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Abstract

Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been
systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous
proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling,
and modular reuse of catalytic units. We have previously established a computational method to detect functions in
proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous
serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a b-lactam (imipenem) in a cold-active
Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we
assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database.
Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV
proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC
from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the
native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman
degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-
PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and
electrostatic congruence of active site residues.
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Introduction

Proteolytic enzymes catalyze the cleavage of peptide bonds in

proteins and are divided into several major classes based on their

mechanism of catalysis [1,2]. The MEROPS database systemat-

ically categorizes these protein families and clans to provide an

integrated information source [3]. The abundance of proteolytic

enzymes in biological systems results from the varied physiological

conditions under which these enzymes have evolved to be effective

[4].

We selected proteases with known active sites and 3D structures

from each family listed in MEROPS and encapsulated their active

site motifs into a single protease search module. We previously

presented a bottom-up method for active site prediction (CLASP)

using active site residues [5]. Subsequently, we used CLASP to

quantify promiscuous activities in a wide range of proteins [6].

Here, we used CLASP to query proteins of interest for proteolytic

function using this search module. Such a search module is

equivalent to running a BLAST search from the MEROPS

database site [7,8].
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While BLAST looks for sequence homology, CLASP detects

spatial and electrostatic congruence between residues to predict

similar catalytic properties in proteins. Sequence alignment

techniques are known to fail to detect distant relationships since

considerable divergence often resembles noise [8]. More impor-

tantly, proteins redesigned from chiseled scaffolds through exon

shuffling and those resulting from convergent evolution remain

beyond the scope of such methods [9]. The phenomenon of

convergent evolution, first proposed in serine proteases [10], is no

longer considered to be a rare event [11,12]. Structural alignment

methods have addressed some of these deficiencies, but can be

misled by non-catalytic parts of the protein [13]. A recent method

employs learning techniques to predict whether proteins have

proteolytic activities, but has not identified any novel proteases

undetected by other methods [14,15]. CLASP unraveled a

promiscuous serine protease scaffold in alkaline phosphatases

(AP) [5], one of the widely studied promiscuous enzyme families

[16,17], and also a scaffold recognizing a b-lactam (imipenem) in a

cold-active Vibrio AP [18,19].

Several conserved proteases have been implicated in bacterial

pathogenesis [20]. Proteases are integral components of outer

membrane vesicles (OMVs), which all gram-negative bacteria shed

as blebs from the cell surface [21]. We queried other proteins

present in OMVs using the CLASP protease search module and

found that phosphoinositide-specific phospholipase C (PI-PLC) is a

Pro-X specific protease. PI-PLCs are part of the signal transduc-

tion pathways of higher organisms [22–24]. Prokaryotic PI-PLCs

are important virulence factors that alter the signaling pathways of

higher organisms [25–27]. We demonstrated a serine protease

domain in PI-PLC from Bacillus cereus through its proteolytic

activity and the inhibition of its native activity on phospholipids by

serine protease inhibitors (IC50 = 0.018 mM). Edman degradation

analysis demonstrated that the specificity of the protease activity

was for a proline in the amino terminal, suggesting that PI-PLC is

a prolyl peptidase [28].

To summarize, the distinct types of proteases categorized in the

MEROPS database were used to generate a search module that

could be used to query any protein with known 3D structure for

the presence of a promiscuous proteolytic activity. This search

module identified a serine protease scaffold in PI-PLC from

Bacillus cereus, which was validated by in vitro experiments. A similar

computational approach can be adopted for other enzymatic

functions to extend protein families based on the spatial and

electrostatic congruence of active site residues: relationships that

often escape detection by sequence alignment or global structure

alignment methods.

Results

We chose a set of proteases with known 3D structures and active

site residues from each of the seven major classes in the MEROPS

database (Table 1) [3]. We then created signatures encompassing

the spatial and electrostatic properties of the catalytic residues in

these proteins [5]. To maintain uniformity, we chose three

residues from the active site neighborhood, including the catalytic

residues (Table 2). These signatures were then used to query other

proteins of interest using CLASP. Matches with low scores (less

than an empirical threshold of 0.1) indicate a good spatial and

electrostatic congruence, and a significant likelihood that these

proteins possess proteolytic functions.

