, uniform)” and “ENCSR000AED” in Supplementary
Table A.4 and A.3, respectively). Solid and dashed lines show the results using a spliced
pangenome graph and spliced reference, respectively. a Mapping accuracy and sensitivity for
different mapping quality thresholds (colored numbers) using simulated data. An alignment is
considered correct if it covers 90% of the true reference sequence alignment. b Mean fraction of
mapped reads supporting the non-reference allele for variants of different lengths in simulated
data. Negative lengths correspond to deletions and positive to insertions. The colored numbers
are the mean fraction for SNVs. c Mapping rate using real data. The shaded bars show the
mapping rate for all alignments and the solid bars for only alignments with a mapping quality
above 0. d Pearson correlation between Illumina and Iso-Seq exon coverage using real data as a
function of mapping quality threshold. Exons are defined by the Iso-Seq alignments. e Number
of read pairs mapped per second per thread using real data. The mapping times were estimated
using 16 threads on a AWS m5.4xlarge instance. f Maximum memory usage for mapping in
gigabytes using real data.

29

3.3.2.1 Simulated sequencing data

Paired-end reads were simulated from HSTs derived from the GENCODE transcript

annotation set [66] and the NA12878 haplotypes from the 1000 Genomes Project (1000GP)

[39]. VG SIM was used to simulate the reads using reads from the ENCODE project (ENCSR000AED

replicate 1) to parameterize the noise model [44, 49]. Fragment length distribution parameters

used in the simulation were estimated from the same reads using RSEM [114]. The CEU pop-

ulation was excluded from the spliced pangenome graph as NA12878 is from that population,

and we wanted to estimate performance for a new individual, who may not be as closely-related

to the 1000GP populations. We simulated the HSTs with uniform expression rather than trying

to match a previous expression profile, which could bias expression towards easily-mappable

transcripts.

Using the set of simulated reads we first compared the overall mapping performance of each

method. Figure 3.2a shows the mapping sensitivity and accuracy (log-scale) for different map-

ping quality thresholds. An alignment was considered correct if it covered 90% of the true

reference sequence alignment. The graph alignments from VG MAP and VG MPMAP were pro-

jected to the reference sequence for this comparison. As can be seen in Figure 3.2a, VG MPMAP

achieves both a high sensitivity and accuracy, while the other methods either had a lower accu-

racy or sensitivity. The results also show that the spliced pangenome graph generally improves

mapping performance.

To evaluate the method’s ability to align over unannotated splice junctions, we re-

30

peated the experiment on a spliced pangenome graph (spliced reference for STAR) created

from an annotation set with 20% of the transcripts missing (Supplementary Figure A.2). This

number was based on recent estimates of the fraction of novel transcripts in a sample using

long reads [217]. As expected, the performance of VG MAP decreases dramatically since it can

only align over splice junctions represented in the graph. VG MPMAP’s performance decreased

markedly more on the downsampled annotation compared to STAR and HISAT2 using the

90% threshold (Supplementary Figure A.2a). This is likely due to its more conservative ap-

proach to finding novel splice-junctions that require a high-scoring alignment in order for a new

junction to be statistically significant. Indeed, when using a threshold of 70%, the mapping

accuracy VG MPMAP increases to a value higher than STAR and HISAT2 even when they use

the complete transcript set (Supplementary Figure A.2b).

Next, we looked at whether using a variant-aware approach reduces reference bias.

Figure 3.2b shows the mean fraction of reads mapped to the alternative allele for different allele

lengths. Negative values correspond to deletions and positive values to insertions. When using

the spliced reference genome, all methods exhibit a bias towards the reference allele, with VG

MAP and MPMAP showing less bias than the other methods. Using the spliced pangenome graph

results in substantially reduced bias for all methods.

The mapping results were corroborated by an alternate correctness criterion based on

aligning within 100 bases of the correct position on the paths in the graph (Supplementary Fig-

ure A.3).

The set of simulated reads used for the mapping evaluation was not used to optimize the de-

31

velopment and parameters of VG MAP and MPMAP. Supplementary Figure A.4a shows the

results on the dataset that was used for optimization, which used RNA-seq data from Tilgner et

al. [204] to parameterize the read simulation. The sensitivity and accuracy estimates for MPMAP

are quite similar between the two datasets indicating that MPMAP is not overfit to the training

data. The performance of all the other methods was generally worse on the training data.

3.3.2.2 Real sequencing data

We used the same read set from the ENCODE project that was used to parametrize

the simulations to benchmark the methods on real data. We first looked at the fraction of aligned

reads for each method (Figure 3.2c). VG MPMAP was able to map more reads overall than any

of the other methods. HISAT2 achieved a higher mapping rate for mappings with mapping

quality greater than 0, but seemingly at the cost of low specificity (Figure 3.2a). Using the

spliced pangenome graph did not have a notable influence on the mapping rates.

Ground-truth alignments are not available for real data, so we use a proxy based on

Pacific Biosciences (PacBio) Iso-Seq read mappings instead. Specifically, we compare to Iso-

Seq read alignments generated by the ENCODE project (ENCSR706ANY) from the same cell

line as the Illumina reads. Since the cell line is the same, we expect the transcript expression to

be similar. Moreover, long reads can generally be mapped more confidently than short reads.

Thus, higher correlation in coverage between short read mappings and the Iso-Seq mappings

should be indicative of more accurate short read mappings in the aggregate. Figure 3.2d shows

the estimated Pearson correlation in the coverage of each exon as a function of mapping quality

threshold. As can be seen, both VG MAP and MPMAP achieves higher correlation than STAR

32

and HISAT2, with the spliced pangenome graph resulting in even higher correlation for both.

The graph alignments from VG MAP and MPMAP were projected to the reference genome for

this analysis.

Finally, we compared the methods’ mapping speed and memory usage. Figure 3.2e

shows the number of read pairs mapped per second per thread. Conversion from SAM to BAM

was included in the HISAT2 time estimate to be more comparable to the output type of the

other methods. VG MPMAP’s increase in accuracy does not come for free; it is between 3.6 and

5.2 times slower than HISAT2, depending on the graph. However, it is 9.4 times faster than

VG MAP on the spliced pangenome graph. VG MPMAP uses slightly more memory than STAR

(Figure 3.2f).

We also compared the mapping performance of the different methods on the real RNA-seq

data from Tilgner et al. [204] and CHM13 RNA-seq data from the T2T consortium (Supple-

mentary Figure A.4b,c and A.5). Similar overall tendencies are observed using these datasets.

It is important to mention that the CHM13 data was used during the development of VG MPMAP,

and the other set was used to optimize the parameters of VG MAP and VG MPMAP.

3.3.3 Haplotype-specific transcript quantification

We compared RPVG to three other transcript quantification methods: KALLISTO [23],

SALMON [157] and RSEM [114]. We stress that none of these methods were developed to work

on pantranscriptomes with millions of HSTs. However, they serve as a point of reference for

what accuracy is achievable without new methods development. The simulated data was gener-

33

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

10

1

0.1

10

1

0.1

10

1

0.1

Real reads

1e+03 1e+04 1e+05 1e+06

1e+04

3e+04

1e+05

Number of expressed non−NA12878 transcripts

N
um

be
r o

f e
xp

re
ss

ed
 N

A1
28

78
 tr

an
sc

rip
ts

Method
●

●

●

●

Kallisto
Salmon
RSEM
rpvg

Pantranscriptome
● Europe (excl. CEU)

Whole (excl. CEU)
Whole

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

1

0.1

10

1

0.1

10

1

0.1

Simulated reads

0.25 0.50 0.75 1.00

0.25

0.50

0.75

Transcript expression precision

Tr
an

sc
rip

t e
xp

re
ss

io
n

se
ns

iti
vi

ty

Method
●

●

●

●

Kallisto
Salmon
RSEM
rpvg

Pantranscriptome
● Europe (excl. CEU)

Whole (excl. CEU)
Whole

a b

Simulated reads Real reads

Europe
(excl. CEU)

Whole
(excl. CEU)

Whole Europe
(excl. CEU)

Whole
(excl. CEU)

Whole

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

TP
M

 o
n

NA
12

87
8

ha
pl

ot
yp

es

Method
Kallisto
Salmon
RSEM
rpvg

c Simulated reads

Sample−specific
(NA12878)

Europe
(excl. CEU)

Whole
(excl. CEU)

Whole

0.00

0.05

0.10

0.15

0.20

M
ea

n
re

la
tiv

e
ex

pr
es

si
on

 d
iff

er
en

ce

Method
Kallisto
Salmon
RSEM
rpvg

Transcripts
All
NA12878

d

Figure 3.3: Haplotype-specific transcript quantification benchmark using RNA-seq data
from NA12878
Haplotype-specific transcript (HST) quantification results comparing RPVG against three
other methods using simulated and real Illumina data (“vg sim (ENC, RSEM)” and
“ENCSR000AED” in Supplementary Table A.4 and A.3, respectively). Solid lines with cir-
cles are results using a pantranscriptome generated from 1000 Genomes Project (1000GP) Eu-
ropean haplotypes excluding the CEU population. Dashed lines with triangles and squares
are results using a pantranscriptome generated from all 1000GP haplotypes without and with
the CEU population, respectively. a Sensitivity and precision of whether a transcript is cor-
rectly assigned nonzero expression for different expression value thresholds (colored numbers
for “Whole (excl. CEU)” pantranscriptome) using simulated data. Expression is measured in
transcripts per million (TPM). b Number of expressed transcripts from NA12878 haplotypes
shown against the number from non-NA12878 haplotypes for different expression value thresh-
olds (colored numbers) using real data. c Fraction of transcript expression (in TPM) assigned to
NA12878 haplotypes for different pantranscriptomes using simulated (left) and real (right) data.
d Mean absolute relative difference (MARD) between simulated and estimated expression (in
TPM) for different pantranscriptomes using simulated data. MARD was calculated using either
all HSTs in the pantranscriptome (solid bars) or using only the NA12878 HSTs (shaded bars).
“Sample-specific (NA12878)” is a personal transcriptome generated from 1000GP NA12878
haplotypes.

34

ated by VG SIM, largely as described for the mapping benchmark. The only difference was that,

rather than simulating transcripts with uniform expression, we simulated according to an ex-

pression profile that was estimated by RSEM using the same ENCODE reads. Three different

pantranscriptomes were generated for the evaluation using different sets of 1000GP haplotypes

(Supplementary Table A.2): 1) all European haplotypes excluding the CEU population (Europe

(excl. CEU)) 2) all haplotypes excluding the CEU population (Whole (excl. CEU)) and 3) all

haplotypes (Whole). The CEU population was excluded for the same reason as in the map-

ping benchmark: because NA12878 is part of this population, and we wanted to evaluate the

realistic setting in which a sample is not as well represented by the haplotype panel. In addi-

tion, we created a sample-specific transcriptome consisting of NA12878 HSTs (Sample-specific

(NA12878)). This transcriptome corresponds to the ideal case where a sample’s haplotypes are

known beforehand.

We first looked at the method’s ability to accurately predict whether an HST was correctly

expressed or not. Figure 3.3a shows the sensitivity and precision of whether a transcript is cor-

rectly expressed or not using simulated data. The results were stratified by different expression

thresholds up to a value of 10 TPM (transcripts per million). Note that we were not able to

run RSEM on the two largest pan-transcriptomes used in the figure. RPVG exhibits a mucher

higher precision and sensitivity than the other tools for all pantranscriptomes. Over 97.4% of

the HSTs with an expression value of at least 1 TPM are correctly predicted to be expressed by

RPVG using the “Whole (excl. CEU)” pantranscriptome. Importantly, only a minor difference

is observed between the pantranscriptomes without the CEU population (excl. CEU) and the

35

whole pantranscriptome (Whole), which contains NA12878. This could be explained by the

fact that less than 2% of HSTs are on average unique to a specific sample when compared to all

samples in other populations using the 1000GP data (Supplementary Figure A.6). This suggests

that haplotype panels like the 1000GP are a good alternative when a sample’s haplotypes are

not available, although there are always limits to panel diversity, and some samples will be less

well-represented by a 1000GP pantranscriptome.

We also evaluated the accuracy of the HST expression estimation using real sequenc-

ing data (Figure 3.3b). Since we do not know which transcripts are expressed in real data, we

focus instead on the haplotype estimation. Sample NA12878’s haplotypes are known to a rea-

sonably high degree of certainty. Thus, we can indirectly measure accuracy by asking whether

the HSTs that are estimated to be expressed are in fact from NA12878. Similar to the simulated

data, Figure 3.3b shows that RPVG predicts markedly fewer HSTs from non-NA12878 haplo-

types than both KALLISTO and SALMON. Using the “Whole (excl. CEU)” pantranscriptome,

RPVG predicted 2,836 HSTs from non-NA12878 haplotypes to have an expression value of at

least 1 TPM, while SALMON and KALLISTO predicted 25,790 and 26,779, respectively.

Next, we compared the fraction of transcript expression (in TPM) that was attributed

to NA12878 haplotypes. This is shown in Figure 3.3c for both simulated (left bars) and real

(right bars) data. We see that RPVG attributes more than 98.9% and 93.1% of the expression to

NA12878 haplotypes when using simulated and real data, respectively. Furthermore, the figure

shows that RPVG’s prediction accuracy only decreases slightly when the size of the pantran-

scriptome increases from 2.5M HSTs in “Europe (excl. CEU)” to 11.6M in “Whole (excl.

CEU)”.

36

We compared how well the different methods could predict the correct expression value. Fig-

ure 3.3d shows the mean absolute relative difference (MARD) between the expression values

of the simulated reads and the estimated values. The solid bars are MARD values when us-

ing all HSTs in the pantranscriptomes, and the shaded bars are when comparing the NA12878

HSTs only. Note that these bars are the same for the sample-specific set, which consists of

only NA12878’s HSTs. On the sample-specific set, RPVG performs comparably to the other

methods. However, as the size of the pantranscriptome grows, the increase in MARD on the

NA12878 transcript set is considerably less for RPVG relative to the other methods. When

looking at the whole transcript set in each pantranscriptome (solid bars), RPVG has the lowest

MARD. The much lower values compared to the NA12878 transcript set can be explained by

the large number of unexpressed HSTs in the full pantranscriptomes.

We also compared the expression values using Spearman correlation (Supplementary

Figure A.7). This metric supported overall similar conclusions, albeit with KALLISTO and

RSEM performing comparably to RPVG when using the pantranscriptomes but restricting fo-

cus to NA12878’s haplotypes. This suggests that KALLISTO and RSEM accurately rank these

transcripts’ expression but do not accurately estimate the absolute quantity.

To show the advantage of the multipath alignment format when inferring HST expression we

repeated the evaluation using single-path alignments as input to RPVG (Supplementary Fig-

ure A.8). The single-path alignments were created by finding the best scoring path in each

multipath alignment. For all pantranscriptomes and datasets, RPVG gave the best results using

37

the multipath alignments.

Similarly to the mapping benchmark, we also evaluated RPVG on RNA-seq data from

the CHM13 cell line and NA12878 RNA-seq data from Tilgner et al. [204] (Supplementary Fig-

ure A.9 and A.10). Overall, similar conclusions can be drawn using these data. It is important

to mention that both datasets were used to optimize the parameters of RPVG.

3.3.4 Assaying isoform-specific genomic imprinting

a b

Figure 3.4: Exploratory demonstration of analyzing genomic imprinting using data from
GM12878 lymphoblastoid cell line
Results of the VG MPMAP-RPVG pipeline on RNA-seq data from a lymphoblastoid cell line
from the ENCODE Project, focusing on genes previously identified as imprinted in blood. a
The proportion of expression attributed to the higher-expressed allele of heterozygous variants
among the 20 most significantly imprinted genes from Zink’s, et al. study [220] compared to all
genes. The axes are scaled so that both histograms have the same area. b Isoform-level allele
specific expression in NAA60, which was previously identified as imprinted but not as having
isoform-dependent reversals in the polarity of imprinting [220]. Isoforms with expression less
than 0.25 transcripts per million (TPM) are not shown.

To demonstrate the utility of the VG MPMAP-RPVG pipeline, we performed an ex-

ploratory analysis of genomic imprinting in a human sample. Genomic imprinting is the phe-

nomenon in mammals in which some genes are expressed only from the copy inherited from a

specific parent. That is, either the maternal or paternal copy is silenced, regardless of the ge-

38

nomic sequence of that haplotype. This is accomplished through mitotically heritable epigenetic

modifications that are established during early development [206].

Several previous studies have studied imprinting genome-wide by quantifying ASE

in RNA-seq data. These studies have demonstrated that imprinting varies substantially across

tissues [13,16] and varies in intensity across genes, with many genes showing biased expression

away from one parent-of-origin copy but not complete silencing [13, 92, 220]. In addition,

a handful of genes have been identified in which the polarity of imprinting depends on the

isoform: some isoforms of the same gene are biased toward the paternal copy and others toward

the maternal copy [220].

The previous genome-wide studies have methodological limitations that diminish

their ability to detect isoform-level imprinting. Some have aggregated ASE across all isoforms

of the gene, which precludes isoform-level analysis a priori [13, 16, 92]. The largest study, by

Zink, et al. [220], performed all tests of imprinting on individual SNVs. This method can some-

times detect isoform-level differences if the isoforms have some unshared exons. However, in

shared exons, the ASE signal from the highest-expressed isoforms can drown out the signal of

lower-expressed isoforms. Depending on the configuration of exons in the isoforms, this can

make it very challenging to identify imprinting of opposite polarity within the same gene.

Figure 3.4 shows results from our exploratory demonstration of isoform-level imprint-

ing analysis using VG MPMAP and RPVG. We ran the entire pipeline using RNA-seq data from

a lymphoblastoid cell line derived from 1000 Genomes Project sample NA12889, which was

sequenced as part of the Geuvadis project [108]. As a confirmatory analysis, we first looked

for ASE in genes that have previously been identified as imprinted. In particular, we looked

39

at the 20 genes with the most significant p-values from Zink’s, et al. study [220]. To mirror

the methods used in this paper, we derived variant-specific ASE values by aggregating the ex-

pression across all HSTs that contain a given allele for a variant. Figure 3.4a shows that the

VG MPMAP-RPVG pipeline detects ASE at heterozygous variants in these imprinted genes at a

markedly higher rate than in background across all genes.

The VG MPMAP-RPVG pipeline is also capable of detecting isoform-dependent ge-

nomic imprinting. Figure 3.4b shows an illustrative example in the gene NAA60, which codes

for an enzyme that acetylates the N-terminus of proteins in the Golgi apparatus. The isoforms

show a complex pattern of imprinting polarity, which does not correlate strongly with exons

or start sites in any particular genomic region. Given the large differences in expression of

these isoforms, the SNV-based analysis would have had difficulty identifying imprinting in the

more lowly-expressed isoforms, and indeed this gene was reported as imprinted (in fact, it is

among the 20 most significantly genes referred to above) but not as having isoform-dependent

imprinting [220]. It should be emphasized that this exploratory analysis of a single sample,

while suggestive, is insufficient to conclusively demonstrate isoform-dependent imprinting in

NAA60. Doing so would require further biological replicates and more rigorous controls for

cis-regulation and cell line clonality [92].

3.4 Discussion

The pace of development in the field of eukaryotic pangenomics has surged in re-

cent years. Improvements in sequencing technology have made it practical to characterize the

40

genomes of increasingly many samples. As a result, pangenomes made from tens to hundreds

of reference-quality genome assemblies have been constructed for several agricultural organ-

isms [48,97,126], and similar efforts are underway for humans by the Human Pangenome Ref-

erence Consortium and others [57]. Simultaneously, the bioinformatics tools to do pangenomic

analyses have matured to the point of practicality for many applications [86,131,191]. Moving

forward, we anticipate that pangenomic methods will continue to expand to inform increasingly

many areas of genomics [79].

In this work, we have presented one step in this expansion: generalizing transcrip-

tomics into pantranscriptomics. Our novel bioinformatics pipeline provides a full stack of tools

for pantranscriptomic analysis. It can construct pantranscriptomes, map RNA-seq reads to these

pantranscriptomes, and quantify transcription with haplotype-resolution. The construction takes

advantage of efficient pangenome data structures, the mapping achieves a desirable balance of

accuracy and speed, and the quantification can infer haplotype-specific transcript expression

even when the sample’s haplotypes are not known beforehand.

Some downstream applications are already apparent. For one, the pipeline can be used

to study causes of haplotype-specific differential expression. We demonstrated its capabilities

on one such example: genomic imprinting. The demonstration showed suggestive evidence of

complex patterns of imprinting at the isoform level, which would have difficult or impossible

to detect with previous genome-wide methodologies. The pipeline could be similarly used to

study other sources of haplotype-specific expression, such as nonsense-mediated decay and cis-

regulation.

Another application is characterizing genotypes and haplotypes in coding regions

41

from RNA-seq data. This could give access to the exact transcript sequences in a sample’s

transcriptome. In both of these applications, this pipeline increases the information that is

available from RNA-seq data without paired genomic sequencing. This will enable low-cost

study designs and deeper reanalyses of existing data.

Of course, our pipeline also has limitations. We have developed it to have good per-

formance on pantranscriptomes constructed from phased variant calls. This is presently the

most available data resource for constructing pangenomes. However, as increasingly many

haplotype-resolved assemblies are produced, we predict that the emphasis in pangenomics will

shift to pangenome graphs constructed from whole genome alignments. Constructing these

graphs is currently an area of active research [96, 120]. Such graphs have more complicated

topologies, often involving complex cyclic motifs. Experience leads us to believe that pantran-

scriptomic tools will require further methods development to use these data resources effec-

tively.

Our pipeline is optimized for short-read RNA-seq data. The higher-error long-read

RNA-seq technologies developed more recently require specifically-tailored algorithms for ef-

ficient analysis [119,217]. Pantranscriptomic analyses of long-read RNA-seq data will likewise

require further development, although the pipeline described here could serve as a platform

for this development. Nevertheless, the cost-effectiveness of short-read sequencing virtually

ensures that it will remain an important part of the sequencing landscape into the near fu-

ture. Finally, our pipeline also relies on having a comprehensive pantranscriptome that con-

tains many of the sample’s haplotype-specific transcripts. The pantranscriptomes used in this

study (based on the 1000 Genome Project) provided good results in the three samples analyzed,

42

but this performance may not extend to samples from other populations. Here—and through-

out pangenomics—there is a compelling case to improve the completeness of data resources

through more diverse sampling.

3.5 Acknowledgements

Research reported in this chapter was supported by the National Human Genome Re-

search Institute of the National Institutes of Health under Award Numbers U01HG010961 and

R01HG010485. The content is solely the responsibility of the authors and does not necessarily

represent the official views of the National Institutes of Health. The work of JAS was sup-

ported by the Carlsberg Foundation. We thank the ENCODE Consortium, the Thomas Gingeras

Laboratory (Cold Spring Harbor Laboratory) and the Ali Mortazavi Laboratory (University of

California Irvine) for generating and sharing the ENCODE data used in this study. We would

also like to thank Megan Dennis (University of California Davis) for generating and providing

access to the CHM13 RNA-seq data on behalf of the T2T consortium. Finally, we would like

to thank Jean Monlong and Glenn Hickey for feedback on the manuscript, and everybody else

in the vg team.

3.6 Methods

3.6.1 Sequencing data, transcript annotations and variation databases

GENCODE v29 (primary assembly) was used as a transcript annotation set [66]. All

transcripts with either the mRNA start NF or mRNA end NF tag were removed in order to only

43

keep confirmed full-length transcripts. Furthermore, a transcript subset containing 80% of the

GENCODE transcripts was created by randomly removing 34,490 of the 172,449 transcripts

in the annotation. The fraction removed was based on recent estimates of the fraction of novel

transcripts in a sample using long reads [217].

Genomic variants on GRCh38 from the 1000 Genomes Project (1000GP) were down-

loaded from EBI (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

supporting/GRCh38_positions/) [39]. The variants were first normalized using BCFTOOLS

[117] and four different sets containing variants from differently-sized collections of sam-

ples were created (Supplementary Table A.1). Two of these sets were constructed so as to

not include variants unique to the CEU population. This was because we benchmarked the

pipeline on NA12878, who is from this population, and we wanted our evaluations to cover

one of the intended use-cases for the pipeline: sequencing a new sample from a population

that is not represented in the reference haplotype panel. For all of the variant sets except

the sample-specific set (where allele frequency was not relevant), the intronic and intergenic

variants were further filtered using BCFTOOLS, keeping only variants with an alternative al-

lele frequency of at least 0.002 or 0.001 depending on the set. This was done to decrease the

complexity of the graph in regions where fewer reads are expected to map. The GRCh38 (pri-

mary assembly) reference genome used throughout the study was downloaded from Ensembl

(ftp://ftp.ensembl.org/pub/release-94/fasta/homo_sapiens/dna/).

A list of all sequencing data used can be found in Supplementary Table A.3.

44

3.6.2 Spliced pangenome graph construction

We developed a method in the vg toolkit, VG RNA, for constructing spliced pangenome

graphs from a transcript annotation and an existing pangenome graph. VG RNA begins by iden-

tifying the path in the graph that corresponds to each exon in the annotation. This process is

facilitated by indexes in the vg toolkit that can efficiently query graph locations of positions on

the linear reference. These exon paths can start or end internally in a node rather than only at

boundaries between nodes, as with other paths in vg. Next, VG RNA divides nodes as necessary

to expose exon boundaries as node boundaries and then adds edges (splice-junctions) to the

graph connecting adjacent exons within each transcript. The transcript paths are then labeled in

the resulting spliced pangenome graph. Lastly, the spliced pangenome graph’s node ID space

is compacted and reordered in topological order to make graph compression more efficient [62].

In addition to the spliced pangenome graphs, VG RNA was also used to construct exon-only

splicing graphs. VG RNA creates these graphs by removing all nodes and edges from a spliced

pangenome graph that were not covered by a transcript path. Different combinations of tran-

script annotations (full and an 80% random subset) and variant sets (Supplementary Table A.1)

were used as input to create the graphs used in the mapping and expression inference evaluation.

3.6.3 Pantranscriptome construction

In addition to constructing spliced pangenome graphs, VG RNA can simultaneously

generate pantranscriptomes consisting of haplotype-specific transcripts (HSTs) created from

transcript and haplotype annotations. It creates pantranscriptomes by projecting the reference

45

transcript paths onto haplotypes paths that are either labeled in the graph or indexed using the

Graph Burrows-Wheeler transform (GBWT) [190]. The GBWT is a succinct data structure for

efficiently storing thousands of paths in a graph, such as haplotypes or transcripts. If nodes

are split during the spliced pangenome graph construction (see above), VG RNA first updates

the haplotypes in the input GBWT. Next, the flanking positions of the exon boundaries on

the reference chromosome path are located in the graph. These positions are used as anchors

for projecting exons between the reference and haplotype paths. Anchoring on the positions

adjacent to exon boundaries allows for genomic variation at the distal ends of exons.

Depending on whether the haplotype paths are labeled in the graph or stored in a

GBWT, the projection is performed differently. For haplotype paths that have been labeled in

the graph, we first locate all paths that contain both anchor nodes for each exon in a transcript.

Next, for each located exon anchor pair we then follow the haplotype path between the two

anchors to create the projected haplotype-specific (HS) exon path. HST paths are then created

by combining all HS exon paths that are projected to the same haplotype. Only complete tran-

scripts where all exons are successfully projected are kept. A projection will fail if there is

variation at the anchor position in the target haplotype. Finally, HST transcripts that are iden-

tical are collapsed, producing a set of unique HSTs for each reference transcript. Since the

number of pre-collapsed HSTs can be as large as the number of haplotypes, the algorithm is not

suitable for large haplotype sets. For these, the GBWT-based algorithm, described below, is a

better choice.

A broadly similar approach is used when the haplotype paths are stored in a GBWT.

However, it differs in how the projected exons paths are constructed and combined. To find

46

all possible haplotype paths between two exon anchors, we use a depth-first search (DFS). The

search is initialized at the start anchor and traverses all possible paths in the graph starting from

that anchor. Each explored exon path in the DFS (branch) is queried against the GBWT index

and is terminated if it is not a subpath of any haplotypes in the index. Furthermore, a branch

is also terminated if it is not possible to reach the end anchor node by any of the haplotypes

consistent with the exon path. This is determined by examining whether any of the haplotypes

containing the exon path also contain the end anchor node. The output from the search is a list

of unique projected HS exon paths and the set of haplotypes consistent with each of them. The

final HST paths are constructed one exon at a time by connecting HS exon paths that share at

least one haplotype for each transcript. Because all the HS exon paths are unique this procedure

will always result in a set of only unique HST paths and thus it is not necessary to collapse

identical paths. This attribute makes the approach using the GBWT scale well with the number

of haplotypes, as it can take advantage of the fact that haplotypes are often identical locally.

A list of all pantranscriptomes created for this study including the transcript annotations and

variant sets used as input can be seen in Supplementary Table A.2. The HSTs were written both

as nucleotide sequences in FASTA format and as paths to a GBWT. A bidirectional GBWT,

where each path is stored in both directions, was also created. RPVG uses this index to decrease

computation time when reads are not strand-specific. For each GBWT, a corresponding r-index

was further constructed. This index, based on the original r-index by Gagie et al., significantly

decreases the computation time it takes to query path IDs in the GBWT [67].

47

3.6.4 Read simulation model

Simulated reads were generated using VG SIM, a read simulator in the vg toolkit that

is designed primarily for next-generation sequencing (NGS) reads. Its model consists of three

components: a Markov model for base quality strings, a path frequency model, and a fragment

length model (when sampling paired-end reads).

The model for base quality strings is fit to replicate the base quality strings in a user-

provided FASTQ. A separate Markov transition distribution is fit for each base position in the

read. The state of each Markov distribution consists of two components: the Phred base quality

at that base and whether that base is an N. If a paired-end FASTQ is provided, VG SIM will

fit a separate model for each read end. In addition, the first states of each read in the pair are

modeled with a single joint distribution, which allows for some dependence between the quality

of both reads in the pair. The probabilities of the Markov transitions and the initial states are

estimated by their empirical frequency in the FASTQ.

VG SIM determines the base sequence of each read by following random walks through

the pangenome graph. These walks may optionally be restricted to specific paths through the

graph. Importantly for this study, the simulation can be restricted to the paths of transcripts

in a spliced pangenome graph. The sampling frequency of a transcript path is proportional to

the product of its length and its expression value measured in transcripts per million (TPM), as

determined by a user-provided expression profile. Once the path has been chosen, the starting

location of the read is selected uniformly at random along the transcript. The sequence of the

walk is then extracted, and sequencing errors are introduced according to the probability distri-

48

bution implied by the base quality string. A user-specified fraction of these errors are produced

as indel errors rather than substitution errors.

When simulating paired-end sequencing, the fragment length is modeled with a nor-

mal distribution. The user provides the mean and standard deviation for this distribution. Both

reads are sampled from a single walk through the graph with length equal to a sampled frag-

ment length. If the sampled fragment length is longer than the path it is being sampled from,

the fragment length is truncated to the path length. If the sampled fragment length is shorter

than the read length, the read is truncated to the fragment length.

3.6.5 Simulating RNA-seq reads from haplotype-specific transcripts

Reads were simulated from haplotype-specific transcript (HST) paths derived from

the haplotypes of NA12878 in the 1000 Genomes Project (1000GP) and the GENCODE tran-

script annotation. The corresponding spliced pangenome graph (including the paths) was cre-

ated using VG RNA. Identical HSTs were not collapsed, so that reads could be simulated from

each haplotype independently.

In total, we created four different simulated read sets (Supplementary Table A.4):

two sets each training with the SRR1153470 and ENCSR000AED read sets. For each training

data set, one set of reads was simulated with an expression profile derived from the training

data, and the other set was simulated with uniform expression across transcripts. The read

sets with uniform expression were used to evaluate mapping, whereas the sets with data-based

expression were used to evaluate expression inference. For the simulated read sets with data-

derived expression, the reads were first mapped using Bowtie2 [107] with default parameters

49

and then expression-quantified using RSEM [114], also with default parameters. To ensure

balanced expression between the two haplotypes for all transcripts, only transcripts that were

successfully projected to both haplotypes were given a positive expression. The fragment length

distribution mean and standard deviation estimated by RSEM was used to parameterize the

fragment length distribution in VG SIM. For all four read sets, we simulated 25M 101 base-pair

read pairs from each haplotype with an indel probability error of 0.001 and the base quality

distribution trained on 10M randomly sampled read-pairs of the training data. The read-pairs

were sampled using seqtk [116].

3.6.6 Mapping and multipath alignment with VG MPMAP

Like most read mappers, VG MPMAP’s mapping algorithm is designed using the

“seed-cluster-extend” paradigm. First, it locates exact matches “seeds” between the read and

the graph. Next, the seeds are “clustered”’ together to identify regions of the graph that the

read could align to. Finally, the seeds are “extended” into an alignment of the entire read. Be-

cause these operations occur in the context of a pangenome graph, they use several specialized

algorithms and indexes.

