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Host-microbe multiomic profiling identifies
distinct COVID-19 immune dysregulation in
solid organ transplant recipients

Harry Pickering1,30, Joanna Schaenman1,30, Hoang Van Phan2,30,
Cole Maguire 3,30, Alexandra Tsitsiklis2, Nadine Rouphael 4,
Nelson Iván Agudelo Higuita5, Mark A. Atkinson6, Scott Brakenridge6,
Monica Fung2, William Messer 7, IMPACC Network*, Ramin Salehi-rad1,
Matthew C. Altman 8, Patrice M. Becker 9, Steven E. Bosinger 4,
Walter Eckalbar2, Annmarie Hoch 10, Naresh Doni Jayavelu8,
Seunghee Kim-Schulze11, Meagan Jenkins 1, Steven H. Kleinstein 12,
Florian Krammer 11, Holden T. Maecker 13, Al Ozonoff 10,14,15,
Joann Diray-Arce 10,15, Albert Shaw12, Lindsey Baden 15,16, Ofer Levy 10,14,15,
Elaine F. Reed1,31 & Charles R. Langelier 2,17,31

Coronavirus disease 2019 (COVID-19) poses significant risks for solid organ
transplant recipients, who have atypical but poorly characterized immune
responses to infection. We aim to understand the host immunologic and
microbial features of COVID-19 in transplant recipients by leveraging a pro-
spective multicenter cohort of 86 transplant recipients age- and sex-matched
with 172 non-transplant controls. We find that transplant recipients have
higher nasal SARS-CoV-2 viral abundance and impaired viral clearance, and
lower anti-spike IgG levels. In addition, transplant recipients exhibit decreased
plasmablasts and transitional B cells, and increased senescent T cells. Blood
and nasal transcriptional profiling demonstrate unexpected upregulation of
innate immune signaling pathways and increased levels of several proin-
flammatory serum chemokines. Severe disease in transplant recipients, how-
ever, is characterizedby a less robust inductionof pro-inflammatory genes and
chemokines. Together, our study reveals distinct immune features and altered
viral dynamics in solid organ transplant recipients.

Coronavirus disease 2019 (COVID-19) has resulted in an enormous
societal burden, with a toll of millions of infections and deaths
worldwide1. Immunocompromised patients who have undergone solid
organ transplantation (SOT) are more susceptible to SARS-CoV-2
infection and produce less robust antibody responses following
vaccination2, although they can achieve effective T-cell responses with
multiple vaccinations3. In addition, they are more likely to be hospi-
talized, experience adverse clinical outcomes, and have longer

durations of infectiousness compared to the general population4–8.
Despite this, propensity-matched studies demonstrate that COVID-19
mortality in SOT recipients is not higher compared to immuno-
competent individuals5,8–10, although some studies using other
matching approaches have found differences6,11.

To prevent organ rejection, SOTdepends on immune suppression
with a battery of agents including calcineurin inhibitors (e.g., cyclos-
porin, tacrolimus), cell cycle inhibitors (e.g., mycophenolate mofetil),
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and corticosteroids. This leads to an altered immunological landscape
in SOT recipients, resulting in differing host responses to severe
infections, including from SARS-CoV-2. Few studies, however, have
profiled the immune landscape of SOT recipients in the context of
severe infection12–14, and none have yet used a multiomic approach to
assess their responses at the cellular, protein, transcriptional, and
microbial levels.

The distinct immune responses of SOT recipients could theore-
tically be both detrimental and advantageous in the context of COVID-
19. On the one hand, impaired innate and adaptive immunity in SOT
recipients increases susceptibility to infection and impairs viral
clearance8, which could lead to worse outcomes. On the other hand,
because severe COVID-19 is characterized by a dysregulated, over-
exuberant inflammatory response15–17, the inherent immunosuppres-
sion of SOT recipients could confer protection against severe disease.
Developing a better mechanistic understanding of this tenuous
immune balance in SOT recipients could inform more effective treat-
ment approaches for COVID-19 or other respiratory viral infections, in
particular the optimal use of immune modulating therapies8.

Here, we leverage a multicenter cohort17–19 of 1164 vaccine-naïve
patients hospitalized for COVID-19 to carry out a comprehensive
immunoprofiling analysis of host and microbe in SOT recipients with
acute SARS-CoV-2 infection. This cohort afforded the opportunity to
study immune responses over the course of hospitalization through
concurrent analysis of transcriptional, proteomic, cellular, and anti-
body responses in addition to viral abundance and the airway micro-
biome. Contrary to expectations, we find that SOT recipients
demonstrate a globally heightened innate inflammatory response
compared to non-SOT controls, and observe that established bio-
markers of COVID-19 severity do not correlate with disease trajectory
in this vulnerable demographic.

