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Abstract

Bronchodilator (BD) drugs are commonly prescribed for treatment and management of obstructive 

lung function present with diseases such as asthma. Administration of BD medication can partially 

or fully restore lung function as measured by pulmonary function tests. The genetics of baseline 

lung function measures taken before BD medication have been extensively studied, and the 

genetics of the BD response itself have received some attention. However, few studies have 

focused on the genetics of post-BD lung function. To address this gap, we analyzed lung function 
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phenotypes in 1103 subjects from the Study of African Americans, Asthma, Genes, and 

Environment, a pediatric asthma case–control cohort, using an integrative genomic analysis 

approach that combined genotype, locus-specific genetic ancestry, and functional annotation 

information. We integrated genome-wide association study (GWAS) results with an admixture 

mapping scan of three pulmonary function tests (forced expiratory volume in 1 s [FEV1], forced 

vital capacity [FVC], and FEV1/FVC) taken before and after albuterol BD administration on the 

same subjects, yielding six traits. We identified 18 GWAS loci, and five additional loci from 

admixture mapping, spanning several known and novel lung function candidate genes. Most loci 

identified via admixture mapping exhibited wide variation in minor allele frequency across 

genotyped global populations. Functional fine-mapping revealed an enrichment of epigenetic 

annotations from peripheral blood mononuclear cells, fetal lung tissue, and lung fibroblasts. Our 

results point to three novel potential genetic drivers of pre- and post-BD lung function: 

ADAMTS1, RAD54B, and EGLN3.

Keywords

admixture; African American; asthma; GWAS; integrative genomic analysis; lung function

1 | INTRODUCTION

Asthma is a disease characterized by episodic obstruction of airways that affects nearly 339 

million people worldwide (The Global Asthma Network, 2018) and is the most common 

chronic disease among children. Asthma constitutes a massive global economic burden, 

representing $81.9 billion in medical costs in the United States alone (Nurmagambetov et 

al., 2018). As a complex disease, asthma results from both environmental and genetic 

factors, with genetic heritability estimates ranging from 0.35 to 0.90 (Ober & Yao, 2011). 

The advent of genome-wide association studies (GWAS; Risch & Merikangas, 1996), 

combined with progressively larger sample sizes in recent years, has enabled researchers to 

query the genetic basis of asthma at unprecedented scale, with numerous loci identified in 

autoimmune and inflammatory pathways (Demenais et al., 2018). However, these loci 

account for a small portion of asthma liability (Demenais et al., 2018).

Pulmonary function tests are recommended to guide the diagnosis of asthma and monitor 

patient status (Asthma and Allergy Foundation of America, 2019). During these tests, 

patients breathe through a spirometer that captures key measures of lung function, including 

the forced expiratory volume in 1 s (FEV1), which measures initial forced exhalatory 

capacity; the forced vital capacity (FVC), which measures the maximum total volume of air 

that a patient can forcibly exhale; and their ratio (FEV1/FVC). Lung function measures can 

be population-normalized according to expected lung function values that account for age, 

sex, height, and ethnicity of the patient (Hankinson et al., 1999). Spirometric measurements 

can be taken both before bronchodilator (BD) treatment (pre-BD) and after (post-BD) to 

further understand lung function status. Historically, baseline lung function is measured with 

pre-BD measures, but among people with asthma, post-BD lung function may best reflect 

lung health (Brehm et al., 2015).
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While the genetic contribution to asthma and lung function has been extensively studied via 

GWAS, most analyses have relied on subjects of European descent (Demenais et al., 2018; 

Johansson et al., 2019; Pickrell et al., 2016; Z. Zhu et al., 2018). This overrepresentation of 

ethnically white subjects in biomedical research has impaired the generalizability of genetic 

studies of complex disease (Burchard, 2014; Bustamante et al., 2011; Popejoy & Fullerton, 

2016). Ethnic differences in lung function, particularly between non-Hispanic African 

Americans and European Americans, have been reported for over 40 years (Binder et al., 

1976; Glindmeyer et al., 1995; Hsi et al., 1983; Rossiter & Weill, 1974; Schwartz et al., 

1988). Ethnic disparities in lung function were attributed to population differences in sitting 

height, as increased height leads to increased lung capacity. However, adjustment for sitting 

height only explains 42%–50% of ethnic differences in lung function between African 

Americans and European Americans (Harik-Khan et al., 2004), suggesting that a simplistic 

reduction to ethnic differences in height cannot account for the observed disparity in lung 

function. Unequal socioeconomic conditions were also thought to contribute to ethnic 

differences in lung function (Braun, 2015; Quanjer, 2013, 2015), but socioeconomic factors 

only account for 7%–10% of unexplained variance (Harik-Khan et al., 2004). Self-identified 

race or ethnicity are commonly used in the clinic to interpret lung function measures, but 

these are not ideal variables for understanding genetic differences in lung function between 

populations. Kumar et al. (2010) observed that the proportion of global African genetic 

ancestry is inversely correlated with lung function. Spear et al. (2019) later observed 

population differences among African Americans, Mexican Americans, and Puerto Ricans in 

