
UCSF
UC San Francisco Previously Published Works

Title
Parallel ICA of FDG-PET and PiB-PET in three conditions with underlying Alzheimer's 
pathology

Permalink
https://escholarship.org/uc/item/222019ww

Authors
Laforce, Robert
Tosun, Duygu
Ghosh, Pia
et al.

Publication Date
2014

DOI
10.1016/j.nicl.2014.03.005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/222019ww
https://escholarship.org/uc/item/222019ww#author
https://escholarship.org
http://www.cdlib.org/


NeuroImage: Clinical 4 (2014) 508–516 

P

u

R
W
a

b

c

d

a

A

R

R

A

K

M

P

A

A

P

F

F

N

A

v

p

N

G

2

l

h

Contents lists available at ScienceDirect 

NeuroImage: Clinical 

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / y n i c l 

arallel ICA of FDG-PET and PiB-PET in three conditions with 

nderlying Alzheimer’s pathology 

obert Laforce Jr a , c , 1 , * , Duygu Tosun 

b , Pia Ghosh 

a , c , Manja Lehmann 

a , c , Cindee M. Madison 

a , Michael W. 
einer b , Bruce L. Miller c , William J. Jagust a , d , Gil D. Rabinovici a , c , d 

 Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA 
 Center for Imaging of Neurodegenerative Diseases, Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, USA 
 Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA 
 Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA 

 r t i c l e i n f o 

rticle history: 

eceived 15 August 2013 

eceived in revised form 12 March 2014 

ccepted 13 March 2014 

eywords: 

ultivariate data analysis 

arallel ICA 

lzheimer’s disease 

myloid imaging 

iB-PET 

DG-PET 

unctional connectivity 

etworks 

a b s t r a c t 

The relationships between clinical phenotype, β-amyloid (A β) deposition and neurodegeneration in 

Alzheimer’s disease (AD) are incompletely understood yet have important ramifications for future ther- 

apy. The goal of this study was to utilize multimodality positron emission tomography (PET) data from a 

clinically heterogeneous population of patients with probable AD in order to: (1) identify spatial patterns of 

A β deposition measured by ( 11 C)-labeled Pittsburgh Compound B (PiB-PET) and glucose metabolism mea- 

sured by FDG-PET that correlate with specific clinical presentation and (2) explore associations between 

spatial patterns of A β deposition and glucose metabolism across the AD population. We included all patients 

meeting the criteria for probable AD (NIA–AA) who had undergone MRI, PiB and FDG-PET at our center 

( N = 46, mean age 63.0 ± 7.7, Mini-Mental State Examination 22.0 ± 4.8). Patients were subclassified 

based on their cognitive profiles into an amnestic / dysexecutive group (AD-memory; n = 27), a language- 

predominant group (AD-language; n = 10) and a visuospatial-predominant group (AD-visuospatial; n = 9). 

All patients were required to have evidence of amyloid deposition on PiB-PET. To capture the spatial distri- 

bution of A β deposition and glucose metabolism, we employed parallel independent component analysis 

(pICA), a method that enables joint analyses of multimodal imaging data. The relationships between PET 

components and clinical group were examined using a Receiver Operator Characteristic approach, including 

age, gender, education and apolipoprotein E ε4 allele carrier status as covariates. Results of the first set of

analyses independently examining the relationship between components from each modality and clinical 

group showed three significant components for FDG: a left inferior frontal and temporoparietal component 

associated with AD-language (area under the curve [AUC] 0.82, p = 0.011), and two components associated 

with AD-visuospatial (bilateral occipito-parieto-temporal [AUC 0.85, p = 0.009] and right posterior cingulate 

cortex [PCC] / precuneus and right lateral parietal [AUC 0.69, p = 0.045]). The AD-memory associated com- 

ponent included predominantly bilateral inferior frontal, cuneus and inferior temporal, and right inferior 

parietal hypometabolism but did not reach significance (AUC 0.65, p = 0.062). None of the PiB components 

correlated with clinical group. Joint analysis of PiB and FDG with pICA revealed a correlated component pair, 

in which increased frontal and decreased PCC / precuneus PiB correlated with decreased FDG in the frontal, 

occipital and temporal regions (partial r = 0.75, p < 0.0001). Using multivariate data analysis, this study 

reinforced the notion that clinical phenotype in AD is tightly linked to patterns of glucose hypometabolism 

but not amyloid deposition. These findings are strikingly similar to those of univariate paradigms and provide 

additional support in favor of specific involvement of the language network, higher-order visual network, 

and default mode network in clinical variants of AD. The inverse relationship between A β deposition and 
Abbreviations: AD or AD-memory, Alzheimer’s disease; AUC, area under the curve; 

D-language or LPA, logopenic variant primary progressive aphasia; PCA or AD- 

isuospatial, posterior cortical atrophy; PCC, posterior cingulate cortex; PPC, posterior 

arietal cortex. 
1 Present address: Clinique Interdisciplinaire de M ́emoire, D ́epartement des Sciences 

eurologiques, CHU de Qu ́ebec — H ̂ opital de l’Enfant-J ́esus 1401, 18i ̀eme rue, Qu ́ebec 

