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ABSTRACT OF THE THESIS 
 

The burden of fine particles on respiratory health: a Health Impact Assessment considering the 

differential toxicity of wildfire smoke PM2.5 

 

 

by 

 

Rachel Darling  

 

Master of Science in Marine Biology 

University of California San Diego, 2022 

Professor Tarik Benmarhnia, Chair 

 
 

The last several consecutive fire seasons on the West coast, specifically in California, have 

been the worst in recorded history. These massive fires have been driven largely in part by the 

anthropogenically caused climate crisis. As the climate crisis worsens, the fire season will as well. 

This has massive implications for human health as air pollution from each fire can cause disease 

and hospitalizations. Wildfires are a large source of particulate matter that is less than 2.5 microns 

in diameter (PM2.5). PM2.5 has been known to cause extremely severe respiratory and 

cardiovascular issues. Recently, studies have shown that PM2.5 generated by wildfires could have 

a different and more potent toxicity than PM2.5 generated from other pollutant sources. This project 



x 

 

studied the impact of PM2.5 on hospitalizations for respiratory diseases in California between 2006-

2013, through a health impact assessment (HIA). We quantified the burden of respiratory 

hospitalizations related to PM2.5 exposure among California communities through two different 

approaches: (i) naïve (considering the same toxicity for all PM2.5) and (ii) nuanced (considering 

the higher toxicity of PM2.5 due to wildfires). The results of the HIA displayed higher attributable 

numbers of respiratory hospitalizations when accounting for the larger health burden wildfire 

PM2.5 (i.e., nuanced approach). The delta between the naïve and nuanced approach was higher in 

northern California. By not considering the differential toxicity of wildfire PM2.5, we 

underestimate the attributable number of respiratory hospitalizations in California related to PM2.5 

exposure. This study can be useful for future air pollution guideline recommendations. 
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INTRODUCTION 

 

Climate change and wildfires 

As anthropogenically induced climate change worsens, human and natural environments 

are expected to see increasingly detrimental consequences from natural disasters, including 

wildfires (IPCC, 2022). In the US, the annual wildfire-burned area (in millions of acres) has been 

increasing since the 1980s (Figure 1). Climate change will continue to extend the dry season and 

increase temperatures in locations such as California. The state has an infamous fire season that is 

compounded by the dry and powerful Santa Ana winds in Southern California. California is among 

the states with the largest area burned (Figure 2). In the last few years, especially in 2017, 2018, 

and 2020, California faced especially large, destructive fire seasons which are expected to increase 

in magnitude in the coming years, due to climate change (Williams et al., 2019). Exacerbated 

number and magnitude of wildfires brings increasing exposure to wildfire smoke. Wildfire smoke 

is a worldwide problem as smoke plumes can be transported across great distances by wind. Some 

studies are beginning to discover that although the United States west coast region contains the 

most wildfires, east coast states are also seeing health impacts of wildfire smoke that is transported 

across the country (O’Dell et al., 2021).  
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Figure 1. Wildfire acres burned in the United States, 1983 – 2020 (from OurWorldinData.org) 

 

 

 

Figure 2. Average annual burned acreage by State, 1984-2018 (from Environmental Protection Agency). 
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Composition of wildfire smoke 

Wildfire smoke contains a mixture of fine particulate matter and noxious gasses. Wildfire 

smoke involves mostly carbon or carbon compounds which brings a higher oxidative potential to 

cells when wildfire smoke is inhaled (Wegesser et al., 2009). Polycyclic Aromatic Hydrocarbons 

(PAHs) are found in both wildfire smoke and ambient air but have been found in higher 

concentrations in wildfire smoke. Other detrimental components of wildfire smoke include carbon 

monoxide, nitrogen dioxide, and volatile organic compounds. Additionally, due to the intense heat 

found in wildfire environments, heat-labile chemicals such as the volatile organic compound 

benzene, can become more unpredictable and more toxic (Kim et al., 2018; Naeher et al., 2007). 

In this study, we focus on the impacts of a specific component of wildfire smoke and its impacts 

on public health: PM2.5. PM2.5 is particulate matter that is less than 2.5 microns in diameter. PM2.5 

can originate from combustion (primary PM2.5) or be formed via chemical reactions (secondary 

PM2.5). Thus, PM2.5 can have many different sources including vehicular combustion, wildfire 

combustion, and via chemical processes (Ebisu et al., 2019; Ostro et al., 2016). 

Wildfire smoke health burdens 

Exposure to the toxins in wildfire smoke - especially PM2.5 - is associated with mortality. 

Globally, PM2.5 exposure from wildfires was associated with ~340,000 deaths per year, and higher 

numbers of deaths in drier, wildfire prone, seasons from 1997 - 2006 (Johnston et al., 2012). A 

2021 study, conducted in 43 countries and regions during 2000 - 2016, found that for each 10 

μg/m3 increase of wildfire-related PM2.5 exposure was associated with an increased risk for all-

cause mortality (relative risk 1.019, 95% CI 1.016–1.022) (Chen et al., 2021).  Exposure to wildfire 

related PM2.5 leads to negative impacts on human health through cardiovascular and respiratory 
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illness (Chen et al., 2021, Johnston et al., 2012). Overall, PM2.5 from all sources poses a strong 

health concern due its incredibly small size. PM2.5 is small enough to be inhaled into the lung, cross 

the epithelial membrane in the alveoli of the lung, and thus enter the bloodstream. PM2.5 can 

consequently enter organs and impair function, in addition to causing respiratory issues (Chen et 

al., 2021; Wang et al., 2015).  