3.6.6.1 Seeding

VG MPMAP seeds alignments with maximal exact matches (MEMs) against the graph,

which it finds using a GCSA2 index [189]. MEMs are exact matches between an interval of the

read and a walk in the graph such that the match cannot be extended further in either direction

at that location in the graph. The MEMs are found using a two-stage algorithm, which has also

50

been described previously [74].

In the first stage, the algorithm finds super-maximal exact matches (SMEMs), which

are MEMs for which the read interval is not contained within the read interval of any other

MEM (Supplementary Algorithm 1). This algorithm also relies on a longest common prefix

(LCP) array, which allows navigation upward in the implicit suffix tree that the GCSA2 encodes.

The second stage of the algorithm finds the minimally-more-frequent MEMs of each SMEM,

subject to a minimum length (Supplementary Algorithm 3). These are the longest MEMs that

are shorter than the SMEM but have their read interval contained in the SMEM’s read interval.

This stage also relies on the GCSA2 index.

3.6.6.2 Clustering

The clustering algorithm in VG MPMAP is built around the distance index described

in [32]. In brief, this index can query the minimum distance between two positions in the

pangenome graph by expressing the distance as the sum of a small number of precomputed

distances. This is accomplished by taking advantage of the common topological features of

pangenome graphs, namely that they tend to contain long chains of bubble-like motifs that result

from genomic variation. These features are captured in the graph’s “snarl decomposition”, in

which a snarl is one of these bubble-like motifs [154].

The clustering algorithm begins by constructing a directed acyclic graph (DAG) in

which the nodes correspond to MEM seeds. The edges are added whenever 1) there is a path

connecting two seeds in the graph, and 2) the seeds are collinear along the read. Note that

the collinearity criterion guarantees acyclicity. We use the distance index to determine the

51

existence of a path that connects the seeds in the graph, and the edges are also labeled by the

distance. Edges that are much longer than the read length are not added; this avoids treating

distal elements on the same chromosome as part of the same cluster. In addition, we accelerate

this process using Algorithm 3 from [32], which partitions seeds into equivalence classes based

on the distance between them. The equivalence relation is the transitive closure of the relation

of being connected by a path of length less than d, which is a tunable parameter. By choosing

d correctly, we can ensure that all of the edges we would include occur between seeds in the

same equivalence class. This significantly reduces the number of distance queries we need to

perform.

Once the DAG of seeds has been constructed, we approximate the contribution of

each seed and edge to the score of an alignment that contains them. Seeds are scored as if they

are a short alignment of matches, and edges between seeds may be scored as an insertion or

deletion if the distance in the graph does not match the distance on the read. These values serve

as node and edge weights. We then use dynamic programming to compute the heaviest path

defined by the node and edge weights within each connected component of the DAG and take

the seeds along this path as a candidate cluster. Clusters are passed through to the next stage

of the algorithm if their weight is within a prespecified amount of the heaviest-weight cluster,

subject to a hard limit on the total number of clusters.

3.6.6.3 Multipath alignments

Most existing sequence-to-graph aligners, including VG MAP, produce an alignment

of the sequence to a particular path through the graph. VG MPMAP uses a different alignment

52

formalism, which we call a multipath alignment. In a multipath alignment, the sequence can

diverge and reconverge along different paths through the graph (Supplementary Figure A.1).

Thus, the read can align to a full subgraph rather than to a single path. This allows the alignment

object to carry within itself the alignment uncertainty at known variants or splice-junctions. This

information can be used in downstream inference applications, including RPVG.

More formally, a multipath alignment of read R is itself a digraph with the following

properties:

1. Each node corresponds to an alignment of some substring of R to a path in the pangenome

2. An edge between u and v exists only if u and v align adjacent substrings of R to adjacent

paths in the pangenome.

3. Every source-to-sink path through the multipath alignment can be concatenated into a

complete, valid alignment of R to a path in the pangenome.

It is worth noting that multipath alignments are acyclic by construction, since the

nodes can be partially ordered by the read interval that they align. VG MPMAP additionally

annotates each node’s partial alignment with its alignment score. The alignment score of any

particular sequence-to-path alignment expressed in the multipath alignment can be computed

efficiently by simply adding the partial alignments scores along the path.

While sequence alignments have well-established optimization criteria, there is no

such criterion for optimizing the topology of a multipath alignment. In lieu of one, we adopt

heuristics that are motivated by the common topological features of pangenome graphs. Our

53

high-level strategy is to use exact match seeds to anchor alignments. We then use dynamic pro-

gramming to align between seeds and within sites of variation in the graph, which we identify

using the snarl decomposition of the pangenome graph. Using a multiple-traceback algorithm,

we can then obtain alignments to different paths through the graph as necessary.

3.6.6.4 Anchoring alignments

To use a cluster of exact match seeds to anchor a multipath alignment, it is first neces-

sary to compute the reachability relationships between the seeds. This is a non-trivial problem.

We begin by converting the local graph around a cluster into a directed acyclic graph

using an algorithm that has been described previously [74]. In brief, we identify small feedback

arc sets within each strongly-connected component using the Eades-Lin-Smyth algorithm [56],

and then we duplicate the strongly-connected component with the feedback arcs linking suc-

cessive copies. Using dynamic programming over the DAG as we construct it, we can preserve

all cyclic walks up to some prespecified length, which is based on the read length.

After creating the DAG, we inject the seeds into the new graph. Since the DAG

conversion algorithm can expand the node space of the original graph, seeds can now correspond

to multiple locations in the DAG. In this case, we duplicate the seeds to all of the corresponding

locations in the DAG. We then use a three-stage algorithm that computes the transitive reduction

of a graph in which the nodes correspond to seeds, and two seeds have an edge between them

if they are collinear along the read and reachable within the pangenome graph (Supplementary

Algorithm 4).

1. Compute the reachability relationships between the seeds, ignoring collinearity on the

54

read.

2. Rewire the reachability edges between the seeds to respect collinearity on the read.

3. Compute the transitive reduction of the resulting graph.

This algorithm is designed to have linear run time in the number of seeds and the

size of the DAG, but only in the typical case where the seeds line up along a walk through the

pangenome graph. In the general case, the run time can be quadratic.

3.6.6.5 Dynamic programming with multiple traceback

The alignments between anchors (i.e. the vertices in the transitively reduced DAG)

are computed using a banded implementation of partial order alignment [111]. The alignments

of the read tails past the end of anchors are computed using a SIMD-accelerated POA imple-

mentation from the gssw library.

We use a specialized traceback algorithm to obtain the alignments to multiple paths

through the pangenome graph from a single dynamic programming problem (Supplementary

Algorithm 8). Instead of the optimal alignment, the algorithm returns the k highest-scoring

alignments. We choose k to be the number of paths through the subgraph we are aligning to,

subject to a hard maximum. The key insight behind the algorithm is that the next highest-

scoring traceback can be determined by checking local properties of the dynamic programming

matrix while computing the highest-scoring traceback. In addition, for each anchor that crosses

a snarl, we remove the interior of snarl before performing alignments. This way, the multiple

traceback algorithm can align to multiple paths at sites of variation.

55

3.6.6.6 Quantifying mapping uncertainty

The method that VG MPMAP uses to compute mapping quality is largely shared with

VG MAP (see [74] Supplementary Note). As in VG MAP, base qualities are incorporated into

alignment scores (essentially downweighting low-quality bases), and the alignment scores are

subsequently used to compute a mapping quality. The formulas used to compute mapping

quality rely on the conversion of alignment scores into the log-likelihood of a hidden Markov

model (HMM), as described in [55] and [98].

VG MPMAP also uses a concept of a mapping’s “multiplicity” to model errors intro-

duced by the mapping algorithm itself. In particular, at certain points in the algorithm, we

enforce hard caps on certain algorithmic behaviors, such as the number of alignments that will

be attempted, in order to prevent excessive run time. If we run up against these hard caps, we

expect that not all high-scoring alignments will be found. We incorporate this information into

the mapping quality formula by treating alignments as if multiple equivalent alignments actu-

ally were found. For example, if we attempted alignments for 10 of 30 promising clusters and

found 1 high-scoring alignment, we would estimate its multiplicity to be 3. That is, we estimate

that there are a total of 3 alignments that are equally high-scoring, including the ones that we

did not find. We then compute the mapping quality as if 2 additional copies of the alignment

had been found.

Multiplicities allow VG MPMAP to aggregate information about sources of algorith-

mic inaccuracy over different steps in the algorithm. The central entities in each step of the

mapping algorithm (seeds, clusters, alignments, and pairs) are each associated with a multi-

56

plicity. These multiplicities follow particular combining rules between successive steps of the

algorithm. When combining orthogonal pieces of information (seeds in a cluster, or single-end

alignments in a paired alignment), the new entity receives the minimum of its constituents’

multiplicities. When layering on a new source of algorithmic uncertainty (typically a further

hard cap), an entity’s multiplicity is multiplied by its estimated multiplicity in that step of the

algorithm.

3.6.6.7 Determining statistical significance

VG MPMAP uses a frequentist hypothesis test to assess the statistical significance of

a read alignment. The test statistic that we use is the alignment score. The null hypothesis is

that the alignment score was obtained by a uniform random sequence of the same length as the

read. By default, we set the type-I error rate to 0.0001. If an alignment score’s p-value is not

significant at this level, the alignment is still reported, but its mapping quality is set to 0.

Modeling the null hypothesis of the test is not entirely straightforward. In general,

we expect higher local alignment scores from longer reads or larger pangenome graphs. How-

ever, there are subtleties. A large pangenome graph may consist of many repeats of the same

sequence so that its effective size is smaller than its total sequence length. Alternatively, a

small pangenome graph may have a complex topology that admits a combinatorially large set

of walks. For these reasons, we take an empirical approach that fits a model to match the

pangenome graph. At the start of every mapping run, we map a sample of uniform random

sequences of varying lengths. The resulting alignment scores are used to fit the parameters of

a distribution using maximum likelihood, and those parameters are regressed against the read

57

length. The regression allows us to query the p-value for a read of any length.

The parametric distribution we use can be derived as the maximum of ν indepen-

dent, identically distributed (i.i.d.) exponential variables with rate λ. This distribution has the

following probability density function:

f (x|λ,ν) = λν(1− e−λx)ν−1e−λx. (3.1)

The fitting algorithm alternates between maximizing the likelihood with respect to

each of the two parameters with the other fixed until convergence. ν is fit using the Newton-

Raphson method, and λ is fit using golden-section search.

The motivation for this model is that the length of the match starting at position of a

uniform random sequence (the read) and position of a fixed sequence (the reference) is approx-

imately Geometric(1/4), assuming the two sequences are relatively long. The optimal local

alignment score is closely related to the longest match at any position on the read sequence

to any position on the pangenome graph. Moreover, most of these matches have only weak

dependence on each other, so the i.i.d. approximation is reasonable. We use an exponential

distribution because it closely approximates a geometric distribution and is easier to fit.

3.6.6.8 Paired-end mapping

VG MPMAP has several features designed to take advantage of the paired-end sequenc-

ing reads produced by Illumina sequencers. At the beginning of each paired-end mapping run,

VG MPMAP uses a sample of the first 3,000 uniquely mapped pairs to fit parameters of a frag-

58

ment length distribution. The distance between the reads in each pair is computed with the

distance index. Non-uniquely mapped pairs are buffered and then remapped after the fragment

length distribution has been fit.

The fragment distribution is modeled as a normal random variable with mean µ and

variance σ2. We use a method of moments estimator for a truncated normal distribution so

that the parameter estimation is robust to possible mismappings. In particular, we discard the

largest and smallest 1−γ

2 N fragment length measurements (default γ = 0.95). This procedure

makes the estimator insensitive to a sufficiently small fraction of outliers. The remaining γN

measurements correspond to a sample from a truncated normal distribution with the same µ and

σ2. The following estimators can be derived using method of moments on this truncated normal

distribution:

µ̂ = x̄

σ̂
2 = s2

(
1− 2αφ(α)

γ

)−1

,

(3.2)

where x̄ and s2 are the empirical mean and variance among the retained γN measurements, and

α = Φ−1
(

1−γ

2

)
is the left truncation point on a standard normal distribution.

When mapping paired-end reads, the clustering stage of the algorithm adds an ad-

ditional step. First, each read in the pair’s seeds are clustered as in the single-end algorithm.

Next, the clusters from the two reads are paired by checking which pairs imply a fragment

length within 10 standard deviations of the mean, as estimated by the algorithm in the previous

section. The implied fragment length connecting two clusters is estimated using the distance

index, with the position of a cluster taken to be the position of its longest seeds. Pairs of clusters

59

are prioritized by a sum of an estimated alignment score (interpreted as a log-likelihood) and the

log-likelihood of the normal distribution that we model the fragment length distribution with.

The heuristics used for read mapping inevitably fail in some cases. When mapping

paired-end reads, it sometimes happens that the heuristics fail on only one of the two reads of

a fragment. When this occurs, it is sometimes possible to “rescue” the alignment of the other

read by aligning it to the region of the pangenome graph where we expect to find it relative to

the mapped read.

VG MPMAP employs this strategy whenever the pair clustering procedure fails to pro-

duce a pair of clusters consistent with the fragment length distribution, or when all of the clus-

tered alignment pairs have at least one end without a statistically significant alignment. We also

perform a limited number of rescues even when a consistent cluster pair is found, provided that

there are clusters of at least one of the ends that are equally as promising as the one in the cluster

pair. This helps improve the calibration of mapping qualities. We place a hard cap on the num-

ber of rescues performed to control run time. The fraction of eligible rescues that were actually

performed becomes a component in the multiplicity of an alignment, as described previously.

The multipath alignment algorithm is slightly different when computing rescue align-

ments. This is necessary because there are no exact match seeds to use as anchors. Instead, we

first perform a single path alignment using gssw. Then we remove any sections of the alignment

that lie inside snarls, and realign those segments of the read as when connecting anchors in the

standard multipath alignment algorithm.

60

3.6.6.9 Spliced alignment

Because spliced pangenome graphs include annotated splicing events as edges, it is

usually unnecessary to use specialized alignment algorithms to obtain spliced alignments. How-

ever, even for well-annotated genomes, transcript annotations are incomplete, especially for

lowly-expressed transcripts. Thus, it is still important to be able to produce spliced alignments.

VG MPMAP includes a spliced alignment algorithm but applies it conservatively: only when the

primary alignment includes a long soft-clip on at least one end. A long soft-clip is suggestive

that the clipped end of the read might align to a part of the graph that was too distant to be

included in the primary seed cluster, as would be expected with an unannotated splice event.

The spliced alignment algorithm begins by finding candidate regions to align the

clipped read end to. These regions are selected by scanning over secondary mappings, unaligned

seed clusters, and unclustered seeds. To be considered, they each must 1) roughly correspond to

the clipped end of the read, and 2) be reachable from the primary alignment by some path in the

graph. Reachability is determined using the minimum distance index. Candidates are excluded

if they are too distant from the primary alignment (default 500 kbp).

Next, the spliced alignment algorithm looks for splice motifs near the ends of the

pair of splice candidates. If any pair of canonical splice site dinucleotides are found on any

path from the two ends, the intervening sequence is aligned as if the two splice sites were

joined by an edge in the graph. Splice motifs are penalized by their log-frequency, as given by

Burset, et al. [25]. A spliced alignment is deemed to be statistically significant if the increase in

score relative to the unspliced primary alignment would have been sufficient to be a statistically

61

significant mapping for the entire read. The spliced alignment algorithm is repeated until no

statistically significant spliced alignments are discovered.

3.6.7 RNA-seq mapping evaluation

We compared VG MPMAP’s performance at mapping RNA-seq data against the vg

toolkit’s existing graph alignment method VG MAP [74] and two state-of-the-art RNA-seq map-

ping tools, HISAT2 [103] and STAR [54]. Graph indexes and genomes were created for

each tool using default parameters, with MPMAP and MAP sharing the XG and GCSA index.

The mapping compute and memory usage of each tool were estimated using 16 threads on an

m5.4xlarge AWS instance. All mappers were run with default or recommended parameters for

RNA-seq data. The SRR1153470 and CHM13 data were used to optimize the parameters of VG

MAP and VG MPMAP.

We evaluated mapping accuracy on simulated reads using two different methodologies to ensure

the robustness of our conclusions. One methodology was based on basewise overlaps along the

linear reference genome, and the other was based on distances along transcript and reference

paths in the graph.

For the overlap-based evaluation the graph alignments were first projected to the ref-

erence paths using VG SURJECT in spliced alignment mode. Briefly, SURJECT takes a set of

graph-aligned reads and re-aligns them to all nearby reference paths in the graph, producing

a BAM file with the reads aligned to the reference sequences. The re-alignment is only per-

formed on the parts of the alignment that do not already follow the reference paths. A read

62

was considered correctly mapped if 70% or 90% (depending on the evaluation) of the bases

of the simulated true reference alignment were covered by the estimated alignment. The true

reference alignments were generated using the transcript position of each read provided by VG

SIM and the NA12878 haplotype-specific transcript reference alignments. The latter were cre-

ated by projecting the transcript paths to the reference sequences using VG SURJECT in spliced

alignment mode. Due to sequencing artifacts, the ends of reads will occasionally consist of such

low-quality bases as to be practically random. Aligners that decide to softclip these uninforma-

tive bases would be penalized in this overlap-based evaluation. We therefore decided to trim all

bases at both ends of an alignment (including the true alignments) that had a phred base quality

score below 3. All alignments for which more than half of the sequence was trimmed were

discarded from the evaluation so that the percent overlap could be estimated more confidently.

We used the VG GAMPCOMPARE tool for the distance-based evaluation. The truth set

in this evaluation was the true graph alignments produced by VG SIM. In short, VG GAMPCOM-

PARE finds the minimum possible distance between the start position of an estimated alignment

and the true alignment across all reference and transcript paths in the graph. Before running

GAMPCOMPARE, HISAT2 and STAR’s BAM format alignments were converted into graph

alignments (GAM format) using VG INJECT, which translates linear reference alignments into

alignments against the path of the reference in a graph. An alignment was considered correct if

its start position was within 100 bp of the start position of the true alignment along the path of

the reference or any transcript path.

Reference bias was quantified using simulated reads, by counting the number of reads that

63

overlapped variants with a mapping quality value of at least 30. For this analysis we used the

reference-based alignments (projected alignments for VG MAP and VG MPMAP). In order to

treat different variant types and lengths equally, we computed the read count for each variant

as the average read count across the variant’s two breakpoints. Reads simulated from each

haplotype were counted separately and only variants with at least 20 reads across both alleles

combined were used to quantify reference bias. Complex variants that were not classified as

SNVs, simple deletions or simple insertions were skipped.

When benchmarking using real reads, truth alignments are not available. Instead, we used a

proxy measure of aggregate mapping accuracy based on long read mappings from the same cell

line. The long reads are easier to map confidently, and we expect the cell line to have sim-

ilar transcript expression across replicates. Thus, higher correlation between the coverage of

short read mappings and the coverage of long read mappings is suggestive of higher accuracy.

For long read data, we used NA12878 PacBio Iso-Seq alignments generated by the ENCODE

project (Supplementary Table A.3). The cleaned Iso-Seq alignments of four replicates were first

merged and secondary alignments and alignments with a quality below 30 were filtered using

SAMTOOLS [121]. These filtered alignments were then compared to the short-read RNA-seq

alignments by calculating the Pearson correlation of the average exon read coverage between

the two. Exons were defined using the Iso-Seq alignments by first converting them to BED

format and then merging overlapping regions using BEDTOOLS [165].

64

We measured memory and compute time for all mappers using the Unix TIME utility.

The reads per second statistic was computed by dividing the number of reads by the product

of the wall clock time and the number of threads. This is a somewhat biased measurement,

since it includes the one-time start up computation that does not scale with the number of reads.

However, the magnitude of this bias is small, and it tends to disfavor VG MPMAP, which has the

longest start up of the tools we evaluated.

All secondary alignments were filtered in all evaluations using SAMTOOLS. Reference

alignments in BAM format were sorted and indexed, also using SAMTOOLS. The SeqLib library

was used in the evaluation scripts to parse the alignments and calculate overlaps [212].

3.6.8 Haplotype-specific transcript quantification

We developed RPVG as a general tool for inferring the most likely paths and their

abundance from a set of mapped sequencing reads. In this study we used RPVG to quantify the

expression of haplotype-specific transcripts (HSTs) in a pantranscriptome. RPVG’s algorithm

consist of four main steps:

1. Find read alignment paths that align to HST paths

2. Cluster alignment paths and HST paths

3. Calculate alignment path probabilities

4. Infer haplotypes and expression from probabilities

A graphical overview can be seen in Supplementary Figure A.11.

65

3.6.8.1 Finding alignment paths

The first step of RPVG is to parse each alignment and find all alignment paths that

align to (i.e. follow) at least one HST path in the pantranscriptome GBWT index (Supplemen-

tary Figure A.11a). An alignment path is the set of nodes a read alignment follows in the graph.

For single-path alignments there is only one alignment path, but for multipath alignments there

can be many. We will here focus on multipath alignments, since a single-path alignment is

merely the simpler case when a multipath alignment only contains a single path.

Multipath alignments are represented as a graph, and thus the objective is to find all paths

through this graph that also exist as subpaths in the GBWT. In other words we want to find

all possible alignments that the read can have to all HST in the pantranscriptome. This search

would normally scale linearly in the number of HSTs overlapping the read, but the GBWT

allows us to query all HSTs that contain the same subpath. Therefore, HSTs that are locally

identical will be queried together, taking advantage of the fact that haplotypes are markedly

more similar locally than globally.

RPVG uses a depth-first-search (DFS) through the multipath alignment graph to find

all alignment paths. A branch in the search is terminated if its alignment path is not present as

a subpath in the GBWT. A DFS is initialised at each source node in the alignment graph. We

terminate any alignment path early where it is not possible to reach a score of 20 below the

current highest scoring path, assuming perfect scoring for the remainder of the alignment.

The topology of the multipath alignment graphs is determined by heuristics. In some

66

cases these heuristics fail, resulting in multipath alignments that do not cover all possible align-

ment paths. This can result in incorrect downstream expression estimates as a read might be

missing an alignment path to the correct HST. To overcome this, RPVG allows alignment paths

to be shortened in order to be made consistent with an HST path. More specifically, the DFS

can start and end up to four bases inside the read (excluding soft-clipped bases). The score

of partial alignment paths are penalized proportionally to the number of non-matched bases at

each end, adjusted for their quality.

The output from the DFS is one set of alignment paths for each multipath alignment.

Next, RPVG labels a set as low scoring if the highest scoring alignment path in the set is less

than 0.9 times the optimal quality-adjusted alignment score, which is the score an alignment

would get if it consisted of only matches. The sets labeled as low scoring are treated as being

incorrect; they may be misalignments, or originate from an HST not in the input pantranscrip-

tome. The labeled sets are later used when calculating the noise probability.

For paired-end reads, one additional step is needed: combining the alignment paths of each

read to create a set of alignment paths for the whole fragment. First a set of alignment paths is

generated for each alignment in the pair as described above. Next, RPVG attempts to combine

each start (first read) alignment path with each of the end (second read) alignment paths. If the

fragments are not strand-specific and the pantranscriptome GBWT is not bidirectional, RPVG

then repeats the process using the reverse complement of the fragment.

The procedure to combine the two alignment paths differs depending on whether they

overlap or not. If they do overlap, a single combined alignment path is created for the fragment

67

by merging the two while requiring that the path of overlapping portions matches perfectly.

If they are separated by an insert, the start alignment path is extended using a DFS following

the HST paths. If the search reaches one of the start nodes for an end alignment path, a new

fragment alignment path is created by merging the search and end alignment path. The new

fragment alignment path is only kept if it follows at least one HST path in the pantrancriptome.

The search is terminated if all start nodes in the end alignment paths have been visited and they

are not part of a cycle. An alignment path is discarded if its length is above µ+5σ, where µ and

σ are the mean and standard deviation of the fragment length distribution. These parameters

are either supplied by the user or parsed from the input alignments (the VG aligners write the

parameters they estimated to the alignment file). The score of the resulting fragment alignment

path is calculated as the sum of the scores of the two read alignment paths. The mapping quality

is calculated as the minimum across the two reads.

The final output from the search is a set of alignment paths and the HSTs that each path aligns

to for each read or fragment. For simplicity, in the following, we will use the term “fragment”

to denote both a single-end read and a set of paired-end reads.

3.6.8.2 Clustering transcript paths

HST paths that do not share any fragments are independent, and therefore their ex-

pression can be inferred separately. In contrast, the expression of HST paths that share align-

ments must be inferred jointly. Accordingly, RPVG identifies clusters of HST paths that share

alignment paths from the same fragment. By dividing the inference problem into these smaller,

68

independent clusters, computation and memory can be considerably reduced.

The clustering algorithm works by first constructing an undirected graph where ver-

tices correspond to HST paths and edges correspond to HST paths being observed in the same

set of fragment alignment paths. All connected components in this graph (clusters) are then

located using breadth-first-search. All fragments are assigned to their respective clusters based

on the HST paths that their alignment paths align to.

3.6.8.3 Calculating alignment path probabilities

For each fragment, the probability of it originating from each of the HSTs in its cluster

is calculated by RPVG using the alignment path scores, lengths and mapping quality (Supple-

mentary Figure A.11b). First the probability ε that the fragment was not from any of the HST

in the cluster is calculated using the mapping quality q:

ε = max
(

εmin,10−q/10
)
, (3.3)

where εmin is the minimum noise probability. The motivation behind having a minimum is that

mapping qualities are generally less reliable at higher values. The minimum noise probability

is 10−4 for all fragments except those that were labeled as low scoring, for which it is 1. Now,

let A be the set of alignment paths (i.e. alignments) for this fragment. For each alignment path

a ∈ A, the likelihood of it being the correct path is calculated using its score sa and length `a:

L(a) = φ

(
`a−µ

σ

)
exp(λsa) , (3.4)

69

where φ is the standard normal density function, λ is a scaling factor that converts the alignment

score into the log-likelihood of a pair-HMM [98], and µ and σ are the mean and standard

deviation of the fragment length distribution modeled using a normal distribution. For paired

reads, these parameters are estimated from the alignment path lengths across all fragments

that have 1) a mapping quality of at least 30, and 2) the same length for all alignment paths.

The fragment length distribution is omitted from the equation when the fragments are single-

end reads. With this likelihood, we can compute the posterior probability that the fragment

originated from a given HST. Let the set of all HST paths in the cluster be denoted by T , and let

the set of HST paths an alignment path a is consistent with be denoted by Ta. The probability

that the fragment (or alignment A) originated from an HST is calculated as:

pt = (1− ε) ·P(t|A) = (1− ε) · P(A|t)P(t)
∑t∈T P(A|t)P(t)

(3.5)

with

P(A|t) ∝ max
a∈A


L(a)˜̀t if t ∈ Ta

0 otherwise

(3.6)

Here, ˜̀t is the effective transcript length for t calculated as ˜̀t = `t −µ`t . In turn, µ`t is the

mean of the fragment length distribution truncated to [1, `t]. A similar approach is used in

SALMON [157]. The effective transcript length accounts for the fact that fragments cannot be

sequenced from all positions due to the size of the fragment. If the fragments are single-end

reads, the fragment length distribution parameters used to calculate the effective length must be

70

supplied by the user. The prior over HSTs P(t) is taken to be uniform. If the HST probability

pt is below 10−8, it is truncated to 0 to reduce storage.

We denote the set of all fragment probabilities in a cluster as F and the probabilities

for a fragment i as Fi = (ε,p), where p is the vector of probabilities over all T HSTs in the

cluster. Many fragments will have very similar probabilities and can thus be collapsed to save

computation resources and memory [147, 157]. To do this we collapse two fragment probabili-

ties Fi and Fj if they satisfy both of:

∣∣εi− ε
j
∣∣< 10−8

∣∣∣pi
t − p j

t

∣∣∣< 10−8, ∀t ∈ T

(3.7)

We also associate each set of collapsed fragments with c, the number of collapsed

fragments in the set. The resulting set E of tuples (ε,p,c) is subsequently used to infer the

expression of the HSTs in the pantranscriptome.

3.6.8.4 Inferring haplotype-specific transcript expression

RPVG quantifies the expression of the HSTs in the pantranscriptome using a nested

inference scheme (Supplementary Figure A.11c). This is done independently for each cluster.

First, the distribution over diplotypes (i.e. pairs of haplotypes) is inferred. A haplotype com-

bination is then sampled from this distribution and expression is inferred conditioned on the

sampled haplotypes. This procedure is repeated multiple times to account for the uncertainty in

the haplotype estimates. In the following, we will assume the sample is diploid, but the equa-

tions and algorithms generalize to any ploidy.

71

The marginal distribution over diplotypes is approximated by assuming the haplotypes are iden-

tical for all transcripts in a cluster. The motivation behind this approximation is that most clus-

ters cover only a small region (e.g. gene) of the genome. However, this approximation can

break down when there are partial haplotypes or recombination events in the cluster. Using

the transcript and haplotype origin table provided by VG RNA, the HSTs in the cluster are first

grouped by their haplotype origin. Note that since an HST can be consistent with more than

one haplotype it can also belong to multiple groups. Next, groups with the same set of HSTs

are collapsed resulting in a set of unique haplotype groups.

Now let us denote the set of haplotype groups as H, with each group h ∈ H consisting

of a set of HSTs. The objective is to infer the distribution over diplotypes d = {h1,h2} condi-

tioned on the set of collapsed fragment probabilities E. The probability of a diplotype is defined

as:

P(d|E) = P({h1,h2}|E) ∝ P(h1)P(h2) ∏
(ε,p,c)∈E

(
ε+

1− ε

2
(P(p|h1)+P(p|h2))

)c

(3.8)

and

P(p|h) =
1
n ∑t∈h pt

∑k∈H
1
n ∑t∈k pt

∝ ∑
t∈h

pt (3.9)

where the prior probability of each haplotype group P(h) is proportional to the number of hap-

lotypes in the group, and n is the number of transcripts in the cluster (1
n and 1

2 amount to

72

an approximation that expression is uniform across all transcripts and the two haplotypes, re-

spectively). This model is inspired by similar haplotyping models used in Platypus and other

genotypers [3, 161, 174].

The distribution over diplotypes is inferred by calculculating P(d|E) for all pairs of

haplotype groups h ∈ H. To reduce the space of haplotype combinations that need to be eval-

uated, RPVG uses a branch-and-bound-like algorithm, where diplotypes containing an improb-

able haplotype group are not evaluated. Instead, the probability of all diplotypes containing an

improbable haplotype group is set to 0. A haplotype group h is labeled to be improbable if its

optimal diplotype probability P({h,ho}|E) is s ·104 times lower than the current highest evalu-

ated probability, where s is the number of diplotypes sampled in the next step in the inference.

The optimal diplotype probability is defined as

P({h,ho}|E) ∝ P(h) ∏
(ε,p,c)∈E

(
ε+

1− ε

2

(
P(p|h)+max

ho∈H
(P(p|ho))

))c

(3.10)

This value serves as an upper bound on the probability of any diplotype containing h.

Using the inferred distribution over diplotypes the expression of the HSTs in the cluster is

inferred. First a diplotype is sampled from the distribution P(d|E) and all HSTs that are con-

sistent with at least one of the haplotypes in the diplotype are collected. We denote this HST

subset Ts ⊆ T and define the likelihood over the expression values α as

L(α) = ∏
(ε,p,c)∈E

(
∑
t∈Ts

αt pt

)c-ε

, (3.11)

73

where c-ε is the noise-adjusted fragment count: c-ε = c(1− ε). To find the (local) maximum

likelihood estimate of the expression values a expectation maximization (EM) algorithm is used.

The algorithm iterates between assigning fractional fragment counts to the HSTs and updating

the expression values. This is a well known algorithm that is used by many other transcript

quantification tools [23, 114, 147, 157]. The expression values are initialized uniformly and the

EM algorithm is run until convergence or for a maximum of 10,000 iterations. The algorithm is

considered converged if

∣∣αi
t −α

i−1
t
∣∣

αi
t

≤ 0.001, ∀t ∈ Ts : αt ≥ 10−8 (3.12)

for 10 consecutive iterations, where i is the index of the current iteration. This criteria is inspired

by the one used by KALLISTO [23] and SALMON [157]. All expression values below 10−8 of

the maximum likelihood estimate are truncated to 0. The diplotype sampling and EM steps

are repeated 1,000 times to propagate the uncertainty over diplotypes into the HST expression

estimates. Since the EM algorithm is deterministic, the same expression values are inferred for

the same diplotype. We therefore only need to run the EM step once for each uniquely sampled

diplotype, which can considerably reduce computation time.

The final output of RPVG is the haplotype probability and estimated expression value for each

HST in the pantrancriptome. The probability is calculated as the fraction of diplotype samples

which included the HST. The expression reported is the average across all diplotype samples

(including samples where the HST’s expression is zero due to its haplotype being absent from

74

the diplotype).

