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Modulation of Associative Learning in the Hippocampal-Striatal 
Circuit Based on Item-Set Similarity

Shauna M. Stark1, Amy Frithsen1, Aaron T. Mattfeld3, and Craig E.L. Stark1,2,4

1Department of Neurobiology and Behavior, University of California Irvine

2Center for the Neurobiology of Learning and Memory, University of California Irvine

3Department of Psychology, Florida International University

Abstract

Mounting evidence suggests that the medial temporal lobe (MTL) and striatal learning systems 

support different forms of learning, which can be competitive or cooperative depending on task 

demands. We have previously shown how activity in these regions can be modulated in a 

conditional visuomotor associative learning task based on the consistency of response mappings or 

reward feedback (Mattfeld & Stark, 2015). Here, we examined the shift in learning towards the 

MTL and away from the striatum by placing strong demands on pattern separation, a process of 

orthogonalizing similar inputs into distinct representations. Mnemonically, pattern separation 

processes have been shown to rely heavily on processing in the hippocampus. Therefore, we 

predicted modulation of hippocampal activity by pattern separation demands, but no such 

modulation of striatal activity. Using a variant of the conditional visuomotor associative learning 

task that we have used previously, we presented participants with two blocked conditions: items 

with high and low perceptual overlap during functional magnetic resonance imaging (fMRI). As 

predicted, we observed learning-related activity in the hippocampus, which was greater in the high 

than the low overlap condition, particularly in the dentate gyrus. In contrast, the associative 

striatum also showed learning related activity, but it was not modulated by overlap condition. 

Using functional connectivity analyses, we showed that the correlation between the hippocampus 

and dentate gyrus with the associative striatum was differentially modulated by high vs. low 

overlap, suggesting that the coordination between these regions was affected when pattern 

separation demands were high. These findings contribute to a growing literature that suggests that 

the hippocampus and striatal network both contribute to the learning of arbitrary associations that 

are computationally distinct and can be altered by task demands.
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1. Introduction

Many studies of memory function suggest that memory is not accomplished by a single 

system, but that there are multiple, anatomically distinct neural systems that support 

dissociable forms of learning and memory. For example, medial temporal lobe (MTL) 

structures are critical for the ability to rapidly form new long-term memories for facts, 

events, and relationships – often referred to as ‘declarative’ or ‘relational’ memory 

(Eichenbaum & Cohen, 2001; Squire, Stark, & Clark, 2004). A key feature of the 

declarative/relational memory system is its ability to quickly form new associations between 

arbitrary stimuli (Eichenbaum & Cohen, 2001). In contrast to the MTL, the striatum is 

known to be involved in a more incremental form of ‘habit’ or ‘procedural’ memory, tied to 

the gradual acquisition of stimulus-response associations using reward prediction error 

signals (Graybiel, 1995; Knowlton, Mangels, & Squire, 1996; Packard & Knowlton, 2002; 

Robbins, 1996; White, 1997). Classic studies of multiple memory systems have shown that 

the functions of these two areas can be doubly dissociated (Packard, Hirsh, & White, 1989; 

Packard & McGaugh, 1992). Some studies suggest that in certain situations, these two 

systems may compete for control of behavior (Moody, Bookheimer, Vanek, & Knowlton, 

2004; R. A. Poldrack et al., 2001), while other studies have found that they can coordinate 

their activity on a given task (Doeller, King, & Burgess, 2008; Hartley & Burgess, 2005; 

Mizumori, 2008; Voermans et al., 2004).

Historically, the striatum was thought to contribute only to habit learning, but it is now 

recognized that the striatum is a heterogeneous structure that is also involved in flexible 

action-outcome learning (Bornstein & Daw, 2012; Diuk, Tsai, Wallis, Botvinick, & Niv, 

2013; Tricomi, Balleine, & O’Doherty, 2009; Yin & Knowlton, 2006). The striatum is 

organized into three distinct, though partially overlapping anatomically defined divisions 

(Joel & Weiner, 1994, 2000; Parent, 1990; Seger, Peterson, Cincotta, Lopez-Paniagua, & 

Anderson, 2010) (Figure 1). The limbic division of the striatum includes the ventral 

striatum/nucleus accumbens and receives input from the amygdala, hippocampus, limbic, 

and paralimbic cortical areas. The associative division of the striatum includes the anterior 

caudate and anterior putamen and receives inputs from prefrontal, temporal, parietal, and 

cingulate cortices. The sensorimotor division of the striatum includes the posterior putamen 

and receives inputs from sensorimotor cortex. The vast majority of the neurophysiological 

studies of conditional visuomotor association learning have focused on the associative 

division of the striatum (Foerde, Braun, & Shohamy, 2013; Foerde & Shohamy, 2011; 

Miyachi, Hikosaka, & Lu, 2002). Striking learning-related signals have been observed in the 

caudate and putamen during a visuomotor task, particularly in the early and middle phases 

of learning (Buch, Brasted, & Wise, 2006; Romero, Bermudez, Vicente, Perez, & Gonzalez, 

2008). For example, spiking in the caudate correlated with the learning rate while activity in 

the putamen correlated with the learning curve during a conditional associative learning task 

in monkeys (Williams & Eskandar, 2006). Research from our lab has shown that anterior 

regions of the striatum, particularly the caudate, tracked the learning rate of new associations 

(Mattfeld & Stark, 2015, 2011). These observations are consistent with the role of the 

associative striatum in flexible, goal-directed learning, similar to that observed in the medial 

temporal lobe (Yin & Knowlton, 2006).
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The MTL is important for conditional visuomotor associative learning, particularly during 

the “flexible” early phase of learning and specializes in learning new associations between 

arbitrary elements in memory. Several computational models of the MTL have suggested 

that the hippocampus employs a process known as pattern separation to assist in the rapid 

storage of arbitrary associative information (McClelland, McNaughton, & O’Reilly, 1995; 

Treves & Rolls, 1994). This pattern separation process transforms similar representations 

into dissimilar representations (orthogonalization) so that learning can be rapid while 

avoiding deleterious interference effects that would result if the same connections used in 

prior learning were reused here. The cost comes in the form of a reduction in the ability to 

abstract regularities over the course of varied experience. It has been suggested that this set 

of constraints and trade offs may be a reason why the brain evolved multiple memory 

systems with different computational properties (McClelland et al., 1995; Sherry & 

Schacter, 1987).