To expand our previous work on APs, we investigated the

proteolytic activity of a cold-active Vibrio AP (VAP) [18] on four

substrates: benzoyl-Arg-pNA, Z-GlyProArg-pNA, succinyl-AlaA-

laAla-pNA, and succinyl-AlaAlaProPhe-pNA. While we detected

no proteolytic activity in VAP, its native AP activity was inhibited

by AEBSF (4-(2-aminoethyl) benzenesulfonyl fluoride hydrochlo-

ride) (IC50 of 0.35+/20.05 mM (n = 6) for AEBSF at pH 7.0), but

not by PMSF (phenylmethanesulfonylfluoride or phenylmethyl-

sulfonyl fluoride). Both AEBSF and PMSF are serine protease

inhibitors with similar specificity (chymotrypsin, kallikrein, plas-

min, thrombin, and trypsin).

The predicted residues, deviations in distances, potential

difference in cognate pairs, and scores were determined for a

phosphoinositide-specific PLC (PI-PLC) (PDB id: 1PTD) from

Bacillus cereus (Table 3). PI-PLC was indicated to be a serine

protease because the best match was with a trypsin protein,

PDBid:1A0J [29]. The residues predicted by CLASP as respon-

sible for its protease activity coincide with the active site

responsible for its native phospholipase activity (His32, Asp67,

His82, and Asp274) (Fig. 1) [30]. However, there was little

sequence similarity within the set of querying and queried

proteins, suggesting that established sequence alignment methods

would fail to detect this relationship (Table S1).

We tested this prediction by performing an in vitro protease

assay on commercially available PI-PLC from Bacillus cereus. The

protease activity of PI-PLC on the substrate protein UVI31+
[31,32] was inhibited by the protease inhibitor leupeptin, while

other inhibitors like AEBSF were unstable during a long

incubation (Fig. 2A). A MALDI TOF analysis showed a clean,

13.4 kDa peak for purified UVI31+ protein (Fig. 2B), which was

split into two fragments of 2.0 kDa (Fig. 2C) and 11.4 kDa

(Fig. 2D) on incubation with PI-PLC. Edman degradation analysis

demonstrated that the protease activity was specific for a proline

following the first seven residues of the UVI31+ protein (marked

by an asterisk - MAEHQLGP*IAG). This suggested that the PI-

PLC is a putative prolyl peptidase. The predicted protease scaffold

was tested by assaying inhibition of its phospholipase activity by

the trypsin inhibitor AEBSF (IC50 = 0.018 mM). Assays were

performed with the substrate in the form of large, unilamellar

vesicles. The vesicles consisted of either pure phosphatidylinositol

(PI) (Fig. 2E) or an equimolar mixture of PI, phosphatidylcholine

(PC), phosphatidylethanolamine (PE), and cholesterol (CH)

(Fig. 2F). In both cases, the maximum reaction rates decreased

in a dose-dependent way in the presence of AEBSF (Fig. S1).

We tested the proteolytic functions and inhibition using protease

inhibitors of the non-toxic Bacillus cereus phosphatidylcholine-

specific phospholipase C (PC-PLC) and the closely related highly

toxic C. perfringens a-toxin (CPA), which possesses an additional C-

terminal domain responsible for the sphingomyelinase, hemolytic,

Table 1. Proteases from different families.

PDB
Sequence
length Function Type

1FLH 326 Uropepsin A

2CY7 396 Cysteine protease APG4B C

1S2B 206 Eqolisin family of peptidases G

1FJO 316 Thermolysin M

1VDE 454 Homing endonuclease N

1A0J 223 Trypsin S

2DBU 366 Gamma-glutamyltranspeptidase T

Motifs extracted from each of these proteases consist of three residues. Types:
aspartic (A), cysteine (C), glutamic (G), metallo (M), asparagine (N), serine (S),
threonine (T).
doi:10.1371/journal.pone.0070923.t001

PI PLC from Bacillus cereus is a Prolyl Peptidase
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and lethal activities [33]. CPA and PC-PLC activity on

phospholipids was unaffected by trypsin inhibitors, consistent with

the CLASP analysis which fails to detect a serine protease scaffold

in these proteins (Table 4, 5).