3.6.9 Transcript quantification evaluation

We compared RPVG’s quantification accuracy against three other transcript quan-

tification tools: KALLISTO, SALMON and RSEM. Haplotype-specific transcript indexes for

KALLISTO, SALMON and RSEM were built from the HST sequence FASTA files generated by

VG RNA. SALMON indexing was run with duplicates kept and, on the real data, the reference

genome was given as a decoy. The Bowtie2 mapper was used in RSEM with the maximum

number of alignments per read increased to 1,000. The transcript expression was estimated us-

ing default parameters for all methods, except for the real data where strand-specific inference

was enabled. KALLISTO and SALMON were run without bias correction as it did not provide

a clear advantage on the “Europe (excl. CEU)” pantranscriptome using the SRR1153470 reads

(data not shown). RSEM was only run on the NA12878 sample-specific transcriptome and the

“Europe (excl. CEU)” pantranscriptome, as it did not scale to the two largest pantranscriptomes.

RPVG was run using default parameters and with two different types of alignments

inputs: the standard multipath alignments from VG MPMAP and single-path alignments gener-

ated by finding the best scoring path in the multipath alignments using VG VIEW. The fragment

length distribution parameters estimated by VG MPMAP were given as input to RPVG when us-

ing the single-path alignments as they are lost from the alignment file during the conversion.

RPVG was run with a ploidy of 2 for all read sets, including CHM13. For the simulated data, the

exon-only splicing graphs were used when mapping the reads using VG MPMAP. These graphs

are more comparable to the transcriptomes that the other methods use for (pseudo)-alignment.

75

For the real data, we used the whole spliced pangenome graphs. All HSTs with a haplotype

probability below 0.8 were filtered from the RPVG output. The SRR1153470 and CHM13 read

data was used to optimize the parameters of RPVG.

For the SRR1153470 and ENCSR000AED data, which are both NA12878 cell lines, we com-

pared the quantified HSTs to the NA12878’s haplotypes from the 1000 Genomes Project data.

We considered an HST consistent with these haplotypes if it matched the sequence of one of

the two possible NA12878 haplotype versions of the transcript. The haplotyping performance

of each method was then estimated by comparing the number and fraction of quantified HSTs

with positive expression that were consistent.

We used transcripts per million (TPM) to measure expression. For the simulated data

we re-calculated the TPM value for all methods. The reason was that we wanted to ensure that

there was no bias towards RSEM, which was used to estimate the expression profile employed

by VG SIM to parameterize the HST expression values. The TPM value depends on the effective

transcript length, which is not calculated in the same manner for each method. Therefore, if this

is not corrected, methods that estimate the effective transcript length more similarly to RSEM

will have an advantage that does not depend on their ability to predict correct expression values.

The true fragment length distribution parameters and the effective transcript length approach

employed by RPVG (similar to SALMON) was used when re-calculating the TPM values.

The method’s ability to predict the correct expression value was evaluated using the

simulated data for which the true expression is known. The true expression values were calcu-

lated from a table provided by VG SIM, which indicates the transcript of origin for each read.

76

The simulated TPM values were calculated in the same manner as described above. We used

both Spearman correlation and mean absolute relative difference (MARD) to quantify concor-

dance between estimated and true expression.

The CHM13 cell line is effectively haploid, so only a single HST is expected to exist for each

transcript. We used this feature of the data to measure the haplotype inference performance of

each method on the T2T CHM13 data. We defined each HST as either major or minor. Major

HSTs were defined as the highest expressed haplotype for each transcript; the rest were defined

as minor. The fraction of expression from minor HSTs is a lower bound on the fraction of in-

correctly inferred transcript expression. Accordingly, we used the number of major and minor

transcripts that each method predicted to be expressed to compare their haplotype inference

performance.

3.6.10 Transcript quantification evaluation

We compared RPVG’s quantification accuracy against three other transcript quan-

tification tools: KALLISTO, SALMON and RSEM. Haplotype-specific transcript indexes for

KALLISTO, SALMON and RSEM were built from the HST sequence FASTA files generated by

VG RNA. SALMON indexing was run with duplicates kept and, on the real data, the reference

genome was given as a decoy. The Bowtie2 mapper was used in RSEM with the maximum

number of alignments per read increased to 1,000. The transcript expression was estimated us-

ing default parameters for all methods, except for the real data where strand-specific inference

was enabled. KALLISTO and SALMON were run without bias correction as it did not provide

77

a clear advantage on the “Europe (excl. CEU)” pantranscriptome using the SRR1153470 reads

(data not shown). RSEM was only run on the NA12878 sample-specific transcriptome and the

“Europe (excl. CEU)” pantranscriptome, as it did not scale to the two largest pantranscriptomes.

RPVG was run using default parameters and with two different types of alignments

inputs: the standard multipath alignments from VG MPMAP and single-path alignments gener-

ated by finding the best scoring path in the multipath alignments using VG VIEW. The fragment

length distribution parameters estimated by VG MPMAP were given as input to RPVG when us-

ing the single-path alignments as they are lost from the alignment file during the conversion.

RPVG was run with a ploidy of 2 for all read sets, including CHM13. For the simulated data, the

exon-only splicing graphs were used when mapping the reads using VG MPMAP. These graphs

are more comparable to the transcriptomes that the other methods use for (pseudo)-alignment.

For the real data, we used the whole spliced pangenome graphs. All HSTs with a haplotype

probability below 0.8 were filtered from the RPVG output. The SRR1153470 and CHM13 read

data was used to optimize the parameters of RPVG.

For the SRR1153470 and ENCSR000AED data, which are both NA12878 cell lines, we com-

pared the quantified HSTs to the NA12878’s haplotypes from the 1000 Genomes Project data.

We considered an HST consistent with these haplotypes if it matched the sequence of one of

the two possible NA12878 haplotype versions of the transcript. The haplotyping performance

of each method was then estimated by comparing the number and fraction of quantified HSTs

with positive expression that were consistent.

We used transcripts per million (TPM) to measure expression. For the simulated data

78

we re-calculated the TPM value for all methods. The reason was that we wanted to ensure that

there was no bias towards RSEM, which was used to estimate the expression profile employed

by VG SIM to parameterize the HST expression values. The TPM value depends on the effective

transcript length, which is not calculated in the same manner for each method. Therefore, if this

is not corrected, methods that estimate the effective transcript length more similarly to RSEM

will have an advantage that does not depend on their ability to predict correct expression values.

The true fragment length distribution parameters and the effective transcript length approach

employed by RPVG (similar to SALMON) was used when re-calculating the TPM values.

The method’s ability to predict the correct expression value was evaluated using the

simulated data for which the true expression is known. The true expression values were calcu-

lated from a table provided by VG SIM, which indicates the transcript of origin for each read.

The simulated TPM values were calculated in the same manner as described above. We used

both Spearman correlation and mean absolute relative difference (MARD) to quantify concor-

dance between estimated and true expression.

The CHM13 cell line is effectively haploid, so only a single HST is expected to exist for each

transcript. We used this feature of the data to measure the haplotype inference performance of

each method on the T2T CHM13 data. We defined each HST as either major or minor. Major

HSTs were defined as the highest expressed haplotype for each transcript; the rest were defined

as minor. The fraction of expression from minor HSTs is a lower bound on the fraction of in-

correctly inferred transcript expression. Accordingly, we used the number of major and minor

transcripts that each method predicted to be expressed to compare their haplotype inference

79

performance.

3.6.11 Demonstration of analyzing genomic imprinting

We obtained RNA-seq data sets from samples NA11832, NA11930, NA12775, and

NA12889 from Geuvadis data portal and ran them through the VG MPMAP-RPVG pipeline.

Each sample had two accessions, which were combined into one data set (see Supplementary

Table A.3). We also obtained and analyzed data from sample GM12878 from the ENCODE

Project (ENCSR000AED replicate 1) [44]. These samples are all unrelated. All parameters

used were identical to those used in the real data evaluations of VG MPMAP and RPVG above.

The Geuvadis samples were used to troubleshoot the analysis and identify potentially interesting

genes to highlight in the demonstration. The analyses were then repeated on the ENCODE

sample. This design reduces the risk of identifying noise as signal. Only the results final

analysis are the ones reported in the Results section, but results were broadly consistent across

all samples.

To confirm that the pipeline could detect previously known ASE, we looked for sig-

natures of imprinting in the 20 genes with the most statistically significant parent-of-origin ASE

in the study by Zink, et al. [220] (Supplementary Table 6). One of these genes, RP11-69E11.4,

had since been removed from the GENCODE database, so we excluded it from the analysis.

Zink’s, et al. study analyzed ASE on individual SNVs. To make our results comparable to

theirs, we translated RPVG’s HST-based expression quantification into a corresponding variant

allele-based expression quantification. To do so, we used a table of the HSTs that contain each

variant in the pantranscriptome, which can be produced by VG RNA. The expression of each

80

allele was computed as the sum of the expression of each HST that contained the allele.

We decided to highlight the haplotype-specific expression of the NAA60 gene in

depth because it consistently showed monoallelic expression for both haplotypes across differ-

ent isoforms in the initial exploratory data sets. To identify the haplotype of origin for different

HSTs, we compared the variants associated with each HST (using the table from VG RNA) to

the sample’s haplotypes from the 1000 Genomes Project VCF. Equal-tailed credible intervals

were approximated using RPVG’s Gibbs sampling method.

3.6.12 Code and data availability

A list of the versions used of each method is available as Supplementary Tables A.5

and ??. All bash scripts with exact command-lines used to generate the results are available at

the following GitHub repository: https://github.com/jonassibbesen/vgrna-project-paper.

This includes log files, references to the Docker containers used to run the methods and links to

the raw simulated sequencing data used in the evaluation. Furthermore, all created spliced

pangenome graphs and pantranscriptome haplotype-specific transcript sets are available for

download at the repository for use in other projects. All custom C++, Python and R scripts

used for the evaluation and plotting are available at https://github.com/jonassibbesen/

vgrna-project-scripts.

81

Part III

Algorithmic infrastructure for

pangenomics

82

Chapter 4

Interfacing with the linear reference-based

software ecosystem

4.1 Preamble

This section contains a description of a tool in the VG toolkit that I designed and

implemented. It is unpublished, and I have no intention to publish it beyond this dissertation

in the future. However, I consider it a sufficiently significant contribution to the field of pange-

nomics to warrant its own chapter here. It has already been used as a component in a number

of publications [47, 79, 80, 133, 191].

4.2 Introduction and motivation

One of the most fundamental tasks in computational pangenomics is mapping and

aligning sequencing reads to a pangenome graph. The VG toolkit itself has three separate

83

mapping algorithms (VG MAP [74], VG MPMAP [187], and VG GIRAFFE [191]), and other tools

have also been published [103, 167, 173]. Internally, all of these tools align the read sequence

to the sequence of some walk through the pangenome graph. In the case of the three VG

mapping tools and GRAPHALIGNER [173], they also output these graph-based alignments for

downstream analysis.

Graph-based alignments cannot be easily expressed in the conventional file format

used for read mappings: SAM/BAM [121]. In addition to the base-level alignment, the graph

alignments must also encode the alignment’s walk through the graph. For this reason, new file

formats have been adopted: the VG toolkit’s GAM format and more recently MINIGRAPH’s

GAF format [120]. Both of these formats are similarly expressive, so I will not emphasize the

distinctions between them.

While the graph-based alignments enable some novel downstream applications [86,

173], the broader ecosystem of computational genomics tools remains heavily invested in the

SAM/BAM format. To interface with this ecosystem, VG needs a method to convert its graph-

based alignments into linear alignments that can expressed in SAM or BAM. In this chapter, I

describe the VG SURJECT algorithm, which fills this role.

4.3 Design and implementation of VG SURJECT

Converting a linear alignment into a graph-based alignment is a trivial and lossless

operation. In VG, the path of the linear reference sequence is maintained as a labeled walk

within the pangenome graph, so all that is required is to look up the walk through the graph

84

taken by the aligned subsequence of the linear reference. The reverse transformation is more

challenging. If any part of a read’s alignment lies off of the labeled walk of the reference

sequence, there is no lossless conversion. The VG SURJECT algorithm is designed with the

principle that, despite the inevitable loss, as much of the graph-based alignment should be

preserved as possible. The algorithm attempts to realign only the off-reference portions of the

alignment onto the reference path so that the end result is nearly-identical alignment that can be

losslessly converted into a linear alignment.

4.3.1 Connection to the multipath alignment problem

VG SURJECT begins by identifying the segments of the alignment that follow the path

of the reference sequence. In doing so, it can also identify the interval of the reference path

that the remainder could be aligned to. These reference-overlapping segments must then be

connected with intervening alignments to this interval of the reference. This bears a strong

similarity to the algorithm developed for VG MPMAP (see section 3.6.6.4) for constructing mul-

tipath alignments (Supplementary Algorithm 4). There, the task was to identify the reachability

relationships between exact match seeds in a directed acyclic graph (DAG), which would then

be connected with intervening alignments. Here, the task is to connect portions of an aligned

sequence to a subinterval of the reference sequence (which can be seen as a very constrained

DAG). VG SURJECT takes advantage of this similarity and repurposes the same underlying al-

gorithm for this rather different use case.

85

4.3.2 Spliced alignments

Special considerations must be made for spliced alignments of RNA-seq data, which

include long unaligned intronic sequences. In the SAM/BAM formats, expressing these align-

ments is relatively simple. The CIGAR string can include an ‘N’ operation, which indicates un-

aligned sequence. Due to the CIGAR string’s run-length encoding, a long unaligned sequence

requires similar space to represent as a short one. VG SURJECT’s algorithm described above

does not handle these cases so gracefully. When aligning to a spliced pangenome graph, the

splice junctions are present in the graph as edges. However, when converting to an alignment

to the path of the reference as an intermediate, the alignment to the intronic sequence requires

explicitly spelling out the full path of the intron. For long introns, this can be prohibitively slow.

Because of this challenge, VG SURJECT includes specialized features for converting

transcriptomic alignments. Before any step in the algorithm that would look at the full intronic

sequence, it first attempts to decompose the problem into smaller realignment problems that fall

within exons. The exonic segments are identified using a DAG in which the nodes correspond

to reference overlapping segments of the alignment, and edges indicate that the segments are

collinear on both the read and the reference sequence. All transitive edges in this graph are

removed as a preprocessing step. An edge in this graph is flagged as a splice junction if it meets

several criteria:

1. All source-to-sink paths in the DAG use the edge. This ensures that it is safe to assume

that the full surjected alignment will also use this edge.

2. The two alignment segments connected by the edge directly abut on the read sequence.

86

This ensures that the intervening alignment corresponds to a deletion of the reference

sequence.

3. The deletion implied by 2. is at least 20 bp long.

4. There is an edge in the spliced pangenome graph connecting the aligned segments, which

suggests that the graph alignment follows known splice junction.

If these conditions are met, VG SURJECT partitions the realignment problem on either side

of this edge, maintaining the alignment to the intron implicitly. When performing the final

conversion to SAM/BAM, the implied ‘N’ operations are added to the CIGAR string explicitly.

The latter three conditions to identify a splice edge are fairly straightforward to check.

Condition 1 is not quite trivial. However, it can be determined using a variant of the forward-

backward algorithm that counts walks through the DAG. If the nodes are indexed in topological

order by i = 1, . . . ,N, then we can count walks using the following dynamic programming

recursion:

fi =


1, i is a source node

∑edges (j,i) f j, else

(4.1)

The total number of walks can then be computed by summing fi over sink nodes. The same

computation can be computed in reverse topological order as well:

87

bi =


1, i is a sink node

∑edges (i, j) b j, else

(4.2)

With both of these dynamic programming problems completed, the number of walks

that use a given edge (i, j) is equal to fi · b j. To verify condition 1 above, it is sufficient to

compare this number to the total number of walks computed after the forward pass.

88

Chapter 5

Memory-efficient dynamic sequence graphs

5.1 Preamble

This chapter consists of the entirety of the paper “Efficient dynamic variation graphs”,

which was published in Bioinformatics [62]. I share primary authorship on this paper with

Adam M. Novak, and the paper was also a close collaboration with the last author, Erik Gar-

rison. This paper describes and compares several implementations of sequence graphs. I am

responsible for implementing HashGraph, PackedGraph, and part of XG. Erik Garrison is re-

sponsible for implementing ODGI and part of XG. Adam M. Novak helped design the data

model and implement the Python bindings (with help from Cecilia Cisar). Erik Garrison and I

wrote the majority of the paper.

89

5.2 Introduction

As increasingly many individuals have been sequenced from certain species, the field

of computational pangenomics has emerged to analyze whole populations of genomes rather

than individual genomes [40]. Much of the research in computational pangenomics has coa-

lesced around graph-based approaches for representing populations of genomes [155]. Unlike

conventional string-based representations, graph data structures can represent genomic variation

like substitutions, insertions, deletions, and other more complex genomic events.

Graph-based data structures present new computational challenges. In addition to

sequence, genome graphs must represent topology. Given the size of many genomes, this can

be quite demanding on computer memory. However, the total information content in a genome

graph is only incrementally more than the sequences of the pangenome. This suggests that

significant memory savings should be possible. There is also significant impetus to make the

graph data structures computationally efficient, since they are frequently the core data structure

in pangenomics applications.

Early versions of the variation graph toolkit (VG) [74] have provided a cautionary tale

of a naı̈ve implementation. VG used full-width machine words as identifiers for graph elements,

and stored the elements and graph topology in a set of hash tables. Loading the 1000 Genomes

Project’s variant set into the VG toolkit used to consume more than 300 GB of memory, which

is ∼30 times as large as the serialized representation [70].

Although VG provided a memory-efficient representation of the graph (XG) that

could be used during read mapping and variant calling, this representation did not allow for

90

dynamic updates to the graph. The dynamic implementation remained necessary for graph-

modifying steps of VG pipelines, such as the original construction of the graph and augmenting

the graph with novel variants. Some pipelines could be made feasible by breaking large graphs

into connected components. However, this strategy reduces efficiency, and it is untenable for

pangenome graphs that consist of a single component.

To overcome this limitation, we have developed three new graph genome data struc-

tures that are dynamic (allowing efficient updates and edits) and also memory-efficient for real

world genome graphs. Here, we compare the performance of these data structures to the origi-

nal VG representation and to XG, using a diverse collection of genome graphs obtained during

our work in graphical pangenomics.

In addition to demonstrating the possibility of working with large, complex graphs in

small amounts of memory, these implementations expose a common API based on the HAN-

DLEGRAPH model described below. This model provides an interface to genome graphs, based

on their fundamental elements, which is intended to be implementable atop a broad diversity of

graph storage designs. The VG toolkit has been refactored to use this API as its default means

of loading, saving, and manipulating graphs since version 1.22.0, allowing it to use any of the

implementations presented here.

We have packaged these implementations behind equivalent C++ and Python APIs in

libbdsg. This software library will reduce the need for individual research groups to continu-

ally reimplement these core data structures and ease the development of algorithms that manipu-

late large, complex pangenome graphs. Moreover, the reduction in memory requirements makes

it possible to move workloads that would otherwise need specialized high-memory machines

91

onto cheaper ones that often also have more processing power (for example, from Amazon’s r4

instances to c5 instances). Combined with improvements in access speed over the previous VG

dynamic graph implementation, substantial cost and time savings can be realized.

5.3 Implementation

5.3.1 Data model

Our libraries adopt node-labeled bidirected graphs as a formalism for sequence graphs.

In a bidirected graph, nodes are considered to have left and right “sides”, and edges connect two

sides rather than two nodes. In bidirected sequence graphs, a node’s sides correspond to the 5’

and 3’ ends of its DNA sequence. Nodes can be traversed either from left to right, which is

interpreted as the forward strand of the sequence, or from right to left, which is interpreted as

the reverse complement. This provides a natural means to encode DNA strandedness.

Longer sequences can be formed by concatenating the sequences of multiple adjacent

nodes together. These nodes form a path, which is defined as a list of oriented nodes (either

forward or reverse), such that the graph contains an edge between the adjacent sides of each

pair of subsequent oriented nodes in the list1. Some paths correspond to sequences of interest,

such as reference genomes or annotations of the reference. Because paths like these are so

frequently important in practice, our graph formalism also includes a set of paths along with the

graph’s node and edges.

1Unlike the usage in many graph theoretic contexts, we do not intend the term path to indicate that these nodes
must be distinct.

92

5.3.2 The HANDLEGRAPH interface

The libhandlegraph library describes an interface that exposes basic operations

on our sequence graph data model. The HANDLEGRAPH model focuses on five fundamental

entities in bidirected sequence graphs (Figure 5.1):

• Nodes identify pairs of complementary DNA strands and have unique numerical identi-

fiers (IDs).

• Strands represent one strand of a node’s DNA sequence.

• Edges link pairs of strands, in order.

• Paths represent sequences of interest as paths through the graph.

• Steps describe paths’ visits to nodes’ strands.

The defining feature of the model is that none of these entities are accessed directly.

Instead, they are accessed via handles, which are references modeled after the concept of file

handles. The handles are implemented as a data type with no methods and no prespecified mean-

ing for its contents. Thus, we say that handles are “opaque” in that user code cannot usefully

look inside them or manipulate their contents. Instead, the libhandlegraph interface requires

the sequence graph implementation to provide queries that consume and produce handles, to

expose graph information to users.

For example, we could obtain a handle to a strand from a HANDLEGRAPH implemen-

tation by providing a node’s ID and an orientation (forward or reverse). We could then provide

this handle to another of the graph’s methods to obtain handles to this strand’s neighbors, and

93

a further method would map the neighbors’ handles to their node IDs. Alternatively, we could

obtain a handle to a path from its name (e.g. “chr22”), and then iterate over handles to the path’s

steps to follow its course through the graph.

One benefit of this design is that any algorithm designed for one HANDLEGRAPH

implementation can be applied to all other implementations. Since the actual contents of a

handle are unspecified, this benefit is achieved while simultaneously maintaining flexibility in

the implementation. Another benefit is that, since the user works only through handles that

they cannot forge or modify, their ability to make mistakes can be restricted. For example, the

interface can enforce the constraints that define valid paths through bidirected graphs during

edge traversal. Furthermore, implementations can be made memory-safe by eliminating raw

pointers and other direct access to graph elements.

5.3.3 Graph implementations

We consider five implementations of the HANDLEGRAPH model. To ground our ex-

perimental results, here we we provide a high-level overview of each implementation. Two

implementations, VG and XG, have been described previously [70, 74]. The others are com-

bined in the libbdsg library (https://github.com/vgteam/libbdsg), which provides three

concrete implementations: HASHGRAPH, ODGI, and PACKEDGRAPH. Each implementation

represents a different tradeoff in terms of speed, memory use, and capabilities. All of the im-

plementations except XG are dynamic. They support efficient addition and deletion of nodes,

edges, paths, and steps, as well as some specialized methods such as splitting a node into mul-

tiple shorter nodes. Table 5.1 provides a high level summary of the differences between the

94

Figure 5.1: Entities in the bidirected sequence graph. Top: a variation graph showing nodes

(yellow rectangles), each of which contain a forward and reverse strand (red solid and dashed

rectangles, respectively). Strands show the node identifier, the direction (+ or −), and the

sequence of the strand. Note that reverse strands show the reverse complement sequence of the

forward strand. All edges are shown as connections between nodes, with forward-to-forward

edges denoted by solid lines, and reverse-to-reverse edges denoted by dashed lines. Two edges

that invert from forward to reverse and reverse to forward are shown with dotted lines. Edges

run from the strand at their beginning to that at their end, as indicated by the arrowhead. Bottom:

an illustration of four paths. Each has a name, and can be referenced by a handle, which are

omitted for brevity. Each path is shown in its natural direction as a series of connected steps

that refer to strands in the graph. The first two paths differ by a SNP, with one passing through

2+:T, and the other through 3+:G. The third path is the reverse complement of the first. The

fourth is the same as the first, but contains an inversion, passing through 5-:AATC rather than

5+:GATT.

95

libbdsg implementations.

5.3.3.1 VG

We have extended the graph representation in VG, previously described in [74], to

match the HANDLEGRAPH API. The backing data structures used remain the same. The graph

entities are stored as objects in a backing vector, and referred to internally by hash tables that

map between node identifiers and pointers into this vector. Edges are indexed in a hash table

mapping pairs of handles to edge objects. Paths are stored in a set of linked lists, with a hash

table mapping between nodes and path steps. This arrangement was tenable for the early de-

velopment of algorithms working on variation graphs. Its inefficiency, caused by unnecessary

overheads and data duplication, has resulted in significant difficulties for groups working with

VG. The other HANDLEGRAPH implementations respond to the limitations of this approach.

In version 1.22.0, vg was updated to use HASHGRAPH (below) as the default format, though it

remains compatible with all implementations described in this paper via the HANDLEGRAPH

API.

5.3.3.2 XG

XG was initially developed in response to the memory and runtime costs of VG,

which prevent its application to large graphs. It additionally provides positional indexes over

paths that are required for read mapping and variant calling, and is the graph data model used

in most established bioinformatic operations on variation graphs [74, 86]. Unlike other HAN-

DLEGRAPH implementations, XG is a static graph index. This permits a more powerful set of

96

efficient queries against the graph, especially for paths. The encoding is designed to balance

speed and low memory usage. The topology of the graph is encoded in a single vector of bit-

compressed integers, which promotes cache efficiency. Rank and select operations on succinct

bit vectors are used to provide random access over the variable-length records, which each en-

code a node’s sequence, ID, and edges. Embedded paths are encoded in variable-length integer

vectors with Elias gamma encoding. Rank and select operations on succinct bit vectors also

provide queries by base-pair position along paths. A detailed description of XG can be found

in [70].

5.3.3.3 HASHGRAPH

HASHGRAPH is a relatively simple encoding, which is largely similar to the original

VG graph. As such, it can be seen as a streamlined point of comparison for the other new

dynamic graph implementations. However, the simplicity of this encoding has the benefit of

allowing fast queries. Thus, even though HASHGRAPH still has relatively high memory re-

quirements, it can still be useful in high memory compute environments or for small sequence

graphs (such as subgraphs of genome graphs).

Like VG, HASHGRAPH encodes the topology of the graph in a hash table indexed

by node IDs. However, what were separate hash tables in VG have been consolidated to avoid

storing the keys multiple times. The hash table it uses is a drop-in replacement for the equiv-

alent standard library (STL) data structure, and has been shown to outperform it in empirical

evaluations [24]. Each hash table entry contains the sequence, an adjacency list of the edges

in two STL vectors, and a vector indicating the path steps that the node can be found on. The

97

graph’s paths are represented using doubly-linked lists to support efficient modification at any

position.

In contrast to the more memory-efficient implementations, all of these data structures

support computation in their native in-memory representation. Thus, the run time to access

graph elements does not also include decompressing the data. This is how HASHGRAPH main-

tains its comparative speed advantage.

5.3.3.4 ODGI

ODGI (Optimized Dynamic Graph Implementation) is based on a node-centric en-

coding that is designed to improve cache efficiency when traversing or modifying the graph.

This encoding is split between graph topology and paths, which is important for achieving a

balance of runtime performance and memory usage on graphs with large path sets. It uses delta

encoding of edges and path steps to reduce the cost of representing graphs with local partial

order and sparsity, both of which are common features of pangenome graphs. ODGI is the de-

fault data model of the ODGI toolkit (https://github.com/vgteam/odgi), which provides

high-level algorithms for graph manipulation and interrogation that are designed to work at the

scale of large pangenomes.

In ODGI, each node N = (B,P) is represented by a structure that contains a byte

array B = (Q ,E) encoding its sequence and associated edges, and a compressed integer vector

P = S1 . . .Ss describing the path steps that traverse it. The full graph model is simply an array

of these node records G = N1 . . .N|G | with some additional data structures to allow for random

access of paths by name, and to maintain important statistics about the size of the graph, its

98

node ID space, and its path set.

Each node’s sequence Q is stored using a full byte per character at the start of the

byte array B . This allows ODGI to represent protein as well as DNA sequence graphs, and

allows for copy-free reference to the node sequences. The edges that begin or end at the node

are recorded in the remainder of B , encoded as deltas between the rank of the other end of the

edge and the current node.

ODGI stores paths as bidirectional linked lists that allow efficient insertions, dele-

tions, and replacements of path steps. These paths are encoded in a manner that exploits com-

mon properties of pangenome graphs, and node-level data structures are organized to support

efficient operation on graphs with very deep path coverage. The path steps P = S1 . . .Ss on each

node are recorded as a series of records in a dynamic integer vector which is compressed so that

only the largest integer entry is stored at full bit-width [162]. Each step S = (pid ,δp,δn,rp,rn)

contains a path identifier pid , references to the previous δp and next δn node ID and strands on

the path encoded as deltas relative to the current node, and the ranks of the previous rp and next

rn steps among the path steps on their respective nodes. This path encoding scheme is similar

to that used in the dynamic GBWT [190], but differs in that the paths are not prefix-sorted.

5.3.3.5 PACKEDGRAPH

PACKEDGRAPH is designed to have a very low memory footprint. The backing data

structures are implemented using bit-compressed integer vectors. The bit-width of these vectors

is chosen dynamically, starting with a bit-width of 1 and then reallocating the vector at a higher

width whenever an edit operation introduces an integer that is too large to be represented with

99

the current width. In the typical case that the value of i-th entry in the vector is O(i), these

reallocations have an O(1) amortized run time per edit.

Many of the integer vectors tend to also have entries that are highly correlated with

their neighbors. PACKEDGRAPH exploits this characteristic to achieves greater compression by

only storing one entry per fixed-size window at full bit-width. The rest of the entries are stored

in a separate integer vector and expressed as a difference from that entry. Since the differences

within a window tend to be small, this encoding keeps the bit-width for each window small as

well.

The data associated with each node is recorded in several compressed integer vectors

(at the same index in each). Contrast XG and ODGI, which encode data in a single vector to

improve cache efficiency. Recording only one homogenous data type in a vector increases the

correlation between neighboring values, which in turn improves compression. The adjacency

list for the graph, the steps that each node is found on, and the paths themselves are represented

using linked lists. The linked lists reside within the same bit-compressed integer vectors, where

pointers are created by treating some integer entries as indexes into the vector itself. This pointer

encoding also guarantees the technical condition that accessing the i-th entry is O(i). The linked

lists that occur on every node (the adjacency lists and node step lists) are included in a single

vector across all nodes. This serves two purposes. First, the windowed compression scheme in

the integer vectors is inefficient if lists are smaller than the window size, as is often the case.

Second, due to the local partial order that is found in many pangenome graphs, neighboring

nodes often connect to the same nodes and are found on the same paths as each other. Thus, the

values they store are also highly correlated.

100

Model HashGraph ODGI PackedGraph

Design goal Simplicity, speed Memory efficiency Balanced
speed/memory

Topology data
structure

Hash table Single integer
vector

Several integer vectors

Topology
compression

None Delta encoding Windowed bit
compression

Sequence
compression

None None Bit compression

Pointer encoding Memory addresses Delta-encoded
ranks

Vector indexes

Table 5.1: Comparison of features between libbdsg graph implementations. The three
graph implementations all use adjacency lists to encode graph topology and linked lists to en-
code paths. The differences in encoding these structures reflects different design goals for each
implementation.

5.3.4 Python binding

We have implemented a Python binding to the graph implementations in libbdsg

using Pybind11 [95]. This allows the data structures to be used in Python applications, signifi-

cantly lowering the barrier-to-entry for pangenomic application developers. This functionality

is documented at https://bdsg.readthedocs.io, including a tutorial. This documentation

also serves as useful introduction to the HANDLEGRAPH API.

5.3.5 Code availability

Both libhandlegraph and libbdsg are open source under an MIT License. They

are available on GitHub at https://github.com/vgteam/libhandlegraph and https://

github.com/vgteam/libbdsg. Documentation for the two libraries, including the C++ han-

dle graph API, HASHGRAPH, ODGI, and PACKEDGRAPH, is available at https://bdsg.

101

Figure 5.2: Performance on a graph of structural variants from the HGSVC. Abbrevia-

tions used here and in subsequent figures and tables: vg = VG, hg = HASHGRAPH, og = ODGI,

pg = PACKEDGRAPH, xg = XG. All four new graph implementations compare favorably to VG.

PACKEDGRAPH tends to be the most memory efficient, HASHGRAPH tends to be the fastest,

and ODGI is balanced in between. XG provides good performance on both memory usage and

speed, but it is static.

readthedocs.io alongside the documentation for the Python binding.

5.4 Evaluation

5.4.1 Human genome with structural variants

We measured the core operation performance of the four graph implementations and

the graph class from the popular VG software (as implemented prior to version 1.22.0). In

102

particular, we measured 1) memory usage to construct a graph, 2) time to construct a graph, 3)

memory usage to load an already-constructed graph, and 4) time to access nodes, edges, and

steps of a path. These access operations are one of the major drivers of run time in pangenomic

applications, such as VG’s read mapping algorithm. Accesses were performed with a single

thread, and the reported access time is the average time taken when accessing each graph ele-

ment sequentially. All evaluations were performed on a 3.1 GHz Intel Xeon Platinum 8000 se-

ries processor. The presented results are from a graph describing the structural variants of the

Human Genome Structural Variation Consortium [31], which was recently used to genotype

structural variants [86]. Specifically, the graph consists of the GRCh38 primary scaffolds and

72,485 indel variants ranging in size from 50 bp to 76 kbp. The results generally match our

expectations based on the implementations’ design goals (Figure 5.2).