BD drug response to albuterol, the short-acting β2-adrenergic receptor agonist that is the 

most commonly prescribed drug for the treatment of acute asthma symptoms. Specifically, 

Spear et al. performed admixture mapping, a technique designed to identify regions of the 

genome where locus-specific ancestry drives variation in a disease trait (Shriner, 2013) that 

has been helpful in studies of complex diseases, including asthma and breast cancer 

(Féjerman et al., 2012; Pino-Yanes et al., 2015). However, admixture mapping studies 

comparing baseline and post-BD lung function have not yet been performed in African 

Americans. In this study, we address this gap in knowledge by evaluating the effect of locus-

specific ancestry on both pre- and post-BD lung function measures in a pediatric case–

control cohort of non-Hispanic African Americans children and adolescents.

2 | METHODS

2.1 | Ethics statement and data availability

Data from the Study of African Americans, Asthma, Genes, and Environments (SAGE) 

cohort were used for this study. The data that support the findings of this study are available 

in the NCBI dbGaP repository under ascension number phs000921.v1.p1. Data from SAGE 

were approved for human subjects research under expedited review by IRB 10–02877 at the 

University of California, San Francisco with reference #244919. All subjects gave written 

consent for genotyping, phenotyping, and data usage for general research use.

2.2 | Study population

SAGE is a case–control cross-sectional cohort study of genetics and gene–environment 

interactions in non-Hispanic African American children and adolescents in the United 
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States. SAGE includes detailed clinical, social, and environmental data on both asthma and 

asthma-related conditions. Full details of the SAGE study protocols are described in detail 

elsewhere (Borrell et al., 2013; Mak et al., 2018; Nishimura et al., 2013; Thakur et al., 

2013). Briefly, SAGE was initiated in 2006 and recruited participants with and without 

asthma through a combination of clinic- and community-based recruitment centers in the 

San Francisco Bay Area. All participants in SAGE self-identified as African American and 

self-reported that all four grandparents were non-Hispanic African American. To reduce 

population heterogeneity resulting from very recent admixture, we only analyzed subjects 

who affirmatively self-identified as having been born in the United States and whose parents 

were also born in the United States.

Pulmonary function tests were taken before administration of albuterol BD medication for 

all individuals, both those with and without asthma. Post-BD spirometry measures were 

performed only for individuals with asthma. Analyses of pre-BD lung function measures 

included all 1103 asthma cases and controls with complete covariate information. Post-BD 

analyses were performed on the 831 asthma cases with post-BD measurements.

2.3 | Genotyping and quality control

DNA was isolated from whole blood collected from SAGE participants at the time of study 

enrollment as described previously (Borrell et al., 2013). DNA was extracted using the 

Wizard® Genomic DNA Purification kits (Promega). Samples were genotyped with the 

Affymetrix Axiom LAT1 array (World Array 4, Affymetrix).

Genotype quality control was performed in PLINK v1.9 (Chang et al., 2015). Of the 772,703 

genotyped variants, 111,901 single nucleotide polymorphisms (SNPs) were excluded from 

analysis due to genotype missingness more than 5% (n = 28,211), minor allele frequency 

(MAF) less than 1% (n = 80,420) or deviation from Hardy-Weinberg expectations (HWE) at 

p < 0.001 (n = 3270). The final set included 660,802 genotyped markers (Table S1).

Genotyped SNPs were submitted to the Michigan Imputation Server (Das et al., 2016), 

phased using EAGLE v2.3 (Loh et al., 2016), and imputed from the 1000 Genomes Project 

reference panel (The 1000 Genomes Project Consortium, 2015) using Minimac3 (Das et al., 

2016). Imputed SNPs with imputation R2 < .3, with deviation from HWE p < 10−4, or with 

MAF < 1% were discarded. Of the 47,101,126 imputed SNPs, a total of 31,146,322 were 

culled due to either low MAF (n = 31,095,418) or deviation from HWE (n = 50,904). All 

variants in the imputed set showed a genotype missingness of no more than 5%. The final 

number of SNPs used in association analyses was 15,954,804 (Table S1).