1J 1Z4, Canada. 
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glucose metabolism in partially overlapping brain regions suggests that A β may exert both local and re- 

 

 

 

 

 

mote effects on brain metabolism. Applying multivariate approaches such as pICA to multimodal imaging

data is a promising approach for unraveling the complex relationships between different elements of AD

pathophysiology. 
c © 2014 The Authors. Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ).
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Introduction 

The relationships between amyloid, metabolism and clinical phe-

notype in Alzheimer’s disease (AD) are incompletely understood. Pre-

vious studies have yielded mixed results within typical amnestic AD

and across different AD phenotypes. For example, in three clinical

variants of AD (AD-memory, AD-language, AD-visuospatial), clinical

syndromes were strongly linked to patterns of glucose metabolism,

whereas ( 11 C)-labeled Pittsburgh Compound B (PiB-PET) binding was

similar across clinical phenotypes ( Cohen et al., 2009 ; de Souza et al.,

2011 ; Lehmann et al., 2013a ; Leyton et al., 2011 ; Rabinovici et al.,

2008 ; Rosenbloom et al., 2011 ). Correlations between increased β-

amyloid and decreased metabolism have been found in some studies

( Cohen et al., 2009 ; Edison et al., 2007 ; Engler et al., 2006 ) but not in

others ( Furst et al., 2012 ; Li et al., 2008 ). Some studies have suggested

that the relationships between amyloid and glucose metabolism vary

by brain region and disease state ( Cohen et al., 2009 ; La Joie et al.,

2012 ). 

To date, most studies have investigated these relationships us-

ing univariate analyses, but this approach may fail to capture dis-

tributed variations across brain networks. A number of recent stud-

ies have demonstrated that multivariate statistical paradigms (e.g.,

principal component analysis or independent component analysis

[ICA]), where distributed variations in multiple neuroimaging data

and their inter-relationships are assessed together, provide a better

framework for integrative analysis of imaging data. Multivariate tech-

niques have been shown to be more sensitive for early diagnosis of AD

and capture patterns of normal age-associated atrophy ( Brickman et

al., 2007 ). Parallel independent component analysis (pICA; Calhoun et

al., 2006 ), a variation of ICA which allows estimation of independent

components as well as multimodal patterns or mixed coefficients,

has recently been used to study the mechanisms by which amyloid- β
deposition leads to neurodegeneration and cognitive decline ( Tosun

et al., 2011 ). This is particularly relevant in light of possible distant

( Bourgeat et al., 2010 ) rather than local ( Cohen et al., 2009 ) effects of

β-amyloid on glucose metabolism. 

In this study we applied a multivariate approach to explore the

relationships between metabolism and amyloid accumulation across

AD phenotypes. To this end, we recruited patients with three pheno-

types of AD cited in the new clinical diagnostic guidelines ( McKhann

et al., 2011 ): 1) a group of prototypical AD, or AD-memory, charac-

terized by predominant episodic memory impairment and executive

dysfunction ( Dubois et al., 2007 ), 2) a group with language variant

AD (AD-language, also called logopenic variant primary progressive

aphasia ) characterized by progressive word-finding difficulties and

deficits in sentence repetition ( Gorno-Tempini et al. , 2004 , 2011 ),

and 3) a group with the visuospatial variant of AD (AD-visuospatial,

also referred to as posterior cortical atrophy ) marked by predominant

visuospatial and visuoperceptual dysfunctions. We then applied pICA

to 1) identify specific components from each modality that correlated

with clinical presentation and 2) identify relationships between spa-

tial patterns of PiB and FDG across AD patients. Based on previous

results applying univariate statistics from our group and others, we
hypothesized that FDG but not PiB would generate individual com-

ponents that correlated with diagnosis. We further aimed to capture

relationships between spatial patterns of glucose metabolism and

amyloid deposition in this clinically and anatomically diverse cohort

which may not be apparent using traditional univariate methods. 

2. Subjects and methods 

2.1. Subject selection and characteristics 

We identified all patients seen at the University of California San

Francisco (UCSF) Memory & Aging Center who met the criteria for

probable AD according to the National Institute on Aging–Alzheimer’s

Association (NIA–AA) guidelines ( McKhann et al., 2011 ), were PiB-

positive and had available FDG and MRI scans. Patients were excluded

if they had clinical or imaging evidence of previous stroke, or had a

high burden of white matter hyperintensities (defined as Scheltens

grade ≥ 4) ( Scheltens et al., 1998 ). All patients were recruited be-

tween April 2005 and July 2011. Patients underwent a history and

physical examination by a behavioral neurologist, a structured care-

giver interview by a nurse, and a battery of neuropsychological tests

( Kramer et al., 2003 ). All patients had mild-to-moderate dementia

based on the Mini-Mental State Examination (MMSE; Folstein et al.,

1975 ) and the Clinical Dementia Rating (CDR; Morris, 1993 ) scale.