5.4.2 Genome graph collection

To compare the methods’ performances across a wide variety of different graphs, we

applied each to a collection of 2299 graphs collected during our research on graphical pange-

nomics. For each graph and graph implementation, we measured the same metrics described

in the previous section as well as various graph properties including size, edge count, cyclicity,

and path depth. We summarize these results in Figures 5.3 and 5.4.

For graph construction and loading, we observe similar trends as for the HGSVC

graph. VG’s performance in terms of memory usage is very poor, both during construction

and load. For construction and load, all models exhibit largely linear scaling characteristics,

outside of very small graphs where static memory overheads dominate. PACKEDGRAPH yields

103

build m
em

ory (bytes)
load m

em
ory (bytes)

(1
,1

e+
03

]

(1
e+

03
,1

e+
04

]

(1
e+

04
,1

e+
05

]

(1
e+

05
,1

e+
06

]

(1
e+

06
,1

e+
07

]

(1
e+

07
,1

e+
08

]

(1
e+

08
,1

e+
09

]

(1
e+

09
,1

e+
10

]

1e+07

1e+08

1e+09

1e+10

1e+11

1e+07

1e+08

1e+09

1e+10

graph sequence length (bp)

model

vg

hg

og

pg

xg

Figure 5.3: Memory requirements for model construction and loading. Memory costs

versus graph sequence size for the graph collection, colored by HANDLEGRAPH model. The

memory requirements for graph construction tend to be higher than those for loading the graph

model. All methods show fixed overheads of several megabytes, seen in the flat tail to the left

of both plots. Outside of this region, all methods show roughly linear scaling in both build and

load costs per input base pair. The relative differences in memory costs appear to be stable

between different methods across many orders of magnitude in graph size.

104

edges per second
handles per second

steps per second

(1
,1

e+
03

]

(1
e+

03
,1

e+
04

]

(1
e+

04
,1

e+
05

]

(1
e+

05
,1

e+
06

]

(1
e+

06
,1

e+
07

]

(1
e+

07
,1

e+
08

]

(1
e+

08
,1

e+
09

]

(1
e+

09
,1

e+
10

]

1e+05

1e+06

1e+07

1e+06

1e+07

1e+08

1e+06

1e+07

1e+08

graph sequence length (bp)

model

vg

hg

og

pg

xg

Figure 5.4: Graph element enumeration performance. Iteration performance for edges,

nodes, and path steps for the full graph collection, shown in terms of elements per second.

HASHGRAPH provides the highest performance for all element iteration types on smaller

graphs, but this performance falls of with larger graphs, presumably due to scaling properties of

the backing hash tables. The same pattern can be seen for VG, although the overall performance

is worse. Although it has the worst edge iteration performance, PACKEDGRAPH provides good

performance on node and path step iteration. The relative path encoding in ODGI yields poor

performance on path iteration, and node decoding overheads appear to reduce its node itera-

tion performance, but it has good graph topology traversal performance, perhaps due to cache

efficiency of the edge encoding. XG provides excellent iteration performance in all cases.

105

the best memory performance for larger graphs (which are mostly the chromosomes of the 1000

Genomes Project graph), while for the medium-sized graphs in the collection (∼1 Mbp), ODGI

requires less memory.

For graph queries and iteration, the relative performance of the models is largely

maintained across the entire range of graph sizes. However, we observe that the hash-based

models (VG and HASHGRAPH) have very good performance for smaller graphs (in handle and

edge enumeration) but decrease in throughput as the graph size increases. Smaller, less dramatic

decreases in performance can be seen for the other implementations. For path enumeration, the

highest-performing methods are XG and HASHGRAPH at approximately 10 times faster than

ODGI, whose relative path storage is costly to traverse.

5.4.3 1000 Genome Project chromosome graphs

Variation graphs built from the 1000 Genomes Project (1000GP) variant catalog and

the human reference genome have fairly homogenous and regular features. In addition, they

have connected components of very different sizes, each corresponding to a chromosome. This

provides a natural, fairly controlled means to explore the scaling behavior of our data structures.

Moreover, graphs of this form are seeing increasing use in variant-aware resequencing analyses

[47]. Thus, the performance of data structures on these graphs is of general interest.

We first evaluated the scaling performance of the various HANDLEGRAPH implemen-

tations relative to node count for each of the nuclear chromosomes in the 1000GP (Figure 5.5).

We find that for all methods, load memory scales almost perfectly with node count, with an

average R2 = 0.998. Due to differences in variant density among the chromosomes, the average

106

1

1

1

1

1
10

10

10

10

10

11

11

11

11

11

12

12

12

12

12

13
13
13

13

13

14
14
14

14

14

15
15
15

15

15

16
16
16

16

16
17
17
17

17

17
18
18
18

18

18
19
19
19

19

19

2

2

2

2

2
20
20
20

20

20212121

21

21
222222

22

22

3

3

3

3

3

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

7

7

7

7

7

8

8

8

8

8

9

9

9

9

9

X

X

X

X

X
YYY

Y

Y0.0e+00

5.0e+09

1.0e+10

1.5e+10

2.0e+10

5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07
graph node count

lo
ad

 m
em

or
y

(b
yt

es
) model

a

a

a

a

a

vg

hg

og

pg

xg

Figure 5.5: Load memory versus node count for chromosome graphs built from 1000

Genomes Project variants and GRCh37. For each method, memory requirements are more

strongly correlated with the number of nodes in the graph (R2 = 0.998) than with the graph

sequence length (R2 = 0.986). Although the memory requirements are dominated by graph

sequence size, node count will increase with variant density. Methods generally incur an over-

head for each node that is larger than the sequence length. Linear scales clarify that the absolute

difference in performance between VG and the other methods is substantial.

107

Build Load Iteration rate (millions)

Model B/bp B/bp Node/s Edge/s Step/s

vg 80.2 77.2 24.6 2.8 2.9

hg 36.7 23.9 59.5 18.9 127.2
og 30.3 13.7 24.1 11.5 8.2

pg 37.6 3.80 63.7 4.6 24.3

xg 54.3 9.31 54.2 20.5 117.0

Table 5.2: Performance on 1000 Genomes Project chromosome graphs. Average build
memory, load memory, and iteration times for graph elements for the chromosome-level graphs
built from all the variants in the 1000 Genomes Project and the GRCh37 reference genome
against which the variant set was originally reported. VG requires ∼ 20 times as much
memory to load the graphs as PACKEDGRAPH, while even the most costly libbdsg model
(HASHGRAPH) requires ∼ 1/3 as much memory. In these graphs, ODGI provides the lowest
performance for handle iteration. However, in all other metrics, VG performs much worse than
the other models.

correlation relative to sequence length is lower (R2 = 0.986).

In Table 5.2, we report the average memory performance of the methods relative to

graph sequence length, and also the iteration performance in terms of elements per second. We

find that the best-performing method in terms of memory usage is PACKEDGRAPH, which con-

sumes around 1/20th the memory of VG per base-pair of graph in the 1000GP set. Moreover, it

provides much better iteration performance for nodes (handles), edges, and path steps. HASH-

GRAPH and XG have similar iteration performance, but XG, by virtue of its use of compressed,

static data structures, requires less than half as much memory. ODGI optimized for efficient

dynamic operations on graphs with higher path coverage, and in general is not as performant as

other methods on this set.

108

5.5 Discussion

We have presented a set of simple formalisms, the HANDLEGRAPH abstraction, which

provides a coherent interface to address and manipulate the components of a genome variation

graph. To explore the utility of this model, we implemented data structures to encode variation

graphs and matched them to this interface. This allowed us to directly compare these HAN-

DLEGRAPH implementations on a diverse set of genome graphs obtained during our research.

These experiments reveal that genome graphs need not pay the computational expense of the

early versions of VG. The best-performing models require an order of magnitude less mem-

ory than VG while providing higher performance for basic graph access operation and element

iteration. For these reasons, VG has transitioned to using these newer graph implementations.

The efficiency of these methods and their encapsulation within a coherent program-

ming interface will support their reuse within a diverse set of application domains. Variation

graphs have deep similarity with graphs used in assembly; these libraries could be used as the

basis for assembly methods. They could also be used for genotyping and haplotype inference

methods based on graphs [69].

Ongoing work is establishing large numbers of highly-contiguous whole genome as-

semblies for humans (https://humanpangenome.org/). Improvements in sequencing tech-

nology are likely to make such surveys routine. It is natural to consider a pangenome refer-

ence system, based on the whole genome alignments of such assemblies, as the output of these

pangenome projects. Recent results demonstrate that many basic bioinformatic problems can

be generalized to operate on such structures. Should these pangenome representations become

109

common or standard, then variation graph data structures like those we have presented here will

form the basis for a wide range of pangenomic methods.

110

Chapter 6

Automated index coordination within the VG

toolkit

6.1 Introduction

Since its initial publication, VG [74] has become one of the most widely used software

tools for graph-based pangenomics. Although the VG toolkit has many functionalities, it is best

known for read mapping to sequence graphs. Indeed, VG contains three separate mapping

algorithms:

1. vg map: the original, highly accurate mapping algorithm [74]

2. vg giraffe: the much faster and still accurate haplotype-based mapping algorithm [191]

3. vg mpmap: the splice-aware RNA-seq mapping algorithm that can produce multipath

alignments [187]

111

Each of these mapping tools depends on a sizeable body of research in specialized

data structures and algorithms [32, 62, 189, 190]. As a result, they each require a different set

of indexes to be built before mapping. Historically, navigating the indexing process has been a

pain point for VG’s users. The indexing algorithms and their documentation are spread across

several VG subcommands, and the steps need to be applied in a specific order to produce valid,

usable results.

The VG autoindex utility is designed to alleviate the pain involved in this process.

Rather than having an interface based on which index the user wants to produce, it has an

interface based on which mapping tool they want to run. The inputs are all common interchange

formats like FASTA, VCF, and GFA. Internally, autoindex has the logic of the VG team’s best

practice indexing pipelines built in. Power users might still find need for the individual indexing

subcommands, but the goal of autoindex is to produce indexes for any common use case in a

single, easily-understood shell command.

6.2 Methods and implementation

The central abstraction in autoindex is the recipe graph (Figure 6.1). This graph is

a bipartite directed acyclic graph with two classes of nodes: file nodes and recipe nodes. The

file nodes correspond to either input data (provided in interchange formats) or to VG indexes.

The recipe nodes correspond to algorithms to produce VG indexes from a set of file nodes,

which may correspond either to input data or to intermediate indexes. Each recipe node ex-

presses a many-to-many relationship between file nodes: the recipe may require multiple files

112

as input, and it may produce multiple files as output. This graph is hard-coded into VG. Each

of the constituent recipes is based on the best practices developed for the VG developers’ own

pipelines.

Chunked GTF/GFF

0

01

01

Chunked GTF/GFF + Chunked Reference FASTA + Chunked VCF

1 1

1

Chunked GTF/GFF + Chunked Reference FASTA + Chunked VCF w/ Phasing

0 0 0

Chunked Reference FASTA

12

01

Chunked Reference FASTA + Chunked VCF

3

2

Chunked Reference FASTA + Chunked VCF w/ Phasing

2 1

Chunked VCF

Chunked VCF w/ Phasing

0

00

Distance Index

0

GBWT

0

0

GBWTGraph

GCSA

GCSA + LCP

0 0

GTF/GFF

0 0

Giraffe GBWT

0

Haplotype-Pruned Spliced VG

0

Haplotype-Pruned Spliced VG + Unfolded Spliced NodeMapping

00

Haplotype-Pruned VG

0

Haplotype-Pruned VG + Unfolded NodeMapping

00

Haplotype-Transcript GBWT

Haplotype-Transcript GBWT + Spliced VG w/ Transcript Paths + Unjoined Transcript Origin Table

00 0

Insertion Sequence FASTA

LCP

MaxNodeID

0

MaxNodeID + VG

1 1

MaxNodeID + VG w/ Variant Paths

0

0

Minimizers

Pruned Spliced VG

1

Pruned VG

1

Reference FASTA

0 0

Reference GFA

0

Snarls

0

Spliced Distance Index

Spliced GBWT

0

Spliced GCSA

Spliced GCSA + Spliced LCP

0 0

Spliced LCP

Spliced MaxNodeID

0

Spliced MaxNodeID + Spliced VG

0

1

Spliced MaxNodeID + Spliced VG w/ Variant Paths

1

0

Spliced Snarls

0

Spliced VG

Spliced VG w/ Transcript Paths

0

Spliced VG w/ Variant Paths

0

Spliced XG

0

Transcript Origin Table

Unfolded NodeMapping

Unfolded Spliced NodeMapping

Unjoined Transcript Origin Table

0

VCF

VCF w/ Phasing

0

VG

0

VG w/ Variant Paths

0

XG

10

Chunked GTF/GFF

0

01

01

Chunked GTF/GFF + Chunked Reference FASTA + Chunked VCF

1 1

1

Chunked GTF/GFF + Chunked Reference FASTA + Chunked VCF w/ Phasing

0 0 0

Chunked Reference FASTA

12

01

Chunked Reference FASTA + Chunked VCF

3

2

Chunked Reference FASTA + Chunked VCF w/ Phasing

2 1

Chunked VCF

Chunked VCF w/ Phasing

0

00

Distance Index

0

GBWT

0

0

GBWTGraph

GCSA

GCSA + LCP

0 0

GTF/GFF

0 0

Giraffe GBWT

0

Haplotype-Pruned Spliced VG

0

Haplotype-Pruned Spliced VG + Unfolded Spliced NodeMapping

00

Haplotype-Pruned VG

0

Haplotype-Pruned VG + Unfolded NodeMapping

00

Haplotype-Transcript GBWT

Haplotype-Transcript GBWT + Spliced VG w/ Transcript Paths + Unjoined Transcript Origin Table

00 0

Insertion Sequence FASTA

LCP

MaxNodeID

0

MaxNodeID + VG

1 1

MaxNodeID + VG w/ Variant Paths

0

0

Minimizers

Pruned Spliced VG

1

Pruned VG

1

Reference FASTA

0 0

Reference GFA

0

Snarls

0

Spliced Distance Index

Spliced GBWT

0

Spliced GCSA

Spliced GCSA + Spliced LCP

0 0

Spliced LCP

Spliced MaxNodeID

0

Spliced MaxNodeID + Spliced VG

0

1

Spliced MaxNodeID + Spliced VG w/ Variant Paths

1

0

Spliced Snarls

0

Spliced VG

Spliced VG w/ Transcript Paths

0

Spliced VG w/ Variant Paths

0

Spliced XG

0

Transcript Origin Table

Unfolded NodeMapping

Unfolded Spliced NodeMapping

Unjoined Transcript Origin Table

0

VCF

VCF w/ Phasing

0

VG

0

VG w/ Variant Paths

0

XG

10

a b

Figure 6.1: Two plans in the recipe graph. Plans for the indexes required by a vg mpmap

and rpvg and by b vg giraffe are highlighted in the recipe graph. Rectangular nodes corre-

spond to indexes or data files, and circular nodes correspond to recipes. Lower numbers on the

recipe nodes indicates higher priority. Gray shading indicates provided data, and blue shading

indicates the target indexes being constructed.

6.2.1 Planning index construction pipelines

The autoindex utility is equipped with an algorithm that determines the best pipeline,

referred to as a plan, to construct any index in the recipe graph using a given set of inputs.

Recipes are labeled with a priority level: a total ordering that is used to determine which recipe

113

is preferred when more than one recipe could be used to construct the same index. A plan is

considered suboptimal whenever a higher priority recipe could be used to construct any of its

indexes. In general, higher priority recipes correspond to improved versions of indexes that can

be constructed using additional information. For example, path queries can be improved if the

variants in a VCF file are phased [190].

The planning algorithm uses an exhaustive search to find the optimal plan. To begin,

all file nodes that have been provided as input data are labeled complete. The search begins

by initializing a queue with the target index. In each iteration, the lowest-valued file node

(according to the partial order defined by the recipe graph, which is a DAG) on the queue is

de-queued. If this file node is labeled complete, nothing is added to the queue. Otherwise, the

file node’s highest-priority recipe is added to the plan and the inputs for that recipe are added

to the queue. If there is no recipe to construct the index, the search backtracks through the plan

marking recipes impossible until finding a file node that has remaining recipes that have not yet

been marked impossible. This algorithm is exponential in the worst case. However, the recipe

graph is fairly small, and in practice the planning process takes a negligible amount of time.

The indexes required for each of VG’s mapping tools are hard-coded into the au-

toindex utility. This is what allows autoindex to provide its tool-oriented interface. The user

requests whatever indexes are required to use a tool. The autoindex utility then looks up a list of

indexes that are sufficient to run that tools and finds the optimal plan to construct each of them

based on the available data. The individual index’s plans are then merged into one plan, and the

pipeline is executed.

This design has several benefits. If pipelines were described explicitly, it would be

114

challenging to design them to adapt appropriately when different data sources are available. In

addition, many intermediate indexes are shared across different pipelines. Constructing these

indexes in explicit plans would require either significant duplicated code or complicated hard-

coded logic. Instead, the autoindex utility pushes all of that complexity into the planning algo-

rithm. Each recipe can be developed as an atomic unit, which makes them easy to maintain.

It is also easy to extend the indexing ecosystem within VG, which can be accomplished by

adding file nodes and recipes. The logic of integrating these new indexes into pipelines is then

determined automatically.

6.2.2 Improving the computational performance of indexing pipelines

The VG autoindex utility is designed to perform well on a moderately large compute

server, which is generally the computational environment that pangenomics practitioners oper-

ate in. Accordingly, there is likely to be a significant number of compute threads available, as

well as a reasonably large bank of RAM. In our experience, it is essential that indexing pipelines

utilize upwards of 8 threads in order to be practical at the scale of eukaryotic pangenomes. Ac-

cordingly, autoindex must be designed so that it can use these compute resources effectively.

Autoindex’s primary strategy for multithreading is to chunk input data according to

chromosomes or contigs. Many indexes can be constructed fully in parallel across these chunks.

However, in the final steps, it is generally necessary to merge these chunks with a single-

threaded algorithm to produce a usable index for mapping. Up until that point, a consistent

chunking of contigs is maintained across all recipes. The autoindex utility also uses a schedul-

ing algorithm that attempts to stay within the constraints of available memory. It estimates the

115

memory required to construct each chunk, and only executes the construction algorithm if there

is sufficient memory available.

116

Part IV

Graph theoretic contributions

117

Chapter 7

Identifying hierarchical sites of variation in a

pangenome graph

7.1 Preamble

This chapter consists of the majority of the paper “Superbubbles, Ultrabubbles and

Cacti”, which was presented at the 2017 meeting of RECOMB and subsequently published

in Journal of Computational Biology [154]. I was not a primary author on this publication.

However, I contributed in whole the sections titled Compatible Snarl Families and Ultrabubbles

and Cacti, including both the mathematical proofs and the actual writing. This chapter includes

most of the rest of the main text, as it provides motivation for the problem and introduces

mathematical notation that is used in my section. These portions were primarily written by

Benedict Paten. I have omitted the results section, which is not necessary to understand my

contributions. I have also omitted proofs in the appendices for all theorems that I did not prove

118

myself.

7.2 Introduction

Graphs are used extensively in biological sequence analysis, where they are often

used to represent uncertainty about, or ensembles of, potential nucleotide sequences. Several

subtypes have become especially prominent for sequence representation, in particular the De

Bruijn graph [51, 159], the string graph [143], the breakpoint graph [4, 158] and the bidirected

graph (aka sequence graph) [60, 135].

In the context of de novo sequence assembly several characteristic types of subgraph

are recognised, in particular the bubble [218], a pair of paths that start and end at common

source and sink nodes but are otherwise disjoint. In the context of sequence analysis, a bubble

can represent a potential sequencing error or a genetic variation within a set of homologous

molecules. An efficient algorithm for bubble detection was proposed by [20].

A generalization of the notion of a bubble, the superbubble is a more complex sub-

graph type in which a set of (not necessarily disjoint) paths start and end at common source and

sink nodes. This problem was initially proposed by [150], who gave a quadratic solution. [22]

recently provided a linear time algorithm for superbubbles on directed acyclic graphs (DAGs).

This result, when paired with a previous linear time transformation of the problem of super-

bubbles on directed graphs to superbubbles on DAGS [201], yields a linear cost solution for

computing superbubbles on digraphs. For a review of superbubbles and their use in sequence

analysis see [88]. In this paper we generalize the idea of superbubble to the more general case of

119

a bidirected graph, connect a slight generalization of the superbubble, which we call the ultra-

bubble, and show how it relates to the decomposition of the graph into 2- and 3-edge connected

components.

7.3 Methods

7.3.1 Directed, Bidirected and Biedged Graphs

A bidirected graph D = (VD,ED) is a graph in which each endpoint of every edge

has an independent orientation (denoted either “left” or “right”), indicating if the endpoint is

incident with the left or right side of the given vertex. The sides of D are therefore the set

VD×{le f t,right}, and each edge in ED is a pair set of two sides (Fig. 7.1). We say for all

x ∈VD, (x, le f t) and (x,right) are opposite sides.

Any digraph is a special case of a bidirected graph in which each edge connects a

left and a right side (by convention we here consider the right side to be the outgoing side and

the left side the incoming side, so that the conversion from a digraph to a bidirected graph is

determined; see Fig. 7.1).

A biedged graph is a graph with two types of edges: black edges and grey edges, such

that each vertex is incident with at most one black edge (Fig. 7.1(C)).

For any bidirected graph D there exists an equivalent biedged graph B(D)= (VB(D),EB(D))

where:

• VB(D) =VD×{le f t,right}, the sides of VD.

• EB(D) = SB(D)∪ED, where ED are the grey edges,

120

a
b

d
c

g hfe

(B)

(C)
a

b

c
d f g he

a
b

d
c

g hfe

(A)

Figure 7.1: (A) A digraph. (B) A bidirected graph. Each node is drawn as a box and the

orientation for each edge endpoint is indicated by the connection to either the left or right side

of the node. The graph excluding the dotted edges is the equivalent bidirected graph for the

digraph in (A); the dotted edges encode an inversion that cannot be expressed in the digraph

representation. (C) A biedged graph equivalent to the bidirected graph shown in (B).

• and SB(D) = {{(x, le f t),(x,right)}|x ∈VD} are the black edges.

For a vertex x ∈VB(D) we use the notation x̂ to denote its opposite side.

Clearly the bidirected and biedged representations are essentially equivalent, and the

choice to use either one is largely a stylistic consideration. For the remainder of this paper we

will mostly use the biedged representation. As any digraph is a special case of a bidirected graph

and any bidirected graph has an equivalent biedged graph, so any digraph has an equivalent

biedged graph.

121

7.3.2 Directed Walks on Biedged and Bidirected Graphs

A directed walk on a bidirected graph is a walk that at each visited vertex exits the

opposite side to that which it enters. On a biedged graph a directed walk is equivalent to a walk

that alternates between black and grey edges. A directed cycle is a closed directed walk that

starts and ends either on the same side (e.g. a self-loop edge), or on opposites sides of a vertex

(in which case the start and end is arbitrary due to symmetry). A bidirected or biedged graph is

acyclic if it contains no directed cycles.

These definitions are a generalization of a directed walk on a digraph. In a bidirected

representation of a digraph all edges in a directed walk are all left-to-right or all right-to-left.

A directed walk on a general bidirected (or biedged) graph can mix these two types and ad-

ditionally include edges that do not alternate the orientation of their endpoints (e.g. left-right,

right-right and left-left edges).

Given these generalizing relationships, clearly a digraph D is acyclic iff B(D) is

acyclic. Note that any acyclic biedged graph can also be converted into an equivalent directed

acyclic graph (DAG):

Lemma 1 For any acyclic biedged graph B(D) there exists an isomorphic biedged graph B(D)

such that D is a DAG.

Proof For each connnected component in B(D), use a depth first search (DFS) beginning at

side x to label the sides either ‘red’ or ‘white’: If x is not already labelled then label x red

and x̂ white. For each grey edge incident with x̂, if the connected side is not labeled, label the

connected side red and continue recursively via DFS. In this way all the sides in the connected

122

component containing x will be labeled in a single DFS. If during the recursion the connected

side encountered is already labelled then it must be labeled red, else there would exist a directed

cycle, a contradiction. Use the labelling to create B(D), isomorphic to B(D) but replacing the

orientation of the sides so that each side labeled white is a left side and each side labeled red is

a right side. All edges in B(D) connect a left and a right side.

7.3.3 Superbubbles, Snarls and Ultrabubbles

Repeating the definition from [150], any pair of distinct vertices (x,y) in a digraph D

is called a superbubble (Fig. 7.2(A)) if:

• reachability: y is reachable from x.

• matching: The set of vertices, X , reachable from x without passing through y is equal to

the set of vertices from which y is reachable without passing through x (passing through

here means to enter and then exit a vertex on the path).

• acyclicity: The subgraph induced by X is acyclic.

• minimality: No vertex in X other than y forms a pair with x that satisfies the criteria

defined above, and similarly for y.

We call the subgraph induced by X the superbubble subgraph.

To generalize superbubbles for biedged graphs we introduce the notion of a snarl,

a minimal subgraph in a biedged graph whose vertices are at most 2-black-edge-connected (2-

BEC) to the remainder of the graph (two vertices in a biedged graph are k-black-edge-connected

123

(k-BEC) if it takes the deletion of at least k black edges to disconnect them). In a biedged graph

B(D) a pair set of distinct, non-opposite vertices {x,y} are a snarl (Fig. 7.2(B)) if:

• seperable: The removal of the black edges incident with x and y disconnects the graph,

creating a separated component X containing x and y and not x̂ and ŷ.

• minimality: No pair of opposites {z, ẑ} in X exists such that {x,z} and {y, ẑ} fulfils the

above criteria.

We call a vertex not incident with a grey edge a tip [218]. In a biedged graph B(D) a

snarl is an ultrabubble if its separated component is acyclic and contains no tips.

The following shows that a superbubble in a digraph is an ultrabubble in the equivalent

biedged graph.

Lemma 2 For any superbubble (x,y) in a digraph D, the pair set {x′= (x,right),y′= (y, le f t)}

is an ultrabubble in B(D).

Proof Let d and e be the black edges incident with x′ and y′, respectively, and let X be the

superbubble subgraph of (x,y).

We start by proving that {x′,y′} satisfies the separable criteria. As y is reachable from

x by definition there exists a directed path in B(D) between x′ (the right side of x) and y′ (the

left side of y) that excludes d and e. After the deletion of these black edges x′ and y′ therefore

remain connected. If the separable criteria is not satisfied the deletion of d and e must therefore

not disconnect x′ and y′ from either or both x̂′ and ŷ′, without loss of generality assume x′ (and

therefore y′) remains connected to x̂′.

124

If x̂′ is on a directed walk from x′ that excludes d then the addition of d to this walk

defines a directed cycle in B(D). As all nodes reachable from x are in the separated component

X, the existence of this cycle in B(D) implies the existence of a corresponding directed cycle in

X, a contradiction.

If there exists a non-directed walk from x′ to x̂′ then let z′ be the last node on the walk

from x′ such that the subwalk between x′ and z′ is a directed walk. By definition, there exists

directed walk from z′ to y′. The next node on the walk from x′ to x̂′ after z′ is, by definition, not

reachable from x′ but y′ must be reachable from this node. This implies a contradiction of the

matching criteria for the corresponding nodes in X.

We have therefore established that {x′,y′} fufills the seperable criteria. We have al-

ready established that iff a digraph is acyclic its equivalent biedged graph is acyclic, therefore

the seperated component of {x′,y′} is acyclic. As every node in X is both reachable from x and

on a path from y, the separated component clearly contains no tips.

It remains to prove that {x′,y′} fufills the minimality criteria. If {x′,y′} do not satisfy

the minimality criteria without loss of generality there exists a node z′ in the separated compo-

nent of {x′,y′} such that {x′,z′} are separable. It follows that all directed paths from x′ to y′

that exclude d and e visit z′, and for the node z in D contained in z′, (x,z) fulfills (clearly) all

the superbubble criteria, a contradiction.

7.3.4 Cactus Graphs

A cactus graph is a graph in which any two vertices are at most two-edge connected

[84]. In a cactus graph each edge is part of at most one simple cycle, and therefore any two

125

(A)

d
e

g
f l

k

h j
i

a
b

c qm p
o

n

r1 1

4

4

9 9

a
b

c
d

e

f
g

h

i

j

k

l m
n

o
p q

r1 1

4
4

9 9

6

6

10

10

12 12
5

5

7

7

8

8

10
2

2

3

3

11 11

(B)

Figure 7.2: (A) Superbubbles in a digraph. The superbubbles are indicated by pairs of num-

bered arrows, numbered consistently with (B). (B) A biedged graph representation of the di-

graph in (A). The snarls are illustrated by numbered arrows, the ultrabubbles are those num-

bered 1, 4, 9 and 12. Note, a side incident with a black bridge edge may be in multiple snarls

(see snarls numbered 10).

126

simple cycles intersect at most one vertex.

For a graph G = (VG,EG) let G′ = (VG′ ,EG′) be a multigraph created by merging

subsets of the vertices, such that:

• VG′ is a partition of VG,

• EG′ = {{aG′(x),aG′(y)}|{x,y} ∈ EG} is a multiset.

where aG′ : VG → VG′ is a graph homomorphism that maps each vertex in VG to the set in VG′

that contains it.

Merging all equivalence classes of 3-edge connected (3-EC) vertices in a graph results

in a cactus graph [153].

For a biedged graph B(D) let C(D) be the cactus graph created by first contracting all

the grey edges in B(D) then for each equivalence class of 3-EC vertices in the resulting graph

merging together the vertices within the equivalence class (Fig. 7.3(A-C)). As with G′ and G,

VC(D) is a partition of the vertices of VB(D), and EC(D) = {{aC(D)(x),aC(D)(y)}|{x,y} ∈ EB(D)} is

a multiset.

For a vertex x ∈ VB(D) we call aC(D)(x) its projection (in C(D)). Similarly for a set

of vertices X ⊂ VB(D) we call {aC(D)(x)|x ∈ X} the projection of X (in C(D)). Let bC(D)(x) =

{aC(D)(x),aC(D)(x̂)}, which is the projection of the black edge incident with x in C(D).

Appendix 1 of [154] (omitted in this chapter) gives lemmas that make explicit the

relationship between the edge connectivity of vertices in B(D) and C(D), and which we use to

prove the relationship between the snarls of B(D) and C(D).

127

a
b

c
d

e

f
g l

m

pq

h j

r

1 1

4
4

9
9 12

12
2

2 3

3 5

5

6

6

7

7 8 8

10

10
10 11

11

a
b

c
d

e

f
g

h

i

j

k

l m
n

o
p q

r1 1

4
4

9 9

6

6

10

10

12 12
5

5

7

7

8

8

10
2

2

3

3

11 11

a
b

c
d

e

f
g

k

h

i

j1 1

4
4

9
9

2

2 3

3 5

5

6

6

7

7 8 8 m
n

o

p
r

11

11

l

q

10

10

10

12

12

10

k

n

oi
a d l q

r
1 1

44

10
10

(A)

(B)

(C)

(D)

Figure 7.3: (A) A biedged graph B(D) with the snarls indicated by pairs of numbered arrows.

(B) The graph in (A) after contracting the grey edges. (C) The cactus graph C(D) for B(D), con-

structed by merging the vertices in each 3-EC in (B). (D) The bridge forest D(D), constructed

by constracting the edges in simple cycles in (C).

128

7.3.5 Snarls and Cacti

A pair set of distinct vertices {x,y} in B(D) are a chain pair if they project to the

same vertex in C(D) and their incident black edges project to the same simple cycle in C(D)

(e.g. pairs of arrows in simple cycles in Fig. 7.3(C)). A cyclic sequence of chain pairs within

the same simple cycle in C(D) and ordered according to the ordering of this simple cycle is a

(cyclic) chain. Contiguous chain pairs in a chain share two opposite sides of a black edge in

B(D).

For a cactus graph C(D), the graph D(D) resulting from contracting all the edges in

simple cycles in C(D) is a called a bridge forest (Fig. 7.3(D)).

A pair set of distinct vertices {x,y} in B(D) are a bridge pair if they project to the

same vertex in D(D) and both their incident black edges are bridges (e.g. pairs of arrows num-

bered 1 and 2 in Fig. 7.3(D)). A maximum sequence of bridge pairs within D(D) connected by

incident nodes with degree two is an (acyclic) chain. As with chain pairs, contiguous bridge

pairs in a chain share two opposite sides of a black (bridge) edge in B(D).

Theorem 1 The set of snarls in B(D) is equal to the union of chain pairs and bridge pairs.

Proof Follows from Lemmas 10 and 11 given in Appendix 2 in [154] (omitted from this chap-

ter).