The dentate gyrus (DG) subfield of the hippocampus has been heavily implicated in pattern 

separation processes within the MTL system. The sparse firing rate of the DG may result in 

unique, nonredundant representations ideal for this orthogonalization that then feed forward 

to the CA3 auto-associative network (Rolls, 2013). Activity consistent with pattern 

separation processing has been observed in firing rates in the DG to small changes in the 

environment that are insufficient to produce firing changes elsewhere in the hippocampus 

(Leutgeb, Leutgeb, Moser, & Moser, 2007; Neuneubel & Knierim, 2014). Likewise, 

functional neuroimaging studies in humans have shown the DG to be more responsive to 

small changes in input than other hippocampal subfields (Bakker, Kirwan, Miller, & Stark, 

2008; Lacy, Yassa, Stark, Muftuler, & Stark, 2011). Thus, the DG has a pronounced role in 

the pattern separation processing occurring within the hippocampus.

We have utilized the conditional visuomotor associative learning task to study the nature of 

the interaction between the MTL and the striatum, in which subjects learn to associate a 

visual cue with a particular motor response. Performance on this task is dependent on the 

integrity of the MTL (Gaffan, 1992; Murray, Baxter, & Gaffan, 1998; Murray & Wise, 

1996), with neurophysiological studies reporting strong MTL learning-related activity 

during task performance (Cahusac, Rolls, Miyashita, & Niki, 1993; Law et al., 2005; 

Mattfeld & Stark, 2015, 2011; Wirth et al., 2003). Previous studies have shown that while 

anterior striatal areas (associative striatum) are critical for the learning of sequential motor 

tasks, more posterior areas (sensorimotor striatum) are critical for the representation of well-

learned sequences (Miyachi et al., 2002). Regions in the associative striatum were engaged 

during the learning of new arbitrary associations (Boettiger & D’Esposito, 2005; Toni, 

Ramnani, Josephs, Ashburner, & Passingham, 2001) and activity for both the learning of 

new and expression of familiar associations in the caudate nucleus suggests a dual role for 

this region in associative learning (Grol, de Lange, Verstraten, Passingham, & Toni, 2006). 

Subsequent studies have shown that anterior regions in the striatum were robustly modulated 

by reward prediction error signals during associative learning (Brovelli, Coquelin, & 

Boussaoud, 2007; Haruno & Kawato, 2006) while posterior regions of the putamen were 

modulated by how well an association was known (Haruno & Kawato, 2006). Increasingly, 

there is evidence for interactions between the hippocampus and the striatum during reward-

based learning (G. E. Wimmer, Braun, Daw, & Shohamy, 2014; G. Elliott Wimmer & 
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Shohamy, 2012), though it is not clear as to whether these interactions are inherently 

competitive or collaborative (Shohamy & Turk-Browne, 2013).

In an earlier report, we employed a manipulation of the consistency of feedback (100% vs. 

80% valid) and of the consistency of the physical, motoric response (constant location vs. 

constant label and variable location) to alter the viability of MTL and striatal learning for 

solving the task (Mattfeld & Stark, 2015). Here, we tested their putative contributions to 

learning by altering the demands placed on learning via manipulating the similarity of the 

input stimuli. Using a similar conditional visuomotor associative learning task as before, we 

constructed sets of kaleidoscopic images with low or high perceptual overlap across the 

learning set (Figure 2). If a contribution of the hippocampus is the ability to learn different 

associations for even highly similar inputs via the process of pattern separation, the high-

overlap condition should differentially tax the hippocampus. It should be noted that the 

hippocampus is expected to continue to show activity that is modulated by how well 

associations have been learned across both overlap conditions similar to our prior work, 

simply more so in the high overlap condition due to an increased demand for pattern 

separation processing. Specifically, we predicted that the dentate gyrus subregion should be 

more sensitive to the overlap condition than the CA1 subfield due to its unique role in 

pattern separation processing. In contrast, we predicted that learning in the associative 

striatum should equally contribute to associative learning in both the high and low overlap 

conditions. We further investigated the interaction between the hippocampus and the 

associative division of the striatum to assess the how the connectivity between these regions 

may be modulated by the high versus low overlap condition.

2. Materials & Methods

2.1. Participants

A total of 24 young adults were recruited from the University of California, Irvine, provided 

written consent, and were compensated for their participation. One participant was excluded 

due to scanner error resulting in a loss of data, two subjects were removed for excessive data 

loss due to motion because they had >10% of TRs censored using a threshold of >1mm 

framewise displacement, and 1 was removed for moving 2cm between runs, resulting in the 

ROIs shifting out of the frame of view. Thus, we had a total of 20 usable participants (10 

female; mean age 21 years; range 18–26 years). All participants had no history of 

neurological disease or psychiatric illness and normal or corrected-to-normal vision. This 

research was performed in compliance with the UCI Institutional Review Board.

2.2. Materials

Stimuli were computer-generated kaleidoscopic images that we have used previously (Law 

et al., 2005; Mattfeld & Stark, 2015, 2011) presented in the center of the screen against a 

black background. We created multiple sets of images with high perceptual overlap (Figure 

2A) and low perceptual overlap (Figure 2B) that we drew from during the experiment. Low 

overlap sets contained 12 items to be learned concurrently and were constructed such that 

the colors used, base shape, and complexity (depth of recursion) were all random. High 

overlap sets contained 6 items to be learned concurrently and were constructed by 
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maintaining the colors, complexity, and color at depth in the algorithm. Behavioral pilot 

testing revealed that this balance of number of items to be learned concurrently resulted in a 

comparable learning rate across low and high overlap sets, effectively matching difficulty.

