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ABSTRACT OF THE DISSERTATION

Statistical and Computational Methods for Comparing High-Throughput Data from Two

Conditions

by

Xinzhou Ge

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2021

Professor Jingyi Jessica Li, Chair

The development of high-throughput biological technologies have enabled researchers to

simultaneously perform analysis on thousands of features (e.g., genes, genomic regions, and

proteins). The most common goal of analyzing high-throughput data is to contrast two

conditions, to identify “interesting” features, whose values differ between two conditions.

How to contrast the features from two conditions to extract useful information from high-

throughput data, and how to ensure the reliability of identified features are two increasingly

pressing challenge to statistical and computational science. This dissertation aim to address

these two problems regarding analysing high-throughput data from two conditions.

My first project focuses on false discovery rate (FDR) control in high-throughput data

analysis from two conditions. FDR is defined as the expected proportion of uninteresting

features among the identified ones. It is the most widely-used criterion to ensure the reli-

ability of the interesting features identified. Existing bioinformatics tools primarily control

the FDR based on p-values. However, obtaining valid p-values relies on either reasonable

assumptions of data distribution or large numbers of replicates under both conditions, two

requirements that are often unmet in biological studies. In Chapter 2, we propose Clip-

per, a general statistical framework for FDR control without relying on p-values or specific

data distributions. Clipper is applicable to identifying both enriched and differential fea-

tures from high-throughput biological data of diverse types. In comprehensive simulation
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and real-data benchmarking, Clipper outperforms existing generic FDR control methods and

specific bioinformatics tools designed for various tasks, including peak calling from ChIP-seq

data, and differentially expressed gene identification from bulk or single-cell RNA-seq data.

Our results demonstrate Clipper’s flexibility and reliability for FDR control, as well as its

broad applications in high-throughput data analysis.

My second project focuses on alignment of multi-track epigenomic signals from differ-

ent samples or conditions. The availability of genome-wide epigenomic datasets enables

in-depth studies of epigenetic modifications and their relationships with chromatin struc-

tures and gene expression. Various alignment tools have been developed to align nucleotide

or protein sequences in order to identify structurally similar regions. However, there are

currently no alignment methods specifically designed for comparing multi-track epigenomic

signals and detecting common patterns that may explain functional or evolutionary similari-

ties. We propose a new local alignment algorithm, EpiAlign, designed to compare chromatin

state sequences learned from multi-track epigenomic signals and to identify locally aligned

chromatin regions. EpiAlign is a dynamic programming algorithm that novelly incorporates

varying lengths and frequencies of chromatin states. We demonstrate the efficacy of Epi-

Align through extensive simulations and studies on the real data from the NIH Roadmap

Epigenomics project. EpiAlign can also detect common chromatin state patterns across mul-

tiple epigenomes from conditions, and it will serve as a useful tool to group and distinguish

epigenomic samples based on genome-wide or local chromatin state patterns.
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CHAPTER 1

Introduction

The development of high-throughput technologies in the past decades has greatly revolution-

ized the field of molecule biology, by enabling biologists to measure system-wide biological

features, such as genes, genomic regions, and proteins (“high-throughput” means the number

of features is large, at least in thousands). These high-throughput technologies have led to im-

portant scientific discoveries [1–3], as well as new challenges for statistical and computational

method development. Two important high-throughput technologies are RNA sequencing

(RNA-seq), which allows for genome-wide profiling of transcriptome landscapes, and chro-

matin immunoprecipitation followed by sequencing (ChIP-seq), which captures genome-wide

protein interactions with DNA.

The RNA-seq technology aims to capture RNA contents of a biological sample by in-

directly sequencing cDNAs reversely transcribed from extracted RNAs. As RNA-seq tech-

nologies have greatly lowered the cost, as well as increased the coverage and accuracy of

sequencing, measuring transcriptomes, which consist of RNA transcripts of all genes from

an individual or a population of cells, by RNA-seq has become one of the most popular topics

in genomics research. RNA-Seq can be used to quantify gene expression levels and identify

novel genes/transcripts, alternative splicing events, and rare genetic variants in a biologi-

cal sample. As transcriptomes vary across tissues and cell types, differential analysis using

RNA-seq data measured under different conditions has shed insights into molecular functions

and processes such as cellular differentiation, carcinogenesis, and transcription regulation.

ChIP-seq is a genome-wide experimental assay for measuring binding intensities of a

DNA-associated protein [4], such as a transcription factor that activates or represses gene

expression [5, 6]. Chromatin immunoprecipitation can isolate specific DNA sites in direct
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physical interaction with a protein of interest, e.g., a transcription factor, thus produces a

library of target DNA sites bound to the protein. ChIP-seq data are crucial for studying gene

expression regulation. An indispensable analysis, termed “peak calling,” identifies genomic

regions with enriched sequence reads in ChIP-seq data; these regions are likely bound by

the target protein and thus of biological interest. As ChIP-seq can also reveal patterns of

many epigenetic chromatin modifications, it has become a key experimental method used

in epigenomic research. Genome-wide analysis of histone modifications, such as genome-

wide annotation of chromatin states, has enabled systematic analysis of how the epigenomic

landscape contributes to cell identity, cellular processes, gene expression and disease.

High-throughput datasets often contain biological features measured under more than

one condition, for example, experimental versus control condition or different cell types. The

most common goal of analyzing high-throughput data is to contrast two conditions so as to

reliably screen “interesting features,” which exhibit an elevated or differential measurement

across conditions. Two typical such analyses are the identification of differentially expressed

genes (DEGs) from genome-wide RNA-seq gene expression data, and calling protein-binding

sites in a genome from chromatin immunoprecipitation sequencing (ChIP-seq) data. DEG

analysis, where each feature is a gene, aim to identify genes whose expression levels change

between two conditions. Peak calling from ChIP-seq data, where each feature is a genomic

region, aim to identify genomic regions with enriched sequence reads in ChIP sample, in

contrast to a negative control sample. The identified interesting features are called discov-

eries, and are subject to further investigation and validation. As the number of features

in high-throughput data is tremendously large, researchers demand reliable discoveries that

only contain few false discoveries to reduce experimental validation that is often laborious or

expensive. Therefore, the false discovery control is a key problem in high-throughput data

analysis comparing different conditions.

Another problem in high-throughput data analysis comparing different conditions is how

to define a measurement to summarize comprehensive information from two conditions. One

example for such problem is the comparison of multi-track epigenetic signals. Epigenome

encodes information of chemical modifications to DNA and histone proteins in a genome,
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and such modifications may result in changes to chromatin structures and genome functions.

Epigenomic information is represented by multi-track signals, including DNA methylation,

covalent histone modifications, and DNA accessibility, all of which are measured genome-

wide by high-throughput sequencing technologies such as ChIP-seq. The multi-track nature

of epigenomic signals is a challenge for measuring the similarity or difference of a genomic

region in different samples (e.g., under two conditions), or of two genomic regions in the

same sample.

My dissertation will focus on the above two problems. For the false discovery control

problem, we proposed Clipper, a p-value-free false discovery rate (FDR) control framework

on high-throughput data from two conditions. For contrasting multi-track epigenetic signals,

we proposed EpiAlign, an alignment-based bioinformatic tool for comparing chromatin state

sequences.

1.1 P-value-free FDR control on high-throughput data from two

conditions

The first part of my dissertation focuses on false discovery control on high-throughput data

with two conditions. The false discovery rate (FDR) [7] has been developed as a statistical

criterion for ensuring discoveries’ reliability. The FDR technically is defined as the expected

proportion of uninteresting features among the discoveries. FDR control refers to the goal

of finding discoveries such that the FDR is under a pre-specified threshold (e.g., 0.05).

Existing computational methods for FDR control primarily rely on valid high-resolution p-

value calculations. Specifically, p-values are first calculated, one per biological feature (e.g.,

a gene), and are thresholded using predominantly the Benjamini-Horchberg (BH) procedure

[7], the Storey’s q-values [8] or other FDR control methods [9–12]. All these methods set a p-

value cutoff based on the pre-specified FDR threshold. However, the calculation of p-values

requires either distributional assumptions, which are often questionable, or large numbers of

replicates, which are often unachievable in biological studies. Due to these limitations of p-

value-based methods in high-throughput biological data analysis, bioinformatics tools often
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which consequently leads to unreliable FDR control. Therefore, p-value-free FDR control

is desirable, as it would make high-throughput data analysis more transparent and thus

improve the reproducibility of scientific research.

In Chapter 2, we propose Clipper, a model-free and p-value-free FDR control framework

for analyzing high-throughput data with two conditions [13]. Clipper is a robust and flex-

ible framework that applies to different analysis tasks and that works for high-throughput

data with various characteristics. In comprehensive simulation and real-data benchmarking,

Clipper outperforms existing generic FDR control methods and specific bioinformatics tools,

including peak calling from ChIP-seq data, and differentially expressed gene identification

from bulk and single-cell RNA-seq data. Our results demonstrate Clipper’s flexibility and

reliability for FDR control and its broad applications in high-throughput data analysis.

1.2 Alignment-based bioinformatic tool for comparing chromatin

state sequences

The second part of my dissertation focuses on constructing a measurement of the similarity

or difference between two genomic regions based from multi-track epigentic data. A series of

computational methods, including ChromHMM [14], and Segway [15], have been developed

to build a genome-wide chromatin state annotation, where distinct chromatin states have

demonstrated diverse regulatory and transcriptional signals [16–18]. In these methods, each

epigenome is segmented into non-overlapping regions, and a single-track chromatin state se-

quence is constructed by compressing the multi-track epigenetic activities (e.g., DNA methy-

lation and histone modifications) in various ways. With the chromatin state annotations,

we can reduce the challenging question of comparing multi-track epigenomic signals into a

simpler task of comparing two chromatin state sequences.

Based on existing chromatin state annotations, previous work has studied similarities

and differences of human tissue and cell types in terms of epigenomic signals in specific

functional genomic elements (e.g., promoters and enhancers), as well as the tissue and cell

specificity of these elements, using the Pearson correlation coefficients [19, 20] or a newly
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developed epigenome overlap measure (EPOM) [21]. However, former epigenome compara-

tive studies failed to effectively incorporate the sequential information of chromatin states,

which, however, we believe are highly likely to contain critical information on gene regulatory

mechanisms.

Many sequence alignment methods have been developed over the past decades to mea-

sure the similarity between DNA/RNA sequences [22, 23]. With the development of these

algorithms, sequence alignment tools have become indispensable in almost all modern bi-

ological research. Motivated by the enormous successes of sequence alignment algorithms

in comparing nucleotide and protein sequences [24], in Chapter 3, we propose a novel com-

putational method, Epigenome Alignment (EpiAlign), to compare two genomic regions by

aligning their chromatin state sequences. EpiAlign compares two chromatin state sequences

by calculating a local alignment score. It also allows the search of genomic regions (i.e.,

“hits”) whose chromatin state sequences are similar to those of a query region. Aligned

chromatin state sequences are expected to have similar biological functions. EpiAlign is

flexible in performing the chromatin state sequence alignment either within an epigenome,

i.e., a tissue or cell, or between two epigenomes. From the alignment results of EpiAlign,

users can identify common chromatin state patterns or differential genomic regions across

conditions to investigate the function of genomic regions.

1.3 Summary

During my doctoral study, I have developed the aforementioned two statistical methods that

both involve high-throughput data analysis comparing two conditions. The details of these

projects will be described in Chapter 2–3 of this dissertation.
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CHAPTER 2

P-value free FDR control on high-throughput

biological data from two conditions

This is a collaborative work with my labmate Dr. Yiling Chen [13], so it is also a major

part of her dissertation [25]. For the methodology development, Yiling and I made equal

contributions, so our dissertations are similar in the background part and the methodology

part. For the results, I am the major contributor. Specifically, I contributed to all the

simulation analysis and three omics data analysis, including peak calling from ChIP-seq data,

differentially expressed gene (DEG) identification from real bulk RNA-seq data, and DEG

identification from signle-cell RNA-seq data. Yiling contributed to the three other omics

data analysis, including peptide identification from mass spectrometry data, differentially

expressed gene identification from synthetic bulk RNA-seq data, and differentially interacting

chromatin region identification from Hi-C data.

2.1 Introduction

High-throughput technologies are widely used to measure system-wide biological features,

such as genes, genomic regions, and proteins (“high-throughput” means the number of fea-

tures is large, at least in thousands). The most common goal of analyzing high-throughput

data is to contrast two conditions so as to reliably screen “interesting features,” where “in-

teresting” means “enriched” or “differential.” “Enriched features” are defined to have higher

expected measurements (without measurement errors) under the experimental (i.e., treat-

ment) condition than the background (i.e., the negative control) condition. The detection

of enriched features is called “enrichment analysis.” For example, typical enrichment anal-
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yses include calling protein-binding sites in a genome from chromatin immunoprecipitation

sequencing (ChIP-seq) data [26, 27]. In contrast, “differential features” are defined to have

different expected measurements between two conditions, and their detection is called “dif-

ferential analysis.” For example, popular differential analyses include the identification of

differentially expressed genes (DEGs) from genome-wide gene expression data (e.g., microar-

ray and RNA sequencing (RNA-seq) data [28–34]) (Fig. 2.1a). In most scientific research,

the interesting features only constitute a small proportion of all features, and the remaining

majority is referred to as “uninteresting features.”
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Figure 2.1: High-throughput omics data analyses and generic FDR control methods.

(a) Illustration of two common high-throughput omics data analyses: peak calling from ChIP-seq data, and DEG analysis from
RNA-seq data. In these two analyses, the corresponding features are genomic regions (yellow intervals), and genes (columns
in the heatmaps) (b) Illustration of Clipper and five generic FDR control methods: BH-pair (and qvalue-pair), BH-pool (and
qvalue-pool), and locfdr.
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The identified features, also called the “discoveries” from enrichment or differential anal-

ysis, are subject to further investigation and validation. Hence, to reduce experimental

validation that is often laborious or expensive, researchers demand reliable discoveries that

contain few false discoveries. Accordingly, the false discovery rate (FDR) [7] has been de-

veloped as a statistical criterion for ensuring discoveries’ reliability. The FDR technically

is defined as the expected proportion of uninteresting features among the discoveries under

the frequentist statistical paradigm. In parallel, under the Bayesian paradigm, other criteria

have been developed, including the Bayesian false discovery rate [35], the local false discov-

ery rate (local fdr) [36], and the local false sign rate [37]. Among all these frequentist and

Bayesian criteria, the FDR is the dominant criterion for setting thresholds in biological data

analysis [26, 34, 38–44] and is thus the focus of this paper.

FDR control refers to the goal of finding discoveries such that the FDR is under a pre-

specified threshold (e.g., 0.05). Existing computational methods for FDR control primarily

rely on p-values, one per feature. Among the p-value-based methods, the most classic and

popular ones are the Benjamini-Hochberg (BH) procedure [7] and the Storey’s q-value [8];

later development introduced methods that incorporate feature weights [9] or covariates (e.g.,

independent hypothesis weighting (IHW) [10], adaptive p-value thresholding [11], and Boca

and Leek’s FDR regression [12]) to boost the detection power. All these methods set a p-

value cutoff based on the pre-specified FDR threshold. However, the calculation of p-values

requires either distributional assumptions, which are often questionable, or large numbers

of replicates, which are often unachievable in biological studies (see Results). Due to these

limitations of p-value-based methods in high-throughput biological data analysis, bioinfor-

matics tools often output ill-posed p-values. This issue is evidenced by serious concerns

about the widespread miscalculation and misuse of p-values in the scientific community [45].

As a result, bioinformatics tools using questionable p-values either cannot reliably control

the FDR to a target level [43] or lack power to make discoveries [46]; see Results. Therefore,

p-value-free control of FDR is desirable, as it would make data analysis more transparent

and thus improve the reproducibility of scientific research.

Although p-value-free FDR control has been implemented in the MACS2 method for
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ChIP-seq peak calling [26] and the SAM method for microarray DEG identification [47], these

two methods are restricted to specific applications and lack theoretical guarantee for FDR

control1. More recently, the Barber-Candès (BC) procedure has been proposed to achieve

theoretical FDR control without using p-values [50], and it has been shown to perform

comparably to the BH procedure with well-calibrated p-values [51]. The BC procedure is

advantageous because it does not require well-calibrated p-values, so it holds tremendous

potential in various high-throughput data analyses where p-value calibration is challenging

[52]. For example, a recent paper has implemented a generalization of the BC procedure to

control the FDR in peptide identification from MS data [53].

Inspired by the BC procedure, we propose a general statistical framework Clipper to

provide reliable FDR control for high-throughput biological data analysis, without using p-

values or relying on specific data distributions. Clipper is a robust and flexible framework

that applies to both enrichment and differential analyses and that works for high-throughput

data with various characteristics, including data distributions, replicate numbers (from one

to multiple), and outlier existence.

2.2 The Clipper methodology

Notations and assumptions

We first introduce notations and assumptions used in Clipper. While the differential analysis

treats the two conditions symmetric, the enrichment analysis requires one condition to be

the experimental condition (i.e., the condition of interest) and the other condition to be

the background condition (i.e., the negative control). For simplicity, we use the same set

of notations for both analyses. For two random vectors X “ pX1, . . . , Xmq
J and Y “

pY1, . . . , Ynq
J, we writeX K Y if Xi is independent of Yj for all i “ 1, . . . ,m and j “ 1, . . . , n.

To avoid confusion, we use cardpAq to denote the cardinality of a set A and |c| to denote the

absolute value of a scalar c. We define a_ b :“ maxpa, bq.

1Although later works have studied some theoretical properties of SAM, they are not about the exact
control of the FDR [48, 49].
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Clipper only requires two inputs: the target FDR threshold q P p0, 1q and the input data.

Regarding the input data, we use d to denote the number of features with measurements

under two conditions, and we use m and n to denote the numbers of replicates under the

two conditions. For each feature j “ 1, . . . , d, we use Xj “ pXj1, . . . , Xjmq
J P Rm and

Y j “ pYj1, . . . , Yjnq
J P Rn to denote its measurements under the two conditions, where R

denotes the set of non-negative real numbers. We assume that all measurements are non-

negative, as in the case of most high-throughput experiments. (If this assumption does not

hold, transformations can be applied to make data satisfy this assumption.)

Clipper has the following assumptions on the joint distribution ofX1, . . . ,Xd,Y 1, . . . ,Y d.

For j “ 1, . . . , d, Clipper assumes that Xj1, . . . , Xjm are identically distributed, so are

Yj1, . . . , Yjn. Let µXj “ ErXj1s and µY j “ ErYj1s denote the expected measurement of feature

j under the two conditions, respectively. Then conditioning on tµXju
d
j“1 and tµY ju

d
j“1,

Xj1, ¨ ¨ ¨ , Xjm, Yj1, ¨ ¨ ¨ , Yjn are mutually independent ; (2.1)

Xj KXk,Y j K Y k and Xj K Y k , @j, k “ 1, . . . , d.

An enrichment analysis aims to identify interesting features with µXj ą µY j (with Xj

and Y j defined as the measurements under the experimental and background conditions,

respectively), while a differential analysis aims to call interesting features with µXj ‰ µY j.

We define N :“ tj : µXj “ µY ju as the set of uninteresting features and denote N :“

cardpN q. In both analyses, Clipper further assumes that an uninteresting feature j satisfies

Xj1, ¨ ¨ ¨ , Xjm, Yj1, ¨ ¨ ¨ , Yjn are identically distributed , @j P N . (2.2)

Clipper consists of two main steps: construction and thresholding of contrast scores.

First, Clipper computes contrast scores, one per feature, as summary statistics that reflect

the extent to which features are interesting. Second, Clipper establishes a contrast-score

cutoff and calls as discoveries the features whose contrast scores exceed the cutoff.

To construct contrast scores, Clipper uses two summary statistics tp¨, ¨q : Rm ˆ Rn Ñ R
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to extract data information regarding whether a feature is interesting or not:

tminus
px,yq :“ x̄´ ȳ ; (2.3)

tmax
px,yq :“ max px̄, ȳq ¨ sign px̄´ ȳq , (2.4)

where x “ px1, . . . , xmq
J P Rm, y “ py1, . . . , ynq

J P Rn, x̄ “
řm
i“1 xi{m, ȳ “

řn
i“1 yi{n, and

signp¨q : R Ñ t´1, 0, 1u with signpxq “ 1 if x ą 0, signpxq “ ´1 if x ă 0, and signpxq “ 0

otherwise.

Notably, other summary statistics can also be used to construct contrast scores. For

example, an alternative summary statistic is the t statistic from the two-sample t test:

ttpx,yq :“
x̄´ ȳ

b

řm
i“1pxi´x̄q

2`
řn
i“1pyi´ȳq

2

m`n´2

. (2.5)

Then we introduce how Clipper works in three analysis tasks: the enrichment analysis

with equal numbers of replicates under two conditions (m “ n), the enrichment analysis with

different numbers of replicates under two conditions (m ‰ n), and the differential analysis

(when m` n ą 2).

Enrichment analysis with equal numbers of replicates (m “ n)

Under the enrichment analysis, we assume that Xj P Rm and Y j P Rn are the measurements

of feature j, j “ 1, . . . , d, under the experimental and background conditions with m and

n replicates, respectively. We start with the simple case when m “ n. Clipper defines a

contrast score Cj of feature j in one of two ways:

Cj :“ tminus
pXj,Y jq minus contrast score , (2.6)

or

Cj :“ tmax
pXj,Y jq maximum contrast score . (2.7)
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Fig. 2.2a shows a cartoon illustration of contrast scores when m “ n “ 1. Accordingly, a

large positive value of Cj bears evidence that µXj ą µY j. Motivated by Barber and Candès

[50], Clipper uses the following procedure to control the FDR under the target level q P p0, 1q.

Definition 1 (Barber-Candès (BC) procedure for thresholding contrast scores [50]). Given

contrast scores tCju
d
j“1, C “ t|Cj| : Cj ‰ 0 ; j “ 1, . . . , du is defined as the set of non-zero

absolute values of Cj’s. The BC procedure finds a contrast-score cutoff TBC based on the

target FDR threshold q P p0, 1q as

TBC :“ min

"

t P C :
cardptj : Cj ď ´tuq ` 1

cardptj : Cj ě tuq _ 1
ď q

*

(2.8)

and outputs
 

j : Cj ě TBC
(

as discoveries.

Enrichment analysis with any numbers of replicates m and n

When m ‰ n, Clipper constructs contrast scores via permutation of replicates across con-

ditions. The idea is that, after permutation, every feature becomes uninteresting and can

serve as its own negative control.

Definition 2 (Permutation). We define σ as permutation, i.e., a bijection from the set

t1, ¨ ¨ ¨ ,m ` nu onto itself, and we rewrite the data X1, . . . ,Xd,Y 1, . . . ,Y d into a matrix

W:

W “

»

—

—

—

–

W11 ¨ ¨ ¨ W1m W1pm`1q ¨ ¨ ¨ W1pm`nq

...
...

Wd1 ¨ ¨ ¨ Wdm Wdpm`1q ¨ ¨ ¨ Wdpm`nq

fi

ffi

ffi

ffi

fl

:“

»

—

—

—

–

X11 ¨ ¨ ¨ X1m Y11 ¨ ¨ ¨ Y1n

...
...

Xd1 ¨ ¨ ¨ Xdm Yd1 ¨ ¨ ¨ Ydn

fi

ffi

ffi

ffi

fl

.

We then apply σ to permute the columns of W and obtain

Wσ :“

»

—

—

—

–

W1σp1q ¨ ¨ ¨ W1σpmq W1σpm`1q ¨ ¨ ¨ W1σpm`nq

...
...

Wdσp1q ¨ ¨ ¨ Wdσpmq Wdσpm`1q ¨ ¨ ¨ Wdσpm`nq

fi

ffi

ffi

ffi

fl

,
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Figure 2.2: Illustration of the construction of contrast scores.

(a) 1vs1 enrichment analysis; (b) 2vs1 differential analysis (left) or enrichment analysis (right). In each panel, an interesting
feature (top) and an uninteresting feature (bottom) are plotted for contrast; both features have measurements under the
experimental and background conditions. In (a), each feature’s measurements are summarized into a maximum (max) contrast
score or a minus contrast score. In (b), each feature’s measurements are permuted across the two conditions, resulting in two
sets of permuted measurements. Then for each feature, we calculate its degrees of interestingness (as the difference that equals
the average of experimental measurements minus the average of background measurements (in enrichment analysis; right), or
the absolute value of the difference (in differential analysis; left)) from its original measurements and permuted measurements,
respectively. Finally, we summarize each feature’s degrees of interestingness into a maximum (max) contrast score or a minus
contrast score.
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from which we obtain the permuted measurements
 

pXσ
j ,Y

σ
j q
(d

j“1
, where

Xσ
j :“

`

Wjσp1q, . . . ,Wjσpmq

˘J
,

Y σ
j :“

`

Wjσpm`1q, . . . ,Wjσpm`nq

˘J
. (2.9)

In the enrichment analysis, if two permutations σ and σ1 satisfy that

tσp1q, ¨ ¨ ¨ , σpmqu “ tσ1p1q, ¨ ¨ ¨ , σ1pmqu ,

then we define σ and σ1 to be in one equivalence class. That is, permutations in the same

equivalence class lead to the same division of m`n replicates (from the two conditions) into

two groups with sizes m and n. In total, there are
`

m`n
m

˘

equivalence classes of permutations.

We define σ0 as the identity permutation such that σ0piq “ i for all i P t1, ¨ ¨ ¨ ,m`nu. In

addition, Clipper randomly samples h equivalence classes σ1, . . . , σh with equal probabilities

without replacement from the other hmax :“
`

m`n
m

˘

´ 1 equivalence classes (after excluding

the equivalence class containing σ0). Note that hmax is the maximum value h can take.

Clipper then obtains
 

pXσ0
j ,Y

σ0
j q, pX

σ1
j ,Y

σ1
j q, ¨ ¨ ¨ , pX

σh
j ,Y

σh
j q

(d

j“1
, where pXσ`

j ,Y
σ`
j q

are the permuted measurements based on σ`, ` “ 0, 1, . . . , h. Then Clipper computes

T σ`j :“ tminuspXσ`
j ,Y

σ`
j q to indicate the degree of “interestingness” of feature j reflected

by pXσ`
j ,Y

σ`
j q. Note that Clipper chooses tminus instead of tmax because empirical evidence

shows that tminus leads to better power. Sorting tT σ`j u
h
`“0 gives

T
p0q
j ě T

p1q
j ě ¨ ¨ ¨ ě T

phq
j .
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Then Clipper defines the contrast score of feature j, j “ 1, . . . , d, in one of two ways:

Cj :“

$

&

%

T
p0q
j ´ T

p1q
j if T

p0q
j “ T σ0j

T
p1q
j ´ T

p0q
j otherwise

minus contrast score , (2.10)

or

Cj :“

$

’

’

’

&

’

’

’

%

ˇ

ˇ

ˇ
T
p0q
j

ˇ

ˇ

ˇ
if T

p0q
j “ T σ0j ą T

p1q
j

0 if T
p0q
j “ T

p1q
j

´

ˇ

ˇ

ˇ
T
p0q
j

ˇ

ˇ

ˇ
otherwise

maximum contrast score . (2.11)

The intuition behind the contrast scores is that, if Cj ă 0, then T
p0q
j ‰ T σ0j , which

means that at least one of T σ1j , . . . , T σhj (after random permutation) is greater than T σ0j

calculated from the original data (identity permutation), suggesting that feature j is likely

an uninteresting feature in enrichment analysis. Fig. 2.2b (right) shows a cartoon illustration

of contrast scores when m “ 2 and n “ 1. Motivated by Gimenez and Zou [54], we propose

the following procedure for Clipper to control the FDR under the target level q P p0, 1q.

Definition 3 (Gimenez-Zou (GZ) procedure for thresholding contrast scores [54]). Given

h P t1, ¨ ¨ ¨ , hmaxu and contrast scores tCju
d
j“1, C “ t|Cj| : Cj ‰ 0 ; j “ 1, . . . , du is defined

as the set of non-zero absolute values of Cj’s. The GZ procedure finds a contrast-score cutoff

TGZ based on the target FDR threshold q P p0, 1q as:

TGZ :“ min

"

t P C :
1
h
` 1

h
card ptj : Cj ď ´tuq

card ptj : Cj ě tuq _ 1
ď q

*

(2.12)

and outputs
 

j : Cj ě TGZ
(

as discoveries.

Differential analysis with m` n ą 2

For differential analysis, Clipper also uses permutation to construct contrast scores. When

m ‰ n, the equivalence classes of permutations are defined the same as for the enrichment

analysis with m ‰ n. When m “ n, there is a slight change in the definition of equivalence
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classes of permutations: if σ and σ1 satisfy that

tσp1q, ¨ ¨ ¨ , σpmqu “ tσ1p1q, ¨ ¨ ¨ , σ1pmqu or tσ1pm` 1q, ¨ ¨ ¨ , σ1p2mqu ,

then we say that σ and σ1 are in one equivalence class. In total, there are htotal :“
`

m`n
m

˘

(when m ‰ n) or
`

2m
m

˘

{2 (when m “ n) equivalence classes of permutations. Hence, to have

more than one equivalence class, we cannot perform differential analysis with m “ n “ 1; in

other words, the total number of replicates m` n must be at least 3.

Then Clipper randomly samples σ1, . . . , σh with equal probabilities without replacement

from the hmax :“ htotal ´ 1 equivalence classes that exclude the class containing σ0, i.e.,

the identity permutation. Note that hmax is the maximum value h can take. Next, Clipper

computes T σ`j :“
ˇ

ˇtminuspXσ`
j ,Y

σ`
j q

ˇ

ˇ, where Xσ`
j and Y σ`

j are the permuted data defined in

(2.9), and it defines Cj as the contrast score of feature j, j “ 1, . . . , d, in the same ways as in

(2.10) or (2.11). Fig. 2.2b (left) shows a cartoon illustration of contrast scores when m “ 2

and n “ 1.

Same as in the enrichment analysis with m ‰ n, Clipper also uses the GZ procedure [54]

to set a cutoff on contrast scores to control the FDR under the target level q P p0, 1q.

