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Hybrid Modeling Framework for Systems with Unmeasured Time-varying Disturbances:

An Application to Buildings

Abstract

The energy consumed by the residential and commercial building sectors in the United

States has been increasing at around 1.3% per year over the past decade, making efficient

building operations more crucial than ever. Model predictive control (MPC), which is

a model-based control method, has been proposed as a solution for the control and op-

timization of building operations due to its ability to optimize control actions based on

constraints such as cost and energy. However, widespread adoption of MPC in buildings

is limited by the challenges in developing and training a control-oriented building model.

Building modeling is a challenging task due to the presence of unmeasured time-varying

heat disturbances due to people, lighting, and electricity, and the lack of full state mea-

surements, resulting in a coupled state, disturbance, and model parameter estimation

problem.

Despite being unmeasured, these time-varying heat disturbances are correlated to cer-

tain time-features like the time of the day and the day of the week for several building

types and occupancy patterns. Hence, hybrid models, which combine physics-based mod-

els, to capture the underlying dynamics of the system, and data-driven models, used to

forecast the disturbances, have been proposed as a potential method for control-oriented

modeling of buildings. In our previous work, a low-order thermal resistance-capacitance

network was formulated to capture the dynamics of the building space and a feedforward

neural network (FNN) was used to forecast the time-varying unmeasured disturbances.

This thesis presents a generalized hybrid modeling framework to identify models for

iii



systems that are subject to unmeasured time-varying disturbances. The proposed hy-

brid modeling framework combines a parameterized low-order physics-based model and a

feedforward neural network (FNN) and utilizes a novel three-step training methodology

to simultaneously estimate both the physics-based and FNN model parameters. The aim

of the three-step training methodology is to provide better model predictions compared

to the predictions made by the same model trained with alternative strategies. A model

validation approach is also provided as part of the training methodology. The effective-

ness of the proposed modeling and training approach is demonstrated by applying it to

model the thermal dynamics of a building space. The time features, which provide the

desired model predictions, are first determined. The superiority of the three-step train-

ing methodology is demonstrated by comparing the predictions generated by the models

trained with alternative strategies to those generated by the model trained using the

three-step training methodology. These results demonstrate that the hybrid modeling

framework is suitable for modeling systems with unmeasured time-varying disturbances,

and that the three-step training methodology results in models with minimal prediction

errors, with fewer number of iterations as compared to its alternatives. The impact of

unavailability of full state measurements is studied. Finally, the ability for the hybrid

modeling framework to reproduce the results is evaluated.
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Chapter 1

Introduction

In 2021, the combined end-use energy consumption of the residential and commercial

building sectors in the United States accounted for about 21 quadrillion British thermal

units [39]. This is responsible for about 39% of the end-use energy consumption for

the calendar year, with the residential and commercial building sectors attributing to

about 21% and 18%, respectively [39]. Globally, the building sector energy consumption

increased on average by 1.3% per year, between 2010 and 2018 [23]. This increase in

demand is driven by rapid urbanization, population growth, and increasing demand for

energy services such as space heating, cooling, and lighting. With rising prices and demand

for energy [4], the development of advanced modeling and control strategies for buildings

is crucial.

Studies have indicated that the model predictive control (MPC) presents a promising

solution for optimizing building operations [2, 13, 31], such as reducing building energy

consumption cost while maintaining comfort, by using a model of the building space

dynamics and accounting for external factors (e.g., time-varying prices) to determine the

control actions that are optimized for a given objective [30, 34]. Researchers have shown
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that, by adding a supervisory MPC controller to the building HVAC systems, the energy

consumption and operating cost can be reduced anywhere from 7% to more than 50%

[18, 22]. Recently, a supervisory MPC was designed by [5] that takes into consideration

both peak-load shaving and thermal comfort. The numerical results revealed that the

optimal set-point temperature computed by the MPC reduced the total operating cost by

12.46% and the peak electricity demand by 13.43% compared to the nominal operation.

In another study, an MPC was developed for a low-energy office building, resulting in

35% heating energy demand savings compared to using a rule-based controller ([17]).

Despite its advantages, MPC has not been widely adopted as a control and optimization

approach for building operations, due to the challenges in building model identification

[21]. Being a model-based control method, the performance of MPC relies heavily on the

accuracy of the dynamic model. Building model identification is complex due to the pres-

ence of unmeasured time-varying heat disturbances, which evolve on similar timescales

as the building dynamics. These disturbances result from changes in, for example, occu-

pancy, solar radiation, and electrical equipment. Due to these disturbances, the building

model identification is also coupled with estimating the unmeasured time-varying heat dis-

turbances. Handling these unmeasured disturbances is one of the fundamental challenges

in control-oriented modeling of buildings [9, 15, 24]. Since building model identification

is a critical prerequisite for effective implementation of the MPC for building operations,

overcoming the challenges of building model identification has become a major focus of re-

search (refer, also, to the recent reviews [13, 27, 31] for a comprehensive review of building

modeling for MPC).

Building spaces can be modeled in three ways: (1) physics-based models, (2) data-
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driven models, and (3) hybrid models [28]. Physics-based models are models that are

derived from first principles such as laws of conservation of mass and energy. The pri-

mary advantage of using physics-based models is that they provide a fundamental under-

standing of the underlying physics of the system being studied. Physics-based models are

further grouped into two categories. These are high-fidelity models and control-oriented

models. High-fidelity models are formulated using detailed ordinary differential equations

(ODEs) describing the dynamics of the system. For building modeling, building model-

ing software such as Trnsys [7] and EnergyPlus [38] are used to formulate high-fidelity

models. The advantage of such models is that, provided the right parameters, they have

the ability to capture the system dynamics accurately. However, high-fidelity physics-

based models can be complex and computationally intensive as they require solving many

coupled mathematical equations that describe the physical phenomena. They require

detailed knowledge of the system parameters, for example, the materials of construction

and thickness of walls, in the context of buildings. However, some of these parameters

may be difficult to obtain in practice due to experimental limitations [28] or uncertainties.

Due to their computational complexity and the large amount of engineering time required

to develop, configure, and maintain these models, high-fidelity physics-based models are

generally not used for the purpose of controls [27].

Control-oriented modeling, on the other hand, commonly adopts a low-order model or

a reduced-order model as a means of representing the system dynamics. In the context

of buildings, a common approach to model the system dynamics is by using a low-order

resistance-capacitance (RC) network [28]. In the RC method, capacitance represents

the thermal capacitance (capacity to store heat), while resistance represents the ther-
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mal resistance (resist heat flow through the material). This modeling approach yields a

reduced-order model of the building space which is suitable for building controls. The

advantage of these control-oriented models are that they are computationally inexpensive,

and are easy to design and configure, which are qualities required for a model to be used

in a control system [27].

Data-driven models are models that are based on purely statistical methods and ma-

chine learning algorithms. These models can capture nonlinear relationships between the

input and output variables, and do not rely on any prior knowledge of the system dy-

namics. Some examples of data-driven models include artificial neural networks, support

vector machines, and decision trees. In the context of buildings, neural networks have

been shown to provide accurate predictions of building energy. A comprehensive review

of machine learning and deep learning method for building performance has been con-

ducted in [37]. For example, in [36], an artificial neural network (ANN) was developed to

forecast the annual energy consumption of a building based on readily available energy

performance certificates (EPC) and specific user defined characteristics such as the length

of the heating period. In another study [40], a framework for achieving optimal control

over air handling units (AHUs) using deep reinforcement learning (DRL) was proposed.

In this study, the authors used a long-short-term-memory (LSTM) network to approxi-

mate real-world HVAC operations, to build training environments for the DRL. A physics

constrained deep learning methodology was proposed for modeling building thermal dy-

namics by encoding the physics-based knowledge into a recurrent neural network (RNN)

architecture [12]. The resulting model was able to accurately predict the dynamics of

the buildings for the next thirty days, given only ten days worth of data. In [20], model
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identification of a multi-zone building HVAC system, employing transfer learning was

proposed. The model included a recurrent neural network (RNN) augmented with a sub-

space identification-based residual model. The RNN is pre-trained using a large amount of

data generated from a representative simulated zone. However, since data-driven models

purely rely on the data from the system, they generally have poor extrapolating capabili-

ties, lack interpretability, require high amounts of data, and have unbounded uncertainty

in predictions that may not satisfy physical constraints [8].