2.3. Conditional Visuomotor Associative Learning Task

In the conditional visuomotor associative learning (CVAL) task, participants were informed 

that each kaleidoscopic image was associated with a specific response corresponding to one 

of the four squares on the screen, learning through trial-and-error feedback (Figure 2C). 

Each trial began with the presentation of a kaleidoscopic image and four horizontal 

superimposed square outlines (500 ms) representing their button choices. A brief delay (700 

ms) followed the presentation of the stimulus in which the kaleidoscopic image was 

removed, leaving only the fixation cross and four square outlines on the screen. The 

response period (700 ms) began when the fixation cross was replaced by the cue “Go!”, 

during which the participants selected one of the four square outlines with an MR-

compatible button box. The selected square outline filled with white, indicating which 

response had been recorded. Feedback (800 ms) was provided following the response 

period: a green “yes” if they were correct, a red “no” if they were incorrect, or a “?” if they 

failed to respond in time. The inter-trial interval (300 ms) consisted of a central fixation 

cross.

In addition to the CVAL trials, we included baseline trials as a contrast condition that shows 

reduced hippocampal activity compared to rest (Stark & Squire, 2001). Participants were 

shown a fixed random visual static pattern with four squares filled with transparent white. 

One of the squares was randomly assigned as the target on each baseline trial and set to a 

slightly greater opacity than the three remaining options. Participants were instructed to 

identify the brightest box and press the corresponding button. Following their responses, the 

selected button turned fully-opaque white, indicating their selection and deterministic 

feedback was provided. The opacity of the target and foil boxes were initially 0.3 and 0.2 

respectively. Difficulty was titrated to maintain above chance, but below ceiling 

performance. If performance was 80% or better across a 10-trial moving window, then the 

target opacity was reduced by 10% of its current value. Conversely, if performance was 

below 50%, the target opacity was increased by 10% of its current value.

2.4. Prescan Training

Participants were trained on an independent set of kaleidoscopic images 24–48 hours prior 

to scanning in order to familiarize themselves with the task. They performed two runs with 

different sets of 12 low-overlap items, each presented 6 times, and one run with 6 high-

overlap items, each presented 12 times, for a total of 72 trials for each run. Each run also 

contained 20 baseline trials, randomly intermixed.

2.5. fMRI Imaging

All scanning was performed on a Phillips 3.0 Tesla Scanner (Best, the Netherlands), using a 

32-channel sensitivity encoding (SENSE) head coil at the Research Imaging Center at UC 

Irvine. During each scanning run, 138, T2*-weighted, single-shot echo-planar volumes were 

acquired along the long-axis of the hippocampus covering the basal ganglia and the majority 
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of the MTL in 34 slices (the temporal-polar portion of the MTL was not covered). Each slice 

was 1.8 mm thick separated by a 0.2 mm gap. Functional pulse sequences had a repetition 

time (TR) of 2000 ms, an echo time (TE) of 26 ms, a flip angle of 70°, an acquisition matrix 

size of 128 × 128 mm, a field of view (FOV) of 180 × 180 mm, and a SENSE factor of 2.5, 

resulting in an in-plane resolution of 1.5 × 1.5 mm. The first four functional volumes were 

discarded to accommodate for T1 equalization. Additionally, T1-weighted whole-brain 

anatomical images were acquired using a sagittal magnetization-prepared rapid gradient 

echo (MP-RAGE) scan (TR 11ms; TE 4.6 ms; flip angle 18°; matrix size 320 × 320 mm; 

FOV 240 × 150 mm; resolution 0.75 mm isotropic; 200 slices). Each fMRI run contained a 

total of 72 CVAL trials and an additional 20 baseline trials, for a total of 92 trials per run.

Functional runs were divided into a high overlap block of three scan runs, a low overlap 

block of six scan runs, and another high overlap block of three scan runs (using a different 

set of stimuli for each set of scans). Each run, regardless of overlap, had 72 behavioral trials. 

For high-overlap runs, this consisted of six stimuli presented twelve times each within a run. 

For low-overlap runs, this consisted of twelve stimuli presented six times each within a run. 

Thus, in the first set of three high-overlap runs, participants would have had 36 trials (12 

times each run for 3 runs) to learn the associations for each of six stimuli. In the set of six 

low overlap runs, participants would have had 36 trials (6 times each for 6 runs) to learn the 

associations for each of 12 stimuli. Finally, in the last set of three high overlap runs, 

participants would have had 36 trials (12 times each for 3 runs) to learn the associations for 

each of a separate set of six stimuli. Thus, the total number of trials to learn each association 

was constant (36) and the number of associations learned (12) was constant across high vs. 

low-overlap. What varied (in addition to the overlap) was the number being learned 

concurrently.

2.6. Behavioral Data Analysis

Consistent with our previous work (Law et al., 2005; Mattfeld & Stark, 2015, 2011), for 

each kaleidoscopic image, we used a logistic regression algorithm to calculate a trial-by-trial 

probability correct estimate as well as its 95% confidence interval (Smith, Stefani, 

Moghaddam, & Brown, 2005; Wirth et al., 2003). The algorithm uses a state equation 

(Gaussian random walk model) and an observation equation (Bernoulli model) to calculate 

trial-by-trial probability correct estimates for each stimulus based on behavioral performance 

(1 correct; 0 incorrect). These stimulus specific learning curves provide a measure of trial-

wise learning. We then grouped the trial-specific probability correct estimates into five 

equivalently spaced bins to create discrete memory strength indices (Str1 to Str5). We then 

used these memory strength indices to assess learning related changes in BOLD fMRI 

activity, based on how well each item to response association has been learned (with 5 being 

the best learned). By combining trials of similar memory strengths across stimuli, we 

increase our signal to noise when examining learning curves. In addition, this approach 

mitigates concerns over variations in learning rates across conditions because trials in each 

memory strength bin share the same approximate probability correct.
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2.7. fMRI Pre-processing

We used Analysis of Functional Neuroimages (AFNI; version 17.1.09)(Cox, 1996) software 

to perform most of the imaging data analyses. Functional data for the univariate analyses 

were slice-time and motion corrected using rigid-body transformation using the function 

align_epi_anat.py (Saad et al., 2009) and high pass filtered (f>0.016 Hz) using the 

3dBandpass function. Time points exceeding 3° rotation, 1 mm translation, or 2 standard 

deviations from the mean within run global signal intensity, as well as immediately adjacent 

TRs were removed. Each subject’s anatomical image was segmented into grey matter, white 

matter, and cerebral spinal fluid probability (CSF) maps using Freesurfer (Dale, Fischl, & 

Sereno, 1999; Fischl et al., 2002). In order to reduce the effects of physiological noise in the 

BOLD signal, we passed the filtered data through ANATICOR (Jo, Saad, Simmons, 

Milbury, & Cox, 2010) using the white matter and CSF maps created from Freesurfer. Each 

run was then concatenated into a single time series for each participant.