Diagnosis was made in a consensus clinical conference incorporat-

ing clinical and neuropsychological profiles but blinded to imaging

data. Patients were subclassified as AD-memory, AD-language, and

AD-visuospatial using published criteria ( Gorno-Tempini et al., 2011 ;

McKhann et al., 2011 ; Tang-Wai et al., 2004 ). The AD-memory group

was composed of patients meeting the NIA–AA criteria for probable

AD but not AD-language or AD-visuospatial criteria. The final cohort

consisted of 27 patients with probable AD-memory, ten with AD-

language and nine with AD-visuospatial (see Table 1 ). 

2.2. Imaging 

Acquisition parameters for all scanners have been described in

previous publications ( Mormino et al., 2012 ; Mueller et al., 2009 ;

Rabinovici et al., 2007 ; Rosen et al., 2002 ; Zhou et al., 2012 ). 

2.3. Structural imaging 

T 1 -weighted scans were collected at UCSF or Lawrence Berkeley

National Laboratory (LBNL) on different MRI units, including two 1.5 T

units (Magnetom Avanto System, Siemens Medical Systems, Erlangen,

Germany; Magnetom VISION system, Siemens Inc., Iselin, NJ), a 3 T

unit (Siemens Tim Trio scanner), and a 4 T unit (BrukerMedSpec). The

proportions of subjects studied on each scanner were balanced across

the three AD groups. In patients with multiple MRIs, the MRI closest

to the date of the PET scan was used for data preprocessing. 

http://creativecommons.org/licenses/by-nc-nd/3.0/
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Table 1 

Patient characteristics. 

Groups AD-memory ( n = 27) AD-language ( n = 10) AD-visuospatial ( n = 9) p values 

Age (mean, SD) 68.0 (10.7) 60.1 (5.7) 61.0 (6.7) 0.03 * 

M / F 16 / 11 5 / 5 6 / 3 0.84, ns 

Education (mean, SD) 16.8 (2.5) 16.6 (3.4) 15.8 (3.5) 0.68, ns 

ApoE ε4 status 0.07, ns 

- Absent ε4 8 7 5 

- 1 ε4 14 3 2 

- 2 ε4 5 0 2 

MMSE / 30 22.2 (5.0) 23.1 (3.7) 21.2 (5.8) 0.71, ns 

CDR 0.96 (0.36) 0.55 (0.16) 0.67 (0.35) 0.002 * 

CDR-SB 6.2 (3.4) 3.0 (1.8) 4.6 (2.7) 0.02 * 

Abbreviations: Alzheimer’s disease (AD); standard deviation (SD); apolipoprotein E ε4 allele (ApoE ε4); Mini-Mental State Examination (MMSE); Clinical Dementia Rating (CDR); 

Clinical Dementia Rating Sum of Boxes (CDR-SB). 
∗p < 0.05. 
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.4. Positron emission tomography radiochemistry and acquisition 

[ 11 C]PiB was synthesized at the LBNL Biomedical Isotope Facility 

sing a previously published protocol. [ 18 F]FDG was purchased from 

 commercial vendor (IBA Molecular). PET scans were performed at 

BNL using a Siemens ECAT EXACT HR PET scanner in 3-dimensional 

cquisition mode. 90 min of dynamic PiB data and 30 min of FDG data 

 t = 30–60 min post-injection, minimum of 2 h after PiB injection) 

ere obtained. Ten-minute transmission scans for attenuation correc- 

ion were obtained either immediately before or after each [ 11 C]PiB 

nd [ 18 F]FDG scan. PET data were reconstructed using an ordered sub- 

et expectation–maximization algorithm with weighted attenuation. 

mages were smoothed with a 4 mm Gaussian kernel with scatter cor- 

ection. All images were evaluated before analysis for patient motion 

nd adequacy of statistical counts. 

.5. Image processing 

All image pre-processing was performed in Statistical Paramet- 

ic Mapping version 8 (SPM8; http: // www.fil.ion.ucl.ac.uk / spm ). 

eference regions were defined in native MRI space for 

ach subject using subcortical parcellations from FreeSurfer 

.5 ( http: // surfer.nmr.mgh.harvard.edu ). FDG-PET frames were 

ummed and standardized uptake value ratios (SUVR) were calcu- 

ated by normalizing the summed FDG image to mean activity in the 

ons for each subject. For PiB, voxel-wise distribution volume ratios 

DVRs) were calculated using Logan graphical analysis ( Logan et al., 

996 ) with the gray matter cerebellum time–activity curve used as a 

eference tissue input function ( t = 35–90 min) ( Price et al., 2005 ). 

.6. Spatial normalization 

PiB and FDG data were co-registered to the subject’s skull 

tripped T 1 -weighted MRI. To allow across-subject comparisons, each 

ubject’s T 1 -weighted MRI was normalized to MNI (Montreal Neuro- 

ogical Institute) space using the skull stripped ch2 template, and 

he derived normalization parameters were applied to the subject’s 

o-registered PiB and FDG volumes. All normalized images were 

moothed with a 12-mm Gaussian kernel. 