CPA does have a metallo-protease motif from thermolysin

PDBid:1FJO (Table 4). Remnants of a metallo-protease in the

CPA protein preparation prevented direct confirmation of its

proteolytic function. A metallo-protease inhibitor did not inhibit

CPA activity. This lack of inhibition by a single compound is

insufficient to rule out the existence of a metallo-protease scaffold.

The PC-PLC proteolytic activity could also be an artifact of

metallo-protease contamination, which is difficult to remove.

CLASP detects in this protein a glutamic protease motif from the

Eqolisin family of peptidases, PDBid:1S2B (Table 5), which does

not coincide with its native active site (Fig. 3). While this protein’s

lack of inhibition by serine and metallo-protease inhibitors is

consistent with CLASP analysis, mutational studies would be

required to confirm the moonlighting glutamic protease scaffold

[34]. Thus, the protease activities of CPA and PC-PLC remain

open to debate.

Discussion

Proteases have evolved to use different mechanisms for

proteolysis [2,3,35–37]. Although most peptidases cleave peptide

bonds by hydrolysis, recently a novel protease was shown to be a

lyase [38,39]. There is considerable interest in developing

computational methods to identify new proteolytic enzymes and

their substrates. MEROPS provides a BLAST search for any

query protein [3]. Another recent method employed learning

techniques to predict proteolytic activities, but found no novel

proteases undetected by other methods [14,15]. Computational

methods are also used for predicting protease substrates [40].

Here, we selected proteases with known active sites and structures

from each family listed in MEROPS, and encapsulated their active

site motifs into a single protease search module. Using our

previously described method [5], we exploited this search module

to unravel proteolytic activities in phosphoinositide-specific PLC

(PI-PLC) [23,24].

The importance of proteases in organisms from all kingdoms is

well established. In humans, abnormal proteolysis is linked to

pathologies like cancer, stroke, heart attack, and parasite infection

[41–43]. The complete set of known proteases present in human,

chimpanzee, mouse, and rat have been incorporated into the

Degradome database [44]. In plants, papain-like cysteine prote-

ases are critical enhancers of immunity [45]. The bactericidal

properties of human neutrophil elastase, a serine protease, have

been exploited to design a therapeutic chimeric antimicrobial

protein that targets the outer-membrane of bacteria and bolsters

the innate immune defense system of grapevines against the

Pierce’s disease-causing Gram-negative Xylella fastidiosa [46].

Several conserved proteases have been implicated in bacterial

pathogenesis and are intricately involved in the Type III secretion

system [47], quorum sensing [48], motility [49], chaperones for

OMV proteins [50], and the protein quality control mechanism

essential for degrading unfolded proteins [51].

Proteases are also an integral component of outer membrane

vesicles (OMVs), which are shed by all Gram-negative bacteria as

blebs from the cell surface [21]. OMVs from pathogenic bacteria

are transported through the host plasma membrane by endocytosis

[52,53], and deliver several virulence factors that modulate the

host immune system, alter host cell signaling pathways, and aid the

colonization of host tissues [54,55]. OMVs contain other proteins

like alkaline phosphatase (AP), phospholipase C (PLC), and b-

lactamases [56].

Previously, we detected a promiscuous serine protease scaffold

in APs using CLASP [5], and a scaffold recognizing a b-lactam

(imipenem) in a cold-active Vibrio AP [18,19]. The theoretical

foundation of CLASP is that the electrostatic potential difference

(EPD) in cognate pairs of active site residues is conserved in

proteins with the same functionality. The significance of EPD was

extended to a method for enumerating possible pathways for

proton abstraction in the active site [57], compute electrostatic

perturbations induced by ligand binding [58], and propose a

rational design-flow for directed evolution [59,60]. Recently, we

proposed a methodology for the multiple sequence alignment of

related proteins with known structures using electrostatic proper-

ties as an additional discriminator and identified mutations that

might be the source of functional divergence in a protein family.