Hybrid models are formed by a combination of physics-based and data-driven models.

The advantage of hybrid models is that they can provide insights into the underlying

physics of the system while capturing the nonlinearities and disturbances of the system

[6, 8]. Due to this reason, hybrid models have been proposed as a solution for control-

oriented building modeling, and hybrid modeling frameworks have been developed that

incorporate control-oriented physics-based and disturbance models [14, 25, 26]. For ex-

ample, a hybrid modeling framework that uses a resistance-capacitance (RC) model, to

predict the mean temperature of a residential two-story building, and a data-driven model,

to predict the temperature difference between the two floors, was proposed in [10]. The

results indicated that the hybrid model was able to accurately predict the building space

dynamics with only three weeks of building operation data. In [22], a modeling frame-

work was proposed, in which the thermal dynamics of the building are modeled by a

linearized thermal RC model, and the uncertainties or disturbances associated with the

HVAC process were handled separately by an inverse neural network model. These two

models were coupled using a feedback linearization method. In [11], a semi-parametric

regression was utilized to identify the system model parameters of a first-order thermal
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model, and regression trees were utilized to develop a disturbance forecasting model. In

[26], a hybrid model was proposed that modeled the building thermal dynamics using a

physics-based model and forecasted the unmeasured disturbances using a neural network.

However, the neural network and physics-based models were trained separately, which

could result in compounding prediction errors. In our previous study [25], a physics-

based thermal resistance-capacitance (RC) network model, derived from first principles,

and a feedforward neural network (FNN), used to forecast the unmeasured heat distur-

bances, were integrated to form a parameterized hybrid model. Our approach involved

simultaneously training the parameters of both the physics-based and FNN models. The

advantage of simultaneously training the hybrid model parameters is that this approach

minimizes overall prediction errors and can potentially avoid compounding prediction

errors resulting from training models separately.

Despite our previous work, training hybrid models is not without challenges. The

training problem is non-convex, resulting in the possibility that the trained model param-

eters can depend on the initial parameter estimates provided to the solver. Hence, in this

context, alternative methods for training the parameters of the hybrid models may be

required, which can mitigate the influence of the initial parameter estimates provided to

the solver. Additionally, the process of validating the model needs careful consideration.

Generally, the model is trained using the training dataset and its ability to generalize

to new data is assessed by making predictions on a validation dataset. Since, in many

real-world systems, it is not feasible to obtain full-state measurements, providing initial

conditions for model validation is a challenging task. Since the validation is conducted

on a different dataset as compared to the one on which the model was trained on, the
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initial states have to be estimated, which adds a degree of uncertainty that compounds

throughout the validation process.

This thesis presents a generalized hybrid modeling framework to identify models for

systems that are subject to unmeasured time-varying disturbances. The proposed hybrid

modeling framework combines a parameterized low-order physics-based model, to model

the underlying dynamics of the system, and a feedforward neural network (FNN) to fore-

cast the unmeasured time-varying disturbances. The hybrid modeling framework utilizes

a novel three-step training methodology, proposed in the thesis, to simultaneously train

both the physics-based model and the FNN model parameters. The aim of the three-step

training methodology is to provide better model predictions compared to the predictions

made by the same model trained with alternative strategies. A model validation approach

is also provided as part of the training methodology, which addresses the unavailability

of full-state measurements. The effectiveness of the proposed modeling and training ap-

proach is demonstrated by applying it to model the thermal dynamics of a building space.

The time features which provide the desired model predictions are first determined. The

superiority of the three-step training methodology is then demonstrated by comparing the

predictions generated by the models trained with alternative strategies to those generated

by the model trained using the three-step training methodology. The impact of unavail-

ability of full state measurements is studied. Finally, the ability for the hybrid modeling

framework to reproduce the results is evaluated. The thesis aims to demonstrate that

the hybrid modeling framework is suitable for modeling systems with unmeasured time-

varying disturbances and that the three-step training methodology results in models with

minimal prediction errors, with fewer number of iterations as compared to its alternatives.
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Chapter 2

Preliminaries

2.1 Notation

Time dependent vectors are denoted by xk ∈ Rn where k ∈ Z. The predicted variable x

at time step k is denoted by x̃k.

2.2 Class of Parameterized System Models

A class of system models that are derived from first principles i.e., mass, momentum, and

energy balances are considered. These models are expressed as a system of coupled first-

order nonlinear ordinary differential equations (ODEs) with unknown parameters that

capture the dynamics of the physical system, given by:

ẋ(t) = f(x(t), u(t), d(t); θsys)

y(t) = h(x(t); θsys)

(2.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rmu is the manipulated inputs and mea-

sured disturbances, d(t) ∈ Rmd is the unknown time-varying unmeasured disturbances,

y(t) ∈ Rl is the measured output vector, and θsys ∈ Rnθsys is the parameter vector. The
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functions f and h are vector valued functions. For the sake of brevity, u(t) are called

the measurable inputs and d(t) are called the unmeasured disturbances. An additional

assumption is imposed on the types of time-varying disturbances (d(t)) considered in this

work (Discussed in Section 3.1).

To estimate the parameter values (e.g., θsys in (2.1)), data is sampled from the system,

generally with a fixed sample period. Hence, the model presented in (2.1) is discretized

in time. This results in a system model of the form:

xk+1 = f(xk, uk, dk; θsys)

yk = h(xk; θsys)

(2.2)

where xk, uk, and yk represent the state, measured input, and unmeasured disturbance,

respectively, at time step k. With slight abuse of notation, the function f in (2.2) is the

state transition map.

2.3 Feedforward Neural Networks

A feedforward neural network (FNN) is a type of artificial neural network that consists of

multiple layers of interconnected nodes, called neurons [29]. A neuron consists of inputs

multiplied by a set of weights and a bias is added. The result is then passed through

an activation function, which produces an output. The input layer of the FNN receives

input data to the FNN. The input has a specific shape that depends on the number of

input features or attributes. The output layer of the FNN produces the final prediction,

which can be in the form of a scalar, a vector, or a matrix depending on the nature of the

target data. The intermediate layers are known as hidden layers. These are composed of

neurons that perform computations based on the inputs they receive from the previous
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layer. If each neuron in a hidden layer is connected to all nodes in the previous and next

layer, the network is called a dense network. Activation functions are used to introduce

nonlinearity into the FNN model, enabling it to model complex relationships between

inputs and outputs. Two commonly used activation functions include the rectified linear

unit (ReLU) and the hyperbolic tangent (tanh). ReLU is given by:

f(z) = max(0, z)

where z is the input to the activation function and tanh is given by:

f(z) =
ez − e−z

ez + e−z

The parameters of the FNN correspond to the weights and biases of the neural network.

These parameters are usually trained in a supervisory learning fashion, meaning the pa-

rameters are adjusted based on a set of labeled examples. The FNN model is represented

by:

zout = fd(zin; θd) (2.3)

where θd ∈ Rnθd includes the weights and biases of all neurons in the network, zin ∈ Rnzin

is the predictor variable vector, zout ∈ Rnzout is the output of the FNN, and fd is the

resulting mapping between the predictor variable zin to the output zout.
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Chapter 3

Hybrid Modeling Framework and

Training Methodology

In this chapter, the development of a generalized hybrid modeling framework for systems

with unmeasured time-varying disturbances is detailed, which is an abstraction of the

problem of modeling buildings with unmeasured time-varying heat gains. The three-step

training methodology for training the hybrid model is described.

3.1 Hybrid Model Framework

In the proposed hybrid modeling framework, the underlying system dynamics are mod-

eled using a physics-based model, and the unmeasured disturbances are modeled using

a data-driven model. An additional assumption is imposed on the class of time-varying

unmeasured disturbances to formulate the data-driven model. The unmeasured distur-

bances are assumed to be correlated (in time) to certain known or predictable factors (as

explained in Section 4.3, this assumption is satisfied for building modeling). Examples of

such factors include time features and weather conditions. With this assumption, a dense

FNN is used to model and predict the unmeasured disturbances from these factors, called

11



Disturbance
Model ( )

Physics-based
Model

(  and )

Hybrid Model

Figure 3.1: The architecture of the proposed hybrid modeling framework.

predictor variables. The FNN of the form (2.3) is used, given by:

d̃(t) = fd(w(t); θd) (3.1)

where w(t) ∈ Rmw is the predictor variable vector, d̃(t) is the predicted unmeasured

disturbance, and θd ∈ Rnθd is a vector containing the weights and bias of the FNN.