.7. Visual inspection 

Voxel-wise PiB DVR images from all subjects were qualitatively 

ssessed by an experienced PET researcher (W.J.J.) blinded to clinical 

iagnosis. Scans were read visually as positive or negative for cortical 

iB. A positive scan was defined as a DVR image in which uptake was 

ubstantially greater in the cortex than in the white matter. Visual 

nspection based on these criteria has been validated previously as 

 reproducible and reliable estimate of increased PiB uptake when 
compared with quantitative analysis ( Mormino et al., 2012 ; Ng et al., 

2007 ; Rabinovici et al., 2011 ). 

2.8. Parallel ICA 

We analyzed PiB and FDG data jointly and took all image voxels 

into account simultaneously using pICA (Fusion ICA Toolbox: Calhoun 

et al., 2006 ; Rachakonda et al., 2008 ). The mathematical foundations 

of pICA are described in detail in Liu et al. (2009) . In this frame- 

work, pICA applied to multimodality imaging data aims to identify 

independent components in each image modality as well as the rela- 

tionships of these independent components across image modalities. 

Briefly, ICA is run on each modality and a correlation measure is 

enforced between the mixing coefficients of modalities during the 

analysis. In the context of this study, pICA identified spatially inde- 

pendent components of PiB and FDG while simultaneously revealing 

the largest variations across patients that PiB and FDG had in common. 

The number of significant independent components in each modality 

was estimated using both the Akaike information criterion (AIC) and 

the minimum description length criterion. As a well-accepted order 

selection criterion, AIC maximizes the log-likelihood of the observed 

data based on the independent component set, with a penalty term 

that is directly proportional to the total number of independent com- 

ponents. The independent component set with the lowest AIC value 

is selected for a balance between the accuracy of fitting and the com- 

plexity of the independent component model. For each modality, the 

loading parameters expressing the contribution of each independent 

component to the variance across subjects were estimated. Each in- 

dependent component for each modality was scaled to unit standard 

deviation, yielding z -score maps in the MNI template space. Because 

FDG-PET data is interpreted in terms of hypometabolism and PiB-PET 

data in terms of increased tracer retention, all FDG data were inverted 

(sign reversed). All component maps were thresholded at a z -score 

level of | z | ≥ 2.5 (99.4% cumulative probability) for visualization pur- 

poses. 

Based on these loading parameters, we computed Pearson’s cor- 

relation coefficients for all pairs of PiB and FDG independent com- 

ponents while further accounting for variations in age, gender, ed- 

ucation and apolipoprotein E ε4 allele (ApoE ε4) carrier status. The 

Pearson’s correlation coefficients were then used to identify signif- 

icant relationships between brain amyloid- β accumulation and hy- 

pometabolism after correction for multiple comparisons using a false 

discovery rate (FDR) at a significance level of p < 0.05. Relationship to 

clinical group was examined using a Receiver Operator Characteristic 

approach, including age, gender, education, and ApoE ε4 (present / 
absent) as covariates. The ROC analyses assessed the contribution of 

each component separately to the classification of one clinical group 

from the other two (e.g., AD-memory versus AD-language and AD- 

visuospatial) within the general linear model framework, using the 

http://www.fil.ion.ucl.ac.uk/spm
http://surfer.nmr.mgh.harvard.edu


R. Laforce Jr et al. / NeuroImage: Clinical 4 (2014) 508–516 511 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

logit function as link between the linear predictor variable (i.e., load-

ing parameters of a component) and group as binomial outcome vari-

able (clinical group of interest = 1 versus rest = 0). 

2.9. Statistical analysis 

Group differences in demographic variables were examined us-

ing one-way analysis of variance or the Mann–Whitney U test. As

appropriate statistical analyses were implemented in R Software

( http: // www.r-project.org / ). This study was approved by the Univer-

sity of California, Berkeley, University of California, San Francisco, and

Lawrence Berkeley National Laboratory institutional review boards

for human research. 

3. Results 

3.1. Patient characteristics 

Patient characteristics are shown in Table 1 . Patients with AD-

memory were significantly older at PET and were more impaired

on CDR and CDR Sum-of-Boxes (CDR-SB) ( p = 0.03). No significant

differences were found in gender, education, ApoE ε4 status or MMSE. 

3.2. Neuropsychological evaluations 

Neuropsychological test batteries were available for most patients

(see Table 2 ). The mean interval between cognitive testing and PET

was 131 days (SD 207.6 days). As expected, AD-memory patients per-

formed poorly on verbal and visual memory tasks ( p = 0.03 on the Cal-

ifornia Verbal Learning Test 10-minute delayed recall, and p = 0.01 on

the modified Rey 10-minute delayed recall), whereas AD-visuospatial

patients showed lower performance on visuospatial tasks ( p = 0.02 for

modified Rey copy). The AD-language group performed significantly

worse on sentence repetition ( p = 0.003), consistent with the deficits

in auditory working memory previously reported in this group. 