The active site and its close surroundings contained enough

information to infer the correct phylogeny for related proteins

[61]. Here, we confirmed the presence of this proteolytic scaffold

in a cold-active Vibrio AP (VAP) (IC50 of 0.35+/20.05 mM (n = 6)

for AEBSF at pH 7.0). Since APs are present in OMVs, we

queried other proteins present in OMVs using motifs from

different proteases listed in MEROPS. CLASP analysis using the

search module (Table 1 and 2) indicated that PI-PLC is a protease

with Pro-X specificity (Table 3). This was validated by protease

assays, mass spectrometry and by inhibition of the native

phospholipase activity by the serine protease inhibitor AEBSF

Table 2. Active site residues, distances (D), and potential difference (PD) of residue pairs for proteins from each major class in the
MEROPS database.

PDB Motif D (Å) PD

a b c ab ac bc ab ac bc

1FLH ASP32 ASP215 GLY34 2.933 2.779 3.461 230 2293 2262

2CY7 CYS74 ASP278 HIS280 7.723 3.413 4.73 331 185 2146

1S2B GLN53 GLU136 TRP39 7.013 6.026 5.059 130 245 2176

1FJO HIS142 GLU143 HIS146 4.868 3.162 4.122 261 30 92

1VDE ASN454 CYS1 HIS79 6.028 6.983 5.156 2182 2171 11

1A0J ASP102 SER195 HIS57 7.844 5.567 3.314 2144 239 104

2DBU THR391 ASN411 TYR444 6.797 6.219 2.613 389 239 2429

Potential differences are in units of kT/e (k is Boltzmann’s constant, T is the temperature in K and e is the charge of an electron).
doi:10.1371/journal.pone.0070923.t002

PI PLC from Bacillus cereus is a Prolyl Peptidase
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(IC50 = 0.018 mM). Edman degradation analysis demonstrated

that the protease activity was specific for a proline in the amino

terminal, suggesting that the PI-PLC is a prolyl peptidase [28].

Other endogenous proteolytic substrates of PI-PLC might be

discovered by liquid chromatography–mass spectrometry-based

peptidomics [62].

Enzymes that cleave phospholipids are defined by the site of

cleavage as PLA (releasing the fatty acids) or PLC/PLD (releasing

the polar head group) [28,63]. In higher eukaryotes, phosphoino-

sitide-specific PLC (PI-PLC) produces critical secondary messen-

gers for signal transduction pathways [22,23]. Prokaryotic PI-

PLCs are important virulence factors, possibly by altering this

signaling pathway [25,26]. We experimentally demonstrated the

serine protease scaffold in PI-PLC from Bacillus cereus (Fig. 2). The

hypothesis concerned the origin of the diverse peptidase families

and the evolutionary pressures that molded each may be

reinforced by these new families of proteolytic enzymes [64].

The genus Clostridium consists of spore-forming, rod-shaped,

Gram-positive bacteria, of which Clostridium perfringens is one of the

most pathogenic, with hemolytic, dermonecrotic, vascular per-

Figure 1. Superimposed active sites of trypsin and PI-PLC based on the active site match: His/57/NE2, Asp/102/OD1, and Ser/195/
OG from PDBid:1A0J and His/32/NE2, Asp/67/OD1, and Ser/234/OG from PDBid:1PTD, respectively. (a) Superimposed proteins. Trypsin
(PDBid:1A0J) is in blue and PI-PLC (PDBid:1PTD) is in grey. After superimposition, all three atoms in both proteins lie on the same plane (Z = 0), such
that His57 and His32 (colored in black) lie on the coordinate center and Asp102 and Asp67 lie on the X-Y plane (Y = 0). The active site residues of
trypsin are red and those of PI-PLC, yellow. His32, Asp67, His82, and Asp274 are all part of the active site scaffold in PI-PLC [30]. (b) Distances between
pairs of residues in the matches in Å. (c) Potential differences between pairs of residues in the matches. Electrostatic potential in dimensionless units
of kT/e where k is Boltzmann’s constant, T is the temperature in K and e is the charge of an electron.
doi:10.1371/journal.pone.0070923.g001