With the physics-based model in (2.1) and the FNN in (3.1), the resulting hybrid

model is given by:

˙̃x(t) = f(x̃(t), u(t), d̃(t); θsys)

x(0) = θx

d̃(t) = fd(w(t); θd)

ỹ(t) = h(x̃(t); θsys)

(3.2)

where x̃(t) ∈ Rn denotes the predicted state, ỹ(t) ∈ Rl denotes the predicted output, and

θx ∈ Rnθx is the initial state parameter vector. The model architecture is depicted in

Figure 3.1. The hybrid model receives two inputs: u(t) and w(t). Using w(t), the data-

driven model produces a prediction of the time-varying disturbances (d̃(t)). The physics-

based model receives u(t) and d̃(t) as inputs. The physics-based model is initialized with

12



the parameterized initial condition to compute a prediction of the output over time (ỹ(t)),

which corresponds to the output of the hybrid model.

Sampled data is used to train the hybrid model. Usually, this data is synchronously

sampled. For training, the continuous-time model is converted to its discrete-time analog.

The continuous-time model can be discretized in time by assuming constant inputs over

sampling periods and applying a numerical integrator, giving the following discrete-time

model:

x̃k+1 = f(x̃k, uk, d̃k; θsys)

x̃0 = θx

d̃k = fd(wk, θd)

ỹk = h(x̃k, θsys)

(3.3)

While a discrete-time model is used for training, the underlying parameters are for the

continuous-time model.

3.2 Training Problem

A training problem is formulated to train, i.e., estimate, the hybrid model parameters for

a specific system using a dataset collected from the system. The training dataset consists

of synchronously sampled input-output pairs where an excitation signal is used for the

manipulated inputs, exciting the system dynamics. An additional dataset is collected

for model validation. The training problem is formulated as a prediction error method

(PEM), known as simulation PEM. Simulation PEM involves using the model and the

sequence of input values from the training dataset to make a single prediction from the

start of the training dataset until the end of the dataset. The prediction error at time

13



step k is defined as:

ϵk := yk − ỹk

where ϵk ∈ Rl denotes the prediction error, yk ∈ Rnl is the measured output at time step

k, and ỹk is the predicted output at the time step k. The loss function of the simulation

PEM training problem is defined as:

V (θ, ZNtrain) :=
1

Ntrain

Ntrain−1∑
k=0

ℓ(ϵk) +R(θ) (3.4)

where θ :=
[
θTsys θTx θTd

]T
∈ Rnθsys+n+nθd is the parameter vector, which includes

all parameters, ZNtrain := {(uk, yk)}Ntrain
k=0 denotes the training dataset, ZNvalidation :=

{(uk, yk)}Nvalidation
k=0 denotes the validation dataset, ℓ is a scalar-valued positive definite

function that penalizes the prediction errors in the loss function, and R(θ) is the regular-

ization term. Since the loss function uses an Ntrain-step output prediction, Ntrain is called

the prediction horizon of the training problem. The R(θ) is a regularization term that

helps to prevent overfitting (e.g., [32]). Standard regularization techniques include Lasso

and ridge regression. With Lasso regularization, the sum of the absolute values of the

parameters is used, i.e., R(θ) = ∥θ∥1. With ridge regularization, the sum of the squares

of the parameters is used, i.e., R(θ) = ∥θ∥2.

With the loss function in (3.4) and hybrid model in (3.3), the training problem, i.e.,

14



parameter estimation problem, is given by:

min
θ

V (θ, ZNtrain)

s.t. x̃k+1 = f(x̃k, uk, d̃k; θsys)

x̃0 = θx

d̃k = fd(wk; θd)

ỹk = h(x̃k)

ϵk = yk − ỹk, k ∈ {0, . . . , Ntrain − 1}

(3.5)

The resulting solution of (3.5) is denoted by θ∗. Simulation PEM allows for simultaneously

training both the physics-based and FNN model parameters. The potential advantage of

simultaneously training the hybrid model parameters is that this approach minimizes

overall prediction errors and can potentially avoid compounding errors if the parameters

are instead separately trained.

3.3 Three-step Training Methodology

Although the training problem in (3.5) is non-convex (even for a hybrid model with a

linear physics-based model and a linear FNN), several solution methods can be applied

to solve the training problem in (3.5). Models with neural networks are typically trained

using first-order or pseudo-first-order methods, such as gradient descent or stochastic

gradient descent because they can handle large datasets. However, the size of the training

dataset in control applications is often limited due to practical constraints. In these

cases, second-order or quasi-Newton methods can be considered. The Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm is a quasi-Newton method that estimates the inverse
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of the Hessian matrix, i.e., can estimate the local curvature of the objective function, which

can prevent the solver from getting stuck in narrow valleys or saddle points [16, 33]. It may

be a suitable method for training models in control applications with smaller datasets.

Nonetheless, solving the training problem to obtain accurate model parameter values is

challenging in practice, as demonstrated in Section 4.4. The non-convexity of the problem

may result in the solver converging on a local minimum and ultimately, the parameter

estimates obtained are dependent on the initial guess provided to the solver. Training

multiple models with different initial guesses for the parameter values is one approach

to overcome this challenge, but it increases computational time. Additionally, the inclu-

sion of the initial state parameter (θx) in the training problem, seems to exacerbate the

convergence issues based on extensive computational studies.

To address these challenges, a three-step training methodology to solve the training

problem in (3.5) is proposed. This heuristic method leverages the strengths of both

gradient descent and BFGS to obtain better parameter estimates with fewer iterations

than using a single solver. The methodology consists of two gradient descent steps and

one BFGS step. To obtain suitable initial guesses of θsys and θd, the initial state (θx) is

fixed in the first gradient descent step. This first step is motivated by the observation

that including the initial state parameter in the training problem can lead to convergence

issues. Also, the effect of the initial condition will dissipate over the prediction horizon of

the training problem. While BFGS can obtain better parameter estimates than gradient

descent, it may be sensitive to the initial model parameter estimates, which can affect the

solver’s convergence and the quality of the final solution. Therefore, a second gradient

descent is used where the initial condition θx is included in the training process to obtain
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a suitable initial guess of all parameters for training using BFGS.

To describe the three-step training methodology, the full parameter vector for the

training step j at iteration i is denoted by: θTj,i := [θsys,j,i θx,j,i θd,j,i]. Each training

step will execute Mj iterations. The number of iterations that each step executes is

a hyperparameter of the three-step training methodology. Prior to the first step, an

initial guess for the parameter vector must be provided. To achieve this, an initialization

method needs to be specified. The system parameters (θsys) can be initialized using

domain knowledge or heuristics, since they are physics-based parameters. An example

initialization strategy of the system parameters may involve specifying an approximate

range of expected parameters and randomly selecting a parameter value as an initial guess

from this range. The initialization of the initial condition (state) parameter may take the

form of θx,1,0 = fx0(y0) where y0 is the output measurement at time step k = 0. Some

examples include θx,1,0 = C−1y0 for the case yk = Cxk and C is an invertible matrix and

θx,1,0 = Hy0 where H is a specified matrix (this latter approach is used in Section 4.3).

The FNN model parameters (θd) can be initialized randomly based on a distribution.