Results
Patient cohort
We conducted a case-control study of patients hospitalized forCOVID-
19 within the IMMuno Phenotyping Assessment in a COVID-19 Cohort
(IMPACC), which comprised 1164 patients enrolled across the US17–19

betweenMay 2020 andMarch 2021. 86 SOT recipients from 11medical
centers were matched 2:1 by age, sex, and study site with 172 non-SOT
controls from the same cohort (Fig. 1 and Table 1). The most common
transplanted organ type was kidney (Supplementary Table 1), with
approximately equal representation of heart, liver, and lung. Immu-
nosuppressive regimens being taken at the time of hospital admission
varied across SOT recipients, althoughmycophenolate and tacrolimus
were the most common (Supplementary Table 2). We found no dif-
ferences between SOT recipients and non-SOT controls in termsof ICU
admission, intubation status, or COVID-19 severity asmeasured by five
established COVID-19 outcome trajectory groups (TG)18, or as mea-
sured by 28-day mortality. Trajectory groups (TG) 1–3 had mild to
moderate disease based on hospital stay and level of respiratory sup-
port, while TG 4 was characterized by longer hospitalizations and
prolonged respiratory support requirements, and TG5 by deathwithin
28 days18. Within the SOT group, we asked whether receipt of either
mycophenolate or tacrolimus at the time of hospital admission influ-
enced the severity of TG but found no significant differences. Of
patients receiving mycophenolate, 37.7% were in TG 4–5, compared
with 18.8% of those not receiving mycophenolate (P =0.077). Of
patients receiving tacrolimus, 30.4% were in TG 4–5, compared with
28.6% of those not receiving tacrolimus (P =0.88).

To investigate host immunologic and microbial features asso-
ciated with COVID-19 in SOT recipients, we assessed data from mass
cytometry (CyTOF), transcriptional profiling, proteomics, and ser-
ologic analyses in the blood, as well as nasal swab transcriptional
profiling and metatranscriptomics following hospital admission, and
longitudinally at up to six timepoints up to ~28 days post-hospital
admission (Fig. 1).

SOT is associated with increased SARS-CoV-2 viral abundance,
and impaired viral clearance
We began our analyses by examining the SARS-CoV-2 viral abundance,
as measured in reads per million (rpM) by nasal metatranscriptomic
RNA sequencing and N-gene reverse transcription PCR (Supplemen-
tary Fig. 1). SOT recipients had significantly higher SARS-CoV-2 viral
rpM at Visit 1 (P = 6.8e-9, Fig. 2a), which could not be explained by

Fig. 1 | Study overview. This study evaluated solid organ transplant recipients
(N = 86) matched 2:1 with non-transplant controls (N = 172) enrolled in the IMPACC
cohort of patients hospitalized for COVID-19 at 20 medical sites across the United

States. Blood (PBMCs and serum) and nasal swab samples were collected at up to 6
visits over 28 days, and processed for RNA sequencing, proximity extension assay
(Olink) soluble proteomics, mass cytometry, and serology. Created in BioRender32.
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differences in the time from symptom onset (P =0.16, Supplementary
Fig. 2), and did not differ based on the type of transplanted organ
(P = 0.65, Fig. 2b, Supplementary Table 1) or receipt of either myco-
phenolate or tacrolimus (Supplementary Fig. 3a, b). Longitudinal
analysis revealed that there was a significant association between SOT
status and viral rpM, with SOT recipients demonstrating impaired viral
clearance compared to non-SOT controls (Fig. 2c, P = 0.0022).

Immune cell populations and SARS-CoV-2 antibody levels
To measure immune cell populations in blood, we used mass cyto-
metry (CyTOF) with a panel of 43 antibodies designed to identify cell
lineages and markers of functional status. In PBMC samples from Visit

1, we found 5 cell types associatedwith SOT status (false discovery rate
(FDR) < 0.05) (Fig. 3a). Plasmablasts and transitional B cells were sig-
nificantly less abundant at Visit 1 in SOT recipients compared to con-
trols (Fig. 3a, b). Conversely, SOT recipients demonstrated increased
proportions of CD4 +T (EMRA CD57hi) and CD4 + T (EMRA CD57low)
cells, and CD8 +T (EMRACD57low) cells (Fig. 3a, b). After adjusting for
SARS-CoV-2 viral rpM, only plasmablasts andCD4 +T (EMRACD57low)
cells remained statistically significant in terms of proportional differ-
ences, suggesting that these two cell types were associated with SOT
status in a viral abundance-independent manner (Supplemen-
tary Fig. 4).

We also compared anti-SARS-CoV-2 spike IgG levels between the
two groups. SOT recipients had lower antibody levels at Visit 1
(P = 0.0004, Fig. 3c), although the rates of increase did not differ based
on SOT status (Fig. 3d). Anti-SARS-CoV-2 spike IgG levels also did not
differ based on receipt of either mycophenolate or tacrolimus (Sup-
plementary Fig. 3c, d).