A growing body of literature suggests that wildfire smoke pollution is associated with 

respiratory outcomes, including respiratory morbidity and mortality (Aguilera et al., 2021a, 

Aguilera et al., 2021b; Chen et. al., 2021; Henderson and Johnston, 2012; Liu et al., 2015; O’Dell 

et al., 2021). Repeated evidence supports the fact that smoke exposure can aggravate respiratory 

issues such as chronic obstructive pulmonary disorder (COPD) (Reid et al., 2016), asthma in all 

age groups (Arriagada et al., 2019; Malig et al., 2012; O’Dell et al., 2021; Ostro et al., 2016), and 

stress, especially oxidative, on the respiratory tract (Kim et al., 2018; Wegesser et al., 2009). 

Additionally, evidence in the literature suggests that increased exposure to wildfire smoke can also 

lead to more respiratory infections such as pneumonia and bronchitis (Reid et al., 2016). Based on 

a 2019 meta-analysis, landscape fire smoke PM2.5 levels were associated with asthma 

hospitalizations (RR = 1.06, 95% CI: 1.02–1.09) and emergency department visits (RR = 1.07, 

95% CI: 1.04–1.09) (Arriagada et al., 2019).  

Although the evidence in literature varies, studies in recent years have brought increasing 

support to the idea that wildfire smoke also leads to cardiovascular and other non-respiratory health 

effects (Ostro et al., 2016; Reid et al., 2016). Wildfire smoke PM2.5 has also been shown to pose a 

danger to pregnant women with high exposure events leading to birth complications such as 

preterm birth (Reid et al., 2016). A growing but important area of study is the negative mental 

health impacts of wildfires. Although more studies are needed on this topic, preliminary evidence 
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discussed the negative implications of wildfire damage and forced evacuations on mental health, 

especially on minorities and women (Liu et al., 2015; Reid et al., 2016). Those who are most 

vulnerable to wildfire smoke are children, the elderly, and people with pre-existing health 

conditions. The elderly often fall in the last category as they can often have preexisting conditions 

that are worsened during wildfire conditions. Children’s respiratory systems have proven to be 

especially vulnerable as well. Since children are still developing, they have faster metabolic rates, 

and faster breathing rates; their respiratory systems have proven to be especially vulnerable to 

wildfire smoke as well. They often show increases in asthma rates and respiratory issues during 

exposure events (Ebisu et al., 2019, Aguilera et al., 2021a).  

Differential toxicity of wildfire smoke PM2.5  

Notably, toxicology studies from recent years have found that wildfire PM2.5 has a higher 

toxicity effect on the lung than the same mass of PM2.5 from other sources. Studies have found that 

mice whose lungs were exposed to PM2.5 from wildfires showed a stronger toxicity effect than 

those exposed to other ambient PM2.5 (Kim et al., 2018; Wegesser et al., 2009). The mice exposed 

to wildfire PM2.5 displayed more inflammation, oxidative stress, and a higher white blood cell 

count as compared to mice who were exposed to up to ten times more normal ambient air PM2.5 

(Wegesser et al., 2009). As mentioned previously, heat-labile compounds and the abundant 

amount of particulate matter derived from carbon compounds, such as wood and plant matter, in 

wildfire smoke could be a reason for the increased toxicity of wildfire smoke pollution (Naeher et 

al., 2007). 

 A 2021 epidemiological study found increases in respiratory hospitalizations ranging from 

1.3 to up to 10% with a 10 μg/m3 increase in wildfire specific PM2.5, compared to 0.67 to 1.3% 

associated with non-wildfire PM2.5 (Aguilera et al., 2021a). Wildfire specific PM2.5, compared to 
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ambient PM2.5, was also found to be ~10x more harmful to children (especially ages 0-5) (Aguilera 

et al., 2021b). The potential differential toxicity of wildfire smoke PM2.5 provides important 

avenues for study. Although recent years have led to more research in this topic, there is still a 

need to completely understand the differential toxicity of wildfire PM2.5 on human health - and to 

support the need for policy change that takes the difference into account (Atkinson et al., 2014; 

Ebisu et al., 2019; Liu et al., 2015). Additionally, wildfires are episodic in nature which makes the 

problem inherently difficult to measure whether the health outcome was due to chronic or acute 

exposure (Johnston et al., 2012; O’Dell et al., 2021). 

Current air quality regulations 

Unsurprisingly, wildfire specific PM2.5 has been increasing due to increasingly aggressive 

fire seasons, while ambient PM2.5 has been decreasing due to progressing air quality standards. 

