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ABSTRACT OF THE THESIS

The burden of fine particles on respiratory health: a Health Impact Assessment considering the
differential toxicity of wildfire smoke PM2 5

by

Rachel Darling

Master of Science in Marine Biology
University of California San Diego, 2022

Professor Tarik Benmarhnia, Chair

The last several consecutive fire seasons on the West coast, specifically in California, have
been the worst in recorded history. These massive fires have been driven largely in part by the
anthropogenically caused climate crisis. As the climate crisis worsens, the fire season will as well.
This has massive implications for human health as air pollution from each fire can cause disease
and hospitalizations. Wildfires are a large source of particulate matter that is less than 2.5 microns
in diameter (PM2s). PM2s has been known to cause extremely severe respiratory and
cardiovascular issues. Recently, studies have shown that PM2s generated by wildfires could have

a different and more potent toxicity than PM2 s generated from other pollutant sources. This project



studied the impact of PM2 s on hospitalizations for respiratory diseases in California between 2006-
2013, through a health impact assessment (HIA). We quantified the burden of respiratory
hospitalizations related to PM2s exposure among California communities through two different
approaches: (i) naive (considering the same toxicity for all PM2s) and (ii) nuanced (considering
the higher toxicity of PM.s due to wildfires). The results of the HIA displayed higher attributable
numbers of respiratory hospitalizations when accounting for the larger health burden wildfire
PM2s (i.e., nuanced approach). The delta between the naive and nuanced approach was higher in
northern California. By not considering the differential toxicity of wildfire PM2s, we
underestimate the attributable number of respiratory hospitalizations in California related to PM2s

exposure. This study can be useful for future air pollution guideline recommendations.



INTRODUCTION

Climate change and wildfires

As anthropogenically induced climate change worsens, human and natural environments
are expected to see increasingly detrimental consequences from natural disasters, including
wildfires (IPCC, 2022). In the US, the annual wildfire-burned area (in millions of acres) has been
increasing since the 1980s (Figure 1). Climate change will continue to extend the dry season and
increase temperatures in locations such as California. The state has an infamous fire season that is
compounded by the dry and powerful Santa Ana winds in Southern California. California is among
the states with the largest area burned (Figure 2). In the last few years, especially in 2017, 2018,
and 2020, California faced especially large, destructive fire seasons which are expected to increase
in magnitude in the coming years, due to climate change (Williams et al., 2019). Exacerbated
number and magnitude of wildfires brings increasing exposure to wildfire smoke. Wildfire smoke
is a worldwide problem as smoke plumes can be transported across great distances by wind. Some
studies are beginning to discover that although the United States west coast region contains the
most wildfires, east coast states are also seeing health impacts of wildfire smoke that is transported

across the country (O’Dell et al., 2021).
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Figure 1. Wildfire acres burned in the United States, 1983 — 2020 (from OurWorldinData.org)

States colored light gray did not have any fires that were large enough to be included in this analysis.

Data source: MTBS (Monitoring Trends in Burn Severity). 2020. Direct download. Accessed November 2020.
www.mtbs.gov/direct-download.

Figure 2. Average annual burned acreage by State, 1984-2018 (from Environmental Protection Agency).



Composition of wildfire smoke

Wildfire smoke contains a mixture of fine particulate matter and noxious gasses. Wildfire
smoke involves mostly carbon or carbon compounds which brings a higher oxidative potential to
cells when wildfire smoke is inhaled (Wegesser et al., 2009). Polycyclic Aromatic Hydrocarbons
(PAHSs) are found in both wildfire smoke and ambient air but have been found in higher
concentrations in wildfire smoke. Other detrimental components of wildfire smoke include carbon
monoxide, nitrogen dioxide, and volatile organic compounds. Additionally, due to the intense heat
found in wildfire environments, heat-labile chemicals such as the volatile organic compound
benzene, can become more unpredictable and more toxic (Kim et al., 2018; Naeher et al., 2007).
In this study, we focus on the impacts of a specific component of wildfire smoke and its impacts
on public health: PM.s. PM2s is particulate matter that is less than 2.5 microns in diameter. PM2s
can originate from combustion (primary PM.5) or be formed via chemical reactions (secondary
PM2s). Thus, PM2s can have many different sources including vehicular combustion, wildfire
combustion, and via chemical processes (Ebisu et al., 2019; Ostro et al., 2016).
Wildfire smoke health burdens

Exposure to the toxins in wildfire smoke - especially PM. s - is associated with mortality.
Globally, PM2 s exposure from wildfires was associated with ~340,000 deaths per year, and higher
numbers of deaths in drier, wildfire prone, seasons from 1997 - 2006 (Johnston et al., 2012). A
2021 study, conducted in 43 countries and regions during 2000 - 2016, found that for each 10
ng/m® increase of wildfire-related PM, s exposure was associated with an increased risk for all-
cause mortality (relative risk 1.019, 95% CI1 1.016-1.022) (Chen et al., 2021). Exposure to wildfire

related PM2 s leads to negative impacts on human health through cardiovascular and respiratory



illness (Chen et al., 2021, Johnston et al., 2012). Overall, PM2s from all sources poses a strong
health concern due its incredibly small size. PM2 s is small enough to be inhaled into the lung, cross
the epithelial membrane in the alveoli of the lung, and thus enter the bloodstream. PM2s can
consequently enter organs and impair function, in addition to causing respiratory issues (Chen et
al., 2021; Wang et al., 2015).