PI PLC from Bacillus cereus is a Prolyl Peptidase
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meabilization, and platelet-aggregating properties [65]. C. perfrin-

gens strains are classified into five toxinotypes based on four typing

toxins [66]. The C. perfringens a toxin (CPA), present in all five

toxinotypes, is a zinc-dependent enzyme with both phospholipase

C (PLC) and sphingomyelinase (SMase) activity [67]. The N-

terminal domain (,250 residues) is similar to the Bacillus cereus

phosphatidylcholine-specific phospholipase C (PC-PLC) [33,68].

The C-terminal domain has an eight-stranded anti parallel b-

sandwich motif similar to eukaryotic calcium-binding C2 domains

and confers toxicity on the enzyme [69,70]. The observed protease

activities of CPA and PC-PLC remain unconfirmed due to

suspected metallo-protease contamination. However, CPA and

PC-PLC activity on phospholipids were unaffected in the presence

of trypsin inhibitors, corroborating the CLASP analysis failure to

detect a serine protease scaffold in these proteins.

Another aspect of catalysis that should be modeled is the

flexibility and diversity in the active site scaffold of related

enzymes. For example, there are many unconventional serine

proteases [36]. The group of residues that can match a particular

residue from the input motif can be varied in CLASP, allowing it

to model unconventional motifs. While stereochemical equiva-

lence can be hardwired for amino acids with similar properties,

there are instances where residues with different properties occupy

the same sequence and spatial location and perform the same

Table 3. The deviation in distances (dD), potential difference in cognate pairs (dPD), predicted residues (PR), and final scores of a
PI-PLC (PDB id: 1PTD) from Bacillus cereus.

PDB PR dD (Å) dPD Scores

a b c ab ac bc ab ac bc

1FLH ASP153 ASP19 GLY152 26.4 22.2 22.1 246.1 262.4 216.4 55

2CY7 – – – – – – – – – –

1S2B GLN286 GLU287 TRP10 20.2 1.3 24.9 241.5 43.5 85.1 24

1FJO HIS32 GLU117 HIS82 23.9 24.2 23 47.7 279.3 2127 71

1VDE – – – – – – – – – –

1A0J ASP67 SER234 HIS32 20.3 20.6 20.4 250.4 278.9 228.6 0.07

2DBU THR218N ASN221 TYR229 0.1 1.2 0 122.5 2180.6 2303.1 303

doi:10.1371/journal.pone.0070923.t003

Figure 2. Confirming the protease scaffold in PI-PLC by proteolytic assays and inhibition studies. (A) Protease activity of PI-PLC.
Substrate protein (UVI31+, lane 2) was incubated with PI- PLC (lane 3) overnight at 37uC, followed by sample analysis with 15% SDS-PAGE. Lane 1,
molecular weight marker. (B) Control for UVI31+, with peak at 13.436 kDa. (C) UVI31+ treated with PI-PLC, showing fragmented peaks at 11.4 kDa and
(D) another fragment of 2.0 kDa. (E) The inhibition of PI-PLC activity on phosphatidylinositol (PI) by trypsin inhibitor AEBSF. (F) The inhibition of PI-
PLC activity on PI by trypsin inhibitor AEBSF in a mixture with phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cholesterol (CH).
doi:10.1371/journal.pone.0070923.g002

PI PLC from Bacillus cereus is a Prolyl Peptidase
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function. A well-known example is the equivalence of Ser130 and

Tyr150 in Class A and C b-lactamases, respectively [71].