We used the ANTS toolkit (Avants, Epstein, Grossman, & Gee, 2008) to normalize each 

participant’s T1-weighted MP-RAGE to a MNI template. ANTS combines a 12-parameter 

affine registration with a diffeomorphic 3D vector field mapping (SyN) to perform 

invertible, smooth mappings between the original participant space and the model template 

space. We used a hand segmentation of the MTL, in template space, from previous work in 

our lab (Lacy et al., 2011) to define the anatomical ROIs for hippocampus, perirhinal, 

parahippocampal, and entorhinal cortices for both hemispheres and subsequently reverse 

warped the anatomical masks into the participant’s original space using ANTS’ multi-label 

interpolation. Similarly, we segmented the hippocampus into 3 regions: a combined dentate 

gyrus and CA3 (DG/CA3), CA1, and subiculum, based on our previous work (Stark & 

Stark, 2017) and warped these onto the individual. For the striatal regions of interest, 

Freesurfer segmentation routines (Dale et al., 1999; Fischl et al., 2002) were employed to 

identify the nucleus accumbens, the caudate, and the putamen regions for each participant in 

that participant’s original space. Further separation of the putamen into anterior and 

posterior regions was completed by splitting the putamen at slice y = 0. In the end three seed 

ROIs per hemisphere were created: the limbic division of the striatum was represented by 

the nucleus accumbens, the associative division included the caudate and the anterior 

putamen, and the sensorimotor division was represented by the posterior putamen. The 

resulting transformation parameters were then applied to the functional data.

2.8. fMRI Memory Strength Analyses

Behavioral design matrices included regressors for trials from the five memory strength 

indices, as well as the first presentation of each stimulus. We chose to include all five 

memory strength bins in our analysis, consistent with our previous studies (Law et al., 2005; 

Mattfeld & Stark, 2015, 2011). Using 3dDeconvovle (AFNI), we used a deconvolution 

approach based on multiple linear regression to analyze each participant’s data. The 

hemodynamic responses for each event of interest was estimated using 9 time-shifted tent 

functions, estimating the BOLD activity from 0–16 seconds after trial onset. The resulting 

time-shifted beta coefficients represent activity versus the perceptual baseline for each 

regressor of interest at a given time point in each voxel. To estimate each regressor of 

interest in the model, we combined the beta coefficients, summing over 4 to 12 seconds after 
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trial onset. This experimental design does not allow us to isolate activity related to distinct 

periods within each trial (e.g., action selection, feedback, etc.). Thus, the summed estimate 

for each regressor of interest cannot be used to interpret specific within trial processes, but 

instead, reflects the activity over the entire trial.

Based on our prior work with this task (Law et al., 2005; Mattfeld & Stark, 2015, 2011), we 

hypothesized that changes in hippocampal learning would exhibit a monotonic increase, 

consistent with a roughly linear trend that varied as a function of high or low overlap. In 

contrast, we predicted that the associative striatum would demonstrate a quadratic 

relationship with memory strength. Therefore, we performed an anatomical analysis on the 

following bilateral ROIs: hippocampus, with a specific comparison between the DG/CA3 

and CA1 subfields), and the associative striatum (the combined anterior putamen and 

anterior caudate). In exploratory analyses, we also examined activity in the entorhinal cortex 

(ERC), perirhinal cortex (PRC), parahippocampal cortex (PHC), posterior caudate, posterior 

putamen, pallidum, and nucleus accumbens, evaluating the betas for each of the 5 memory 

strengths. We then calculated a 2×5 repeated-measures ANOVA with overlap (high or low) 

and memory strength (1,2,3,4,5) as variables for each region. One participant was a clear 

outlier, with beta values greater than 3 standard deviations greater than the mean in the 

hippocampus and was therefore removed from that analysis.

2.9. Functional Connectivity Analyses

To assess functional connectivity between the striatum and medial temporal lobe, we 

employed ROI-to-ROI correlation analyses. Functional connectivity refers to the temporal 

correlations of the time series between spatially separated brain regions, which may be 

modulated by task demands. The functional connectivity analysis pipeline differed from the 

previous preprocessing pipeline in the following ways: we used a temporal bandpass filter of 

0.009 to 0.1 Hz (Fox et al., 2005) and we used a stricter criterion to censor out TRs due to 

excessive motion (0.5mm and/or 0.5 degrees). From the regression analysis using 

3dDeconvolve (AFNI), the average residual time-series were then extracted separately for 

the high and low overlap runs for each ROI. Pearson’s r correlation coefficients were then 

calculated between regions. We first wanted to examine functional connectivity between the 

hippocampus (and additionally, the dentate gyrus) and the associative division of the 

striatum. We compared the correlations for the high and low conditions using paired t-tests. 

Then we examined functional connectivity between the three striatal divisions (associative, 

limbic, and sensorimotor) and the hippocampus to evaluate the specificity of this functional 

connectivity pattern. These correlation values were Fisher’s r-to-z transformed and 2 

(interference: high or low) × 3 (striatal division: limbic, associative, sensorimotor) repeated-

measures ANOVAs were calculated on the transformed values. All statistical analyses were 

performed using Prism 6.0h (www.graphpad.com).