A growing body of literature suggests that wildfire smoke pollution is associated with
respiratory outcomes, including respiratory morbidity and mortality (Aguilera et al., 2021a,
Aguilera et al., 2021b; Chen et. al., 2021; Henderson and Johnston, 2012; Liu et al., 2015; O’Dell
et al., 2021). Repeated evidence supports the fact that smoke exposure can aggravate respiratory
issues such as chronic obstructive pulmonary disorder (COPD) (Reid et al., 2016), asthma in all
age groups (Arriagada et al., 2019; Malig et al., 2012; O’Dell et al., 2021; Ostro et al., 2016), and
stress, especially oxidative, on the respiratory tract (Kim et al., 2018; Wegesser et al., 2009).
Additionally, evidence in the literature suggests that increased exposure to wildfire smoke can also
lead to more respiratory infections such as pneumonia and bronchitis (Reid et al., 2016). Based on
a 2019 meta-analysis, landscape fire smoke PM2s levels were associated with asthma
hospitalizations (RR = 1.06, 95% CI: 1.02-1.09) and emergency department visits (RR = 1.07,
95% CI: 1.04-1.09) (Arriagada et al., 2019).

Although the evidence in literature varies, studies in recent years have brought increasing
support to the idea that wildfire smoke also leads to cardiovascular and other non-respiratory health
effects (Ostro et al., 2016; Reid et al., 2016). Wildfire smoke PM_ s has also been shown to pose a
danger to pregnant women with high exposure events leading to birth complications such as
preterm birth (Reid et al., 2016). A growing but important area of study is the negative mental

health impacts of wildfires. Although more studies are needed on this topic, preliminary evidence



discussed the negative implications of wildfire damage and forced evacuations on mental health,
especially on minorities and women (Liu et al., 2015; Reid et al., 2016). Those who are most
vulnerable to wildfire smoke are children, the elderly, and people with pre-existing health
conditions. The elderly often fall in the last category as they can often have preexisting conditions
that are worsened during wildfire conditions. Children’s respiratory systems have proven to be
especially vulnerable as well. Since children are still developing, they have faster metabolic rates,
and faster breathing rates; their respiratory systems have proven to be especially vulnerable to
wildfire smoke as well. They often show increases in asthma rates and respiratory issues during
exposure events (Ebisu et al., 2019, Aguilera et al., 2021a).
Differential toxicity of wildfire smoke PM2.5

Notably, toxicology studies from recent years have found that wildfire PM2s has a higher
toxicity effect on the lung than the same mass of PM2s from other sources. Studies have found that
mice whose lungs were exposed to PM2s from wildfires showed a stronger toxicity effect than
those exposed to other ambient PM2 s (Kim et al., 2018; Wegesser et al., 2009). The mice exposed
to wildfire PM2s displayed more inflammation, oxidative stress, and a higher white blood cell
count as compared to mice who were exposed to up to ten times more normal ambient air PM2s
(Wegesser et al., 2009). As mentioned previously, heat-labile compounds and the abundant
amount of particulate matter derived from carbon compounds, such as wood and plant matter, in
wildfire smoke could be a reason for the increased toxicity of wildfire smoke pollution (Naeher et
al., 2007).

A 2021 epidemiological study found increases in respiratory hospitalizations ranging from
1.3 to up to 10% with a 10 ug/m?® increase in wildfire specific PM.s, compared to 0.67 to 1.3%

associated with non-wildfire PM.s (Aguilera et al., 2021a). Wildfire specific PM2s, compared to



ambient PM2 s, was also found to be ~10x more harmful to children (especially ages 0-5) (Aguilera
et al., 2021b). The potential differential toxicity of wildfire smoke PM.s provides important
avenues for study. Although recent years have led to more research in this topic, there is still a
need to completely understand the differential toxicity of wildfire PM2son human health - and to
support the need for policy change that takes the difference into account (Atkinson et al., 2014;
Ebisu et al., 2019; Liu et al., 2015). Additionally, wildfires are episodic in nature which makes the
problem inherently difficult to measure whether the health outcome was due to chronic or acute
exposure (Johnston et al., 2012; O’Dell et al., 2021).
Current air quality regulations

Unsurprisingly, wildfire specific PM2s has been increasing due to increasingly aggressive
fire seasons, while ambient PM2 s has been decreasing due to progressing air quality standards.
Many urban areas continue to see concentrations that are above the safe levels deemed by the
National Ambient Air Quality Standards (NAAQS), however, stricter regulations have aided in
the decrease of ambient PM2s (McClure & Jaffe, 2018). Figure 3, from McClure & Jaffe, 2018,
shows that the authors’ statistical models of PM2 s concentration support the pattern of increasing
wildfires in the west due to climate change, while PM2s decreases elsewhere. Current air quality
standards written by the World Health Organization (WHO) and US Environmental Protection
Agency (EPA) do not take the differential toxicity of wildfire PM. s into account. The most recent
WHO air quality global guidelines, published in 2021, acknowledges that evidence has been
presented to support the differential toxicity of wildfire PM2sto health. However, the WHO claims
that there are conflicting results on this topic and thus, they have not yet differentiated between
PM2s sources in air quality guidelines (WHO, 2021). The current WHO guidelines for yearly and

daily PM2 s concentrations are 5 pg/m? annually with a short term 24-hour maximum limit at 15



ng/m® (WHO, 2021). The EPA guidelines for annual PM_s are for 12 pg/m®primary PMzsand 15
ng/m? for secondary PMzs. The EPA has a short term 24-hour limit for PM2s at a value of 35
ng/m? (EPA, 2020).