Given Theorem 1 to calculate the set of snarls for a given biedged graph it is sufficient

to calculate the cactus graph to give the set of snarls that map to chain pairs and the bridge forest

to calculate the set of snarls that map to bridge pairs. Constructing a cactus graph of the type

described for a biedged graph is linear in the size of the biedged graph (using the algorithm

129

described in [153]), and clearly the cost of then calculating the bridge forest from the cactus

graph is similarly linear. The number of chain pairs is clearly linear in the size of the biedged

graph, however, the number of bridge pairs is potentially quadratic in the number of bridge

pairs, so enumerating these latter snarls has potentially worst case quadratic cost in terms of the

size of the biedged graph. Below we consider ways to prune the set of snarls by using their

natural nesting relationships to create a hierarchy of snarls that is at most linear in the size of

the biedged graph.

7.3.6 Compatible Snarl Families

One particularly attractive feature of superbubbles is that they have nested contain-

ment relationships. That is, superbubbles have subgraphs that are either strictly nested or dis-

joint. Accordingly, a digraph is partitioned into a set of top level superbubble subgraphs and

other graph members not contained in a superbubble subgraph, and each top level superbubble

component then contains one or more child superbubbles, forming a tree structure. The situ-

ation is more complex for snarls. The separated component of snarls can overlap (Fig. 7.4)

such that each partially contains the other. To create a properly nested hierarchy of snarls it is

therefore necessary to exclude some snarls.

We will call a family of snarls compatible if all pairs of distinct snarls in the family

have snarl subgraphs that are either disjoint or nested. A compatible family of snarls has a

nesting structure that is a forest, similar to superbubbles. The following theorem provides a

sufficient condition for constructing such a family in many bidirected graphs.

Theorem 2 In a connected biedged graph with at least one black bridge edge, the family of

130

a

b

c

d

a

b

c

d

(A) (B)

1 2 3 4

Figure 7.4: Overlapping snarls. (A) A bidirected graph, its corresponding (B) cactus graph.

The snarl numbered 2 contains the snarl numbered 4, similarly the snarl numbered 3 contains

the snarl numbered 1. The snarls numbered 2 and 3 overlap.

snarls whose subgraphs have no black bridge edges is compatible.

In addition, the next theorem shows that this family of snarls is a generalization of ultrabubbles.

Theorem 3 No ultrabubble contains a black bridge edge in its subgraph.

Proofs of these theorems are included in Appendix B.

The bridge edge condition can also be used to construct a compatible family of snarls

in a graph with no black bridge edges. To do so, we break one black edge into two tips. Each of

these tips is then a bridge edge, so the family of snarls we construct from the modified graph is

compatible. However, the family of snarls we obtain will depend on our choice of a black edge

to break. Heuristically, an edge corresponding to a highly conserved genomic element should

be chosen, since by construction it will not occur in any snarl’s subgraph.

Given a snarl decomposition, the following algorithm will filter them down to the

compatible family we have described:

• Iterate over the black bridge edges of the graph (i.e. the edges of D(D))

• For a bridge edge (u, û), if either u or û is the boundary of a snarl, mark that snarl as not

containing (u, û).

131

• Initialize a queue with u and û, and traverse outward in breadth-first order, ignoring re-

strictions on directed biedged walks.

• Upon reaching a node x that is a boundary for a snarl {x,y}, if neither y, x̂, nor ŷ have

been traversed, mark the snarl as containing (u, û).

• Upon reaching a node x̂ whose opposite is boundary for a snarl {x,y}, if neither ŷ, x, nor

y has been traversed, mark the snarl as not containing (u, û).

• After completing every traversal, retain only snarls that were never marked as containing

a black bridge edge.

The validity of this algorithm is proven by Lemma 19 in Appendix B. Naively, this

algorithm requires O(|EB(D)|(|VB(D)|+ |EB(D)|)) time for the traversals, and O(|VB(D)|2) to mark

all snarls. However, we can implement optimizations that improve on this behavior. First,

we can also stop the BFS traversals whenever they encounter a bridge edge. Lemmas 20 and

21 in Appendix B demonstrate that the portion of the BFS traversal after a bridge edge is re-

dundant. This reduces the time required for the traversal to O(M(|VB(D)|+ |EB(D)|)), where

M = maxv∈VD(D)
degv. In general, M = O(|EB(D)|), so this does not improve over the worst case

asymptotic bound. However, in many practical cases M is approximately constant.

We can also reduce the total number of snarls we need to filter by neglecting to pro-

duce some snarls a priori. The quadratic bound on the number snarls is due to the fact that

there is a bridge pair for all pairs of edges incident on a node in D(D). However, Lemma 15

in Appendix B shows that none of these bridge pairs will pass the filter. Accordingly, we can

reduce the set of snarls we consider to only chain pairs and bridge pairs that project to nodes of

132

degree 2 in D(D), which we call simple bridge pairs. This reduces the total number of snarls to

O(|VB(D)|).

7.3.7 Ultrabubbles and Cacti

Given Theorem 1, to determine the ultrabubbles in B(D) it is sufficient to check for

each chain and bridge pair if the separated component is acyclic and contains no tips.

Using Theorem 3 we can restrict the search to snarls whose separated component does

not contain a black bridge edge. This implies that we need only consider bridge pairs whose

projection in D(D) is a node whose degree is two, we call such bridge pairs simple. The number

of simple bridge pairs must be less than the cardinality of D(D), and therefore the total number

of chain pairs and simple bridge pairs is less than or equal to |EB(D)|. Using D(D) and C(D),

which both can be constructed in O(|EB(D)|+ |VB(D)|) time, we can clearly enumerate the set of

simple chain pairs and bridge pairs in O(|EB(D)|+ |VB(D)|) time.

A simple algorithm to find the set of ultrabubbles enumerates all chain pairs and

simple bridge pairs and checks for each the acyclicity and tipless requirement using a depth first

search, and is therefore worst case O((|EB(D)|+ |VB(D)|)2) time.

7.4 Discussion and Conclusion

We have presented a partial decomposition of a bidirected graph into a set of nested

snarls and ultrabubbles. We believe this solves an important problem in using graphs for rep-

resenting arbitrary genetic variations by defining a decomposition that determines sites and

133

alleles.

As the decomposition is only partial, not all elements in a graph will necessarily fit

into one of the ultrabubbles. However, we demonstrate that for an existing large library of

variation (1000 Genomes) the large majority of sites are either invariant or described by simple,

top-level ultrabubbles.

For bases outside of these easy sites it is possible to imagine further subclassifica-

tion. For example, classifying snarls that contain tips but are acyclic might define a useful class

of subgraph common in some subproblems (e.g. sequence assembly). Some structures repre-

senting dense or overlapping collections of sequence polymorphisms, insertions and deletions

cannot be fully described using nested ultrabubbles. We have previously shown that a gener-

alization of the separability criterion for ultrabubbles can describe sites in these cases. [177].

Similarly, characteristic structures representing genomic phenomena, such as inversions and

translocations, are imaginable. Beyond our initial investigation, a more thorough evaluation of

how much of a graph fits within a snarl, ultrabubble, or one of these more complex structures

would be a useful exercise. We propose that the compatible family of snarls we constructed

provides one path forward in this endeavor.

We can also envision that the nesting structure of snarls could play a powerful role in

decomposing genotyping problems. Nested graph structures often arise from nested indels and

substitutions.

In the context of assembly, various error correction algorithms have been proposed to

remove graph elements and reduce the complexity of the graph. This increases the fraction of

the graph that is contained within an ultrabubble structure. We foresee the cactus graph structure

134

providing a useful basis for exploring such algorithms.

7.5 Acknowledgements

This work was supported by the National Human Genome Research Institute of the

National Institutes of Health under Award Number 5U54HG007990 and grants from the W.M.

Keck foundation and the Simons Foundation. This work benefitted from numerous conversa-

tions with David Haussler and Daniel Zerbino.

135

Chapter 8

Walk-preserving transformation of overlapped

sequence graphs into blunt sequence graphs

8.1 Preamble

This chapter consists of the full text of a paper “Walk-preserving transformation of

overlapped sequence graphs into blunt sequence graphs with GetBlunted”, which will be pre-

sented at the 2021 meeting of Computability in Europe. I share primary authorship for this

paper with Ryan Lorig-Roach. I am responsible for designing and partially implementing the

algorithms, as well as writing the majority of the paper. Ryan Lorig-Roach also partially im-

plemented the algorithm, and Melissa M. Meredith performed the experimental comparison to

comparable algorithms.

136

8.2 Introduction

Genome assembly is the process of determining a sample’s full genome sequence

from the error-prone, fragmentary sequences produced by DNA sequencing technologies. Se-

quence graphs have a long history of use in this field [142, 143, 159]. In these graphs, nodes

are labeled with sequences derived from sequencing data, and edges indicate overlaps between

observed sequences, which may in turn indicate adjacency in the sample’s genome (Fig. 8.1A).

The sample genome then corresponds to some walk through graph. There are several specific

sequence graph articulations in wide use, including de Bruijn graphs, overlap graphs, and string

graphs. They each present computational and informational trade-offs that make them better

suited to certain configurations of sequencing technologies and genome complexity.

The common topological features of genome assembly graphs are driven primarily by

the repetitiveness of the underlying genomes. In many species, a large fraction of the genome

consists of repeats (for instance, more than 50% of the human genome [85]). Because all copies

of a repeat are highly similar to each other, the corresponding nodes in the sequence graph

frequently overlap each other. In contrast, the unique regions of the genome have few erroneous

overlaps. These two factors tend to create graphs that consist of long non-branching paths

(corresponding to the unique regions), which meet in a densely tangled core with a complicated

topology (corresponding to the repeats).

Recently, sequence graphs have also emerged into prominence in the growing field

of pangenomics, which seeks to analyze the full genomes of many individuals from the same

species [40]. In pangenomics, sequence graphs are used to represent genomic variation between

137

CTGTA

GTACAGG

GTAAAGG

AGGCC

CTGTA AGGCC
A
C

A

B

Figure 8.1: A: An overlapped sequence graph. B: A blunt sequence graph.

individual haplotypes. Sequences in the graph furcate and rejoin around sites of variation so

that each individual genome corresponds to a walk through the graph (Fig. 8.1B). The growth

of pangenomics has fueled major advances in both formal algorithms research [94, 172] and

practical genomics tools [74, 173].

Pangenome graphs have much simpler topologies than genome assembly graphs.

Having fuller knowledge of the constituent genomes makes it possible to distinguish differ-

ent copies of a repeat. Thus, pangenome graphs tend to be mostly non-branching, much like

the portions of assembly graphs that correspond to unique sequences in the genome. Moreover,

most of the branching in pangenome graphs consists of localized bubble-like motifs. In contrast

to assembly graphs, pangenome graphs have few if any cycles.

Intuitively, the shared basis in sequence graphs should permit the advances in pange-

nomics to spill over into genome assembly. However, such cross-pollination is stymied by a

small difference in the graph formalisms. The edges in assembly graphs indicate sequence

overlaps, which are necessary because of the uncertain adjacencies in the underlying genome.

138

In pangenome graphs, the underlying genomes are known, and the edges are blunt in that they

indicate direct adjacency with no overlap. Blunt sequence graphs can be trivially converted into

overlap graphs (with overlaps of length 0), but the reverse requires nontrivial merging opera-

tions between the overlapping sequences. As a result, methods have remained siloed within

pangenomics despite potential uses in genome assembly.

In this work, we present a method to transform an overlapped sequence graph into

a blunt sequence graph. We state the formal guarantees of our formulation and discuss their

computational complexity. We then present an algorithm and compare its results to similar

methods.

8.3 Problem statement

In transforming an overlapped sequence graph to a blunt one, we seek to provide two

guarantees:

1. All walks in the overlapped graph are preserved in the blunt graph.

2. Every walk in the blunt graph corresponds to some walk in the overlapped graph.

These two properties prohibit the intuitive solution of transitively merging all overlapped se-

quences. Doing so can result in walks that are not present in the overlapped graph, because

walks can transition between nodes that are not connected by an edge via the transitively merged

sequences (Fig. 8.2). Because overlapped sequences cannot be fully merged, it is necessary to

retain multiple copies of some sequences in the blunt graph. However, excessive duplication

139

GTC

TCATC

TGGATC

ATCCAG

TC
G

TGGA
ATC
CAG

A B

Figure 8.2: A: An overlapped sequence graph, and B: the blunt sequence graph that results from

transitively merging its overlaps. The highlighted walk in the blunt graph does not correspond

to any walk in the original overlapped graph.

can create problems for downstream analysis, for instance by increasing alignment uncertainty.

Thus, we add one further criterion to the above formulation:

3. Minimize the amount of duplicated sequence.

8.4 Notation

An overlapped sequence graph consists of a set of sequences S and a set of overlaps

O ⊂ (S×{+,−}× S×{+,−}). In this notation, the symbols + and − indicate whether the

overlap involves a prefix or suffix (collectively affix) of the sequence. This makes the overlapped

graph a bidirected graph.

In a bidirected graph, a walk consists of a sequence of nodes s1s2 . . .sN , si ∈ S such that

1) each pair of subsequent nodes is connected by an overlap and 2) if si−1 and si are connected

by an overlap on si’s prefix, then si and si+1 are a connected by an overlap on si’s suffix (or

140

ACATG

CAACA

TGACA

Figure 8.3: An adjacency component in a larger sequence graph. Each of the indicated affixes

can reach the others by a sequence of overlaps.

vice versa). In the case that a walk traverses a node s ∈ S from suffix to prefix, we interpret the

sequence as its reverse complement, which is the sequence of the antiparallel strand of the DNA

molecule.

Finally, an adjacency component is a collection of affixes (in S×{+,−}) that can

reach each other via a sequence of adjacent overlaps in O (Fig. 8.3). This sequence need not

form a valid bidirected walk.

8.5 Methods

To minimize the amount of duplicated sequence, overlapped sequences must be merged.

However, we have already mentioned that our criteria prohibit transitively merging all overlaps.

We must then minimize the total number of groups within which overlaps are merged transi-

tively, which coincides with the number of times the sequences need to be duplicated.

Consider a group of overlaps that contains (s1,s2,+,−) and (t1, t2,+,−). For merging

to not introduce any walks that are not in the overlapped graph, the overlaps (s1, t2,+,−) and

141

Figure 8.4: A biclique cover of an adjacency component with three bicliques.

(t1,s2,+,−) must also be overlaps in O. Extending this logic, the entire group of overlaps must

be contained within a biclique subgraph of the adjacency component: two sets of affixes B1 and

B2 such that every affix in B1 is connected to every affix in B2 by an overlap. Thus, we can

minimize the number of duplicated sequences by minimizing the number of bicliques needed

to cover every overlap edge.

The problem of covering edges with the minimum number of bicliques is known as bi-

clique cover (Fig. 8.4), and it is known to be NP-hard [151]. However, there are domain-specific

features of overlapped sequence graphs that often make it tractable to solve large portions of the

graph optimally.

First, many adjacency components are bipartite. Consider the case that an adjacency

component is not bipartite, in which case there is cycle of overlaps between affixes with odd

parity. Each overlap indicates high sequence similarity, so an odd cycle means that each se-

quence is similar to itself, reverse complemented an odd number of times. Such sequences are

called DNA palindromes, and they do exist in nature. However, they comprise a small fraction

of most real genomes.

142

Figure 8.5: The domino graph. If either of the dotted edges are present, the induced subgraph

is not a domino.

Second, most adjacency components are domino-free. This property refers to the

absence of a particular induced subgraph, the domino (Fig. 8.5). A sufficient condition to

prohibit dominoes is for overlapping to be a transitive property. That is, whenever sequence s1

overlaps sequences t1 and t2, and sequence s2 overlaps t1, then s2 also overlaps t2. In reality,

this is not always the case. However, it is very often the case, since overlaps indicate sequence

similarity, and similarity is approximately transitive.

These features guided the design of the following algorithm. If an adjacency com-

ponent is bipartite and domino-free, we compute the biclique cover in polynomial time with

the algorithm of Amilhastre, Vilaren, and Janssen [7]. When an adjacency component is bipar-

tite but not domino-free, we instead use the dual graph reduction algorithm of Ene, et al. [64],

followed by their lattice-based post-processing if the algorithm does not identify the optimal

solution. Finally, if an adjacency component is not bipartite, we first reduce it to the bipartite

case by computing an approximate solution to the maximum bipartite subgraph problem using

the algorithm of Bylka, Idzik, and Tuza [26]. The maximum bipartite subgraph problem is

equivalent to max cut, which is also NP-hard [99]. This process is repeated recursively on the

143

edges that are not included in the bipartite subgraph.

The amount of duplicated sequence is also affected by the manner in which sequences

are merged among the overlaps of a biclique. To minimize duplicated sequence, we must max-

imize matches in the alignment between the overlapped sequences. This is the multiple se-

quence alignment problem, which is NP-hard. We use the partial order alignment algorithm to

approximate the optimal multiple sequence alignment [111]. Partial order alignment also has

the advantage that the alignment is expressed as a blunt sequence graph, which can be directly

incorporated in the full blunt graph.

8.6 Implementation

We have implemented the algorithm described here as a genomics tool called Get-

Blunted. GetBlunted takes as input a GFA file (a common interchange format for sequence

graphs [122]) and outputs a GFA containing a blunt graph. In addition, it provides a translation

table from sequences in the output to sequences in the input, which can be used to translate

analyses performed on the blunt graph into analyses on the overlapped graph. The implemen-

tation is written entirely in C++, and it use several auxiliary libraries: GFAKludge is used for

manipulating GFA files [50], libbdsg is used to represent sequence graphs [62], and SPOA is

used for partial order alignment [210].

144

8.7 Results

We compared the performance of GetBlunted to two other tools that transform over-

lapped sequence graphs into blunt graphs: the gimbricate/seqwish [71, 72] pipeline and Stark

[148]. These are, to our knowledge, the only other such tools besides GetBlunted. However,

they are not completely comparable. Neither tool provides the guarantees that GetBlunted does

for preserving the walk space of the graph. In addition, Stark only works with de Bruijn graphs,

a restricted subset of overlap graphs in which all overlaps are exact matches of a uniform length.

We profiled speed and memory usage on three assembly graphs. The first two are as-

sembly graphs produced by the Shasta assembler [185] for the haploid human cell line CHM13

and for human sample HG002. Both of these were built using Oxford Nanopore reads1. The

last graph is a de Bruijn graph of Pacific Biosciences HiFi reads of an Escherichia coli strain

(SRR10382245), which was constructed using jumboDB [15].

All of the bluntifying tools were run on a single core of a c5.9xlarge AWS instance

with an Intel Xeon Scalable Processor. Memory usage and compute time were measured with

the Unix time tool. The results of the profiling are presented in Table 8.1. GetBlunted is over

1000 times faster than and comparably memory-intensive to the gimbricate/seqwish pipeline.

For de Bruijn graphs, Stark is faster than either tool, although this performance comes at the

cost of limited generality.

1Publicly available at https://s3-us-west-2.amazonaws.com/miten-hg002/index.html?prefix=
guppy_3.6.0/

145

Assembly Bluntification Tool Run Time (min) RAM (GB)

HG002
Shasta

GetBlunted 0.35 9

gimbricate/seqwish 917.5 6

CHM13
Shasta

GetBlunted 0.38 4

gimbricate/seqwish 314.6 6

E. coli de
Bruijn

GetBlunted 8.36 26

gimbricate/seqwish 10.74 4

Stark 0.65 3

Table 8.1: Table of speed and memory usage of bluntifing tools run on a single core of an AWS
server.

8.8 Discussion

In this work, we described an algorithm and software tool, GetBlunted, which trans-

forms overlapped sequence graphs into blunt sequence graphs. This provides a route for se-

quence graph methods developed for pangenomics to be applied to sequence graphs in genome

assembly. In both fields, walks through the sequence graph are of primary importance. In

genome assembly, some walk through the graph corresponds to the sample genome. In pange-

nomics, the genomes used to construct the pangenome each correspond to a walk through the

graph. GetBlunted provides attractive guarantees that it faithfully preserves the walk space of

the input while also producing parsimonious output. Other comparable methods either do not

provide these guarantees or only provide them in limited cases. In addition, GetBlunted is (ex-

cept in the case of de Bruijn graphs) faster than alternatives that do not provide these guarantees,

and it has resource requirements that are easily achievable in any computational environment

that is used for genome assembly. In the future, GetBlunted could serve as an step in genome

assembly pipelines to improve the quality of their overlap graphs. It could also facilitate direct

146

analyses of assembly graphs in metagenomics applications.

147

Part V

Discussion

148

Chapter 9

Discussion

For many years, progress in pangenomics was hampered by ascertainment bias in ge-

nomic variation assays. In order to comprehensively identify minor alleles, sequencing projects

needed to be carried out at population scale. The only genome inference technologies that were

economical at this scale were genotype arrays and NGS variant calling. Accordingly, scientific

knowledge of variation shared these assays’ biases. The ascertained variants were dispropor-

tionately small and disproportionately located in high-entropy, unique regions of the genome.

Almost by definition, these are the variants that were least likely to have been substantially

impacted by reference bias to begin with.

This situation is now beginning to change. Advancements in long read assembly

methods are shining a light on previously hidden regions of the genome. This can be seen in

the first complete human genome assembly by the T2T Consortium [149] or in the intensive

characterization of structural variation by the Human Genome Structural Variation Consortium

(HGSVC) [31, 57]. The Human Pangenome Reference Consortium (HPRC) is currently en-

149

gaged in a similar assembly effort [83]. These data resources are already being used in pange-

nomics applications to genotype structural variation with NGS data [58,191], a poster child for

genomics tasks that were previously frustrated by severe reference bias.

The research presented in this dissertation sits somewhere on the threshold between

these two periods of pangenomics. In chapter 7, I helped establish foundational theory for

pangenome graphs. Chapters 5 and 6 detail engineering efforts that underlie the recent emer-

gence of practical and usable pangenomics. In chapter 4, I developed a backward linkage from

graph-based pangenomics to conventional reference analyses. Finally, in chapters 3 and 8, I

contributed toward extending the concepts and methods developed in pangenomics to other

areas of genomics: transcriptomics and genome assembly respectively.

The new genome assembly data resources from the HGSVC and HPRC are likely

to open new challenges for pangenomics method developers. Up until now, most pangenome

graphs have been constructed by augmenting a reference genome with variant alleles [74, 103].

As the field pivots toward genome assemblies, it will increasingly be necessary to construct

graphs using whole genome multiple sequence alignments [11, 120, 139]. In fact, the HPRC

is also working to produce graphs with this methodology. Such graphs have comparatively

complicated structures, with cyclic motifs and regions of high structural complexity. The as-

sumption of structural simplicity is subtly baked into the design of many existing pangenomics

applications, and it is likely that many tools’ performance will decline on these new graphs—if

they work at all. However, these challenges also represent opportunities. Much of the complex-

ity in assembly-based graphs is due to true complexity in the organization of genomic variation,

and the formalism must be rich enough to express this variation in order to analyze it.

150

The linkages between pangenomics and population genomics remain tight. This is

evident in the discussion of pangenomics data resources above, which could just as easily have

been a discussion of population genomics data resources. The challenges and opportunities are

similarly mirrored. Population genomics remains, on the whole, invested in a variant-centered

analysis framework, but the concepts and tools being developed in pangenomics offer a tan-

talizing suggestion of a more general approach. A pangenome graph can be thought of as a

map of homologies between a collection of haplotypes. In this sense, it implicitly defines an

approximation to the ancestral recombination graph (ARG) with a similar flavor to the Li and

Stevens model [125]: the relationships between haplotypes are explicit but without any over-

laid ancestry-based tree structure. However, in another sense the pangenome graph represents a

more exact formalism to express the ARG than the sequence-of-trees that is commonly used for

variant data [101, 168]. This is because the sequence-of-trees inherits all of the simplifications

and biases of the reference-based variant calling methodology. The richer structure of homolo-

gies in a pangenome graph hints at the possibility of advancing closer to the theoretical ARG

holy grail: an ancestral history of every base in a recombining, (structurally) mutating genome.

Doing so will probably require introducing ancestry-based tree structures to the graph’s haplo-

types, as has been done in theoretical studies of genome evolution [156].

I will suggest that the most productive route forward in pursuing the synergies be-

tween population genomics and pangenomics is to be guided by applications. Two recently

published pangenomics tools strike me as exemplifying this approach. The danbing-tk tool

used lossy, compressive pangenome graph structures to characterize variable nucleotide tandem

repeats (VNTRs) [128]. These loci have high enough polymorphism that more exact graphs

151

would be difficult to build in practice, and the lossy graphs could still support dosage models

of the genotypes that exhibited population structure and phenotypic associations. Another tool,

PanGenie, boosts its structural variant calling accuracy by imputing genotypes with a model

that essentially makes explicit the pangenome graph’s implicit Li and Stevens model mentioned

above [58]. Both of these studies display a pragmatic balance between computational difficulty,

complexity of the pangenome formalism, and the population genomics analyses they want to

support. However, I hope that pragmatism will not forestall attempts to analyze features of the

ARG that necessitate the richer conceptual framework offered by pangenomics.

Moving forward, I predict that there will be a trend of applying pangenomics method-

ologies to increasingly many areas in functional genomics as well. My work on haplotype-

resolved transcriptomics in Chapter 3 is a step forward in this direction. It offers an example

of how both the technical formalisms of pangenomics and the mitigation of reference bias can

be applied to a functional assay. Work has also been done on histone modifications [79] and

transcription factor binding [80] by other groups. Plenty of areas remain: 3D genome organiza-

tion, DNA accessibility, perturbation screens, DNA and RNA modifications, somatic mutations,

etc. It remains to be seen which of these areas will stand to benefit the most from pangenomics

approaches. In exploring applications in these domains, I believe there is a danger of becoming

overly focused on sequence graph methods as such. For instance, it is not at all clear to me

that sequence graphs are a useful formalism for a 3D organization pangenome. As methods de-

velopers we should be guided by the problem rather than the familiarity of current approaches.

Ultimately, broad adoption in a field will depend both on how troublesome reference bias is and

on the usefulness of novel conceptualizations of population genomics.

152

Another area of pangenomics that I expect to be very active in the future is annota-

tion. Genome annotation is a vital function for conventional reference genomes, but relatively

little work has been done on pangenome annotation. I suggest that it is useful to differenti-

ate between two classes annotations for pangenomes, which I refer to as proper pangenome

annotations and conditional genome annotations. By proper pangenome annotations, I mean

annotation with data that cannot be simply or unambiguously expressed relative to any particu-

lar haplotype. Examples include intraspecific sequence conservation or variant effects, both of

which are implicitly annotations of multiple haplotypes. By conditional genome annotations, I

mean annotation with data that is most meaningful when expressed relative to one haplotype but

nevertheless shows population variation. Because of this variation, conditional annotations may

benefit from using pangenomics as an organizing structure. Examples could include gene tran-

scripts and regulatory elements (for which a similar concept has already been applied [205]). I

expect that the coexistence of these classes of annotation will necessitate informatics and visu-

alization tools that can both express annotations of entire pangenome graphs and perform on-

demand queries for annotations conditioned on a specific haplotype. In the latter case, I further

expect that the tools of comparative annotation will provide a productive route forward [10].

Pangenomics approaches are already being applied outside of human genomics. In

fact, they were applied much earlier in microbes [134], although not with nucleotide resolution

until recently [36]. Recent studies have also investigated other multicellular eukaryotes with a

clear emphasis on agricultural plants: A. thaliana [5], cabbage [75], rice [163, 200, 219], cow

[46–48], tomato [68], soybean [126], rapeseed [195], wheat [213], cotton [124], and eggplant

[17]. As this march continues, I believe it is a good time to begin thinking about what the

153

points of contact will be between pangenomics and comparative genomics. Indeed, many of the

technical tools of comparative genomics (notably whole genome alignment) are already being

repurposed for pangenomics [11]. I expect that the greatest gains are likely to be found in areas

where there is already fruitful cross-pollination between comparative genomics and population

genomics, such as hybridization and incomplete lineage sorting. In any case, the barriers to

such analysis seem greater than for intraspecific analysis, which I expect to be the mainstay of

pangenomics for the near future.

I do not share the optimism of some early adopters that pangenome references will

supplant conventional reference genomes, which maintain a substantial advantage in efficiency

and conceptual simplicity. For many problems in genomics, conventional references, for all

their simplifications and inaccuracies, are perhaps not great but at least good enough. However,

I do expect reference pangenomes to become an important public data resource. The task of

constructing a quality pangenome is challenging, and the genomics community stands to benefit

greatly by not having to repeat it.

It also seems likely that a reference pangenome may never have the air of finality

that the genomics community has invested reference genomes with. Any map of homologies

is bound to be incomplete and erroneous, which means there will always be uncertainty (and

probably contest) over the correct structure for the pangenome. However, it is worth noting

that assembling a large eukaryotic genome once seemed similarly insurmountable, and yet the

reference genome still attained the venerated role that it now occupies. The elusiveness of that

sense of finality for a reference pangenome may be a simple matter of time. Alternatively, it

may stem from the fact that the project of pangenomics began by centering the problem of

154

reference bias and thereby, in a sense, admitting its own weaknesses.

In any case, this is an exciting time for pangenomics. In the last few years, pange-

nomics methods have become increasingly practical and mainstream. Moreover, I believe

strongly that many areas of genomics are ripe for pangenomic analysis, as I hope this discussion

has communicated. I am confident that the pangenomics community is capable of moving this

program of research forward, or maybe reverse complement.

155

Part VI

Appendices

156

Appendix A

Appendix A: Supplementary information for

pantranscriptome paper

A.1 Preamble

This Appendix contains the supplementary information included with the preprint

for “Haplotype-aware pantranscriptome analyses using spliced pangenome graphs”, which is

included in this dissertation as Chapter 3.

157

A.2 Supplementary Figures

a

b

c

d

Supplementary Figure A.1: Diagram of a multipath alignment
A diagrammatic comparison between the multipath alignment output of vg mpmap and the
single-path alignment output of other graph aligners (such as vg map). a A read and b a se-
quence graph, which have been colored to indicate which parts of the read could plausibly align
to which parts of the graph. c A single-path alignment. The read sequence is aligned to one
path from the graph. d A multipath alignment. The alignment can split and rejoin to express
the alignment uncertainty to different paths in the graph.

158

●

●●

●

●
●

●

●

●

●

●

●

60

1
0

60

1
0

255

1

0

255

1

0

60

1

0

60
1

0

60

1

0

60

1

0

Simulated reads

0.94 0.96 0.98 1.00

0.99

0.999

0.9999

Mapping sensitivity

M
ap

pi
ng

 a
cc

ur
ac

y

Method
●

●

●

●

HISAT2
STAR
vg map
vg mpmap

Graph
● All transcripts

80% transcripts

●

●●

●

●
●

●

●

●

●

●

●

60

1
0

60

1
0

255

1 0

255

1
0

60
1

0
60

1

0

60

1

0

60

1

0

Simulated reads

0.94 0.96 0.98 1.00

0.99

0.999

Mapping sensitivity

M
ap

pi
ng

 a
cc

ur
ac

y

Method
●

●

●

●

HISAT2
STAR
vg map
vg mpmap

Graph
● All transcripts

80% transcripts

a b

Supplementary Figure A.2: Mapping benchmark to novel splice-junctions using RNA-seq
data from NA12878
RNA-seq mapping results comparing vg mpmap against three other methods using simulated
Illumina data (“vg sim (ENC, uniform)” in Supplementary Table A.4). Shows mapping accu-
racy and sensitivity for different mapping quality thresholds (colored numbers). An alignment
is considered correct if it covers 90% (a) or 70% (b) of the true reference sequence alignment.
Solid lines show the results using a spliced pangenome graph (spliced reference for STAR) gen-
erated using the complete transcript annotation. Dashed lines show the results using a reference
generated with a random subset of 80% of the transcripts in the annotation.

159

●

●

●

●

●

●

●

●

●

60

1

0

60

1

0

255

1

0

60

1

0

60

1

0

60

1

0

60

1

0

Simulated reads

0.94 0.96 0.98 1.00

0.99

0.999

0.9999

Mapping sensitivity

M
ap

pi
ng

 a
cc

ur
ac

y
Method

●

●

●

●

HISAT2

STAR

vg map

vg mpmap

Graph
● Spliced pangenome graph

Spliced reference

Supplementary Figure A.3: Graph-based mapping benchmark using RNA-seq data from
NA12878
Mapping accuracy and sensitivity for vg mpmap and three other methods using simulated Illu-
mina data (“vg sim (ENC, uniform)” in Supplementary Table A.4). Colored numbers indicate
different mapping quality thresholds. An alignment is considered correct if its start position
is within 100 bases from the start position of the true alignment measured using any labeled
transcript path in the graph or the linear reference sequence. Solid and dashed lines show the
results using a spliced pangenome graph and spliced reference, respectively.