Many urban areas continue to see concentrations that are above the safe levels deemed by the 

National Ambient Air Quality Standards (NAAQS), however, stricter regulations have aided in 

the decrease of ambient PM2.5 (McClure & Jaffe, 2018). Figure 3, from McClure & Jaffe, 2018, 

shows that the authors’ statistical models of PM2.5 concentration support the pattern of increasing 

wildfires in the west due to climate change, while PM2.5 decreases elsewhere. Current air quality 

standards written by the World Health Organization (WHO) and US Environmental Protection 

Agency (EPA) do not take the differential toxicity of wildfire PM2.5 into account. The most recent 

WHO air quality global guidelines, published in 2021, acknowledges that evidence has been 

presented to support the differential toxicity of wildfire PM2.5 to health. However, the WHO claims 

that there are conflicting results on this topic and thus, they have not yet differentiated between 

PM2.5 sources in air quality guidelines (WHO, 2021). The current WHO guidelines for yearly and 

daily PM2.5 concentrations are 5 μg/m3 annually with a short term 24-hour maximum limit at 15 
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μg/m3 (WHO, 2021). The EPA guidelines for annual PM2.5 are for 12 μg/m3 primary PM2.5 and 15 

μg/m3 for secondary PM2.5. The EPA has a short term 24-hour limit for PM2.5 at a value of 35 

μg/m3 (EPA, 2020).   

The consideration of wildfire smoke in air quality regulations is especially important today, 

in a context where we know that: (i) wildfires contribute approximately ~25%, of total PM2.5 

concentration in the atmosphere (Burke et al., 2021), (ii) exposure to wildfire PM2.5 will become 

more problematic as wildfire seasons worsen due to climate change, (iii) and the harmful health 

effects of PM2.5 from wildfires, which has been shown to be more toxic than other sources of PM2.5.  

Vulnerable populations  

In the discussion of climate change, natural disasters, and public health; environmental 

justice must be included. Marginalized people worldwide are bearing disproportionate 

consequences of climate change and its subsequent disasters. Environmental justice seeks to 

reduce that disproportionate burden (Bailey et al., 2019; IPCC, 2022; Ebisu et al., 2019). Minority 

communities in California are no different, as a clear pattern of low socioeconomic groups can be 

found in some zip codes in all major cities. The way a community reacts and adapts to hazards 

depends on many factors. The main factor is often socioeconomic status which can be a stark 

predictor of community success after a disaster. Thus, it is important to understand which 

communities bear the strongest consequences of wildfire smoke pollution exposure. 

Understanding which communities are most vulnerable can inform policy to help protect those 

communities from the effects of wildfire smoke PM2.5 and the subsequent hospitalizations (Bailey 

et al., 2019; Spielman et al., 2020).   
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Figure 3. From McClure and Jaffe, 2018. This figure shows the 98th Quantile Regression of PM2.5 trends from 

1988 – 2006. Krige-interpolated PM2.5 values are shown by the color ramp. Solid black lines with arrows show 

90% of values within being positive or negative. 

 

Aim 

In response to the fact that wildfire specific PM2.5 has been found to have a differential 

toxicity on health; a health impact assessment (HIA) was performed to determine the number of 

attributable hospitalizations for respiratory diseases due to PM2.5 in California from 2006-2013. 

An HIA is used as a tool to assess the health risk of a specific issue, in this case PM2.5 exposure. 

HIA’s are used to provide quantitative evidence that can be used to guide policy or other 

community decisions that can help protect the health of affected populations and protect public 

health. The main aim of this study was to use both a “naive” and “nuanced” approach and quantify 

the delta between these two approaches. The naive approach assumes that the exposure to a 

concentration of PM2.5 has the same impact on respiratory health, regardless of the source of the 

PM2.5. The nuanced approach assumes that the exposure to wildfire PM2.5 has a higher impact on 

respiratory health than other PM2.5. Using the social vulnerability index (SVI), a Centers for 
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Disease Control and Prevention (CDC) derived metric, we used a geographically weighted 

regression to determine whether the SVI and the delta between the two approaches estimating the 

attributable hospitalizations were associated. In summary, this project aims to quantify the 

difference between two methods of estimating the number of respiratory hospitalizations attributed 

to PM2.5 from all sources; one accounting for the higher toxicity of PM2.5 from wildfire smoke 

(nuanced approach), the other not accounting for a difference (naïve approach), in California from 

2006-2013.  

METHODS 

 

PM2.5 exposure  

We built on the previous work done by Aguilera and colleagues (Aguilera et al., 2021a, b 

and c). Daily concentrations of PM2.5 were estimated by zip code using 24-h daily means sampled 

and analyzed by the US EPA Air Quality System (https://www.epa.gov/aqs). These PM2.5 values, 

coming from monitoring station data, represent fine particulate matter from all sources, including 

ambient levels and wildfire smoke. Aguilera and colleagues performed a multiple imputation 

approach using statistical methods and machine learning algorithms to estimate daily wildfire 

PM2.5 concentrations at the zip code level in California (Aguilera et al., 2021c). Using aerosol 

optical depth (AOD) and other satellite imagery, they determined when smoke plumes intersected 

with certain zip codes. Through ground monitoring stations, satellite imagery, and the multiple 

imputation approach, the authors were able to estimate the specific amount of wildfire PM2.5 

concentrations in each California zip code on an exposure day from 2006-2020. Further 

information and details can be found in Aguilera et al., 2021c.  

Hospitalization for respiratory diseases 
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We used the daily hospital admissions for respiratory diseases from the California Office 

of Statewide Health Planning and Development (OSHPD) database of patient discharge data from 

2006 to 2013. Respiratory hospitalizations correspond to the ICD 9 codes 460:519 which include 

pulmonary diagnoses, such as asthma, COPD, pneumonia, and interstitial lung disease. In addition, 

data for flu diagnosis were also available. All data were previously aggregated at the daily level 

by zip code and converted to rates of admission by dividing the admission counts by the population 

(Aguilera et al., 2021a). 