3. Results

3.1. Behavioral Results

The estimated onset of learning was defined as the trial when the lower 95% confidence 

interval exceeded chance performance (25%). This measure was well-matched across 
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conditions as the 9.6 median trials required in the high-overlap condition (SD = 3.5) was not 

reliably different than the 8.3 median trials required in the low-overlap condition (SD=4.2; 

paired-t(19) = 1.12, p = .28). Additionally, there was no difference between conditions when 

the high overlap condition was separated into the first (median: 10.45) and second (median: 

11.8) blocks (F(2,19) = 2.1, p = .15) A more robust measure of learning is the area under the 

curve measuring the probability correct for each item (or in its quantized version, the sum of 

the five strength bins per item). Here, we could resolve a small difference in performance 

despite our pilot testing to match difficulty across conditions as there was a greater area 

under the curve for the low-overlap condition (mean = 27.7, SD = 3.5) than the high-overlap 

condition (mean = 24.5, SD = 3.7; paired-t(19) = 4.2, p<.01), reflecting slightly more rapid 

learning in the low-overlap condition. A comparison of the two high overlap conditions 

revealed no difference between the first (24.2) and second (24.9) blocks (paired-t(19) = .53, 

p=.60). We observed similar learning behavior across the conditions (Figure 3). Learning 

curves were created by averaging the trial-wise probability-correct estimates across all 

stimuli within a block and then across subjects. The shading indicates the averaged 95%-

confidence interval of this estimate.

3.2. fMRI Memory Strength Results: Hippocampus & Associative Striatum

In the hippocampus, a 2×5 repeated-measures ANOVA (condition: high vs low overlap and 

memory strength: strengths 1–5) revealed differences in activation in the high compared to 

low-overlap condition (main effect of condition: F(1,17) = 4.3, p=.05), that changed with 

memory strength (main effect of memory strength: F(4, 68) = 27.1, p<.0001) similarly 

across conditions (no significant interaction: F(4,68) = 2.0, p=.10) (Figure 4A). Post hoc 
analyses revealed that the main effect of condition was driven by greater activation in the 

hippocampus for the high than the low condition (t(18) = 2.1, p=.05). Trend analyses 

supported the observation that the main effect of memory strength was the result of both 

linear (F(1,88) = 18.7, p < 0.001) and quadratic (F(1,87) = 11.9, p < 0.01) increases in 

activation across learning. Note, that this quadratic component is driven heavily by the first 

memory strength bin where the estimate of the probability correct on that trial is well below 

chance (0–0.2, chance=0.25). Without this memory strength bin, the trend is better fit by a 

line (extra-sum-of-squares F-test). We chose not to overly interpret the value of this bin and 

include it in other analyses presented here but draw attention to the potential issue by lightly 

shading out this point in relevant figures.

In contrast, in the associative striatum, we observed activity that varied by memory strength, 

but not by overlap condition (Figure 4B). A 2×5 ANOVA found changes in activation across 

memory strength (main effect of memory strength: F(4,76) = 2.6, p<.05), but no differences 

in activation in the high and low overlap conditions (no main effect of condition (F(1,19) = .

03, p = .87) and no interaction (F(4,76) = .34, p = .85)). Post hoc trend analyses showed that 

the main effect of memory strength was best captured by a negative quadratic trend (F(1,97) 

= 3.7, p < 0.06). In order to concretely address whether these two regions varied in their 

activity due to overlap, we averaged the data across the 5 memory bins and entered them 

into a repeated-measures 2×2 ANOVA (condition: high vs low overlap and region: 

hippocampus and striatum). We observed greater activity in associative striatum than the 

hippocampus (main effect of region: F(1,17) = 21.91, p<.001), and critically, a trend towards 
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a significant interaction between overlap and condition (F(1,17) = 3.89, p =. 06). Sidak’s 

multiple comparisons test revealed an effect of high vs low overlap for the hippocampus 

(t(17) = 2.46, p = .049), but not for the associative striatum (t(17) = 0.33, p =. 94).

In summary, activity in the hippocampus was greater during the high overlap condition but 

increased similarly for both conditions across memory strength. While activity in the 

associative striatum was not sensitive to overlap, it showed a decrease in activity across 

memory strength when associations were well-learned. Thus, as predicted, pattern separation 

demands modulated learning related activity in the hippocampus, but not in the associative 

striatum.

3.3. fMRI Memory Strength Results: DG/CA3 and CA1 Hippocampal Subfields

We hypothesized that the dentate gyrus (DG/CA3; combined with the CA3 here due to 

limitations in resolution allowing for accurate differentiation) would demonstrate a 

difference in activity for high vs low overlap, consistent with pattern separation processing, 

while the CA1 would be agnostic to this manipulation. Consistent with this hypothesis, the 

DG/CA3 showed a difference in activation in the high and low overlap conditions (main 

effect of condition: F(1,17) = 6.0, p=.02) that changed across learning (main effect of 

memory strength: F(4,68) = 14.0, p<.0001), but no interaction (F(4,68) = 1.0, p = .39). Post 
hoc analyses revealed that the main effect of condition was driven by greater activation in 

the DG/CA3 for the high than the low condition (t(18) = 2.4, p<.05). Post hoc trend analyses 

also revealed quadratic increases across memory strength for both high (F(1,87) = 3.6, p=.

06) and low (F(1,87) = 7.2, p<.01) overlap conditions and an extra-sum-of-squares F-test 

found these to curves to differ (p<0.05). Meanwhile, the CA1 showed a change in activity 

across learning (main effect of memory strength: F(4,68) = 16.16, p<.0001), but no 

modulation by low and high overlap condition or interaction. Post hoc trend analyses 

revealed a quadratic increase in activity across memory strength (F(1,87) = 12.2, p<.001). 

These findings (Figure 5) are consistent with previous reports showing greater activity in the 

DG/CA3 when pattern separation demands are high (Bakker et al., 2008; Kirwan & Stark, 

2007; Lacy et al., 2011).