The consideration of wildfire smoke in air quality regulations is especially important today,
in a context where we know that: (i) wildfires contribute approximately ~25%, of total PMzs
concentration in the atmosphere (Burke et al., 2021), (ii) exposure to wildfire PMs will become
more problematic as wildfire seasons worsen due to climate change, (iii) and the harmful health
effects of PM2 s from wildfires, which has been shown to be more toxic than other sources of PMzs.
Vulnerable populations

In the discussion of climate change, natural disasters, and public health; environmental
justice must be included. Marginalized people worldwide are bearing disproportionate
consequences of climate change and its subsequent disasters. Environmental justice seeks to
reduce that disproportionate burden (Bailey et al., 2019; IPCC, 2022; Ebisu et al., 2019). Minority
communities in California are no different, as a clear pattern of low socioeconomic groups can be
found in some zip codes in all major cities. The way a community reacts and adapts to hazards
depends on many factors. The main factor is often socioeconomic status which can be a stark
predictor of community success after a disaster. Thus, it is important to understand which
communities bear the strongest consequences of wildfire smoke pollution exposure.
Understanding which communities are most vulnerable can inform policy to help protect those
communities from the effects of wildfire smoke PM2 s and the subsequent hospitalizations (Bailey

etal., 2019; Spielman et al., 2020).
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Figure 3. From McClure and Jaffe, 2018. This figure shows the 98" Quantile Regression of PM2.5 trends from
1988 — 2006. Krige-interpolated PM2.5 values are shown by the color ramp. Solid black lines with arrows show
90% of values within being positive or negative.

A In response to the fact that wildfire specific PM2s has been found to have a differential
toxicity on health; a health impact assessment (HIA) was performed to determine the number of
attributable hospitalizations for respiratory diseases due to PMzs in California from 2006-2013.
An HIA is used as a tool to assess the health risk of a specific issue, in this case PM2.s exposure.
HIA’s are used to provide quantitative evidence that can be used to guide policy or other
community decisions that can help protect the health of affected populations and protect public

health. The main aim of this study was to use both a “naive” and “nuanced” approach and quantify

the delta between these two approaches. The naive approach assumes that the exposure to a
concentration of PM2 s has the same impact on respiratory health, regardless of the source of the
PM2s. The nuanced approach assumes that the exposure to wildfire PM2 s has a higher impact on

respiratory health than other PM2s. Using the social vulnerability index (SVI), a Centers for



Disease Control and Prevention (CDC) derived metric, we used a geographically weighted
regression to determine whether the SVI and the delta between the two approaches estimating the
attributable hospitalizations were associated. In summary, this project aims to quantify the
difference between two methods of estimating the number of respiratory hospitalizations attributed
to PM.s from all sources; one accounting for the higher toxicity of PMas from wildfire smoke
(nuanced approach), the other not accounting for a difference (naive approach), in California from

2006-2013.

METHODS

PM2.5 exposure

We built on the previous work done by Aguilera and colleagues (Aguilera et al., 2021a, b
and c). Daily concentrations of PM2 s were estimated by zip code using 24-h daily means sampled
and analyzed by the US EPA Air Quality System (https://www.epa.gov/ags). These PM; s values,
coming from monitoring station data, represent fine particulate matter from all sources, including
ambient levels and wildfire smoke. Aguilera and colleagues performed a multiple imputation
approach using statistical methods and machine learning algorithms to estimate daily wildfire
PM25 concentrations at the zip code level in California (Aguilera et al., 2021c). Using aerosol
optical depth (AOD) and other satellite imagery, they determined when smoke plumes intersected
with certain zip codes. Through ground monitoring stations, satellite imagery, and the multiple
imputation approach, the authors were able to estimate the specific amount of wildfire PM2.5
concentrations in each California zip code on an exposure day from 2006-2020. Further
information and details can be found in Aguilera et al., 2021c.

Hospitalization for respiratory diseases



We used the daily hospital admissions for respiratory diseases from the California Office
of Statewide Health Planning and Development (OSHPD) database of patient discharge data from
2006 to 2013. Respiratory hospitalizations correspond to the ICD 9 codes 460:519 which include
pulmonary diagnoses, such as asthma, COPD, pneumonia, and interstitial lung disease. In addition,
data for flu diagnosis were also available. All data were previously aggregated at the daily level
by zip code and converted to rates of admission by dividing the admission counts by the population
(Aguilera et al., 2021a).