2.4 | Outcome phenotypes

Pulmonary function testing was performed at the time of recruitment according to the 

American Thoracic Society/European Respiratory Society standards (Miller et al., 2005; 

Pellegrino et al., 2005; Wanger et al., 2005) with a KoKo PFT Spirometer (nSpire Health 

Inc.). Spirometry was performed both before and 15 min after administration of four puffs of 

albuterol (90 μg per puff) through a 5-cm plastic mouthpiece from a standard metered-dose 

inhaler. Patients were assessed for the following spirometric measures before and after BD 

drug usage (pre-BD and post-BD, respectively): (a) FEV1, (b) FVC, and (c) FEV1/FVC. A 
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total of six phenotypes were assessed for genotype association: pre-BD FEV1 (pre-FEV1), 

pre-BD FVC (pre-FVC), pre-BD FEV1/FVC (pre- FEV1/FVC), post-BD FEV1 (post-FEV1), 

post-BD FVC (post-FVC), and post-BD FEV1/FVC (post-FEV1/FVC). All phenotype values 

were normalized based on the expected lung function values calculated from the Hankinson 

equations (Hankinson et al., 1999), which account for age, sex, height, and self-reported 

ethnicity. Phenotype distributions were checked for normality and to detect outliers. Outliers 

were determined using the method of Tukey fences (John Tukey, 1977). For each phenotype, 

we computed the first quartile value (Q1), the third quartile value (Q3), and the interquartile 

range (IQR). We declared as outliers all values outside of the range

Q1 − 3 IQR , Q3 + 3 IQR .

Individuals with outlier values for a phenotype were removed from association analyses for 

that phenotype.

2.5 | Covariates

2.5.1 | Age, sex, and body mass index (BMI)—Biometric covariates such as age, 

sex, BMI, and height were measured directly at time of recruitment. BMI was categorized 

into underweight, normal, overweight, and obese, according to CDC guidelines for defining 

childhood obesity (Barlow, 2007; Cote et al., 2013; Whitlock et al., 2005). An overweight 

status was defined as a BMI at or above the 85th percentile for the general population of 

children of the same sex and in the same age group. An obese status was defined as a BMI at 

or above the 95th percentile. Underweight individuals (bottom 5th percentile, n = 9) were 

excluded from analysis.

2.5.2 | Asthma status—Case status was defined as physician-diagnosed asthma 

supported by reported asthma medication use and symptoms of coughing, wheezing, or 

shortness of breath in the 2 years preceding enrollment.

2.5.3 | Maternal educational attainment—Maternal educational attainment was 

measured at recruitment and included in analyses to control for socioeconomic status. It was 

coded as total years of education completed from the first grade: for example, a complete 

K-6 education was 6 years, a complete high school education was 12 years, and any 

additional years (college or trade school and beyond) were counted as 1 year each.

2.5.4 | Genetic ancestry—Previous literature on the genetics of non-Hispanic African 

Americans has observed global genetic ancestry proportions of 73.2% West African, 24.0% 

European, and 0.8% Amer-indigenous (Bryc et al., 2015), strongly suggesting that a 

reference panel of African and European was sufficient for accurate global genetic ancestry 

estimates in SAGE. Global genetic ancestry was estimated for each individual with the 

ADMIXTURE software (Alexander et al., 2009) in supervised learning mode assuming one 

West African and one European ancestral population, with HapMap Phase III YRI and CEU 

populations as references (The International HapMap 3 Consortium, 2010). Local ancestry 

estimation was performed with RFMix (Maples et al., 2013; Spear et al., 2019) using the 

same two-way ancestry reference from HapMap Phase III.
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2.5.5 | Estimation of genetic relatedness and genotype principal components
—Genetic relatedness matrices (GRMs) were generated in R using GENESIS (Gogarten et 

al., 2019), which provides a computational pipeline for handling complex population 

structure using principal components analysis (PCA). We used PCAir (Conomos et al., 

2015) to correct for distant population structure accounting for relatedness, and PC-Relate 

(Conomos et al., 2016) to adjust for genetic relatedness in recently admixed populations. 

The resulting principal components provide better correction for population stratification in 

admixed populations compared to standard PCA on genotypes (Patterson et al., 2006). 

Additionally, since GRMs produced by GENESIS are corrected for cryptic relatedness, the 

resulting association test statistics do not suffer inflation resulting from confounding 

relatedness in our sample.

2.6 | Genetic association analyses

Genotype association testing was performed with the MLMA-LOCO algorithm from GCTA 

(Yang et al., 2011, 2014) to correct for population structure using GRMs generated with 

GENESIS. Association testing of outcome phenotypes with allele dosages at 15,954,804 

biallelic SNPs was performed with a “leave one chromosome out” model to avoid double-

fitting tested variants. Other variables included in models were age, sex, BMI, maternal 

educational attainment, and three genotype principal components. Models of pre-BD also 

included asthma status.

The suggestive and significant association thresholds for each outcome phenotype were 

determined by the effective number of independent statistical tests (Meff) calculated with 

CODA (Plummer et al., 2006). CODA computes Meff using the autocorrelation of p values 

from GWAS. This produces population-specific Bonferroni thresholds that account for 

correlation between statistical tests without increasing the Type I error rate (Sobota et al., 

2015). For our analyses, Meff ranged from 488,819 to 507,975 (Table S2). The Bonferroni 

corrected genome-wide significance threshold was computed as 0.05/Meff, while the 

suggestive threshold was computed as (1/Meff), yielding a single pair of thresholds for all six 

outcome phenotypes considered: p < 1.99 × 10−6 for suggestive association, and p < 9.95 × 

10−8 for significant association (Table S2).