3.4. fMRI Memory Strength Results: Exploratory Analyses

After examining our a priori regions of interest, we were interested in whether other medial 

temporal (entorhinal (ERC), perirhinal (PRC), and parahippocampal cortex (PHC)), 

subiculum subfield of the hippocampus, or striatal regions (sensorimotor striatum = posterior 

putamen, and limbic striatum = nucleus accumbens) showed a modulation of activity by 

high and low overlap. We implemented 2×5 repeated-measures ANOVAs (condition: high vs 

low overlap and memory strength: strengths 1–5) and Bonferroni-corrected for multiple 

comparisons of 6 ROIs for a modified p-value threshold of p<.001. We found an effect of 

learning in the PRC (main effect of memory strength: F(4,76) = 5.6, p=.0005) and the effect 

of memory strength was best modeled by an increasing linear trend across memory strength 

(F(1,93) = 5.48, p<.05). Additionally, we found an effect of learning in the subiculum (main 

effect of memory strength: F(4,68) = 8.5, p<.001) but no effect of high or low. In a number 

of these regions, we found some evidence for an effect of overlap similarity, but they were 

Stark et al. Page 10

Cortex. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



less reliable as they failed to pass the threshold set when correcting for multiple 

comparisons, which can be seen in Table 1.

3.5. Functional Connectivity Results: Associative striatum

We hypothesized that if the associative striatum and hippocampus shared a cooperative 

relationship, then the functional connectivity of these two regions should be modulated by 

the high vs low overlap conditions. Indeed, in this planned comparison, we found evidence 

for greater functional connectivity between the hippocampus and associative striatum in the 

high (mean: .26) than the low condition (mean: .21) (paired-test: t(18) = 1.97, p = .06), 

driven in large part by functional connectivity in the DG/CA3 (paired t-test: t(18) = 2.69, p=.

02; high mean: .22; low mean: .14). While these findings are consistent with our hypothesis, 

it is possible that the functional connectivity between the hippocampus and other regions of 

the striatum would be similarly affected.

Therefore, we followed up this planned comparison by exploring the functional connectivity 

between the hippocampus and all three divisions of the striatum (associative, limbic, and 

sensorimotor) post hoc. We entered the data into a 2 (overlap: low or high) × 3 (striatal 

division: limbic, associative, and sensorimotor) repeated-measures ANOVA (Figure 6). 

However, there was no main effect of striatal division (F(2,36) = 2.2, p=.13) or overlap 

(F(1,18) = 2.7, p=.12), and no significant interaction (F(2,36) = 1.2, p=.31). We repeated this 

analysis with functional connectivity for just the DG/CA3 and found a marginal main effect 

of overlap (F(1,18) = 3.66, p=.07; high mean: .20, low mean: .16), and a marginal interaction 

(F(2,36) = 2.94, p = .07), but no effect of striatal division (F(2,36 = 1.4, p=.25). In follow-up 

paired t-tests, we observed greater modulation of high and low overlap in the DG/CA3 for 

the associative striatum than the sensorimotor striatum (t(18) = 2.43, p<.05) and marginally 

for limbic striatum (t(18) = 1.99, p=.06). These results reinforce the planned comparisons, 

showing modulation of the functional connectivity difference between high and low overlap 

for the associative striatum compared to the limbic or sensorimotor divisions of the striatum, 

although some of these effects are only marginally significant.

4. Discussion

The goal of the current study was to evaluate hippocampal and associative striatal 

contributions to learning a conditional visuomotor associative learning task when the stimuli 

had high or low perceptual overlap. Consistent with our prior findings (Law et al., 2005; 

Mattfeld & Stark, 2015, 2011), we predicted that activity in the hippocampus would track 

learning (e.g., memory strength), which might be exacerbated when pattern separation 

demands are high (e.g., the high overlap condition). We found that the hippocampus does 

indeed track learning in this task. More interestingly, activity was higher in the hippocampus 

for high overlap than low overlap trials, perhaps reflecting the greater demands on pattern 

separation supported by the dentate gyrus. Indeed, the combined DG/CA3 hippocampal 

subfield showed this pattern, while the CA1 subfield did not. In contrast to the hippocampus, 

we predicted learning-related activity in the associative striatum would not be modulated by 

high or low overlap, which is what we observed here.
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These results support a growing number of studies and models that propose that the 

hippocampus (and the dentate gyrus in particular) uses pattern separation and pattern 

completion mechanisms to be able to rapidly store and later retrieve arbitrary associative 

information (Norman & O’Reilly, 2003; Rolls, 2016; Yassa & Stark, 2011). While pattern 

separation involves the orthogonalization of overlapping representations into distinct 

memory traces, pattern completion refers to the process by which stored memory 

representations may be reactivated based on noisy or degraded cues (often thought of as 

driven by attractor dynamics). Evidence for the role of these subfields in pattern separation 

and completion has been mounting in both animal and human studies. Rodent studies have 

demonstrated that lesions to the dentate gyrus (DG) result in failures of pattern separation 

behavior (Gilbert, Kesner, & Lee, 2001; Goodrich-Hunsaker, Hunsaker, & Kesner, 2008) 

and that DG cells have been found to alter their firing in response to small changes in input 

that are insufficient to alter firing patterns elsewhere in the hippocampus (Leutgeb et al., 

2007; Neuneubel & Knierim, 2014). Likewise, in humans, BOLD fMRI activity consistent 

with pattern separation has been observed in the DG or combined DG/CA3 subfields 

(Bakker et al., 2008; Berron et al., 2016; De Shetler & Rissman, 2017; Lacy et al., 2011). In 

the current data, greater DG/CA3 activity in the high overlap condition may be driven by 

pattern separation processes occurring in the dentate gyrus.

The hippocampus receives inputs from the perirhinal (PRC) and parahippocampal (PHC) 

cortices via the entorhinal cortex. These regions have traditionally been associated with the 

‘what’ and ‘where’ pathways, with the PRC involved in object recognition memory (Ahn & 

Lee, 2015; Watson, Wilding, & Graham, 2012) and the PHC involved in spatial memory 

processing (Bohbot et al., 2015; Duzel et al., 2003; R. Epstein, Harris, Stanley, & 

Kanwisher, 1999; Russell Epstein, Smith, & Ward, 2009). In an exploratory analysis of these 

medial temporal regions, only the PRC showed learning-related activity, with increasing 

values across memory strength (consistent with object-like learning), but no modulation by 

overlap condition.