3.3. Individual FDG and PiB components 

The number of estimated components using the AIC in our ob-

served data from 46 subjects was eight for the FDG-PET feature and

seven for the PiB-PET feature. Three of the eight FDG components

were associated with a particular clinical group with significant pre-

dictor accuracy. A left inferior frontal and left temporoparietal hy-

pometabolism component was associated with AD-language with

an area under the curve (AUC) of 0.82 ( p = 0.011) ( Fig. 1 A). Two

components correlated with AD-visuospatial, one involving bilateral

occipito-parieto-temporal hypometabolism ( Fig. 1B ) and another in-

volving right posterior cingulate cortex (PCC) / precuneus and right

lateral parietal hypometabolism ( Fig. 1C ) with AUC measures of 0.85

( p = 0.009) and 0.69 ( p = 0.045), respectively. A fourth component

correlated at a trend level with AD-memory ( Fig. 1D ). This compo-

nent included predominantly bilateral inferior frontal, cuneus and

inferior temporal, and right inferior parietal hypometabolism (AUC

of 0.65, p = 0.062). The remaining FDG components showed no as-

sociation with clinical presentation (data not shown). These included

two components showing bilateral cerebellar hypometabolism, one

with bilateral medial orbito-frontal, inferior frontal, and right supe-

rior frontal hypometabolism, and one with cerebellar and superior

frontal hypometabolism. Supplementary Figs. S1–S4 illustrate the as-

sociations with clinical groups. 

None of the seven estimated PiB components (left PCC and lateral

parietal; right parieto-temporal; bilateral cerebellar; bilateral inferior

frontal; bilateral temporal, frontal, parietal, PCC / precuneus, and cere-

bellar; bilateral fronto-orbital and PCC / precuneus; bilateral fronto-

orbital and middle frontal) were significant predictors in classifying

clinical groups after adjusting for age, sex, education, and ApoE ε4. 
Mean FDG and PiB images of each of the three groups are provided

as Supplementary Figs. S5–S10 to allow for qualitative comparison of

PET patterns across groups. 

3.4. Joint FDG and PiB components 

We also explored the joint predictive value of FDG and PiB inde-

pendent components in correctly classifying a given diagnostic group

from the rest and among all possible pair combinations identified,

with paired glucose metabolism and amyloid deposition components

providing significant improvement in classification accuracy relative

to the ones based on unimodal components. The AD-memory re-

lated hypometabolism component (shown in Fig. 1D ) jointly with a

PiB component with amyloid deposition in the left posterior parietal

cortex and lateral parietal regions provided an AUC measure of 0.76

( Supplementary Fig. S11 ), significantly larger than single modality

(AUC of 0.65, p < 0.01). The same PiB component when considered

jointly with the AD-language related hypometabolism component

( Fig. 1A ) significantly ( p < 0.01) improved the classification accuracy

from AUC = 0.82 to AUC = 0.87 ( Supplementary Fig. S12 ). A more

diffuse PiB component including temporal, parietal, PCC / precuneus,

and lateral and medial frontal amyloid deposition when considered

jointly with the first AD-visuospatial related hypometabolism compo-

nent shown in Fig. 1B in a multimodal principal component analysis

diagnosis prediction model increased the unimodal hypometabolism

AUC measure of 0.85–0.88 ( p < 0.01) ( Supplementary Fig. S13 ). 

3.5. Correlated FDG and PiB components 

We found a significant and spatially distributed component pair

across all subjects, depicting an association between FDG and PiB. In

this component pair, increased frontal and decreased PCC / precuneus

PiB binding was correlated with decreased FDG uptake in the frontal,

occipital and temporal regions ( Fig. 2 ). This component pair showed a

partial correlation of 0.75, with an FDR-corrected significance level of

p < 10 −6 . The adjusted R 2 value of the fitted model for this component

pair was 0.56 with p < 10 −8 . The FDG component in this pair was the

same component that showed, on its own, a trend correlation with

the AD-memory phenotype ( p = 0.062, Fig. 1D ). The PiB component

was not correlated with a specific phenotype (as was true for all PiB

components). This combined PiB-FDG component did not correlate

with a specific group. 

4. Discussion 

In this study we applied pICA to FDG-PET and PiB-PET data in

an attempt to better understand the relationships between glucose

metabolism, amyloid aggregation and clinical phenotype in AD. We

found that memory, language, and visuospatial-predominant clini-

cal variants of AD were associated with independent components of

glucose metabolism but not with specific patterns of β-amyloid depo-

sition. FDG and PiB jointly improved the classification of one variant

from others, though the added effect of joint FDG-PiB versus FDG

alone was relatively small. Multivariate analyses further revealed an

inverse relationship between A β deposition and glucose metabolism

in the frontal cortex and PCC / precuneus, providing insight into the

biological interplay between these two biomarkers in key regions of

AD-related degeneration. 

4.1. Replicating previous univariate efforts using a multivariate 

approach 

Using pICA we replicated previous findings from univariate anal-

yses demonstrating that the clinical phenotype in AD is strongly

linked to anatomic patterns of glucose hypometabolism but not

to the spatial distribution of amyloid deposition ( Lehmann et al.,

http://www.r-project.org/
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Table 2 

Neuropsychological profiles. 