In the first step of the three-step training methodology, gradient descent is used to

solve the training problem, using the initialized parameters. The parameter θx is fixed to

the initial guess provided to it, i.e., does not get adjusted or trained. Hence, θx will retain

the value θx,0,0 upon completion of the first step. However, θsys and θd are trainable,

i.e., their values are adjusted by the gradient descent algorithm to optimize the training

problem. The number of iterations that the first training step will execute is M1. The

resulting parameter estimates after this step are as follows:

θT1,M1
:= [θsys,1,M1 θx,1,0 θd,1,M1 ]
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In the second step, gradient descent is applied again, but all model parameters are

trained. The trained parameter values from the first step are provided as the initial

guesses in the second step, given as:

θT2,0 := [θsys,1,M1 θx,1,0 θd,1,M1 ]

The total number of iterations that the second step executes is M2. The resulting param-

eter estimates after this step are given as:

θT2,M2
:= [θsys,2,M2 θx,2,M2 θd,2,M2 ]

Finally, BFGS is used in the third step and all model parameters are trained. The

parameters are initialized with the trained parameter values resulting from the second

step, and the initial guess used in this step is given as:

θT3,0 := [θsys,2,M2 θx,2,M2 θd,2,M2 ]

The total number of iterations that the third step executes is M3. The resulting model

parameter values are the parameter estimates returned by the three-step methodology

and are denoted by:

θ3,M3 := [θsys,3,M3 θx,3,M3 θd,3,M3 ]

Often, one dataset is collected and divided into three sets: (1) training, (2) validation,

and (3) testing datasets (e.g., [35]). Generally, the model is trained using the training

dataset and its ability to generalize to new data is assessed by making predictions on

the validation and testing datasets. However, predicting the output from the inputs in

the testing and validation datasets is complicated by the fact that the initial state is
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Figure 3.2: A diagram representing the sequential dataset used for training and validation.

not known. To address this, the dataset is assumed to consist of sequential data and

a representation of the two datasets over time is provided in Figure 3.2. In this study,

the same dataset is used for both model testing and validation. Thus, the validation

dataset is immediately after the training dataset, such that the last data point in the

training dataset and the first data point in the validation (or testing) dataset are the

same. Since the data is sequential, the initial conditions for the testing and validation

process can be generated from the trained model parameter values, obtained from the

three-step training methodology. That is, the trained model uses the training dataset

to generate a prediction of the states (x̃Ntrain
), which serves as the initial state for the

testing/validation predictions. The outputs of the system over the validation dataset are

predicted using the model in (3.3), the initial state estimates, and the inputs collected

over the validation dataset.

Model validation criteria are defined. The criteria are dependent on the application,

but can be based on a prediction accuracy metric (e.g., the mean squared error of the

output predictions over the testing or validation dataset). Visual inspection of output

predictions from the resulting models are also commonly used in practice. Since the

three-step training methodology is a heuristic training strategy, the methodology may

not return a suitable parameter estimate. If the model does not satisfy the criteria,
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the model is retrained by re-initializing the parameters with new initial guesses. A flow

diagram of the methodology is shown in Figure 3.3 and is summarized in Algorithm 1.

Algorithm 1 Three-Step Training Methodology

1. Input: Initial parameter guesses (θ1,0), the number of iterations (M1, M2, and M3), loss function,
and validation criteria.

2. Output: Trained parameters θ3,M3
.

3. Step 1: Initialize parameters: θT1,0 = [θsys,1,0 θx,1,0 θd,1,0]. Train parameters θsys,1,0 and θd,1,0
using gradient descent starting from θsys,1,0 and θd,1,0 as the initial guesses. The initial condition
parameter is fixed to θx,1,0.

(a) For M1 iterations:

i. Compute the gradient of the loss function V (θ1) with respect to θ1 (θx,1,0 fixed).

ii. Update θ1,i+1 using gradient descent.

(b) Trained parameter values at the end of Step 1: θT1,M1
:= [θsys,1,M1 θx,1,0 θd,1,M1 ]

4. Step 2: Initialize parameters with parameters from Step 1: θ2,0 = θ1,M1
. Train parameter θ2 using

gradient descent.

(a) For M2 iterations:

i. Compute the gradient of the loss function V (θ2) with respect to θ2.

ii. Update θ2,i+1 using gradient descent.

(b) Trained parameter values at the end of Step 2: θT2,M2
:= [θsys,2,M2

θx,2,M2
θd,2,M2

]

5. Step 3: Initialize parameters with parameters from Step 2: θ3,0 = θ2,M2
. Train parameter θ3 using

BFGS.

(a) For M3 iterations:

i. Compute the hessian matrix of the loss function V (θ3) with respect to θ3.

ii. Update θ3,i+1 using BFGS.

(b) Trained parameter values at the end of Step 3: θT3,M3
:= [θsys,3,M3

θx,3,M3
θd,3,M3

]

6. Validation: Trained parameters θ3,M3
are provided as parameter values for model validation.

(a) If the model predictions satisfy validation criteria, the trained parameter value are returned.

(b) Else, the training process is repeated from Step 1 with a new set of random initial guesses.

Remark 1. Although the proposed three-step training methodology uses a combination of

gradient descent and BFGS, other solvers can be used (e.g., the Adam optimizer instead

of gradient descent or the limited memory BFGS instead of BFGS).
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Figure 3.3: Flowchart representing the three-step training methodology
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Chapter 4

Application of the Hybrid Modeling

Framework to a Building Space

In this chapter, the proposed hybrid modeling framework and the three-step training

methodology are applied to model the thermal dynamics of a building space.

4.1 Description of the Building Space

In building modeling, interior spaces are areas which are enclosed by walls, floors, and

ceilings. These interior spaces are divided into zones, where each zone represents a partic-

ular area with its own temperature control mechanism. In the context of modeling, it is

common practice to consider an aggregated approach where building spaces, potentially

comprising several building zones, are modeled as a single entity. The air temperature

within the space is assumed to be spatially uniform (a standard assumption made in

building modeling). For control-oriented physics-based modeling of building spaces, the

thermal dynamics of the building spaces are represented as low-order thermal resistance-

capacitance (RC) networks, where the thermal resistances and capacitances are estimated

from data obtained for a specific building space [3, 13, 28]. The thermal resistance deter-
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mines the ability of a material to resist heat transfer. Similarly, the thermal capacitance

refers to the ability of a material to store thermal energy.

Consider a building thermal space modeled with two thermal masses given by:

Cia
dTia

dt
=

1

Roi

(Toa − Tia) +
1

Rmi

(Tm − Tia)− Q̇clg + Q̇int + αiaIt

Cm
dTm

dt
=

1

Rmi

(Tia − Tm) +
1

Rmo

(Toa − Tm) + αmIt

(4.1)

where the subscript ia denotes indoor air, m denotes (lumped) building thermal mass,

and oa denotes outdoor air. The notation Tj (j = ia, oa,m) denotes temperature, Cj (j =

ia,m) denotes thermal mass capacitance, Ri (i = oi,mi,mo) denotes thermal resistance,

Q̇clg denotes the sensible cooling rate of the HVAC equipment, Q̇int denotes the interior

heat gains from all other sources (e.g., occupants, lighting, and equipment operating

within the space), αia and αm are constants, and It represents the solar radiation intensity.

The heat gains in the building space due to solar radiation can be calculated as, Q̇solar,j =

αjIt (j = ia,m). The thermal RC network describing the space thermal dynamics is

shown in Figure 4.1.

The interior heat gains Q̇int and the heat gains due to solar radiation Q̇solar,ia can-

not be separately measured. For modeling, these disturbances are lumped together into

the term Q̇other. For the space considered, the heat gain due to solar radiation on the

thermal masses (Q̇solar,m) is small and can be neglected. Further discussion on these dis-

turbances is provided in the next section. The resulting model, upon incorporating these

simplifications, is parameterized and given by:

dTia

dt
= θ1(Toa − Tia) + θ2(Tm − Tia)− θ3Q̇clg + θ3Q̇other, Tia(0) = θ6

dTm

dt
= θ4(Tia − Tm) + θ5(Toa − Tm), Tm(0) = θ7

(4.2)
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Figure 4.1: Thermal resistance-capacitance network of the building space.

where θTsys := [ θ1 θ2 θ3 θ4 θ5 ] and θTx := [ θ6 θ7 ]. Detailed building space models are

typically of higher order than the model in (4.2). However, the model in (4.2) is used to

simulate the building space to avoid the issue of significant structural plant-model mis-

match, which poses additional challenges that are beyond the scope of the present work.