Granted, when we use permutations to construct contrast scores in the GZ procedure, we

can convert contrast scores into permutation-based p-values (see Supp. S2.5.1.1). However,

when the numbers of replicates are small, the number of possible permutations is small,

so permutation-based p-values would have a low resolution (e.g., when m “ 2 and n “ 1,

the number of non-identity permutations is only 2). Hence, applying the BH procedure to

the permutation-based p-values would result in almost no power. Although Yekutieli and

Benjamini proposed another thresholding procedure for permutation-based p-values [55],

it still requires the number of permutations to be large to obtain a reliable FDR control.

Furthermore, if we apply the SeqStep+ procedure by Barber and Candés [50] to permutation-

based p-values, it would be equivalent to our application of the GZ procedure to contrast

scores (Supp. Section S2.5.1.1).

For both differential and enrichment analyses, the two contrast scores (minus and max-
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imum) can both control the FDR. Based on the power comparison results in Supp. Sec-

tion S2.5.2 and Supp. Figs. 2.28–2.31, Clipper has the following default choice of contrast

score: for the enrichment analysis when two conditions have the same number of replicates

(“Enrichment analysis with equal numbers of replicates (m “ n)” in Methods), Clipper

uses the BC procedure with the minus contrast score; for the enrichment analysis when

two conditions have different numbers of replicates (“Enrichment analysis with any numbers

of replicates m and n” in Methods) or the differential analysis (“Differential analysis with

m` n ą 2” in Methods), Clipper uses the GZ procedure with maximum contrast score.

2.2.1 Clipper variant algorithms

For nomenclature, we assign the following names to Clipper variant algorithms, each of which

combines a contrast score definition with a thresholding procedure.

‚ Clipper-diff-BC: difference contrast score Cj “ tdiffpXj,Y jq (2.6) and BC procedure

(Definition 1);

‚ Clipper-diff-GZ: difference contrast score τj “ T
p0q
j ´ T

p1q
j (2.10) and GZ procedure

(Definition 3);

‚ Clipper-max-BC: maximum contrast score Cj “ tmaxpXj,Y jq (2.7) and BC proce-

dure;

‚ Clipper-max-GZ: maximum contrast score τj “ T
p0q
j (2.11) and GZ procedure.

2.2.2 R package “Clipper”

In the R package Clipper, the default implementation is as follows. Based on the power

comparison results in our manuscripts Ge et al. [13], Clipper uses Clipper-diff-BC as the

default algorithm for the enrichment analysis with equal numbers of replicates; when there

are no discoveries, Clipper suggests users to increase the target FDR threshold q or to use the

Clipper-diff-aBH algorithm with the current q. For the enrichment analysis with different

17



numbers of replicates under two conditions or the differential analysis, Clipper uses the

Clipper-max-GZ algorithm by default.

2.3 Application of Clipper on simulation and omics data analysis

To verify Clipper’s performance, we designed comprehensive simulation studies to benchmark

Clipper against existing generic FDR control methods (Supp. Section S2.5.1). We also

benchmarked Clipper against bioinformatics tools in studies including peak calling from

ChIP-seq data, and DEG identification from bulk or single-cell RNA-seq data.

Clipper has verified FDR control and power advantage in simulation

Simulation is essential because we can generate numerous datasets from the same distri-

bution with known truths to calculate the FDR, which is not observable from real data.

Our simulation covers both enrichment and differential analyses. In enrichment analysis,

we consider four “experimental designs”: 1vs1 design (one replicate per condition), 2vs1

design (two and one replicates under the experimental and background conditions, respec-

tively), 3vs3 design (three replicates per condition), and 10vs10 design (ten replicates per

condition). In differential analysis, since Clipper requires that at least one condition has

two replicates, we only consider the 2vs1 and 3vs3 designs. For each analysis and design,

we simulated data from three “distributional families”—Gaussian, Poisson, and negative

binomial—for individual features under two “background scenarios” (i.e., scenarios of the

background condition): homogeneous and heterogeneous. Under the homogeneous scenario,

all features’ measurements follow the same distribution under the background condition;

otherwise, we are under the heterogeneous scenario, which is ubiquitous in applications, e.g.,

identifying DEGs from RNA-seq data and calling protein-binding sites from ChIP-seq data.

By simulation setting, we refer to a combination of an experimental design, a distributional

family, and a background scenario. The details of simulation settings are described in Supp.

Section S2.5.3.

For both enrichment and differential analyses and each simulation setting, we compared
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Clipper against generic FDR control methods, including p-value-based methods and local-

fdr-based methods. The p-value-based methods include BH-pair, BH-pool, qvalue-pair, and

qvalue-pool, where “BH” and “qvalue” stand for p-value thresholding procedures, and “pair”

and “pool” represent the paired and pooled p-value calculation approaches, respectively.

The local-fdr-based methods include locfdr-emp and locfdr-swap, where “emp” and “swap”

represent the empirical null and swapping null local-fdr calculation approaches, respectively.

See Online Methods for detail.

The comparison results are in Fig. 2.3 and Supp. Figs. 2.7–2.17. A good FDR control

method should have actual FDR no larger than the target FDR threshold and achieve high

power. The results show that Clipper controls the FDR and is overall more powerful than

other methods, excluding those that fail to control the FDR, under all settings. Clipper

is also shown to be more robust to the number of features and the existence of outliers

than other methods. In detail, in both enrichment analyses (1vs1, 2vs1, 3vs3, and 10vs10

designs) and differential analyses (2vs1 and 3vs3 designs), Clipper consistently controls the

FDR, and it is more powerful than the generic methods in most cases under the realistic,

heterogeneous background, where features do not follow the same distribution under the

background condition. Under the idealistic, homogeneous background, Clipper is still pow-

erful and only second to BH-pool and qvalue-pool, which, however, cannot control the FDR

under the heterogeneous background.

Here we summarize the performance of the generic FDR control methods. First, the two

p-value-based methods using the pooled approach, BH-pool and qvalue-pool, are the most

powerful under the idealistic, homogeneous background, which is their inherent assumption;

however, they cannot control the FDR under the heterogeneous background (Fig. 2.3b).

Besides, they cannot control the FDR when the number of features is small (Fig. 2.3a and

Supp. Fig. 2.7). These results show that the validity of BH-pool and qvalue-pool requires

a large number of features and the homogeneous background assumption, two requirements

that rarely hold in biological applications.

Second, the four p-value-based methods using the paired approach with misspecified

models or misformulated tests (BH-pair-mis, qvalue-pair-mis, BH-pair-2as1, and qvalue-pair-
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Figure 2.3: Comparison of Clipper with generic FDR control methods in terms of their FDR control and power in six example
simulation studies.

(a) 1vs1 enrichment analysis with 1000 features generated from the Gaussian distribution with a homogeneous background; (b)
1vs1 enrichment analysis with 10,000 features generated from the Gaussian distribution with a heterogeneous background; (c)
2vs1 enrichment analysis with 10,000 features generated from the Poisson distribution with a heterogeneous background; (d) 3vs3
enrichment analysis with 10,000 features generated from the Gaussian distribution without outliers and with a heterogeneous
background; (e) 3vs3 enrichment analysis with 10,000 features generated from the Gaussian distribution without outliers and
with a heterogeneous background; (f) 3vs3 differential analysis with 10,000 features generated from the negative binomial
distribution with a heterogeneous background. At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs
and power are approximated by the averages of false discovery proportions and power evaluated on 200 simulated datasets. In
each panel, the top row shows each method’s actual FDRs at target FDR thresholds: whenever the actual FDR is larger than
the target FDR (the solid line is higher than the dashed line), FDR control is failed; the bottom row shows each method’s actual
FDRs and power at the target FDR threshold q “ 5%: whenever the actual FDR is greater than q (on the right of the vertical
dashed line), FDR control is failed. Under the FDR control, the larger the power, the better. Note that BH-pair-correct is not
included in (a)–(c) because it is impossible to correctly specify the model with only one replicate per condition; locfdr-swap is
not included in (a)–(b) because it is inapplicable to the 1vs1 design.
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2as1; see Online Methods) fail to control the FDR by a large margin in most cases, and rarely

when they control the FDR, they lack power (Fig. 2.3c–d and Supp. Figs. 2.7–2.14). These

results confirm that the BH-pair and qvalue-pair rely on the correct model specification to

control the FDR; however, the correct model specification is hardly achievable with no more

than three replicates per condition.

Third, even when models are correctly specified (an idealistic scenario), the p-value-based

methods that use the paired approach—BH-pair-correct and qvalue-pair-correct (see Online

Methods)—fail to control the FDR in the existence of outliers (Fig. 2.3e and Supp. Figs. 2.9

and 2.13) or for the negative binomial distribution with unknown dispersion (Fig. 2.3f and

Supp. Fig. 2.15). It is worth noting that even when they control the FDR, they are less

powerful than Clipper in most cases except for the 3vs3 differential analysis with the Poisson

distribution (Fig. 2.3d and Supp. Figs. 2.10 and 2.14).

Fourth, the two local-fdr-based methods—locfdr-emp and locfdr-swap—achieve the FDR

control under all designs and analyses; however, they are less powerful than Clipper in most

cases (Supp. Figs. 2.7–2.10).

Fifth, when the numbers of replicates are large (10vs10 design), non-parametric tests

become applicable. We compared Clipper with three BH-pair methods that use different

statistical tests: BH-pair-Wilcoxon (the non-parametric Wilcoxon rank-sum test), BH-pair-

permutation (the non-parametric permutation test), and BH-pair-parametric (the paramet-

ric test based on the correct model specification, equivalent to BH-pair-correct). Although

all the three methods control the FDR, they are less powerful than Clipper (Supp. Fig. 2.16).

Moreover, the above five phenomena are consistently observed across the three distribu-

tions (Gaussian, Poission, and negative binomial) that we have examined, further confirming

the robustness of Clipper.

In addition, for the 3vs3 enrichment analysis, we also varied the proportion of interesting

features as 10%, 20%, and 40%. The comparison results in Supp. Fig. 2.9 (columns 1 and

3 for 10%) and Supp. Fig. 2.18 (for 20% and 40%) show that the performance of Clipper is

robust to the proportion of interesting features.
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The above results are all based on simulations with independent features. To examine the

robustness of Clipper, we introduced feature correlations to our simulated data, on which we

compared Clipper with other generic FDR control methods. The comparison results in Supp.

Fig. 2.17 show that even when the feature independence assumption is violated, Clipper still

demonstrates strong performance in both FDR control and power.

Clipper has broad applications in omics data analyses

We then demonstrate the use of Clipper in three omics data applications: peak calling from

ChIP-seq data, DEG identification from bulk and single-cell RNA-seq data. The first appli-

cations is enrichment analyses, and the last two are differential analyses. In each application,

we compared Clipper with mainstream bioinformatics methods to demonstrate Clipper’s su-

periority in FDR control and detection power.

Peak calling from ChIP-seq data (enrichment analysis I)

ChIP-seq is a genome-wide experimental assay for measuring binding intensities of a DNA-

associated protein [4], often a transcription factor that activates or represses gene expression

[5, 6]. ChIP-seq data are crucial for studying gene expression regulation, and the indispens-

able analysis is to identify genomic regions with enriched sequence reads in ChIP-seq data.

These regions are likely to be bound by the target protein and thus of biological interest.

The identification of these regions is termed “peak calling” in ChIP-seq data analysis.

As the identified peaks are subject to experimental validation that is often expensive

[56], it is essential to control the FDR of peak identification to reduce unnecessary costs.

The two most highly-cited peak-calling methods are MACS2 [26] and [27], both of which

claim to control the FDR for their identified peaks. Specifically, both MACS2 and HOMER

assume that the read counts for each putative peak (one count per sample/replicate) follow

the Poisson distribution, and they use modified paired approaches to assign each putative

peak a p-value and a corresponding Storey’s q-value. Then given a target FDR threshold

0 ă q ă 1, they call the putative peaks with q-values ď q as identified peaks. Despite
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being popular, MACS2 and HOMER have not been verified for their FDR control, to our

knowledge.

To verify the FDR control of MACS2 and HOMER (Supp. Section S2.5.4), we used

ENCODE ChIP-seq data of cell line GM12878 [57] and ChiPulate [58], a ChIP-seq data

simulator, to generate semi-synthetic data with spiked-in peaks (Supp. Section S2.5.5). We

examined the actual FDR and power of MACS2 and HOMER in a range of target FDR

thresholds: q “ 1%, 2%, . . . , 10%. Fig. 2.6a shows that MACS2 and HOMER cannot control

the FDR as standalone peak-calling methods. However, with Clipper as an add-on (Supp.

Section S2.5.6), both MACS2 and HOMER can guarantee the FDR control. This result

demonstrates the flexibility and usability of Clipper for reducing false discoveries in peak

calling analysis.

Technically, the failed FDR control by MACS2 and HOMER is attributable to the likely

model misspecification and test misformulation in their use of the paired approach. Both

MACS2 and HOMER assume the Poisson distribution for read counts in a putative peak;

however, it has been widely acknowledged that read counts are over-dispersed and thus better

modeled by the negative binomial distribution [59]. Besides, MACS2 uses one-sample tests

to compute p-values when two-sample tests should have been performed. As a result, the

p-values of MACS2 and HOMER are questionable, so using their p-values for FDR control

would not lead to success. (Note that MACS2 does not use p-values to control the FDR

but instead swaps experimental and background samples to calculate the empirical FDR;

yet, we emphasize that controlling the empirical FDR does not guarantee the FDR control.)

As a remedy, Clipper strengthens both methods to control the FDR while maintaining high

power.

It is known that uninteresting regions tend to have larger read counts in the control

sample than in the experimental (ChIP) sample, making them more likely to have negative

contrast scores than positive ones. However, this phenmenon does not violate Clipper’s

theoretical assumption (Lemma 1(a) in Supp. Section 2.2), which can be relaxed as we note

in Methods.
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DEG identification from bulk RNA-seq data (differential analysis I)

RNA-seq data measure genome-wide gene expression levels in biological samples. An impor-

tant use of RNA-seq data is the DEG analysis, which aims to discover genes whose expression

levels change between two conditions. The FDR is a widely used criterion in DEG analysis

[28–33].

We compared Clipper with two popular DEG identification methods: edgeR [28] and

DESeq2 [29] (Supp. Section S2.5.4). Specifically, when we implemented Clipper, we first

performed the trimmed mean of M values (TMM) normalization [60] to correct for batch

effects; then we treated genes as features and their normalized expression levels as mea-

surements under two conditions (Supp. Section S2.5.6). We also implemented two versions

of DESeq2 and edgeR: with or without IHW, a popular procedure for boosting the power

of p-value-based FDR control methods by incorporating feature covariates [10]. In our im-

plementation of the two versions of DESeq2 and edgeR, we used their standard pipelines,

including normalization, model fitting, and gene filtering (edgeR only). To verify the FDR

control, we generated four realistic synthetic datasets from two real RNA-seq datasets—one

from classical and non-classical human monocytes [61] and the other from yeasts with or

without snf2 knockout [62]—using simulation strategies 1 and 2 (Supp. Section S2.5.5).

In detail, in simulation strategy 1, we used bulk RNA-seq samples from two conditions to

compute a fold change for every gene between the two conditions; then we defined true DEGs

as the genes whose fold changes exceeded a threshold; next, we randomly drew three RNA-

seq samples and treated them as replicates from each condition (m “ n “ 3 as in Methods);

using those subsampled replicates of two conditions, we preserved the true DEGs’ read counts

and permuted the read counts of the true non-DEGs, i.e., the genes other than true DEGs,

between conditions. In summary, simulation strategy 1 guarantees that the measurements of

true non-DEGs are i.i.d., an assumption that Clipper relies on for theoretical FDR control.

In simulation strategy 2, borrowed from a benchmark study [63], we first randomly se-

lected at most 30% genes as true DEGs; next, we randomly drew six RNA-seq samples from

one condition (classical human monocytes and yeasts without knockout) and split the sam-
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ples into two “synthetic conditions,” each with three replicates (m “ n “ 3 as in Methods);

then for each true DEG, we multiplied its read counts under one of the two synthetic condi-

tions (randomly picked independently for each gene) by a randomly generated fold change

(see Supp. Section S2.5.5); finally, for the true non-DEGs, we preserved their read counts in

the six samples. In summary, simulation strategy 2 preserves batch effects, if existent in real

data, for the true non-DEGs (the majority of genes). As a result, the semi-synthetic data

generated under strategy 2 may violate the Clipper assumption for theoretical FDR control

and thus can help evaluate the robustness of Clipper on real data.

The four semi-synthetic datasets have ground truths (true DEGs and non-DEGs) to eval-

uate each DEG identification method’s FDR and power for a range of target FDR thresholds:

q “ 1%, 2%, . . . , 10%. Our results in Fig. 2.4a and Supp. Figs. 2.21a–2.23a show that Clipper

consistently controls the FDR and achieves high power on all four semi-synthetic datasets.

In contrast, DESeq2 and edgeR cannot consistently control the FDR except for the yeast

semi-synthetic dataset generated under simulation strategy 2. Given the fact that DESeq2

and edgeR do not consistently perform well on the three other semi-synthetic datasets, we

hypothesize that their parametric distributional assumptions, if violated on real data, hinder

valid FDR control, in line with our motivation for developing Clipper. Furthermore, we ob-

serve that adding IHW to edgeR and DESeq2 has negligible effects on the four semi-synthetic

datasets.

To further explain why DESeq2 fails to control the FDR, we examined the p-value dis-

tributions of 16 non-DEGs that were most frequently identified (from the 100 semi-synthetic

datasets generated from the human monocyte dataset using simulation strategy 1) by DE-

Seq2 at the target FDR threshold q “ 0.05. Our results in Supp. Fig. 2.24 show that the

16 non-DEGs’ p-values are non-uniformly distributed with a mode close to 0. Such unusual

enrichment of overly small p-values makes these non-DEGs mistakenly called discoveries by

DESeq2.

In addition, we compared the DEG ranking by Clipper, edgeR, and DESeq2 in two

ways. First, for true DEGs, we compared their ranking by each method with their true

ranking based on true expression fold changes (from large to small, as in semi-synthetic
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Figure 2.4: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in DEG analysis on
semi-synthetic bulk RNA-seq data (generated from human monocyte real data using simulation strategy 2 in Supp. Section
S6.3).

(a) FDR control, power given the same target FDR, and power given the same actual FDR. (b) Ranking consistency of
the true DEGs among the top 100 DEGs identified by each method. The consistency is defined between the genes’ ranking
based on edgeR/DESeq2’s p-values or Clipper’s contrast scores and their ranking based on true expression fold changes. (c)
Reproducibility between two semi-synthetic datasets as technical replicates. Three reproducibility criteria are used: the IDR,
Pearson correlation, and Spearman correalation. Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s contrast
scores on the two semi-synthetic datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the
highest power, the best gene ranking consistency, and the best reproducibility.

data generation in Supp. Section S2.5.5). Specifically, we ranked true DEGs using Clipper’s

contrast scores (from large to small), edgeR’s p-values (from small to large), or DESeq2’s
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p-values (from small to large). Our results in Fig. 2.4b and Supp. Figs. 2.21b–2.23b show

that Clipper’s contrast scores exhibit the most consistent ranking with the ranking based on

true fold changes. Second, to compare the power of Clipper, edgeR, and DESeq2 based on

their DEG rankings instead of nominal p-values, we calculated their power under the actual

FDRs, which only depend on gene rankings (for the definition of actual FDR, see Supp.

Section S2.5.5). Fig. 2.4a and Supp. Figs. 2.21a–2.23a show that, when Clipper, edgeR, and

DESeq2 have the same actual FDR, Clipper consistently outperforms edgeR and DESeq2 in

terms of power, i.e., Clipper has the most true DEGs in its top ranked genes.

We also compared the reproducibility of Clipper, edgeR, and DESeq2 in the presence

of sampling randomness. Specifically, we used two semi-synthetic datasets (generated in-

dependently from the same procedure in Supp. Section S2.5.5) as technical replicates and

computed Clipper’s contrast scores and edgeR’s and DESeq’s p-values on each dataset. For

each method, we evaluated its reproducibility between the two semi-synthetic datasets by

computing three criteria—the irreproducibility discovery rate (IDR) [64], Pearson corre-

lation, and Spearman correlation—using its contrast scores or negative log10 transformed

p-values. Fig. 2.4c and Supp. Figs. 2.21–2.23c show that Clipper’s contrast scores have

higher reproducibility by all three criteria compared to edgeR’s and DESeq2’s p-values.

Finally, we compared Clipper with DESeq2 and edgeR on the real RNA-seq data of

classical and non-classical human monocytes [61]. In this dataset, gene expression changes

are expected to be associated with the immune response process. We input three classical

and three non-classical samples into Clipper, DESeq2, and edgeR for DEG identification.

Fig. 2.5a shows that edgeR identifies the fewest DEGs, while DESeq2 identifies the most

DEGs, followed by Clipper. Notably, most DEGs identified by DESeq2 are not identified

by Clipper or edgeR. To investigate whether DESeq2 makes too many false discoveries and

whether the DEGs found by Clipper but missed by DESeq2 or edgeR are biologically mean-

ingful, we performed functional analysis on the set of DEGs identified by each method. We

first performed the gene ontology (GO) analysis on the three sets of identified DEGs us-

ing the R package clusterProfiler [65]. Fig. 2.5b (“Total”) shows that more GO terms

are enriched (with enrichment q-values ď 0.01) in the DEGs identified by Clipper than in
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the DEGs identified by DESeq2 or edgeR. For the GO terms enriched in all three sets of

identified DEGs, Fig. 2.5c shows that they are all related to the immune response and

thus biologically meaningful. Notably, these biologically meaningful GO terms have more

significant enrichment in the DEGs identified by Clipper than in those identified by edgeR

and DESeq2. We further performed GO analysis on the DEGs uniquely identified by one

method in pairwise comparisons of Clipper vs. DESeq2 and Clipper vs. edgeR. Fig. 2.5b and

Supp. Fig. 2.26 show that multiple immune-related GO terms are enriched in Clipper-specific

DEGs, while no GO terms are enriched in edgeR-specific or DESeq2-specific DEGs. In addi-

tion, we examined the DEGs that were identified by Clipper only but missed by both edgeR

and DESeq2. Fig. 2.5d and Supplementary Table show that these genes include multiple

key immune-related genes, including CD36, DUSP2, and TNFAIP3. We further performed

pathway analysis on these genes and the DEGs that were identified by DEseq2 only but

missed by both edgeR and Clipper, using the R package limma [34]. Supp. Fig. 2.27a shows

that the DEGs that were only identified by Clipper have significant enrichment for immune-

related pathways including phagosome, a key function of monocytes and macrophages. On

the contrary, Supp. Fig. 2.27b shows that fewer immune-related pathways are enriched in

DEGs that were only identified by DESeq2. Altogether, these results confirm the capacity

of Clipper in real-data DEG analysis, and they are consistent with our simulation results

that edgeR lacks power, while DESeq2 fails to control the FDR.

DEG identification from single-cell RNA-seq data (differential analysis II)

Single-cell RNA sequencing (scRNA-seq) technologies have revolutionized biomedical sci-

ences by enabling genome-wide profiling of gene expression levels at an unprecedented single-

cell resolution. DEG analysis is widely applied to scRNA-seq data for discovering genes whose

expression levels change between two conditions or between two cell types. Compared with

bulk RNA-seq data, scRNA-seq data have many more “replicates” (i.e., cells, whose number

is often in hundreds) under each condition or within each cell type.

We compared Clipper with edgeR [28], MAST [66], Monocle3 [67], the two-sample t
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test, and the Wilcoxon rank-sum test, five methods that are either popular or reported to

have comparatively top performance from a previous benchmark study [68]. To verify the

FDR control, we used scDesign2, a flexible probabilistic simulator to generate scRNA-seq

count data with known true DEGs [69]. scDesign2 offers three key advantages that enable

the generation of realistic synthetic scRNA-seq count data: (1) it captures distinct marginal

distributions of different genes; (2) it preserves gene-gene correlations; (3) it adapts to various

scRNA-seq protocols. Using scDesign2, we generated two synthetic scRNA-seq datasets from

two real scRNA-seq datasets of peripheral blood mononuclear cells (PBMCs) [70]: one using

10x Genomics [71] and the other using Drop-seq [72]. Each synthetic dataset contains two

cell types, CD4+ T cells and cytotoxic T cells, which we treated as two conditions. Having

true DEGs known, the synthetic datasets allow us to evaluate Clipper’s and the other five

methods’ FDRs and power for a range of target FDR thresholds: q “ 1%, 2%, . . . , 10%.

Fig. 2.6d and Supp. Fig. 2.25 show that on both 10x Genomics and Drop-seq synthetic

datasets, Clipper consistently controls the FDR and remains the most powerful among all the

methods that achieve FDR control. These results demonstrate Clipper’s robust performance

in scRNA-seq DEG analysis.

Discussion

In this chapter, we proposed a new statistical framework, Clipper, for identifying interesting

features with FDR control from high-throughput data. Clipper avoids the use of p-values and

makes FDR control more reliable and flexible. We used comprehensive simulation studies

to verify the FDR control by Clipper under various settings. We demonstrate that Clipper

outperforms existing generic FDR control methods by having higher power and greater ro-

bustness to model misspecification. We further applied Clipper to two popular bioinformatics

analyses: peak calling from ChIP-seq data, and DEG identification from RNA-seq data. Our

results indicate that Clipper can provide a powerful add-on to existing bioinformatics tools

to improve the reliability of FDR control and thus the reproducibility of scientific discoveries.

Clipper’s FDR control procedures (BC and GZ procedures in Methods) are motivated
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by the Barber-Candès (BC)’s knockoff paper [50] and the Gimenez-Zou’s multiple knock-

off paper [54], but we do not need to construct knockoffs in enrichment analysis when two

conditions have the same number of replicates; the reason is that the replicates under the

background condition serve as natural negative controls. For differential analysis and en-

richment analysis with unequal numbers of replicates, in order to guarantee the theoretical

assumptions for FDR control, Clipper uses permutations instead of the complicated knockoff

construction because Clipper only examines features marginally and does not concern about

features’ joint distribution.

We validated the FDR control by Clipper using extensive and concrete simulations, in-

cluding both model-based and real-data-based data generation with ground truths, which

are widely used to validate newly developed computational frameworks [73]. In contrast, in

most bioinformatics method papers, the FDR control was merely mentioned but rarely vali-

dated. Many of them assumed that using the BH procedure on p-values would lead to valid

FDR control; however, the reality is often otherwise because p-values would be invalid when

model assumptions were violated or the p-value calculation was problematic. Here we voice

the importance of validating the FDR control in bioinformatics method development, and

we use this work as a demonstration. We believe that Clipper provides a powerful booster

to this movement. As a p-value-free alternative to the classic p-value-based BH procedure,

Clipper relies less on model assumptions and is thus more robust to model misspecifications,

making it an appealing choice for FDR control in diverse high-throughput biomedical data

analyses.

Clipper is a flexible framework that is easily generalizable to identify a variety of interest-

ing features. The core component of Clipper summarizes each feature’s measurements under

each condition into an informative statistic (e.g., the sample mean); then Clipper combines

each feature’s informative statistics under two conditions into a contrast score to enable

FDR control. The current implementation of Clipper only uses the sample mean as the

informative statistic to identify the interesting features that have distinct expected values

under two conditions. However, by modifying the informative statistic, we can generalize

Clipper to identify the features that are interesting in other aspects, e.g., having different
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variances between two conditions. Regarding the contrast score, Clipper currently makes

careful choices between two contrast scores, minus and maximum, based on the number of

replicates and the analysis task (enrichment or differential).

Notably, Clipper achieves FDR control and high power using those two simple contrast

scores, which are calculated for individual features without borrowing information from other

features. However, Clipper does leverage the power of multiple testing by setting a contrast

score threshold based on all features’ contrast scores. This is a likely reason why Clipper

achieves good power even with simple contrast scores. An advantage of Clipper is that it

allows other definitions of contrast scores, such as the two-sample t statistic that considers

within-condition variances. Empirical evidence (Supp. Figs. 2.19 and 2.20) shows that

the Clipper variant using the two-sample t statistic is underpowered by the default Clipper,

which uses the minus summary statistic (difference of two conditions’ sample means) as

the contrast score in the 3vs3 enrichment analysis or as the degree of interestingness in the

3vs3 differential analysis (see Methods). Here is our current interpretation of this seemingly

counter-intuitive result.

‚ First, both the minus statistic and the t statistic satisfy Clipper’s theoretical conditions,

which guarantee the FDR control by the BC and GZ procedures; this is confirmed in

Supp. Figs. 2.19 and 2.20. Hence, from the FDR control perspective, Clipper does

not require the adjustment for within-condition variances by using a t statistic.

‚ Second, Clipper is different from the two-sample t test or the regression-based t test,

where the t statistic was purposely derived as a pivotal statistic so that its null dis-

tribution (the t distribution) does not depend on unknown parameters. Since Clipper

does not require a null distribution for each feature, the advantage of the t statistic

being pivotal no longer matters.

‚ Third, the minus statistic only requires estimates of two conditions’ mean parameters,

while the t statistic additionally requires estimates of the two conditions’ variances.

Hence, when the sample sizes (i.e., the numbers of replicates) are small, the two more

parameters that need estimation in the t statistic might contribute to the observed
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power loss of the Clipper t statistic variant. Indeed, the power difference between the

two statistics diminishes as the sample sizes increase from 3vs3 in Supp. Figs. 2.19–

2.20 to 10vs10 in Supp. Figs. 2.16 (where we compared the default Clipper with

BH-pair-parametric, which is based on the two-sample t test and is highly similar to

the Clipper t statistic variant).

‚ Fourth, we observe empirically that a contrast score would have better power if its

distribution (based on its values of all features) has a larger range and a heavier right

tail (in the positive domain). Compared to the minus statistic, the t statistic has a

smaller range and a lighter right tail due to its adjustment for features’ within-condition

variances (Supp. Fig. 2.34). This observation is consistent with the power difference

of the two statistics.

Beyond our current interpretation, however, we admit that future studies are needed to

explore alternative contrast scores and their power with respect to data characteristics and

analysis tasks. Furthermore, we may generalize Clipper to be robust against sample batch

effects by constructing the contrast score as a regression-based test statistic that has batch

effects removed.