Evolution of PM2.5 and wildfire specific PM2.5 over time and by seasons 

We conducted a descriptive analysis to evaluate whether our PM2.5 concentration data 

displayed the increasing wildfire but decreasing ambient PM2.5 pattern over the period of 2006-

2020, as described in the literature and in Figure 1 (McClure & Jaffe, 2018). We calculated the 

average concentration per month, over the study period, of wildfire specific PM2.5 and non-wildfire 

PM2.5. Both sets of PM2.5 values were plotted per month using ggplot in R. Each season was color 

coded to determine whether there was seasonal variation in the data. The seasons were defined as 

follows: winter - December, January, and February; spring - March, April, and May; summer - 

June, July, and August; and fall - September, October, and November. A separate plot for ambient 

PM2.5 and wildfire specific PM2.5 were made using these methods (Figure 5 and Figure 6). 

Additionally, average wildfire and ambient PM2.5 concentrations over the study period of 

the HIA (2006-2013), were compared visually via a map made in ArcGIS Pro. The ESRI shapefile 

of the United States Postal Service (USPS) zip codes were uploaded to ArcGIS Pro. We calculated 

the average of both the wildfire PM2.5 and non-wildfire PM2.5 averages per zip code over the study 

period (2006 - 2013), then we performed a join in ArcGIS. The result was two maps that visually 

compare the range of concentrations of wildfire and ambient PM2.5 over the state of California 
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(Figure 7 and Figure 8). All days with a concentration of “0” for wildfire PM2.5 were removed 

because a value of zero meant there was no data for that given day.           

Flu and respiratory hospitalizations  

Next, we evaluated average hospitalizations over 2006-2013 to observe any immediate 

trends. There was some speculation in the literature (Ostro et al., 2016) regarding the swine flu 

epidemic in 2008 and how this may have skewed the number of observed respiratory 

hospitalizations. We conducted a linear regression to determine whether this occurred. The flu data 

were gathered from the California Department of Public Health (CDPH). The data was separated 

into months over the study period. A Z score transform was conducted on these data per month to 

normalize the data for both flu and respiratory hospitalizations. The Z score values for both 

respiratory and flu values were plotted in a time series to compare peaks and values (Figure 9). Flu 

hospitalizations were displayed as blue points, while respiratory hospitalizations are red. A simple 

linear regression model was used in R to predict the number of respiratory hospitalizations due to 

the flu.   

Literature Review  

A traditional, or narrative, literature review was conducted on bodies of work that 

researched the effects of ambient and wildfire specific PM2.5 exposure and/or the differential 

toxicity of wildfire smoke PM2.5. Sixteen of the most prominent papers in this subject were chosen 

and summarized. The literature review summarized: population, study region, study period, 

exposure, health outcomes measured, and main result. These results can be viewed in Table 2 in 

the Appendix. This review served as the informational basis for this project, in addition to 

displaying the need for more research on the differential toxicity of wildfire smoke specific PM2.5.   

Health Impact Assessment  
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The main analysis was the Health Impact Assessment (HIA). An HIA includes a series of 

calculations to quantify the health burden of a given exposure, in this study we calculated the 

burden of PM2.5 exposure. The calculation begins with finding the appropriate exposure response 

function(s) (ERFs). ERFs can also be described as risk ratios and are used to determine risk of 

exposure. If the risk or ERF is 1, this assumes that the health risk is the same for the exposed and 

unexposed populations. In this study, the health risk was respiratory hospitalizations due to an 

exposure of PM2.5. We found an exposure response function for the naïve approach and the 

nuanced approach conducted. As mentioned previously, the naive approach assumes that the health 

effect of all PM2.5 is the same, regardless of their sources. Meanwhile, the nuanced approach 

assumes that the exposure to wildfire PM2.5 is associated with a higher risk for respiratory health 

(Aguilera et al., 2021a). All the ERFs were chosen from literature. In the literature used in this 

analysis, ERFs were presented as percent change in hospitalizations (Aguilera et al., 2021a) due 

to a certain concentration of exposure. These values had to be converted to a relative risk number 

for a given exposure level for this HIA (see Equation 1). The naïve and nuanced approach ERFs 

were chosen from Aguilera et al., 2021a, from the multiple imputation approach analysis. After 

converting the values from percent change in exposure, the ERFs for the naïve and nuanced 

approach were 1.0072 (95% CI: 1.0036 – 1.011) and 1.10 (95% CI: 1.035 – 1.165) respectively, 

with a reference exposure concentration of 10 μg/m3.  

𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝐸𝑅𝐹 = (
% 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐻𝑜𝑠𝑝𝑠

100
) +  1     (Equation 1) 

 

 

These exposure response functions were used to calculate the new relative risk (RR), the 

population attributable fraction (PAF), and the attributable number (AN) of respiratory 

hospitalizations due to PM2.5 exposure. The RR is a relative risk at a given exposure level, in this 

case, for an increase of every 10 μg/m3. The PAF is the percent change in hospitalization rates due 
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to an exposure to PM2.5. The AN value measures the health burden of PM2.5 exposure by displaying 

the number of preventable respiratory hospitalizations due to this pollutant. See below for the flow 

of calculations in the HIA.  