Admixture mapping analyses were performed using linear regression models in R and local 

ancestry calls from RFMix for 454,322 genotyped SNPs. Counts of 0, 1, or 2 alleles of 

African descent were computed for each person at each SNP. Phenotypes were then 

regressed onto ancestral allele counts for each SNP while including age, sex, height, BMI, 

maternal educational attainment (as a proxy for socioeconomic status), and global African 

genetic ancestry proportion as covariates. Analyses with pre-BD outcome measures also 

included asthma status as a covariate.

2.7 | Fine-mapping genetic associations

Functional fine-mapping with PAINTOR (Kichaev et al., 2014) was used to identify putative 

causal variants in novel loci deemed statistically significant by admixture mapping. 

PAINTOR applies a Bayesian probabilistic framework to integrate functional annotations, 

association summary statistics (Z-scores), and linkage disequilibrium information for each 
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locus to prioritize the most likely causal variants in a given region. Functional annotations 

were selected per locus as recommended by the authors of PAINTOR (Kichaev, 2017). A 

subset of lung- and blood-related functional annotations from the Roadmap Epigenomics 

Project (Roadmap Epigenomics Consortium et al., 2015) and the ENCODE Consortium 

(ENCODE Project Consortium, 2012) were assessed for their individual improvement to the 

posterior probability of causality; the top five minimally correlated annotations were 

selected for each locus.

2.8 | Annotation tools

The NHGRI/EBI GWAS Catalog (Buniello et al., 2019), Ensembl Genome Browser release 

98 (Cunningham et al., 2019) and gnomAD browser v3.0 (Karczewski et al., 2020) were 

used to look up known associations at significant loci according to our analyses. Annotation 

lookups in the gnomAD browser v3.0 used hg38 coordinates translated from our hg19-

aligned genotypes via liftOver (Hinrichs et al., 2006). Data management, statistical analysis, 

and figure generation made extensive use of GNU parallel (Tange, 2018) and several R 

packages, including data.table, doParallel, optparse, ggplot2, and the tidyverse bundle 

(Davis, 2020; Dowle & Srinivasan, 2020; Microsoft Corporation & Weston, 2019; Wickham, 

2016; Wickham & Garrett, 2017).

3 | RESULTS

3.1 | Cohort characteristics

Characteristics of all SAGE participants included in analyses are shown in Table 1. 

Distributions of each lung function measure stratified by case–control status and BD 

administration (pre-BD vs. post-BD) are shown in Figure S1. FVC showed no significant 

difference between asthma cases and controls (Kruskal-Wallis p = .073), while stratification 

by case–control status yielded significantly different distributions for FEV1 (Kruskal-Wallis 

p = 4.8 × 10−7) and FEV1/FVC (Kruskal-Wallis p = 1.5 × 10−7). Among cases, statistically 

significant differences were observed between distributions of pre-BD and post-BD 

measures of FEV1 (Kruskal-Wallis p = 1.2 × 10–38), FVC (Kruskal-Wallis p = 5.4 × 10–16), 

and FEV1/FVC (Kruskal-Wallis p = 4.0 × 10–29), illustrating a measurable effect of BD 

medication on lung function.

The global African genetic ancestry proportion in our sample varied from 30.7% to 100%, 

with an average proportion of 80.2% (Figure S2), concordant with empirically observed 

averages (Baharian et al., 2016). Global ancestry contained the same information as the first 

genotype principal component (R2 = 0.984, Figure S3).

3.2 | Genetic association testing finds novel and known loci

Figure 1 shows results from GWAS performed on pre-BD phenotypes (pre-FEV1, pre-FVC, 

and pre-FEV1/FVC) and post-BD phenotypes (post-FEV1, post-FVC, and post-FEV1/FVC) 

using linear mixed modeling. The association results showed no evidence of genomic 

inflation, with genetic control λ ranging from 0.98 to 0.99 (Table S2 and Figure S4). Table 2 

lists the 18 genome-wide significant associations found, each associated with exactly one of 

the six lung function measures. An additional 252 variants were suggestively associated with 
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at least one phenotype (Tables S3–S8). Of the 18 variants, 4 variants on chromosome 13 in a 

region spanned by the gene ATP8A2 were associated with pre-FEV1/FVC (Figure S6). Two 

variants on chromosome 16 that were associated with pre-FVC flanked the promoter region 

of IRX3 (Figure S7). A third variant associated with pre-FVC was located on chromosome 

20 near THBD (Figure S8), a gene linked to venous thromboembolism in African American 

and Afro-Caribbean individuals (Hernandez et al., 2016). Two variants associated with Post-

FVC were in a gene-rich region on chromosome 19 (Figure S9), with the peak near 

TMIGD2 and SHD, while eight other variants pointed to a second gene-rich region on 

chromosome 11 near CXCR5 and HYOU1 (Figure S10). Post-FEV1/FVC was associated 

with a region on chromosome 15 near the genes AKAP13 and ADAMTS7P4 (Figure S11).