Evolution of PM2s and wildfire specific PMz.s over time and by seasons

We conducted a descriptive analysis to evaluate whether our PM2s concentration data
displayed the increasing wildfire but decreasing ambient PM_ s pattern over the period of 2006-
2020, as described in the literature and in Figure 1 (McClure & Jaffe, 2018). We calculated the
average concentration per month, over the study period, of wildfire specific PM2sand non-wildfire
PM2s. Both sets of PM2.5 values were plotted per month using ggplot in R. Each season was color
coded to determine whether there was seasonal variation in the data. The seasons were defined as
follows: winter - December, January, and February; spring - March, April, and May; summer -
June, July, and August; and fall - September, October, and November. A separate plot for ambient
PM2s and wildfire specific PM2swere made using these methods (Figure 5 and Figure 6).

Additionally, average wildfire and ambient PM2s concentrations over the study period of
the HIA (2006-2013), were compared visually via a map made in ArcGIS Pro. The ESRI shapefile
of the United States Postal Service (USPS) zip codes were uploaded to ArcGIS Pro. We calculated
the average of both the wildfire PM2sand non-wildfire PM2 s averages per zip code over the study
period (2006 - 2013), then we performed a join in ArcGIS. The result was two maps that visually

compare the range of concentrations of wildfire and ambient PM2.5 over the state of California
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(Figure 7 and Figure 8). All days with a concentration of “0” for wildfire PM2.5 were removed
because a value of zero meant there was no data for that given day.
Flu and respiratory hospitalizations

Next, we evaluated average hospitalizations over 2006-2013 to observe any immediate
trends. There was some speculation in the literature (Ostro et al., 2016) regarding the swine flu
epidemic in 2008 and how this may have skewed the number of observed respiratory
hospitalizations. We conducted a linear regression to determine whether this occurred. The flu data
were gathered from the California Department of Public Health (CDPH). The data was separated
into months over the study period. A Z score transform was conducted on these data per month to
normalize the data for both flu and respiratory hospitalizations. The Z score values for both
respiratory and flu values were plotted in a time series to compare peaks and values (Figure 9). Flu
hospitalizations were displayed as blue points, while respiratory hospitalizations are red. A simple
linear regression model was used in R to predict the number of respiratory hospitalizations due to
the flu.
Literature Review

A traditional, or narrative, literature review was conducted on bodies of work that
researched the effects of ambient and wildfire specific PM2.5 exposure and/or the differential
toxicity of wildfire smoke PM2.5. Sixteen of the most prominent papers in this subject were chosen
and summarized. The literature review summarized: population, study region, study period,
exposure, health outcomes measured, and main result. These results can be viewed in Table 2 in
the Appendix. This review served as the informational basis for this project, in addition to
displaying the need for more research on the differential toxicity of wildfire smoke specific PM2.5.

Health Impact Assessment

11



The main analysis was the Health Impact Assessment (HIA). An HIA includes a series of
calculations to quantify the health burden of a given exposure, in this study we calculated the
burden of PM2 s exposure. The calculation begins with finding the appropriate exposure response
function(s) (ERFs). ERFs can also be described as risk ratios and are used to determine risk of
exposure. If the risk or ERF is 1, this assumes that the health risk is the same for the exposed and
unexposed populations. In this study, the health risk was respiratory hospitalizations due to an
exposure of PM2.5. We found an exposure response function for the naive approach and the
nuanced approach conducted. As mentioned previously, the naive approach assumes that the health
effect of all PM2s is the same, regardless of their sources. Meanwhile, the nuanced approach
assumes that the exposure to wildfire PMas is associated with a higher risk for respiratory health
(Aguilera et al., 2021a). All the ERFs were chosen from literature. In the literature used in this
analysis, ERFs were presented as percent change in hospitalizations (Aguilera et al., 2021a) due
to a certain concentration of exposure. These values had to be converted to a relative risk number
for a given exposure level for this HIA (see Equation 1). The naive and nuanced approach ERFs
were chosen from Aguilera et al., 2021a, from the multiple imputation approach analysis. After
converting the values from percent change in exposure, the ERFs for the naive and nuanced
approach were 1.0072 (95% ClI: 1.0036 — 1.011) and 1.10 (95% CI: 1.035 — 1.165) respectively,

with a reference exposure concentration of 10 ug/m?3.

% Change in Hosps
100

Converted ERF = ( ) + 1 (Equation 1)

These exposure response functions were used to calculate the new relative risk (RR), the
population attributable fraction (PAF), and the attributable number (AN) of respiratory
hospitalizations due to PM. s exposure. The RR is a relative risk at a given exposure level, in this

case, for an increase of every 10 pg/mé. The PAF is the percent change in hospitalization rates due

12



to an exposure to PM2s. The AN value measures the health burden of PM3 s exposure by displaying
the number of preventable respiratory hospitalizations due to this pollutant. See below for the flow
of calculations in the HIA.
Naive approach

The naive approach calculation of the HIA made use of the value for all PM2s which was
1.0072 (95% CI: 1.0036 — 1.011). This is a value for an exposure concentration of 10 ug/m*. The
new RR is calculated by taking the natural logarithm of the ERF, which is then divided by the
reference exposure concentration (in this case 10 pg/m®). Then, this entire value is multiplied by
the total PM2 s (the ambient and wildfire PM2.5 concentrations added together). The exponential
of this value is then taken to get the final result (Equation 2). The PAF is found by subtracting the
RR by 1, dividing by the RR, and then multiplying this value by 100 to make the value a percentage
(Equation 3). Finally, the AN is found by multiplying the PAF by the number of respiratory
hospitalizations (Equation 4). That AN value is used to find the Final AN value which is calculated
by dividing by the population per zip code and then multiplied by 100,000 to standardize (Equation

5). Hospitalizations for the “all age” group category were used for this HIA.