Naïve approach  

The naïve approach calculation of the HIA made use of the value for all PM2.5 which was 

1.0072 (95% CI: 1.0036 – 1.011). This is a value for an exposure concentration of 10 μg/m3. The 

new RR is calculated by taking the natural logarithm of the ERF, which is then divided by the 

reference exposure concentration (in this case 10 μg/m3). Then, this entire value is multiplied by 

the total PM2.5 (the ambient and wildfire PM2.5 concentrations added together). The exponential 

of this value is then taken to get the final result (Equation 2). The PAF is found by subtracting the 

RR by 1, dividing by the RR, and then multiplying this value by 100 to make the value a percentage 

(Equation 3). Finally, the AN is found by multiplying the PAF by the number of respiratory 

hospitalizations (Equation 4). That AN value is used to find the Final AN value which is calculated 

by dividing by the population per zip code and then multiplied by 100,000 to standardize (Equation 

5). Hospitalizations for the “all age” group category were used for this HIA.   

𝑅𝑅 = exp 𝑥 (
ln(𝑅𝑅)

𝑅𝑒𝑓.  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐶𝑜𝑛𝑐.
𝑥 (𝑊𝐹 𝑃𝑀2.5 + 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑃𝑀2.5))      Equation 2 

 

 

𝑃𝐴𝐹 =
𝑅𝑅−1

𝑅𝑅
 𝑥 100      Equation 3 

 

 

𝐴𝑁 =  𝑃𝐴𝐹 𝑥 𝐻𝑜𝑠𝑝𝑡𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠     Equation 4 

 

 

𝐹𝑖𝑛𝑎𝑙 𝐴𝑁 =
𝐴𝑁

𝑃𝑜𝑝.  𝑝𝑒𝑟 𝑧𝑖𝑝 𝑐𝑜𝑑𝑒
 𝑥 100,000      Equation 5 

 

 

Nuanced approach  
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 The nuanced approach follows almost the same sequence with a few minor differences. 

The main difference is that instead of considering the same ERF for all PM2.5, we applied two 

distinct ERF in function to the source of the PM2.5. For ambient PM2.5, we used (as previously 

stated) an ERF of 1.0072. However, for wildfire specific PM2.5 we used a different ERF of 1.10. 

Equation 6 was used to calculate the new RR specific to PM2.5 from wildfires. Then, the PAF were 

separately calculated using equation 4. Finally, the AN for wildfire specific PM2.5 and ambient 

PM2.5 were added together at the end of the HIA (Equation 7). This value was then divided by the 

total population per zip code and multiplied by 100,000 to standardize the data (Equation 8). This 

calculation accounts for the differential toxicity of PM2.5 from wildfires by including a specific and 

higher dose response only for this specific source of PM2.5.      

 

𝑁𝑢𝑎𝑛𝑐𝑒𝑑 𝑅𝑅 = exp 𝑥 (
ln(𝑅𝑅)

𝑅𝑒𝑓.  𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐶𝑜𝑛𝑐.
𝑥 (𝑊𝐹 𝑃𝑀2.5))     Equation 6 

 

 

𝑁𝑢𝑎𝑛𝑐𝑒𝑑 𝐴𝑁 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = (𝑊𝐹 𝑃𝐴𝐹 𝑥 𝐻𝑜𝑠𝑝𝑠) + (𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑃𝐴𝐹 𝑥 𝐻𝑜𝑠𝑝𝑠)     Equation 7 

 

 

𝑁𝑢𝑎𝑛𝑐𝑒𝑑 𝐴𝑁 𝐹𝑖𝑛𝑎𝑙 =
Nuanced AN Combined

𝑃𝑜𝑝.𝑝𝑒𝑟 𝑧𝑖𝑝 𝑐𝑜𝑑𝑒
 𝑥 100,000   Equation 8 

 

 

Lastly, the average number of attributable hospitalizations per year, over the study period 

(2006 -2013), for the naïve and nuanced analyses were estimated (Table 1). The average number 

of attributable hospitalizations over the study period were also mapped visually per zip code over 

the study period for the naïve and nuanced approach (Figure 10 & Figure 11). The delta between 

attributable hospitalizations between the naïve and nuanced approach was mapped as well to 

highlight just the number of attributable hospitalizations when the differential toxicity of wildfire 
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smoke PM2.5 was accounted for (Figure 11). These steps for the HIA are summarized in the Figure 

4 below. 

 

Figure 4. The methodology for the HIA calculation conducted in this study, including the differences between the 

naïve and nuanced approach in addition to how the final delta value between the two approaches was calculated. 

Underestimated hospitalizations  

 In order to determine the attributable number of total hospitalizations that are being 

unaccounted for when not taking into account the differential toxicity of wildfire smoke PM2.5, 

we totaled the number of hospitalizations over the study period over the state of California. The 
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total hospitalization values were totaled for the naive and nuanced approach. Once again, the 

delta between the two values was found. This value was then divided by the total number of 

attributable hospitalizations for the nuanced approach and then multiplied by 100. This gave us 

the percentage of hospitalizations that are unaccounted for when considering the true, differential 

toxicity of wildfire smoke PM2.5.  