Among the suggestive associations, a variant on chromosome 12 associated with post-FEV1 

was near BTBD11 (Figure S12), a gene previously associated with post-FEV1, post-FEV1/

FVC, and ΔFEV1, the change in lung function due to BD administration (Hardin et al., 

2016; Lutz et al., 2015), as well as BMI (Kichaev et al., 2019). A suggestive association 

with pre-FEV1 on chromosome 12 fell near SCARB1 (Figure S13), which was previously 

associated with FEV1 and FVC (Wyss et al., 2018) and HDL cholesterol levels (Wojcik et 

al., 2019). Another suggestive association with pre-FEV1 on chromosome 20 was near the 

gene PTPRT (Figure S14), which was previously associated with thromboembolism 

susceptibility in 5334 African American individuals (Heit et al., 2017).

3.3 | Admixture mapping identified five novel loci not found by GWAS

Table 3 shows five regions where admixture proportions were statistically significantly 

associated with one of the six phenotypes. The three pre-BD phenotypes (pre-FEV1, pre-

FVC, pre-FEV1/FVC) were each associated with one region, while post-FVC was associated 

with two distinct regions. Post-FEV1 and post-FEV1/FVC had no significant associations. 

None of the regions overlapped with those significant in our GWAS, and none showed large 

deviations from mean genome-wide African genetic ancestry. A small region on 

chromosome 21 that was significantly associated with pre-FEV1 flanked the genes 

ADAMTS1 and ADAMTS5 (Figure S15). The region on chromosome 4 associated with pre-

FVC pointed to two candidate genes, RCHY1 and THAP6, that had no prior lung disease 

associations (Figure S17). A region on chromosome 19 associated with pre-FEV1/FVC 

spanned the genes ZNF557 and INSR (Figure S18). Post-FVC was associated with two 

regions, one on chromosome 8 spanning the genes ESRP1, INTS8, TP53INP1, and 

NDUFAF6 (Figure S19), and another on chromosome 14 encompassing EGLN3 and SNX6 
(Figure S20).

3.4 | Functional fine-mapping found three novel putatively causal loci for lung function 
phenotypes

Table 4 lists the most probable causal SNP for each of the five admixture mapping loci 

according to PAINTOR. SNP rs13615 showed the highest probability of causality (0.630) 

with pre-FEV1 on locus 1 (Figure 2). This variant falls within the 3′-untranslated region (3′-
UTR) of ADAMTS1, suggesting that ADAMTS1 drives the admixture mapping association 

and not its physical neighbor ADAMTS5. The MAF of rs13615 in African and African 

diaspora populations was lower than every other global population (2.6% AFR vs. 7.0%–
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54.5% other populations, gnomAD v3; see Figure S21). The SNP rs10857225 emerged as 

the most likely causal variant (probability 0.361) for the association of pre-FVC with locus 2 

on chromosome 4 (Figure 3). This variant is located within an intron of the gene THAP6, 

suggesting that THAP6 is more likely the causal gene behind the association with pre-FVC. 

In contrast to locus 1, the MAF of rs10857225 is highest in global African populations and 

markedly lower in other global populations (59.1% AFR vs. 28.1%–38.4% other 

populations, gnomAD v3). Locus 3 on chromosome 19 associated with pre-FEV1/FVC, and 

locus 4 on chromosome 8 associated with post-FVC, showed little information gain from 

functional fine-mapping. The driving variant for locus 3, SNP rs72986681, was located in 

the 3′-UTR of ZNG557, but showed a low probability of causality (0.168, Figure S22). The 

most probable marker for locus 4, the SNP rs2470740, which is located in intron 2 of 

RAD54B, showed an even lower probability of causality (0.109, Figure S23). Functional 

fine-mapping of locus 5, a region on chromosome 14 associated with post-FVC, yielded the 

SNP rs1351618 with a moderate probability of causality (.390, Figure 4). rs1351618 is 

located in an intron of EGLN3. As with locus 2, rs1351618 had a much higher MAF in 

populations of African ancestry versus other global populations (12.4% AFR vs. <2.2% 

other populations, gnomAD v3).

4 | DISCUSSION

We analyzed the genetic basis of six lung function phenotypes in 1103 non-Hispanic African 

American children with and without asthma. The phenotypes consisted of three standard 

spirometric measures—FEV1, FVC, and FEV1/FVC—measured before and after 

administration of BD medication. Our GWAS identified 18 genome-wide significant loci, 

while our integrative genetic analysis approach that layered GWAS, admixture mapping, and 

functional fine-mapping identified another five putatively causal loci that could drive 

differences between pre- and post-BD lung function.