The parameter values used to simulate the building space are provided in Table 4.1. The

sensible cooling rate of the HVAC system is modeled as being regulated by a proportional-

integral (PI) controller with saturation and anti-windup via back-calculation. The non-

linear controller approximately models a variable air volume (VAV) terminal box and its

control, whereby the discharge flow rate of a VAV box is manipulated by a regulatory

controller to ensure that the indoor air temperature is maintained at the setpoint. The

maximum cooling capacity is denoted by Q̇clg,max and its value is provided in Table 4.1.

The cooling rate, Q̇clg is treated as a manipulated input to the system model.
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Table 4.1: The simulated building thermal RC model parameters and their respective values.

Parameter Value Parameter Value

Cia 196.8 kJK−1 Rmo 125.3KkW−1

Cm 2530 kJK−1 αia 3.8× 10−4 kWm2 W−1

Rmi 0.781KkW−1 αm 1.391× 10−5 kWm2 W−1

Roi 11.6KkW−1 Q̇clg,max 10 kW

The parameter vectors are given by:

θTsys :=
[
θ1 θ2 θ3 θ4 θ5

]
=

[
1

CiaRoi

1
CiaRmi

1
Cia

1
CmRmi

1
CmRmo

]
θTx :=

[
θ6 θ7

]
=

[
Tia,0 Tm,0

]
The continuous-time model is converted into a discrete-time model by assuming zeroth-

order hold on all inputs. The resulting parameterized discrete-time linear model, with

xT = [Tia Tm], u
T = [Q̇clg Toa], d = Q̇other, and y = Tia, is given as:

xk+1 = A(θsys)xk +B(θsys)uk +Bd(θsys)dk

x0 = θx

yk = Cxk

(4.3)

where C = [1 0], and A(θsys) and B(θsys) are computed from (4.2).

4.2 Data Collection and Generation

The dynamic model in (4.1) with the air temperature regulated by the PI controller

with anti-windup is simulated under a time-varying setpoint. From this simulation, data

is collected to train the parameters of a hybrid model. The training period is defined

as a specific period of time during which the model is trained on the training dataset.

Similarly, the validation period is a period of time during which the performance of the

trained model is evaluated on a separate dataset, called the validation dataset. The
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parameters of the hybrid building model are trained using a seven-day simulation of a

building space, starting at midnight on Sunday, July 28, 2019 and ending at midnight

on Sunday, August 4, 2019, corresponding to the training period. Similarly, the hybrid

model is validated using a seven-day simulation of the same building space from midnight

on Sunday, August 4, 2019 to midnight on Sunday, August 11, 2019, corresponding to the

validation period.

During the simulation, a temperature setpoint excitation signal is used, generated from

a pseudo-random binary signal (PRBS), to generate the training and validation data. The

excitation setpoint trajectory has values of either 23◦C or 25◦C. This input-output data

consisting of Q̇clg, Toa, and Tia is collected with a sampling time of 1 minute. All simulated

trajectories generated to construct the training and validation datasets are depicted in

Figures 4.2 and 4.3.

4.3 Three-Step Training Methodology with Predictor Variable

Selection

The modeling objective is to develop a hybrid building model capable of forecasting

the indoor air temperature, given a prediction of the outdoor air temperature, HVAC

cooling rate, and predictor variables. In this section, the appropriate predictor variables to

forecast the unmeasured heat disturbances associated with building spaces are determined.

Following this, the proposed hybrid modeling framework is applied to formulate a building

space model and the three-step training methodology is demonstrated by training hybrid

building models and evaluating their predictions.

In buildings, the heat gains (heat disturbances) provided to the thermal masses result
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Figure 4.2: Resulting trajectories of the building space during the training period under the temperature
setpoint trajectory generated to excite the system dynamics.
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Figure 4.3: Resulting trajectories of the building space during the validation period under the temperature
setpoint trajectory generated to excite the system dynamics.
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from, for example, solar radiation, people, lighting, and electrical equipment. These

disturbances are not generally measured but need to be forecasted for acceptable closed-

loop performance under MPC (e.g., [26]). The heat gains from solar radiation (Q̇solar)

are a function of the sun’s position with respect to earth, which in-turn is a function of

the time of the day (TOD) and the day of the year (DOY ). Heat gains from people,

lighting, and electrical equipment (Q̇int) are a function of the occupancy of the buildings.

For buildings (e.g., commercial buildings), the occupancy pattern is dependent on the day

type (e.g., day of the week, time of the day, weekday, and weekend). Therefore, Q̇int is

correlated to the day of the week (DOW ), whether it is a weekday or a weekend (WW ),

and the time of the day (TOD). This can also be seen from Figures 4.2 and 4.3 where

the values of Q̇int are higher during the weekdays and lower during the weekends. Hence,

the relevant time features that will be considered as predictor variables for forecasting the

heat disturbances (Q̇other) are TOD,DOW,DOY, and WW .

The FNN of the form (3.1) is used to forecast the unmeasured heat disturbances (Q̇other)

from the predictor variables. In particular, three choices of the predictor variables are

considered:

• Time Of Day, Day Of Week, Day of Year

• Time Of Day, Day Of Week

• Time Of Day, Day Of Week, Weekday or Weekend

The proposed FNN has a dense network architecture which consists of one input layer,

two hidden, layers and an output layer. The input to the network consists of the predictor

variables. The activation function employed in the hidden layers is the hyperbolic tangent

(tanh), while the activation function of the output layer is the rectified linear unit (ReLU).
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Figure 4.4: A diagram of the dense FNN architecture used to predict Q̇other

The first hidden layer consists of 6 neurons, while the second layer consists of 4 neurons.

A graphical representation of the network architecture is provided in the accompanying

Figure 4.4.

The choice of the FNN architecture is first validated. Three FNNs are developed

using TensorFlow [1] and are trained in a supervisory manner by assuming that the heat

disturbance (Q̇other) is known. Specifically, the Adam optimizer is used for 100 iterations,

to train the weights and biases of the FNNs. The dataset used to train and validate

the predictions of these FNNs consists of time features (TOD,DOW,DOY,WW ), and

the corresponding Q̇other values calculated from the data represented in Figure 4.2. The

training and validation datasets correspond to those defined in Section 4.2. Model 1 uses

TOD, DOW , and DOY as the predictor variables, model 2 uses TOD and DOW as the

predictor variables, and model 3 uses TOD, DOW , and WW as the predictor variables.

The predictions of Q̇other compared to the actual values of Q̇other over the training and

validation datasets generated by models 1, 2, and 3, are presented in Figures 4.5, 4.6, and

4.7, respectively.
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Figure 4.5: Prediction of Q̇other generated by FNN with TOD,DOW, and DOY as predictor variables
over (a) the training dataset and (b) the validation dataset. (c) The training and validation loss function
values.
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Figure 4.6: Prediction of Q̇other generated by FNN with TOD and DOW as predictor variables over (a)
the training dataset and (b) the validation dataset. (c) The training and validation loss function values.
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Figure 4.7: Prediction of Q̇other generated by FNN with TOD,DOW, and WW as predictor variables
over (a) the training dataset and (b) the validation dataset. (c) The training and validation loss function
values.

Figures 4.5a, 4.6a, and 4.7a depict the predictions of Q̇other generated by models 1,

2, and 3, respectively, on the training dataset. Figures 4.5b, 4.6b, and 4.7b depict the

predictions of Q̇other generated by the three FNN models on the validation dataset. Fur-

thermore, Figures 4.5c, 4.6c, and 4.7c depict the training and validation losses for each

of the three models. The maximum prediction error is used to evaluate the predictions

generated by a model, and is defined as:

max
k∈{0,...,N}

|mk − m̃k| (4.4)

where N = Ntrain(training dataset) or N = Nvalidation(validation dataset), mk represents

the actual value of variable at time step k, and m̃k represents the corresponding predicted

value of the variable. From these figures, the maximum prediction error of Q̇other is at

most 0.1 kW across all three models. In addition, the average validation loss values

across the three models with different predictor variables is less than 0.5×10−2. Hence,

the proposed FNN architecture is suitable for predicting Q̇other.
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Figure 4.8: Block diagram of the hybrid modeling framework applied to the building space.