In(RR)
Ref. Exposure Conc.

RR =expx ( x (WF PM2.5 + Ambient PM2.5)) Equation 2

PAF =<2 x100  Equation 3

AN = PAF x Hosptalizations Equation 4

Final AN = AN x 100,000 Equation 5

Pop. per zip code

Nuanced approach

13



The nuanced approach follows almost the same sequence with a few minor differences.
The main difference is that instead of considering the same ERF for all PM2s, we applied two
distinct ERF in function to the source of the PM:s. For ambient PM2s, we used (as previously
stated) an ERF of 1.0072. However, for wildfire specific PM2s we used a different ERF of 1.10.
Equation 6 was used to calculate the new RR specific to PM2 s from wildfires. Then, the PAF were
separately calculated using equation 4. Finally, the AN for wildfire specific PM2s and ambient
PM25 were added together at the end of the HIA (Equation 7). This value was then divided by the
total population per zip code and multiplied by 100,000 to standardize the data (Equation 8). This
calculation accounts for the differential toxicity of PM2 s from wildfires by including a specific and

higher dose response only for this specific source of PM2s.

In(RR)
Ref. Exposure Conc.

Nuanced RR = expx ( x (WF PM2.5)) Equation 6

Nuanced AN Combined = (WF PAF x Hosps) + (Ambient PAF x Hosps) Equation 7

Nuanced AN Combined

Nuanced AN Final = -
Pop.per zip code

x 100,000 Equation 8

Lastly, the average number of attributable hospitalizations per year, over the study period
(2006 -2013), for the naive and nuanced analyses were estimated (Table 1). The average number
of attributable hospitalizations over the study period were also mapped visually per zip code over
the study period for the naive and nuanced approach (Figure 10 & Figure 11). The delta between
attributable hospitalizations between the naive and nuanced approach was mapped as well to

highlight just the number of attributable hospitalizations when the differential toxicity of wildfire

14



smoke PM2 s was accounted for (Figure 11). These steps for the HIA are summarized in the Figure

4 below.

Health Impact Assessment
(Estimates from Aguilera et al. 2021)

Nuanced

Naive |« »

Two distinct Exposure Response
Function (ERF) per an exposure
concentration of 10 ug/m3

1.0072 (95% Cl: 1.0036 - 1.011) 1.0072 (95% ClI: 1.0036 — 1.011)
for non-wildfire PM2.5

for non-wildfire + Wildfire PM2.5
1.10 (95% CI: 1.035 — 1.165)

for wildfire specififc PM2.5
Calculate the Attributable Fraction (AF)

Calculate the Attributable Fraction (AF . .
(the proportion of cases that are incrt(-:aszed (the proportion of cases that are increased
dina to th RR according to the new RR) for each of the

according to the new RR) EREs

Y

One Exposure Response Function
(ERF) per an exposure
concentration of 10 ug/m3

Calculate the Attributable Number (AN) of

Calculate the Attributable Number (AN) of
respiratory hospitalizations (the preventable
number of hospitalizations due to exposure)

respiratory hospitalizations (the preventable
number of hospitalizations due to exposure)
By adding the non-wildfire PM2.5 AN +

wildfire PM2,5 AN values together

Naive AN: Standardized by dividing by the v
population of each zip code then multipled Nuanced AN: Standardized by dividing by
by 100,000 ; ;

the population of each zip code then

Averaged per zip code over the study period multipled by 100,000
Averaged per zip code over the study period

] ]
Y

Health outcome: Hospitalizations for I )
; ] o ) Delta of Hospitalizations for respiratory
respiratory diseases from California Office diseases averaged per zip code (Nuanced
of Statewide Health Planning and gea per zip
AN - Naive AN)
Development

Figure 4. The methodology for the HIA calculation conducted in this study, including the differences between the
naive and nuanced approach in addition to how the final delta value between the two approaches was calculated.

Underestimated hospitalizations

In order to determine the attributable number of total hospitalizations that are being
unaccounted for when not taking into account the differential toxicity of wildfire smoke PM2.5,

we totaled the number of hospitalizations over the study period over the state of California. The
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total hospitalization values were totaled for the naive and nuanced approach. Once again, the
delta between the two values was found. This value was then divided by the total number of
attributable hospitalizations for the nuanced approach and then multiplied by 100. This gave us
the percentage of hospitalizations that are unaccounted for when considering the true, differential
toxicity of wildfire smoke PM2.5.

Social vulnerability index

We used the Social Vulnerability Index (SVI), a Centers for Disease Control and
Prevention (CDC) derived metric, to analyze the relationship between social justice and health
burden to wildfire smoke PM2.s. The SVI measures the ability of a community to adapt to natural,
or human caused, disasters; measured on a scale of 0 to 1, with 1 being the communities that are
most socially vulnerable (CDC, 2014). This adaptation is measured in the community’s ability to
prevent suffering and excessive financial loss in the wake of a disaster. The SVI of every census
tract is defined by 15 U.S. census variables including socioeconomic status, household
composition and disability, minority status and language and housing type and transportation. In
this analysis, we studied the association between the SV values over California and the difference
of attributable hospitalizations between the naive and nuanced approach, to determine whether the
highest hospitalizations also occurred where the highest SVI values were.