Neuropsychological tests AD-memory ( n = 27) AD-language ( n = 10) AD-visuospatial ( n = 9) p values 

Memory 

CVLT-SF total learning ( / 36) 15.4 (6.9) 17.3 (6.8) 15.3 (3.8) 0.70 

CVLT-SF 10-min recall ( / 9) 1.1 (2.2) 3.5 (2.6) 2.1 (2.3) 0.03 * 

Modified Rey 10-min recall 

( / 17) 

2.2 (3.3) 6.0 (3.4) 2.9 (3.6) 0.01 * 

Language 

Boston naming test ( / 15) 10.4 (3.9) 9.8 (4.1) 10.6 (4.8) 0.91 

Syntax comprehension ( / 5) 3.3 (1.1) 3.0 (1.3) 2.1 (1.9) 0.10 

Letter fluency (D words) 9.5 (5.0) 5.9 (3.3) 8.9 (4.0) 0.12 

Category fluency (animals) 8.9 (4.4) 8.6 (4.1) 9.3 (4.6) 0.93 

Sentence repetition ( / 5) 3.3 (1.6) 1.5 (0.7) 3.2 (1.0) 0.003 * 

Repetition and working 

memory 

Digit span forward ( / 9) 5.1 (1.2) 4.2 (0.8) 5.3 (1.0) 0.18 

Digit span backward ( / 8) 3.7 (1.7) 3.0 (0.7) 2.4 (0.5) 0.05 

Executive functions 

Modified trails B correct 

lines / min 

10.2 (11.1) 9.1 (7.2) 5.7 (5.3) 0.56 

Stroop interference no. correct 17.3 (14.5) 16.9 (10.5) 14.6 (12.0) 0.90 

Visuospatial 

Modified Rey copy ( / 17) 11.8 (4.7) 14.0 (3.8) 7.6 (4.9) 0.02 * 

VOSP number location ( / 10) 6.9 (3.2) 8.0 (2.9) 4.2 (2.3) 0.06 

CATS 

Affect naming ( / 16) 11.7 (2.1) 12.3 (2.6) 12.0 (1.0) 0.82 

Face matching ( / 12) 10.7 (0.5) 11.7 (0.5) 9.7 (2.0) 0.13 

Calculation 

Arithmetics, written ( / 5) 3.3 (1.5) 3.0 (0.7) 2.8 (1.2) 0.51 

Abbreviations: California Verbal Learning Test (CVLT); Comprehensive Affect Testing System (CATS); Visual Object and Space Perception (VOSP). Missing data: modified Rey copy: 

1 AD-visuospatial; Boston naming: 2 AD-memory; syntax comprehension: 2 AD-memory, 1 AD-visuospatial; letter fluency: 1 AD-memory; digit span forward: 20 AD-memory, 

4 AD-language, 5 AD-visuospatial; digit span backward: 1 AD-memory; modified trails: 7 AD-memory, 1 AD-language, 2 AD-visuospatial; Stroop: 6 AD-memory, 2 AD-language, 

2 AD-visuospatial; VOSP number location: 3 AD-memory, 1 AD-language, 3 AD-visuospatial; arithmetic: 1 AD-visuospatial; face matching: 10 AD-memory, 3 AD-language, 3 

AD-visuospatial; affect naming: 10 AD-memory, 3 AD-language, 4 AD-visuospatial. 
∗p < 0.05. 
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013a ). Specifically, three independent glucose metabolism compo- 

ents were associated with specific clinical variants with high pre- 

ictor accuracy. First, a left inferior frontal and temporoparietal hy- 

ometabolism component was associated with AD-language. This is 

ongruent with previous studies demonstrating asymmetric left tem- 

oroparietal atrophy and hypometabolism in AD-language ( Gorno- 

empini et al., 2004 ; Rabinovici et al., 2008 ). Two AD-visuospatial 

elated components were found, one involving bilateral occipito- 

arieto-temporal hypometabolism and right PCC / lateral parietal hy- 

ometabolism. Again, this is in agreement with previous literature 

howing focal patterns of neurodegeneration with bilateral occipito- 

arieto-temporal atrophy and hypometabolism in AD-visuospatial 

 Lehmann et al., 2011 ; Migliaccio et al., 2009 ; Rosenbloom et al., 2011 ; 

hitwell et al., 2007 ). The AD-memory variant was not significantly 

ssociated with a specific FDG component. This may be due to inclu- 

ion of relatively young AD patients in this group — patients with early 

ge-of-onset AD show relatively diffuse cognitive deficits, including 

nvolvement of language and visuospatial domains that overlaps with 

he more focal AD-language and AD-visuospatial groups ( Lehmann et 

l., 2012 ; Migliaccio et al., 2009 ). However, at a trend level we found 

n association with a primarily frontal component, consistent with 

revious studies demonstrating that frontal involvement may distin- 

uish this variant of AD from others ( Lehmann et al. , 2013a and b ; 

igliaccio, 2009 ). 