Our current version of Clipper allows the identification of interesting features between two

conditions. However, there is a growing need to generalize our framework to identify features

across more than two conditions. For example, temporal analysis based on scRNA-seq data

aims to identify genes whose expression levels change along time [46]. To tailor Clipper

for such analysis, we could define a new contrast score that differentiates the genes with

stationary expression (uninteresting features) from the other genes with varying expression

(interesting features). Further studies are needed to explore the possibility of extending

Clipper to the regression framework so that Clipper can accommodate data of multiple

conditions or even continuous conditions, as well as adjusting for confounding covariates.

We have demonstrated the broad application potential of Clipper in various bioinformat-

ics data analyses. Specifically, when used as an add-on to established, popular bioinformatics

methods such as MACS2 for peak calling, Clipper guaranteed the desired FDR control and
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in some cases boosted the power. However, many more careful thoughts are needed to es-

calate Clipper into standalone bioinformatics methods for specific data analyses, for which

data processing and characteristics (e.g., peak lengths, GC contents, proportions of zeros,

and batch effects) must be appropriately accounted for before Clipper is used for the FDR

control [68, 74]. We expect that the Clipper framework will propel future development of

bioinformatics methods by providing a flexible p-value-free approach to control the FDR,

thus improving the reliability of scientific discoveries.

After finishing this manuscript, we were informed of the work by He et al. [75], which is

highly similar to the part of Clipper for differential analysis, as both work use permutation

for generating negative controls and the GZ procedure for thresholding (test statistics in He

et al. and contrast scores in Clipper). However, the test statistics used in He et al. are the

two-sample t statistic and the two-sample Wilcoxon statistic, both of which are different from

the minus and maximum contrast scores used in Clipper. While we leave the optimization

of contrast scores to future work, we note that the two-sample Wilcoxon statistic, though

being a valid contrast score for differential analysis, requires a large sample size to achieve

good power. For this reason, we did not consider it as a contrast score in the current Clipper

implementation, whose focus is on sample-sample-size high-throughout biological data.
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2.5 Supplementary Material

S2.5.1 Review of generic FDR control methods

To facilitate our discussion, we introduce the notations for data. For feature j “ 1, . . . , d,

we use Xj “ pXj1, . . . , Xjmq
J P Rm and Y j “ pYj1, . . . , Yjnq

J P Rn to denote its mea-

surements under the experimental and background conditions, respectively. We assume

that Xj1, . . . , Xjm are identically distributed, so are Yj1, . . . , Yjn. Let µXj “ ErXj1s and

µY j “ ErYj1s denote the expected measurement of feature j under the two conditions, re-

spectively. Then we denote by X̄j the sample average of Xj1, ¨ ¨ ¨ , Xjm and by Ȳj the sample

average of Yj1, ¨ ¨ ¨ , Yjn.

S2.5.1.1 P-value-based methods

Here we describe the details of p-value-based FDR control methods, including BH-pair, BH-

pool, qvalue-pair, and qvalue-pool. Each of these four methods first computes p-values using

either the pooled approach or the paired approach, and it then relies on the BH procedure

[1] or Storey’s qvalue procedure [2] for FDR control. In short, every p-value-based method

is a combination of a p-value calculation approach and a p-value thresholding procedure.

Below we introduce two p-value calculation approaches (paired and pooled) and two p-value

thresholding procedures (BH and Storey’s qvalue).

P-value calculation approaches

The paired approach. The paired approach examines one feature at a time and compares

its measurements between two conditions. Besides the ideal implementation, i.e., the correct

paired approach that uses the correct model to calculate p-values, we also include commonly-

used flawed implementations that either misspecify the distribution, i.e., the misspecified

paired approach, or misformulate the two-sample test as a one-sample test, i.e., the 2as1

paired approach.

Here we use the negative binomial distribution as an example to demonstrate the ideas
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of the correct, misspecified, and 2as1 paried approaches. Suppose that for each feature j,

its measurements under each condition follow a negative binomial distribution, and the two

distributions under the two conditions have the same dispersion; that is, Xj1, ¨ ¨ ¨ , Xjm
i.i.d.
„

NB pµXj, θjq ; Yj1, ¨ ¨ ¨ , Yjn
i.i.d.
„ NB pµY j, θjq, where θj is the dispersion parameter such that

the variance VarpXjiq “ µXj ` θjµ
2
Xj.

‚ The correct paired approach assumes that the two negative binomial distributions have

the same dispersion parameter θj, and it uses the two-sample test for the null hypoth-

esis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ą µY j (enrichment

analysis) or H1 : µXj ‰ µY j (differential analysis).

‚ The misspecified paired approach misspecifies the negative binomial distribution as

Poisson, and it uses the two-sample test for the null hypothesis H0 : µXj “ µY j against

the alternative hypothesis H1 : µXj ą µY j (enrichment analysis) or H1 : µXj ‰ µY j

(differential analysis).

‚ The 2as1 paired approach bluntly assumes µY j “ Ȳj, and it performs the one-sample

test based onXj1, . . . , Xjm for the null hypotheses H0 : µXj “ Ȳj against the alternative

hypothesis H1 : µXj ą Ȳj (enrichment analysis) or H1 : µXj ‰ Ȳj (differential analysis).

The pooled approach. The pooled approach pools all features’ average measurements

under the background condition
 

Ȳj
(d

j“1
to form a null distribution, and it calculates a p-

value for each feature j by comparing X̄j to the null distribution. Specifically, in enrichment

analysis, the p-value of feature j is computed as:

pj “
card

` 

k : Ȳk ě X̄j

(˘

d
.

In differential analysis, the p-value of feature j is computed as:

pj “ 2 ¨min

˜

card
` 

k : Ȳk ě X̄j

(˘

d
,

card
` 

k : Ȳk ď X̄j

(˘

d

¸

.
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P-value thresholding procedures for FDR control

Definition S2.4 (BH procedure for thresholding p-values [1]). The features’ p-values p1, . . . , pd

are sorted in an ascending order pp1q ď pp2q ď . . . ď ppdq. Given the target FDR threshold q,

the Benjamini–Hochberg (BH) procedure finds a p-value cutoff TBH as

TBH :“ ppkq, where k “ max

"

j “ 1, . . . , d : ppjq ď
j

d
q

*

. (S2.13)

Then BH outputs
 

j : pj ď TBH
(

as discoveries.

Definition S2.5 (Storey’s qvalue procedure for thresholding p-values [2]). The features’

p-values p1, . . . , pd are sorted in an ascending order pp1q ď pp2q ď . . . ď ppdq. Let π̂0 denote

an estimate of the probability P pthe i-th feature is uninterestingq (see Storey [2] for details).

Storey’s qvalue procedure defines the q-value for ppdq as

q̂pppdqq :“
π̂0 ¨ d ¨ ppdq

card
` 

k : pk ď ppdq
(˘ “ π̂0 ¨ ppdq .

Then for j “ d´ 1, d´ 2, . . . , 1, the q-value for ppjq is defined as:

q̂pppjqq :“ min

˜

q̂pppj`1qq,
π̂0 ¨ d ¨ ppjq

card
` 

k : pk ď ppjq
(˘

¸

.

Then Storey’s qvalue procedure outputs tj : q̂ppjq ď qu as discoveries.

We use function qvalue from R package qvalue (v 2.20.0; with default estimate π̂0) to

calculate q-values.

Definition S2.6 (SeqStep+ procedure for thresholding p-values [3]). Define Hj
0 as the null

hypothesis for feature j and pj as the p-value for Hj
0, j “ 1, . . . , d. Order the null hypotheses

H1
0 , . . . , H

d
0 from the most to the least promising (here more promising means more likely to

be interesting) and denote the resulting null hypotheses and p-values as H
p1q
0 , . . . , H

pdq
0 and

pp1q, . . . , ppdq. Given any target FDR threshold q, a pre-specified constant s P p0, 1q, and

36



subset K Ď t1, . . . , du, the SeqStep+ procedure finds a cutoff ĵ as

ĵ :“ max

#

j P K :
1` card

` 

k P K, k ď j : ppkq ą s
˘(

card
` 

k P K, k ď j : ppkq ď s
˘(

_ 1
ď

1´ s

s
q

+

(S2.14)

Then SeqStep+ rejects
!

H
pjq
0 : ppjq ď s, j ď ĵ, j P K

)

. If the orders of the null hypotheses

are independent of the p-values, the SeqStep+ procedure ensures FDR control.

The GZ procedure (Definition 3) used in Clipper is a special case of the SeqStep+ pro-

cedure with s “ 1{ph ` 1q. Recall that given the number of non-identical permutations

h P t1, ¨ ¨ ¨ , hmaxu and contrast scores tCju
d
j“1, the GZ procedure sorts t|Cj|u

d
j“1 in a decreas-

ing order:

|Cp1q| ě |Cp2q| ě ¨ ¨ ¨ ě |Cpdq| . (S2.15)

To see the connection between the GZ procedure and SeqStep+, we consider the null hy-

pothesis for the j-th ordered feature, j “ 1, . . . , d, as H
pjq
0 : µXpjq “ µY pjq and define the

corresponding p-value ppjq :“
rpT

σ0
pjq
q

h`1
, where rpT σ0

pjqq is the rank of T σ0
pjq in tT σ0

pjq, ¨ ¨ ¨ , T
σh
pjqu in a

descending order. We also define K :“ tj “ 1, . . . , d : Cj ‰ 0u as the subset of features with

non-zero Cj’s. Finally, we input the p-values, null hypothesis orders in (S2.15), s “ 1{ph`1q,

q and K into the SeqStep+ procedure, and we obtain the GZ procedure.

The BC procedure (Definition 1) is a further special case with h “ 1, ppjq :“
`

1pCpjq ą 0q ` 1
˘

{2,

and K :“ tj “ 1, . . . , d : Cj ‰ 0u.

S2.5.1.2 Local-fdr-based methods

The FDR is statistical criterion that ensures the reliability of discoveries as a whole. In

contrast, the local fdr focuses on the reliability of each discovery. The definition of the local

fdr relies on some pre-computed summary statistics zj for feature j, j “ 1, . . . , d. In the

calculation of local fdr, tz1, . . . , zdu are assumed to be realizations of an abstract random

variable Z that represents any feature. Let p0 or p1 denote the prior probability that any

feature is uninteresting or interesting, with p0`p1 “ 1. Let f0pzq :“ PpZ “ z | uninterestingq
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or f1pzq :“ PpZ “ z | interestingq denote the conditional probability density of Z at z given

that Z represents an uninteresting or interesting feature. Thus by Bayes’ theorem, the

posterior probability of any feature being uninteresting given its summary statistic Z “ z is

Ppuninteresting | Z “ zq “ p0f0pzq{fpzq , (S2.16)

where fpzq :“ p0f0pzq ` p1f1pzq is the marginal probability density of Z. Accordingly, the

local fdr of feature j is defined as follows.

Definition S2.7 (Local fdr [4]). Given notations defined above, the local fdr of feature j is

defined as

local-fdrj :“ f0pzjq{fpzjq .

Because p0 ď 1, local-fdrj is an upper bound of the posterior probability of feature j being

uninteresting given its summary statistic zj, defined in (S2.16).

Note that another definition of the local fdr is the posterior probability Ppuninteresting | zq

in (S2.16) [5]. Although this other definition is more reasonable, we do not use it but choose

Definition S2.7 because the estimation of p0 is ususally difficult. Another reason is that

uninteresting features are the dominant majority in high-throughput biological data, so p0

is often close to 1.

We define local-fdr-based methods as a type of FDR control methods by thresholding

local fdrs of features under the target FDR threshold q. Although the local fdr is different

from FDR, it has been shown that thresholding the local fdrs at q will approximately control

the FDR under q [4]. This makes local-fdr-based methods competitors against Clipper and

p-value-based methods.

Every local-fdr-based method is a combination of a local fdr calculation approach and a

local fdr thresholding procedure. Below we introduce two local fdr calculation approaches

(empirical null and swapping) and one local fdr thresholding procedure. After the combina-

tion, we have two local-fdr-based methods: locfdr-emp and locfdr-swap.
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Local fdr calculation approaches

With z1, . . . , zd, the calculation of local fdr defined in Definition S2.7 requires the estimation

of f0 and f , two probability densities. f is estimated by nonparametric density estimation,

and f0 is estimated by either the empirical null approach [4] or the swapping approach, which

shuffles replicates between conditions [5]. With the estimated f̂ and f̂0, the estimated local

fdr of feature j is

{local-fdrj :“ f̂0pzjq{f̂pzjq . (S2.17)

The empirical null approach. This approach assumes a parametric distribution, typically

the Gaussian distribution, to estimate f0. Then with the density estimate f̂ , the local fdr is

estimated for each feature j. The implementation of this approach depends on the numbers

of replicates.

‚ In 1vs1 enrichment and differential analyses, we define zj as

zj :“
Dj

b

1
d

řd
j“1

`

Dj ´ D̄
˘2
,

where Dj “ Xj1 ´ Yj1 and D̄ “
řd
j“1Dj{d.

‚ In 2vs1 enrichment and differential analyses, we define zj as

zj :“
X̄j ´ Yj1
b

s2Xj
2

,

where s2
Xj “

ř2
i“1pXji ´ X̄jq

2.

‚ In mvsn enrichment and differential analyses with m,n ě 2, we define zj as the two-

sample t-statistic with unequal variances:

zj :“
X̄j ´ Ȳj

b

s2Xj
m
`

s2Y j
n

,
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where s2
Xj “

1
m´1

řm
i“1pXji ´ X̄jq

2 and s2
Y j “

1
n´1

řn
i“1pYji ´ Ȳjq

2 are the sample

variances of feature j under the experimental and background conditions.

Then t{locfdrju
d
j“1 are estimated from tzju

d
j“1 by function locfdr in R package locfdr (v

1.1-8; with default arguments).

The swapping approach. This approach swaps rm{2s replicates under the experimental

condition with rn{2s replicates under the background condition. Then it calculates the sum-

mary statistic for each feature on the swapped data, obtaining z11, . . . , z
1
d. Finally, it estimates

f0 and f by applying kernel density estimation to z11, . . . , z
1
d and z1, . . . , zd, respectively (by

function kde in R package ks). With f̂0 and f̂ , t{locfdrju
d
j“1 are calculated by Definition S2.7.

The implementation of this approach depends on the numbers of replicates. Below are

three special cases included in this work.

‚ In 1vs1 enrichment and differential analyses, the swapping approach is inapplicable

because interesting features would not become uninteresting after the swapping.

‚ In 2vs1 enrichment and differential analyses, we define zj and z1j as

zj “
Xj1 `Xj2

2
´ Yj1 ,

z1j “
Xj1 ` Yj1

2
´Xj2 .

‚ In 3vs3 enrichment and differential analyses with, we define zj and z1j as

zj “
Xj1 `Xj2

2
´
Yj1 ` Yj2

2
,

z1j “
Xj1 ` Yj1

2
´
Xj2 ` Yj2

2
.

Then we apply kernel density estimation to tzju
d
j“1 and

 

z1j
(d

j“1
to obtain f̂ and f̂0, respec-

tively. By (S2.17), we calculate t{locfdrju
d
j“1.
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The local fdr thresholding procedure

Definition S2.8 (locfdr procedure). Given the local fdr estimates t {local-fdrju
d
j“1 and the

target FDR threshold q, the locfdr procedure outputs tj “ 1, . . . , d : {local-fdrj ď qu as discov-

eries.

Generic FDR control methods

In our simulation analysis, we compared Clipper against generic FDR control methods in-

cluding p-value-based methods and local-fdr-based methods. Briefly, each p-value-based

method is a combination of a p-value calculation approach and a p-value thresholding pro-

cedure. We use either the “paired” or “pooled” approach (see next paragraph) to calculate

p-values of features and then threshold the p-values using the BH procedure (Supp. Defini-

tion S2.4) or Storey’s qvalue procedure (Supp. Definition S2.5) to make discoveries (Supp.

Section S2.5.1.1). As a result, we have four p-value-based methods: BH-pair, BH-pool,

qvalue-pair, and qvalue-pool (Fig. 2.1b).

Regarding the existing p-value calculation approaches in bioinformatics tools, we cate-

gorize them as “paired” or “pooled.” The paired approach has been widely used to detect

DEGs and protein-binding sites [6–9]. It examines one feature at a time and compares the

feature’s measurements between two conditions using a statistical test. In contrast, the

pooled approach is popular in proteomics for identifying peptide sequences from MS data

[10]. For every feature, it defines a test statistic and estimates a null distribution by pooling

all features’ observed test statistic values under the background condition. Finally, it cal-

culates a p-value for every feature under the experimental condition based on the feature’s

observed test statistic and the null distribution.

In parallel to p-value-based methods, local-fdr-based methods estimate local fdrs of fea-

tures and then threshold the local fdrs using the locfdr procedure (Supp. Definition S2.8) to

make discoveries. The estimation of local fdrs takes one of two approaches: (1) empirical null,

which is estimated parametrically from the test statistic values that are likely drawn from the

null distribution, and (2) swapping null, which is constructed by swapping measurements be-
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tween experimental and background conditions. The resulting two local-fdr-based-methods

are referred to as locfdr-emp and locfdr-swap (Figs. 2.1b and 2.3). Supp. Section S2.5.1

provides a detailed explanation of these generic methods and how we implemented them in

this work.

Specific to the p-value-based methods, for the paired approach, besides the ideal imple-

mentation that uses the correct model to calculate p-values (BH-pair-correct and qvalue-

pair-correct), we also consider common mis-implementations. The first mis-implementations

is misspecification of the distribution (BH-pair-mis and qvalue-pair-mis). An example is

the detection of protein-binding sites from ChIP-seq data. A common assumption is that

ChIP-seq read counts in a genomic region (i.e., a feature) follow the Poisson distribution [6,

7], which implies that the counts have the variance equal to the mean. However, if only two

replicates are available, it is impossible to check whether this Poisson distribution is reason-

ably specified. The second mis-implementation is the misspecification of a two-sample test as

a one-sample test (BH-pair-2as1 and qvalue-pair-2as1), which ignores the sampling random-

ness of replicates under one condition. This issue is implicit but widespread in bioinformatics

methods [6, 11].

To summarize, we compared Clipper against the following implementations of generic

FDR control methods:

‚ BH-pool or qvalue-pool: p-values calculated by the pooled approach and thresholded

by the BH or qvalue procedure.

‚ BH-pair-correct or qvalue-pair-correct: p-values calculated by the paired ap-

proach with the correct model specification and thresholded by the BH or qvalue

procedure.

‚ BH-pair-mis or qvalue-pair-mis: p-values calculated by the paired approach with

a misspecified model and thresholded by the BH or qvalue procedure.

‚ BH-pair-2as1 or qvalue-pair-2as1: p-values calculated by the paired approach that

misformulates a two-sample test as a one-sample test (2as1) and thresholded by the
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BH or qvalue procedure.

‚ locfdr-emp: local fdrs calculated by the empirical null approach and thresholded by

the locfdr procedure.

‚ locfdr-swap: local fdrs calculated by the swapping approach and thresholded by the

locfdr procedure.

S2.5.2 Comparison of Clipper variant algorithms

We compared Clipper variant algorithms applicable to each experimental design. Based on

the comparison results, we selected a variant algorithm as the default Clipper implementation

for each design.

‚ 1vs1 enrichment analysis. Under each of the 12 settings, we compared Clipper-

minus-BC, Clipper-minus-aBH, Clipper-max-BC, and Clipper-max-aBH (Section 2.2.1),

the only four Clipper variant algorithms applicable to 1vs1 enrichment analysis. The

results in Fig. 2.28 show that, regardless of the contrast scores being minus or maxi-

mum (max), the BC procedure always guarantees the FDR control under a range of

target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u. Notably, in terms of power, the two

contrast scores consistently have different advantages under the two background sce-

narios: Clipper-max-BC has higher power under the homogeneous background, while

Clipper-minus-BC is more powerful under the heterogeneous background. Considering

that the heterogeneous scenario is prevalent in high-throughput biological data, the

minus contrast score is preferred. As the power of Clipper-minus-BC drops when q is

too small (q ď 3%) and d is not too large (d “ 1000), we consider the aBH procedure as

an alternative to control the FDR. The results show that Clipper-minus-aBH is indeed

more powerful when Clipper-minus-BC lacks power; however, Clipper-minus-aBH can-

not guarantee the exact FDR control as Clipper-minus-BC does. Therefore, Clipper

uses Clipper-minus-BC by default in 1vs1 enrichment analysis, and it recommends

users to increase q when too few discoveries are made; if users reject this option, then
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Clipper would use Clipper-minus-aBH to increase power for the current q.

‚ 2vs1 enrichment analysis. Under each of the 6 settings, we compared Clipper-

minus-GZ and Clipper-max-GZ (Section 2.2.1), the only two Clipper variant algorithms

applicable to 2vs1 enrichment analysis. For either algorithm, we further compared

two numbers of permutation equivalence classes: h “ 1 or 2, where the latter is

hmax “
`

3
1

˘

´ 1—the maximum number of equivalence classes that do not include the

identity permutation. Note that h is a required input parameter for the GZ procedure.

The results in Fig. 2.29 show that, regardless of h and the contrast score definition—

maximum (max) or minus, the GZ procedure always guarantees the FDR control under

all target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u. In terms of power, Clipper-max-

GZ(h “ 1) is consistently more powerful than the other three Clipper variants under all

settings. Therefore, Clipper uses Clipper-max-GZ(h “ 1) by default in enrichment

analysis with unequal numbers of replicates under two conditions.

‚ 3vs3 enrichment analysis. Under each of the 12 settings, we compared five Clipper

variant algorithms: Clipper-minus-BC, Clipper-minus-aBH, Clipper-max-BC, Clipper-

max-aBH, and Clipper-max-GZ (Section 2.2.1). Fig. 2.30 shows the comparison of

the first four variants: regardless of the contrast scores being minus or maximum

(max), the BC procedure simultaneously guarantees the FDR control and achieves

good power under a range of target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u. Simi-

lar to the results in the 1vs1 enrichment analysis, Clipper-max-BC has higher power

under the homogeneous background, while Clipper-minus-BC is more powerful under

the heterogeneous background. By the same reasoning—the prevalent heterogeneous

scenarios in high-throughput biological data—we prefer the minus contrast score. Un-

like the 1vs1 enrichment analysis, here Clipper-minus-BC is consistently as powerful as

Clipper-minus-aBH, even when q is small, but Clipper-minus-aBH cannot guarantee

the exact FDR control. Therefore, Clipper-minus-BC achieves the overall best per-

formance among the first four Clipper variants. Given that the GZ procedure is also

applicable to this setting, we further compared Clipper-minus-BC with Clipper-max-
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GZ(h “ 1), the most powerful Clipper variant with the GZ procedure and the default

Clipper implementation in the 2vs1 enrichment and differential analyses and the 3vs3

differential analysis. The results in Fig. 2.32 show that while both Clipper-minus-

BC and Clipper-max-GZ(h “ 1) control the FDR, the former is more powerful. Hence,

we will use Clipper-minus-BC as the default when both conditions have more than one

and the same number of replicates.

Under the simulation settings from Gaussian distributions, we also compared Clipper-

minus-BC with another Clipper variant using the BC procedure and the t statistic

as the contrast score (Clipper-t), where the t statistic is from the two-sample t test.

Fig. 2.19 shows that, although Clipper-t always guarantees the FDR control under a

range of target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, it has lower power compared

to Clipper-minus-BC, our default Clipper for enrichment analysis with equal numbers

of replicates. Based on this result, we did not consider the t statistic as an alternative

contrast score for Clipper.

‚ 2vs1 differential analysis. Similar to 2vs1 enrichment analysis, under each of the

6 settings, we compared Clipper-minus-GZ and Clipper-max-GZ (Section 2.2.1) with

h “ 1 or 2. The results in Fig. 2.29 show that, regardless of h and the contrast score

definition—maximum (max) or minus, the GZ procedure always guarantees the FDR

control under a range of target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u. Notably, in

terms of power, Clipper-minus-GZ(h “ 2) is the most powerful when when q is very

small (q ď 2%) under Poisson and negative binomial settings, while Clipper-max-

GZ(h “ 1) is the most powerful otherwise. Considering that Clipper-max-GZ(h “ 1)

outperforms the other three Clipper variants in most cases, Clipper uses Clipper-

max-GZ(h “ 1) by default in 2vs1 differential analysis, and it recommends users to

use Clipper-minus-GZ(h “ 2) when too few discoveries are made.

‚ 3vs3 differential analysis. Under each of the 12 settings, we compared Clipper-

minus-GZ, and Clipper-max-GZ (Section 2.2.1) with h “ 1, 3 or 9, where h “ 9 is

hmax “
`

6
3

˘

{2´1—the maximum number of equivalence classes that do not include the
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identity permutation. The results in Fig. 2.31 show that, regardless of h and the con-

trast score definition—maximum (max) or minus, the GZ procedure always guarantees

the FDR control under a range of target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u. In

terms of power, Clipper-max-GZ(h “ 1) is consistently more powerful than the other

Clipper variant algorithms under all settings. Therefore, Clipper uses Clipper-max-

GZ(h “ 1) by default in 3vs3 differential analysis.

Under the simulation settings from Gaussian distributions, we also compared Clipper-

max-GZ with another Clipper variant using the GZ procedure and the t statistic to

calculate the degree of interestingness (Clipper-t), where the t statistic is from the

two-sample t test. Fig. 2.20 shows that, although Clipper-t always guarantees the

FDR control under a range of target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, it has

lower power compared to Clipper-max-GZ, our default Clipper for differential analysis.

Based on this result, we did not consider the t statistic as an alternative contrast scores

for Clipper.

In summary, whenever Clipper-minus-BC is applicable (enrichment analysis with equal num-

ber of replicates under two conditions), it is chosen as the default Clipper implementation;

otherwise, Clipper-max-GZ(h “ 1) is the default.

S2.5.3 Data generation and detailed implementation of the paired approach (a

p-value calculation approach) in simulation studies

We describe how we simulated data and how we implemented the paired approach in differ-

ent simulation settings: 1vs1 enrichment analysis, 2vs1 enrichment analysis, 3vs3 enrichment

analysis, 2vs1 differential analysis, and 3vs3 differential analysis, combined with three dis-

tribution families (Gaussian, Poisson, and negative binomial) and two background scenarios

(homogeneous and heterogeneous). Under some settings, we considered different numbers of

features and the existence of outliers.

In each simulation setting, we generated 200 simulated datasets, computed an FDP and

an empirical power on each dataset, and averaged the 200 FDPs and 200 empirical powers
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to approximate the FDR and power, repsectively. For notation simplicity, we use Npµ, σ2q

to denote the Gaussian distribution with mean µ and variance σ2, Poispλq to denote the

Poisson distribution with mean λ, and NBpµ, θq to denote the negative binomial distribution

with mean µ and dispersion θ (such that its variance equals µ` θµ2).

For each design and analysis, we compared the default Clipper implementation with other

generic FDR control methods. Specifically, seven generic methods (BH-pool, qvalue-pool,

BH-pair-mis, qvalue-pair-mis, BH-pair-2as1, qvalue-pair-2as1, and locfdr-emp) are included

in all designs and analyses. The two methods relying on correct model specification, BH-

pair-correct and qvalue-pair-correct, are only included in the 3vs3 enrichment and differential

analyses, because it is almost impossible to correctly specify a model with fewer than three

replicates per condition. The permutation-based method, locfdr-swap, is excluded from the

1vs1 enrichment analysis because it requires at least one condition to have more than one

replicate.

In addition to the above designs and analyses, we also compared the default Clipper

implementation with BH-pair methods that use parametric or non-parametric tests to cal-

culate p-values when the numbers of replicates are 10 under both conditions for enrichment

analysis, i.e., 10vs10 enrichment analysis.

S2.5.3.1 1vs1 enrichment analysis

We simulated data with d “ 1000 and 10,000 features under two background scenarios and

three distributional families—a total of 12 settings. In each setting, 10% of the features are

interesting (µXj ą µY j), and the rest are uninteresting (with µXj “ µY j). Recall that N

denotes the set of uninteresting features.

Gaussian distribution

We simulated data from Gaussian using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 0 for all d features. For
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uninteresting features, we set µXj “ µY j “ 0 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from Np5, 1q.

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Np0, 22q. For uninteresting features, we set µXj “ µY j for j P N . For interesting

features, we generated tµXjujRN i.i.d. from Np5, 1q.

‚ We independently generated Xj1 from NpµXj, 1q and Yj1 from NpµY j, 1q, j “ 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we assumed that the null distribution of Xj1 ´ Yj1, j “ 1, . . . , d is Np0, σ̂2q, where

σ̂2
“

1

d´ 1

d
ÿ

j“1

˜

Xj1 ´
1

d

d
ÿ

j“1

Xj1

¸2

`
1

d´ 1

d
ÿ

j“1

˜

Yj1 ´
1

d

d
ÿ

j“1

Yj1

¸2

.

This is a misspecified model that assumes that µXj’s are all equal and so are µY j’s. Then

we computed the p-value of feature j “ 1, . . . , d as the right tail probability of Xj1 ´ Yj1 in

Np0, σ̂2q, i.e., 1´ Φ
´

Xj1´Yj1
σ̂

¯

, where Φ is the cumulative distribution function of Np0, 1q.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated NpYj1, 1q conditioning on the observed Yj1 as the null distribution of Xj1. Then we

calculated the p-value of feature j “ 1, . . . , d as the right tail probability of Xj1 in NpYj1, 1q,

i.e., 1´ Φ pXj1 ´ Yj1q.

Poisson distribution

We simulated data from Poisson using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 20 for all d features. For

uninteresting features, we set µXj “ µY j “ 20 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from Poisp40q.

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Poisp20q. For uninteresting features, we set µXj “ µY j for j P N . For interesting

features, we generated tµXjujRN i.i.d. from Poisp40q.
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‚ We independently generated Xj1 from PoispµXjq and Yj1 from PoispµY jq, j “ 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we first defined a log-transformation fpxq “ logpx ` 0.01q, which we applied to Xj1 and

Yj1, j “ 1, . . . , d. We assumed that the null distribution of fpXj1q ´ fpYj1q, j “ 1, . . . , d is

Np0, σ̂2q, where

σ̂2
“

1

d´ 1

d
ÿ

j“1

˜

fpXj1q ´
1

d

d
ÿ

j“1

fpXj1q

¸2

`
1

d´ 1

d
ÿ

j“1

˜

fpYj1q ´
1

d

d
ÿ

j“1

fpYj1q

¸2

.