In order to do this, a geographically weighted regression was conducted. Census tracts
were aggregated into zip codes using data from the U.S. Department of Housing and Urban
Development crosswalk files for 2014
(https://www.huduser.gov/portal/datasets/usps_crosswalk.html#data). Additionally, the ESRI
California zip code shapefile and the difference of the attributable number (of the naive and

nuanced approach) of hospitalizations mentioned in later sections, were used for this regression.
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In this case, the calculations to determine the difference in attributable hospitalizations was
summed instead of averaged, as compared to what was done in the rest of the analysis. The SVI
data was merged with the zip code/census tract crosswalk. The SVI values that overlapped with
multiple zip codes were aggregated by median, due to the fact that the data distribution was not
normal. This data set was then merged with the ESRI California shapefile in order to run the
regression using polygons.

The GWR model was fit using the spgwr package in R with the difference of the
attributable number of hospitalizations as the outcome and the aggregated median SVI as the
predictor variable. This allowed us to estimate the effects of SVI on the attributable number of
hospitalizations across California, see Equation 1, where ¢ is the error. A cross-validation
procedure was employed to choose a bandwidth for the model. A Gaussian correlation structure
was employed as that is the default. This model results in a  estimate for every single zip code.
The outlier estimates (due to very small population sizes) are not displayed in the results although
it is worth noting that there were a few zip codes in Northeastern California with very high
magnitude 3 estimates.

Difference in Hospitalizations = Bi(MeanSVI) + ¢ Equation 9

The GWR J estimates were truncated and plotted between the first and third quartiles of
the regression in order to visualize variations in the coefficients (Figure 13). We used the median
estimate value of the GWR model as the midpoint for this figure. Lastly, the predictions accuracy
of the model was plotted in a figure which shows the difference between the attributable number
of hospitalizations and the predicted number of hospitalizations that the model suggests giving a

visual representation of the model fit (Figure 14).
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RStudio Version 3.6.2 and ArcGIS Pro Version 2.9.1 were used for all analyses and figures.

RESULTS

Evolution of PMz2sduring the period of 2006-2020

Through the comparative analysis, this study found that ambient PM2s values are
decreasing in the period of 2006-2020, while wildfire specific PM.s values are increasing. The
five largest peaks in non-wildfire PM2s all occur during the summer and fall (Figure 5). These
points occur in 2008, 2019, and 2020. The spring season consistently displayed the lowest ambient
PM2s values while winter consistently displayed some of the highest. Summer and fall values
consistently fell in between spring and winter values barring occasionally exceptions. The average
wildfire concentrations per month over the study period follow similar trends with peaks in 2008,
2018, and 2020 (Figure 6). However, the ambient PM2s concentrations remained much steadier as
opposed to the wildfire PM2s concentrations which were more variable, with the highest
concentrations occurring in the summer and fall. The two maps (Figure 7 and Figure 8) that
displayed average concentration of wildfire and ambient PM2s showed a hotspot in northern
California for the wildfire specific PM2 s, while the ambient PM2 s showed peaks in large cities and

central California.
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Non-WF PM2.5 Conc. Mean per Month (2006-2020)
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Figure 5. Plot of the average concentration per month of non-wildfire PM2s over the study period (2006 - 2013),
color coded by season.
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Figure 6. Plot of the average concentration per month of wildfire PM. 5 over the study period (2006 - 2013), color
coded by season.
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Mean non-WF PM2.5 Concentration (ug/m3) Over the
Study Period (2006-2013) per Zip Code in California
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Figure 7. Map of the average non-wildfire PM_ s per zip code, in California over the study period (2006 — 2013).
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Mean Wildfire PM2.5 Concentration (ug/m3) Over the
Study Period (2006-2013) per Zip Code in California
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Figure 8. Map of the average wildfire specific PM. s per zip code, in California over the study period (2006 — 2013).

Flu and respiratory hospitalizations
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As mentioned previously, we conducted a linear regression analysis of respiratory and flu

hospitalizations in California from 2006-2013. The linear regression estimate (95% confidence

interval) was 0.50 (0.32, 0.68). Although there are outliers and years with higher cases, both the

respiratory and flu hospitalizations show cyclical patterns (Figure 9). However, consistent with the

literature and the timing of the swine flu outbreak in late 2008 as well as 2009, there is more

variability and 2009 has the largest minimum respiratory hospitalization value (August 2009) of

the study period and the second highest flu hospitalization maximum number (October 2009).

Flu and Respiratory Hospitalizations in CA (2006-2013)
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Figure 9. Plot of the Z score of respiratory and flu hospitalizations, per month in California, over the study period

(2006 - 2013)

HIA results

As mentioned above, the main results of the HIA can be found in Table 1, Figure 10, Figure

11, and Figure 12. In Table 1, we display the average attributable hospitalizations per year over

the study period for the naive approach, nuanced approach, and the difference of the two. We
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found that considering the differential toxicity of wildfire smoke PM2s, and thus its more harmful
impact than non-wildfire PM2s, leads to the attributable number of the rate of hospitalizations in
the nuanced approach remaining consistently higher. The largest rate of respiratory
hospitalizations per 100,000 people, occurred during 2006, 2007, 2008. The average number of
respiratory hospitalizations for the naive approach for these years were 1.851, 1.796, and 2.125,
respectively. The nuanced approach yielded values of 2.104, 2.185, and 3.886, respectively. While
the difference between the two approaches for these years yielded values of 0.254, 0.389, and
1.761, respectively. The year with the maximum number of attributable hospitalizations per
100,000 people in the study period was 2008 with the values mentioned above (naive: 2.125,
nuanced: 3.886, and the delta of the two approaches: 1.761).