The proposed hybrid building model combines the thermal RC model described in

(4.3), for modeling building space thermal dynamics, with the FNN model described

above, to forecast the unmeasured heat disturbances. This results in a model of the form:

x̃k+1 = A(θsys)x̃k +B(θsys)uk +Bd(θsys)d̃k

x̃(0) = θx

d̃k = fd(wk; θd)

ỹk =
[
1 0

]
x̃k

x̃T
k =

[
T̃ia,kT̃m,k

]
, uT

k =
[
Q̇clg,kToa,k

]
(4.5)

where A(θsys), B(θsys), and Bd(θsys) are defined in Section 4.1. Figure 4.8 presents a block

diagram of the proposed hybrid building space model. The inputs to the heat disturbance

model are the predictor variables (wk). The disturbance model forecasts the unmeasured

heat gains ( ˙̃Qother,k). The forecasted heat gains along with the HVAC cooling rate (Q̇clg,k)

are provided to the thermal RC model, which outputs the indoor air temperature T̃ia,k.

The simulation PEM is employed to simultaneously estimate the thermal RC initial

conditions and FNN model parameters. The training problem of the form, provided

in (3.5), is adapted for estimating the parameters of the hybrid building space thermal
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model. The three-step training methodology, following Algorithm 1 adapted for this

study, is utilized to solve the training problem. The hyperparameters for the three-step

training methodology are as follows. Instead of gradient descent, the Adam optimizer is

used. The exact gradients are computed using TensorFlow [1], and the BFGS algorithm

is implemented using TensorFlow-Probability. The first step employees 3000 iterations,

the second step uses 2500 iterations, and the third step involves 2500 iterations. In

TensorFlow-Probability’s implementation of BFGS, there is no method to extract the

training and validation loss every iteration. In lieu of this, the training and validation

loss function values are recorded every time the loss function is called, which can happen

several times each iteration during the line search. These additional calls to the loss

function are also recorded. Hence, the total number of iterations are normalized to match

the set 2500 iterations. While this does not capture the true behavior of the training

and validation loss, it still provides the overall behavior, which is found to be informative

(e.g., to determine if the solver converged).

The collected input data (Toa, Q̇clg) and the output data (Tia) are normalized to a

range between 0 and 1. Additionally, the time features to be used as predictor variables

are also normalized. For the initialization strategy of the initial condition parameter

(θx), the measured indoor air temperature at initial time is used for both states, i.e., the

initialization strategy is θx,0 = Hy0 = [1 1]T Tia,0. Correspondingly, the initial estimates

for the system model parameters (θsys) are provided at random from a normal distribution

with mean as 0.1 and standard deviation as 0.05. The initial estimates for the FNN

model parameters (θd) are provided using the Glorot uniform initializer, which randomly

initializes the weights where the value is drawn from a uniform distribution within the
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Figure 4.9: Predictions of Tia, Tm, and Q̇other generated by model 1 with TOD, DOW , and DOY as
predictor variables over (a) the training dataset and (b) the validation dataset compared to the actual
values.

limits [−θinit,max, θinit,max] where θinit,max =
√

6/(nin + nout), nin is the number of input

units, and nout is the number of output units [19].

A total of nine hybrid building models are formulated and trained, with three hybrid

models being trained for each of the three predictor variable combinations described above,

using the three-step training methodology. Models 1, 2, and 3 have TOD,DOW, and

DOY as the predictor variables, models, 4, 5, and 6 have TOD and DOW as predictor

variables, and models 7, 8, and 9 have TOD,DOW, and WW as predictor variables. The

predictions of Tia, Tm, and Q̇other generated by each of the nine hybrid building models

are presented and discussed. All the hybrid models are initialized with different initial

parameter estimates.
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Figure 4.10: Training and validation loss for model 1 with TOD, DOW , and DOY as predictor variables
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Figure 4.11: Predictions of Tia, Tm, and Q̇other generated by model 2 with TOD, DOW , and DOY as
predictor variables over (a) the training dataset and (b) the validation dataset compared to the actual
values.
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Figure 4.12: Training and validation loss for model 2 with TOD, DOW , and DOY as predictor variables
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Figure 4.13: Predictions of Tia, Tm, and Q̇other generated by model 3 with TOD, DOW , and DOY as
predictor variables over (a) the training dataset and (b) the validation dataset compared to the actual
values.
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Figure 4.14: Training and validation loss for model 3 with TOD, DOW , and DOY as predictor variables

The predictions of Tia, Tm, and Q̇other generated by hybrid building models 1, 2, and

3, over the training and validation periods are depicted in Figures 4.9, 4.11, and 4.13,

respectively. Over the training period, the maximum prediction errors of the indoor air

temperatures (Tia) are 0.2◦C, 0.2◦C, and 0.19◦C for models 1, 2, and 3, respectively,

and the maximum prediction errors of the thermal mass temperatures (Tm) are 0.3◦C,

0.29◦C, and 0.3◦C for models 1, 2, and 3, respectively. Over the validation period, the

maximum prediction errors of the indoor air temperatures (Tia) are 1.6
◦C, 4◦C, and 4.3◦C

for models 1, 2, and 3, respectively, and the maximum prediction errors of the thermal

mass temperatures (Tm) are 2.5◦C, 4.3◦C, and 4.1◦C for models 1, 2, and 3, respectively.

Additionally, the training and validation loss function values are presented in Figures 4.10,

4.12, and 4.14. The trained parameter values and the individual training and validation

loss values for the three hybrid building models are presented in the Table 4.2. The average

training loss of the three models is 7.42 × 10−6, and the average loss over the validation

period is 3.48× 10−3. Despite the small average training loss, the average validation loss
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Table 4.2: The actual system parameter values compared to the trained system parameter values of the
models with TOD, DOW , and DOY as predictor variables and the corresponding losses.

Parameters Actual Parameter value Model 1 Model 2 Model 3
θ1 23.40 22.50 23.06 22.46
θ2 1.58 1.97 1.53 1.94
θ3 18.30 17.91 17.92 17.80
θ4 1.82 1.85 1.82 1.85
θ5 0.01 0.03 0.02 0.01

Training Loss 6.42× 10−6 8.76× 10−6 7.08× 10−6

Validation Loss 4.28× 10−4 6.54× 10−3 3.47× 10−3

is about 470 times greater than the training loss. One of the factors leading to greater

prediction errors and loss values observed over the validation period is due to the model

not being able to extrapolate beyond the training period. That is, the model is trained

over the training period, which has range of DOY from 208 to 215, and validated over

the validation period, which has range of DOY from 215 to 222. Hence, DOY may not

be a good variable to be included as a predictor variable, as the predictions extrapolate

beyond the training dataset. However, with the availability of more training data over a

full year, DOY may be a useful predictor variable.

In the following three hybrid building models (models 4, 5, and 6), the absence of

DOY as a predictor is studied. The predictions of Tia, Tm, and Q̇other generated by hybrid

building models 4, 5, and 6 over the training and validation periods are depicted in Figures

4.15, 4.17, and 4.19, respectively. Over the training period, the maximum prediction errors

of the indoor air temperatures (Tia) are 0.18
◦C, 0.1◦C, and 0.19◦C for models 4, 5, and 6,

respectively, and the maximum prediction errors of the thermal mass temperatures (Tm)

are 0.2◦C, 0.18◦C, and 0.2◦C for models 4, 5, and 6, respectively. Over the validation

period, the maximum prediction errors of the indoor air temperatures (Tia) are 0.6◦C,

0.3◦C, and 0.6◦C for models 4, 5, and 6, respectively, and the maximum prediction errors

of the thermal mass temperatures (Tm) are 0.8
◦C, 0.7◦C, and 0.7◦C for models 4, 5, and 6,
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Figure 4.15: Predictions of Tia, Tm, and Q̇other generated by model 4 with TOD, and DOW as predictor
variables over (a) the training dataset and (b) the validation dataset compared to the actual values.

Figure 4.16: Training and validation loss for model 4 with TOD, and DOW as predictor variables
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Figure 4.17: Predictions of Tia, Tm, and Q̇other generated by model 5 with TOD, and DOW as predictor
variables over (a) the training dataset and (b) the validation dataset compared to the actual values.

Figure 4.18: Training and validation loss for model 5 with TOD, and DOW as predictor variables
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Figure 4.19: Predictions of Tia, Tm, and Q̇other generated by model 6 with TOD, and DOW as predictor
variables over (a) the training dataset and (b) the validation dataset compared to the actual values.