This model misspecifies the Poisson distribution as the log-normal distribution.

Then we computed the p-value of feature j “ 1, . . . , d as the right tail probability of

fpXj1q´fpYj1q in Np0, σ̂2q, i.e., 1´Φ
´

fpXj1q´fpYj1q

σ̂

¯

, where Φ is the cumulative distribution

function of Np0, 1q.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated PoispYj1q conditioning on the observed Yj1 as the null distribution of Xj1. Then we

calculated the p-value of feature j “ 1, . . . , d as the right tail probability of Xj1 in PoispYj1q,

i.e., PpZ ě Xj1q where Z „ PoispYj1q.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 20 for all d features. For

uninteresting features, we set µXj “ µY j “ 20 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from NBp45, 45´1q.

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

NBp20, 20´1q. For uninteresting features, we set µXj “ µY j for j P N . For inter-

esting features, we generated tµXjujRN i.i.d. from NBp45, 45´1q.

‚ We independently generated Xj1 from NBpµXj, µ
´1
Xjq and Yj1 from NBpµY j, µ

´1
Y jq, j “

1, . . . , d.
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To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we assumed that for each uninteresting feature j, Yj1 and Xj1 follow the same Poisson

distribution. We calculated the p-value of feature j from a two-sample Poisson test for the

null hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ą µY j using

function poisson.test in R package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated NBpYj1, Y
´1
j1 q conditioning on the observed Yj1 as the null distribution of Xj1. Then

we calculated the p-value of feature j “ 1, . . . , d as the right tail probability of Xj1 in

NBpYj1, Y
´1
j1 q.

S2.5.3.2 2vs1 enrichment analysis

We simulated data with d “ 10,000 features under two background scenarios and three dis-

tributional families—a total of 6 settings. In each setting, 10% of the features are interesting

(µXj ą µY j) and the rest are uninteresting (with µXj “ µY j). Recall that N denotes the set

of uninteresting features.

Gaussian distribution

We simulated data from Gaussian using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 0 for all d features. For

uninteresting features, we set µXj “ µY j “ 0 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from Np5, 1q.

‚ Under the heterogeneous background scenario, we generated tµY jujPN i.i.d. from

Np0, 22q and set µXj “ µY j for j P N . We next generated tµY jujRN i.i.d. from

Np0, 22q and tµXjujRN i.i.d. from Np5, 1q.

‚ We independently generated Xj1 and Xj2 from NpµXj, 1q and Yj1 from NpµY j, 1q,

j “ 1, . . . , d.
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To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we assumed that the null distribution of 1
2
pXj1 `Xj2q ´ Yj1, j “ 1, . . . , d, is Np0, σ̂2q, where

σ̂2
“

1

2p2d´ 1q

d
ÿ

j“1

2
ÿ

i“1

˜

Xji ´
1

2d

d
ÿ

j“1

2
ÿ

i“1

Xji

¸2

`
1

d´ 1

d
ÿ

j“1

˜

Yj1 ´
1

d

d
ÿ

j“1

Yj1

¸2

.

This is a misspecified model that assumes µXj’s are all equal and so are µY j’s. Then we

computed the p-value of feature j “ 1, . . . , d as the right tail probability of 1
2
pXj1`Xj2q´Yj1

in Np0, σ̂2q, i.e., 1 ´ Φ
´

1
2
pXj1`Xj2q´Yj1

σ̂

¯

, where Φ is the cumulative distribution function of

Np0, 1q.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated NpYj1, 1{2q conditioning on the observed Yj1 as the null distribution of 1
2
pXj1`Xj2q.

Then we calculated the p-value of feature j “ 1, . . . , d as the right tail probability of 1
2
pXj1`

Xj2q in NpYj1, 1{2q, i.e., 1´ Φ
´

1
2
pXj1`Xj2q´Yj1

1{
?

2

¯

.

Poisson distribution

We simulated data from Poisson using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 20 for all d features. For

uninteresting features, we set µXj “ µY j “ 20 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from Poisp40q.

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Poisp20q. For uninteresting features, we set µXj “ µY j for j P N . For interesting

features, we generated tµXjujRN i.i.d. from Poisp40q.

‚ We independently generated Xj1 and Xj2 from PoispµXjq and Yj1 from PoispµY jq,

j “ 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we first defined a log-transformation fpxq “ logpx` 0.01q, which we applied to Xj1 and Yj1,

j “ 1, . . . , d. We assumed that the null distribution of fpXj1q`fpXj2q´2fpYj1q, j “ 1, . . . , d
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is Np0, σ̂2q, where

σ̂2
“

6

d´ 1

d
ÿ

j“1

˜

fpYj1q ´
1

d

d
ÿ

j“1

fpYj1q

¸2

.

This model misspecifies the Poisson distribution as the log-normal distribution.

Then we computed the p-value of feature j “ 1, . . . , d as the right tail probability of

fpXj1q ` fpXj2q ´ 2fpYj1q in Np0, σ̂2q, i.e., 1 ´ Φ
´

fpXj1q`fpXj2q´2fpYj1q

σ̂

¯

, where Φ is the

cumulative distribution function of Np0, 1q.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

assumed that for each uninteresting feature j, Xj1 and Xj2 independently follow PoispYj1q

conditioning on the observed Yj1. Then we calculated the p-value of feature j “ 1, . . . , d

by performing a one-sample Poisson test using the R function poisson.test for the null

hypothesis H0 : µXj “ Yj1 against the alternative hypothesis H1 : µXj ą Yj1.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 20 for all d features. For

uninteresting features, we set µXj “ µY j “ 20 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from NBp45, 45´1q.

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

NBp20, 20´1q. For uninteresting features, we set µXj “ µY j for j P N . For inter-

esting features, we generated tµXjujRN i.i.d. from NBp45, 45´1q.

‚ We independently generatedXj1 andXj2 from NBpµXj, µ
´1
Xjq and Yj1 from NBpµY j, µ

´1
Y jq,

j “ 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we assumed that for each uninteresting feature j, Xji, i “ 1, 2 and Yj1 follow the same

Poisson distribution. We calculated the p-value of feature j from a two-sample Poisson test
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for the null hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ą µY j

using the function poisson.test in R package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated NBp2Yj1, p2Yj1q
´1q conditioning on the observed Yj1 as the null distribution of Xj1`

Xj2. Then we calculated the p-value of feature j “ 1, . . . , d as the right tail probability of

Xj1 `Xj2 in NBp2Yj1, p2Yj1q
´1q.

S2.5.3.3 3vs3 enrichment analysis

We simulated data with and without outliers under two background scenarios and three

distributional families—a total of 12 settings. In each setting, we generated d “ 10,000

features, among which 10% are interesting (with µXj ą µY j) and the rest are uninteresting

(with µXj “ µY j). For the results in Fig. 2.18, we simulated data without outliers under

two background scenarios and three distributional families using two more proportions of

interesting features: 20% and 40%. The data generation under the Gaussian, Poisson, and

negative binomial distributions is the same as the settings with 10% interesting features.

Under the settings with outliers, we generated tOX
ji : j “ 1, . . . , d; i “ 1, . . . , 3u and

tOY
ji : j “ 1, . . . , d; i “ 1, . . . , 3u i.i.d. from Bernoullip0.1q, where OX

ji “ 1 or OY
ji “ 1 indicates

Xji or Yji is an outlier, respectively. Under settings without outliers, OX
ji “ OY

ij “ 0 for all

j “ 1, . . . , d; i “ 1, . . . , 3.

Gaussian distribution

‚ Under the homogeneous background scenario, we set µY j “ 0 for all d features. For

uninteresting features, we set µXj “ µY j “ 0 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from Np5, 1q.

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Np0, 22q. For uninteresting features, we set µXj “ µY j for j P N . For interesting

features, we generated tµXjujRN i.i.d. from Np5, 1q.
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‚ We independently generated Xji from NpµXj, 1q if OX
ji “ 0 or from the top 1% per-

centile of NpµXj, 1q if OX
ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3. Similarly, we independently

generated Yji from NpµY j, 1q if OY
ji “ 0 or from the top 1% percentile of NpµY j, 1q if

OY
ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3.

‚ For the results in Supp. Fig. 2.19, under the heterogeneous background scenario, we

generated tµY ju
d
j“1 i.i.d. from Np0, 22q, and tsju

d
j“1 i.i.d. from a uniform distribution

Up0.5, 2q. For uninteresting features, we set µXj “ µY j for j P N . For interesting

features, we generated tµXjujRN i.i.d. from Np5, 1q. We then independently generated

Xji from NpµXj, s
2
jq if OX

ji “ 0 or from the top 1% percentile of NpµXj, s
2
jq if OX

ji “ 1,

j “ 1, . . . , d; i “ 1, . . . , 3. Similarly, we independently generated Yji from NpµY j, s
2
jq if

OY
ji “ 0 or from the top 1% percentile of NpµY j, s

2
jq if OY

ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3.

‚ For the results in Supp. Fig. 2.17, we generated correlated features. We first selected

10 groups of features (2 groups of interesting features and 8 groups of uninteresting fea-

tures), with each group containing 200 features. For each group k, we used k1, . . . , k200

to denote the indices of the 200 features within that group and generated tXkliu
200
l“1

from a multivariate Gaussian distribution Npµk,Σkq, where µk “ pµXk1 , . . . , µXk200q

and Σk is a matrix with diagonal entries as 1 and other entries as a fixed correlation.

In our simulation, the fixed correlation took two values: 0.2 and 0.4.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct),

we calculated the p-value of feature j from a two-sample t-test with equal variance for the

null hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ą µY j.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we calculated the p-value of feature j from a two-sample t-test with unequal variance for the

null hypothesis H0 : µXj “ µYj against the alternative hypothesis H1 : µXj ą µYj .

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

assumed that for each uninteresting feature j, Xji, i “ 1, . . . , 3 are i.i.d. Gaussian with

mean Ȳj conditioning on the observed Ȳj and unknown variance. We calculated the p-value
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of feature j using a one-sample t-test for the null hypothesis H0 : µXj “ Ȳj against the

alternative hypothesis H1 : µXj ą Ȳj.

Poisson distribution

We simulated data from Poisson using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 20 for all d features. For

uninteresting features, we set µXj “ µY j “ 20 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from Poisp40q.

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Poisp20q. For uninteresting features, we set µXj “ µY j for j P N . For interesting

features, we generated tµXjujRN i.i.d. from Poisp40q.

‚ We independently generated Xji from PoispµXjq if OX
ji “ 0 or from the top 1% per-

centile of PoispµXjq if OX
ji “ 1, j “ 1, . . . , d, i “ 1, . . . , 3. Similarly, we independently

generated Yji from PoispµY jq if OY
ji “ 0 or from the top 1% percentile of PoispµY jq if

OY
ji “ 1, j “ 1, . . . , d; 1, . . . , 3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct),

we calculated the p-value of feature j by performing a two-sample Poisson test for the null

hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ą µY j using the

function poisson.test in R package stats.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we first defined a log-transformation fpxq “ logpx` 0.01q, which we applied to Xji and Yji,

j “ 1, . . . , d; i “ 1, . . . , 3. We assumed that for each uninteresting feature j, tfpXjiqu
3
i“1 and

tfpYjiqu
3
i“1 follow Gaussian distributions with mean µfpXjq and µfpY jq, respectively. Then

we computed the p-value of feature j using a two-sample equal variance t-test for the null

hypothesis H0 : µfpXjq “ µfpY jq against the alternative hypothesis H1 : µfpXjq ą µfpY jq.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

assumed that for each uninteresting feature j, tXjiu
3
i“1 follow PoispȲjq conditioning on the
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observed Ȳj. We calculated the p-value of feature j by performing a one-sample Poisson test

for the null hypothesis H0 : µXj “ Ȳj against the alternative hypothesis H1 : µXj ą Ȳj using

R function poisson.test from package stats.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 20 for all d features. For

uninteresting features, we set µXj “ µY j “ 20 for j P N . For interesting features, we

generated tµXjujRN i.i.d. from NBp45, 45´1q.

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

NBp20, 20´1q. For uninteresting features, we set µXj “ µY j for j P N . For inter-

esting features, we generated tµXjujRN i.i.d. from NBp45, 45´1q.

‚ We independently generated Xji from NBpµXj, µ
´1
Xjq if OX

ji “ 0 or from the top 1%

percentile of NBpµXj, µ
´1
Xjq if OX

ji “ 1, j “ 1, . . . , d, i “ 1, . . . , 3. Similarly, we inde-

pendently generated Yji from NBpµY j, µ
´1
Y jq if OY

ji “ 0 or from the top 1% percentile of

NBpµY j, µ
´1
Y jq if OY

ji “ 1, j “ 1, . . . , d, i “ 1, . . . , 3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct),

we performed a two-sample negative binomial test for the null hypothesis H0 : µXj “ µY j

against the alternative H1 : µXj ą µY j using Tj :“
ř3
i“1Xji ´

ř3
i“1 Yji as the test statistic.

We computed the p-value of feature j as the right tail probability

PpTj ě tjq “
8
ÿ

k1“0

8
ÿ

k2“k1`tj

P

˜

3
ÿ

i“1

Xji ě k2

¸

P

˜

3
ÿ

i“1

Yji “ k1

¸

,

where tj is the realization of Tj, Pp
ř3
i“1Xji ě k2q and Pp

ř3
i“1 Yji “ k1q can be estimated

from the null distribution of Xji and Yji, j “ 1, . . . , d; i “ 1, . . . , 3. As
ř3
i“1Xji and

ř3
i“1 Yji follow the same distribution under null, we estimated µXj and µY j as µ̂Xj “ µ̂Y j :“

p
ř3
i“1Xji`

ř3
i“1 Yjiq{6. Then, we calculated Pp

ř3
i“1Xji ě k2q and Pp

ř3
i“1 Yji “ k1q using the
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estimated distribution ofXji and Yji as NBpµ̂Xj, pµ̂Xjq
´1q and NBpµ̂Y j, pµ̂Y jq

´1q, respectively,

j “ 1, . . . , d; i “ 1, . . . , 3.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we assumed that for each uninteresting feature j, tXjiu
3
j“1 and tYjiu

3
j“1 follow the same

Poisson distribution. We calculated the p-value of feature j from a two-sample Poisson test

for the null hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ą µY j

using function poisson.test in R package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated NBp
ř3
i“1 Yji, p

ř3
i“1 Yjiq

´1q conditioning on the observed
ř3
i“1 Yji as the null distri-

bution of
ř3
i“1Xji. Then we calculated the p-value of feature j “ 1, . . . , d as the right tail

probability of
ř3
i“1Xji in NBp

ř3
i“1 Yji, p

ř3
i“1 Yjiq

´1q.

S2.5.3.4 10vs10 enrichment analysis

We simulated data without outliers under heterogeneous background scenario and three

distributional families—a total of 3 settings. In each setting, we generated d “ 10,000

features, among which 10% are interesting (with µXj ą µY j) and the rest are uninteresting

(with µXj “ µY j).

The data generation under the Gaussian, Poisson, and negative binomial distributions is

the same as in the 3vs3 enrichment analysis (Section S2.5.3.3) except that we set the number

of replicates to 10 under each condition, and we did not generate outliers.

The correct paired approaches in BH-pair-parametric are the same as the corresponding

BH-pair-correct in the 3vs3 enrichment analysis (Section S2.5.3.3) except that, under the

negative binomial distribution, the test statistic Tj and its null distribution should have the

number of replicates changed from 3 to 10. The misspecified and 2as1 paired approaches

(BH-pair-mis and BH-pair-2as1) are also the same as the corresponding approaches in the

3vs3 enrichment analysis (Section S2.5.3.3).

To implement the non-parametric paired approaches, we calculated the p-value of feature

j from the one-sided two-sample Wilcoxon rank-sum test (using R function wilcox.test in
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package stats) in BH-pair-Wilcoxon and from the one-sided two-sample permutation test

(using R function oneway test in package coin) in BH-pair-permutation.

S2.5.3.5 2vs1 differential analysis

We simulated data with d “ 10,000 features under two background scenarios and three

distributional families—a total of 6 settings. In each setting, we set 10% features as “up-

regulated” with µXj ą µY j and another 10% features as “down-regulated” with µXj ă µY j.

Gaussian distribution

We simulated data from Gaussian using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 0 for all d features. For

uninteresting features, we set µXj “ µY j “ 0 for j P N . For up-regulated features, we

generated µXj i.i.d. from Np5, 1q. For down-regulated features, generated µXj i.i.d.

from Np´5, 1q .

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Np0, 22q. For uninteresting features, we set µXj “ µY j for j P N . For up-regulated

features, we generated µXj i.i.d. from Np5, 1q. For down-regulated features, generated

µXj i.i.d. from Np´5, 1q .

‚ We independently generated Xj1 and Xj2 from NpµXj, 1q and Yj1 from NpµY j, 1q,

j “ 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we assumed that the null distribution of 1
2
pXj1 `Xj2q ´ Yj1, j “ 1, . . . , d, is Np0, σ̂2q, where

σ̂2
“

1

2p2d´ 1q

d
ÿ

j“1

2
ÿ

i“1

˜

Xji ´
1

2d

d
ÿ

j“1

2
ÿ

i“1

Xji

¸2

`
1

d´ 1

d
ÿ

j“1

˜

Yj1 ´
1

d

d
ÿ

j“1

Yj1

¸2

.

This is a misspecified model assuming that µXj’s are all equal and so are µY j’s. Then we

computed the p-value of feature j “ 1, . . . , d as the two-sided tail probability of 1
2
pXj1 `
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Xj2q ´ Yj1 in Np0, σ̂2q, i.e., 2 ¨min
´

1´ Φ
´

1
2
pXj1`Xj2q´Yj1

σ̂

¯

,Φ
´

1
2
pXj1`Xj2q´Yj1

σ̂

¯¯

, where Φ is

the cumulative distribution function of Np0, 1q.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated NpYj1, 1q conditioning on the observed Yj1 as the null distribution of Xj1. Then we

calculated the p-value of feature j “ 1, . . . , d as the two-sided tail probability of 1
2
pXj1`Xj2q

in NpYj1, 1{2q, i.e., 2 ¨min
´

1´ Φ
´

1
2
pXj1`Xj2q´Yj1

1{
?

2

¯

,Φ
´

1
2
pXj1`Xj2q´Yj1

1{
?

2

¯¯

.

Poisson distribution

We simulated data from Poisson using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 20 for all d features. For

uninteresting features, we set µXj “ µY j “ 20 for j P N . For up-regulated features,

we generated µXj i.i.d. from Poisp60q. For down-regulated features, we generated µXj

i.i.d. from Poisp5q .

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Poisp20q. For uninteresting features, we set µXj “ µY j for j P N . For up-regulated

features, we generated µXj i.i.d. from Poisp60q. For down-regulated features, we gen-

erated µXj i.i.d. from Poisp5q .

‚ We independently generated Xj1 and Xj2 from PoispµXjq and Yj1 from PoispµY jq,

j “ 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we first defined a log-transformation fpxq “ logpx` 0.01q, which we applied to Xj1 and Yj1,

j “ 1, . . . , d. We assumed that the null distribution of fpXj1q`fpXj2q´2fpYj1q, j “ 1, . . . , d

is Np0, σ̂2q, where

σ̂2
“

6

d´ 1

d
ÿ

j“1

˜

fpYj1q ´
1

d

d
ÿ

j“1

fpYj1q

¸2

.

This model misspecifies the Poisson distribution as the log-normal distribution. Then we

computed the p-value of feature j “ 1, . . . , d as the two-sided tail probability of fpXj1q `
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fpXj2q´2fpYj1q inNp0, σ̂2q, i.e., 2¨min
´

1´ Φ
´

fpXj1q`fpXj2q´2fpYj1q

σ̂

¯

,Φ
´

fpXj1q`fpXj2q´2fpYj1q

σ̂

¯¯

,

where Φ is the cumulative distribution function of Np0, 1q.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

assumed that for each uninteresting feature j, Xj1 and Xj2 independently follow PoispYj1q

conditioning on the observed Yj1. Then we calculated the p-value of feature j “ 1, . . . , d

by performing a one-sample Poisson test using the R function poisson.test for the null

hypothesis H0 : µXj “ Yj1 against the alternative hypothesis H1 : µXj ‰ Yj1.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 30 for all d features. For

uninteresting features, we set µXj “ µY j “ 30 for j P N . For up-regulated features,

we generated µXj i.i.d. from NBp70, 70´1q. For down-regulated features, we generated

µXj i.i.d. from NBp7, 7´1q .

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

NBp30, 30´1q. For uninteresting features, we set µXj “ µY j for j P N . For up-

regulated features, we generated µXj i.i.d. from NBp70, 70´1q. For down-regulated

features, we generated µXj i.i.d. from NBp7, 7´1q .

‚ We independently generatedXj1 andXj2 from NBpµXj, µ
´1
Xjq and Yj1 from NBpµY j, µ

´1
Y jq,

j “ 1, . . . , d.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we assumed that for each uninteresting feature j, Xj1, Xj2, and Yj1 follow the same Poisson

distribution. We calculated the p-value of feature j from a two-sample Poisson test for the

null hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ‰ µY j using the

function poisson.test in R package stats.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated NBp2Yj1, p2Yj1q
´1q conditioning on the observed Yj1 as the null distribution of Xj1`
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Xj2. Then we calculated the p-value of feature j “ 1, . . . , d as the two-sided tail probabil-

ity of Xj1 ` Xj2 in NBp2Yj1, p2Yj1q
´1q, i.e., twice the smaller of the left-tail and right-tail

probabilities.

S2.5.3.6 3vs3 differential analysis

We simulated data with or without outliers under two background scenarios and three distri-

butional families—a total of 12 settings. In each setting, we generated d “ 10,000 features,

among which 10% features were “up-regulated features” with µXj ą µY j and another 10%

were “down-regulated features” with µXj ă µY j.

Under the settings with outliers, we generated tOX
ji : j “ 1, . . . , d; i “ 1, . . . , 3u and

tOY
ji : j “ 1, . . . , d; i “ 1, . . . , 3u i.i.d. from Bernoullip0.1q, where OX

ji “ 1 or OY
ji “ 1 indicates

Xji or Yji is an outlier, respectively. Under settings without outliers, OX
ji “ OY

ij “ 0 for all

j “ 1, . . . , d; i “ 1, . . . , 3.

Gaussian distribution

‚ Under the homogeneous background scenario, we set µY j “ 0 for all d features. For

uninteresting features, we set µXj “ µY j “ 0 for j P N . For up-regulated features, we

generated µXj i.i.d. from Np5, 1q. For down-regulated features, generated µXj i.i.d.

from Np´5, 1q .

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Np0, 22q. For uninteresting features, we set µXj “ µY j for j P N . For up-regulated

features, we generated µXj i.i.d. from Np5, 1q. For down-regulated features, generated

µXj i.i.d. from Np´5, 1q .

‚ We independently generated Xji from NpµXj, 1q if OX
ji “ 0 or from the top 1% per-

centile of NpµXj, 1q if OX
ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3. Similarly, we independently

generated Yji from NpµY j, 1q if OY
ji “ 0 or from the top 1% percentile of NpµY j, 1q if

OY
ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3.

61



‚ For the results in Supp. Fig. 2.20, under the heterogeneous background scenario, we

generated tµY ju
d
j“1 i.i.d. from Np0, 22q, and tsju

d
j“1 i.i.d. from a uniform distribution

Up0.5, 2q. For uninteresting features, we set µXj “ µY j for j P N . For up-regulated

features, we generated µXj i.i.d. from Np5, 1q. For down-regulated features, generated

µXj i.i.d. from Np´5, 1q . We then independently generated Xji from NpµXj, s
2
jq

if OX
ji “ 0 or from the top 1% percentile of NpµXj, s

2
jq if OX

ji “ 1, j “ 1, . . . , d;

i “ 1, . . . , 3. Similarly, we independently generated Yji from NpµY j, s
2
jq if OY

ji “ 0 or

from the top 1% percentile of NpµY j, s
2
jq if OY

ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct),

we calculated the p-value of feature j from a two-sample t-test with equal variance for the

null hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ‰ µY j.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we calculated the p-value of feature j from a two-sample t-test with unequal variance for the

null hypothesis H0 : µXj “ µYj against the alternative hypothesis H1 : µXj ‰ µYj .

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

treated NpȲj, 1q conditioning on observed Ȳj as the null distribution of Xji, i “ 1, . . . , 3.

We calculated the p-value of feature j using a one-sample t-test for the null hypothesis

H0 : µXj “ Ȳj against the alternative hypothesis H1 : µXj ‰ Ȳj.

Poisson distribution

We simulated data from Poisson using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 20 for all d features. For

uninteresting features, we set µXj “ µY j “ 20 for j P N . For up-regulated features,

we generated µXj i.i.d. from Poisp40q. For down-regulated features, we generated µXj

i.i.d. from Poisp5q .

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

Poisp20q. For uninteresting features, we set µXj “ µY j for j P N . For up-regulated
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features, we generated µXj i.i.d. from Poisp40q. For down-regulated features, we gen-

erated µXj i.i.d. from Poisp5q .

‚ We independently generated Xji from PoispµXjq if OX
ji “ 0 or from the top 1% per-

centile of PoispµXjq if OX
ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3. Similarly, we independently

generated Yji from PoispµY jq if OY
ji “ 0 or from the top 1% percentile of PoispµY jq if

OY
ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3.

To implement the correct paired approach (as in BH-pair-correct and qvalue-pair-correct),

we calculated the p-value of feature j by performing a two-sample Poisson test for the null

hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ‰ µY j using function

poisson.test in R package stats.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we first defined a log-transformation fpxq “ logpx` 0.01q, which we applied to Xji and Yji,

j “ 1, . . . , d; i “ 1, . . . , 3. We assumed that for each uninteresting feature j, tfpXjiqu
3
i“1 and

tfpYjiqu
3
i“1 follow Gaussian distributions with mean µfpXjq and µfpY jq, respectively. Then

we computed the p-value of feature j using a two-sample equal variance t-test for the null

hypothesis H0 : µfpXjq “ µfpY jq against the alternative hypothesis H1 : µfpXjq ‰ µfpY jq.

To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

assumed that for each uninteresting feature j, tXjiu
3
i“1 follow PoispȲjq conditioning on the

observed Ȳj. We calculated the p-value of feature j by performing a one-sample Poisson test

for the null hypothesis H0 : µXj “ Ȳj against the alternative hypothesis H1 : µXj ‰ Ȳj using

the function poisson.test in R package stats.

Negative binomial distribution

We simulated data from negative binomial using the following procedure:

‚ Under the homogeneous background scenario, we set µY j “ 30 for all d features. For

uninteresting features, we set µXj “ µY j “ 30 for j P N . For up-regulated features,

we generated µXj i.i.d. from NBp70, 70´1q. For down-regulated features, we generated
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µXj i.i.d. from NBp7, 7´1q .

‚ Under the heterogeneous background scenario, we generated tµY ju
d
j“1 i.i.d. from

NBp30, 30´1q. For uninteresting features, we set µXj “ µY j for j P N . For up-

regulated features, we generated µXj i.i.d. from NBp70, 70´1q. For down-regulated

features, we generated µXj i.i.d. from NBp7, 7´1q .

‚ We independently generated Xji from NBpµXj, µ
´1
Xjq if OX

ji “ 0 or from the top 1%

percentile of NBpµXj, µ
´1
Xjq if OX

ji “ 1; j “ 1, . . . , d, i “ 1, . . . , 3. Similarly, we inde-

pendently generated Yji from NBpµY j, µ
´1
Y jq if OY

ji “ 0 or from the top 1% percentile of

NBpµY j, µ
´1
Y jq if OY

ji “ 1, j “ 1, . . . , d; i “ 1, . . . , 3.

To implement the correct paired approach with unknown dispersion (as in BH-pair-

correct and qvalue-pair-correct), we performed a two-sample negative binomial test for the

null hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ‰ µY j using the

coefficient from the negative binomial regression as the test statistic. Specifically, for each

feature j we performed a negative binomial regression by treating the condition labels as a

categorical covariate and feature j’s measurements as the response. We implemented this

regression analysis using function glm.nb in R package MASS and extracted the p-value of

the coefficient as the p-value of feature j. The dispersion parameter was not pre-specified

but estimated by glm.nb.

To implement the correct paired approach with known dispersion, we performed a similar

negative binomial regression but with the pre-specified dispersion parameter 30´1 for each

feature j. Then we computed the feature’s p-value as the p-value of the coefficient of the

condition covariate. We implemented this regression analysis using function glm in R package

stats.

To implement the misspecified paired approach (as in BH-pair-mis and qvalue-pair-mis),

we assumed that for each uninteresting feature j, tXjiu
3
j“1 and tYjiu

3
j“1 follow the same

Poisson distribution. We calculated the p-value of feature j from a two-sample Poisson test

for the null hypothesis H0 : µXj “ µY j against the alternative hypothesis H1 : µXj ‰ µY j

using function poisson.test in R package stats.
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To implement the 2as1 paired approach (as in BH-pair-2as1 and qvalue-pair-2as1), we

first used function glm.nb in R package MASS to estimate µ̂Y j and θ̂Y j from tYjiu
3
j“1. Then

we computed the p-value of feature j by treating NBp3µ̂Y j, p3θ̂Y jq
´1q as the null distribution

of
ř3
i“1Xji and calculated its two-sided tail probability, i.e., twice the smaller of the left-tail

and right-tail probabilities.

S2.5.4 Bioinformatic methods with FDR control functionality

Peak calling methods for ChIP-seq data

MACS2 MACS2 [6] uses sliding windows with a fixed length across the genome and iden-

tifies peaks by using a Poisson distribution to model the read counts within each window,

which has one read count per replicate. Specifically, for each region (which is combined from

sliding windows), MACS2 performs a one-sample Poisson test to calculate a p-value, where

the null distribution is set to be Poisson with its parameter estimated from the background.

By thresholding p-values, MACS2 identifies a set of candidate peaks. It also estimates for

each candidate peak a q-value by swapping the experimental sample with the background

(negative control) sample, and the q-values are used for FDR control. We used MACS2

software (version 2.2.6) with its default settings.