Through Figures 10 and 11, we visualized the average attributable number of respiratory
hospitalizations per zip code over the study period of 2006 - 2013. In Figures 10 and 11, the
hotspots of the highest attributable number of respiratory hospitalizations generally matched the
same regions; for example, central and Northern California have some of the highest rates. The zip
code with the highest AN was zip code 96123 at the eastern edge of northern California and the
second highest was zip code 92332, as the eastern edge of southern California. In Figure 12, we
display the delta of the values between the nuanced and naive approach. The largest values occur
most heavily in northern California, with some hotspots in central California as well. Notably, the
delta values seen in Table 1 and Figure 12 are all positive values, meaning the nuanced approach
yielded larger values in all yearly averages and all average zip code values.

As mentioned previously, calculations were conducted to determine the number of
hospitalizations that are unaccounted for when considering the true toxicity of wildfire smoke

PM2:s. The delta between the sum of all hospitalizations over the state of California yielded a result
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of approximately 263,580 unaccounted hospitalizations, when the differential toxicity of wildfire
smoke is not considered. This yields a percentage of total hospitalizations that approximates to

13.5%.

Table 1. Table of the average attributable number of respiratory hospitalizations due to PM. s per year over the
study period for the naive approach, nuanced approach, and the delta of the two approaches (per 100,000 people).

Imputation Method - Aguilera et al Difference
(Nuanced —
Naive)
Year | Naive Approach Nuanced
Approach
2006 1.851 2.104 0.254
2007 1.796 2.185 0.389
2008 2.125 3.886 1.761
2009 1.744 1.927 0.184
2010 1.501 1.551 0.050
2011 1.529 1.606 0.077
2012 1.376 1.665 0.289
2013 1.429 1.825 0.396
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Naive Approach: Mean Attributable Number of Hospitalizations
due to WF + Non-WF PM2.5 in California (2006 - 2013)

-

Rate of hosps. per
100,000

I 12.719 - 32.869
ﬁ" B 4.426 - 12.718
7 N 2.499 - 4.425

: ' N 1.608 - 2.498
[ 0.963 - 1.607
0.000 - 0.962

- A
‘-
z,-:-*.p,.,.

g
%

J

4

N

A 0 50 100 200 300 400
Kilometers

Unpopulated areas shown in white

Figure 10. Average attributable number of respiratory hospitalizations, per zip code due to PM;5 (2006 - 2013): the
naive approach.
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Nuanced Approach: Mean Attributable Number of Hospitalizations
due to WF + Non-WF PM2.5 in California (2006 - 2013)
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Figure 11. Average attributable number of respiratory hospitalizations, per zip code due to PM;s (2006 - 2013): the
nuanced approach.
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Difference Between Nuanced and Naive Attributable Number of

Hospitalizations in California (2006 - 2013)
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Figure 12. Attributable number of respiratory hospitalizations, per zip code due to PM2s (2006 - 2013): the delta of
the two approaches.

Geographically weighted regression
The results of the geographically weighted regression indicate that every 1 unit

increase in the SVI resulting in an increase in the number of respiratory hospitalizations. In this
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analysis, the 1% quartile resulted in a value of 145.78 and the 3" quartile resulted in a value of
941.17. Thus, 50% of the values of the relationship between increases in SVI and respiratory
hospitalizations fall between 146 and 941 hospitalizations per a 1 unit increase in SVI.
Additionally, abnormally high results were removed from the final plot because these values were
inadequate predictors. Most likely, the zip codes with extremely small populations (such as rural
areas) do not converge while fitting the GWR model and were thus removed from the results, but
still used for fitting. Coastal cities have higher populations and can be more accurate, as can be
seen in Figure 14. Figure 13 depicts the truncated values from the 1% to the 3" quartile in order to
visually determine the variation in the coefficients over the state of California while Figure 14
depicts a plot of the difference between the true and predicted values of respiratory
hospitalizations. We see random scatter of the residuals in Figure 14, but there are higher

magnitude errors in the northern portion of the state.

1° through 3™ Quartile Values
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Figure 13. Plot depicting the values between the 1st and 3rd quartile of the GWR coefficients. Values are truncated
to show the variation in the coefficients. These are the middle 50% of values in the analysis, which show an increase
in hospitalizations due to a 1 unit increase in SVI.
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True Minus Predicted Hospitalizations
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Figure 14. True hospitalizations (calculated) minus the predicted number of hospitalizations (calculated by model).
Outlier values removed due to low population.