Cytokine and chemokine expression upon hospitalization and
over time
Analysis of proximity extension assay (Olink) proteomics data from
serum samples identified 18 proteins differentially expressed based on
SOT status at Visit 1 (Fig. 4a). The expression levels of 14 of these
proteins were higher in SOT recipients versus non-SOT controls,
including CX3CL1, IL15RA and KITLG (Fig. 4b). SOT recipients had
lower levels of IFN-gamma (IFNG), OSM, TNSF14, and CCL4.

To assess whether differences in SARS-CoV-2 rpMmay contribute
to the observed differential protein expression, we repeated the ana-
lyses with adjustment for viral rpM.We found that the results changed
minimally, suggesting that viral rpM did not significantly affect the
differential protein expression between SOT recipients and controls
(Supplementary Fig. 5a).We further analyzed the relationship between
SARS-CoV-2 rpM and protein expression in each of the two study
groups (Supplementary Fig. 5b), and found a positive correlation
between viral rpM and CXCL8 in the SOT recipients but not in controls
(Supplementary Fig. 5c).

Analysis of longitudinal serum cytokine expression dynamics
revealed that the IFN-inducible chemokine CXCL11 decreased sig-
nificantly over time in controls, but not in SOT recipients (P =0.0042,
Fig. 4c). After adjusting for viral rpM differences, CXCL11 dynamics
remained significantly different between the two groups, along with a
more rapid rise over time in CCL3 and CCL4 expression in the SOT
recipients compared to the controls (Supplementary Fig. 5d).

PBMC gene expression differences upon hospitalization, and
over time
At the time of hospital admission, differential expression analysis
revealed 1047 differentially expressed genes (Padj <0.05) between SOT
recipients and controls (Fig. 5a and Supplementary Data 1). Gene set
enrichment analysis (GSEA) demonstrated that SOT recipients had
increased expression of innate immunity pathways related to type I
IFN, TLR signaling, complement activation, IL-1 signaling, and other
functions (Fig. 5b). SOT recipients also exhibited lower expression of
B-cell receptor signaling and cell cycle-related pathways (Fig. 5c).
Adjusting for SARS-CoV-2 rpM in the differential expression analysis
demonstrated that the increased expression of complement activa-
tion, type I IFN and IL-1 signaling pathways were independent of viral
rpM (Supplementary Fig. 6a).

We next evaluated the dynamics of gene expression over the
course of hospitalization in SOT recipients and controls. SOT reci-
pients exhibited increased expression over time of genes related to
several immune pathways including types I and II IFN signaling, IL-10
and PD-1 signaling, and CD28 co-stimulation (Fig. 5d and Supplemen-
tary Data 2). Adjusting for viral rpM did not significantly affect results
(Supplementary Fig. 6b). Some signaling pathways (e.g., interferon

Table 1 | Clinical and demographic features of cohort

SOT cases Non-SOT
controls

P value

Median age (IQR) 57.5 (51.3–64.0) 58.0 (50.8–63.3) 0.644

Site (%) 0.189

Boston/BWH 7 (8.1%) 18 (10.2%)

Case Western 2 (2.3%) 7 (4.0%)

Emory 5 (5.8%) 12 (6.8%)

Florida 3 (3.5%) 4 (2.3%)

ISMMS (Mt Sinai) 1 (1.2%) 2 (1.1%)

OHSU (Oregon) 2 (2.3%) 3 (1.7%)

OUHSC (Oklahoma) 2 (2.3%) 0 (0.0%)

Stanford 2 (2.3%) 12 (6.8%)

UCLA 40 (46.5%) 54 (30.7%)

UCSF 15 (17.4%) 47 (26.7%)

Yale 7 (8.1%) 17 (9.7%)

Female sex (%) 25 (29.1%) 52 (29.5%) 1.000

Early enrollment (%) 39 (45.3%) 78 (44.3%) 0.172

Ethnicity (%) 0.965

Hispanic or Latino 49 (57.0%) 96 (54.5%)

Not Hispanic or Latino 36 (41.9%) 79 (44.9%)

Not Specified 1 (1.2%) 1 (0.6%)

Race (%) 0.393

American Indian/Alaska
Native

1 (1.2%) 1 (0.6%)

Asian 2 (2.4%) 3 (1.7%)

Black/African American 15 (17.4%) 30 (17.0%)

Multiple 1 (1.2%) 0 (0.0%)

Other/Declined 34 (39.5%) 81 (46.0%)

Unknown/Unavailable 3 (3.5%) 2 (1.1%)

White 30 (34.9%) 59 (33.5%)

Trajectory group 0.808

1 16 (18.6%) 35 (20.3%)

2 20 (23.3%) 38 (22.1%)