The striatal learning system is comprised of a variety of networks also involved in learning, 

but with unique property dynamics. We divided the striatum into three divisions following 

the work of others (Hikosaka et al., 1999; Yin & Knowlton, 2006): 1) the sensorimotor 
division of the striatum (including the posterior putamen) is responsible for the execution of 

motor sequences; 2) the associative division of the striatum (including the anterior caudate 

and anterior putamen) is predominately involved in the early stages of learning; and 3) the 

limbic division of the striatum (including the ventral striatum/nucleus accumbens) 

contributes to performance of well-learned sequences. We focused on the associative 

striatum, which coordinates with prefrontal cortex (PFC) during learning and is strongly 

modulated by action-outcome contingencies that are critical during the early stages of 

learning (Poldrack et al., 2005; Yin & Knowlton, 2006). Here, we observed that the 

associative striatum showed a modulation of activity by memory strength, consistent with 

prior studies (Mattfeld & Stark, 2015, 2011), where we described a quadratic relationship 

across memory strengths, which could be modulated by stochastic feedback (Mattfeld & 

Stark, 2015). Activity levels were relatively flat over memory strengths 1–4 and then 

dropped for memory strength 5. This pattern mirrors the rise in beta values in the 
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hippocampus for these very well-learned items, raising the possibility that these regions may 

be cooperatively interacting during the course of learning.

While we are unable in this design to disentangle cue and feedback responses, these results 

are also consistent with single unit recordings in the monkey caudate (Williams & Eskandar, 

2006) and fMRI in humans (Reavis, Frank, & Tse, 2015) that are correlated with learning 

rate and prediction error in which the difference between the expected and received reward 

is greatest early in learning and declines once the associations are well-learned (McClure, 

Daw, & Montague, 2003; O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Pagnoni, 

Zink, Montague, & Berns, 2002; Schiffer, Ahlheim, Wurm, & Schubotz, 2012). 

Surprisingly, we did not observe significant learning-related activity in the limbic striatum, 

which has shown a strong relationship with the hippocampus (Mattfeld & Stark, 2015).

While activity in the associative striatum was modulated by learning, it was not sensitive to 

the degree of similarity between the stimulus sets. These findings again promote the utility 

of the hippocampus for pattern separation of similar representations, while the associative 

striatum is more sensitive to action-outcome contingencies. We were interested in evaluating 

the dynamics between these two memory systems during learning, so we turned to 

functional connectivity analyses. Interestingly, we found greater functional connectivity 

between the hippocampus and associative striatum during the high overlap than the low 

overlap condition. Further, this relationship was emphasized when isolating the DG/CA3, 

again consistent with the unique role of this region in pattern separation processing. These 

findings suggest coordination between the hippocampus and the associative subdivision of 

the striatum when pattern separation demands are high, requiring greater coordinated 

activity between the hippocampus and striatum during learning of the task. We observed 

greater modulation of functional connectivity by overlap between the hippocampus and the 

associative striatum than the sensorimotor or limbic striatum, emphasizing a unique 

relationship between the associative striatum and hippocampus during learning. Indeed, 

these results are consistent with findings that habit formation involves a shift from the 

associative striatum learning the action-outcome contingencies early in learning to stimulus-

response habits supported by the sensorimotor network later in learning (Yin & Knowlton, 

2006).

To our knowledge, these are the first data to report coordination between the DG/CA3 and 

the striatum. These data support observations that these brain regions interact, dynamically 

gating information from the hippocampus to the anterior striatum through dopaminergic 

mediated plasticity (Goto & Grace, 2005; Lisman & Grace, 2005; O’Donnell & Grace, 

1995), which is no longer needed once the associations are well-learned. Diffusion 

tractography in humans have also identified connectivity between the anterior putamen 

(along with the anterior caudate makes up the associative striatum) and the hippocampus 

(Lehéricy et al., 2004). Further, greater functional connectivity between the hippocampus 

and ventral striatum has been reported for overlapping compared to non-overlapping 

sequences of faces (Ross, Sherrill, & Stern, 2011). These regions, along with the 

orbitofrontal cortex (OFC) which may mediate activity between the two, may be important 

for a network involved in the selection of the appropriate response depending on contextual 

information (Ross et al., 2011). Here, we suggest that increasing the pattern separation 
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demands in the high overlap condition biased learning in the hippocampus that modulated 

the association-outcome mapping in the striatum. Specifically, the increased connectivity of 

the hippocampus (and DG/CA3 in particular) and associative striatum during high-overlap 

trials may be a reflection of the hippocampal retrieval of the correct response association, 

which reinforces the correct association-outcome response exhibited by the associative 

striatum. In the low overlap condition, the associative striatum may be capable of creating 

the association-outcome contingencies with less hippocampal contribution because there is 

less competition between items.

One possible limitation of the current study involves the role of working memory in the 

study design. Here, we chose to equate difficulty across the low and high overlap conditions 

by presenting a different number of concurrent stimuli (12 low overlap and 6 high overlap). 

However, this design does introduce a confound of differing memory load and spacing 

between repeated items (e.g. both in terms of actual time and number of intervening items). 

There is evidence that working memory load contributes to behavioral performance on a 

reinforcement task very similar to this one (Collins & Frank, 2012). Further, working 

memory has been shown to interact with reinforcement learning in the striatum, showing 

blunted signals in low set sizes compared to higher set sizes (Collins, Ciullo, Frank, & 

Badre, 2017). However, in this study, their set sizes ranged from 1–6, with the blunted 

response occurring in set sizes of 1 and 2. In contrast, both our low and high overlap 

conditions corresponding to their higher set sizes (6+) that places them outside the range of 

an exclusively working memory strategy. Additionally, we did not find any difference in 

striatal activity for the low and high overlap conditions, further reducing the likelihood that 

any possible differences working memory contributed to these results. It is worth noting 

though that the rate of learning was more rapid in the low overlap than the high overlap 

condition, which may have contributed to some of the differences in activity that we 

observed here. Future study designs should either explicitly explore the possible role of 

working memory contributions to these results or address matching of behavior using 

another study design.