CONCLUSION

Evolution of PM2s, the exception of wildfire PM2s

Although air quality regulations are still not providing the utmost protection and better air
quality protections are still needed; California has been seeing a marked decrease in ambient
PM2s. However, when PM2 s is separated into its own category, independently considering
wildfire smoke PM2 ;s it has been seen to increase, both from the information from this study and
the literature. This is indicative of more wildfires due climate change as temperatures increase.
This pattern is only projected to worsen as climate change mitigation is delayed (McClure &
Jaffe, 2018). The peaks in ambient PM. s that spike at the same time as the wildfire PM2sin
summer and fall in 2008, 2018, and 2020 coincide with extremely bad wildfire seasons (Aguilera

et al., 2021a; Williams et al., 2019). Lastly, the peaks in winter are consistent with other studies
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in literature as well as EPA measurements. Winter PM. is often known to increase due to
seasonal patterns such as dry air and stagnant weather in dry years especially (Chan et al., 2018).
Flu and respiratory hospitalizations

As mentioned above, the linear regression yielded a value of 0.50 (0.32, 0.68). This is the
predictive value of how many respiratory hospitalizations can be attributed to flu cases. These
results show a strong relationship between the amount of flu cases and respiratory hospitalizations
in California. Thus, as Ostro et al. stated, the swine flu (and general flu illnesses) has a positive
effect on the amount of respiratory hospital admissions each month in California. The general
observable patterns of hospitalizations are relatively consistent with cold and flu season (fall and
winter months) when many individuals often contract respiratory illnesses.
HIA conclusions

One of the approaches of the Health Impact Assessment (nuanced approach) considered
the fact that wildfire smoke PM.s can have differential toxicity in the lung and can be more
dangerous for respiratory diseases. As expected, we found that when people are exposed to wildfire
PMg2s and when we considered this specific PM2s with its own toxicity the attributable number of
hospitalizations due to PM2s exposure, increases. This was seen in the fact that the attributable
number of respiratory hospitalizations was constantly higher for the nuanced approach in all zip
code averages and the yearly averages compared to the naive approach. The most important finding
of this study was the size and the spatial distribution of delta values, i.e., the difference between
the nuanced and naive approach. The delta values yielded all positive values supporting the
conclusion that the burden of wildfire smoke PM2s is higher due to the more harmful impact it

brings on health. By not considering the differential toxicity of wildfire PM2s, we underestimate
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the attributable number of respiratory hospitalizations in California for the 2006-2013 related to
PM25 exposure.

As mentioned previously, the highest attributable number of respiratory hospitalization
values occurred in 2008 (naive: 2.125, nuanced: 3.886, and the delta of the two approaches: 1.761).
There are two probable explanations for this peak according to the literature and the fire season
patterns. Firstly, as mentioned above, the purpose of the linear regression between the flu and
respiratory hospitalizations over the study period was conducted to investigate whether the swine
flu had an impact on respiratory hospitalizations in 2008 (Ostro et al., 2016). As stated above, the
regression did find a relationship between the flu and respiratory hospitalizations which allows us
to conclude the swine flu also may have contributed to this peak. The second contributing factor
is most likely due to the large fire season of 2008. During this fire season, asthma hospital visits,
asthma emergency department visits, and COPD flare ups were noted, especially in northern
California where most of the fires were (Reid et al., 2016).

The map of the delta values has the highest values in northern California and central
California. Evidence from the literature and current observable trends suggests that increasing
drought years are making northern California, and the Sierra Nevada Mountain region (which
spans northern and central California) more susceptible to fires. A 2004 model study found that,
with a double carbon dioxide atmosphere, wildfires that exceeded their containment limit were
expected to increase by 51% in the southern San Francisco Bay area, and 114% in the Sierra
Nevada region, as a best-case scenario (Fried et al., 2021). This trend has only continued to
increase as large fires have burned these the past few years such as the Dixie fire (2021) and the
August complex fire (2020) (NASA, 2021). The large number of forests in northern California

also aid in producing tinder for fires when the conditions strike (NASA, 2021). These fire
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producing conditions are expected to get worse with increasing climate change (Fried et al., 2021,
NASA, 2021).

The results of this study support the conclusions that: wildfire PM2 s has a differential, more
negative toxicity on the lung and, the fact that stronger air quality guidelines are needed to prevent
illness, especially respiratory issues, during wildfire episodes. The ~263,580 (or 13.5%) of
unaccounted hospitalizations suggests that by not considering the differential toxicity of wildfire
PM2 s, the leading regulatory and health agencies such as the WHO and the EPA leave people more
vulnerable to the detrimental health impacts of wildfire smoke PM2s, especially in northern
California.

Geographically weighted regression

The model’s success at determining the respiratory hospitalizations can be determined by
the amount of random scatter on the plot (Figure 14). In this analysis, the vast size and diversity
of zip code populations of California left a wide range of data. As mentioned previously, this data
had to be truncated to the 1%t and 3" quartile (Figure 13) and also for outlier values when finding
the difference in predictor versus true values (Figure 14). Through these plots, there is evidence of
a relationship between SVI and respiratory hospitalizations, but in order to see stronger or more

detailed variation, smaller areas such as individual cities or counties would have to be analyzed.

This thesis is currently being prepared for submission for publication of the material.

Darling, Rachel; Aguilera; Rosana; Hansen, Kristen; Benmarhnia, Tarik; Letellier, Noemie. The

thesis author was the primary investigator and author of this material.
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