In contrast with the syndrome-specific FDG components, PiB bind- 

ng was similar across clinical syndromes. The fact that none of the 

even estimated amyloid deposition components were significant 

redictors of clinical conditions is congruent with most studies, which 

ave reported overlapping patterns of amyloid accumulation in dis- 

inct variants of AD ( Lehmann et al., 2013a ). Although single case 

eports and small series initially reported atypical binding patterns in 

D-language and AD-visuospatial ( Ng et al., 2007 ), larger series have 
found a diffuse pattern indistinguishable from typical AD and dissoci- 

ated from their focal structural and metabolic signatures ( de Souza et 

al., 2011 ; Lehmann et al., 2013a ; Leyton et al., 2011 ; Rabinovici et al., 

2008 ; Rosenbloom et al., 2011 ). Other studies comparing PiB binding 

in early and late age-of-onset AD found that differences in cogni- 

tive profiles could not be explained by the distribution or burden of 

PiB, which was identical in the groups ( Rabinovici et al., 2010 ). Al- 

together, our multivariate pICA strategy replicated previous findings 

using mass-univariate voxel-wise group comparisons. 

4.2. Linking metabolic patterns to specific networks of degeneration in 

the brain 

There is accumulating evidence that neurodegeneration occurs in 

specific networks in the brain ( Seeley et al., 2009 ; Zhou et al., 2012 ). 

A recent PET study ( Lehmann et al., 2013a ) showed that patterns of 

glucose hypometabolism in early-onset AD (EOAD), AD-language, and 

AD-visuospatial matched the network templates of executive-control, 

language, and visual networks, respectively. Notably, the FDG com- 

ponent linked by pICA in our study to AD-language bears a striking 

resemblance to the language network as identified by task-based or 

task-free fMRI ( Fig. 1A ; Shirer et al., 2012 ; Smith et al., 2009 ). The FDG

components linked with AD-visuospatial closely resemble a high- 

order visual network ( Fig. 1B ) and a right hemisphere posterior de- 

fault mode network (DMN; Fig. 1C ). These findings support a recently 

proposed model postulating that the emergence of heterogeneous AD 

phenotypes is related to the involvement of specific functional net- 

works that converge in the DMN ( Lehmann et al., 2013b ). This model 

integrates the hypothesis that aggregation of amyloid-beta may be 

driven by total flow of neuronal activity (yielding diffuse and sym- 

metric patterns of PiB binding throughout ‘cortical hubs ’ ), whereas 
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Fig. 1. A) AD-language associated component included left inferior frontal and temporoparietal hypometabolism, B) AD-visuospatial related component 1 involved bilateral 

occipito-parieto-temporal hypometabolism, C) AD-visuospatial related component 2 involved right PCC / precuneus and right lateral parietal hypometabolism, and D) AD-memory 

associated component included predominantly bilateral inferior frontal, but also cuneus and inferior temporal, and right inferior parietal hypometabolism. Images are presented 

on a study-specific template in radiological convention. Supplementary Figures S1–S4 illustrate the associations with clinical groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the aggregation of tau may be driven by transneuronal spread, gener-

ating patterns of neurodegeneration that coincide with specific func-

tional networks and ultimately lead to specific clinical phenotypes

( de Calignon et al., 2012 ; Seeley et al., 2009 ; Zhou et al., 2012 ). 

4.3. Spatially distributed relationship between amyloid deposition and 

metabolism 

An additional goal of this study was to explore spatially dis-

parate relationships between patterns of A β deposition and glucose

metabolism across a heterogenous AD population. We found a sig-

nificant pICA component pair, in which increased frontal and de-

creased PCC / precuneus β-amyloid deposition was correlated with

decreased glucose metabolism in frontal, occipital and lateral tem-

poral regions. The patterns of PiB and FDG showed partial overlap

in medial prefrontal cortex, but were otherwise spatially disparate.

In the context of current models of the AD pathophysiologic cascade

( Jack et al., 2013 ), these findings suggest that A β may exert both local

and remote effects on brain metabolism, the latter potentially due

to deafferentation of remote areas ( Bourgeat et al., 2010 ). Traditional

univariate approaches have similarly demonstrated both local and

remote correlations between PiB and FDG ( Cohen et al., 2009 ; Edison

et al., 2007 ; Engler et al., 2006 ). Our results are further congruent

with a recent report in mild cognitive impairment, which showed via

pICA that increased amyloid- β burden in the left precuneus / cuneus

and medial-temporal regions was associated with increased brain
atrophy rates in the left medial-temporal and parietal regions, while

increased amyloid- βburden in bilateral precuneus / cuneus and pari-

etal regions was associated with increased brain atrophy rates in the

right medial temporal regions ( Tosun et al., 2011 ). 