HOMER We used findPeaks, a program in HOMER [7], to perform peak calling on ChIP-

seq data. The p-value calculation in findPeaks is similar to that in MACS2; that is, findPeaks

also uses the Poisson distribution as the null distribution of read counts in a genomic region,

and it also estimates the Poisson mean from the background sample. Then findPeaks identi-

fies peaks by setting thresholds on p-values and fold-changes (the folder change of a region is

defined as the observed read count under the experimental sample divided by the estimated

Poisson mean from the the background sample). We used findPeaks version 3.1.9.2.
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Differentially expressed gene (DEG) methods for bulk RNA-seq data

edgeR edgeR models each gene’s read counts by using a negative binomial regression,

where the condition is incorporated as an indicator covariate, and the condition’s coefficient

represents the gene-wise differential expression effect [8]. We used R package edgeR version

3.30.0.

DESeq2 DESeq2 uses a similar negative binomial regression as edgeR to model each gene’s

read counts under two conditions. DESeq2 differs from edgeR mainly in their estimation

of the dispersion parameter in the negative binomial distribution [9]. We used R package

DESeq2 version 1.28.1.

Differentially expressed gene (DEG) methods for scRNA-seq data

MAST MAST models each gene’s log read counts (TPM) by using a two-part general-

ized regression model. Each gene’s expression rate was modeled using logistic regression

and, conditioning on a cell expressing the gene, the gene’s expression level was modeled as

Gaussian [12]. We used R package MAST version 1.14.0.

Monocle3 Monocle3 uses a generalized linear model to model each gene’s normalized

expression value, with other information included as covariates (time, treatment, and so on)

[13]. We used R package monocle3 version 0.2.3.0.

S2.5.5 Benchmark data generation in omics data applications

ChIP-seq data with synthetic spike-in peaks

We used two control samples (which we refer to as Control 1 and Control 2) from H3K4me3

ChIP-seq data in Chromosome 1 of the cell line GM12878 [14].

(i) We created two semi-synthetic experimental samples by adding synthetic true peaks

to Control 1. To mimic real H3K4me3 ChIP-seq data, where peaks are located pre-
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dominantly in promoter regions, we added synthetic true peaks to promoter regions

annotated from Ensembl BioMart (Ensemble hg 19, regulation 104) [15]. Specifically,

we randomly sampled 585 genes’ promoter regions from Chromosome 1. We then used

ChIPulate to simulate reads from these promoter regions (for each simulation, extrac-

tion efficiency parameter and PCR efficiency parameter were randomly sampled from

a uniform distribution between 0 to 1; binding energy parameters were randomly sam-

pled from a uniform distribution between 0 and 2; sequencing depth parameter was set

to 50). Then we added the simulated reads to Control 1. We repeated this procedure

for twice to obtain two semi-synthetic experimental samples (i.e., two replicates under

the experimental condition).

(ii) We repeated Step (i) for 20 times to generate 20 sets of semi-synthetic experimental

samples. For each set of experimental samples, we paired them with Control 2, which

was treated as the background sample (i.e., one replicate under the background con-

dition). Hence, we obtained 20 semi-synthetic ChIP-seq datasets, each containing 585

synthetic true peaks.

(iii) After applying a peak calling method to these 20 semi-synthetic datasets, we evalu-

ated the method’s 20 FDPs and 20 empirical power, which were then averaged as the

method’s approximate FDR and power. In the evaluation, a called peak was a true

positive if it overlapped with a synthetic true peak; otherwise, it was a false positive.

Bulk RNA-seq data with synthetic spike-in DEGs

We generated four sets of realistic semi-synthetic data from two real RNA-seq datasets. The

first one is a human monocyte RNA-seq dataset including 17 samples of classical monocytes

and 17 samples of non-classical monocytes [16]. Each sample contains expression levels of

d “ 52,376 transcripts.

The second one is a yeast RNA-seq dataset including 48 samples of a snf2 knockout

mutant cell line and 48 samples of negative control (without the knockout) [17]. Each sample

contains expression levels of d “ 7126 genes. We preprocessed this dataset by removing low-
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quality replicates (replicates 6, 13, 25, 35 from the knockout; replicates 21, 22, 25, 28, 34,

36 from the control) identified by the original paper Gierliński et al. [17], leaving us with 44

replicates under the knockout condition and 42 replicates under the negative control.

Here we describe our simulation strategy 1. Given either the human monocyte dataset

or the yeast dataset, we performed the following steps.

(i) We first performed normalization on all samples across two conditions using the edgeR

normalization method trimmed mean of M-values (TMM) [18]. We denote the result-

ing normalized read count matrix of classical human monocytes or yeasts without the

knockout by X1 and the normalized read count matrix of non-classical human mono-

cytes or yeast with the knockout by X2, respectively. Following the convention in

bioinformatics, the columns and rows of X1 and X2 represent biological samples and

genes, respectively.

(ii) To define true DEGs, we first computed the fold change of gene j by FCj “
“

pX̄2
j ` 1q{pX̄1

j ` 1q
‰

for j “ 1, . . . , d, where X1
j and X2

j denote the j-th row vector of X1 and X2 respectively

and ¯̈ denotes the average of elements in a vector. We added the pseudo-count of 1 to

avoid division by 0. We defined true DEGs as those with | log2 FCj| ě 4 for the human

monocyte dataset and with | log2 FCj| ě 1.5 for the yeast dataset, resulting 191 true

human DEGs (transcripts) and 152 true yeast DEGs.

(iii) We generated semi-synthetic data with 3 samples under both the experimental and

background conditions, a typical design in bulk RNA-seq experiments. Specifically, if

gene j is a true DEG, we randomly sampled without replacement 3 values from X1
j

as counts under the experimental condition, and another 3 values from X2
j as counts

under the background condition. If gene j is not a true DEG, we randomly sampled

6 values without replacement from pX1
j ,X

2
jq and randomly split them into 3 and 3

counts under two conditions. Doing so guaranteed that a non-DEG’s read counts are

i.i.d. regardless of condition.

(iv) We repeated Step (iii) for 100 times to generate 100 semi-synthetic datasets.
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Next, we describe our simulation strategy 2. Let us now re-use notations X1 to

denote the original read count matrix of classical human monocytes or yeast without the

knockout, and X2 to denote the original read count matrix of non-classical human monocytes

or yeast with the knockout. Both X1 and X2 have rows as genes or transcripts and columns

as biological samples. Given either the human monocyte dataset or the yeast dataset, we

performed the following steps.

(i) We first identified genes whose read counts are positive in all samples under both

conditions and denote the number of such genes by dp. Then from these identified

genes, we randomly sampled without replacement minpdp, 0.3dq genes as true DEGs.

The remaining d´minpdp, 0.3dq genes were considered true non-DEGs.

(ii) To generate fold changes of true DEGs, we first computed the fold change of gene j

by FCj “
“

pX̄2
j ` 1q{pX̄1

j ` 1q
‰

for j “ 1, . . . , d, where X1
j and X2

j denote the j-th row

vector of X1 and X2 respectively and ¯̈ denotes the average of elements in a vector.

Let W denote tFCj : FCj ě 16, j “ 1, . . . , du for the human monocyte dataset and

tFCj : FCj ě 1.5, j “ 1, . . . , du for the yeast dataset. We then sorted unique elements

in W and denoted them by wp1q ă ¨ ¨ ¨ ă wpnuq, where nu is the number of unique

elements in W . To generate a fold change of a true DEG, say gene j, we randomly

generated an integer v with equal probability from t1, ¨ ¨ ¨ , nu ´ 1u and a value p from

Uniformp0, 1q. Then we calculated the fold change as Rj “ wpvq ` ppwpv`1q ´ wpvqq.

Using this approach, generated the fold changes independently for all true DEGs.

(iii) Next, we randomly sampled 6 replicates without replacement from X2 and split them

into two groups of 3 replicates. We denote the resulting matrices as rX1 and rX2, whose

j-th rows are denoted respectively by rX1
j and rX2

j . If gene j is a true DEG, we generated

Uj from Bernoullip1{2q. Then we set gene j’s expression levels under the two conditions

to Rj
rX1
j and rX2

j if Uj “ 0 or rX1
j and Rj

rX2
j if Uj “ 1. If gene j is not a true DEG, its

expression levels under the two conditions would remain unchanged, i.e., rX1
j and rX2

j .

Such data generation strategy has no guarantee of i.i.d. read counts for non-DEGs if

the samples in X2 have batch effects.
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(iv) We repeated Step (iii) for 100 times to generate 100 semi-synthetic datasets.

The human monocyte RNA-seq dataset is available in the NCBI Sequence Read Archive

(SRA) under accession number SRP082682 (https://www.ncbi.nlm.nih.gov/Traces/study/

?acc=srp082682). The yeast RNA-seq data is available in the European Nucleotide Archive

(ENA) archive with project ID PRJEB5348 (https://www.ebi.ac.uk/ena/browser/view/

PRJEB5348).

Single-cell RNA-seq data with synthetic spike-in DEGs

We used scDesign2, a flexible probabilistic simulator to generate realistic scRNA-seq count

data with gene correlations captured [19]. Using scDesign2, we generated two sets of semi-

synthetic data from two peripheral blood mononuclear cell (PBMC) real datasets [20]: one

generated using the 10x Genomics protocol [21] and the other using Drop-seq [22]. Each

synthetic dataset contains two types of cells: CD4+ T cells, and cytotoxic T cells, which we

treated as two conditions. Starting with the real data generated using either 10x Genomics

or Drop-seq, we used the following steps to generate synthetic scRNA-seq data.

(i) First, we fit the real data count matrices using R function fit model scDesign2 for

each cell type by specifying the underlying distribution of each gene as negative bino-

mial. Denote the resulting marginal distributions of gene j as NBpµ̂j1, θ̂j1q for CD4+

T cells and NBpµ̂j2, θ̂j2q for cytotoxic T cells, j “ 1, . . . , d. The gene-gene correlations

with each cell type were fitted using a copula model.

(ii) Let Xcd4 and Xcyto denote the read count matrices of CD4+ T cells and cytotoxic

T cells. To define true DEGs, we first computed the log fold change of gene j by

logFCj “ log2

“

pX̄cd4
j ` 1q{pX̄cyto

j ` 1q
‰

for j “ 1, . . . , d, where Xcd4
j and Xcyto

j denote

the j-th row vector of Xcd4 and Xcyto respectively and ¯̈ denotes the average of elements

in a vector. We then selected 1000 genes with the largest absolute fold changes as true

DEGs and kept the remaining ones as true non-DEGs.

(iii) We simulated the semi-synthetic datasets using R function simulate count scDesign2.
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Specifically, we set the number of synthetic cells generated by scDesign2 equal to the

number of real cells for each cell type. If a gene j is a true DEG, we specify its marginal

distributions under the two conditions as NBpµ̂j1, θ̂j1q and NBpµ̂j2, θ̂j2q respectively.

If a gene j is a true non-DEG, we specify its marginal distribution under both condi-

tions as NBppµ̂j1 ` µ̂j2q{2, pθ̂j1 ` θ̂j2q{2q. We used the fitted copula models from the

two cell types to generate genes’ (correlated) expression read counts.

(iv) We repeated Step (iii) for 200 times to generate 200 semi-synthetic datasets.

Both fit model scDesign2 and simulate count scDesign2 come from R package scDesign2

[19]. The 10x Genomic PBMC dataset and the Drop-seq PBMC dataset are available

from the Gene Expression Omnibus (GEO) with accession number GSE132044 (https:

//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044) and the Single Cell Por-

tal with accession numbers SCP424 (https://singlecell.broadinstitute.org/single_

cell/study/SCP424/single-cell-comparison-pbmc-data).

S2.5.6 Implementation of Clipper in omics data applications

Below we briefly introduce the implementation of Clipper in the four omics data applications.

All the results were obtained by running using R package Clipper (see package vignette

for details: https://github.com/JSB-UCLA/Clipper/blob/master/vignettes/Clipper.

pdf).

Peak calling from ChIP-seq data

(i) We consider each genomic location, i.e., a base pair, as a feature and each ChIP-

seq sample as a replicate under the experimental or background condition. Then we

consider the read count of each location in each sample as the corresponding feature’s

measurement. Doing so, we summarized ChIP-seq data into a d ˆ pm ` nq matrix,

where d is the number of locations, and m and n are the numbers of experimental

and control samples, respectively. We then applied Clipper to perform an enrichment
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analysis to obtain the contrast score Cj for each location j. In our study, m “ n “ 1,

so the default Clipper implementation is Clipper-minus-BC.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) We then used existing peak calling methods, e.g., MACS2 and HOMER, to call candi-

date peaks with the least stringent q-value cutoff. For example, when we used MACS2,

we set the q-value cutoff as 1.

(iv) We computed the contrast score of each candidate peak as the median of the contrast

scores of all the locations within.

(v) The candidate peaks with contrast scores greater than or equal to Tq are called discov-

eries.

DEG identification from bulk RNA-seq data

(i) We consider each gene as a feature and the class label—classical and non-classical

human monocytes—as the two conditions. Then we consider log2-transformed read

counts with a pseudocount 1 as measurements. Doing so, we summarized the gene

expression matrix into a d ˆ pm ` nq matrix, where d is the number of genes, and m

and n are the numbers of samples under the two conditions, respectively. We then

applied Clipper to perform a differential analysis to obtain a contrast score Cj for each

gene. In our study, m “ n “ 3, so the default Clipper implementation is Clipper-max-

GZ with h “ 1.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The genes with contrast scores greater than or equal to Tq are called discoveries.

DEG identification from scRNA-seq data

(i) We consider each gene as a feature and the cell type—CD4+ T cells and cytotoxic T

cells—as the two conditions. We first performed the TMM normalization [18]. Then we
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consider log2-transformed read counts with a pseudocount 1 as measurements. Doing

so, we summarized the gene expression matrix into a d ˆ pm ` nq matrix, where d

is the number of genes, and m and n are the numbers of samples under the two

conditions, respectively. We then applied Clipper to perform differential analysis to

obtain a contrast score Cj for each gene j. In our study, m “ 1172, n “ 789 for Drop-

seq dataset and m “ 963, n “ 694 for 10x Genomics dataset. The default Clipper

implementation is Clipper-max-GZ with h “ 1, the default number of permutations.

(ii) For any target FDR threshold q, Clipper gives a cutoff Tq on contrast scores.

(iii) The genes with contrast scores greater than or equal to Tq are called discoveries.
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S2.5.7 Supplementary figures

74



110

87

22

8
0

5
00

30

60

90

Clipper vs DESeq2 Clipper vs edgeR Total

N
um

be
r o

f s
ig

ni
fic

an
t G

O
 te

rm
s

Clipper

DESeq2

edgeR

Clipper

edgeR DESeq2

46

19

23

32

14 0 203 0

50

100

150

200
count

b

c

a

GO term (ID)
leukocyte chemotaxis (GO:0030595)

qvalue (DESeq2)

myeloid leukocyte migration (GO:0097529)

qvalue (edgeR)

granulocyte chemotaxis (GO:0071621)

qvalue (Clipper)

neutrophil chemotaxis (GO:0030593)

9.930044e−06
1.107612e−05
2.698853e−05
2.698853e−05

9.594885e−09
2.921486e−08
1.008808e−08
2.921486e−08

3.104557e−10
5.740217e−10
1.167108e−09
2.691033e−09

Top GO terms enriched in all three sets of identified DEGs

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
edgeR FDR

C
lip

pe
r F

D
R

0.05

0.05

d

Figure 2.5: Application of Clipper, DESeq2, and edgeR to identifying DEGs from the classical and non-classical human
monocyte dataset.

(a) A Venn diagram showing the overlaps of the identified DEGs (at the FDR threshold q “ 5%) by the three DE methods. (b)
Numbers of GO terms enriched (with enrichment q-values ă 0.01) in the DEGs found by Clipper, DESeq2 and edgeR (column
3), or in the DEGs specifically identified by Clipper or DESeq2/edgeR in the pairwise comparison between Clipper and DESeq2
(column 1) or between Clipper and edgeR (column 2). More GO terms are enriched in the DEGs identified by Clipper than
in those identified by edgeR or DESeq2. (c) Enrichment q-values of four GO terms that are found enriched (with enrichment
q-values ă 0.01) in all three sets of identified DEGs, one set per method. All the four terms are most enriched in the DEGs
identified by Clipper. (d) A scatterplot of the claimed FDR of Clipper against that of edgeR for all the DEGs identified by
Clipper, edgeR or DESeq2. The 46 DEGs only identified by Clipper are highlighted with red.

75



2
4
6
8

10

25

50
75

100

0 2 4 6 8 10
Target FDR (%)

Ac
tu

al
 F

D
R

 (%
)

Homer
Homer + Clipper
MACS + Clipper
MACS2

0

25

50

75

100

0 2 4 6 8 10
Target FDR (%)

Po
we

r (
%

) Clipper
edgeR
MAST
Monocle3
t−test
Wilcoxon

2
4
6
8

10

25

50
75

100

0 2 4 6 8 10
Target FDR (%)

Ac
tu

al
 F

D
R

 (%
)

25

50

75

100

0 2 4 6 8 10
Target FDR (%)

Po
we

r (
%

)

Homer
Homer + Clipper
MACS + Clipper
MACS2

a ChIP-seq peak calling

b scRNA-seq DEG analysis

Figure 2.6: Comparison of Clipper and popular bioinformatics methods in terms of FDR control and power.

(a) peaking calling analysis on semi-synthetic ChIP-seq data; (b) DEG analysis on synthetic 10x Genomics scRNA-seq data;
In all four panels, the target FDR threshold q ranges from 1% to 10%. In the “Actual FDR vs. Target FDR” plot of each panel,
points above the dashed diagonal line indicate failed FDR control; when this happens, the power of the corresponding methods
is not shown, including HOMER in (a), MACS2 for target FDR less than 5% in (a), edgeR in (c), and multiHICcompare, and
FIND in (d). In all four applications, Clipper controls the FDR while maintaining high power, demonstrating Clipper’s broad
applicability in high-throughput data analyses
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Figure 2.7: In the 1vs1 enrichment analysis, comparison of Clipper and four other generic FDR control methods (BH-pool,
BH-pair-2as1, BH-pair-mis, and locfdr-emp) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c)
the negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Among the methods that control the FDR, Clipper is the second most powerful for homogeneous background and
the most powerful for heterogeneous background.
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Figure 2.8: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), comparison of
Clipper and five other generic FDR control methods (BH-pooled, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-swap) in
terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial
distribution under homogeneous(two left columns) and heterogeneous (two right columns) background scenarios. Among the
methods that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background (except for differential analysis with q ď 2%).
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Figure 2.9: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison of
Clipper and six other generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and
locfdr-swap)in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative
binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. 10%
of the features are interesting features. Among the methods that control the FDR, Clipper is the second most powerful for
homogeneous background and the most powerful for heterogeneous background.
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Figure 2.10: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison of
Clipper and six other generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and
locfdr-swap) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial
distribution under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. Among the
methods that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background (except for Poisson distribution where Clipper is second to BH-pair-correct, an idealistic method).
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Figure 2.11: In the 1vs1 enrichment analysis, comparison of Clipper and three other generic FDR control methods using
Storey’s q-value (qvalue-pool, qvalie-pair-2as1, and qvalue-pair-mis) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c)
the negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Among the methods that control the FDR, Clipper is the second most powerful for homogeneous background and
the most powerful for heterogeneous background.
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Figure 2.12: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), comparison of
Clipper and three other generic FDR control methods using Storey’s q-value (qvalue-pool, qvalie-pair-2as1, and qvalue-pair-mis)
in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial
distribution under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. Among the
methods that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background.
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Figure 2.13: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison of
Clipper and four other generic FDR control methods using Storey’s q-value (qvalue-pooled, qvalue-pair-correct, qvalue-pair-2as1,
and qvalue-pair-mis) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial
distribution under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. Among the
methods that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background.
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Figure 2.14: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison of
Clipper and four other generic FDR control methods using Storey’s q-value (qvalue-pooled, qvalue-pair-correct, qvalue-pair-2as1,
and qvalue-pair-mis) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial
distribution under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. Among the
methods that control the FDR, Clipper is the second most powerful for homogeneous background and the most powerful for
heterogeneous background (except for Poisson distribution where Clipper is second to qvalue-pair-correct, an idealistic method).
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Figure 2.15: In the 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison of
Clipper, BH-pair-correct (known dispersion), and BH-pair-correct (unknown dispersion) in terms of their FDR control and
power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from the negative binomial distribution under homogeneous (two left columns) and
heterogeneous (two right columns) background scenarios. BH-pair-correct (unknown dispersion) cannot control the FDR in all
settings. In contrast, Clipper is consistently the most powerful for homogeneous and heterogeneous background.
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Figure 2.16: In the 10vs10 enrichment analysis with and without outliers, comparison of Clipper and eight generic FDR
control methods (BH-pooled, BH-pair-Wilcoxon, BH-pair-parametric, and BH-pair-permutation, BH-pair-2as1, BH-pair-mis,
locfdr-emp, and locfdr-swap) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from the Gaussian distribution (left), the Poisson distribution (middle), or the
negative binomial distribution (right) under heterogeneous background scenarios. Clipper achieves the highest power for all
three distributions.
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Figure 2.17: In the 3vs3 enrichment analysis with correlated features, comparison of Clipper and six other generic FDR
control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR
control and power in 3vs3 enrichment analysis.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from a multivariate Gaussian distribution with a correlation 0.2 (columns 1 and 3)
or 0.4 (columns 2 and 4) between features. Among the methods that control the FDR, Clipper is the second most powerful for
homogeneous background and the most powerful for heterogeneous background.
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Figure 2.18: In 3vs3 enrichment analysis with different proportions of interesting features without outliers, comparison
of Clipper and six generic FDR control methods (BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and
locfdr-swap) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from the Gaussian distribution, the Poisson distribution, or the negative binomial
distribution, with the proportion of interesting features being 0.2 (columns 1 and 3) or 0.4 (columns 2 and 4) under homogeneous
(columns 1 and 2) and heterogeneous (columns 3 and 4) background scenarios. Clipper achieves the highest power for all
distributions.
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Figure 2.19: In the 3vs3 enrichment analysis with and without outliers, comparison of the default Clipper, the Clipper variant
using the t statistic as the contrast score (Clipper-t), and six generic FDR control methods (Clipper BH-pooled, BH-pair-correct,
BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from the Gaussian distribution, the Poisson distribution, or the negative binomial
distribution under homogeneous (columns 1 and 2) and heterogeneous (columns 3 and 4) background scenarios. Clipper achieves
higher power than Clipper-t does.
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Figure 2.20: In the 3vs3 differential analysis with and without outliers, comparison of the default Clipper, the Clipper
variant using the t statistic to calculate the degree of interestingness (Clipper-t), and six generic FDR control methods (Clipper
BH-pooled, BH-pair-correct, BH-pair-2as1, BH-pair-mis, locfdr-emp, and locfdr-swap) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from the Gaussian distribution, the Poisson distribution, or the negative binomial
distribution under homogeneous (columns 1 and 2) and heterogeneous (columns 3 and 4) background scenarios. Clipper achieves
higher power than Clipper-t does.
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Figure 2.21: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in DEG analysis on
semi-synthetic bulk RNA-seq data (generated from human monocyte real data using simulation strategy 1.

(a) FDR control, power given the same target FDR, and power given the same actual FDR. (b) Ranking consistency of
the true DEGs among the top 100 DEGs identified by each method. The consistency is defined between the genes’ ranking
based on edgeR/DESeq2’s p-values or Clipper’s contrast scores and their ranking based on true expression fold changes. (c)
Reproducibility between two semi-synthetic datasets as technical replicates. Three reproducibility criteria are used: the IDR,
Pearson correlation, and Spearman correalation. Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s contrast
scores on the two semi-synthetic datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the
highest power, the best gene ranking consistency, and the best reproducibility.
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Yeast semi−synthetic datasets by simulation strategy 1
a

2

4

6

8

10

25

50
75

100

0 2 4 6 8 10
Target FDR (%)

A
ct

ua
l F

D
R

 (
%

)

25

50

75

0 2 4 6 8 10
Target FDR (%)

P
ow

er
 (

%
)

25

50

75

0 2 4 6 8 10
Actual FDR (%)

P
ow

er
 (

%
) Clipper

DESeq2

DESeq2 (IHW)

edgeR

edgeR (IHW)

b
True DEGs among top 100 DEGs identified by each DE method

0

25

50

75

100

0 25 50 75 100
edgeR p−value rank

lo
gF

C
 r

an
k

Pearson Cor = 0.472
Spearman Cor = 0.476

0

25

50

75

100

0 25 50 75 100
DESeq2 p−value rank

lo
gF

C
 r

an
k

Pearson Cor = 0.587
Spearman Cor = 0.586

0

25

50

75

100

0 25 50 75 100
Clipper contrast score rank

lo
gF

C
 r

an
k

Pearson Cor = 0.836
Spearman Cor = 0.836

c
True DEGs identified among the top 100 DEGs in dataset 1 or dataset 2

0

5

10

15

20

0 5 10 15 20
Dataset 1 −log(p−value)

D
at

as
et

 2
 −

lo
g(

p−
va

lu
e)

edgeR
Pearson Cor = 0.241
Spearman Cor = 0.425

0

50

100

150

200

0 50 100 150 200
Dataset 1 −log(p−value)

D
at

as
et

 2
 −

lo
g(

p−
va

lu
e)

DESeq2
Pearson Cor = 0.637
Spearman Cor = 0.501

0

2

4

6

0 2 4 6
Dataset 1 contrast score

E
xp

2

Clipper
Pearson Cor = 0.644
Spearman Cor = 0.401

0.0
0.2
0.4
0.6
0.8

IDR

Figure 2.22: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in DEG analysis on
semi-synthetic bulk RNA-seq data (generated from yeast real data using simulation strategy 1.

(a) FDR control, power given the same target FDR, and power given the same actual FDR. (b) Ranking consistency of
the true DEGs among the top 100 DEGs identified by each method. The consistency is defined between the genes’ ranking
based on edgeR/DESeq2’s p-values or Clipper’s contrast scores and their ranking based on true expression fold changes. (c)
Reproducibility between two semi-synthetic datasets as technical replicates. Three reproducibility criteria are used: the IDR,
Pearson correlation, and Spearman correalation. Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s contrast
scores on the two semi-synthetic datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the
highest power, the best gene ranking consistency, and the best reproducibility.
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Yeast semi−synthetic datasets by simulation strategy 2
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Figure 2.23: Comparison of Clipper and two popular DEG identification methods—edgeR and DESeq2—in DEG analysis on
semi-synthetic bulk RNA-seq data (generated from yeast real data using simulation strategy 2.

(a) FDR control, power given the same target FDR, and power given the same actual FDR. (b) Ranking consistency of
the true DEGs among the top 100 DEGs identified by each method. The consistency is defined between the genes’ ranking
based on edgeR/DESeq2’s p-values or Clipper’s contrast scores and their ranking based on true expression fold changes. (c)
Reproducibility between two semi-synthetic datasets as technical replicates. Three reproducibility criteria are used: the IDR,
Pearson correlation, and Spearman correalation. Each criterion is calculated for edgeR/DESeq2’s p-values or Clipper’s contrast
scores on the two semi-synthetic datasets. Among the three methods, only Clipper controls the FDR, and Clipper achieves the
highest power, the best gene ranking consistency, and the best reproducibility.
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Figure 2.24: The p-value distributions of 16 non-DEGs that are most frequently identified by DESeq2 at q “ 5% from 200
semi-synthetic datasets. The p-values of these 16 genes tend to be overly small, and their distributions are non-uniform with a
mode close to 0.
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Figure 2.25: Comparison of Clipper and five scRNA-seq DEG identification methods on synthetic Drop-seq data generated
by scDesign2 (based on a real Drop-seq dataset of PBMCs). The target FDR threhold q ranges from 1% to 10%.

In the “Actual FDR vs. Target FDR” plot (left), points above the dashed diagonal line indicate failed FDR control. Clipper
controls the FDR while maintaining high power, demonstrating Clipper’s good performance in single-cell DE analyses.
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Figure 2.26: Enrichment q-values of GO terms that are found enriched in the DEGs that are uniquely identified by Clipper
in pairwise comparison of (a) Clipper vs. edgeR and (b) Clipper vs. DESeq2. These GO terms are all related to immune
response and thus biologically meaningful.
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Figure 2.27: The p-values of the top enriched pathways in the DEGs that are uniquely identified by (a) Clipper and (b)
DESeq2; i.e., the DEGs that are only identified by one method by missed by the other two methods. There are more immune-
related pathways enriched in (a) than (b).
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Figure 2.28: In 1vs1 enrichment analysis, comparison of four Clipper variant algorithms (Clipper-minus-BC, Clipper-minus-
aBH, Clipper-max-BC, and Clipper-max-aBH) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 1000 or 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c)
the negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Clipper-minus-BC is chosen as the default implementation under this scenario.
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Figure 2.29: In the 2vs1 enrichment analysis (columns 1 and 3) and differential analysis (columns 2 and 4), comparison of
four Clipper variant algorithms (Clipper-minus-GZ(h=1), Clipper-minus-GZ(h=2), Clipper-max-GZ(h=1), and Clipper-max-
GZ(h=2)) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial
distribution under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. Clipper-max-
GZ(h=1) is chosen as the default implementation under this scenario.
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Figure 2.30: In 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison of four
Clipper variant algorithms (Clipper-minus-BC, Clipper-minus-aBH, Clipper-max-BC, and Clipper-max-aBH) in terms of their
FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the
negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Clipper-minus-BC is chosen as the default implementation under this scenario.