The four variants on chromosome 13 associated with pre-FEV1/FVC pointed to ATP8A2 as 

a candidate gene. ATP8A2 encodes an ATPase involved in phospholipid transport and is 

highly expressed in brain tissue, testes, and the adrenal glands, and to a lesser degree in the 

lung (Fagerberg et al., 2014). Mutations in ATP8A2 have been linked to several neurological 

disorders (Martín-Hernández et al., 2016). Two variants on chromosome 16 that were 

associated with pre-FVC point to IRX3 as a candidate gene. IRX3 encodes a homeobox 

protein crucial for neural development, and its promoters previously showed a long-range 

interaction with the FTO gene. Expression levels of the FTO gene are known to influence 

BMI and are of great interest in type II diabetes and obesity research (Smemo et al., 2014). 

Post-FVC showed associations on two chromosomes. Notable genes near the association 

peak on chromosome 19 included MAP2K2 and ZBTB7A, genes associated with variation 

in the two genes closest to the association peak, TMIGD2 and SHD, have not been 

previously associated with any traits. TMIGD2 is involved in T-cell costimulation and the 

immune response through an interaction with BMI, visceral adiposity, and eosinophil counts 

(Kichaev et al., 2019; Pulit et al., 2019; Rüeger et al., 2018); and CHAF1A, HDGFL2, 
PLIN4, ANKRD24, MPND, and SH3GL1, previously associated with corpuscular volume 

and hemoglobin concentration (Astle et al., 2016; Kichaev et al., 2019; van Rooij et al., 

2017). Interestingly, HHLA2, suggesting that it could possibly play an immune or allergic 
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response role in lung function (Y. Zhu et al., 2013). Among the genes within or near the 

chromosome 11 peak, two emerge as potentially key loci. The first is CXCR5, which has 

been linked to increased risk of childhood onset asthma (Ferreira et al., 2019; Johansson et 

al., 2019; Pividori et al., 2019) and respiratory disease (Kichaev et al., 2019), as well as 

related allergic and immunological conditions such as eczema, leukocyte count, rheumatoid 

arthritis, and Sjögren’s syndrome (Ferreira et al., 2017; Kichaev et al., 2019; Laufer et al., 

2019; Lessard et al., 2013). The second is HYOU1, which has been associated with BMI and 

post-FEV1/FVC (Lutz et al., 2015; Pulit et al., 2019). Post-FEV1/FVC was associated with 

two genes, AKAP13 and ADAMTS7P4. AKAP13 has been previously associated with 

numerous conditions, including interstitial lung disease and psoriasis in European 

individuals (Fingerlin et al., 2013; Tsoi et al., 2015) as well as weight, BMI, and 

cardiovascular traits such as blood pressure and hemoglobin count in multiple populations 

(Giri et al., 2019; Kichaev et al., 2019). ADAMTS7P4 was previously associated with red 

blood cell volume (Kichaev et al., 2019). The statistically suggestive association of post-

FEV1 with BTBD11 pointed to previous associations with various lung function measures, 

including post-FEV1, post-FEV1/FVC, and ΔFEV1 (Hardin et al., 2016; Lutz et al., 2015). 

These previously detected associations were based on much larger sample sizes than what 

was available to us: the associations with post-FEV1 and post-FEV1/FVC found by Lutz et 

al. were discovered in a population of 10,094 European and 3260 African American smokers 

with chronic obstructive pulmonary disorder (COPD), while the association with ΔFEV1 

found by Hardin et al. was based on 5766 Europeans and 811 African Americans with 

COPD, suggesting that our inability to reach genome-wide significance in our sample was 

due to insufficient statistical power.

Among significant and suggestive GWAS loci, the association of post-FVC with variants in 

or near CXCR5 and HYOU1 is the only one that replicates known lung function loci: 

CXCR5 was previously associated with asthma (Ferreira et al., 2019; Johansson et al., 2019; 

Pividori et al., 2019), and HYOU1 was previously associated with post-FEV1/FVC (Lutz et 

al., 2015). The association with post-FEV1/FVC comes from an adult COPD cohort 

ascertained by smoking status; in contrast, SAGE is a pediatric asthma cohort. The 

mechanism by which HYOU1 affects lung function in both youth and adults is unclear. 

Nevertheless, the overlap of post-BD pulmonary function measures at this locus suggests 

that the region encompassing CXCR5 and HYOU1 plays a role in lung disease among 

people with obstructive lung function.

Admixture mapping identified five genomic regions where variation in genetic ancestry was 

significantly associated with phenotypic variation. Locus 1 on chromosome 21 spanned the 

genes ADAMTS1 and ADAMTS5, which encode extracellular proteases within the same 

protein family but with different consequences for disease. Although both genes have been 

linked to blood protein levels (Suhre et al., 2017), ADAMTS1 has been associated with pre-

FVC (Kichaev et al., 2019) and is expressed in arterial, adipose, and lung tissue, while 

ADAMTS5 is not appreciably expressed in the lung (Figure S16). Further fine-mapping with 

PAINTOR places the most likely causal SNP (rs13615) within the 3′-UTR of ADAMTS1. 