160

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

Real reads

0 20 40 60
0.61

0.63

0.65

0.67

Mapping quality threshold

Is
o−

Se
q

ex
on

 c
ov

er
ag

e
co

rre
la

tio
n

Method
●

●

●

●

HISAT2
STAR
vg map
vg mpmap

Graph
● Spliced pangeome graph

Spliced reference

●

●
●

●

●

●

●

●

●

60

1
0

60

1
0

255

1
0

60

1

0

60

1

0

60

1

0

60

1
0

Simulated reads

0.900 0.925 0.950 0.975 1.000

0.99

0.999

Mapping sensitivity

M
ap

pi
ng

 a
cc

ur
ac

y
Method

●

●

●

●

HISAT2
STAR
vg map
vg mpmap

Graph
● Spliced pangenome graph

Spliced reference

Real reads

Spliced
reference

Spliced pan−
genome graph

0.80

0.85

0.90

0.95

1.00

M
ap

pi
ng

 ra
te

Method
HISAT2
STAR
vg map
vg mpmap

Filter
Unfiltered
MapQ > 0

a b c

Supplementary Figure A.4: Mapping benchmark using RNA-seq training data from
NA12878
RNA-seq mapping results comparing vg mpmap and three other methods using the simulated
and real Illumina data that was used in the optimization of vg map and vg mpmap (“vg sim
(SRR, uniform)” and “SRR1153470” in Supplementary Table A.4 and A.3, respectively). Solid
and dashed lines show the results using a spliced pangenome graph and spliced reference, re-
spectively. a Mapping accuracy and sensitivity for different mapping quality thresholds (col-
ored numbers) using simulated data. An alignment is considered correct if it covers 90% of the
true reference sequence alignment. b Mapping rate using real data. The shaded bars show the
mapping rate for all alignments and the solid bars for only alignments with a mapping quality
above 0. c Pearson correlation between Illumina and Iso-Seq exon coverage using real data as
a function of mapping quality threshold. Exons are defined by the Iso-Seq alignments.

161

Real reads

Spliced
reference

Spliced pan−
genome graph

0.6

0.7

0.8

0.9

1.0
M

ap
pi

ng
 ra

te

Method
HISAT2
STAR
vg map
vg mpmap

Filter
Unfiltered
MapQ > 0

a Real reads

Spliced
reference

Spliced pan−
genome graph

0

1000

2000

3000

R
ea

d
pa

irs
 m

ap
pe

d
pe

r s
ec

on
d

Method
HISAT2
STAR
vg map
vg mpmap

Real reads

Spliced
reference

Spliced pan−
genome graph

0

10

20

30

40

M
ax

im
um

 m
em

or
y

us
ag

e
(G

iB
)

Method
HISAT2
STAR
vg map
vg mpmap

b c

Supplementary Figure A.5: Mapping benchmark using RNA-seq training data from
CHM13
RNA-seq mapping results comparing vg mpmap against three other methods using real Illumina
data that was used in the optimization of vg mpmap (“CHM13” in Supplementary Table A.3). a
Mapping rate. The shaded bars show the mapping rate for all alignments and the solid bars for
only alignments with a mapping quality above 0. b Number of read pairs mapped per second
per thread. The mapping times were measured using 16 threads on a AWS m5.4xlarge instance.
c Maximum memory usage for mapping in gigabytes.

162

●
●

●●●●

●

●

●●●●●●●●
●
●●

●●
●●
●●●
●
●●
●
●
●
●●
●●●●
●
●●●●
●

●●●
●
●●●●●

●●

●●

●

●●

●●

●
●

●

●

●●

●

●

●
●

●

●●

●
●

●●●
●●●

●●

●●
●●
●●

●●
●●

0.00

0.02

0.04

0.06

Excluding
sample

Excluding
population

Excluding
super popluation

F
ra

ct
io

n
un

iq
ue

 h
ap

lo
ty

pe
−

sp
ec

ifi
c

tr
an

sc
rip

ts
Super
population

AFR
AMR
EAS
EUR
SAS

Supplementary Figure A.6: Haplotype-specific transcript uniqueness in a 1000 Genomes
Project pantranscriptome
The fraction of HSTs that are unique to each sample in the 1000 Genomes Project (1000GP)
when compared to different subsets of samples in the 1000GP. Left box plots show the fraction
unique when comparing to all other samples, middle box plots show the fraction unique when
comparing to all other samples excluding the samples’ population, and right box plots show
the fraction unique when comparing to all other samples excluding the samples’ super popula-
tion. AFR: African, AMR: Admixed American, EAS: East Asian, EUR: European, SAS: South
Asian.

163

Simulated reads

Sample−specific
(NA12878)

Europe
(excl. CEU)

Whole
(excl. CEU)

Whole

0.00

0.25

0.50

0.75

1.00

S
pe

ar
m

an
 e

xp
re

ss
io

n
co

rr
el

at
io

n

Method

Kallisto

Salmon

RSEM

rpvg

Transcripts

All

NA12878

Supplementary Figure A.7: Haplotype-specific transcript expression correlation bench-
mark using RNA-seq data from NA12878
Haplotype-specific transcript (HST) quantification results comparing rpvg and three other meth-
ods using simulated Illumina data (“vg sim (ENC, RSEM)” in Supplementary Table A.4).
Shows Spearman correlation between simulated and estimated expression (in transcripts per
million (TPM)) for different pantranscriptomes. Correlation was calculated using either all
HSTs in the pantranscriptome (solid bars) or using only the NA12878 HSTs (shaded bars).
“Sample-specific (NA12878)” is a personal transcriptome generated from 1000 Genomes
Project (1000GP) NA12878 haplotypes. “Europe (excl. CEU)” is a pantranscriptome gener-
ated from European 1000GP haplotypes excluding the CEU population. “Whole (excl. CEU)”
and “Whole” are pantranscriptomes generated from all 1000GP haplotypes without and with
the CEU population, respectively.

164

●

●

●

●

●

●

●

●

10

1

0.1

10

1

0.1

Real reads

500 1000 3000 5000
10000

30000

50000

Number of expressed non−NA12878 transcripts

N
um

be
r o

f e
xp

re
ss

ed
 N

A1
28

78
 tr

an
sc

rip
ts

Pantranscriptome
● Europe (excl. CEU)

Whole (excl. CEU)
Whole

Method
●

●

rpvg
rpvg (single−path)

●

●

●

●

●

●

●

●

10

1

0.1

10

1

0.1

Simulated reads

0.900 0.925 0.950 0.975

0.25

0.50

0.75

Transcript expression precision

Tr
an

sc
rip

t e
xp

re
ss

io
n

se
ns

iti
vi

ty

Pantranscriptome
● Europe (excl. CEU)

Whole (excl. CEU)
Whole

Method
●

●

rpvg
rpvg (single−path)

a b

Simulated reads Real reads

Europe
(excl. CEU)

Whole
(excl. CEU)

Whole Europe
(excl. CEU)

Whole
(excl. CEU)

Whole

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

TP
M

 o
n

NA
12

87
8

ha
pl

ot
yp

es

Method
rpvg
rpvg (single−path)

c
Simulated reads

Sample−specific
(NA12878)

Europe
(excl. CEU)

Whole
(excl. CEU)

Whole

0.00

0.05

0.10

M
ea

n
re

la
tiv

e
ex

pr
es

si
on

 d
iff

er
en

ce

Method
rpvg
rpvg (single−path)

Transcripts
All
NA12878

d

Supplementary Figure A.8: Multipath alignment benchmark using RNA-seq data from
NA12878
Haplotype-specific transcript (HST) quantification results comparing rpvg with single-path and
multipath alignments using simulated and real Illumina data (“vg sim (ENC, RSEM)” and
“ENCSR000AED” in Supplementary Table A.4 and A.3, respectively). Solid lines with circles
are results using a pantranscriptome generated from 1000 Genomes Project (1000GP) European
haplotypes excluding the CEU population. Dashed lines with triangles and squares are results
using a pantranscriptome generated from all 1000GP haplotypes without and with the CEU
population, respectively. The single-path alignments were created by finding the best scoring
path in each multipath alignment. a Sensitivity and precision of whether a transcript is cor-
rectly assigned nonzero expression for different expression value thresholds (colored numbers
for “Whole (excl. CEU)” pantranscriptome) using simulated data. Expression is measured in
transcripts per million (TPM). b Number of expressed transcripts from NA12878 haplotypes
shown against the number from non-NA12878 haplotypes for different expression value thresh-
olds (colored numbers) using real data. c Fraction of transcript expression (in TPM) assigned to
NA12878 haplotypes for different pantranscriptomes using simulated (left) and real (right) data.
d Mean absolute relative difference (MARD) between simulated and estimated expression (in
TPM) for different pantranscriptomes using simulated data. MARD was calculated using either
all HSTs in the pantranscriptome (solid bars) or using only the NA12878 HSTs (shaded bars).
“Sample-specific (NA12878)” is a personal transcriptome generated from 1000GP NA12878
haplotypes.

165

●

●

●

●

●

●

●

●

●

●

●
●

10

1

0.1

10

1

0.1

10

1

0.1

Real reads

1e+03 1e+04 1e+05 1e+06

10000

30000

50000

Number of minor expressed transcripts

N
um

be
r o

f m
aj

or
 e

xp
re

ss
ed

 tr
an

sc
rip

ts

Method
●

●

●

Kallisto
Salmon
rpvg

Pantranscriptome
● Whole

Real reads

Whole

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

TP
M

 o
n

m
aj

or
 tr

an
sc

rip
ts

Method
Kallisto
Salmon
rpvg

a b

Supplementary Figure A.9: Haplotype-specific transcript quantification benchmark us-
ing RNA-seq training data from CHM13
Haplotype-specific transcript (HST) quantification results comparing rpvg against two other
methods using real Illumina data that was used in the optimization of rpvg (“CHM13” in Supple-
mentary Table A.3). All experiments used a pantranscriptome generated from all 1000 Genomes
Project (1000GP) haplotypes. Each HST is either classified as major or minor. Major HSTs are
defined as the highest expressed haplotype for each transcript; the rest are defined as minor. As
CHM13 is effectively haploid, the fraction of expression from minor HSTs is a lower bound
on the fraction of incorrectly inferred transcript expression. a Number of major expressed tran-
scripts against the number of minor expressed for different expression value thresholds (colored
numbers). Expression is measured in transcripts per million (TPM). b Fraction of transcript
expression (in TPM) assigned to major transcripts for different methods.

166

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

1

0.1

10

1

0.1

10

1

0.1

Real reads

1e+03 1e+04 1e+05 1e+06

1e+04

3e+04

1e+05

Number of expressed non−NA12878 transcripts

N
um

be
r o

f e
xp

re
ss

ed
 N

A1
28

78
 tr

an
sc

rip
ts

Method
●

●

●

●

Kallisto
Salmon
RSEM
rpvg

Pantranscriptome
● Europe (excl. CEU)

Whole (excl. CEU)
Whole

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

1

0.1

10

1

0.1

10

1

0.1

Simulated reads

0.25 0.50 0.75 1.00

0.25

0.50

0.75

Transcript expression precision

Tr
an

sc
rip

t e
xp

re
ss

io
n

se
ns

iti
vi

ty
Method

●

●

●

●

Kallisto
Salmon
RSEM
rpvg

Pantranscriptome
● Europe (excl. CEU)

Whole (excl. CEU)
Whole

a b

Simulated reads Real reads

Europe
(excl. CEU)

Whole
(excl. CEU)

Whole Europe
(excl. CEU)

Whole
(excl. CEU)

Whole

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

TP
M

 o
n

NA
12

87
8

ha
pl

ot
yp

es

Method
Kallisto
Salmon
RSEM
rpvg

c Simulated reads

Sample−specific
(NA12878)

Europe
(excl. CEU)

Whole
(excl. CEU)

Whole

0.0

0.1

0.2

M
ea

n
re

la
tiv

e
ex

pr
es

si
on

 d
iff

er
en

ce

Method
Kallisto
Salmon
RSEM
rpvg

Transcripts
All
NA12878

d

Supplementary Figure A.10: Haplotype-specific transcript quantification benchmark us-
ing RNA-seq training data from NA12878
Haplotype-specific transcript (HST) quantification results comparing rpvg against three other
methods using simulated and real Illumina data that was used in the optimization of rpvg (“vg
sim (SRR, RSEM)” and “SRR1153470” in Supplementary Table A.4 and A.3, respectively).
Solid lines with circles are results using a pantranscriptome generated from 1000 Genomes
Project (1000GP) European haplotypes excluding the CEU population. Dashed lines with tri-
angles and squares are results using a pantranscriptome generated from all 1000GP haplotypes
without and with the CEU population, respectively. a Sensitivity and precision of whether
a transcript is correctly assigned nonzero expression for different expression value thresholds
(colored numbers for “Whole (excl. CEU)” pantranscriptome) using simulated data. Expression
is measured in transcripts per million (TPM). b Number of expressed transcripts from NA12878
haplotypes shown against the number from non-NA12878 haplotypes for different expression
value thresholds (colored numbers) using real data. c Fraction of transcript expression (in TPM)
assigned to NA12878 haplotypes for different pantranscriptomes using simulated (left) and real
(right) data. d Mean absolute relative difference (MARD) between simulated and estimated
expression (in TPM) for different pantranscriptomes using simulated data. MARD was cal-
culated using either all HSTs in the pantranscriptome (solid bars) or using only the NA12878
HSTs (shaded bars). “Sample-specific (NA12878)” is a personal transcriptome generated from
1000GP NA12878 haplotypes.

167

a

b

c Haplotype-speci�c transcripts

SNV
Deletion

Insertion

exon 2 exon 3exon 1

SNV
Deletion

Insertion

exon 2 exon 3exon 1

Pantranscriptome Paired multipath alignment

Infer
expression

Using expectation-
maximization A

Infer
diplotypes

Sampling from
posterior assuming
uniform expression

A

A

A

A

Fragment 1

HST 1 HST 2

0.7 0.3

HST 3 HST 4

00
...

Probability matrix

A

Fragment alignment
path sets

...

Calculate fragment-HST
probabilities

Using alignment scores,
fragment lengths and

mapping qualities

Using breath-�rst-search
through multipath graphs

and insert

SNV
Deletion

exon 2exon 1

A

Fragment alignment
pathsFind alignment

paths

Collect alignment paths for all fragments within cluster

Use probability matrix for expression inference

Supplementary Figure A.11: Diagram of haplotype-specific transcript quantification in
rpvg
Diagram showing an overview of how rpvg infers expression of haplotype-specific transcripts
(HSTs) in a pantranscriptome from a set of paired-end multipath alignments (see Supplementary
Figure 10). The colored thin lines correspond to HST paths, and the blue transparent regions
correspond to aligned read sequences. a For each fragment, all paths through the multipath
alignment graphs are identified using a depth-first-search (DFS). For paired-end reads, the DFS
also traverses the fragment insert creating alignment paths of the whole fragment. Only align-
ment paths that follow an HST path in the pantranscriptome are kept. b The probabilities that
each fragment originated from each of the HSTs in a cluster are calculated using the score and
length of the fragment alignment paths, and the mapping quality. c The fragment-HST proba-
bility matrix is used to infer the expression of the HSTs using a nested inference scheme. First,
a distribution over diplotypes (if sample is diploid) is inferred. A haplotype combination is then
sampled from this distribution and expression is inferred conditioned on the sampled haplo-
types using expectation-maximization. This procedure is repeated a 1,000 times to account for
the uncertainty in the haplotype estimates.

168

A.3 Supplementary Tables

Name Description Non-exonic
variant filter

Number
of samples

Number of
exonic

variants

Number of
total

variants

1000GP
(NA12878)

1000GP variants observed in
NA12878

None 1 152,968 4,266,678

1000GP
(EUR, excl.
CEU)

All european (EUR)
1000GP variants excluding
variants unique to the CEU
population

AF ≥ 0.002 404 986,167 15,041,731

1000GP (all,
excl. CEU)

All 1000GP variants
excluding variants unique to
the CEU population

AF ≥ 0.001 2,405 3,808,242 31,731,676

1000GP (all) All 1000GP variants AF ≥ 0.001 2,504 3,873,100 29,970,512

Supplementary Table A.1: Genomic variant (haplotype) sets
1000GP: 1000 Genomes Project

Name Transcript
annotation

Number of
transcripts

Haplotype
set†

Number of
haplotypes

Number of
haplotype-specific

transcripts

Sample-
specific
(NA12878)

GENCODE
v29
(full-length)

172,449
1000GP
(NA12878)

2 235,400

Europe (excl.
CEU)

GENCODE
v29
(full-length)

172,449
1000GP
(EUR, excl.
CEU)

808 2,515,408

Whole (excl.
CEU)

GENCODE
v29
(full-length)

172,449
1000GP (all,
excl. CEU)

4,810 11,626,948

Whole
GENCODE
v29
(full-length)

172,449 1000GP (all) 5,008 11,835,580

Supplementary Table A.2: Pantranscriptomes
†See Supplementary Table A.1 for more details on the haplotype sets

169

Name /
Accession
(source)

Reference Replicate Cell-line Sequencing type
Number of

read-pairs or
alignments

SRR1153470
(SRA)

[204] NA NA12878
Paired-end
Illumina HiSeq
2000

115,359,773
read-pairs

ENCSR000AED
(ENCODE)

[44, 49] 1 NA12878
Paired-end
Illumina HiSeq
2000

97,548,052
read-pairs

ENCSR706ANY
(ENCODE)

[44, 49] 1-4 NA12878 PacBio Iso-Seq
2,687,717

alignments

CHM13 (T2T) † 1 CHM13
Paired-end
Illumina NovaSeq

90,930,105
read-pairs

ERR188217 &
ERR204848
(Geuvadis)

[108] 1 NA11832
Paired-end
Illumina HiSeq
2000

2,354,918 +
863,919

read-pairs

ERR188235 &
ERR204834
(Geuvadis)

[108] 1 NA11930
Paired-end
Illumina HiSeq
2000

1,305,660 +
1,220,864
read-pairs

ERR188354 &
ERR204977
(Geuvadis)

[108] 1 NA12775
Paired-end
Illumina HiSeq
2000

3,088,867 +
806,975

read-pairs

ERR188429 &
ERR204822
(Geuvadis)

[108] 1 NA12889
Paired-end
Illumina HiSeq
2000

2,286,090 +
778,671

read-pairs

Supplementary Table A.3: Read sets and alignments
†Downloaded from the T2T consortium data repository:
https://github.com/nanopore-wgs-consortium/CHM13

170

Name Training
reads†

Haplotype-
specific
transcripts‡

Expression
values

vg sim
parameters

Number of
read-pairs

vg sim (SRR,
uniform)

SRR1153470
Sample-
specific
(NA12878)

Uniform
Indel error:
0.001, mean:
277, sd: 43

50,000,000

vg sim (ENC,
uniform) ENCSR000AED

Sample-
specific
(NA12878)

Uniform
Indel error:
0.001, mean:
216, sd: 24

50,000,000

vg sim (SRR,
RSEM)

SRR1153470
Sample-
specific
(NA12878)

RSEM
estimates

Indel error:
0.001, mean:
277, sd: 43

50,000,000

vg sim (ENC,
RSEM) ENCSR000AED

Sample-
specific
(NA12878)

RSEM
estimates

Indel error:
0.001, mean:
216, sd: 24

50,000,000

Supplementary Table A.4: Simulated read sets
†See Supplementary Table A.3 for more details on the training read sets
‡See Supplementary Table A.2 for more details on the haplotype-specific transcript sets

171

Software tool(s) or
library Used for step involved in Version or GitHub

commit(s)†
rpvg Inferring expression. a7a79697

vg construct, vg
convert, vg rna, vg ids,
vg index, vg stats & vg
gbwt

Constructing graphs and pantranscriptomes.
v1.23.0, c861e23e

& 8ff022c3

vg gbwt Constructing GBWT r-index. 883f0f87

vg view & vg sim Simulating reads. 515a4595

vg snarls, vg prune &
vg index

Constructing distance and GCSA graph index.
8ff022c3 &

c4bbd63b

vg map & vg mpmap Mapping reads. c4bbd63b

vg inject, vg paths &
vg surject

Converting alignments between graph (GAM)
and reference (BAM).

c4bbd63b

vg index, vg paths &
vg surject

Creating reference transcript alignments for
mapping benchmark.

c861e23e

vg stats, vg view & vg
gampcompare

Comparing graph alignments for mapping
benchmark.

c4bbd63b

vgrna-project-scripts

Converting expression profiles for
simulations. Inferring coverage, overlap and
bias statistics for mapping benchmark.
Comparing haplotype-specific transcript
sequences for expression benchmark. Plotting
the results.

71442ea4 &
afc94cf8

Supplementary Table A.5: Versions of internal software used
†Different subcommands in the vg toolkit and parts of the pipeline stabilized at different times
during our development process, hence the variety of commits used.

172

Software tool(s) or
library Used for step involved in Version or GitHub

commit(s)†

bcftools Filtering, subsetting and normalizing variants. v1.9

samtools
Filtering, sorting, converting and indexing
alignments.

v1.9

bedtools
Converting alignments to regions and
calculating coverage.

v2.29.1

seqtk Subsampling reads. v1.3

HISAT2 Indexing graphs and mapping reads. v2.2.0 & v2.2.1

STAR Indexing references and mapping reads. v2.7.3a

Bowtie2
Indexing pantranscriptomes and mapping
reads.

v2.3.5.1

RSEM
Indexing pantranscriptomes and inferring
expression.

v1.3.1

Kallisto
Indexing pantranscriptomes and inferring
expression.

v0.46.1

Salmon
Indexing pantranscriptomes and inferring
expression.

v1.2.1

SeqLib Parsing alignments and calculating overlaps. 08771285

Supplementary Table A.6: Versions of external software used

A.4 Supplementary Notes

A.4.1 vg mpmap algorithm details

A.4.1.1 Seeding

Algorithm 1 contains pseudocode for the algorithm used to extract supermaximal

exact match (SMEM) seeds. This algorithm utilizes a GCSA2 index to query suffix array in-

tervals, which can be located in the graph similarly to the FM-index [65, 189]. After finding

a longest maximal exact match (MEM), the algorithm navigates upward in the implicit suffix

173

tree using a longest common prefix (LCP) array. After computing the SMEMs of a read, we

find the minimally-more-frequent MEMs for each SMEM, subject to a minimum length. This

algorithm for detecting them (Algorithm 3) proceeds by querying the number of occurrences of

a “probe substring” with a size equal to the minimum length (Algorithm 2). If the number of oc-

currences equal to the number of occurrences of the SMEM, then no minimally-more-frequent

MEM that meets the minimum length criterion can contain that probe substring. Alternatively,

if the substring occurs more frequently than the SMEM, then it must be part of a minimally-

more-frequent MEM. The endpoint of this MEM is found using a bisection search. A benefit of

the design of this algorithm is that, if the minimum length is longer than a match of a random

sequence is likely to be, it is possible to skip over many characters in the SMEM without ever

querying them.

A.4.1.2 Reachability between seeds

Algorithm 4 presents a simplified version of the algorithm for computing reachability

between exact match seeds. The simplification lies in that seed positions are treated as syn-

onymous with nodes in the graph. In reality, seeds correspond to a path through the graph, not

single nodes. Also, collinear seeds sometimes overlap each other either on the read or in the

graph. For instance, this occurs when there are indel errors in a homopolymer, in which case

the MEMs on either side of the error will both try to match the entire homopolymer. The full

algorithm in vg mpmap handles these nuances, but the details are cumbersome to present. The

three stages of the reachability algorithm achieve linear run time in the typical case in different

ways. In stage 1 (Algorithm 5), most transitive reachability relationships are not discovered, so

174

the number of edges is usually linear. In stage 2 (Algorithm 6), the quadratic factor is limited

to the number of noncollinear seeds that can nonetheless reach each other in the pangenome

graph. In stage 3 (Algorithm 7), an early stopping condition limits the quadratic factor to the

number of seeds that have more than one collinear successor.

A.4.1.3 Dynamic programming with multiple traceback

The pseudocode in Algorithm 8 presents a simplified version of the multiple trace-

back algorithm in which only the two highest-scoring alignments are returned. The logic ex-

tends naturally to finding the top k alignments, but the details are somewhat complicated and

not particularly enlightening. The pseudocode also presents the multiple-traceback algorithm

for a Needleman-Wunsch alignment for the sake of simplicity, but the generalization to POA

is straightforward. The insight underlying this algorithm is that the second highest-scoring

traceback diverges from the highest-scoring one at the cell where the difference is minimized

between the score that is entered in the dynamic programming matrix and the other scores that

could have been entered there. Moreover, the score of this alignment differs from the highest-

scoring alignment’s score by exactly that difference.

175

Algorithm 1: Stage 1 of MEM finding
Input: GCSA2 index G, LCP array L, read R
Output: SMEMs between R and sequence graph

1 Function FindSMEMs(G, L, R):
2 b← |R|, e← |R| // ends of a match’s read interval
3 s← G.fullSAInterval() // suffix array interval on the graph
4 while b > 0 do

// extend match by one character
5 ŝ← G.LF(s,R[b−1])
6 if ŝ.empty() then

// the SMEM is exhausted
7 yield (s,b,e)
8 n← L.parent(s) // match’s parent suffix tree node
9 e← b+n.longestCommonPrefix()

10 s← n.interval()
11 else

// the match was successful
12 b← b−1
13 s← ŝ
14 end
15 end
16 yield (s,b,e)

Algorithm 2: Check if a substring is more frequent than an SMEM (Subrou-
tine of Stage 2 of MEM-finding)

Input: GCSA2 index G, read R, SMEM (s,b,e), probe substring (pb, pe) with
pb≥ b and pe≤ e

Output: MEM (t, p, pe), where p≥ pb is the minimum index such that (p, pe)
occurs more times than (b,e) in the graph.

1 Function MoreFrequentProbe(G, R, (s,b,e), (pb, pe)):
2 p← pe
3 t← G.fullSAInterval()
4 while p > pb do
5 t̂← G.LF(t,R[p−1])
6 if G.count(t̂)> G.count(s) then
7 p← p−1
8 t← t̂
9 else

10 break
11 end
12 end
13 return (t, p, pe)

176

Algorithm 3: Stage 2 of MEM-finding
Input: GCSA2 index G, read R, SMEM (s,b,e), minimum length L
Output: All minimally-more-frequent MEMs

1 Function MoreFrequentMEMs(G, R, (s,b,e), L):
2 mb← b, me← b+L // the probe substring
3 while me≤ e do
4 t, pb, pe←MoreFrequentProbe(G, R, (s,b,e), (mb,me))
5 if pb 6= mb then

// probe cannot occur in any minimally-more-frequent
MEM

6 mb← pb+1
7 me← mb+L
8 else

// probe occurs in minimally-more-frequent MEM, bisect
to find end

9 l← me, h← e
10 while h 6= l do
11 c← b(h+ l)/2c
12 t, pb, pe←MoreFrequentProbe(G, R, (s,b,e), (mb,c))
13 if pb 6= mb then
14 h← c
15 else
16 l← c
17 end
18 end
19 yield (t,mb,h)
20 me← h+1
21 mb← me−L
22 end
23 end

177

Algorithm 4: Construct the connectivity graph between seeds
Input: D a DAG, S = {(n,b,e)} the MEM seeds (represented by a node n and a

read interval [b,e))
Output: Transitive reduction of graph with seeds as nodes and edges between

the seeds if they are connected by a path in D and the read intervals are
collinear.

1 Function SeedGraph(G, S):
/* make an initial graph ignoring collinearity on the read

*/
2 G0← TentativeSeedGraph(D,S)

/* rewire edges to respect collinearity */
3 G1← CollinearSeedGraph(G0)

/* remove transitive edges (if any) */
4 G2← TransitiveReduction (G1)
5 return G2

178

Algorithm 5: Stage 1 of constructing connectivity graph between seeds
Input: D a DAG, S = {(n,b,e)}, the set of MEM seeds represented by a node n

from D, and a read interval [b,e)
Output: Graph with seeds for nodes and edges between two seeds whenever

there is a walk in the graph that does not include any other seed
1 Function TentativeSeedGraph(G, S):
2 G0.nodes()← S // nodes correspond to seeds
3 foreach n in D.topologicalOrder() do
4 if ∃ some seed s = (n,b,e) then

// seeds that can reach n can reach s
5 foreach t in n.predecessorSeeds() do
6 G0.addEdge(t,s)
7 end

// s blocks earlier seeds and reaches n’s successors
8 foreach m in n.successors() do
9 m.predecessorSeeds().insert(s)

10 end
11 else

// all seeds that reach n can reach its successors
12 foreach m in n.successors() do
13 foreach s in n.predecessorSeeds() do
14 m.predecessorSeeds().insert(s)
15 end
16 end
17 end
18 end
19 return G0

179

Algorithm 6: Stage 2 of constructing connectivity graph between seeds
Input: G0, graph with seeds as nodes and edges indicating that there is a walk

connecting the two seeds in the graph (may exclude transitive edges)
Output: Graph with seeds for nodes and edges indicating 1) that there is a walk

connecting the two seeds, and 2) the seeds are collinear on the read.
Transitive edges may be excluded.

1 Function CollinearSeedGraph(G0):
2 G1.nodes()← G0.nodes()
3 foreach s in G0.topologicalOrder() do

// initialize a queue with s’s predecessors
4 q.init()
5 foreach t in s.predecessors() do
6 q.enqueue(t)
7 end
8 while q is not empty do
9 t = q.dequeue()

// t is only in q if it can reach s, check for
collinearity

10 if t.readInterval() is collinear with s.readInterval() then
11 G1.addEdge(t,s)

// don’t explore t’s collinear predecessors, they
will only produce transitive edges

12 else
13 s.noncollinearPredecessors().insert(t)

// must explore t’s collinear predecessors
14 foreach u in t.predecessors() do
15 q.enqueue(u)
16 end
17 end

// always explore t’s noncollinear predecessors
18 foreach u in t.noncollinearPredecessors() do
19 q.enqueue(u)
20 end
21 end
22 end
23 return G1

180

Algorithm 7: Stage 3 of constructing connectivity graph between seeds
Input: G1, a DAG
Output: The transitive reduction of G1

1 Function TransitiveReduction (G1):
2 G2.nodes()← G1.nodes()
3 foreach s in G1.topologicalOrder() do
4 if s.numSuccessors() = 1 then

// all walks out of s use the edge, it cannot be
transitive

5 continue
6 end

// keep track of which seeds have been visited
7 v←∅

// iterate over neighbors in topological order
8 foreach t in s.neighbors() do
9 if t ∈ v then

// t is reachable from an earlier edge, (s, t) is
transitive

10 G2.removeEdge(s, t)
11 else

// mark all nodes reachable from this edge as
visited

12 v.insert(t)
13 foreach u ∈ t.reachableByDFS() do
14 v.insert(u)
15 end
16 end
17 end
18 end

Algorithm 8: Find the two highest-scoring alignments from a single DP ma-
trix

Input: M the dynamic programming matrix of an alignment, g gap penalty, S
score matrix, Q1 and Q2 the sequences being aligned

Output: The two top-scoring alignments
1 Function MultipleTraceback(M,g,S,Q1,Q2):
2 a1,s1,d,s2← OptimalTraceback(M,g,S,Q1,Q2)
3 a2← NextBestTraceback(M,g,S,Q1,Q2,d)
4 return (a1,s1), (a2,s2)

181

Algorithm 9: Find the optimal traceback and the point of deflection for the
second-best traceback

Input: M the dynamic programming matrix of an alignment, g gap penalty, S
score matrix, Q1 and Q2 the sequences being aligned

Output: The optimal traceback and its score, and the next-best tracebacks score
and point deflection from the optimal traceback

1 Function OptimalTraceback(M,g,S,Q1,Q2):
2 i = M.numRows(), j = M.numCols()
3 s←M[i, j] // the alignment score
4 a←∅ // alignment to trace
5 d←∅ // point of deflection for 2nd alignment
6 ∆← ∞ // score difference for 2nd alignment
7 while i 6= 0 or j 6= 0 do
8 if M[i, j] = M[i−1, j−1]+S[Q1[i−1],Q2[j−1]] then
9 i′, j′← i−1, j−1

10 else if M[i, j] = M[i−1, j]−g then
11 i′, j′← i−1, j
12 else
13 i′, j′← i, j−1
14 end
15 a.prepend(i′, j′)

// look at suboptimal extensions to find next-best
traceback

16 if i′, j′ 6= i−1, j−1 and
M[i, j]− (M[i−1, j−1]+S[Q1[i−1],Q2[j−1]])< ∆ then

17 ∆←M[i, j]− (M[i−1, j−1]+S[Q1[i−1],Q2[j−1]])
18 d← (i, j −→ i−1, j−1)
19 end
20 if i′, j′ 6= i−1, j and M[i, j]− (M[i−1, j]−g)< ∆ then
21 ∆←M[i, j]− (M[i−1, j]−g)
22 d← (i, j −→ i−1, j)
23 end
24 if i′, j′ 6= i, j−1 and M[i, j]− (M[i, j−1]−g)< ∆ then
25 ∆←M[i, j]− (M[i, j−1]−g)
26 d← (i, j −→ i, j−1)
27 end
28 i, j← i′, j′

29 end
30 return (a,s,d,s−∆)

182

Algorithm 10: Find the second-highest scoring alignment
Input: M the dynamic programming matrix of an alignment, g gap penalty, S

score matrix, Q1 and Q2 the sequences being aligned, d the point of
deflection from the optimal traceback

Output: The second-highest scoring alignment
1 Function NextBestTraceback(M,g,S,Q1,Q2,d):
2 i = M.numRows(), j = M.numCols()
3 a←∅ // alignment to trace
4 while i 6= 0 or j 6= 0 do
5 if d.from() = i, j then

// this is where 2nd best traceback differs from
optimal

6 i′, j′← d.to()
7 else if M[i, j] = M[i−1, j−1]+S[Q1[i−1],Q2[j−1]] then
8 i′, j′← i−1, j−1
9 else if M[i, j] = M[i−1, j]−g then

10 i′, j′← i−1, j
11 else
12 i′, j′← i, j−1
13 end
14 a.prepend(i′, j′)
15 i, j← i′, j′

16 end
17 return a

183

Appendix B

Appendix B: Proofs of theorems regarding

snarl compatibility

B.1 Appendix 1 and 2 of Superbubbles, Ultrabubbles, and Cacti

Omitted. I did not contribute to the proofs in these appendices.