100



Homogeneous features Heterogeneous features

Clipper−minus−GZ (h = 1)
Clipper−minus−GZ (h = 3)
Clipper−minus−GZ (h = 9)
Clipper−max−GZ (h = 1)
Clipper−max−GZ (h = 3)
Clipper−max−GZ (h = 9)

5

10

0 2 4 6 8 10

5

10

0 2 4 6 8 10

25

50

75

100

0 2 4 6 8 10

25

50

75

100

0 2 4 6 8 10

5

10

0 2 4 6 8 10

5

10

0 2 4 6 8 10

25

50

75

100

0 2 4 6 8 10

25

50

75

100

0 2 4 6 8 10

Gaussiana

5

10

0 2 4 6 8 10

5

10

0 2 4 6 8 10

25

50

75

100

0 2 4 6 8 10

25

50

75

100

0 2 4 6 8 10

5

10

0 2 4 6 8 10

5

10

0 2 4 6 8 10

25

50

75

100

0 2 4 6 8 10

25

50

75

100

0 2 4 6 8 10

Poissonb

5

10

0 2 4 6 8 10

5

10

0 2 4 6 8 10

0

25

50

75

100

0 2 4 6 8 10 0

25

50

75

100

0 2 4 6 8 10

5

10

0 2 4 6 8 10

5

10

0 2 4 6 8 10

0

25

50

75

100

0 2 4 6 8 10 0

25

50

75

100

0 2 4 6 8 10

Negative binomialc

No outlier Outlier No outlier Outlier

Ac
tu

al
 F

D
R

 (%
)

Po
w

er
 (%

)
Ac

tu
al

 F
D

R
 (%

)
Po

w
er

 (%
)

Ac
tu

al
 F

D
R

 (%
)

Po
w

er
 (%

)

Target FDR (%) Target FDR (%) Target FDR (%) Target FDR (%)

Figure 2.31: In 3vs3 differential analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison of six
Clipper variant algorithms (Clipper-minus-GZ(h=1), Clipper-minus-GZ(h=3), Clipper-minus-GZ(h=9), Clipper-max-GZ(h=1),
Clipper-max-GZ(h=3), and Clipper-max-GZ(h=9)) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated datasets
with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the negative binomial
distribution under homogeneous (two left columns) and heterogeneous (two right columns) background scenarios. Clipper-max-
GZ(h=1) is chosen as the default implementation under this scenario.
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Figure 2.32: In the 3vs3 enrichment analysis without (columns 1 and 3) or with outliers (columns 2 and 4), comparison of
two Clipper variant algorithms (Clipper-minus-BC, Clipper-max-GZ(h=1)) in terms of their FDR control and power.

At target FDR thresholds q P t1%, 2%, ¨ ¨ ¨ , 10%u, each method’s actual FDRs and power are evaluated on 200 simulated
datasets with d “ 10,000 features generated from (a) the Gaussian distribution, (b) the Poisson distribution, or (c) the
negative binomial distribution under homogeneous (two left columns) and heterogeneous (two right columns) background
scenarios. Clipper-minus-BC is chosen as the default implementation under this scenario.
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Figure 2.33: 25 “true peaks” from H3K4me3 ChIP-seq data of cell line GM12878. Black and blue curves indicate the read
coverages in the experimental and control samples, respectively. Vertical dashed lines indicate the peak boundaries.
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Figure 2.34: In the 3vs3 enrichment analysis, distributions of contrast scores used by two Clipper variants: the default Clipper
using the minus contrast score (top) and the Clipper variant using the two-sample t statistic (bottom).

Features are generated from the Gaussian distribution under the heterogeneous background scenario (see Supp. Section S2.5.3).
The vertical dashed lines indicate the contrast score cutoffs found by the BC procedure at the target FDR threshold q “ 1%.
The distribution of the minus contrast scores has a heavier right tail (5.22%) than that of the distribution of the t statistic
contrast scores (1.19%).
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CHAPTER 3

An alignment-based bioinformatic tool for comparing

chromatin state sequences from two conditions

3.1 Introduction

All tissue and cell types, such as embryonic stem cells (ESCs), terminally differentiated tis-

sues, and cultured cell lines, are maintained and controlled by epigenomic regulation and

gene expression programs [76–78]. An epigenome encodes information of chemical modifi-

cations to DNA and histone proteins of a genome, and such modifications may result in

changes to chromatin structures and genome functions. Epigenomic information is repre-

sented by multi-track signals, including DNA methylation, covalent histone modifications,

and DNA accessibility, all of which are measured genome-wide by high-throughput sequenc-

ing technologies such as Bisulfite-seq, ChIP-seq and DNase-seq [79]. In recent years, multi-

ple international consortia, including the Encyclopedia of DNA elements (ENCODE) [57],

the NIH Roadmap Epigenomics Mapping Consortium [20, 80], and the International Hu-

man Epigenome Consortium [81], have generated large-scale high-throughput epigenome

sequencing datasets for a broad spectrum of tissue and cell types, offering an unprecedented

opportunity for studying multiple levels of epigenetic regulation across diverse cell states.

Specifically, the NIH Roadmap project has released public epigenomic data of 127 human

tissue and cell types [20]. This database contains a total of 2, 804 genome-wide epigenomic

datasets, including 1, 821 histone modification datasets, 360 DNase datasets, and 277 DNA

methylation datasets.

A series of computational methods, including ChromHMM [14], Segway [15], GATE [82],

TreeHMM [83], STAN [84], EpiCSeg [85], Spectacle [86], IDEAS [87], and GenoSTAN [88],
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have been developed to build a genome-wide chromatin state annotation, where distinct

chromatin states have demonstrated diverse regulatory and transcriptional signals [16–18].

In these methods, each epigenome is segmented into non-overlapping regions, and a single-

track chromatin state sequence is constructed by compressing the multi-track epigenetic

activities (e.g., DNA methylation and histone modifications) in various ways. For example,

ChromHMM assigns discrete chromatin state labels to genomic regions based on signals of

multiple epigenetic markers using a hidden Markov model [14]. The predicted chromatin

states have shown strong biological relevance and wide applicability in genomic research,

e.g., the identification of enhancers and promoters [18]. Given a chromatin state annotation

constructed by any of these methods, genomic regions of the same chromatin state are

expected to have both consistent epigenomic patterns and similar regulatory functions.

Based on existing chromatin state annotations, previous work has studied similarities and

differences of human tissue and cell types in terms of epigenomic signals in specific functional

genomic elements (e.g., promoters and enhancers), as well as the tissue and cell specificity

of these elements, using the Pearson correlation coefficients [19, 20] or a newly developed

epigenome overlap measure (EPOM) [21]. The aforementioned methods have shed significant

insights into our understanding of gene regulation on a global scale, i.e., how promoters and

enhancers regulate target genes in diverse tissue and cell types. However, former epigenome

comparative studies failed to effectively incorporate the sequential information of chromatin

states, which, however, we believe are highly likely to contain critical information on gene

regulatory mechanisms.

The comparison of DNA/RNA or protein sequences is based on the sequential information

of nucleotides or amino acids. Many sequence alignment methods have been developed over

the past decades to measure the similarity between sequences. Earlier work such as the

Needleman-Wunsch algorithm [22] and the Smith-Waterman algorithm [23] use dynamic

programming to search for the best global or local matches between two sequences. With

the development of these algorithms, sequence alignment tools have become indispensable

in almost all modern biological research. They are powerful not only in studies that focus

on comparing sequences, such as evolutionary studies, but also in query-database retrieval
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studies, which aim to find regions from a large database that are similar to the query sequence

of interest. However, there is no alignment algorithm designed to assess the epigenetic

similarity of long genomic regions, such as gene regions and long non-coding regulatory

regions. A main challenge lies in the multi-track nature of epigenomic signals. On the one

hand, substantial information would be lost if we calculate a scalar value (e.g., the mean

signal averaged over multiple 25 bp windows) to represent the signal of a long genomic region

per track per tissue/cell. On the other hand, if we directly analyze the original data (a signal

value per 25 bp window per track per tissue/cell), we would need to evaluate the similarity

of large matrices to compare genomic regions. Specifically, the matrix of a region has the

dimensions as the number of 25 bp windows in the region ˆ the number of tracks. Given

that different regions almost certainly have different region lengths thus they have matrices

of different dimensions, how to evaluate their similarity is a non-trivial task. In addition, we

also need to consider the fact that a long region often contains multiple functional genomic

elements with varying lengths. Hence, a reasonable approach is to compare two long regions

based on their chromatin state patterns learned from multiple-track epigenomic signals.

Motivated by the fact that chromatin state sequences provide a biologically meaningful

one-track interpretation of multi-track epigenomic signals [14], we reduce the challenging

question of comparing long multi-track epigenomic signals to a simpler task of comparing

two chromatin state sequences.

Given the fast accumulation of large-scale epigenomic datasets generated in recent years,

biological researchers are in great need of a new bioinformatic tool to efficiently retrieve ge-

nomic regions similar to an interested query region in terms of epigenomic signals. Motivated

by the enormous successes of sequence alignment algorithms in comparing nucleotide and

protein sequences [24], here we propose a novel computational method, Epigenome Alignment

(EpiAlign), to compare two genomic regions by aligning their chromatin state sequences. To

the best of our knowledge, EpiAlign is the first pairwise alignment-based method that in-

vestigates the sequential patterns of chromatin states and studies the epigenome similarity

based on the patterns. EpiAlign compares two chromatin state sequences by calculating

a local alignment score. It also allows the search of genomic regions (i.e., “hits”) whose
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chromatin state sequences are similar to those of a query region. Aligned chromatin state

sequences are expected to have similar biological functions. EpiAlign is flexible in performing

the chromatin state sequence alignment either within an epigenome, i.e., a tissue or cell, or

between two epigenomes. From the alignment results of EpiAlign, users can identify com-

mon chromatin state patterns to investigate the functional relationship of interested genomic

regions.

3.2 EpiAlign methodology

The EpiAlign algorithm aims to find an optimal local alignment between two chromatin

state sequences. Our algorithm development is motivated by the classic Smith-Waterman

Algorithm [23]. We design the mismatch and deletion score functions based on the weight of

each chromatin state in each sequence. We first apply a chromatin state annotation method

(e.g. ChromHMM [14]) to encode multi-track epigenomic signals into single-track chromatin

state sequences, whose different states are represented by different labels. Second, we com-

press consecutive occurrences of the same state into a state label. For example, a chromatin

state sequence abbcc is represented by a compressed state sequence S “ abc. EpiAlign

then performs a local alignment between two genomic regions based on their compressed

state sequences. The motivation of adding a compression step lies in the fact that most un-

compressed (chromatin state) sequences contain long stretches of a single chromatin state,

mostly the quiescent/low state (see Supplementary section 2), and including such length in-

formation would dominate the alignment result, a scenario that is often undesirable, because

the purpose of alignment is to find similar chromatin state patterns composed of more than

one state. The compression step allows EpiAlign to focus more on chromatin state patterns

instead of a single chromatin state that spans a long genomic region. We use an example

to demonstrate the effectiveness of adding the compression step to address this issue: in the

brain sample E071, when we applied EpiAlign with the compression step, the brain-specific

gene NRG3 has the best alignment with another brain-specific gene GRIA1, among all the

protein-coding genes. This result is reasonable as both genes are brain-specific and highly
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expressed in brain samples. However, as these two genes have vastly different lengths (NRG3

is three times longer than GRIA1 ) and their chromatin state sequences have long stretches

of the quiescent/low state, they are poorly aligned when we applied EpiAlign without the

compression step. This result indicates that the compression step, which condenses the

epigenetic information encoded in chromatin state sequences, is necessary and effective for

finding similar and biologically meaningful chromatin state patterns. Additionally, aligning

uncompressed sequences is much more time-consuming (20 times more computation time on

average) than aligning their compressed counterparts. Therefore, adding the compression

step also increases the computational efficiency of EpiAlign. In the following text, unless

specified, all the chromatin state sequences refer to the compressed state sequences.

3.2.1 Modified Smith-Waterman Algorithm for Chromatin State Sequence Align-

ment

Given two chromatin state sequences S1 and S2, we characterize a possible alignment between

S1 and S2 through a set of triplets tpfi, u1i, u2iqu
N
i“1, where N denotes the total number of

aligned basepairs (including matches, mismatches, and gaps), fi gives the alignment status

between two chromatin states whose positions are u1i and u2i in S1 and S2, respectively. We

may equivalently write this set of triplets as three equal-length sequences: F “ f1f2 ¨ ¨ ¨ fN ,

U1 “ u11u12 ¨ ¨ ¨u1N , and U2 “ u21u22 ¨ ¨ ¨u2N . Specifically, fi P tm, n, d1, d2u denotes one of the

four possible alignment status between two chromatin states: m for match, n for mismatch,

d1 for deletion in S1, and d2 for deletion in S2. If fi “ m, there is a match between the u1i-th

state of S1 and the u2i-th state of S2; if fi “ n, there is a mismatch between the u1i-th state

of S1 and the u2i-th state of S2; if fi “ d1, the u1i-th state of S1 is aligned to nothing in S2

(u2i is set to 0); if fi “ d2, the u2i-th state of S2 is aligned to nothing in S1 (u1i is set to 0).

In an example with S1 “ abca and S2 “ aba, if we consider an alignment

a b c a

| | | |

a b ´ a

, then

F “ mmd1m, U1 “ 1234, and U2 “ 1203. Please note that the two chromatin state sequences

S1 and S2 may have different lengths. Also given S1 and S2, it is possible to have more than
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one alignment results, i.e., sets of tpfi, u1i, u2iqu
N
i“1.

Now we define the alignment score function Hp¨q as:

HpF,U1, U2, S1, S2q “

N
ÿ

i“1

hpfi, u1i, u2i, S1, S2q , (3.1)

where hpfi, u1i, u2i, S1, S2q denotes the score of the alignment status fi between the u1i-th

state in S1 and the u2i-th state in S2. Specifically,

‚ hpm, u1i, u2i, S1, S2q “ MFpu1i, u2i, S1, S2q;

‚ hpn, u1i, u2i, S1, S2q “ NFpu1i, u2i, S1, S2q;

‚ hpd1, u1i, u2i, S1, S2q “ DFpu1i, S1q;

‚ hpd2, u1i, u2i, S1, S2q “ DFpu2i, S2q.

We will formally define the matching function MFp¨q, the mismatching function NFp¨q, and

the deletion function DFp¨q later in this section. To summarize, the function hp¨q takes a

form that depends on the value of its first argument fi.

Then we consider the alignment problem as an optimization problem where the goal is

to find the optimal alignment tF ˚, U˚1 , U
˚
2 u that maximizes the alignment score H:

tF ˚, U˚1 , U
˚
2 u “ arg max

tF,U1,U2u

HpF,U1, U2, S1, S2q . (3.2)

This optimization problem can be approached by dynamic programming, an algorithm that

iteratively maintains and updates a matrix M that stores dynamic alignment results. The

matrix element Mk,l is the maximal alignment score of the two subsequences S
r1,ks
1 and S

r1,ls
2 ,

where S
r1,ks
1 denotes the first k states of S1 and S

r1,ls
2 denotes the first l states of S2. Let n1

and n2 be the length of S1 and S2, respectively. We update the matrix M using the following
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rule.

Mk,0 “ 0 , for 0 ď k ď n1 ;

M0,l “ 0 , for 0 ď l ď n2 ;

Mk,l “ max

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Mk´1,l´1 `MF pk, l, S1, S2q Match

Mk´1,l´1 ` NF pk, l, S1, S2q Mismatch

Mk´1,l `DFpk, S1q Deletion in S1

Mk,l´1 `DFpl, S2q Deletion in S2

,

for 1 ď k ď n1, 1 ď l ď n2.

(3.3)

The algorithm described in Equation (3.3) achieves the global alignment, but we instead

consider the local alignment approach in practice since the local alignment would prefer

long continuous alignments with small proportion of mismatches, which are more likely to

contain the common patterns of interest. In contrast, global alignment would prefer patterns

containing overly scattered short alignments separated by gaps. To achieve the goal of

local alignment, we propose the following approach to modify the dynamic programming

algorithm.

Mk,0 “ 0 , for 0 ď k ď n1 ;

M0,l “ 0 , for 0 ď l ď n2 ;

Mk,l “ max

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0

Mk´1,l´1 `MF pk, l, S1, S2q Match

Mk´1,l´1 ` NF pk, l, S1, S2q Mismatch

Mk´1,l `DFpk, S1q Deletion in S1

Mk,l´1 `DFpl, S2q Deletion in S2

,

for 1 ď k ď n1, 1 ď l ď n2.

(3.4)

The alignment score of EpiAlign is MEpiAlign “Mn1,n2 .
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3.2.2 Chromatin State Weights

To define the specific forms of the matching function MFp¨q, the mismatching function NFp¨q

and the deletion function DFp¨q, we first introduce a weight function W pk, Sq, which de-

scribes the weight of the k-th state in sequence S. The weights can be used to distinguish

chromatin states of different importance if we have prior knowledge that some states have

more significant biological functions than others at certain positions. We design two sets of

weights: (1) equal weights mean that all states are treated equally with the same weight

1 in sequence S, i.e., W pk, Sq “ 1 , k “ 1, . . . , |S|; (2) frequency-based weights assign

larger weights to less common chromatin states (see Supplementary section 1 for details),

motivated by the fact that some uncommon states are likely strong indicators of biological

functions.

With the weights defined above, we specify the matching function, the mismatching

function, and the deletion function as:

MFpk, l, S1, S2q “ W pk, S1q `W pl, S2q , (3.5)

NFpk, l, S1, S2q “ ´εN ¨ pW pk, S1q `W pl, S2qq , (3.6)

DFpk, Sq “ ´εD ¨W pk, Sq , (3.7)

where εN and εD are the penalty parameters for a mismatch and a deletion in the alignment,

respectively. In EpiAlign, εN and εD can be tuned by users, and the default values are 1.5

and 1, respectively. The choice of εN and εD values depends on how ”local” users would like

the result to be, i.e., if we set a larger εN or εD value, it means that we penalize more on a

mismatch or a gap in the alignment, and the final best alignment result will be shorter or

more local. Figure 3.1 shows the workflow of EpiAlign

3.3 Results

We demonstrate in three aspects that EpiAlign is a useful tool for investigating sequential

patterns of chromatin states. First, we demonstrate that EpiAlign can identify common
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Figure 3.1: Workflow of the EpiAlign algorithm.

chromatin state patterns within the same epigenome or across different epigenomes. Second,

we investigate biological interpretation of the common chromatin state patterns found by

EpiAlign. Third, as a technical verification, we show that EpiAlign is able to distinguish real

epigenomes from randomized epigenomes. We also demonstrate the superiority of EpiAlign

over a näıve method that compares two chromatin sequences only based on chromatin state

frequencies. We conduct the above analysis using simulation and real case studies based on

the Roadmap epigenomic database [20]. In this paper, we use the chromatin state sequences

annotated by ChromHMM, which has been well recognized to provide an informative com-

pression of multi-track epigenomic signals into a chromatin state sequence [14, 20, 21]. It is
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worth noting that our method is generally applicable to chromatin state sequences annotated

by other methods.

In this paper, for most analysis, we selected ESC, heart and brain samples from the

Roadmap dataset as representative examples. The reason is that among all the Roadmap

tissue types, these three types are relatively better understood and have well-annotated

tissue-specific genes[89].

3.3.1 Vertical alignment: Comparison of Chromatin State Sequences of Protein-

coding Genes across Epigenomes

EpiAlign is a powerful local alignment algorithm to quantify the similarity of two chromatin

state sequences in terms of their aligned subsequences. Here we apply EpiAlign to compare

chromatin state sequences of the same genomic region in different epigenomes, a strategy

we define as the vertical alignment. The diversity of the same region’s chromatin state

sequences represents epigenetic characteristics of various tissues and cell types. As epigenetic

characteristics are known to have a strong association with gene expression characteristics

[90], we expect that a cell-type specific gene, i.e., a gene specifically highly expressed in a

cell type [89], should have similar chromatin state sequences in epigenomes of that cell type.

In contrast, lower similarity is expected between two chromatin state sequences, one of that

cell type and the other of another cell type (Supplementary Figures 3 and 4).

In the first study, we divide the Roadmap epigenomes into two categories: 51 male

samples and 38 female samples. In the second study, we compare the Roadmap epigenomes

of two cell types: 10 brain samples and 5 heart samples. In both studies, we compare the

chromatin state sequences for each of the 19, 935 protein-coding genes between every pair

of samples. (Note that we use all protein-coding genes in GENCODE v10 [91] that are

compatible with the Roadmap database, with the exception of genes on chromosome Y.)

We obtain three sets of alignment scores: pairwise scores within male samples, pairwise

scores between male and female samples, and pairwise scores within female samples. Since

most genes on the X chromosome are associated with sex-linked traits, we expect to observe
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higher alignment scores between samples of the same sex than those between samples of

different sexes. To quantify the difference between alignment scores, we perform the two-

sample one-sided Wilcoxon test between male-vs-male scores and male-vs-female scores for

each protein-coding gene. Studying the resulting p-values, we find that out of the top 200

genes that have the smallest p-values, 188 are X chromosome genes. (Figure 3.2(a)). This

result suggests that the majority of the genes that exhibit greater within-sex similarity are sex

linked, a reasonable finding that matches our expectation. The comparison between female-

vs-female and male-vs-female alignment scores leads to a similar result (Figure 3.2(b)). These

results together confirm that EpiAlign successfully distinguishes same-sex chromatin state

sequences from different-sex ones, suggesting that EpiAlign outputs a reasonable similarity

measure of chromatin state sequences.

We also investigate the 12 genes that are not on X chromosome among the top 200 genes

with the smallest p-values (Supplementary Table 1). These genes are potentially sex linked.

For example, MFF that controls mitochondrial fission has been reported to have to have

sex-specific regulation [92]. This result suggests that EpiAlign can serve as a useful tool for

discovering genomic regions with certain epigenetic regulation of interest.
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Figure 3.2: Alignment scores of chromatin state sequences of protein-coding genes within a sex vs. between sexes.

We perform the two-sample one-sided Wilcoxon test between within-sex alignment scores and between-sex scores to quantify
their differences: (a) Manhattan plot of p-values of the test between male-vs-male and male-vs-female alignment scores for all the
protein-coding genes. (b) Manhattan plot of p-values of the test between female-vs-female and male-vs-female alignment scores
for all the protein-coding genes. In the two comparisons, within-sex and between-sex alignment scores differ most significantly
for genes on the X chromosome.

In the second study, we investigate if EpiAlign can help identify cell-type specific genes,

which were previously discovered from gene expression profiles [89], using only chromatin
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state sequences. We perform the two-sample one-sided Wilcoxon test between brain-vs-brain

alignment scores and brain-vs-heart alignment scores for all the 19, 935 protein-coding genes.

We next perform the Gene Ontology (GO) enrichment analysis [93] on the top 200 genes that

receive the smallest p-values in the Wilcoxon test (Supplementary Table 2). Here we choose

the top 200 genes instead of setting a threshold on multiple-testing-adjusted p-values, because

we found that the most commonly used threshold 0.05 led to a large number of significant

genes. For our purpose of verifying that the top differentially aligned genes are biologically

meaningful, choosing a smaller number of top ranked genes is a more reasonable approach.

The top enriched GO terms (p-value ă 0.0001) are highly relevant to heart/cardiac processes

and brain processes (Table 1). Previously discovered 150 heart-specific genes and 166 brain-

specific genes [89] are enriched in the top differential genes found by the Wilcoxon test,

which have significantly higher within-tissue alignment scores than between-tissue scores.

For example, 9 brain-specific genes and 4 heart-specific genes are in the top 100 differential

genes (p-values ă 10´30 in a hyper-geometric test). Figure 3.3 shows that top differential

genes contain a higher proportion of tissue-specific genes. The above results indicate that

EpiAlign is able to distinguish cell-type specific genes by assigning them higher alignment

scores when comparing the epigenomes of their associated cell types. This again suggests

that EpiAlign effectively captures chromatin state patterns in epigenomes.
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Figure 3.3: Brain and heart specific genes are enriched in the top differential genes that have significantly higher within-tissue
alignment scores than between-tissue scores. The horizontal axis shows the number of top differential genes, and the vertical
axis shows the proportion of tissue specific genes among the top differential genes.
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GO term Description P-value

GO:0051891 *positive regulation of cardioblast differentiation 9.34E-8
GO:0051890 *regulation of cardioblast differentiation 6.42E-7
GO:0007416 **synapse assembly 5.82E-6
GO:0003207 *cardiac chamber formation 5.83E-6
GO:0060413 *atrial septum morphogenesis 1.72E-5
GO:0006928 movement of cell or subcellular component 2.15E-5
GO:0007409 **axonogenesis 2.98E-5
GO:0071625 vocalization behavior 3.07E-5
GO:0032990 cell part morphogenesis 4.63E-5
GO:2000738 positive regulation of stem cell differentiation 6.36E-5
GO:0060043 *regulation of cardiac muscle cell proliferation 6.99E-5
GO:0097104 **postsynaptic membrane assembly 8.69E-5
GO:0048812 **neuron projection morphogenesis 8.79E-5
GO:0051705 multi-organism behavior 9.73E-5

Table 3.1: Alignment scores of chromatin state sequences of protein-coding genes within a tissue (heart or brain) vs. between
heart and brain. Displayed are the enriched GO terms in the top 200 significant genes identified by the Wilcoxon test between
brain-vs-brain alignment scores and brain-vs-heart alignment scores. The top enriched GO terms are highly relevant to heart
processes or brain processes (*: terms related with heart; **: terms related with brain).

To better illustrate how EpiAlign helps identify common chromatin state patterns, we

study a brain-specific gene STMN4, which has the lowest p-value from our two-sample one-

sided Wilcoxon test described above (brain-brain alignment scores vs. brain-heart alignment

scores). Using it an example, we investigate the chromatin state sequences of STMN4 in all

brain and heart samples. From Figure 4, we observe that the brain samples share similar

chromatin sequences; yet the common pattern in these sequences drastically differs from the

chromatin state sequences in the heart samples. The fact that EpiAlign captured STMN4

as the top differentially aligned gene shows that EpiAlign can successfully identify regions

where chromatin state patterns diverge or conserve between cell types.

We also analyze the expression profiles of protein-coding genes. We use DESeq2 [29]

and EdgeR [28] to do differential expression (DE) analysis between heart samples and brain

samples on all the 17, 784 protein-coding genes included in the Roadmap RNA-seq datasets.

The results show a high consistency between the resulting differentially expressed genes and

the differential chromatin state sequences found by EpiAlign (Table 2). This results further

validate that the tissue-specific regions found by EpiAlign are biologically meaningful and

reflect gene expression dynamics, and that EpiAlign will be a useful tool for identifying
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Figure 3.4: Chromatin state sequences of gene STMN4 in all the 10 brain samples and the 5 heart samples. Different
chromatin states are represented by different colors. The y-axis indicates the genomic locations of various chromatin states
across these 15 samples.

DESeq2 edgeR
Total number of genes 17784 17784
Number of DE genes (p ă 0.05) 5906 6251
DE genes in top 200 by EpiAlign 143 146
p-value of hyper-geometric test ă 10´30 ă 10´30

Table 3.2: Comparison of the 200 genes with differential chromatin state sequences identified by EpiAlign and the differentially
expressed (DE) genes identified by DESeq2 or EdgeR. DESeq2 and edgeR identify 5906 and 6251 DE genes between all 3 brain
samples and all 4 heart samples from the 17, 784 protein-coding genes in the Roadmap RNA-seq datasets. A hypergeometric
test is used to check the significance of the enrichment of the top 200 genes identified by EpiAlign in the two sets of DE genes.
The two resulting p-values are both significant.

tissue-specific epigenomic regions.

3.3.2 Horizontal Alignment: Analysis of Frequent Chromatin State Sequence

Patterns within an Epigenome

Motivated by the fact that similar chromatin state sequences may encode similar biological

functions, here we use EpiAlign to analyze frequent chromatin state sequence patterns within

an epigenome. We introduce the “horizontal alignment,” which takes the chromatin

state sequence of a region as the query and searches for its best hit except itself within

an epigenome. We first divide a given epigenome into regions of 500 kb length, and then

we align the chromatin state sequence of each region (i.e., the “query”) to those of other

regions to find the best match. It is worth noting that the alignment scores of multiple query

chromatin state sequences are not directly comparable. To normalize the alignment scores,
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we align every query chromatin state sequence to randomized chromatin state sequences,

which serve as a negative control (see Supplementary section 3 for details). Then for every

region, we define the normalized alignment score of its best hit except itself (when the region

is used as the query) as its horizontal alignment score. A high score indicates that the

region shares a highly similar and non-random chromatin state sequence with another region

in the same epigenome, implying that the region’s chromatin state sequence pattern is likely

biologically meaningful.

With horizontal alignment scores, we can represent every epigenome by a vector, whose

length is the number of regions and whose entries are the regions’ horizontal alignment

scores. As mentioned above, horizontal alignment scores measure whether their correspond-

ing regions contain biologically meaningful chromatin state patterns, which are expected

to be largely consistent across epigenomes of the same tissue. We use the Roadmap sam-

ples to calculate the horizontal alignment scores for all regions in all epigenomes. Then we

represent every epigenome by a horizontal alignment score vector. To verify the biological

meaning of the vector representation, we calculate the pairwise Pearson correlations between

epigenomes and perform an average-linkage hierarchical clustering of epigenomes based on

the (1´Pearson correlation) distance metric. The clustering result matches our expectation:

samples from the same tissue are clustered together, confirming that the horizontal alignment

scores are indeed consistent across the samples from the same tissue (Figure 3.5).
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Figure 3.5: Clustering based on the correlation matrix of horizontal alignment scores of Roadmap epigenomes. Samples from
the same tissue or cell type are clustered together, indicating that horizontal alignment scores are highly correlated between
samples from the same tissue or cell type.
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3.3.2.1 EpiAlign distinguishs real epigenomes from randomized ones

We further perform a simulation study to technically validate the efficacy of EpiAlign in

terms of horizontal alignment. Our goal is to check if EpiAlign is able to distinguish real

epigenomes from randomized epigenomes, which serve as a negative control. We calculate

horizontal alignment scores using EpiAlign on all the 127 Roadmap samples based on the

15-state ChromHMM annotation. In addition to each real epigenome, we also generate

a randomized epigenome and two hybrid epigenomes for comparison. Here the randomized

epigenome is generated in the same way as in the normalization step for calculating horizontal

alignment scores (see Supplementary section 3 for details). To contrast real and randomized

epigenomes, we also generate a hybrid epigenome as a semi-negative control by mixing

the real and randomized epigenomes of every chromosome, so that a hybrid epigenome is

composed of alternating real regions and randomized regions. (see Supplementary section 4

for details)

We use an ESC (embryonic stem cell) sample (Roadmap ID E003) as an example and

calculate horizontal alignment scores in four epigenomes: the real ESC epigenome, a random-

ized epigenome, and two hybrid epigenomes. We summarize the distributions of horizontal

alignment scores in the real and randomized epigenomes in Figure 3.2(a). As expected,

the regions in the real epigenome have an average alignment score higher than 0, while the

average score of regions in the randomized epigenome is close to 0. For each of these four

epigenomes, we find the top 500 non-overlapping regions with the highest horizontal align-

ment scores. As expected, the top regions in the real epigenome have scores significantly

higher than those in the randomized and hybrid epigenomes (Figure 3.2(b)), an observation

consistent with the fact that a high score indicates a region likely to have a biologically

meaningful chromatin state pattern. Moreover, for hybrid epigenomes, almost all the top

500 regions are those generated from the real epigenome (Figure 3.2(c)), again confirming

that real chromatin state patterns are more biologically meaningful than randomized pat-

terns. Overall, our results suggest that EpiAlign can powerfully distinguish real biological

epigenomes from randomized epigenomes.
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Figure 3.6: Horizontal alignment results of embryonic stem cell sample E003. (a) The distribution of horizontal alignment
scores of regions in real and randomized epigenomes. (b)The top 500 highest horizontal alignment scores (log10 transformed)
in real, randomized and hybrid epigenomes. Scores in the real epigenome are always the highest given the same rank. (c)
Locations of the regions with the top 500 horizontal alignment scores in the two hybrid epigenomes. The three panels together
indicate that the real epigenome contains non-random chromatin state sequential patterns captured by EpiAlign.