Intriguingly, the PiB component in this pair consisted of increased

medial frontal and decreased PCC / precuneus binding. It is important

not to misinterpret this finding as evidence of low amyloid in PCC /
precuneus — rather it must be interpreted as a dynamic relationship

between regional levels of amyloid accumulation (high in the medial

frontal cortex, low in the PCC / precuneus) and brain metabolism. This

raises the possibility that variations in amyloid aggregation within key

regions of the DMN may modulate the pattern of neurodegeneration

in AD. Notably, hypometabolism in the prefrontal and occipital cortex

typically occurs in advanced clinical stages of AD ( Kim et al., 2005 ),

whereas medial prefrontal amyloid aggregation may be an early event

in the AD cascade ( Sepulcre et al., 2013 ), further underscoring the

relative resilience of the prefrontal cortex to AD pathology ( Furst et

al., 2012 ). While the reliability and significance of this observation

will require further (and ideally longitudinal) study, our observation

underscores the complexity of the relationship between amyloid and

metabolism, which appears to vary by brain region and disease state

( Cohen et al., 2009 ; La Joie et al., 2012 ). Future studies with larger

sample sizes should also attempt to explore whether joint spatial

relationships between PiB and FDG correlate with specific clinical

features or neuropsychological profiles. 
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Fig. 2. Component pair depicting an association between hypometabolism and amyloid deposition. The spatial extent of this component pair showed that increased frontal 

and decreased PCC / precuneus β-amyloid deposition correlated with decreased glucose metabolism in the frontal, occipital and temporal regions. Images are presented on a 

study-specific template in radiological convention. Abbreviations. Amyloid beta (A β); Alzheimer’s disease (AD); default mode network (DMN); posterior cingulate cortex (PCC). 
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.4. Role of multivariate analyses 

Use of multivariate techniques in the analysis of imaging data 

s gaining traction on the field. Multivariate approaches evaluate 

orrelation / covariance of data across brain regions rather than pro- 

eeding on a voxel-by-voxel basis. They may be particularly helpful 

hen integrating multiple imaging modalities that capture different 

lements of disease pathophysiology ( Tosun et al., 2011 ). Unlike uni- 

ariate approaches, which treat each voxel or region as a spatially 

ndependent unit, multivariate analyses can explicitly examine the 

nter-relationship among these units and allow for better inference 

f the biological interconnectivity among brain regions ( Devanand 

t al., 2006 ; Eidelberg et al., 1991 ; Moeller and Eidelberg, 1997 ; see 

’Toole et al., 2007 for a review). Thus, results can be more easily 

nterpreted as a signature of neural networks, which may be a key 

lement to understanding the heterogeneity and pathophysiology of 

eurodegenerative disease ( Lehmann et al. , 2013a and b ; Seeley et 

l., 2009 ; Sepulcre et al., 2013 ; Zhang et al., 2012 ). Such approaches 

lso provide greater statistical power when compared with univari- 

te techniques, which are forced to employ very stringent, and often 

verly conservative, corrections for voxel-wise multiple comparisons. 

hese strengths can be leveraged to improve diagnostic classification, 

s seen in our joint classification analysis, where the combination of 

iB and FDG improved the discrimination of clinical variants com- 

ared to FDG alone ( Habeck et al., 2008 ). 
4.5. Limitations 

This study has several limitations. While our patients met the NIA–

AA criteria for high-likelihood AD, pathological confirmation of the 

diagnosis was not available. Our sample size was too small to explore 

relationships between individual components and specific cognitive 

tests. We could not include a structural imaging component because 

MRIs were performed on four different scanners with three differ- 

ent magnetic field strengths. We did not correct PET data for partial 

volume loss, because (1) we were interested in FDG as a marker of 

neurodegeneration (rather than glucose metabolism per se), espe- 

cially in lieu of MRI data, such that it was advantageous to include the 

effects of atrophy and (2) atrophy correction of PiB data can introduce 

significant bias, and the utility and optimal methods are controver- 

sial ( Thomas et al., 2011 ). In the past we have found identical results 

with and without atrophy correction examining similar relationships 

with univariate methods ( Lehmann et al., 2013a ; Rabinovici et al., 

2010 ; Rosenbloom et al., 2011 ). pICA assumes that measurements in 

each image voxel are independent and that the overall noise is iden- 

tically distributed assumptions which may not be fully met by PET 

data. PiB is a relatively novel tracer and may have ceiling effects or 

undescribed binding interactions that may limit data interpretation. 

Furthermore, PiB binds to fibrillar forms of A β but not to the more 

toxic soluble A β aggregates. Finally, as discussed above, our cross- 

sectional design limits inferences about cause / effect and temporal 

relationships between amyloid aggregation and brain metabolism —
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further, longitudinal studies will be needed to further clarify these

issues. 

5. Conclusions 

Multivariate analysis of PET data from a clinically heterogeneous

population of patients with probable AD showed that clinical pheno-

type correlated with independent components of glucose metabolism

but not with patterns of β-amyloid deposition. These findings are

strikingly similar to those derived from univariate paradigms and

provide additional support for involvement of specific functional net-

works in clinical variants of AD via A β-independent mechanisms.

pICA revealed that β-amyloid deposition and glucose metabolism

show both local and spatially disparate relationships across the brain,

highlighting the complexity of the relationship between molecular

pathology and neurodegeneration in AD. Further clarifying the re-

lations between these processes is of utmost importance given the

effort to develop treatments targeting specific events in the AD patho-

physiological cascade. 
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