Social vulnerability index 

We used the Social Vulnerability Index (SVI), a Centers for Disease Control and 

Prevention (CDC) derived metric, to analyze the relationship between social justice and health 

burden to wildfire smoke PM2.5. The SVI measures the ability of a community to adapt to natural, 

or human caused, disasters; measured on a scale of 0 to 1, with 1 being the communities that are 

most socially vulnerable (CDC, 2014). This adaptation is measured in the community’s ability to 

prevent suffering and excessive financial loss in the wake of a disaster. The SVI of every census 

tract is defined by 15 U.S. census variables including socioeconomic status, household 

composition and disability, minority status and language and housing type and transportation. In 

this analysis, we studied the association between the SVI values over California and the difference 

of attributable hospitalizations between the naïve and nuanced approach, to determine whether the 

highest hospitalizations also occurred where the highest SVI values were.  

 In order to do this, a geographically weighted regression was conducted. Census tracts 

were aggregated into zip codes using data from the U.S. Department of Housing and Urban 

Development crosswalk files for 2014 

(https://www.huduser.gov/portal/datasets/usps_crosswalk.html#data). Additionally, the ESRI 

California zip code shapefile and the difference of the attributable number (of the naïve and 

nuanced approach) of hospitalizations mentioned in later sections, were used for this regression. 
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In this case, the calculations to determine the difference in attributable hospitalizations was 

summed instead of averaged, as compared to what was done in the rest of the analysis. The SVI 

data was merged with the zip code/census tract crosswalk. The SVI values that overlapped with 

multiple zip codes were aggregated by median, due to the fact that the data distribution was not 

normal. This data set was then merged with the ESRI California shapefile in order to run the 

regression using polygons.  

The GWR model was fit using the spgwr package in R with the difference of the 

attributable number of hospitalizations as the outcome and the aggregated median SVI as the 

predictor variable. This allowed us to estimate the effects of SVI on the attributable number of 

hospitalizations across California, see Equation 1, where ε is the error. A cross-validation 

procedure was employed to choose a bandwidth for the model. A Gaussian correlation structure 

was employed as that is the default. This model results in a  estimate for every single zip code. 

The outlier estimates (due to very small population sizes) are not displayed in the results although 

it is worth noting that there were a few zip codes in Northeastern California with very high 

magnitude  estimates.  

Difference in Hospitalizations = βI(MeanSVI) + ε               Equation 9 

 

The GWR  estimates were truncated and plotted between the first and third quartiles of 

the regression in order to visualize variations in the coefficients (Figure 13). We used the median 

estimate value of the GWR model as the midpoint for this figure. Lastly, the predictions accuracy 

of the model was plotted in a figure which shows the difference between the attributable number 

of hospitalizations and the predicted number of hospitalizations that the model suggests giving a 

visual representation of the model fit (Figure 14).  
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RStudio Version 3.6.2 and ArcGIS Pro Version 2.9.1 were used for all analyses and figures. 

RESULTS 

 

Evolution of PM2.5 during the period of 2006-2020 

Through the comparative analysis, this study found that ambient PM2.5 values are 

decreasing in the period of 2006-2020, while wildfire specific PM2.5 values are increasing. The 

five largest peaks in non-wildfire PM2.5 all occur during the summer and fall (Figure 5). These 

points occur in 2008, 2019, and 2020. The spring season consistently displayed the lowest ambient 

PM2.5 values while winter consistently displayed some of the highest. Summer and fall values 

consistently fell in between spring and winter values barring occasionally exceptions. The average 

wildfire concentrations per month over the study period follow similar trends with peaks in 2008, 

2018, and 2020 (Figure 6). However, the ambient PM2.5 concentrations remained much steadier as 

opposed to the wildfire PM2.5 concentrations which were more variable, with the highest 

concentrations occurring in the summer and fall. The two maps (Figure 7 and Figure 8) that 

displayed average concentration of wildfire and ambient PM2.5 showed a hotspot in northern 

California for the wildfire specific PM2.5, while the ambient PM2.5 showed peaks in large cities and 

central California.  
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Figure 5. Plot of the average concentration per month of non-wildfire PM2.5 over the study period (2006 - 2013), 

color coded by season. 

 

Figure 6. Plot of the average concentration per month of wildfire PM2.5 over the study period (2006 - 2013), color 

coded by season. 
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Figure 7. Map of the average non-wildfire PM2.5 per zip code, in California over the study period (2006 – 2013). 
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Figure 8. Map of the average wildfire specific PM2.5 per zip code, in California over the study period (2006 – 2013). 

 

Flu and respiratory hospitalizations  
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As mentioned previously, we conducted a linear regression analysis of respiratory and flu 

hospitalizations in California from 2006-2013. The linear regression estimate (95% confidence 

interval) was 0.50 (0.32, 0.68). Although there are outliers and years with higher cases, both the 

respiratory and flu hospitalizations show cyclical patterns (Figure 9). However, consistent with the 

literature and the timing of the swine flu outbreak in late 2008 as well as 2009, there is more 

variability and 2009 has the largest minimum respiratory hospitalization value (August 2009) of 

the study period and the second highest flu hospitalization maximum number (October 2009).   