3.3.2.2 Comparison of EpiAlign with alternatives

We further validate our EpiAlign algorithm with equal weights by comparing it with two

alternative approaches. The first is a variant of EpiAlign using frequency-based weights,

which are determined by the frequencies of chromatin states (see Supplementary section 1 for

details). The second is a näıve alignment method, in which we first calculate the proportion

of each chromatin state in two regions (chromatin state sequences) to obtain two proportion

vectors P1 “ pp11, p12, . . . , p1Qq
T and P2 “ pp21, p22, . . . , p2Qq

T, where Q is the number of

unique chromatin states in the annotation(e.g., Q “ 15 in this case). The näıve alignment

score is a similarity measure defined as Mnäıve “ ´||P1´P2||
2
2 “ ´

řQ
i“1pp1i´p2iq

2. The näıve

method directly compares two chromatin state sequences based on their state proportions,

and it does not use a dynamic programming approach as does in EpiAlign. However, given

that similar chromatin state sequences share similar frequency vectors, the näıve method is

also a biologically meaningful approach.

Note that EpiAlign (with equal weights), the frequency-based variant of EpiAlign, and

the näıve method do not have horizontal alignment scores on the same scale and cannot be

compared directly, so we compare the three approaches by evaluating the biological meaning

of the regions they find with high scores. Since gene regions are expected to share some

common chromatin state patterns (i.e., promoter, transcription start site, transcribed region,

and transcription ending site), a good alignment method is expected to assign high horizontal

alignment scores to gene regions. In other words, genes expressed in a tissue are expected

121



to have high horizontal alignment scores in the tissue’s epigenome. Hence, we design two

evaluation criteria: one is the enrichment of known tissue-associated genes, i.e., the non-

house-keeping genes highly expressed in a tissue [94], in regions with high alignment scores;

the other criterion is the enrichment of annotated genes. The greater the enrichment, the

better the alignment method. We apply each of the three approaches to do horizontal

alignment and check the overlap between tissue-associated genes or annotated genes and each

approach’s top-aligned regions, which receive the highest horizontal alignment scores. We

perform this evaluation on 16 samples: 5 ESC, 4 heart and 7 brain samples. For each sample,

we collect the top 500 regions with the highest alignment scores found by each approach and

count the numbers of tissue-associated genes from Yang et al. [94] and annotated genes

from Kent et al. [95] that overlap with these regions. From the results shown in Figure

3.7, we see that EpiAlign outperforms the näıve method in detecting annotated genes and

tissue-associated genes. In addition, we observe that the frequency-based weights do not

have apparent advantages over the equal weights, suggesting that we may use EpiAlign with

equal weights as the default.

3.3.2.3 Motif Analysis

As a further investigation, we check if the regions with top horizontal alignment scores

share any chromatin state patterns in common. We apply EpiAlign to perform horizontal

alignment within the epigenome of the embryonic stem cell sample E003, and we select the

top 200 regions with the highest horizontal alignment scores. To investigate whether common

chromatin state patterns exist among these regions, we calculate the pairwise alignment

scores between each pair of these top 200 regions. We normalize the pairwise alignment

scores and store them in a 200ˆ200 symmetric matrix A, whose pi, jq-th entry Aij represents

the normalized alignment score of regions i and j and is defined as

Aij “

$

&

%

1 if i “ j

alignment score of regions i and j
αpmaxk‰r alignment score of regions k and rq

otherwise
, (3.8)
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Figure 3.7: Comparison of EpiAlign, EpiAlign with frequency-based weights, and the näıve method using 16 Roadmap samples
(5 ESC, 4 heart, and 7 brain samples from the 92 samples with 18-state ChromHMM annotation). (a) The number of tissue-
associated genes that overlap with the top 500 regions with the highest horizontal alignment scores found by each approach.
(b) The number of annotated genes that overlap with the same three sets of top 500 regions.

where α “ 1.1 ensures that 0 ă Aij ă 1 for all i ‰ j. We then define a distance matrix D,

whose pi, jq-th entry is Dij “ 1´Aij. We then perform hierarchical clustering with average

linkage on the top 200 regions based on D, and we display the clustering result in Figure

3.8.

From the heatmap in Figure 3.8, we see that the top 200 regions are well partitioned

into four clusters, indicating that regions in the same cluster share similar chromatin state

patterns. (Supplementary Table 3) We inspect each of these four clusters to identify its

representative chromatin state patterns, which we refer to as motifs in the following text.

For notation simplicity, we use alphabets “a” to “o” to denote chromatin states 1 to 15.
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Using the motif-discovery tool MEME [96], we find that all the four clusters are charac-

terized by certain motifs. As annotated by the 15-state ChromHMM model [97], the state

“o” denotes the quiescent state and lacks a good biological interpretation, so we only con-

sider the motifs without “o”. We find that cluster 1 is characterized by the “ihih”-repeat

motif; cluster 2 is characterized by the “egeg”-repeat motif; cluster 3 is characterized by

“eded” motif; cluster 4 is characterized by the “egeg” motif and “mlml” motif. Based on

the ChromHMM annotation, the state “i” represents heterochromatin, while “h” represents

ZNF genes and repeats. Since existing evidence shows that human heterochromatin pro-

teins form large domains containing KRAB-ZNF genes [98], the “ihih”-repeat motif may

represent functional non-coding regions. Since “d” denotes strong transcription, “e” denotes
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weak transcription, and “g” denotes enhancer, the “egeg”-repeat motif may be an evidence

of transcriptional enhancers [99] and the “eded”-repeat motif may denotes transcriptional

regions. In the “mlml”-repeat motif, “m” and “l” represent repressed polycomb and biva-

lent enhancer, respectively. Since polycomb-repressed genes have permissive enhancers that

initiate reprogramming [100], the “mlml”-repeat motif may be an indicator of polycomb-

repressed gene regions. All these results show that the motifs discovered from the frequent

chromatin state patterns are biologically meaningful and EpiAlign can help identify common

chromatin state patterns in epigenomes of specific biological conditions.

3.3.2.4 Cross-species application of EpiAlign

We further investigate the application of EpiAlign to comparing human and mouse chromtain

state sequences. We use the epigenetic data from Yue et al. (2014), where mouse and human

samples were used together to train a 7-state ChromHMM model[101]. We investigate two

liver samples, one from human and one from mouse. As homologous genes are expected to

exhibit more similar functions than non-homologous genes[102], we expect to observe larger

alignment scores between chromatin state sequences of homologous genes than those of non-

homologous genes of similar sequence lengths. Our analysis is as follows. We first obtain

mouse-human homologous gene pairs from Ensembl BioMart (Release 95) [103]. We sort

the mouse genes with lengths 200-400 kb by gene lengths and divide the homologous gene

pairs into 12 groups each with 50 pairs, so that the mouse genes within a group have similar

lengths. Within each group, we apply EpiAlign to each mouse-human homolog pair and each

non-homolog pair. The results show that among the 12 groups, on average 16% the human

genes have the highest chromatin state sequence alignment scores with their corresponding

mouse homologs, suggesting that homologous genes tend to share similar epigenetic patterns.

We also look at the GO terms of the homolog pairs that have the highest alignment scores in

each group. The result (see Supplementary Table S4) shows that homologous genes with high

alignment scores are also very similar in molecule functions and biological processes. The

result also indicates that EpiAlign can identify homologous genes whose epigenetic patterns

are more conserved in evolution, shedding new insights into translating scientific discoveries
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in mice into humans.

3.4 Discussion

In this article, we propose the EpiAlign algorithm for alignment of chromatin state sequences

learned from multi-track epigenomic signals. We demonstrate that EpiAlign can be a pow-

erful tool for studying the epigenetic dynamics along the same epigenome or across multiple

epigenomes, based on both simulation and real data studies.

First, our current alignment results are based on ChromHMM, which learns and charac-

terizes from multi-track epigenomic signals. There are also other tools for pattern discovery

in chromatin structures, such as Segway [15], which constructs a dynamic Bayesian network

instead of HMM, EpiCSeg [85], which uses natural numbers instead of binarized signals as

used by ChromHMM, and IDEAS [87], which jointly characterizes epigenetic dynamics across

multiple human cell types. It would be interesting to compare these tools with ChromHMM

to analyze how the chromatin state annotation affects the alignment results of EpiAlign. If

the output results of ChromHMM or other segmentation tools can be filtered or improved

based on additional biological experiments, this can also help EpiAlign obtain more accurate

and robust results. Besides, we find likely noisy ChromHMM annotations that need further

biological validation (see Supplementary section 12). To account for such possible inaccuracy

in chromatin state sequences, we may improve EpiAlign by incorporating the posterior prob-

abilities of chromatin states output by ChromHMM into the calculation of alignment scores.

Moreover, ChromHMM is an unsupervised algorithm that requires a pre-specified number

of states; thus, its chromatin state labels may not be fully biologically meaningful. For ex-

ample, some genomic regions would be assigned to different chromatin states given different

numbers of states. This leads to additional noise in ChromHMM annotations. To account

for such noise, we may correct chromatin state labels by using the sequential information in

neighboring states.

Second, in the EpiAlign algorithm, an important step before alignment is the compression

of the chromatin state sequences. Chromatin states of different regulatory functions can vary
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greatly in their lengths [104], but the length information itself is not always informative of

the change of epigenetic marks along the genome. Specifically, the quiescent/low state often

appear in extremely long stretches, whose lengths are not useful for comparing chromatin

state sequences (see Supplementary Figure S1). Therefore, we add a compression step to

capture and extract the dynamics of chromatin states among biological samples. We have

also tested the pre-compression alignment algorithm, but it is not able to distinguish the

randomized chromosome from the real one, suggesting that compression is necessary for

detecting biologically meaningful chromatin state patterns. However, we realize that this

compression step still has room for improvement. For example, several previous studies have

shown that broad/sharp H3K4me3 domains have distinct functions [105–107], implying that

the length information of certain chromatin states is important for vertical alignment that

compares a region across samples. Future refinement of the compression step, or refinement

of length information usage after compression, should consider multiple aspects: a chromatin

state’s confidence (whether it is likely noisy) and importance (whether its length information

is informative), as well as the analysis needs (vertical or horizontal alignment), among others.

Third, EpiAlign is essentially an unsupervised algorithm, but the flexibility of the weight

function allows EpiAlign to incorporate prior knowledge into the alignment procedure by

assigning different weights to different chromatin states. For example, the frequency-based

weights lead the algorithm to favor the alignment of less frequent patterns compared to

background patterns, which frequently exist along the epigenome. In practical applications,

one may adjust the weight function to reflect the important elements in specific problems.

For instance, the weight can incorporate the transcription start sites (TSSs) in genome

annotation when transcriptional regulation is of particular importance.

Fourth, EpiAlign depends on two tuning parameters: εN and εD for penalizing mismatches

and gaps in the alignment. Similar parameters are also necessary for classical alignment

algorithms designed for DNA and protein sequences such as BLAST. For example, the εD in

EpiAlign is analogous to the Gap Extend Penalty in BLAST. The NCBI BLAST, an online

tool that implements the BLAST algorithm, sets the Gap Extend Penalty to 1 by default.

In EpiAlign, we also set εD to 1 by default. In BLAST, a substitution matrix is used to score
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matches/mismatches, and multiple substitution matrices have been constructed for users to

select based on alignment purposes. In EpiAlign, we set εN to 1.5, which is equivalent to a

substitution matrix with diagonal entries as 1 and off-diagonal entries as -1.5. Given that

the alignment of epigenetic sequences is new to this field, how to construct more specialized

substitution matrices for chromatin states is an important future research question.

Finally, in some computationally efficient sequence alignment algorithms, hash tables

or tree-based data structures are utilized to index the database, and these techniques have

greatly increased the efficiency of query retrieval. EpiAlign can also benefit from similar

techniques and further improve its computation efficiency.

Two other computational methods, EpiCompare [108] and ChromDiff [109], have been

developed to compare chromatin states between samples. They test for the difference of

a single chromatin state’s frequency in a genomic region between two groups of samples.

EpiCompare restricts the region of interest to a 200 bp window, which corresponds to a

single chromatin state output by ChromHMM. A useful functionality of EpiCompare is that

it searches for the 200 bp windows where the specified chromatin state is enriched only un-

der one condition. Compared with EpiCompare, ChromDiff is more flexible and allows the

region to have any length greater than 200 bp. Another advantage of ChromDiff is that it

normalizes the chromatin state frequencies to reduce the effects of confounding covariates. A

common limitation of ChromDiff and EpiCompare is that they can only compare chromatin

state frequencies between two conditions in the same genomic region, and they require mul-

tiple samples under each condition. In contrast, EpiAlign can perform pairwise alignment

between any two chromatin sequences, either coming from the same genomic region in two

samples or two different genomic regions in one sample. In other words, EpiAlign does not

pose any restrictions on the choice of genomic regions or the sample size. Furthermore, Epi-

Align has two unique advantages. First, it simultaneously uses the sequential information

encoded in multiple chromatin states. Second, it outputs an alignment score that integrates

this sequential information. Hence, EpiAlign enables horizontal alignment and query search,

allowing us to extract chromatin state patterns that carry tissue-associated characteristics.

These patterns are shown to be biologically meaningful in our motif analysis and have a
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strong capability in grouping epigenomic samples of the same cell type in horizontal align-

ment.

In terms of biological applications, the biggest strength of EpiAlign is its ability to iden-

tify common chromatin state patterns and how they are conserved or divergent between cell

types. This strength will pave the way for identifying regulatory domains defined by combi-

natorial effects of strings of cis-elements. Specifically, the vertical analysis based on EpiAlign

will reveal tissue-specific genes and regulatory regions that share common chromatin state

patterns within a tissue type, and such patterns will serve as the basis of defining new

regulatory domains. We have also demonstrated that EpiAlign has found meaningful chro-

matin state motifs. Besides, EpiAlign is able to distinguish tissue-associated genes. These

results suggest the potential of EpiAlign as a useful bioinformatic tool to discover tissue-

specific gene regulation. Moreover, the alignment scores calculated by EpiAlign can serve

as a covariate when constructing functional genomic networks, thus allowing the network

to incorporate similarities of chromatin structures as a factor. Further, EpiAlign applies to

3D genomic analysis to address the question if there are chromatin state patterns in regions

with a specific 3D structure such as a loop.
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3.6 Supplementary Material

S3.6.1 Frequency-based weights

The frequency-based weight of the k-th state in chromatin state sequence S is W Fb,wpk, Sq,

which is defined as:

W Fb,w
pk, Sq “ GSwpk, Sq ¨RSwpk, Sq ¨ LSpk, Sq

where w is a window size parameter, GSwpk, Sq is the two-state frequency score, RSwpk, Sq

is the one-state frequency score, and LSpk, Sq is the length score.

In the subsequence Srk´w,k`ws, if neither of pattern Srk´1,ks or Srk,k`1s occur elsewhere

in the subsequence, GSwpk, Sq “ 1; if both patterns occur somewhere in the subsequence,

GSwpk, Sq “ 4; otherwise GSwpk, Sq “ 2.

The one-state frequency score RSwpk, Sq represents the frequency of each state and gives

more frequent states smaller scores. For Srk´w,k`ws, we rank the chromatin states in this

window by their frequencies, from the highest to the lowest. Then

RSwpk, Sq “ 1`
rankpSrksq ´ 1

number of unique states in Srk´w,k`ws ´ 1
P r1, 2s .

In the compression process of EpiAlign, we compress consecutive occurrences of the same

state into a state label. We also obtain an occurrence number for each state. For example, a

chromatin state sequence abbcc is represented by a compressed state sequence S “ abc and

a state occurrence sequence L “ 122. The length score LSpk, Sq is based on the occurance

sequence L. If Lrks “ 1, LSpk, Sq “ 0.5; otherwise LSpk, Sq “ 1.

S3.6.2 Average length of stretches of the same chromatin state

The motivation for doing compression before alignment comes from the fact that most un-

compressed sequences contain long stretches of the same chromatin state. Here we use letter

“a” to “o” to denote chromatin state 1 to 15 from the Roadmap 15-state annotation. We
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calculate the average length of consecutive same chromatin state for each state. From the

results in Figure S1, we can see that the chromatin state “o”, which means quiescent/low

state, is much longer than other states before compression. As the length information of such

a state is hardly biologically meaningful. The compression step is needed for addressing this

issue by turning the focus onto the more biologically meaningful chromatin state patterns.
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Figure 3.9: Average lengths of stretches of a single chromatin state in ESC, heart and brain samples. Letters ’a’ to ’o’ refer
to chromatin states 1 to 15 in the Roadmap 15-state chromHMM annotation. For each state, we calculated the average length
of its stretches, i.e., consecutive occurrences. It is obvious that the chromatin state ’o’, i.e., the quiescent/low state, has much
longer stretches than other states do.

Horizontal alignment scores

It is worth noting that the alignment scores of multiple query chromatin state sequences are

not directly comparable. To normalize the alignment scores, we align every query chromatin

state sequence to randomized chromatin state sequences, which serve as a negative control.

For each region in the real epigenome, this region is used as the “query” and aligned to

each of the three randomized epigenomes to obtain its hit in that randomized epigenome.

Here the randomized epigenomes have the same lengths as their real counterparts and are

generated by the Markov rule, with a state transition probability matrix per chromosome

based on the real epigenome. The alignment scores of the three hits are then averaged as

the baseline score of this query region. We use Qi to denote the alignment score of region
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i’s hit in the real epigenome, Pi to denote the baseline score of region i, and define the

horizontal alignment score of region i as Qi´Pi
P i

. A high score indicates that the region shares

a highly similar and non-random chromatin state sequence with another region in the same

epigenome, implying that the region’s chromatin state sequence pattern is likely biologically

meaningful.

S3.6.3 Generation of hybrid epigenomes

For every chromosome, we first divide both its real chromatin state sequence (“epigenome”)

and their randomized counterparts into non-overlapping regions of 50 million bp length.

Then for the i-th region in the hybrid epigenome, its chromatin state sequence is set as the

sequence of the i-th region in the real epigenome when i is even, or as the sequence of the

i-th region in the randomized epigenome when i is odd. We can easily generate another

hybrid epigenome if we switch the odd and even regions.

Figure S2 shows that when we use the chromatin state sequences of gene regions as

queries, the best hits (regions that have the highest horizontal alignment scores with the

query) reported by EpiAlign are very similar to the query in terms of chromatin state pat-

terns.

S3.6.4 Comparison of uncompressed sequences and compressed sequences in

Vertical Alignment

We also use the vertical alignment to justify our choice of aligning compressed chromatin

state sequences instead of original uncompressed sequences. We repeated the vertical align-

ment analysis on all brain-specific genes and all heart-specific genes among the brain and

heart samples, using the uncompressed sequences instead of the compressed chromatin state

sequences. Then we performed the same two-sample one-sided Wilcoxon test between brain-

vs-brain alignment scores and brain-vs-heart alignment scores on these selected genes, and

we denote the resulting p-values as uncompressed p-values. Next we compare these un-

compressed p-values with their corresponding p-values we obtain previously based on the
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compressed sequences. We counted the number of significantly different genes, which have

a p-value less than 0.05 after Bonferroni correction, from both analyses. From compressed

sequences, 112 out of 327 tissue-specific genes are significant and from uncompressed 120

out of 327 are significant. We also conducted two-sample Wilcoxon test between the orig-

inal p-values and p-values from uncompressed sequences. The result shows no significant

difference in distribution (p-value = 0.509). These results show that the resulting p-values

from the compressed sequences are very similar to those from the uncompressed sequences.

Considering that alignment of uncompressed sequences is much more time-consuming (takes

20 times more time than compressed sequences), the compression step makes the alignment

algorithm more effective.

S3.6.5 Examples of vertical alignment on tissue-associated genes

Since epigenetic marks carry important regulatory information relevant to cell differentiation,

chromatin states learned from these marks should also contain cell-type characteristic pat-

terns. For a tissue-associated gene, we should expect to observe significantly higher similarity

of chromatin states within its associated cell type than the counterpart similarity between

cells of other cell types. We implement vertical alignment on the Roadmap dataset on some

tissue-associated genes [1]. Taken an ESC-associated gene ANAPC1 as an example, we use

the alignment scores calculated by EpiAlign to compare the similarity of ANAPC1 ’s chro-

matin state sequences in different cell types. We first extract the chromatin state sequence

of ANAPC1 ’s chromatin region from in each epigenome. Then, we use EpiAlign to calcu-

late the alignment scores of these chromatin state sequences between each pair of the 127

epigenomes, resulting in 8, 001 pairwise alignment scores in total. We consider these 8, 001

alignment scores as the population and refer to the alignments scores between epigenomes

of the same cell type (i.e., ESC) as the Group A, and the whole population as the Group

B. As there are 8 ESC epigenomes, we obtain 28 alignment scores in the Group A and then

calculate the percentile of each of these 28 scores in the population. As shown in Figure S3,

11 out of the 28 scores are among the upper 5% percentile, and the average percentile of

alignment scores in group A is 0.256. We also perform a one-tailed t-test to compare the
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alignment scores of the two groups. The p-value of the test is 0.001, which suggests that

the chromatin states corresponding to the ESC-associated gene ANAPC1 have more simi-

lar patterns among ESC samples in comparison with the other cell types in the Roadmap

dataset. We also use the alignment scores based on the näıve method and repeat all the

analysis above.

From Figure S3, we can see that compared to the näıve method, EpiAlign can better

distinguish alignment scores among ESCs from others. Similar results are observed for brain

and heart too. These results indicate that for a specific cell type, EpiAlign is able to detect

the similarity of chromatin states of its tissue-associated genes, suggesting that EpiAlign may

be used to differentiate a given cell type from the other tissue and cell types, by evaluating

the similarity of epigenetic signals on its associated genes. Also, these results show that

EpiAlign can be used to identify tissue-associated regions.
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Figure 3.10: (a)-(b) Boxplots of pairwise alignment scores of chromatin state sequences of a tissue-associated gene within same
the cell type (Group A) and across all samples (Group B). We choose an ESC-associated gene ANAPC1, a brain-associated gene
AK5, and a heart-associated gene ACTN2. (a) shows the alignment scores by the näıve method, and (b) shows the EpiAlign
alignment scores. (c) shows the average percentile of group A scores in Group B for each alignment method.

We also perform hierarchical clustering of the 127 cells using chromatin state sequences of

multiple tissue-associated genes. For example, for each of the 118 ESC-associated genes, we

use EpiAlign to calculate all the pairwise alignment scores and form a 127ˆ127 score matrix.

We then normalize the scores by dividing the maximum so that for each gene i, we get a

127ˆ127 normalized comparison matrix M i. Then the final distance matrix D is calculated

as Djk “ ´

b

ř118
i“1M

i
jk. Finally, we perform complete-linkage hierarchical clustering on the

127 epigenomes based on the distance matrix. The heatmap of the distance matrix and the

clustering results are shown in Figure S4(b). The heatmap can roughly distinguish ESC

samples from the other cell types. In hierarchical clustering, 7 out of 8 ESC samples are
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successfully grouped together when the cluster number is set as 10. Similarly, we perform

the above analysis based on brain-associated genes, and the heatmap is shown in 3.3(a).

The brain samples can be clearly differentiated. In addition, all the 10 brain samples are

successfully grouped together by hierarchical clustering when cluster number is set as 10.

The above results confirm EpiAlign’s capability to search for similar chromatin state patterns

and suggest that chromatin states of the same genomic region are more similar within cell

types.

(a) (b)

Figure 3.11: Clustering results using (a) brain-associated genes or (b) ESC-associated genes. Samples in black boxes are (a)
brain samples and (b) ESC samples.

S3.6.6 Male-vs-female vertical alignment
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Gene.stable.ID Gene.name Chromosome Gene.description
1 ENSG00000012660 ELOVL5 6 ELOVL fatty acid elongase 5
2 ENSG00000111832 RWDD1 6 RWD domain containing 1
3 ENSG00000112232 KHDRBS2 6 KH RNA binding domain containing,

signal transduction associated 2
4 ENSG00000135968 GCC2 2 GRIP and coiled-coil domain containing 2
5 ENSG00000136485 DCAF7 17 DDB1 and CUL4 associated factor 7
6 ENSG00000138035 PNPT1 2 polyribonucleotide nucleotidyltransferase 1
7 ENSG00000138398 PPIG 2 peptidylprolyl isomerase G
8 ENSG00000139053 PDE6H 12 phosphodiesterase 6H
9 ENSG00000168958 MFF 2 mitochondrial fission factor

10 ENSG00000170293 CMTM8 3 CKLF like MARVEL transmembrane domain
containing 2

11 ENSG00000173572 NLRP13 19 NLR family pyrin domain containing 13
12 ENSG00000197360 ZNF98 19 zinc finger protein 98

Table S3.3: Genes not on chromosome X among the top 200 genes with the smallest p-values from comparing male-vs-male
scores and male-vs-female scores.

S3.6.7 Brain-vs-heart vertical alignment

Genes with the smallest p-values from one-sided Wilcoxon test

We perform the two-sample one-sided Wilcoxon test between the brain-vs-brain alignment

scores and the brain-vs-heart alignment scores for all the protein-coding genes. The top 200

genes that we use to perform the gene ontology enrichment analysis are listed in Table S2.

Gene.stable.ID Chromosome Gene.name Strand Gene.start..bp. Gene.end..bp.