B.2 Appendix 3 of Supperbubbles, Ultrabubbles, and Cacti

In this section, we prove Theorems 2 and 3, which characterize a sufficient condition

to produce a family of compatible snarls. We begin with two useful lemmas.

Lemma 10 Let {x,y} be a snarl with snarl subgraph X. If u is a node in X and v is a node that

is not in X, then any path from u to v includes the black edge incident on x or the black edge

incident on y.

184

Proof Suppose a path exists that does not include either of the black edges incident on x and

on y. Then u is not disconnected from v after deleting these edges, which contradicts the sepa-

rability of {x,y}.

Lemma 11 Let {x,y} be a snarl with subgraph X. Then there exists a path from u to either x

or y that includes neither the black edge incident on x nor the black edge incident on y iff u is

in X.

Proof First assume u is in X. Some path exists from u to either x or y, else u is not in the same

connected component as x and y. Consider the shortest such path. Without loss of generality,

assume this path is between u and x. Suppose the black edge incident on x or the black edge

incident on y occurs somewhere along the path. Without loss of generality, assume it is the black

edge incident on x. By Lemma 1, x or y must occur in the prefix of the path between u and x̂.

This implies that the path was not the shortest, which is a contradiction. Therefore, there exists

a path from u that contains neither the black edge incident on x nor the black edge incident on

y.

Next assume without loss of generality that a path exists from u to x that includes

neither the black edge incident on x nor the black edge incident on y. This path is preserved

after removing these two edges. This implies that u is in the same connected component as x

(and hence also y) in the resulting graph, so u is in X.

Let {x1,y1} and {x2,y2} be two snarls with snarl subgraphs X1 and X2 respectively.

We will say that {x1,y1} splits {x2,y2} if either a) x2 is in X1 but y2 is not in X1, or b) y2 is in X1

but x2 is not in X1. This condition clearly violates compatibility.

185

Lemma 12 Let {x1,y1} and {x2,y2} be snarls with snarl subgraphs X1 and X2. If {x1,y1} splits

{x2,y2}, then x1 and y1 are in X2.

Proof We will proceed by showing that all other cases lead to contradictions. Without loss of

generality, assume x2 is in X1 and y2 is not in X1.

Case I: x1 and y1 are not in X2

Consider the set of paths from x2 to y2 that do not pass through ŷ2 or x̂2. This set is

nonempty else X2 is disconnected. By Lemma 10, any such path must include x1 or y1, which

would imply that x1 is in X2 or y1 is in X2 respectively by Lemma 11. This violates the assumption

of the case, so this case is contradictory.

Case II: x1 is in X2 and y1 is not in X2

Any path from x1 to y1 that does not include the black edges incident on x and y cannot

include y2, else y2 is in X1 by Lemma 11. Therefore, it must contain the black edge incident on

x2 by Lemma 10. Without loss of generality, this implies that {x1,x2} and {x̂2,y1} are separable,

which violates the minimality of {x1,y1}. Thus, this case is contradictory as well.‘

Case III: y1 is in X2 and x1 is not in X2

Same as Case II.

This proves the lemma.

Lemma 13 Let {x1,y1} and {x2,y2} be snarls with snarl subgraphs X1 and X2. If {x1,y1} splits

{x2,y2}, then X1 contains a black bridge edge.

Proof Without loss of generality, assume x2 is in X1 and y2 is not in X1. Then there exists at

least one path from x̂2 to either x1 or y1 else X1 is disconnected. By Lemma 12, x1 and y1 are

186

in X2, so all such paths must include the black edge incident on x2 or the black edge incident

on y2 by Lemma 10. Since y2 is not in X1, all paths from x1 or y1 to x̂2 in X1 must include the

black edge incident on x2. Therefore, the black edge incident on x2 is a bridge edge by Menger’s

Theorem.

There are also cases that violate compatibility without splitting a snarl. The following

lemmas characterize these cases.

Lemma 14 Let {x1,y1} and {x2,y2} be snarls with distinct boundaries in a connected graph

B(D) whose snarl subgraphs are X1 and X2. If x1 and y1 are in X2, and x2 and y2 are in X1, then

X1∪X2 = B(D).

Proof Let u be an arbitrary node that is not in X1 be arbitrary. There exists at least one path

from u to a node in X1 else B(D) is not connected. Let p1 be the shortest such path. Clearly, no

node from X1 occurs in p1 except at its terminus. In particular, p1 does not contain either x̂2 or

ŷ2. By Lemma 10, p1 includes x1 or y1, so one of these must be the terminal node. Without loss

of generality, assume it is x1. Since x1 is in X2, there also exists a path p2 from x̂1 to either x2 or

y2 that does not include x̂2 or ŷ2 by Lemma 11. Note that p1 p2 is a path from u to either x2 or

y2 that does not include the black edges incident on x2 and y2. Thus, u is in X2 by Lemma 11.

This implies X1∪X2 = B(D).

Lemma 15 Let {x,y1} and {x,y2} be snarls with snarl subgraphs X1 and X2. If y1 6= y2, then

X1 and X2 both contain a black bridge edge.

Proof Suppose y2 is not in X1. Then all paths from y2 to x must include the black edge incident

on x or the black edge incident on y1 by Lemma 10. There exists at least one path between x

187

and y2 in X2, which cannot include the black edge incident on x. Therefore, all paths between

y2 and x must include the black edge incident on y1. This implies without loss of generality that

{x,y2} and {ŷ2,y1} are separable, which violates the minimality of {x,y1}. Thus, y2 is in X1.

Note that the black edge incident on x is not in X1. Therefore, removing the black edge incident

on y2 from X1 disconnects x from ŷ2 because of the separability of {x,y2}. Thus, the black edge

incident on y2 is a bridge edge in X1. Similarly, the black edge incident on y1 is a bridge edge

in X2.

Finally, we establish the relationship between pairs of snarls that allow for compati-

bility.

Lemma 16 Let {x1,y1} and {x2,y2} be snarls with snarl subgraphs X1 and X2. If both x2 and

y2 are in X1, and both x1 and y1 are not in X2, then X2 ⊂ X1.

Proof Let u be an arbitrary node in X2. There exists a path p1 from u to x1 or y1 that consists

of only nodes in X2 else X2 is not connected. In particular, x̂1, ŷ1 /∈ p1 else x1 or y1 would be in

X2. There also exists a path p2 from x2 to x1 that includes neither x̂1 nor ŷ1 by Lemma 11. The

path p1 p2 connects u to x1 and includes neither x̂1 nor ŷ1. Thus, u is in X1 by Lemma 11.

Lemma 17 Let {x1,y1} and {x2,y2} be snarls with snarl subgraphs X1 and X2. If x2 and y2 are

not in X1, and x1 and y1 are not in X2, then X1 and X2 are disjoint.

Proof Let u be an arbitrary node in X1, and let p be any path from u to x2 or y2. By Lemma 10,

p includes x1 or y1. Thus, by Lemma 10, p includes x̂2 or ŷ2. Since p was chosen arbitrarily,

this implies u is not in X2 by Lemma 11. Therefore, X1 and X2 are disjoint.

188

Taken together, these results yield the sufficient condition for compatibility that we

set out to prove.

Theorem 2 In a connected biedged graph with at least one black bridge edge, the family of

snarls whose subgraphs have no black bridge edges is compatible.

Proof Let {x1,y1} and {x2,y2} be arbitrary snarls with snarl subgraphs X1 and X2 such that

neither subgraph contains a black bridge edge. By Lemma 13, neither snarl splits the other. By

Lemma 15, the two snarls cannot share a boundary node. Therefore, we also cannot have both

x1 and y1 in X2, and x2 and y2 in X1 else either X1 or X2 must contain the graph’s black bridge

edge by Lemma 14. This leaves three cases:

1. x1 and y1 are in X2, and x2 and y2 are not in X1

2. x1 and y1 are not in X2, and x2 and y2 are in X1

3. x1 and y1 are not in X2, and x2 and y2 are not in X1

In the first two cases, one subgraph is nested in the other by Lemma 16. In last case,

the subgraphs are disjoint by Lemma 17. Therefore, {x1,y1} and {x2,y2} are compatible.

We will now move on to proving that ultrabubbles are included in the family of snarls

with no black bridge edges.

Lemma 18 Let u be a terminal of a black bridge edge whose removal separates a graph B(D)

into connected components B1 and B2 with u in B1 and û in B2. Then all snarls {x,y} have

either both x and y in B1 or both x and y in B2.

189

Proof Suppose without loss of generality that x is in B1 and y is in B2. All paths between x

and y include the black edge incident on u. Therefore, {x,u} and {û,y} are separable. This

contradicts the minimality of {x,y}.

Theorem 3 No ultrabubble contains a black bridge edge in its subgraph.

Proof Let {x,y} be an ultrabubble with subgraph X. Suppose X contains a black bridge edge

with terminals u and û. Removing this edge separates X into connected components X1 and X2

with u in X1 and û in X2. By Lemma 18, we may assume without loss of generality that x and y

are in X1.

Since X2 ⊂ X, there are no cyclic walks in X2. Moreover, there is at least one edge

in X2 else the black bridge edge is a tip. Let w be the longest biedged walk starting from û in

X2. This walk must exist, since walks of unbounded length could only exist if there is a cyclic

biedged walk. Moreover, w is not empty since X2 contains at least one edge.

Suppose the final edge in w is gray. Since x and y are not in X2, one endpoint of this

gray edge must have no black edge incident on it in the full graph else w could be lengthened.

This violates the definition of a bidirected graph. Therefore the final edge in w must be black.

However, this implies that one endpoint of this black edge has no gray edges incident on it,

else w could be lengthened. That is, the black edge is a tip, which contradicts the definition of

ultrabubble. Therefore, X does not contain a black bridge edge.

Lemma 19 Let {x,y} be a snarl with subgraph X. Further, let u be any node, and let p be the

shortest path from u to either x or y and q the shortest path from u to either x̂ or ŷ. If u is in X,

then |p|< |q|, and if u is not in X then |q|< |p|.

190

Proof First assume that u is in X. Then q contains x or y by Lemma 10. The subpath up to this

point is a path between u and either x or y that is strictly shorter than q. Therefore, |p| < |q|.

Similarly, if u is in X then |q|< |p|.

Lemma 20 Let (u, û) be a black bridge edge that separates a graph B(D) into connected com-

ponents B1 and B2 with u in B1 and û in B2. Further, let {x,y} be a snarl subgraph X such that

a) x is in B2 and b) x,y 6= û. Then X contains û iff X contains w.

Proof By Lemma 18, y is in B2 as well as x. Note that if x = û or y = û then the claim is verified

trivially, so we may focus on the case where x 6= û and y 6= û. In this case, the black edges (x, x̂)

and (y, ŷ) must be in B2.

First, assume û is in X. There exists a path p1 from w to u in B1. Note that this implies

p1 contains neither (x, x̂) nor (y, ŷ). There also exists a path p2 from û to x or y that includes

neither (x, x̂) nor (y, ŷ) by Lemma 11. Thus, p1 p2 is a path from w to x or y that includes neither

(x, x̂) nor (y, ŷ), which implies w is in X by Lemma 11.

Next, assume w is in X. There exists a path p from w to x or y that includes neither

(x, x̂) nor (y, ŷ) by Lemma 11. Since x and y are in B2, this path must include (u, û), which

means it includes a subpath from û to x or y. Therefore, û is in X by Lemma 11

Lemma 21 Let (x, x̂) be a black bridge edge whose removal separates a graph B(D) into con-

nected components B1 and B2 with x in B1 and x̂ in B2. If {x,y} is a snarl with subgraph X,

then X ⊂ B1

Proof X consists of only nodes that can be reached from x without crossing (x, x̂) by Lemma

11. Therefore, X ⊂ B1.

191

Bibliography

[1] Alexej Abyzov, Alexander E Urban, Michael Snyder, and Mark Gerstein. CNVnator: an
approach to discover, genotype, and characterize typical and atypical CNVs from family
and population genome sequencing. Genome Research, 21(6):974–984, 2011.

[2] Vitor R C Aguiar, Jônatas César, Olivier Delaneau, Emmanouil T Dermitzakis, and
Diogo Meyer. Expression estimation and eQTL mapping for HLA genes with a per-
sonalized pipeline. PLoS genetics, 15(4):e1008091, April 2019.

[3] Cornelis A Albers, Gerton Lunter, Daniel G MacArthur, Gilean McVean, Willem H
Ouwehand, and Richard Durbin. Dindel: Accurate indel calls from short-read data.
Genome Research, 21(6):961–973, 2011.

[4] Max A Alekseyev and Pavel A Pevzner. Breakpoint graphs and ancestral genome recon-
structions. 19(5):943–957, May 2009.

[5] Carlos Alonso-Blanco, Jorge Andrade, Claude Becker, Felix Bemm, Joy Bergelson,
Karsten M Borgwardt, Jun Cao, Eunyoung Chae, Todd M Dezwaan, Wei Ding, et al.
1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell,
166(2):481–491, 2016.

[6] Adam Ameur, Johan Dahlberg, Pall Olason, Francesco Vezzi, Robert Karlsson, Marcel
Martin, Johan Viklund, Andreas Kusalananda Kähäri, Pär Lundin, Huiwen Che, et al.
SweGen: a whole-genome data resource of genetic variability in a cross-section of the
Swedish population. European Journal of Human Genetics, 25(11):1253–1260, 2017.

[7] Jérôme Amilhastre, Marie-Catherine Vilarem, and Philippe Janssen. Complexity of min-
imum biclique cover and minimum biclique decomposition for bipartite domino-free
graphs. Discrete Applied Mathematics, 86(2-3):125–144, 1998.

[8] Amihood Amir, Moshe Lewenstein, and Noa Lewenstein. Pattern matching in hypertext.
In Lecture Notes in Computer Science, pages 160–173. Springer Berlin Heidelberg, 1997.

[9] Dmitry Antipov, Anton Korobeynikov, Jeffrey S. McLean, and Pavel A. Pevzner. hy-
bridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics,
32(7):1009–1015, November 2015.

192

[10] Joel Armstrong, Ian T Fiddes, Mark Diekhans, and Benedict Paten. Whole-genome
alignment and comparative annotation. Annual review of animal biosciences, 7:41–64,
2019.

[11] Joel Armstrong, Glenn Hickey, Mark Diekhans, Ian T Fiddes, Adam M Novak, Alden
Deran, Qi Fang, Duo Xie, Shaohong Feng, Josefin Stiller, et al. Progressive Cactus is
a multiple-genome aligner for the thousand-genome era. Nature, 587(7833):246–251,
2020.

[12] Peter A Audano, Arvis Sulovari, Tina A Graves-Lindsay, Stuart Cantsilieris, Melanie
Sorensen, AnneMarie E Welch, Max L Dougherty, Bradley J Nelson, Ankeeta Shah,
Susan K Dutcher, et al. Characterizing the major structural variant alleles of the human
genome. Cell, 176(3):663–675, 2019.

[13] Tomas Babak, Brian DeVeale, Emily K Tsang, Yiqi Zhou, Xin Li, Kevin S Smith, Kim R
Kukurba, Rui Zhang, Jin Billy Li, Derek van der Kooy, et al. Genetic conflict reflected
in tissue-specific maps of genomic imprinting in human and mouse. Nature genetics,
47(5):544–549, 2015.

[14] Haihua Bai, Xiaosen Guo, Narisu Narisu, Tianming Lan, Qizhu Wu, Yanping Xing, Yong
Zhang, Stephen R Bond, Zhili Pei, Yanru Zhang, et al. Whole-genome sequencing of 175
Mongolians uncovers population-specific genetic architecture and gene flow throughout
North and East Asia. Nature genetics, 50(12):1696–1704, 2018.

[15] Anton Bankevich, Andrey Bzikadze, Mikhail Kolmogorov, and Pavel A. Pevzner. As-
sembling long accurate reads using de Bruijn graphs. bioRxiv, page 2020.12.10.420448,
December 2020. Publisher: Cold Spring Harbor Laboratory Section: New Results.

[16] Yael Baran, Meena Subramaniam, Anne Biton, Taru Tukiainen, Emily K Tsang,
Manuel A Rivas, Matti Pirinen, Maria Gutierrez-Arcelus, Kevin S Smith, Kim R
Kukurba, et al. The landscape of genomic imprinting across diverse adult human tis-
sues. Genome research, 25(7):927–936, 2015.

[17] Lorenzo Barchi, Mark Timothy Rabanus-Wallace, Jaime Prohens, Laura Toppino, Sud-
harsan Padmarasu, Ezio Portis, Giuseppe Leonardo Rotino, Nils Stein, Sergio Lanteri,
and Giovanni Giuliano. Improved genome assembly and pan-genome provide key in-
sights on eggplant domestication and breeding. The Plant Journal, 2021.

[18] Anders Bergström, Shane A McCarthy, Ruoyun Hui, Mohamed A Almarri, Qasim Ayub,
Petr Danecek, Yuan Chen, Sabine Felkel, Pille Hallast, Jack Kamm, et al. Insights into
human genetic variation and population history from 929 diverse genomes. Science,
367(6484), 2020.

[19] Doruk Beyter, Helga Ingimundardottir, Asmundur Oddsson, Hannes P Eggertsson,
Eythor Bjornsson, Hakon Jonsson, Bjarni A Atlason, Snaedis Kristmundsdottir, Svenja

193

Mehringer, Marteinn T Hardarson, et al. Long-read sequencing of 3,622 Icelanders pro-
vides insight into the role of structural variants in human diseases and other traits. Nature
Genetics, pages 1–8, 2021.

[20] Etienne Birmelé, Pierluigi Crescenzi, Rui Ferreira, Roberto Grossi, Vincent Lacroix, An-
drea Marino, Nadia Pisanti, Gustavo Sacomoto, and Marie-France Sagot. Efficient bub-
ble enumeration in directed graphs. In Liliana Calderón-Benavides, Cristina González-
Caro, Edgar Chávez, and Nivio Ziviani, editors, String Processing and Information Re-
trieval: 19th International Symposium, SPIRE 2012, Cartagena de Indias, Colombia,
October 21-25, 2012. Proceedings, pages 118–129, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[21] Dorret I Boomsma, Cisca Wijmenga, Eline P Slagboom, Morris A Swertz, Lennart C
Karssen, Abdel Abdellaoui, Kai Ye, Victor Guryev, Martijn Vermaat, Freerk Van Dijk,
et al. The Genome of the Netherlands: design, and project goals. European Journal of
Human Genetics, 22(2):221–227, 2014.

[22] Ljiljana Brankovic, Costas S Iliopoulos, Ritu Kundu, Manal Mohamed, Solon P Pissis,
and Fatima Vayani. Linear-time superbubble identification algorithm for genome assem-
bly. Theoretical Computer Science, pages –, May 2015.

[23] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal proba-
bilistic RNA-seq quantification. Nature biotechnology, 34(5):525–527, 2016.

[24] Wolfgang Brehm. Hash tables with pseudorandom global order. INFOCOMP Journal of
Computer Science, 18(1):20–25, 2019.

[25] Moisés Burset, Igor A Seledtsov, and Victor V Solovyev. Analysis of canonical and non-
canonical splice sites in mammalian genomes. Nucleic acids research, 28(21):4346–746,
2017.

[26] Stanislaw Bylka, Adam Idzik, and Zsolt Tuza. Maximum cuts: Improvements and local
algorithmic analogues of the Edwards-Erdos inequality. Discrete Mathematics, 194(1-
3):39–58, 1999.

[27] Marta Byrska-Bishop, Uday S Evani, Xuefang Zhao, Anna O Basile, Haley J Abel, Alli-
son A Regier, André Corvelo, Wayne E Clarke, Rajeeva Musunuri, Kshithija Nagulapalli,
et al. High coverage whole genome sequencing of the expanded 1000 Genomes Project
cohort including 602 trios. bioRxiv, 2021.

[28] Stephane E Castel, Ami Levy-Moonshine, Pejman Mohammadi, Eric Banks, and Tuuli
Lappalainen. Tools and best practices for data processing in allelic expression analysis.
Genome Biology, 16(1), September 2015.

[29] Stephane E Castel, Pejman Mohammadi, Wendy K Chung, Yufeng Shen, and Tuuli Lap-
palainen. Rare variant phasing and haplotypic expression from RNA sequencing with
phASER. Nature communications, 7(1):1–6, 2016.

194

[30] Mark JP Chaisson, John Huddleston, Megan Y Dennis, Peter H Sudmant, Maika Ma-
lig, Fereydoun Hormozdiari, Francesca Antonacci, Urvashi Surti, Richard Sandstrom,
Matthew Boitano, et al. Resolving the complexity of the human genome using single-
molecule sequencing. Nature, 517(7536):608–611, 2015.

[31] Mark JP Chaisson, Ashley D Sanders, Xuefang Zhao, Ankit Malhotra, David Porubsky,
Tobias Rausch, Eugene J Gardner, Oscar L Rodriguez, Li Guo, Ryan L Collins, et al.
Multi-platform discovery of haplotype-resolved structural variation in human genomes.
Nature Communications, 10(1):1784, 2019.

[32] Xian Chang, Jordan Eizenga, Adam M Novak, Jouni Sirén, and Benedict Paten. Dis-
tance indexing and seed clustering in sequence graphs. Bioinformatics, 36(Supplement
1):i146–i153, 2020.

[33] Nae-Chyun Chen, Brad Solomon, Taher Mun, Sheila Iyer, and Ben Langmead. Refer-
ence flow: reducing reference bias using multiple population genomes. Genome biology,
22(1):1–17, 2021.

[34] Charleston WK Chiang, Serghei Mangul, Christopher Robles, and Sriram Sankararaman.
A comprehensive map of genetic variation in the world’s largest ethnic group—Han Chi-
nese. Molecular biology and evolution, 35(11):2736–2750, 2018.

[35] Deanna M Church, Valerie A Schneider, Tina Graves, Katherine Auger, Fiona Cunning-
ham, Nathan Bouk, Hsiu-Chuan Chen, Richa Agarwala, William M McLaren, Gra-
ham RS Ritchie, et al. Modernizing reference genome assemblies. PLoS Biology,
9(7):e1001091, 2011.

[36] Rachel M Colquhoun, Michael B Hall, Leandro Lima, Leah W Roberts, Kerri M Mal-
one, Martin Hunt, Brice Letcher, Jane Hawkey, Sophie George, Louise Pankhurst, et al.
Nucleotide-resolution bacterial pan-genomics with reference graphs. bioRxiv, 2020.

[37] 1000 Genomes Project Consortium et al. A map of human genome variation from
population-scale sequencing. Nature, 467(7319):1061–1073, 2010.

[38] 1000 Genomes Project Consortium et al. An integrated map of genetic variation from
1,092 human genomes. Nature, 491(7422):56, 2012.

[39] 1000 Genomes Project Consortium et al. A global reference for human genetic variation.
Nature, 526(7571):68, 2015.

[40] Computational Pan-Genomics Consortium. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics, 19(1):118–135, 2018.

[41] GenomeAsia100K Consortium et al. The GenomeAsia 100K Project enables genetic
discoveries across Asia. Nature, 576(7785):106, 2019.

[42] International HapMap Consortium et al. A second generation human haplotype map of
over 3.1 million snps. Nature, 449(7164):851, 2007.

195

[43] International HapMap 3 Consortium et al. Integrating common and rare genetic variation
in diverse human populations. Nature, 467(7311):52, 2010.

[44] The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the
human genome. Nature, 489(7414):57–74, September 2012.

[45] UK10K Consortium et al. The UK10K project identifies rare variants in health and
disease. Nature, 526(7571):82–90, 2015.

[46] Danang Crysnanto, Alexander S Leonard, Zih-Hua Fang, and Hubert Pausch. Novel
functional sequences uncovered through a bovine multiassembly graph. Proceedings of
the National Academy of Sciences, 118(20), 2021.

[47] Danang Crysnanto and Hubert Pausch. Bovine breed-specific augmented reference
graphs facilitate accurate sequence read mapping and unbiased variant discovery.
Genome biology, 21(1):1–27, 2020.

[48] Danang Crysnanto, Christine Wurmser, and Hubert Pausch. Accurate sequence variant
genotyping in cattle using variation-aware genome graphs. Genetics Selection Evolution,
51(1):1–15, 2019.

[49] Carrie A Davis, Benjamin C Hitz, Cricket A Sloan, Esther T Chan, Jean M Davidson,
Idan Gabdank, Jason A Hilton, Kriti Jain, Ulugbek K Baymuradov, Aditi K Narayanan,
Kathrina C Onate, Keenan Graham, Stuart R Miyasato, Timothy R Dreszer, J Seth Strat-
tan, Otto Jolanki, Forrest Y Tanaka, and J Michael Cherry. The encyclopedia of DNA
elements (ENCODE): data portal update. Nucleic Acids Research, 46(D1):D794–D801,
November 2017.

[50] Eric T Dawson and Richard Durbin. GFAKluge: A C++ library and command line
utilities for the graphical fragment assembly formats. Journal of Open Source Software,
4(33), 2019.

[51] N G de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v. Weten-
schappen, 1(49):758–764, 1946.

[52] Jacob F Degner, John C Marioni, Athma A Pai, Joseph K Pickrell, Everlyne Nkadori,
Yoav Gilad, and Jonathan K Pritchard. Effect of read-mapping biases on detecting
allele-specific expression from RNA-sequencing data. Bioinformatics, 25(24):3207–
3212, 2009.

[53] Luca Denti, Raffaella Rizzi, Stefano Beretta, Gianluca Della Vedova, Marco Previtali,
and Paola Bonizzoni. ASGAL: aligning RNA-seq data to a splicing graph to detect novel
alternative splicing events. BMC bioinformatics, 19(1):1–21, 2018.

[54] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali
Jha, Philippe Batut, Mark Chaisson, and Thomas R Gingeras. STAR: ultrafast universal
RNA-seq aligner. Bioinformatics, 29(1):15–21, 2013.

196

[55] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Biological se-
quence analysis: probabilistic models of proteins and nucleic acids. Cambridge Univer-
sity Press, 1998.

[56] Peter Eades, Xuemin Lin, and William F Smyth. A fast and effective heuristic for the
feedback arc set problem. Information Processing Letters, 47(6):319–323, 1993.

[57] Peter Ebert, Peter A Audano, Qihui Zhu, Bernardo Rodriguez-Martin, David Porubsky,
Marc Jan Bonder, Arvis Sulovari, Jana Ebler, Weichen Zhou, Rebecca Serra Mari, et al.
Haplotype-resolved diverse human genomes and integrated analysis of structural varia-
tion. Science, 2021.

[58] Jana Ebler, Wayne E Clarke, Tobias Rausch, Peter A Audano, Torsten Houwaart, Jan
Korbel, Evan E Eichler, Michael C Zody, Alexander T Dilthey, and Tobias Marschall.
Pangenome-based genome inference. bioRxiv, 2020.

[59] Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-
mers in biological sequences. PeerJ, 9:e10805, 2021.

[60] Jack Edmonds and Ellis L Johnson. Matching: A well-solved class of integer linear
programs. pages 27–30. Springer Berlin Heidelberg, Berlin, Heidelberg, January 1970.

[61] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul Peluso,
David Rank, Primo Baybayan, Brad Bettman, et al. Real-time DNA sequencing from
single polymerase molecules. Science, 323(5910):133–138, 2009.

[62] Jordan M Eizenga, Adam M Novak, Emily Kobayashi, Flavia Villani, Cecilia Cisar,
Simon Heumos, Glenn Hickey, Vincenza Colonna, Benedict Paten, and Erik Garrison.
Efficient dynamic variation graphs. Bioinformatics, 36(21):5139–5144, 2020.

[63] Jordan M Eizenga, Adam M Novak, Jonas A Sibbesen, Simon Heumos, Ali Ghaf-
faari, Glenn Hickey, Xian Chang, Josiah D Seaman, Robin Rounthwaite, Mikko Ebler,
Jana Rautiainen, Shilpa Garg, Benedict Paten, Tobias Marschall, Jouni Sirén, and Erik
Garrison. Pangenome graphs. Annual Review of Genomics and Human Genetics,
21:139–162, 2020.

[64] Alina Ene, William Horne, Nikola Milosavljevic, Prasad Rao, Robert Schreiber, and
Robert E Tarjan. Fast exact and heuristic methods for role minimization problems. In
Proceedings of the 13th ACM symposium on Access control models and technologies,
pages 1–10, 2008.

[65] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications.
In Proceedings of the 41st Annual Symposium on Foundations of Computer Science.
IEEE Computer Society, November 2000.

[66] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jungreis,
Jane Loveland, Jonathan M Mudge, Cristina Sisu, James Wright, Joel Armstrong, et al.

197

GENCODE reference annotation for the human and mouse genomes. Nucleic acids
research, 47(D1):D766–D773, 2019.

[67] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and
optimal text searching in BWT-Runs bounded space. Journal of the ACM, 67(1):1–54,
January 2020.

[68] Lei Gao, Itay Gonda, Honghe Sun, Qiyue Ma, Kan Bao, Denise M Tieman, Elizabeth A
Burzynski-Chang, Tara L Fish, Kaitlin A Stromberg, Gavin L Sacks, et al. The tomato
pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature genetics,
51(6):1044–1051, 2019.

[69] Shilpa Garg, Mikko Rautiainen, Adam M Novak, Erik Garrison, Richard Durbin, and
Tobias Marschall. A graph-based approach to diploid genome assembly. Bioinformatics,
34(13):i105–i114, 2018.

[70] Erik Garrison. Graphical pangenomics. PhD thesis, University of Cambridge, 2019.

[71] Erik Garrison. ekg/gimbricate. https://github.com/ekg/gimbricate, October 2020.

[72] Erik Garrison. ekg/seqwish. https://github.com/ekg/seqwish, February 2021.

[73] Erik Garrison and Gabor Marth. Haplotype-based variant detection from short-read se-
quencing. arXiv preprint arXiv:1207.3907, 2012.

[74] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga, Eric T
Dawson, William Jones, Shilpa Garg, Charles Markello, Michael F Lin, et al. Variation
graph toolkit improves read mapping by representing genetic variation in the reference.
Nature biotechnology, 36(9):875–879, 2018.

[75] Agnieszka A Golicz, Philipp E Bayer, Guy C Barker, Patrick P Edger, HyeRan Kim,
Paula A Martinez, Chon Kit Kenneth Chan, Anita Severn-Ellis, W Richard McCom-
bie, Isobel AP Parkin, et al. The pangenome of an agronomically important crop plant
Brassica oleracea. Nature communications, 7(1):1–8, 2016.

[76] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162(3):705–708, 1982.

[77] Osamu Gotoh. Modeling one thousand intron length distributions with fitild. Bioinfor-
matics, 34(19):3258–3264, 2018.

[78] Catherine Grasso and Christopher Lee. Combining partial order alignment and progres-
sive multiple sequence alignment increases alignment speed and scalability to very large
alignment problems. Bioinformatics, 20(10):1546–1556, 2004.

[79] Cristian Groza, Tony Kwan, Nicole Soranzo, Tomi Pastinen, and Guillaume Bourque.
Personalized and graph genomes reveal missing signal in epigenomic data. Genome
Biology, 21(1), May 2020.

198

[80] Ivar Grytten, Knut D Rand, Alexander J Nederbragt, Geir O Storvik, Ingrid K Glad, and
Geir K Sandve. Graph Peak Caller: Calling ChIP-seq peaks on graph-based reference
genomes. PLoS computational biology, 15(2):e1006731, 2019.

[81] Daniel F Gudbjartsson, Hannes Helgason, Sigurjon A Gudjonsson, Florian Zink, As-
mundur Oddson, Arnaldur Gylfason, Soren Besenbacher, Gisli Magnusson, Bjarni V
Halldorsson, Eirikur Hjartarson, et al. Large-scale whole-genome sequencing of the Ice-
landic population. Nature Genetics, 47(5):435–444, 2015.

[82] Deepti Gurdasani, Tommy Carstensen, Fasil Tekola-Ayele, Luca Pagani, Ioanna Tach-
mazidou, Konstantinos Hatzikotoulas, Savita Karthikeyan, Louise Iles, Martin O Pollard,
Ananyo Choudhury, et al. The African genome variation project shapes medical genetics
in Africa. Nature, 517(7534):327–332, 2015.

[83] Andrew P Han. Human pangenome reference consortium releases data from 30 genomes.
genomeweb.com, March 2021. [Online. Retrieved June 14, 2021.].