 

Figure 9. Plot of the Z score of respiratory and flu hospitalizations, per month in California, over the study period 

(2006 - 2013) 

HIA results 

As mentioned above, the main results of the HIA can be found in Table 1, Figure 10, Figure 

11, and Figure 12. In Table 1, we display the average attributable hospitalizations per year over 

the study period for the naïve approach, nuanced approach, and the difference of the two. We 
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found that considering the differential toxicity of wildfire smoke PM2.5, and thus its more harmful 

impact than non-wildfire PM2.5, leads to the attributable number of the rate of hospitalizations in 

the nuanced approach remaining consistently higher. The largest rate of respiratory 

hospitalizations per 100,000 people, occurred during 2006, 2007, 2008. The average number of 

respiratory hospitalizations for the naïve approach for these years were 1.851, 1.796, and 2.125, 

respectively. The nuanced approach yielded values of 2.104, 2.185, and 3.886, respectively. While 

the difference between the two approaches for these years yielded values of 0.254, 0.389, and 

1.761, respectively. The year with the maximum number of attributable hospitalizations per 

100,000 people in the study period was 2008 with the values mentioned above (naïve: 2.125, 

nuanced: 3.886, and the delta of the two approaches: 1.761).  

Through Figures 10 and 11, we visualized the average attributable number of respiratory 

hospitalizations per zip code over the study period of 2006 - 2013. In Figures 10 and 11, the 

hotspots of the highest attributable number of respiratory hospitalizations generally matched the 

same regions; for example, central and Northern California have some of the highest rates. The zip 

code with the highest AN was zip code 96123 at the eastern edge of northern California and the 

second highest was zip code 92332, as the eastern edge of southern California. In Figure 12, we 

display the delta of the values between the nuanced and naïve approach. The largest values occur 

most heavily in northern California, with some hotspots in central California as well. Notably, the 

delta values seen in Table 1 and Figure 12 are all positive values, meaning the nuanced approach 

yielded larger values in all yearly averages and all average zip code values. 

As mentioned previously, calculations were conducted to determine the number of 

hospitalizations that are unaccounted for when considering the true toxicity of wildfire smoke 

PM2.5. The delta between the sum of all hospitalizations over the state of California yielded a result 
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of approximately 263,580 unaccounted hospitalizations, when the differential toxicity of wildfire 

smoke is not considered. This yields a percentage of total hospitalizations that approximates to 

13.5%.  

 

Table 1. Table of the average attributable number of respiratory hospitalizations due to PM2.5 per year over the 

study period for the naïve approach, nuanced approach, and the delta of the two approaches (per 100,000 people). 

 

 

 

 

 

 

 

 

 

 

 

 

 Imputation Method - Aguilera et al Difference 

(Nuanced – 

Naïve) 

Year Naïve Approach Nuanced 

Approach 

 

2006 1.851 2.104 0.254 

2007 1.796 2.185 0.389 

2008 2.125 3.886 1.761 

2009 1.744 1.927 0.184 

2010 1.501 1.551 0.050 

2011 1.529 1.606 0.077 

2012 1.376 1.665 0.289 

2013 1.429 1.825 0.396 
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Figure 10. Average attributable number of respiratory hospitalizations, per zip code due to PM2.5 (2006 - 2013): the 

naïve approach. 
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Figure 11. Average attributable number of respiratory hospitalizations, per zip code due to PM2.5 (2006 - 2013): the 

nuanced approach. 
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Figure 12. Attributable number of respiratory hospitalizations, per zip code due to PM2.5 (2006 - 2013): the delta of 

the two approaches. 

Geographically weighted regression 

  The results of the geographically weighted regression indicate that every 1 unit 

increase in the SVI resulting in an increase in the number of respiratory hospitalizations. In this 
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analysis, the 1st quartile resulted in a value of 145.78 and the 3rd quartile resulted in a value of 

941.17. Thus, 50% of the values of the relationship between increases in SVI and respiratory 

hospitalizations fall between 146 and 941 hospitalizations per a 1 unit increase in SVI. 

Additionally, abnormally high results were removed from the final plot because these values were 

inadequate predictors. Most likely, the zip codes with extremely small populations (such as rural 

areas) do not converge while fitting the GWR model and were thus removed from the results, but 

still used for fitting. Coastal cities have higher populations and can be more accurate, as can be 

seen in Figure 14. Figure 13 depicts the truncated values from the 1st to the 3rd quartile in order to 

visually determine the variation in the coefficients over the state of California while Figure 14 

depicts a plot of the difference between the true and predicted values of respiratory 

hospitalizations. We see random scatter of the residuals in Figure 14, but there are higher 

magnitude errors in the northern portion of the state. 

 

Figure 13. Plot depicting the values between the 1st and 3rd quartile of the GWR coefficients. Values are truncated 

to show the variation in the coefficients. These are the middle 50% of values in the analysis, which show an increase 

in hospitalizations due to a 1 unit increase in SVI. 
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Figure 14. True hospitalizations (calculated) minus the predicted number of hospitalizations (calculated by model). 

Outlier values removed due to low population. 

 

CONCLUSION 

 

Evolution of PM2.5, the exception of wildfire PM2.5 

Although air quality regulations are still not providing the utmost protection and better air 

quality protections are still needed; California has been seeing a marked decrease in ambient 

PM2.5. However, when PM2.5 is separated into its own category, independently considering 

wildfire smoke PM2.5 it has been seen to increase, both from the information from this study and 

the literature. This is indicative of more wildfires due climate change as temperatures increase. 