Although the region is sparsely genotyped, and follow-up with whole genome sequencing 

data in this region is recommended, these results suggest that ADAMTS1 may be 

functionally related to lung function. Interestingly, the association of ADAMTS1 with pre-
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FVC (Kichaev et al., 2019) was discovered in a European sample of substantially larger size 

than our cohort, highlighting the ability of admixture mapping to detect associations in 

scenarios with low statistical power. Locus 3, spanning a region on chromosome 19 that was 

associated with pre-FEV1/FVC, contains the genes ZNF557 and INSR. ZNF557 has not 

been previously associated with any traits, while INSR is the well-known insulin receptor 

that has been previously associated with childhood onset asthma in our own cohort (White et 

al., 2016), as well as blood pressure levels, triglyceride levels, HDL cholesterol levels, and 

hypothyroidism across multiple populations (Bentley et al., 2019; Ehret et al., 2016; Kichaev 

et al., 2019; Klarin et al., 2018). Post-FVC showed two distinct admixture mapping signals. 

The first region on chromosome 8, which we call Locus 4, includes the genes ESRP1, 

INTS8, TP53INP1 and NDUFAF6 was previously associated with type II diabetes and 

eosinophil counts (Kichaev et al., 2019; Mahajan et al., 2018). The second region, Locus 5, 

spans EGLN3 and SNX6, both of which show previous associations with blood phenotypes 

such as blood pressure and hematocrit levels (Astle et al., 2016; Evangelou et al., 2018).

Overall, evaluation of our GWAS and admixture mapping lung function results suggests that 

genetics of this trait underlie some pleiotropy observed across pulmonary, hematological, 

cardiovascular, and obesity-related traits. Such pleiotropy has been observed in UK BioBank 

participants: as lung function decreases, BMI and type II diabetes incidence increases, as 

well as levels of eosinophils and neutrophils, both of which are common biomarkers for 

allergic disease (Figure S25; McInnes et al., 2019). The link between obesity and lung 

function is particularly interesting since obesity is a known asthma comorbidity, and lung 

function may play a role in obese asthma (Baffi et al., 2015; Gruchała-Niedoszytko et al., 

2015). Our findings suggest that genetically based differences in lung function may provide 

a link between obesity and asthma.

It is curious that the regions identified by admixture mapping and subjected to functional 

fine-mapping did not overlap with the statistically significant GWAS loci. We attribute this 

in part to the different types of information used by each approach: GWAS analyzes how 

allelic variation affects a trait, while admixture mapping analyzes the phenotypic 

consequences of variation in genetic ancestry. Our integrative approach deprioritized results 

solely from GWAS, an approach driven by the fact that a supermajority of individual GWAS 

results fall in noncoding regions of the genome and are consequently notoriously difficult to 

interpret. By integrating GWAS summary statistics with loci identified via admixture 

mapping, we found that three of the admixture mapping-based loci—ADAMTS1, THAP6, 

and EGLN3—had evidence of causal effects. Each of the sentinel SNPs tagging these genes 

showed a notable difference in ancestral allele frequency: populations of African descent 

had either the highest or the lowest MAF among all global populations, likely the result of 

admixture mapping prioritizing loci that varied by genetic ancestry. None of these loci have 

been previously associated with lung traits, highlighting the strength of our integrative 

analysis. The association with EGLN3 is particularly curious since it has been previously 

associated with a variety of traits, including heart rate response to β-blocker therapy (Shahin 

et al., 2018). Short-acting β−2 agonists such as albuterol selectively target β−2 receptors in 

the lungs, while the first-generation β-blockers taken for cardiac conditions bind to both β−1 

and β−2 receptors, affecting the heart as well the lungs. Bronchospasm and FEV1 reduction 

are clinically significant side effects of first-generation β−1 selective and nonselective β-
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blockers for cardiac conditions. Consequently, these nonselective β-blockers must be 

initiated with caution and close monitoring in patients with asthma (Christiansen & Zuraw, 

2019). β-blockers lower blood pressure by reducing heart rate and cardiac contractility and 

are less effective in people with high levels of African genetic ancestry (Brewster & Seedat, 

2013; Whelton et al., 2018). It has been previously observed that African Americans with 

asthma demonstrate lower BD drug response than European Americans (Blake et al., 2008), 

suggesting a possible pharmacological interaction between β−2 receptors and African 

ancestry. Furthermore, EGLN3 is strongly expressed in cardiac tissue, suggesting that 

EGLN3 could possibly influence post-FVC through cardiac phenotypes (Figure S24). 

Further functional studies are required to elucidate the role of EGLN3 on lung function and 

BD drug response.