The lack of PI-PLC proteolytic activity on the many tested

synthetic substrates, and its specificity for UVI31+ protein,

indicates that one should exert caution before ruling out protease

activity in an enzyme. This is particularly true when a serine

protease inhibitor inhibits the native activity, confirming a serine

protease-like scaffold (with the classical catalytic triad) in the active

site. Serine protease inhibitors are not active on other serine-

centric enzymes like serine b-lactamases, or on metallo-enzymes

like CPA and PC-PLC. This establishes their specificity for the

serine protease scaffold. Proteases are a unique class of enzymes

with many possible substrates due to the theoretically infinite

number of DNA sequences that could encode proteins with

correspondingly infinite folds. Fluorogenic substrate microarrays

determine protease substrate specificity using a wide range of

fluorogenic protease substrates [72,73]. Directed evolution strat-

egies can modify the specificities [59,74,75]. The ‘‘poor specificity

conversion’’ to convert chymotrypsin to trypsin is an example of

the difficulty of such an endeavor [76].

We propose a computational methodology to extend protein

families based on the spatial and electrostatic properties of the

catalytic residues in proteases. The distinct of protease types

categorized in the MEROPS database were selected to generate a

search module that can query any protein with known structure

for the presence of a promiscuous proteolytic activity.

Methods

1 CLASP Algorithm
The CLASP algorithm was described previously [5]. Given the

active site residues from a protein with known structure, a

signature encapsulating the spatial and electrostatic properties of

the catalytic site is used to search for congruent matches in a query

protein, generating a score which reflects the likelihood that the

activity in the reference protein exists in the query protein.

Adaptive Poisson-Boltzmann Solver [77] (APBS) and the

PDB2PQR package [78] were used to calculate the potential

difference between the reactive atoms of the corresponding

proteins. The APBS parameters are set as follows: solute dielectric,

2; solvent dielectric, 78; solvent probe radius, 1.4 Å; temperature,

298 K; and ionic strength, 0. APBS writes out the electrostatic

potential in dimensionless units of kT/e where k is Boltzmann’s

constant, T is the temperature in K and e is the charge of an

electron. All protein structures were rendered by PyMol (http://

www.pymol.org/).

2 Protein, Substrate, and Reagents
PI-PLC was purchased from Sigma. Trypsin inhibitor from

chicken egg white and PMSF (phenylmethylsulfonyl fluoride) were

obtained from Roche.

3 Protease Assay
Each reaction mixture (30 mL total volume) contained 13 mM

purified UVI31+ protein [31,32] (14 kDa) and 0.2 units PI-PLC in

Table 4. The deviation in distances (dD), potential difference in cognate pairs (dPD), predicted residues (PR), and final scores for C.
perfringens a toxin (CPA) (PDB id: 1CA1).

PDB PR dD (Å) dPD Scores

a b c ab ac bc ab ac bc

1FLH ASP298 ASP293 GLY296 20.7 22.4 22.6 289.6 249.8 39.8 41

2CY7 CYS169 ASP25 HIS241 20.5 211.9 28.6 11.5 233.7 245.2 135

1S2B GLN110 GLU108 TRP109 22.4 23.7 25.6 67 104.4 37.5 52

1FJO HIS136 GLU152 HIS148 20.1 20.6 0.2 10.7 87 76.2 0.08

1VDE ASN172 CYS169 HIS241 21.8 23.5 210.1 45.1 2162.8 2207.9 262

1A0J ASP216 SER209 HIS212 21.7 21.6 0 68.8 261 2129.9 13

2DBU THR272N ASN297 TYR307 20.1 23.5 26.8 156.1 2104 2260.3 339

doi:10.1371/journal.pone.0070923.t004

Table 5. The deviation in distances (dD), potential difference in cognate pairs (dPD), predicted residues (PR), and final scores for a
PC-PLC (PDB id: 1AH7) from Bacillus cereus.