This pattern is only projected to worsen as climate change mitigation is delayed (McClure & 

Jaffe, 2018). The peaks in ambient PM2.5 that spike at the same time as the wildfire PM2.5 in 

summer and fall in 2008, 2018, and 2020 coincide with extremely bad wildfire seasons (Aguilera 

et al., 2021a; Williams et al., 2019). Lastly, the peaks in winter are consistent with other studies 
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in literature as well as EPA measurements. Winter PM2.5 is often known to increase due to 

seasonal patterns such as dry air and stagnant weather in dry years especially (Chan et al., 2018).  

Flu and respiratory hospitalizations  

As mentioned above, the linear regression yielded a value of 0.50 (0.32, 0.68). This is the 

predictive value of how many respiratory hospitalizations can be attributed to flu cases. These 

results show a strong relationship between the amount of flu cases and respiratory hospitalizations 

in California. Thus, as Ostro et al. stated, the swine flu (and general flu illnesses) has a positive 

effect on the amount of respiratory hospital admissions each month in California. The general 

observable patterns of hospitalizations are relatively consistent with cold and flu season (fall and 

winter months) when many individuals often contract respiratory illnesses. 

HIA conclusions 

One of the approaches of the Health Impact Assessment (nuanced approach) considered 

the fact that wildfire smoke PM2.5 can have differential toxicity in the lung and can be more 

dangerous for respiratory diseases. As expected, we found that when people are exposed to wildfire 

PM2.5 and when we considered this specific PM2.5 with its own toxicity the attributable number of 

hospitalizations due to PM2.5 exposure, increases. This was seen in the fact that the attributable 

number of respiratory hospitalizations was constantly higher for the nuanced approach in all zip 

code averages and the yearly averages compared to the naïve approach. The most important finding 

of this study was the size and the spatial distribution of delta values, i.e., the difference between 

the nuanced and naïve approach. The delta values yielded all positive values supporting the 

conclusion that the burden of wildfire smoke PM2.5 is higher due to the more harmful impact it 

brings on health. By not considering the differential toxicity of wildfire PM2.5, we underestimate 
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the attributable number of respiratory hospitalizations in California for the 2006-2013 related to 

PM2.5 exposure.  

As mentioned previously, the highest attributable number of respiratory hospitalization 

values occurred in 2008 (naïve: 2.125, nuanced: 3.886, and the delta of the two approaches: 1.761). 

There are two probable explanations for this peak according to the literature and the fire season 

patterns. Firstly, as mentioned above, the purpose of the linear regression between the flu and 

respiratory hospitalizations over the study period was conducted to investigate whether the swine 

flu had an impact on respiratory hospitalizations in 2008 (Ostro et al., 2016). As stated above, the 

regression did find a relationship between the flu and respiratory hospitalizations which allows us 

to conclude the swine flu also may have contributed to this peak. The second contributing factor 

is most likely due to the large fire season of 2008. During this fire season, asthma hospital visits, 

asthma emergency department visits, and COPD flare ups were noted, especially in northern 

California where most of the fires were (Reid et al., 2016). 

The map of the delta values has the highest values in northern California and central 

California. Evidence from the literature and current observable trends suggests that increasing 

drought years are making northern California, and the Sierra Nevada Mountain region (which 

spans northern and central California) more susceptible to fires. A 2004 model study found that, 

with a double carbon dioxide atmosphere, wildfires that exceeded their containment limit were 

expected to increase by 51% in the southern San Francisco Bay area, and 114% in the Sierra 

Nevada region, as a best-case scenario (Fried et al., 2021). This trend has only continued to 

increase as large fires have burned these the past few years such as the Dixie fire (2021) and the 

August complex fire (2020) (NASA, 2021). The large number of forests in northern California 

also aid in producing tinder for fires when the conditions strike (NASA, 2021). These fire 
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producing conditions are expected to get worse with increasing climate change (Fried et al., 2021, 

NASA, 2021).  

The results of this study support the conclusions that: wildfire PM2.5 has a differential, more 

negative toxicity on the lung and, the fact that stronger air quality guidelines are needed to prevent 

illness, especially respiratory issues, during wildfire episodes. The ~263,580 (or 13.5%) of 

unaccounted hospitalizations suggests that by not considering the differential toxicity of wildfire 

PM2.5, the leading regulatory and health agencies such as the WHO and the EPA leave people more 

vulnerable to the detrimental health impacts of wildfire smoke PM2.5, especially in northern 

California. 

Geographically weighted regression 

The model’s success at determining the respiratory hospitalizations can be determined by 

the amount of random scatter on the plot (Figure 14). In this analysis, the vast size and diversity 

of zip code populations of California left a wide range of data. As mentioned previously, this data 

had to be truncated to the 1st and 3rd quartile (Figure 13) and also for outlier values when finding 

the difference in predictor versus true values (Figure 14). Through these plots, there is evidence of 

a relationship between SVI and respiratory hospitalizations, but in order to see stronger or more 

detailed variation, smaller areas such as individual cities or counties would have to be analyzed.  

 

This thesis is currently being prepared for submission for publication of the material. 

Darling, Rachel; Aguilera; Rosana; Hansen, Kristen; Benmarhnia, Tarik; Letellier, Noemie. The 

thesis author was the primary investigator and author of this material. 
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