In this study, we focused on a hypothesis-driven contrast between the hippocampus and 

associative striatum. To that end, we restricted our data acquisition region to the medial 

temporal lobe and striatum, with limited coverage of other brain regions. This approach 

allowed us to scan at a higher-resolution in order to examine hippocampal subfield 

contributions to this learning. However, future studies should focus on a more holistic 

approach to better map the whole-brain circuitry and contribution of the PFC to this 

learning. In addition, it would be interesting to observe the activity differences across 

regions in a design with greater specificity that could isolate the cue and feedback stages 

independently. Finally, we were unable to resolve a relationship with memory strength for 

the functional connectivity analyses, possibly because we were underpowered for this type 

of analysis. We would predict greater coordination between the hippocampus and associative 

striatum early in learning, particularly for the high overlap trials, which may require pattern 

separation processes in the hippocampus.
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5. Conclusions

In the present study, we examined the functional roles of the hippocampus and associative 

striatum under conditions of high and low perceptual overlap during a conditional 

visuomotor associative learning associates memory task. We found differential activity in the 

hippocampus for high vs. low overlap items, presumably because the images with high 

perceptual overlap taxed pattern separation processes, a primary function of the dentate 

gyrus subregion of the hippocampus. In contrast, the associative striatum showed activity 

that tracked learning in the task but was not modulated by the similarity of the stimuli. 

Functional connectivity between the hippocampus and the associative striatum was 

differentially modulated by high vs. low perceptual overlap, suggesting that the coordination 

between these regions was affected when pattern separation demands are high. These 

findings contribute to a growing literature that suggests that the hippocampus and striatal 

network both contribute to the learning of arbitrary associations that are computationally 

distinct and can be altered by task demands.

Once learned however, the regions likely play distinct roles in the maintenance of 

conditional visuomotor associations.
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Figure 1. 
Schematic diagram of the connections and possible interactions between the Striatum and 

the MTL, based on those by Hikosaka and colleagues (1999; 2002). Based on the anatomical 

organization of the striatum, together with previous physiological findings, we propose that 

the strong interactions will be seen between the MTL and the associative division of the 

striatum, which may be modulated by pattern separation demands. Abbreviations: Asso 

(associative striatum); SM (sensorimotor striatum); EC (entorhinal cortex); HPC 

(hippocampus); PH (parahippocampal cortex); PR (perirhinal cortex).
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Figure 2. 
Examples of A) High and B) Low perceptual overlap items used in the conditional paired 

associates task. C) The task structure involves the presentation of a stimulus, followed by a 

brief delay and then a trial-and-error response phase with feedback. Learning is calculated 

over time and represented as memory strength. D) Scan structure: 12 total scan runs in 3 

phases. The high overlap items in the first and last block were not repeated in the last block.
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Figure 3. 
Average learning curves across stimuli and subjects for the low and high overlap blocks.
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Figure 4. 
A) Bilateral anatomical analysis of the hippocampus (in red) revealed both an effect of 

memory strength and effect of overlap, with higher beta values for the high overlap 

condition. The dashed lines show the nonlinear fit curves, which differed for the high and 

low conditions. B) A bilateral anatomical analysis of the associative striatum (anterior 

caudate and anterior putamen in yellow, posterior putamen (not part of associative striatum) 

in red) also showed a quadratic relationship with memory strength, but in the opposite 

direction than in the hippocampus, with no effect of overlap. Memory strength bins are 

evenly spaced based on probability of correct performance making the Strength 1 bin (0–0.2 

probability correct]) reflect numerically below-chance performance, which is shaded in 

these graphs.
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Figure 5: 
A) Representative slices (and corresponding anterior-posterior position in Talairach space) 

demonstrating the segmentation of the hippocampus and surrounding medial temporal lobe 

cortex. Hippocampal subfields: CA1 (fuschia), DG/CA3 (yellow), and subiculum (pink). 

Medial temporal lobe: entorhinal cortex (purple), perirhinal cortex (green), and 

parahippocampal cortex (blue). B) The DG/CA3 showed a main effect of high and low 

overlap with quadratic increases across memory strength. In contrast, the CA1 subfield also 

showed a quadratic increase with memory strength, but no modulation by overlap condition.
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Figure 6. 
Means and standard error of the mean (SEM) separately for the high (red) and low (blue) 

overlap conditions. Values represent Fisher’s z transformed r values for the functional 

connectivity ROI-to-ROI analysis. Planned paired-comparisons of the low and high 

condition for each striatal division resulted in a marginal difference for functional 

connectivity between the hippocampus and associative striatum (A) and reliable modulation 

of connectivity between the DG/CA3 subfield and associative striatum (B). *** p<.050020
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Table 1.

Results of Exploratory Analyses (shaded areas passed statistical threshold for multiple comparisons).

Region Condition Strength Interaction

Entorhinal Cortex F(1,19) = 0.6, p=.45 F(4,76) = 1.8, p=.l4 F(4,76) = 2.0, p=.10

Perirhinal Cortex F(1,19) = 4.1, p=.06 F(4,76) = 5.6, p=.0005 F(4,76) = 0.6, p=.63

Parahippocampal Cortex F(1,19) = 6.2, p=.02 F(4,76) = 3.0, p=.03 F(4,76) = 0.8, p=.53

Subiculum F(1,18) = 6.3, p=.02 F(4,68) = 8.5, p<.001 F(4,72) = 1.8, p=.l4

Sensorimotor Striatum F(1,19) = 1.2, p=.29 F(4,76) = 3.5, p=.01 F(4,76) = 0.9, p= .44

Limbic Striatum F(1,19) = 0.2, p=.70 F(4,76) = 1.2, p=.32 F(4,76) = 0.7, p= .61
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