Figure 4.20: Training and validation loss for model 6 with TOD, and DOW as predictor variables
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Table 4.3: The actual system parameter values compared to the trained system parameter values of the
models with TOD and DOW as predictor variables and the corresponding losses.

Parameters Actual Parameters Model 1 Model 2 Model 3
θ1 23.40 22.50 23.06 22.46
θ2 1.58 1.97 1.53 1.94
θ3 18.30 17.91 17.92 17.80
θ4 1.82 1.85 1.82 1.85
θ5 0.01 0.03 0.02 0.01

Training Loss 7.03×10−6 7.85×10−6 7.27×10−6

Validation Loss 5.67×10−5 1.17×10−4 7.62×10−5

respectively. However, the maximum prediction errors over both training and validation

periods for both Tia and Tm are lower compared to when TOD,DOW , and DOY are

used as predictor variables. Over the training period, the maximum prediction error of

Tia reduced by about 10% and maximum prediction error of Tm decreased about 60%.

Over the validation period, the maximum prediction error of Tia reduced by about 63%

and maximum prediction error of Tm decreased by about 70%. Additionally, the training

and validation loss function values are presented in Figures 4.16, 4.18, and 4.20. The

trained parameter values and the individual training and validation loss values for the

three hybrid building models are presented in the Table 4.3. The average training loss is

7.38× 10−6 and the average validation loss is 8.32× 10−5. These average losses are lower

than the losses when TOD,DOW , and DOY are used as predictor variables.

In the following three hybrid building models (models 7, 8, and 9) the predictions

generated by models with predictor variables TOD, DOW , and WW are studied. The

predictions of Tia, Tm, and Q̇other generated by hybrid building models 7, 8, and 9, over the

training and validation periods are depicted in Figures 4.21, 4.23, and 4.25, respectively.

Over the training period, the maximum prediction errors of the indoor air temperatures

(Tia) are 0.05◦C, 0.04◦C, and 0.05◦C, for models 7, 8, and 9, respectively, and the max-

imum prediction errors of the thermal mass temperatures (Tm) are 0.08◦C, 0.08◦C, and
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Figure 4.21: Predictions of Tia, Tm, and Q̇other generated by model 7 with TOD, DOW , and WW as
predictor variables over (a) the training dataset and (b) the validation dataset compared to the actual
values.

Figure 4.22: Training and validation loss for model 7 with TOD, DOW , and WW as predictor variables
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Figure 4.23: Predictions of Tia, Tm, and Q̇other generated by model 8 with TOD, DOW , and WW as
predictor variables over (a) the training dataset and (b) the validation dataset compared to the actual
values.

Figure 4.24: Training and validation loss for model 8 with TOD, DOW , and WW as predictor variables
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Figure 4.25: Predictions of Tia, Tm, and Q̇other generated by model 9 with TOD, DOW , and WW as
predictor variables over (a) the training dataset and (b) the validation dataset compared to the actual
values.

Figure 4.26: Training and validation loss for model 9 with TOD, DOW , and WW as predictor variables
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Table 4.4: The actual system parameter values compared to the trained system parameter values of the
models with TOD, DOW , and WW as predictor variables and the corresponding losses.

Parameters Actual Parameters Model 1 Model 2 Model 3
θ1 23.40 22.50 23.58 22.85
θ2 1.58 1.97 1.57 1.69
θ3 18.30 17.91 18.36 17.94
θ4 1.82 1.85 1.83 1.82
θ5 0.01 0.03 0.01 0.00

Training Loss 7.03×10−6 3.57×10−6 6.37×10−6

Validation Loss 5.67×10−5 6.88×10−6 9.38×10−6

0.1◦C, for models 7, 8, and 9, respectively. Over the validation period, the maximum

prediction errors of the indoor air temperatures (Tia) are 0.1◦C, 0.12◦C, and 0.13◦C, for

models 7, 8, and 9, respectively, and maximum prediction errors of the thermal mass tem-

peratures (Tm) are 0.12◦C, 0.13◦C, and 0.13◦C, for models 7, 8, and 9, respectively. The

maximum prediction errors when TOD,DOW , and WW are used as predictor variables

is lower than when TOD and DOW are used as the predictor variables. Additionally, the

training and validation losses are presented in Figures 4.22, 4.24, and 4.26. The predicted

parameter values and the training and validation loss values for all the three models are

presented in Table 4.4. The difference between the training and validation loss values are

lower than the differences when (TOD,DOW ) and (TOD,DOW,DOY ) are used as pre-

dictor variables. The average training loss is 5.65×10−6 and the average validation loss is

2.43×10−5. These average validation loss values are lower than the loss values when TOD

and DOW are used as predictor variables. Additionally, the maximum prediction errors

over the validation and training periods are the lowest when compared to the other six

cases. Hence, the combination of TOD, DOW , and WW as predictor variables performs

the best among all the different combinations discussed above.
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4.4 Comparison of Other Training Methodologies with the Three-

Step Training Methodologies

The aim of this section is to compare the three-step training methodology with alternative

training methodologies. To achieve this, four hybrid building models are trained, all with

identical initial parameter estimates. Since, the three-step training methodology utilizes

both Adam optimizer and BFGS algorithms, the first model trained only uses the Adam

optimizer, the second model trained only uses BFGS, the third model trained uses a single

step of Adam optimizer (where all parameters including the initial condition parameters

are trained) followed by a single step of BFGS, and the fourth model trained uses the

three-step training methodology. The approach to train the third model is called the

two-step training methodology.

The total number of iterations is 8000 in all cases. When the models are trained using

only Adam optimizer or BFGS, the number of iterations for each of the solvers is 8000. In

the case of training the model using the two-step training methodology, the total number

of iterations for the gradient descent step is 5500 and that of BFGS step is 2500. When

the model is trained using the three-step training methodology, the first gradient descent

step utilizes 3000 iterations, the second gradient descent step utilizes 2500 iterations, and

the third step of BFGS utilizes 2500 iterations. The predictor variables in all the cases

are TOD,DOW , and WW .

The predictions of Tia, Tm, and Q̇other generated by the hybrid building model trained

using only the Adam optimizer over the training and validation datasets are provided in

Figure 4.27. Over the training period, the maximum prediction errors of Tia, Tm, and

Q̇other are 1.4◦C, 4.2◦C, and 3.9 kW, respectively. Over validation period, the maximum
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Figure 4.27: Predictions of Tia, Tm, and Q̇other generated by the hybrid building model trained using the
Adam optimizer over (a) training dataset, and (b) validation dataset compared to the actual values
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Figure 4.28: Predictions of Tia, Tm, and Q̇other generated by the hybrid building model trained using the
BFGS algorithm over (a) training dataset, and (b) validation dataset compared to the actual values
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Figure 4.29: Predictions of Tia, Tm, and Q̇other generated by the hybrid building model trained using
the two-step training methodology over (a) training dataset, and (b) validation dataset compared to the
actual values
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Figure 4.30: Predictions of Tia, Tm, and Q̇other generated by the hybrid building model trained using the
three-step training methodology over (a) training dataset, and (b) validation dataset compared to the
actual values
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prediction errors of Tia, Tm, and Q̇other are 5◦C, 2◦C, and 3.9 kW, respectively.

The predictions of Tia, Tm, and Q̇other generated by the hybrid building model trained

using only the BFGS algorithm over the training and validation datasets are provided in

Figure 4.28. Over the training period, the maximum prediction errors of Tia, Tm, and

Q̇other are 7.3◦C, 7◦C, and 3.9 kW, respectively. Over validation period, the maximum

prediction errors of Tia, Tm, and Q̇other are 8◦C, 8.2◦C, and 3.9 kW, respectively.

The predictions of Tia, Tm, and Q̇other generated by the hybrid building model trained

using the two-step training methodology over the training and validation datasets are

provided in Figure 4.29. Over the training period, the maximum prediction errors of

Tia, Tm, and Q̇other are 1.1◦C, 2◦C, and 1.4 kW, respectively. Over validation period, the

maximum prediction errors of Tia, Tm, and Q̇other are 6
◦C, 1.5◦C, and 1.4 kW, respectively.