PDB PR dD (Å) dPD Scores

a b c ab ac bc ab ac bc

1FLH ASP72 ASP74 GLY76 22 22.5 23.8 2126.5 225.3 101.2 28

2CY7 – – – – – – – – – –

1S2B GLN39 GLU42 TRP43 0.6 0.1 1.3 213.3 264.4 251 0.1

1FJO HIS118 GLU146 HIS14 23 20.2 21.9 2128.2 249.6 78.5 15

1VDE – – – – – – – – – –

1A0J ASP55 SER2 HIS14 21.5 0.3 23.5 49.8 21.3 228.6 26

2DBU THR151N ASN155 TYR156 23.1 21.5 23 274.5 253.6 2328.2 369

doi:10.1371/journal.pone.0070923.t005
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50 mM ammonium bicarbonate, and was incubated overnight at

37uC. The protein was then denatured by the addition of 7 mL

SDS-denaturing solution (200 mM Tris-HCl pH 6.8, 8% SDS

(w/v), 40% glycerol (v/v), 4% 2-mercaptoethanol (w/v), 50 mM

EDTA pH 8.0, and 0.08% bromophenol blue (w/v) and heating

at 100uC for 3 min. The sample was subjected to 15% SDS-PAGE

(w/v) followed by staining with Coomassie brilliant blue. To

inhibit protease activity of SAP, three different conditions were

employed: (i) 0.1% SDS followed by heating at 100uC for 5 min,

(ii) 1 mM PMSF, and (iii) 500 ng/mL trypsin inhibitor, before

substrate addition. UVI31+ protein (13 mM) was then added as the

substrate and residual enzyme activity was measured.

4 PI-PLC Assay and Inhibition Using Trypsin Inhibitors
4.1 Vesicle preparation and characterization. The ap-

propriate lipids - Lipids (Phosphatidylinositol/Phosphatidyletha-

nolamine/Phophatidylcholine/Cholesterol - 40:30:15:15 ratio)

were mixed in organic solution and the solvent (mixture of

chloroform/methanol/hydrochloric acid mixture 200/100/1, by

volume) was evaporated to dryness under N2. Solvent traces were

removed by evacuating the lipids for at least 2 hr. The lipids were

then rehydrated in 10 mM Hepes buffer with 150 mM NaCl,

pH 7.5. Large unilamellar vesicles (LUV) were prepared from the

swollen lipids by extrusion and sized using 0.1 mm Nuclepore

filters, as described by Ahyayauch et al. [79]. The average size of

LUV was measured by quasi-elastic light scattering using a

Malvern Zeta-sizer. Lipid concentration, determined by phos-

phate analysis, was 0.3 mM in all experiments.

4.2 Aggregation assay. All assays were carried out at 39uC
with continuous stirring in 10 mM Hepes buffer (pH 7.5) with

150 mM NaCl and 0.1% BSA for optimum catalytic activity. The

enzyme concentration was 0.16 U/mL. Lipid aggregation was

monitored in a Cary Varian UV-vesicle spectrometer as an

increase in turbidity (absorbance at 450 nm), as described by

Villar et al. [80].

5 MALDI-TOF Analysis and Edman Degradation
MALDI-TOF mass spectrometric analysis was performed using

an UltraFlextreme MALDI-TOF (Bruker Daltonics, Germany).

Positive ionization and linear mode were used. The experimental

parameters were: laser power, 60%, voltage, 25 kV, and mass

difference in linear mode with external calibration, ,6100 ppm

(,60.01%). The matrix was sinapinic acid. The external

calibration standard consisted of insulin, ubiquitin, cytochrome

C, and myoglobin. Edman degradation was performed by Intas

Pharma (http://intaspharma.com/).

Supporting Information

Figure S1 Linear regression for the inhibition of PI-PLC
activity. (a) inhibition of PI-PLC activity on phosphatidylinositol

(PI) by trypsin inhibitor AEBSF. (b) inhibition of PI-PLC activity

on PI and phosphatidylcholine (PC), cholesterol (CH), and

phosphatidylethanolamine (PE) by trypsin inhibitor AEBSF.

(PDF)

Table S1 Percentage identity/similarity among all
proteases chosen for the search module and the PI and
PC PLC from Bacillus cereus.
(PDF)
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