This study has some important limitations. First, while our data set includes rich 

phenotyping of pulmonary traits with socioeconomic and biometric measures, it still 

constitutes a somewhat small sample by modern measures. The tradeoff between rich 

phenotyping and increased sample size is not trivial, particularly for studies of populations 

traditionally underrepresented in genetic research, a challenge that still plagues large studies 

like NHLBI TOPMed and NIH Million Veterans Program. Our approach of layering 

multiple types of genomic information serves as a partial workaround. However, by layering 

GWAS with admixture mapping and functional fine-mapping, we restricted our focus to 

regions where variants showed differential ancestry, which excluded our strongest GWAS 

hits. While PAINTOR can provide evidence of putatively causal markers that do not 

necessarily meet strict genome-wide thresholds of significance, it was not designed with 

admixed populations in mind. We applied suitably rigorous statistical stringency to both our 

GWAS and our admixture mapping results by thresholding to the effective number of 

independent tests as estimated by the CODA software, an approach designed to produce 

population-specific significance thresholds (Sobota et al., 2015), so we are confident that 

these regions are indeed correlated to the phenotype. Nevertheless, further research is 

needed to understand how the hierarchical Bayesian model in the PAINTOR inference 

engine behaves in regions of heterogeneous ancestry. Finally, if the truly causal variant is not 

genotyped, then PAINTOR and similar fine-mapping frameworks suffer a performance hit 

that is difficult to rectify without ultra-fine genotyping in the locus of interest (e.g., from 

whole genome sequencing). We suspect that our relatively low probabilities of causality can 

be attributed to a confluence of differential ancestry, small sample size, and insufficiently 

resolved fine-mapping, which could be improved in future studies by using whole-genome 

sequencing data instead of imputed genotypes.

Our integrative analysis approach leverages available functional annotations and genetic 

ancestry estimates in the absence of molecular data to yield some promise for discovery of 

novel loci. Our study is limited to three tiers—genotypes, genetic ancestry, and functional 

annotations—and makes use of gene expression results from GTEx v8. However, it does not 

directly incorporate any transcriptomic, metabolomic, proteomic, or methylomic 

information. As large multiomic data sets from NHLBI TOPMed, UK Biobank, and the NIH 

Million Veterans Program become available, the need for integrative genomic approaches to 

studying complex diseases will increase. Future multiomic models of complex diseases, 

including obstructive lung function disorders, may deliver on the promise of precision 
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medicine and provide actionable clinical translation of biomedical and pharmacogenomic 

insights into novel therapies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Manhattan plots summarizing GWAS p values for all six lung function phenotypes. The 

solid red line denotes genome-wide significance (p < 9.95 × 10−8), while the dashed blue 

line marks the suggestive threshold (p < 1.99 × 10−6), per CODA calculations. Variants with 

a p value greater than 0.05 were deemed uninformative and therefore not plotted
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FIGURE 2. 
A CANVIS plot of results from PAINTOR functional fine-mapping for locus 1, an 

association with pre-FEV1 on chromosome 21. The SNP rs13615, which sits in the 3′-UTR 

of the gene ADAMTS1, attains a posterior probability of causality of 0.630. The panels 

show, from top to bottom, the posterior probability of causality; the five most informative 

functional annotations; GWAS p values; and local linkage disequilibrium expressed as a 

signed Pearson correlation. 3′-UTR, 3′-untranslated region; FEV1, forced expiratory 

volume in 1 s; SNP, single nucleotide polymorphism
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FIGURE 3. 
PAINTOR results for locus 2, an association on chromosome 4 with pre-FVC. The sentinel 

SNP, rs10857225, corresponds with a GWAS peak that does not pass Bonferroni correction 

for statistical significance. The highlighted peak tags the intron of the gene THAP6. FVC, 

forced vital capacity; SNP, single nucleotide polymorphism
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FIGURE 4. 
PAINTOR fine-mapping results for locus 5, corresponding to a region on chromosome 14 

associated with post-FVC. The most likely causal SNP, rs1351618, tags an intron of the gene 

EGLN3. FVC, forced vital capacity; SNP, single nucleotide polymorphism
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TABLE 1

Summary statistics of phenotypes and covariates from the SAGE cohort

Characteristics Cases Controls Total

Subjects (n) 831 272 1,103

Age (year) 14.1 (3.66) 16.3 (3.77) 14.7 (3.8)

Female (n) 406 166 572

Height (cm) 158 (14.34) 162.4 (13.26) 159.1 (14.2)

African ancestry (%) 80.4 (0.1) 79.6 (0.1) 80.2 (0.1)

Maternal education (yr) 12.4 (1.47) 12.2 (1.5) 12.3 (1.48)

Obesity status

 Obese (n) 276 74 350

 Nonobese (n) 555 198 753

Pre-FEV1 103 (13.79) 98.1 (13.02) 99.3 (13.77)

Pre-FVC 103.4 (12.84) 105.1 (13.09) 103.8 (12.92)

Pre-FEV1/FVC 95.1 (9.35) 98.4 (8.2) 95.9 (9.19)

Post-FEV1 107 (13.44) n/a n/a

Post-FVC 109 (14.42) n/a n/a

Post-FEV1/FVC 99 (7.83) n/a n/a

Note: Displayed numbers are either counts (n) or averages followed by standard errors in parentheses. Units are listed where appropriate. An “n/a” 
appears where measurements were taken on cases only

Abbreviations: FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity.
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