The predictions of Tia, Tm, and Q̇other generated by the hybrid building model trained

using the three-step training methodology over the training and validation datasets are

provided in Figure 4.30. Over the training period, the maximum prediction errors of Tia,

Tm, and Q̇other are 0.1◦C and 0.11◦C, and 0.2 kW, respectively. Over validation period,

the maximum prediction errors of Tia, Tm, and Q̇other are 0.11◦C, 0.1◦C, and 0.21 kW,

respectively.

The prediction errors of Tia, Tm, and Q̇other for models trained using alternative

methodologies are about three times higher on average than the prediction errors of the

model trained using the three-step training methodology. Additionally, the training loss

for the model trained using the three-step training methodology is 7.38 × 10−6 and the

validation loss is 8.32 × 10−5. On the other hand, the training loss for the same model

trained using the two-step training methodology is 2.91× 10−4, and the validation loss is
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1.73× 10−3. The training and validation losses for the model trained using only BFGS is

5.3×10−3 and 1.01×10−2, respectively. The training and validation losses for the model

trained using only Adam optimizer is 2.739×10−4 and 4.479×10−3, respectively. Hence,

the three-step training methodology outperforms the single BFGS, single Adam optimizer,

and the two-step training methodology in terms of lower maximum prediction errors and

lower training and validation loss values.

4.5 Comparison of Model Training with State and Output Mea-

surements

In this section the impact of the unavailability of full state measurements is considered.

In this study, output measurements refers to the case when Tia is measured while state

measurements refer to the case when both Tia and Tm are measured. Two hybrid building

models are formulated such that the first model has output measurements and the second

model has state measurements. Models in both cases use TOD,DOW , and WW as

predictor variables, and are trained using the three-step training methodology.

The predictions of Tia, Tm, and Q̇other generated by the hybrid building model with

output measurements on the training and validation datasets are depicted in Figure 4.31.

Over the training period, the maximum prediction error of Tia is 0.1
◦C and the maximum

prediction error of Tm is 0.11◦C. Over the validation period, the maximum prediction

error of Tia is 0.18◦C and the maximum prediction error of Tm is 0.2◦C. The training and

validation loss values are depicted in Figure 4.32.

On the other hand, the prediction of Tia, Tm, and Q̇other generated by the hybrid build-

ing model with state measurements over the training and validation datasets are presented
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Figure 4.31: Predictions of Tia, Tm, and Q̇other generated by the hybrid building model with output
measurements over (a) training dataset, (b) validation dataset compared to the actual values.

Figure 4.32: Training and validation loss for the hybrid building model with output measurements.
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Figure 4.33: Predictions of Tia, Tm, and Q̇other generated by the hybrid building model with state
measurements over (a) training dataset, (b) validation dataset compared to the actual values.

Figure 4.34: Training and validation loss for the hybrid building model with state measurements.
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Table 4.5: The actual system parameter values compared to the trained system parameter values of the
building models with state and output measurements.

Parameter
Actual Parameter

Value

Trained Parameter Value
for State Measurement

Case

Trained Parameter Value
for Output Measurement

Case
θ1 23.40 23.22 23.59
θ2 1.58 1.50 1.57
θ3 18.30 18.14 18.36
θ4 1.82 1.81 1.84
θ5 0.01 0.01 0.01

Training Loss 3.25×10−6 3.57 ×10−6

Validation Loss 5.86×10−6 6.88×10−6

in Figure 4.33. Over the training period, the maximum prediction error of Tia is 0.04◦C

and the maximum prediction error of Tm is 0.07◦C. Over the validation period, the maxi-

mum prediction error of Tia is 0.07◦C and the maximum prediction error of Tm is 0.09◦C.

The training and validation losses are presented in Figure 4.34. Additionally, the trained

system parameter values and the training and validation losses for both the models are

presented in Table 4.5. The training and validation losses for models with state measure-

ments are smaller compared to the loss values for models with output measurements.

4.6 Reproducibility of Training Results

The aim of this section is to establish the reproducibility of the training results, i.e., if a

second model is trained with identical initial parameter estimates as the original model,

the predictions of Tia, Tm, and Q̇other are identical over both training and validation peri-

ods. Two hybrid building models with TOD,DOW , and WW as predictor variables are

trained using the three-step training methodology. Both the hybrid models are provided

with the same initial parameter estimates.

The predictions of Tia, Tm, and Q̇other generated by the first hybrid building model,

over the training and validation periods are provided in Figure 4.35. The predictions of
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Figure 4.35: Predictions of Tia, Tm, and Q̇other generated by the first hybrid building model over (a) the
training dataset, and (b) validation dataset compared to the actual values.
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Figure 4.36: Predictions of Tia, Tm, and Q̇other generated by the second hybrid building model over (a)
the training dataset, and (b) the validation dataset compared to the actual values.
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(a) (b)

Figure 4.37: Training and validation loss function values, over the training iterations, corresponding to
(a) original hybrid building model, and (b) second hybrid building model.

Tia, Tm, and Q̇other generated by the second model over the training and validation periods

are provided in Figure 4.36. Over the validation period, the maximum prediction error

of Tia, Tm, and Q̇other are 0.05◦C, 0.1◦C, and 0.25 kW, respectively, for both the models.

Over the training period, the maximum prediction errors of Tia, Tm, and Q̇other are 0.02
◦C,

0.1◦C, and 0.25 kW, respectively, for both models. The loss plots for both the models

are depicted in Figures 4.37a and 4.37b. The training losses for both the models are

7.03 ×10−6 and the validation losses are 5.67×10−5. This demonstrates that the second

model is a reproduced copy of the original model. The trained parameter values of both

the hybrid building models are shown in Table 4.6. The parameter values are identical,

therefore, the models can be reproduced when provided with identical initial estimates

for the model parameters.
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Table 4.6: The actual system parameter values compared to the trained system parameter values of the
first and second building models.

Parameters
Actual Parameter

value
Trained Parameter
Value (Original)

Trained Parameter
Value (Reproduced)

θ1 23.4 22.33 22.33
θ2 1.58 1.65 1.65
θ3 18.3 17.66 17.66
θ4 1.82 1.80 1.80
θ5 0.0114 0.00 0.00
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Chapter 5

Conclusion and Future Work

In this thesis, a generalized hybrid modeling framework to identify models for systems

subject to unmeasured time-varying disturbances was presented. The framework utilized

a parameterized low-order physics-based model to capture the underlying system dynam-

ics and an FNN to forecast the unmeasured time-varying disturbances. The framework

utilized the proposed novel three-step training methodology to simultaneously train both

the physics-based and FNN model parameters. Model validation was developed as part of

the three-step training methodology. The effectiveness of the hybrid modeling framework

was demonstrated by applying it to model the thermal dynamics of a building space.

Specifically, the proposed architecture of the FNN was evaluated by forecasting the un-

measured heat disturbances using the FNN with three combinations of predictor variables.

The results indicated that the prediction errors of the disturbances were minimal and that

the proposed neural network architecture was suitable to forecast the disturbances. Three

hybrid building models for each of the three predictor variable combinations were trained

using the three-step training methodology and the predictions generated by these models

were evaluated. The results indicated that the maximum prediction errors of Tia, Tm,

62



and Q̇other were the lowest when the time of the day, the day of the week, and week-

day weekend were used as predictor variables. The superiority of the three-step training

methodology was then highlighted by comparing the predictions generated by the hybrid

building model trained using the three-step training methodology to those trained using

single solver strategies and alternative strategies. The three-step training methodology

outperformed the alternatives in terms of training and validation loss values and maxi-

mum prediction errors of Tia, Tm, and Q̇other. The impact of full state measurements was

then studied, which resulted in hybrid building models with state measurements having

slightly lower training and validation losses compared to the models with output measure-

ments. Finally, the reproducibility of the model training results was established for the

hybrid modeling framework. In all cases, the results indicated that the proposed three-

step training methodology provided better model predictions, with minimal prediction

errors and fewer number of iterations, compared to the predictions made by the same

model trained with alternative strategies.

In future work, the hybrid modeling framework and the three-step training method-

ology can be considered for systems with measurement noise. Regularization techniques

may be explored as potential mechanism to increase the robustness of the training process

to measurement noise.
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