1 ENSG00000004700 12 RECQL -1 21468911 21501669

2 ENSG00000006047 17 YBX2 -1 7288252 7294615

3 ENSG00000015592 8 STMN4 -1 27235323 27258420

4 ENSG00000033122 1 LRRC7 1 69568398 70151945

5 ENSG00000034053 15 APBA2 1 28884483 29118315

6 ENSG00000047365 4 ARAP2 -1 35948221 36244509

7 ENSG00000050438 12 SLC4A8 1 51391317 51515763

8 ENSG00000054282 1 SDCCAG8 1 243256034 243500092

9 ENSG00000056487 22 PHF21B -1 44881162 45009999

10 ENSG00000064270 16 ATP2C2 1 84368527 84464187
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11 ENSG00000065609 6 SNAP91 -1 83552880 83709691

12 ENSG00000066468 10 FGFR2 -1 121478334 121598458

13 ENSG00000067221 15 STOML1 -1 73978923 73994622

14 ENSG00000067798 12 NAV3 1 77324641 78213008

15 ENSG00000070501 8 POLB 1 42338454 42371808

16 ENSG00000073803 3 MAP3K13 1 185282941 185489097

17 ENSG00000074211 4 PPP2R2C -1 6320578 6563600

18 ENSG00000077009 19 NMRK2 1 3933103 3942416

19 ENSG00000078295 5 ADCY2 1 7396208 7830081

20 ENSG00000078725 9 BRINP1 -1 119153458 119369467

21 ENSG00000084628 1 NKAIN1 -1 31179745 31239554

22 ENSG00000088766 20 CRLS1 1 6006090 6040053

23 ENSG00000089225 12 TBX5 -1 114353931 114408442

24 ENSG00000091129 7 NRCAM -1 108147623 108456717

25 ENSG00000095397 9 WHRN -1 114402080 114505450

26 ENSG00000100290 22 BIK 1 43110748 43129712

27 ENSG00000100433 14 KCNK10 -1 88180103 88326907

28 ENSG00000100505 14 TRIM9 -1 50975262 51096061

29 ENSG00000102383 X ZDHHC15 -1 75368427 75523502

30 ENSG00000104112 15 SCG3 1 51681353 51721031

31 ENSG00000104833 19 TUBB4A -1 6494319 6502848

32 ENSG00000105048 19 TNNT1 -1 55132794 55149354

33 ENSG00000106780 9 MEGF9 -1 120600813 120714470

34 ENSG00000107438 10 PDLIM1 -1 95237572 95291024

35 ENSG00000108001 10 EBF3 -1 129835283 129963841

36 ENSG00000108187 10 PBLD -1 68282660 68333049

37 ENSG00000108688 17 CCL7 1 34270221 34272242

38 ENSG00000108830 17 RND2 1 43025241 43032036

39 ENSG00000109472 4 CPE 1 165361194 165498320
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40 ENSG00000109654 4 TRIM2 1 153152342 153339320

41 ENSG00000109956 11 B3GAT1 -1 134378504 134411918

42 ENSG00000110042 11 DTX4 1 59171430 59208587

43 ENSG00000110076 11 NRXN2 -1 64606174 64723188

44 ENSG00000110628 11 SLC22A18 1 2899721 2925246

45 ENSG00000111605 12 CPSF6 1 69239537 69274358

46 ENSG00000111726 12 CMAS 1 22046174 22065674

47 ENSG00000112041 6 TULP1 -1 35497874 35512938

48 ENSG00000112139 6 MDGA1 -1 37630679 37699306

49 ENSG00000112290 6 WASF1 -1 110099819 110180004

50 ENSG00000112379 6 ARFGEF3 1 138161921 138344663

51 ENSG00000113456 5 RAD1 -1 34905264 34918989

52 ENSG00000113460 5 BRIX1 1 34915376 34925996

53 ENSG00000113645 5 WWC1 1 168291651 168472303

54 ENSG00000115041 2 KCNIP3 1 95297304 95386083

55 ENSG00000115239 2 ASB3 -1 53532672 53787610

56 ENSG00000117020 1 AKT3 -1 243488233 243851079

57 ENSG00000117595 1 IRF6 -1 209785623 209806175

58 ENSG00000118322 5 ATP10B -1 160563120 160852214

59 ENSG00000120937 1 NPPB -1 11857464 11858931

60 ENSG00000120963 8 ZNF706 -1 101177878 101206193

61 ENSG00000121058 17 COIL -1 56938187 56961054

62 ENSG00000121743 13 GJA3 -1 20138255 20161049

63 ENSG00000121904 1 CSMD2 -1 33513999 34165842

64 ENSG00000123560 X PLP1 1 103773718 103792619

65 ENSG00000124641 6 MED20 -1 41905354 41921139

66 ENSG00000127955 7 GNAI1 1 79768028 80226181

67 ENSG00000128524 7 ATP6V1F 1 128862826 128865844

68 ENSG00000129250 17 KIF1C 1 4997948 5028401
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69 ENSG00000129991 19 TNNI3 -1 55151767 55157773

70 ENSG00000130176 19 CNN1 1 11538717 11550323

71 ENSG00000130226 7 DPP6 1 153887097 154894285

72 ENSG00000130475 19 FCHO1 1 17747718 17788568

73 ENSG00000131409 19 LRRC4B -1 50516892 50568045

74 ENSG00000131437 5 KIF3A -1 132692628 132737638

75 ENSG00000132549 8 VPS13B 1 99013266 99877580

76 ENSG00000133216 1 EPHB2 1 22710839 22921500

77 ENSG00000133958 14 UNC79 1 93333219 93707876

78 ENSG00000135069 9 PSAT1 1 78297143 78330093

79 ENSG00000135269 7 TES 1 116210493 116258783

80 ENSG00000135298 6 ADGRB3 1 68635367 69389511

81 ENSG00000136155 13 SCEL 1 77535674 77645263

82 ENSG00000136193 7 SCRN1 -1 29920103 29990289

83 ENSG00000136574 8 GATA4 1 11676959 11760002

84 ENSG00000137266 6 SLC22A23 -1 3268962 3457022

85 ENSG00000139364 12 TMEM132B 1 125186836 125662377

86 ENSG00000140937 16 CDH11 -1 64943753 65126112

87 ENSG00000141448 18 GATA6 1 22169443 22202528

88 ENSG00000141574 17 SECTM1 -1 82321024 82334074

89 ENSG00000141738 17 GRB7 1 39737927 39747291

90 ENSG00000142949 1 PTPRF 1 43525187 43623666

91 ENSG00000143951 2 WDPCP -1 63121383 63827843

92 ENSG00000144369 2 FAM171B 1 186693971 186765965

93 ENSG00000144857 3 BOC 1 113211003 113287459

94 ENSG00000145284 4 SCD5 -1 82629539 82798857

95 ENSG00000145555 5 MYO10 -1 16661914 16936276

96 ENSG00000145794 5 MEGF10 1 127290831 127465737

97 ENSG00000146005 5 PSD2 1 139795821 139844466
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98 ENSG00000146352 6 CLVS2 1 122995971 123072927

99 ENSG00000147488 8 ST18 -1 52110839 52460959

100 ENSG00000147724 8 FAM135B -1 138130023 138496822

101 ENSG00000147799 8 ARHGAP39 -1 144529179 144605816

102 ENSG00000148123 9 PLPPR1 1 101028709 101325135

103 ENSG00000149571 11 KIRREL3 -1 126423359 127003460

104 ENSG00000149596 20 JPH2 -1 44111695 44187578

105 ENSG00000150477 18 KIAA1328 1 36829106 37232172

106 ENSG00000150625 4 GPM6A -1 175632934 176002664

107 ENSG00000152578 11 GRIA4 1 105609994 105982092

108 ENSG00000154229 17 PRKCA 1 66302636 66810743

109 ENSG00000155886 9 SLC24A2 -1 19507452 19786928

110 ENSG00000156475 5 PPP2R2B -1 146581146 147084784

111 ENSG00000157103 3 SLC6A1 1 10992186 11039249

112 ENSG00000157423 16 HYDIN -1 70807378 71230722

113 ENSG00000157851 2 DPYSL5 1 26847747 26950351

114 ENSG00000158014 1 SLC30A2 -1 26037252 26046133

115 ENSG00000158615 1 PPP1R15B -1 204403387 204411791

116 ENSG00000162706 1 CADM3 1 159171609 159203313

117 ENSG00000163449 2 TMEM169 1 216081866 216102783

118 ENSG00000164107 4 HAND2 -1 173524969 173530229

119 ENSG00000164163 4 ABCE1 1 145097932 145129179

120 ENSG00000164532 7 TBX20 -1 35202430 35254147

121 ENSG00000164542 7 KIAA0895 -1 36324221 36390125

122 ENSG00000165312 10 OTUD1 1 23439458 23442390

123 ENSG00000165527 14 ARF6 1 49893092 49897054

124 ENSG00000165548 14 TMEM63C 1 77116568 77259495

125 ENSG00000165566 13 AMER2 -1 25161684 25172288

126 ENSG00000166501 16 PRKCB 1 23835946 24220611
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127 ENSG00000166831 15 RBPMS2 -1 64739892 64775587

128 ENSG00000166922 15 SCG5 1 32641676 32697098

129 ENSG00000167553 12 TUBA1C 1 49188736 49274603

130 ENSG00000168280 2 KIF5C 1 148875250 149026759

131 ENSG00000168495 8 POLR3D 1 22245104 22254600

132 ENSG00000168958 2 MFF 1 227325151 227357836

133 ENSG00000170091 5 NSG2 1 174045604 174243501

134 ENSG00000170185 4 USP38 1 143184917 143223830

135 ENSG00000171954 19 CYP4F22 1 15508493 15552317

136 ENSG00000172379 15 ARNT2 1 80404350 80597937

137 ENSG00000172461 6 FUT9 1 96015984 96215612

138 ENSG00000172995 3 ARPP21 1 35638945 35794496

139 ENSG00000173530 8 TNFRSF10D -1 23135588 23164030

140 ENSG00000173898 11 SPTBN2 -1 66685248 66729226

141 ENSG00000174099 12 MSRB3 1 65278643 65491430

142 ENSG00000174407 20 MIR1-1HG 1 62550453 62570764

143 ENSG00000174672 11 BRSK2 1 1389899 1462689

144 ENSG00000175084 2 DES 1 219418377 219426739

145 ENSG00000175087 1 PDIK1L 1 26111165 26125543

146 ENSG00000175161 3 CADM2 1 84958981 86074429

147 ENSG00000176049 5 JAKMIP2 -1 147585439 147782848

148 ENSG00000177103 11 DSCAML1 -1 117427773 117817525

149 ENSG00000177508 16 IRX3 -1 54283304 54286763

150 ENSG00000177807 1 KCNJ10 -1 159998651 160070483

151 ENSG00000178445 9 GLDC -1 6532464 6645783

152 ENSG00000179242 20 CDH4 1 61252426 61940617

153 ENSG00000179314 17 WSCD1 1 6057807 6124427

154 ENSG00000179915 2 NRXN1 -1 49918505 51225575

155 ENSG00000180287 1 PLD5 -1 242082986 242524696
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156 ENSG00000182600 2 SNORC 1 232857270 232878708

157 ENSG00000183072 5 NKX2-5 -1 173232109 173235357

158 ENSG00000185155 1 MIXL1 1 226223618 226227054

159 ENSG00000185156 17 MFSD6L -1 8797162 8799349

160 ENSG00000185565 3 LSAMP -1 115802363 117139389

161 ENSG00000185627 11 PSMD13 1 236546 252984

162 ENSG00000185818 4 NAT8L 1 2059512 2069089

163 ENSG00000185973 X TMLHE -1 155490115 155669944

164 ENSG00000186231 6 KLHL32 1 96924620 97140754

165 ENSG00000187164 10 SHTN1 -1 116881482 117126586

166 ENSG00000187634 1 SAMD11 1 923928 944581

167 ENSG00000188015 1 S100A3 -1 153547329 153549372

168 ENSG00000188316 10 ENO4 1 116849512 116911788

169 ENSG00000188522 17 FAM83G -1 18968789 19004804

170 ENSG00000196220 3 SRGAP3 -1 8980591 9363053

171 ENSG00000196338 X NLGN3 1 71144831 71171201

172 ENSG00000196361 19 ELAVL3 -1 11451326 11481046

173 ENSG00000196376 6 SLC35F1 1 117907526 118317676

174 ENSG00000196581 1 AJAP1 1 4654732 4792534

175 ENSG00000196628 18 TCF4 -1 55222331 55664787

176 ENSG00000196767 X POU3F4 1 83508261 83512127

177 ENSG00000197728 12 RPS26 1 56041351 56044697

178 ENSG00000198216 1 CACNA1E 1 181317690 181808084

179 ENSG00000198513 14 ATL1 1 50532509 50633068

180 ENSG00000198732 14 SMOC1 1 69854131 70032366

181 ENSG00000203930 X LINC00632 1 140709562 140793215

182 ENSG00000204011 9 COL5A1-AS1 -1 134649385 134652843

183 ENSG00000204344 6 STK19 1 31971091 31982821

184 ENSG00000204624 1 DISP3 1 11479166 11537584
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185 ENSG00000204683 10 C10orf113 -1 21125763 21146559

186 ENSG00000205758 21 CRYZL1 -1 33589341 33643926

187 ENSG00000213578 15 CPLX3 1 74826547 74831802

188 ENSG00000214160 3 ALG3 -1 184242301 184249548

189 ENSG00000214338 6 SOGA3 -1 127472794 127519191

190 ENSG00000214595 2 EML6 1 54723499 54972025

191 ENSG00000219438 22 FAM19A5 1 48489460 48850912

192 ENSG00000221818 8 EBF2 -1 25841730 26045397

193 ENSG00000235568 22 NFAM1 -1 42380410 42432395

194 ENSG00000237330 1 RNF223 -1 1070966 1074307

195 ENSG00000241370 6 RPP21 1 30345131 30346884

196 ENSG00000243232 5 PCDHAC2 1 140966235 141012344

197 ENSG00000243449 4 C4orf48 1 2041993 2043970

198 ENSG00000248383 5 PCDHAC1 1 140926369 141012344

199 ENSG00000253276 7 CCDC71L -1 106656765 106660996

200 ENSG00000255537 11 AP000708.1 1 125495214 125499528

Table S3.4: Top 200 significant genes from the one-sided Wilcoxon test that compares brain-vs-brain scores and brain-vs-heart
scores.

S3.6.7.1 Tissue-specific genes receive lower p-values in Wilcoxon test

From the boxplots in Figure S5, we can see that brain-specific genes and heart-specific genes

receive lower p-values from the one-sided Wilcoxon test that compares brain-vs-brain align-

ment scores and brain-vs-heart alignment scores. When comparing heart-vs-heart scores and

heart-vs-brain scores, heart-specific genes have much lower p-values. These results indicates

that EpiAlign can correctly capture cell-type-characteristic chromatin state patterns.
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Figure 3.12: Boxplots of p-values of all genes, brain-specific genes and heart-specific genes from Wilcoxon tests which compares
(a) brain-vs-brain scores with brain-vs-heart scores or (b) heart-vs-heart scores with brain-vs-heart scores.

S3.6.8 Motif analysis

The top 200 regions with the highest horizontal alignment scores and the cluster index to

which each region belongs are listed in Table S3. We use the motif-discovery tool MEME

and find that all the four clusters are characterized by certain motifs, the top motifs reported

by MEME are:

Cluster 1: “ihihihihihihihihihio”; “edegbabg”; “aehihedhdeo”.

Cluster 2: “gegegogegegogogegege”; “gegegegegegegegegege”; gegegegegegegegegege”;

Cluster 3: “goglkjklnog”; “dededededededededede”; “gegegegedegededegege”

Cluster 4: “oaogegegegbgege”; “mlklmlmlklklklk”; “nogogogo”.

sample chromosome start.position end.position cluster

1 E003 chr22 22800001 23300000 1

2 E003 chr21 10700001 11200000 1

3 E003 chrX 61500001 62000000 1

4 E003 chr17 46400001 46900000 1

5 E003 chr20 59400001 59900000 1

6 E003 chr12 54100001 54600000 1
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7 E003 chr12 37900001 38400000 1

8 E003 chr7 26900001 27400000 1

9 E003 chr2 176700001 177200000 1

10 E003 chr3 61500001 62000000 1

11 E003 chr6 157100001 157600000 1

12 E003 chr8 43400001 43900000 1

13 E003 chr16 33800001 34300000 1

14 E003 chr15 99100001 99600000 1

15 E003 chr11 2300001 2800000 1

16 E003 chrY 9900001 10400000 1

17 E003 chr2 92200001 92700000 1

18 E003 chr8 128600001 129100000 1

19 E003 chr7 61700001 62200000 2

20 E003 chr7 101300001 101800000 2

21 E003 chr5 89900001 90400000 2

22 E003 chr22 22300001 22800000 2

23 E003 chr4 78900001 79400000 2

24 E003 chr18 60100001 60600000 2

25 E003 chr10 34600001 35100000 2

26 E003 chr16 49400001 49900000 2

27 E003 chr6 15200001 15700000 2

28 E003 chr22 33900001 34400000 2

29 E003 chr5 54300001 54800000 2

30 E003 chr10 42200001 42700000 2

31 E003 chr14 89700001 90200000 2

32 E003 chr2 153200001 153700000 2

33 E003 chr2 121300001 121800000 2

34 E003 chr1 164300001 164800000 2

35 E003 chr19 37500001 38000000 2
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36 E003 chr1 8400001 8900000 3

37 E003 chr4 190400001 190900000 2

38 E003 chr1 64200001 64700000 2

39 E003 chr5 106600001 107100000 2

40 E003 chr10 12000001 12500000 2

41 E003 chr5 13900001 14400000 2

42 E003 chr7 154900001 155400000 2

43 E003 chr11 31700001 32200000 2

44 E003 chr4 183900001 184400000 2

45 E003 chr12 132600001 133100000 2

46 E003 chr2 55200001 55700000 2

47 E003 chr8 131200001 131700000 2

48 E003 chr8 142200001 142700000 2

49 E003 chr17 59700001 60200000 2

50 E003 chr12 34400001 34900000 2

51 E003 chr11 12500001 13000000 2

52 E003 chr15 57300001 57800000 2

53 E003 chr20 49200001 49700000 2

54 E003 chr10 114400001 114900000 2

55 E003 chr5 87600001 88100000 2

56 E003 chr17 28800001 29300000 2

57 E003 chr22 29000001 29500000 2

58 E003 chr7 105300001 105800000 2

59 E003 chr22 17600001 18100000 2

60 E003 chr19 12800001 13300000 2

61 E003 chr12 32100001 32600000 2

62 E003 chr2 236200001 236700000 2

63 E003 chr3 185400001 185900000 2

64 E003 chr12 130400001 130900000 2
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65 E003 chr15 26800001 27300000 2

66 E003 chr16 46000001 46500000 2

67 E003 chr11 107800001 108300000 2

68 E003 chr6 148900001 149400000 2

69 E003 chr4 93300001 93800000 2

70 E003 chr9 128200001 128700000 2

71 E003 chr15 50600001 51100000 2

72 E003 chr17 3900001 4400000 2

73 E003 chr1 235200001 235700000 2

74 E003 chr9 140300001 140800000 2

75 E003 chr19 1400001 1900000 2

76 E003 chr10 88400001 88900000 2

77 E003 chr15 28200001 28700000 2

78 E003 chr3 31600001 32100000 2

79 E003 chr2 188900001 189400000 2

80 E003 chr22 31800001 32300000 2

81 E003 chr15 44600001 45100000 2

82 E003 chr4 85400001 85900000 2

83 E003 chr13 98700001 99200000 2

84 E003 chr13 28300001 28800000 2

85 E003 chr9 33100001 33600000 2

86 E003 chr15 63800001 64300000 2

87 E003 chr1 39500001 40000000 2

88 E003 chr10 80500001 81000000 2

89 E003 chr3 121100001 121600000 2

90 E003 chr13 41000001 41500000 2

91 E003 chr16 89400001 89900000 2

92 E003 chr2 32400001 32900000 2

93 E003 chr1 219900001 220400000 2
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94 E003 chr2 119400001 119900000 2

95 E003 chr1 10500001 11000000 2

96 E003 chr1 200200001 200700000 2

97 E003 chr12 112300001 112800000 2

98 E003 chr14 99600001 100100000 2

99 E003 chr8 30000001 30500000 2

100 E003 chr10 74800001 75300000 2

101 E003 chr13 113300001 113800000 2

102 E003 chr10 102800001 103300000 2

103 E003 chr18 52900001 53400000 2

104 E003 chr15 59300001 59800000 2

105 E003 chr16 1400001 1900000 2

106 E003 chr16 81200001 81700000 2

107 E003 chr8 102500001 103000000 2

108 E003 chr6 56300001 56800000 2

109 E003 chr13 100200001 100700000 2

110 E003 chr2 109000001 109500000 2

111 E003 chr10 126400001 126900000 2

112 E003 chr8 46800001 47300000 2

113 E003 chr11 126200001 126700000 2

114 E003 chr6 41100001 41600000 3

115 E003 chr2 102300001 102800000 3

116 E003 chr1 233000001 233500000 3

117 E003 chr9 16400001 16900000 3

118 E003 chr21 40200001 40700000 3

119 E003 chr9 130800001 131300000 3

120 E003 chr17 2600001 3100000 3

121 E003 chr10 96800001 97300000 3

122 E003 chrX 16700001 17200000 3
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123 E003 chr13 100700001 101200000 3

124 E003 chr3 65500001 66000000 3

125 E003 chr17 25400001 25900000 3

126 E003 chr15 40100001 40600000 3

127 E003 chr5 64800001 65300000 3

128 E003 chr9 94800001 95300000 3

129 E003 chr9 124000001 124500000 3

130 E003 chr17 55300001 55800000 3

131 E003 chr22 43300001 43800000 3

132 E003 chr1 155500001 156000000 2

133 E003 chr9 125400001 125900000 2

134 E003 chr4 184500001 185000000 2

135 E003 chr20 35600001 36100000 3

136 E003 chr1 17700001 18200000 3

137 E003 chr9 70100001 70600000 3

138 E003 chr8 97400001 97900000 3

139 E003 chr22 40400001 40900000 3

140 E003 chr8 141600001 142100000 3

141 E003 chr12 11600001 12100000 3

142 E003 chr9 37600001 38100000 3

143 E003 chr8 102000001 102500000 3

144 E003 chr9 23700001 24200000 3

145 E003 chr22 45200001 45700000 3

146 E003 chr3 171700001 172200000 3

147 E003 chr15 90900001 91400000 3

148 E003 chr1 161800001 162300000 3

149 E003 chr15 42300001 42800000 3

150 E003 chr11 63600001 64100000 3

151 E003 chr1 21500001 22000000 3
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152 E003 chr1 179800001 180300000 3

153 E003 chr5 46000001 46500000 3

154 E003 chr10 79200001 79700000 3

155 E003 chr18 55600001 56100000 3

156 E003 chr4 68300001 68800000 3

157 E003 chr7 121900001 122400000 3

158 E003 chr17 30200001 30700000 3

159 E003 chr11 61300001 61800000 3

160 E003 chr5 70500001 71000000 3

161 E003 chr2 202700001 203200000 3

162 E003 chr6 136500001 137000000 3

163 E003 chr1 23700001 24200000 3

164 E003 chr2 106100001 106600000 3

165 E003 chr4 48900001 49400000 3

166 E003 chr2 183700001 184200000 3

167 E003 chr6 21600001 22100000 2

168 E003 chr2 43400001 43900000 3

169 E003 chr16 72800001 73300000 3

170 E003 chr19 9200001 9700000 3

171 E003 chr1 32100001 32600000 3

172 E003 chr17 15600001 16100000 3

173 E003 chr17 27000001 27500000 3

174 E003 chr6 168200001 168700000 2

175 E003 chr6 37200001 37700000 2

176 E003 chr11 48000001 48500000 4

177 E003 chr10 7900001 8400000 4

178 E003 chr1 12300001 12800000 4

179 E003 chr9 111600001 112100000 4

180 E003 chr12 124900001 125400000 4
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181 E003 chr7 55500001 56000000 4

182 E003 chr16 69000001 69500000 4

183 E003 chr15 43000001 43500000 4

184 E003 chr3 47400001 47900000 4

185 E003 chr10 70500001 71000000 4

186 E003 chr7 2400001 2900000 4

187 E003 chr4 7800001 8300000 4

188 E003 chr11 50300001 50800000 4

189 E003 chr6 166800001 167300000 4

190 E003 chr18 74600001 75100000 4

191 E003 chr5 139800001 140300000 4

192 E003 chr14 77300001 77800000 4

193 E003 chr11 121100001 121600000 4

194 E003 chr15 35000001 35500000 4

195 E003 chr6 29400001 29900000 4

196 E003 chr5 31400001 31900000 4

197 E003 chr7 23000001 23500000 4

198 E003 chr1 47800001 48300000 4

199 E003 chr10 13700001 14200000 4

200 E003 chr12 2900001 3400000 4

Table S3.5: The top 200 regions with the highest horizontal alignment scores are well partitioned into four clusters by
average-linkage hierarchical clustering. The last column of the table is the cluster index to which each region belongs.

S3.6.9 GO analysis in cross-species application of EpiAlign

We obtain mouse-human homologous gene pairs from Ensembl BioMart and sort the mouse

genes with lengths 200-400 kb by gene lengths and divide the homologous gene pairs into

12 groups each with 50 pairs. We look at the molecule function GO terms of the homolog

pairs that have the highest alignment scores in each group. The result (Table S4) shows that

homolougous genes with high alignment scores are also very similar in molecule function. The
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result also indicates that EpiAlign can identify homologous genes whose epigenetic patterns

are more conserved in evolution, shedding new insights into translating scientific discoveries

in mice into humans.

S3.6.10 Biological discovery based on top 8-mers

We have made the following discovery and have revised our manuscript on page 10 to discuss

the potential improvement of EpiAlign: We have the following interesting findings when

looking at the most common 8-mers in chromatin states identified by ChromHMM: we count

the occurrence number of all the 8-mer strings from the epigenome of ESC sample E003. We

look at the most frequently occurred 8-mer strings containing active TSS state (represented

by ’a’). The most frequent 8-mer is ’aededede’, where ’e’ represents weak transcript and ’d’

represents strong transcript. This 8-mer can be interpreted as active gene region. However,

there is also another 8-mer ’oioaoioi’, which frequently occurs but is hard to interpret. Here,

’o’ represents quiescent/low state and ’i’ represents heterochromatin. We select all ESC,

heart and brain samples and inspected the overlap between known TSS and these two 8-

mers. The results show that in all these samples, a high proportion (71% on average) of the

8-mer ’aededede’ discovered have an overlap with known TSS while only a small proportion

( 28% on average) of the 8-mer ’oioaoioi’ have an overlap with known TSS. This result

indicates that some of the state ’a’ in ’oioaoioi’ may be noise.
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Homologous pair GO: molecule function
Human Mouse Human Mouse
AK5 AK5 nucleotide binding nucleotide binding
GABRB2 GABRB2 transmembrane signaling recep-

tor activity
transmembrane signaling recep-
tor activity

CDH2 CDH2 calcium ion binding calcium ion binding
GAB2 GAB2 transmembrane receptor protein

tyrosine kinase adaptor activity
transmembrane receptor protein
tyrosine kinase adaptor activity

NEB NEB actin binding actin binding
CAMK4 CAMK4 nucleotide binding nucleotide binding
PAPPA2 PAPPA2 metalloendopeptidase activity metalloendopeptidase activity
CNTN1 CNTN1 protein binding protein binding
DNAH7 DNAH7b microtubule motor activity microtubule motor activity
TMEM132C TMEM132C not available not available
SPATA16 SPATA16 not available not available
ADCY2 ADCY2 nucleotide binding nucleotide binding

Homologous pair GO: biological process
Human Mouse Human Mouse
AK5 AK5 nucleobase-containing compound

metabolic process
nucleobase-containing compound
metabolic process

GABRB2 GABRB2 ion transport ion transport
CDH2 CDH2 cell morphogenesis cell adhesion
GAB2 GAB2 transmembrane receptor protein

tyrosine kinase signaling pathway
transmembrane receptor protein
tyrosine kinase signaling pathway

NEB NEB muscle organ development regulation of actin filament length
CAMK4 CAMK4 adaptive immune response protein phosphorylation
PAPPA2 PAPPA2 regulation of cell growth proteolysis
CNTN1 CNTN1 cell adhesion cell adhesion
DNAH7 DNAH7b microtubule-based movement microtubule-based movement
TMEM132C TMEM132C not available not available
SPATA16 SPATA16 not available not available
ADCY2 ADCY2 renal water homeostasis c AMP biosynthetic process

Table S3.6: The top 1 GO terms (both molecule function and biological process) of the homolog pairs that have the highest
alignment scores in each group.
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CHAPTER 4

Summary and future directions

In this dissertation, I introduced two statistical methods Clipper and EpiAlign, which I de-

veloped for high-throughput data analyses that compare two conditions. Below I summarize

the two methods and list the future research directions for each method.

4.1 P-value-free FDR control on high-throughput data from two

conditions

In Chapter 2, we proposed the Clipper, a p-value-free FDR control framework, for identifying

interesting features by contrasting high-throughput data under two conditions. Clipper

makes FDR control more reliable and flexible by avoiding the use of p-values, which are

based on assumptions likely to be violated in real data analysis. We verified the FDR control

by Clipper in comprehensive simulation studies and two real data analyses: peak calling

from ChIP-seq data and DEG identification from RNA-seq data. Our results indicate that

Clipper can improve the reliability of FDR control and thus the reproducibility of scientific

discoveries.

In most bioinformatics method papers, the FDR control was merely assumed by relying on

p-values but rarely validated. However, p-values were often invalid when model assumptions

were violated or the p-value calculation was problematic. By proposing Clipper, we would

also like to voice the importance of validating the FDR control in bioinformatics method

development.

The first future direction of Clipper is to explore the power of different contrast scores. As

the core component of Clipper, contrast score is calculated for each feature to summarize the
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difference between the feature’s measurements under the two conditions. Clipper currently

uses two contrast scores, minus and maximum, and an advantage of Clipper is that it allows

other definitions of contrast scores. We would like to explore alternative contrast scores and

their power with respect to data characteristics and analysis tasks. For example, Clipper

currently only focuses on the difference in means. With other definitions of contrast scores,

we may distinguish two conditions when they have the same mean but different distributions.

We may further design contrast scores based on multivariate test statistics so that Clipper

can identify interesting features from more than one perspective (e.g., differences in mean

and variance) at the same time. Furthermore, we may generalize Clipper to be robust against

sample batch effects by constructing the contrast score as a regression-based test statistic

that has batch effects removed.

Second, Clipper currently only focus on the frequentist FDR. A possible generalization

of Clipper is to consider the Bayesian framework so that we can leverage prior knowledge of

features to increase the power for identifing interesting features.

Third, we would also like to escalate Clipper into standalone bioinformatics methods for

specific data analyses, for which data processing and characteristics (e.g., peak lengths, GC

contents, zero proportions, and batch effects) must be appropriately accounted for before

Clipper is used for the FDR control.

Finally, we would like to explore possible generalization of Clipper to features identifica-

tion across more than two conditions. To tailor Clipper for such analysis, we could define

a new contrast score that differentiates the genes with stationary expression (uninteresting

features) from the other genes with varying expression (interesting features). Further studies

are needed to explore the possibility of extending Clipper to the regression framework so that

Clipper can accommodate data of multiple conditions or even continuous conditions, as well

as adjusting for confounding covariates.
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4.2 Alignment-based bioinformatic tool for comparing chromatin

state sequences

In Chapter 3, we proposed the EpiAlign algorithm for aligning chromatin state sequences

inferred from multi-track epigenomic signals. EpiAlign can be a powerful tool for studying

the epigenetic dynamics across multiple epigenomes, or between two conditions.

For future directions, first, our current alignment results are based on ChromHMM,

which summarizes multi-track epigenomic signals into one track. There are other tools for

chromatin pattern discovery, such as Segway [15], EpiCSeg [85], and IDEAS [87]. It would

be interesting to compare these tools with ChromHMM and analyze how their inferred

chromatin states would affect the alignment results of EpiAlign.

Second, we can improve the compression of chromatin state sequences, an important

step in EpiAlign. We added the compression step to capture and extract the dynamics of

chromatin states among biological samples. However, previous studies have implied that

the length information of certain chromatin states is important for comparing a region’s

chromatin states under different conditions [105–107]. Future refinement of the compression

step, or refinement of length information usage after compression, should be considered.

Finally, in some computationally efficient sequence alignment algorithms, hash tables

or tree-based data structures are utilized to index the database, and these techniques have

greatly increased the efficiency of query retrieval. EpiAlign can benefit from similar tech-

niques to improve its computation efficiency.

4.3 Combination of Clipper and EpiAlign for identifying conserved

epigenomic signals between two conditions

Another future direction is the combination of Clipper and EpiAlign. In the vertical align-

ment analysis of EpiAlign, we compared two sets of alignment scores: pairwise alignment

scores within the same condition (gender or cell type), and pairwise alignment scores between
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two conditions. We compared these two sets of alignments scores for each protein-coding

gene. To identify the genes whose two sets of alignment scores are most differential, we

performed the rank-sum Wilcoxon test, which does not have any distributional assumption

on the alignment scores in each set but does not have good power when the alignment scores

are few (i.e., not many epigenome samples are available in each condition). In this case,

Clipper can serve as a good alternative to the Wilcoxon test for identifying the genes with

differential alignment scores under an FDR threshold.
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