[84] F Harary and G E Uhlenbeck. On the number of Husimi trees: I. Proceedings of the
National Academy of Sciences of the United States of America, 39(4):315–322, April
1953.

[85] Bernhard Haubold and Thomas Wiehe. How repetitive are genomes? BMC bioinformat-
ics, 7(1):1–10, 2006.

[86] Glenn Hickey, David Heller, Jean Monlong, Jonas A Sibbesen, Jouni Sirén, Jordan
Eizenga, Eric T Dawson, Erik Garrison, Adam M Novak, and Benedict Paten. Geno-
typing structural variants in pangenome graphs using the vg toolkit. Genome biology,
21(1):1–17, 2020.

[87] John Huddleston, Mark JP Chaisson, Karyn Meltz Steinberg, Wes Warren, Kendra
Hoekzema, David Gordon, Tina A Graves-Lindsay, Katherine M Munson, Zev N Kro-
nenberg, Laura Vives, et al. Discovery and genotyping of structural variation from long-
read haploid genome sequence data. Genome research, 27(5):677–685, 2017.

[88] Costas S Iliopoulos, Ritu Kundu, Manal Mohamed, and Fatima Vayani. Popping super-
bubbles and discovering clumps: Recent developments in biological sequence analysis.
pages 3–14. Springer International Publishing, Cham, 2016.

[89] International HapMap Consortium et al. A haplotype map of the human genome. Nature,
437(7063):1299, 2005.

[90] International Human Genome Sequencing Consortium et al. Finishing the euchromatic
sequence of the human genome. Nature, 431(7011):931, 2004.

[91] Pesho Ivanov, Benjamin Bichsel, Harun Mustafa, André Kahles, Gunnar Rätsch, and
Martin Vechev. Astarix: Fast and optimal sequence-to-graph alignment. In International
Conference on Research in Computational Molecular Biology, pages 104–119. Springer,
2020.

199

[92] Bharati Jadhav, Ramin Monajemi, Kristina K Gagalova, Daniel Ho, Harmen HM
Draisma, Mark A van de Wiel, Lude Franke, Bastiaan T Heijmans, Joyce van Meurs,
Rick Jansen, et al. RNA-seq in 296 phased trios provides a high-resolution map of ge-
nomic imprinting. BMC biology, 17(1):1–20, 2019.

[93] Chirag Jain, Sanchit Misra, Haowen Zhang, Alexander Dilthey, and Srinivas Aluru. Ac-
celerating sequence alignment to graphs. In 2019 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, May 2019.

[94] Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru. On the complexity of sequence-
to-graph alignment. Journal of Computational Biology, 27(4):640–654, 2020.

[95] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless operability
between c++11 and python, 2017. https://github.com/pybind/pybind11.

[96] Christine Jandrasits, Piotr W Dabrowski, Stephan Fuchs, and Bernhard Y Renard. seq-
seq-pan: Building a computational pan-genome data structure on whole genome align-
ment. BMC genomics, 19(1):1–12, 2018.

[97] Murukarthick Jayakodi, Sudharsan Padmarasu, Georg Haberer, Venkata Suresh Bon-
thala, Heidrun Gundlach, Cécile Monat, Thomas Lux, Nadia Kamal, Daniel Lang, Axel
Himmelbach, et al. The barley pan-genome reveals the hidden legacy of mutation breed-
ing. Nature, 588(7837):284–289, 2020.

[98] Samuel Karlin and Stephen F Altschul. Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes. Proceedings of the
National Academy of Science, 87(6):2264–2268, 1990.

[99] Richard M Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, pages 85–103. Springer, 1972.

[100] Vaddadi Naga Sai Kavya, Kshitij Tayal, Rajgopal Srinivasan, and Naveen Sivadasan.
Sequence alignment on directed graphs. Journal of Computational Biology, 26(1):53–
67, January 2019.

[101] Jerome Kelleher, Yan Wong, Anthony W Wohns, Chaimaa Fadil, Patrick K Albers, and
Gil McVean. Inferring whole-genome histories in large population datasets. Nature
genetics, 51(9):1330–1338, 2019.

[102] Daehwan Kim, Ben Langmead, and Steven L Salzberg. HISAT: a fast spliced aligner
with low memory requirements. Nature methods, 12(4):357–360, 2015.

[103] Daehwan Kim, Joseph M Paggi, Chanhee Park, Christopher Bennett, and Steven L
Salzberg. Graph-based genome alignment and genotyping with HISAT2 and HISAT-
genotype. Nature biotechnology, 37(8):907–915, 2019.

200

[104] Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven L
Salzberg. TopHat2: accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biology, 14(4):R36, 2013.

[105] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway, Co-
rina Antonescu, and Steven L Salzberg. Versatile and open software for comparing large
genomes. Genome biology, 5(2):1–9, 2004.

[106] Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody, Jen-
nifer Baldwin, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, et al. Initial
sequencing and analysis of the human genome. 2001.

[107] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nature
methods, 9(4):357, 2012.

[108] Tuuli Lappalainen, Michael Sammeth, Marc R Friedländer, Peter Ac ‘t Hoen, Jean Mon-
long, Manuel A Rivas, Mar Gonzalez-Porta, Natalja Kurbatova, Thasso Griebel, Pedro G
Ferreira, et al. Transcriptome and genome sequencing uncovers functional variation in
humans. Nature, 501(7468):506–511, 2013.

[109] Charity W Law, Yunshun Chen, Wei Shi, and Gordon K Smyth. voom: Precision weights
unlock linear model analysis tools for RNA-seq read counts. Genome biology, 15(2):1–
17, 2014.

[110] Ryan M Layer, Colby Chiang, Aaron R Quinlan, and Ira M Hall. LUMPY: a probabilistic
framework for structural variant discovery. Genome Biology, 15(6):R84, 2014.

[111] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence alignment
using partial order graphs. Bioinformatics, 18(3):452–464, 2002.

[112] Wanseon Lee, Katharine Plant, Peter Humburg, and Julian C Knight. AltHapAlignR: im-
proved accuracy of RNA-seq analyses through the use of alternative haplotypes. Bioin-
formatics, 34(14):2401–2408, 2018.

[113] Michal Levy-Sakin, Steven Pastor, Yulia Mostovoy, Le Li, Alden KY Leung, Jennifer
McCaffrey, Eleanor Young, Ernest T Lam, Alex R Hastie, Karen HY Wong, et al.
Genome maps across 26 human populations reveal population-specific patterns of struc-
tural variation. Nature communications, 10(1):1–14, 2019.

[114] Bo Li and Colin N Dewey. RSEM: accurate transcript quantification from RNA-seq data
with or without a reference genome. BMC bioinformatics, 12(1):1–16, 2011.

[115] Bo Li, Victor Ruotti, Ron M Stewart, James A Thomson, and Colin N Dewey. RNA-seq
gene expression estimation with read mapping uncertainty. Bioinformatics, 26(4):493–
500, December 2009.

[116] Heng Li. seqtk. https://github.com/lh3/seqtk.

201

[117] Heng Li. A statistical framework for SNP calling, mutation discovery, association map-
ping and population genetical parameter estimation from sequencing data. Bioinformat-
ics, 27(21):2987–2993, November 2011.

[118] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM. arXiv preprint arXiv:1303.3997, 2013.

[119] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18):3094–3100, 2018.

[120] Heng Li, Xiaowen Feng, and Chong Chu. The design and construction of reference
pangenome graphs with minigraph. Genome biology, 21(1):1–19, 2020.

[121] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennel, Jue Ruan, Nils Homer, Gabor
Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data Process-
ing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics,
25(16):2078–2079, 2009.

[122] Heng Li, Shaun Jackman, Eugene Myers, Giorgio Gonnella, Paul Melsted, Isaac Turner,
Michael L. Heuer, Jakub Wilk, Ilia Minkin, Gustavo Glusman, Egor Shcherbin, Erik
Garrison, Eric Dawson, Brice Letcher, Steve Huang, and Jerven Bolleman. GFA specifi-
cation. https://https://github.com/GFA-spec/GFA-spec, 2013.

[123] Heng Li, Jue Ruan, and Richard Durbin. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Research, 18(11):1851–1858,
2008.

[124] Jianying Li, Daojun Yuan, Pengcheng Wang, Qiongqiong Wang, Mengling Sun, Zhen-
ping Liu, Huan Si, Zhongping Xu, Yizan Ma, Boyang Zhang, et al. Cotton pan-genome
retrieves the lost sequences and genes during domestication and selection. Genome biol-
ogy, 22(1):1–26, 2021.

[125] Na Li and Matthew Stephens. Modeling linkage disequilibrium and identifying recom-
bination hotspots using single-nucleotide polymorphism data. Genetics, 165(4):2213–
2233, 2003.

[126] Yucheng Liu, Huilong Du, Pengcheng Li, Yanting Shen, Hua Peng, Shulin Liu, Guo-
An Zhou, Haikuan Zhang, Zhi Liu, Miao Shi, et al. Pan-genome of wild and cultivated
soybeans. Cell, 182(1):162–176, 2020.

[127] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome biology, 15(12):1–21,
2014.

[128] Tsung-Yu Tony Lu, Mark JP Chaisson, Human Genome Structural Variation Consortium,
et al. Profiling variable-number tandem repeat variation across populations using repeat-
pangenome graphs. bioRxiv, pages 2020–08, 2021.

202

[129] Swapan Mallick, Heng Li, Mark Lipson, Iain Mathieson, Melissa Gymrek, Fernando
Racimo, Mengyao Zhao, Niru Chennagiri, Susanne Nordenfelt, Arti Tandon, et al. The
Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature,
538(7624):201–206, 2016.

[130] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
siam Journal on Computing, 22(5):935–948, 1993.

[131] Buwani Manuweera, Joann Mudge, Indika Kahanda, Brendan Mumey, Thiruvarangan
Ramaraj, and Alan Cleary. Pangenome-wide association studies with frequented regions.
In Proceedings of the 10th ACM International Conference on Bioinformatics, Computa-
tional Biology and Health Informatics, pages 627–632, 2019.

[132] Lasse Maretty, Jacob Malte Jensen, Bent Petersen, Jonas Andreas Sibbesen, Siyang Liu,
Palle Villesen, Laurits Skov, Kirstine Belling, Christian Theil Have, Jose MG Izarzugaza,
et al. Sequencing and de novo assembly of 150 genomes from Denmark as a population
reference. Nature, 548(7665):87, 2017.

[133] Rui Martiniano, Erik Garrison, Eppie R Jones, Andrea Manica, and Richard Durbin.
Removing reference bias and improving indel calling in ancient DNA data analysis by
mapping to a sequence variation graph. Genome biology, 21(1):1–18, 2020.

[134] Duccio Medini, Claudio Donati, Hervé Tettelin, Vega Masignani, and Rino Rappuoli.
The microbial pan-genome. Current opinion in genetics & development, 15(6):589–594,
2005.

[135] Paul Medvedev and Michael Brudno. Maximum likelihood genome assembly. Journal of
computational biology : a journal of computational molecular cell biology, 16(8):1101–
1116, August 2009.

[136] Michael L Metzker. Sequencing technologies—the next generation. Nature reviews
genetics, 11(1):31–46, 2010.

[137] Zong Miao, Marcus Alvarez, Päivi Pajukanta, and Arthur Ko. ASElux: an ultra-fast and
accurate allelic reads counter. Bioinformatics, 34(8):1313–1320, 2018.

[138] Alexander S Mikheyev and Mandy MY Tin. A first look at the Oxford Nanopore MinION
sequencer. Molecular ecology resources, 14(6):1097–1102, 2014.

[139] Ilia Minkin and Paul Medvedev. Scalable multiple whole-genome alignment and locally
collinear block construction with SibeliaZ. Nature communications, 11(1):1–11, 2020.

[140] Ali Mortazavi, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara Wold.
Mapping and quantifying mammalian transcriptomes by RNA-seq. Nature methods,
5(7):621–628, 2008.

[141] Eugene Myers and Webb Miller. Approximate matching of regular expressions. Bulletin
of Mathematical Biology, 51(1):5–37, 1989.

203

[142] Eugene W Myers. Toward simplifying and accurately formulating fragment assembly.
Journal of Computational Biology, 2(2):275–290, 1995.

[143] Eugene W Myers. The fragment assembly string graph. Bioinformatics, 21(Supplement
2):ii79–ii85, 2005.

[144] Masao Nagasaki, Jun Yasuda, Fumiki Katsuoka, Naoki Nariai, Kaname Kojima, Yosuke
Kawai, Yumi Yamaguchi-Kabata, Junji Yokozawa, Inaho Danjoh, Sakae Saito, et al.
Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals.
Nature Communications, 6:8018, 2015.

[145] Gonzalo Navarro. Improved approximate pattern matching on hypertext. Theoretical
Computer Science, 237(1-2):455–463, 2000.

[146] Saul B Needleman and Christian D Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

[147] Marius Nicolae, Serghei Mangul, Ion I Măndoiu, and Alex Zelikovsky. Estimation of
alternative splicing isoform frequencies from RNA-seq data. Algorithms for Molecular
Biology, 6(1), April 2011.

[148] Hassan Nikaein. hnikaein/stark. https://github.com/hnikaein/stark, January 2021.

[149] Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V Bzikadze, Alla
Mikheenko, Mitchell R Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman, et al.
The complete sequence of a human genome. bioRxiv, 2021.

[150] Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Detecting superbubbles in as-
sembly graphs. In Algorithms in bioinformatics, pages 338–348. Springer, Heidelberg,
Berlin, Heidelberg, 2013.

[151] James Orlin et al. Contentment in graph theory: covering graphs with cliques. In Indaga-
tiones Mathematicae (Proceedings), volume 80, pages 406–424. North-Holland, 1977.

[152] Luca Pagani, Daniel John Lawson, Evelyn Jagoda, Alexander Mörseburg, Anders Eriks-
son, Mario Mitt, Florian Clemente, Georgi Hudjashov, Michael DeGiorgio, Lauri Saag,
et al. Genomic analyses inform on migration events during the peopling of Eurasia.
Nature, 538(7624):238–242, 2016.

[153] Benedict Paten, Mark Diekhans, Dent Earl, John St John, Jian Ma, Bernard Suh, and
David Haussler. Cactus graphs for genome comparisons. Journal of computational biol-
ogy : a journal of computational molecular cell biology, 18(3):469–481, March 2011.

[154] Benedict Paten, Jordan M Eizenga, Yohei M Rosen, Adam M Novak, Erik Garrison, and
Glenn Hickey. Superbubbles, ultrabubbles, and cacti. Journal of Computational Biology,
25(7):649–663, 2018.

204

[155] Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garrison. Genome graphs
and the evolution of genome inference. Genome research, 27(5):665–676, 2017.

[156] Benedict Paten, Daniel R Zerbino, Glenn Hickey, and David Haussler. A unifying model
of genome evolution under parsimony. BMC bioinformatics, 15(1):1–31, 2014.

[157] Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon
provides fast and bias-aware quantification of transcript expression. Nature methods,
14(4):417–419, 2017.

[158] Pavel Pevzner. Computational Molecular Biology: An Algorithmic Approach. MIT Press,
March 2000.

[159] Pavel A Pevzner, Haixu Tang, and Michael S Waterman. An Eulerian path ap-
proach to DNA fragment assembly. Proceedings of the National Academy of Sciences,
98(17):9748–9753, 2001.

[160] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst,
Alexander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T Afshar, et al. A
universal SNP and small-indel variant caller using deep neural networks. Nature biotech-
nology, 36(10):983–987, 2018.

[161] Ryan Poplin, Valentin Ruano-Rubio, Mark A DePristo, Tim J Fennell, Mauricio O
Carneiro, Geraldine A Van der Auwera, David E Kling, Laura D Gauthier, Ami Levy-
Moonshine, David Roazen, Khalid Shakir, Joel Thibault, Sheila Chandran, Chris Whe-
lan, Monkol Lek, Stacey Gabriel, Mark J Daly, Ben Neale, Daniel G MacArthur, and
Eric Banks. Scaling accurate genetic variant discovery to tens of thousands of samples.
bioRxiv, page 10.1101/201178, November 2018.

[162] Nicola. Prezza. A framework of dynamic data structures for string processing. In Inter-
national Symposium on Experimental Algorithms. Leibniz International Proceedings in
Informatics (LIPIcs), 2017.

[163] Peng Qin, Hongwei Lu, Huilong Du, Hao Wang, Weilan Chen, Zhuo Chen, Qiang He,
Shujun Ou, Hongyu Zhang, Xuanzhao Li, et al. Pan-genome analysis of 33 genetically
diverse rice accessions reveals hidden genomic variations. Cell, 2021.

[164] Aaron R Quinlan, Royden A Clark, Svetlana Sokolova, Mitchell L Leibowitz, Yujun
Zhang, Matthew E Hurles, Joshua C Mell, and Ira M Hall. Genome-wide mapping
and assembly of structural variant breakpoints in the mouse genome. Genome research,
20(5):623–635, 2010.

[165] Aaron R Quinlan and Ira M Hall. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics, 26(6):841–842, 2010.

[166] Narayanan Raghupathy, Kwangbom Choi, Matthew J Vincent, Glen L Beane, Keith S
Sheppard, Steven C Munger, Ron Korstanje, Fernando Pardo-Manual de Villena, and

205

Gary A Churchill. Hierarchical analysis of RNA-seq reads improves the accuracy of
allele-specific expression. Bioinformatics, 34(13):2177–2184, 2018.

[167] Goran Rakocevic, Vladimir Semenyuk, Wan-Ping Lee, James Spencer, John Browning,
Ivan J Johnson, Vladan Arsenijevic, Jelena Nadj, Kaushik Ghose, Maria C Suciu, et al.
Fast and accurate genomic analyses using genome graphs. Nature genetics, 51(2):354–
362, 2019.

[168] Matthew D Rasmussen, Melissa J Hubisz, Ilan Gronau, and Adam Siepel. Genome-wide
inference of ancestral recombination graphs. PLoS Genetics, 10(5):e1004342, 2014.

[169] Tobias Rausch, Thomas Zichner, Andreas Schlattl, Adrian M Stütz, Vladimir Benes, and
Jan O Korbel. DELLY: structural variant discovery by integrated paired-end and split-
read analysis. Bioinformatics, 28(18):i333–i339, 2012.

[170] Mikko Rautiainen, Dilip A Durai, Ying Chen, Lixia Xin, Hwee Meng Low, Jonathan
Göke, Tobias Marschall, and Marcel H Schulz. AERON: Transcript quantification and
gene-fusion detection using long reads. bioRxiv, page 2020.01.27.921338, 2020.

[171] Mikko Rautiainen, Veli Mäkinen, and Tobias Marschall. Bit-parallel sequence-to-graph
alignment. Bioinformatics, 35(19):3599–3607, 2019.

[172] Mikko Rautiainen and Tobias Marschall. Aligning sequences to general graphs in O(V+
mE) time. bioRxiv, page 216127, 2017.

[173] Mikko Rautiainen and Tobias Marschall. GraphAligner: rapid and versatile sequence-
to-graph alignment. Genome biology, 21(1):1–28, 2020.

[174] Andy Rimmer, Hang Phan, Iain Mathieson, Zamin Iqbal, Stephen R. F. Twigg, An-
drew O. M. WGS500 Consortium, Wilkie, Gil McVean, and Gerton Lunter. Integrat-
ing mapping-, assembly- and haplotype-based approaches for calling variants in clinical
sequencing applications. Nature Genetics, 46(8):912–918, 2014.

[175] Michael Roberts, Wayne Hayes, Brian R Hunt, Stephen M Mount, and James A Yorke.
Reducing storage requirements for biological sequence comparison. Bioinformatics,
20(18):3363–3369, 2004.

[176] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data. Bioinformat-
ics, 26(1):139–140, 2010.

[177] Yohei Rosen, Jordan Eizenga, and Benedict Paten. Describing the Local Structure of
Sequence Graphs, pages 24–46. Springer International Publishing, Cham, 2017.

[178] Joel Rozowsky, Alexej Abyzov, Jing Wang, Pedro Alves, Debasish Raha, Arif Harmanci,
Jing Leng, Robert Bjornson, Yong Kong, Naoki Kitabayashi, et al. AlleleSeq: analysis
of allele-specific expression and binding in a network framework. Molecular systems
biology, 7(1):522, 2011.

206

[179] Frederick Sanger, Steven Nicklen, and Alan R Coulson. DNA sequencing with chain-
terminating inhibitors. Proceedings of the national academy of sciences, 74(12):5463–
5467, 1977.

[180] Korbinian Schneeberger, Jörg Hagmann, Stephan Ossowski, Norman Warthmann, San-
dra Gesing, Oliver Kohlbacher, and Detlef Weigel. Simultaneous alignment of short
reads against multiple genomes. Genome Biology, 10(9):1, 2009.

[181] Valerie A Schneider, Tina Graves-Lindsay, Kerstin Howe, Nathan Bouk, Hsiu-Chuan
Chen, Paul A Kitts, Terence D Murphy, Kim D Pruitt, Françoise Thibaud-Nissen, Derek
Albracht, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demon-
strates the enduring quality of the reference assembly. Genome research, 27(5):849–864,
2017.

[182] Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nattestad,
Arndt Von Haeseler, and Michael C Schatz. Accurate detection of complex structural
variations using single-molecule sequencing. Nature methods, 15(6):461–468, 2018.

[183] Jeong-Sun Seo, Arang Rhie, Junsoo Kim, Sangjin Lee, Min-Hwan Sohn, Chang-Uk Kim,
Alex Hastie, Han Cao, Ji-Young Yun, Jihye Kim, et al. De novo assembly and phasing
of a Korean human genome. Nature, 538(7624):243–247, 2016.

[184] Kishwar Shafin, Trevor Pesout, Pi-Chuan Chang, Maria Nattestad, Alexey Kolesnikov,
Sidharth Goel, Gunjan Baid, Jordan M Eizenga, Karen H Miga, Paolo Carnevali, et al.
Haplotype-aware variant calling enables high accuracy in nanopore long-reads using
deep neural networks. bioRxiv, 2021.

[185] Kishwar Shafin, Trevor Pesout, Ryan Lorig-Roach, Marina Haukness, Hugh E. Olsen,
Colleen Bosworth, Joel Armstrong, Kristof Tigyi, Nicholas Maurer, Sergey Koren,
Fritz J. Sedlazeck, Tobias Marschall, Simon Mayes, Vania Costa, Justin M. Zook,
Kelvin J. Liu, Duncan Kilburn, Melanie Sorensen, Katy M. Munson, Mitchell R. Vollger,
Jean Monlong, Erik Garrison, Evan E. Eichler, Sofie Salama, David Haussler, Richard E.
Green, Mark Akeson, Adam Phillippy, Karen H. Miga, Paolo Carnevali, Miten Jain, and
Benedict Paten. Nanopore sequencing and the Shasta toolkit enable efficient de novo as-
sembly of eleven human genomes. Nature Biotechnology, 38(9):1044–1053, September
2020. Number: 9 Publisher: Nature Publishing Group.

[186] Rachel M Sherman, Juliet Forman, Valentin Antonescu, Daniela Puiu, Michelle Daya,
Nicholas Rafaels, Meher Preethi Boorgula, Sameer Chavan, Candelaria Vergara, Victor E
Ortega, et al. Assembly of a pan-genome from deep sequencing of 910 humans of african
descent. Nature genetics, 51(1):30–35, 2019.

[187] Jonas A Sibbesen, Jordan M Eizenga, Adam M Novak, Jouni Sirén, Xian Chang, Erik
Garrison, and Benedict Paten. Haplotype-aware pantranscriptome analyses using spliced
pangenome graphs. bioRxiv, 2021.

207

[188] Jonas Andreas Sibbesen, Lasse Maretty, and Anders Krogh. Accurate genotyping across
variant classes and lengths using variant graphs. Nature genetics, 50(7):1054–1059,
2018.

[189] Jouni Sirén. Indexing variation graphs. In 2017 Proceedings of the ninteenth workshop
on algorithm engineering and experiments (ALENEX), pages 13–27. SIAM, 2017.

[190] Jouni Sirén, Erik Garrison, Adam M Novak, Benedict Paten, and Richard Durbin.
Haplotype-aware graph indexes. Bioinformatics, 36(2):400–407, 2020.

[191] Jouni Sirén, Jean Monlong, Xian Chang, Adam M Novak, Jordan M Eizenga, Charles
Markello, Jonas A Sibbesen, Glenn Hickey, Pi-Chuan Chang, Andrew Carroll, Namrata
Gupta, Stacey Gabriel, Thomas W Blackwell, Aakrosh Ratan, Kent D Taylor, Stephen S
Rich, Jerome I Rotter, David Haussler, Erik Garrison, and Benedict Paten. Genotyping
common, large structural variations in 5,202 genomes using pangenomes, the Giraffe
mapper, and the vg toolkit. bioRxiv, page 2020.12.04.412486, December 2021.

[192] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries with
applications in genome research. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 11(2):375–388, 2014.

[193] Lloyd M Smith, Jane Z Sanders, Robert J Kaiser, Peter Hughes, Chris Dodd, Charles R
Connell, Cheryl Heiner, Stephen BH Kent, and Leroy E Hood. Fluorescence detection
in automated DNA sequence analysis. Nature, 321(6071):674–679, 1986.

[194] Temple F Smith and Michael S Waterman. Comparison of biosequences. Advances in
Applied Mathematics, 2(4):482–489, 1981.

[195] Jia-Ming Song, Zhilin Guan, Jianlin Hu, Chaocheng Guo, Zhiquan Yang, Shuo Wang,
Dongxu Liu, Bo Wang, Shaoping Lu, Run Zhou, et al. Eight high-quality genomes reveal
pan-genome architecture and ecotype differentiation of Brassica napus. Nature Plants,
6(1):34–45, 2020.

[196] David J States, Warren Gish, and Stephen F Altschul. Improved sensitivity of nucleic
acid database searches using application-specific scoring matrices. Methods, 3(1):66–
70, 1991.

[197] Shayna Stein, Zhi-xiang Lu, Emad Bahrami-Samani, Juw Won Park, and Yi Xing.
Discover hidden splicing variations by mapping personal transcriptomes to personal
genomes. Nucleic acids research, 43(22):10612–10622, 2015.

[198] Kraig R Stevenson, Joseph D Coolon, and Patricia J Wittkopp. Sources of bias in mea-
sures of allele-specific expression derived from RNA-seq data aligned to a single refer-
ence genome. BMC Genomics, 14(1):536, 2013.

[199] Peter H Sudmant, Tobias Rausch, Eugene J Gardner, Robert E Handsaker, Alexej Aby-
zov, John Huddleston, Yan Zhang, Kai Ye, Goo Jun, Markus Hsi-Yang Fritz, et al. An

208

integrated map of structural variation in 2,504 human genomes. Nature, 526(7571):75–
81, 2015.

[200] Chen Sun, Zhiqiang Hu, Tianqing Zheng, Kuangchen Lu, Yue Zhao, Wensheng Wang,
Jianxin Shi, Chunchao Wang, Jinyuan Lu, Dabing Zhang, et al. RPAN: rice pan-genome
browser for 3000 rice genomes. Nucleic acids research, 45(2):597–605, 2017.

[201] Wing-Kin Sung, Kunihiko Sadakane, Tetsuo Shibuya, Abha Belorkar, and Iana Pyro-
gova. An o(mlogm)-time algorithm for detecting superbubbles. IEEE/ACM transac-
tions on computational biology and bioinformatics / IEEE, ACM, 12(4):770–777, Jan-
uary 2015.

[202] Sonia Tarazona, Fernando Garcı́a-Alcalde, Joaquı́n Dopazo, Alberto Ferrer, and Ana
Conesa. Differential expression in RNA-seq: a matter of depth. Genome research,
21(12):2213–2223, 2011.

[203] Amalio Telenti, Levi CT Pierce, William H Biggs, Julia di Iulio, Emily HM Wong, Mar-
tin M Fabani, Ewen F Kirkness, Ahmed Moustafa, Naisha Shah, Chao Xie, et al. Deep
sequencing of 10,000 human genomes. Proceedings of the National Academy of Sci-
ences, 113(42):11901–11906, 2016.

[204] Hagen Tilgner, Fabian Grubert, Donald Sharon, and Michael P Snyder. Defining a per-
sonal, allele-specific, and single-molecule long-read transcriptome. Proceedings of the
National Academy of Sciences, 111(27):9869–9874, June 2014.

[205] Manuel Tognon, Vincenzo Bonnici, Erik Garrison, Rosalba Giugno, and Luca Pinello.
GRAFIMO: variant and haplotype aware motif scanning on pangenome graphs. bioRxiv,
2021.

[206] Valter Tucci, Anthony R Isles, Gavin Kelsey, Anne C Ferguson-Smith, Marisa S Bar-
tolomei, Nissim Benvenisty, Déborah Bourc’his, Marika Charalambous, Catherine Du-
lac, Robert Feil, et al. Genomic imprinting and physiological processes in mammals.
Cell, 176(5):952–965, 2019.

[207] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[208] Kavya Vaddadi, Rajgopal Srinivasan, and Naveen Sivadasan. Read mapping on genome
variation graphs. In 19th International Workshop on Algorithms in Bioinformatics (WABI
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[209] Bryce Van De Geijn, Graham McVicker, Yoav Gilad, and Jonathan K Pritchard. WASP:
allele-specific software for robust molecular quantitative trait locus discovery. Nature
methods, 12(11):1061–1063, 2015.

[210] Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. Fast and accurate de novo
genome assembly from long uncorrected reads. Genome Research, 27(5):737–746, 2017.

209

[211] Günter P Wagner, Koryu Kin, and Vincent J Lynch. Measurement of mRNA abundance
using RNA-seq data: RPKM measure is inconsistent among samples. Theory in bio-
sciences, 131(4):281–285, 2012.

[212] Jeremiah Wala and Rameen Beroukhim. SeqLib: a c++ API for rapid BAM manipula-
tion, sequence alignment and sequence assembly. Bioinformatics, page btw741, Decem-
ber 2016.

[213] Sean Walkowiak, Liangliang Gao, Cecile Monat, Georg Haberer, Mulualem T Kassa,
Jemima Brinton, Ricardo H Ramirez-Gonzalez, Markus C Kolodziej, Emily Delorean,
Dinushika Thambugala, et al. Multiple wheat genomes reveal global variation in modern
breeding. Nature, pages 1–7, 2020.

[214] Aaron M Wenger, Paul Peluso, William J Rowell, Pi-Chuan Chang, Richard J Hall,
Gregory T Concepcion, Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov,
Nathan D Olson, et al. Accurate circular consensus long-read sequencing improves vari-
ant detection and assembly of a human genome. Nature biotechnology, 37(10):1155–
1162, 2019.

[215] Thomas D Wu, Jens Reeder, Michael Lawrence, Gabe Becker, and Matthew J Brauer.
GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy,
and functionality. In Statistical genomics, pages 283–334. Springer, 2016.

[216] Zhikun Wu, Zehang Jiang, Tong Li, Chuanbo Xie, Liansheng Zhao, Shuai Ouyang, Yizhi
Liu, Tao Li, Zhi Xie, et al. Structural variants in Chinese population and their impact on
phenotypes, diseases and population adaptation. bioRxiv, 2021.

[217] Dana Wyman, Gabriela Balderrama-Gutierrez, Fairlie Reese, Shan Jiang, Sorena Rah-
manian, Stefania Forner, Dina Matheos, Weihua Zeng, Brian Williams, Diane Trout,
Whitney England, Shu-Hui Chu, Robert C Spitale, Andrea J Tenner, Barbara J Wold,
and Ali Mortazavi. A technology-agnostic long-read analysis pipeline for transcriptome
discovery and quantification. bioRxiv, page 10.1101/672931, June 2020.

[218] Daniel R Zerbino and Ewan Birney. Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Research, 18(5):821–829, May 2008.

[219] Yong Zhou, Dmytro Chebotarov, Dave Kudrna, Victor Llaca, Seunghee Lee, Shan-
mugam Rajasekar, Nahed Mohammed, Noor Al-Bader, Chandler Sobel-Sorenson,
Praveena Parakkal, et al. A platinum standard pan-genome resource that represents the
population structure of Asian rice. Scientific data, 7(1):1–11, 2020.

[220] Florian Zink, Droplaug N Magnusdottir, Olafur T Magnusson, Nicolas J Walker,
Tiffany J Morris, Asgeir Sigurdsson, Gisli H Halldorsson, Sigurjon A Gudjonsson,
Pall Melsted, Helga Ingimundardottir, Snædis Kristmundsdottir, Kristjan F Alexanders-
son, Anna Helgadottir, Julius Gudmundsson, Thorunn Rafnar, Ingileif Jonsdottir, Hilma
Holm, Gudmundur I Eyjolfsson, Olof Sigurdardottir, Isleifur Olafsson, Gisli Masson,

210

Daniel F Gudbjartsson, Unnur Thorsteinsdottir, Bjarni V Halldorsson, Simon N Stacey,
and Kari Stefansson. Insights into imprinting from parent-of-origin phased methylomes
and transcriptomes. Nature Genetics, 50(11):1542–1552, October 2018.

211