3 26 (30.2%) 40 (23.3%)

4 19 (22.1%) 52 (30.2%)

5 5 (5.8%) 7 (4.1%)

ICU admission (%) 32 (37.2%) 64 (37.2%) 1.00

Ever intubated (%) 17 (19.3%) 42 (23.4%) 0.497

Mortality (%)

D28 5 (5.8%) 7 (4.1%) 0.754

Ever 12 (14.0%) 20 (11.6%) 0.739

Diabetes (%) 38 (44.2%) 55 (32.0%) 0.074

Steroids (%) 76 (88.4%) 104 (60.5%) 8.3e-6

Remdesivir (%) 57 (66.3%) 124 (72.1%) 0.414
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signaling) decreased more strongly over time in non-SOT controls
compared to SOT recipients (Fig. 5e). For other pathways (e.g., platelet
activation, signaling and aggregation), SOT recipients demonstrated
pathway upregulation over time, while in the control group down-
regulation was observed (Fig. 5e and Supplementary Data 3).

Upper respiratory tract gene expression differences between
SOT recipients and controls
Recognizing that the respiratory tract is the site of active infection
in COVID-19, we performed gene expression analyses from nasal
swab specimens. Surprisingly, despite the significant difference in

Fig. 2 | SOT recipients have higher SARS-CoV-2 viral rpM and impaired viral
clearance compared to controls. a, b Box plots showing SARS-CoV-2 viral reads
permillion (rpM) at Visit 1 of a transplant (yellow, n = 86) and control groups (blue,
n = 172), and b different organ transplant types (heart—n = 10, kidney—n = 41, liver—
n = 14, lung—n = 17). P values were calculated with a a linear model or b two-sided
likelihood ratio test. Boxes show themedian and interquartile range (IQR),whiskers
were calculated as the 25th percentile minus 1.5 times the IQR and the 75th

percentile plus 1.5 times the IQR. c Plot showing the dynamics of viral rpM up to
30days after hospital admission of the transplant and control groups. The blue and
orange lines indicated the generalized additive mixed model fits, and the ribbons
indicated the 95% confidence interval of the fits. P value was calculated for the
interaction between SOT status and days from admission with a generalized addi-
tive mixed model. The number of patients sampled at each time point is depicted
graphically below the X axis of (c).

Fig. 3 | Compared to controls, SOT recipients have lower B-cell plasmablasts
and higher EMRA T cells as well as lower SARS-CoV-2 antibody levels at hos-
pitalization. aDifferences in immunecell population frequencymeasuredbyCyTOF
by SOT recipients (yellow, n= 54) and controls (blue, n= 107). b Box plots high-
lighting two cell types which differed in frequency between SOT recipients and
controls. Boxes show the median and interquartile range (IQR), whiskers were cal-
culated as the 25th percentileminus 1.5 times the IQR and the 75th percentile plus 1.5
times the IQR. P values in (a, b) were calculated with a linear model and

Benjamini–Hochberg correction. c Box plot of spike IgG levels measured by area
under the curve (AUC) by SOT recipients (n=86) and controls (n= 172).
d Longitudinal dynamics of spike IgG levels (log-transformed AUC) in SOT recipients
andcontrols over the courseof hospitalization. Theblueandorange lines indicate the
generalized additive mixed model fits, and the ribbons indicate the 95% confidence
interval of the fits. P values were calculated with c a linear model or d a generalized
additivemixedmodel. Thenumberofpatients sampled at each timepoint is depicted
graphically below the X axis of (d). EMRA effector memory re-expressing CD45RA.
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the nasal SARS-CoV-2 rpM (Fig. 2a), no differentially expressed
genes were identified between the two groups at FDR < 0.05 at the
time of hospital admission. GSEA nonetheless demonstrated that
SOT recipients exhibited increased expression of genes related to
IL-10 signaling, neutrophil degranulation, type I IFN signaling, IL-1
and IL-4/IL-13 signaling in the upper respiratory tract at the time of
hospital admission (Fig. 6a and Supplementary Data 4), mirroring
to some extent our observations in the blood. Most inflammatory
pathways differentially upregulated in SOT recipients were unaf-
fected by viral rpM adjustment (Supplementary Fig. 7a).

Longitudinal nasal transcriptional profiling analyses demon-
strated increased expression over time of genes related to IFN sig-
naling, TCR signaling, and other immune signaling pathways in SOT
recipients (Fig. 6b, c). In contrast, non-SOT controls demonstrated
increased expression over time of genes related to neutrophil degra-
nulation and IL-36 signaling (Fig. 6b and Supplementary Data 5).
Adjusting for viral load did not meaningfully change results (Supple-
mentary Fig. 7b).

Taken together, these results suggested that SOT recipients,
in both the upper respiratory tract and the blood compartments,
exhibit augmented innate immune responses at the transcrip-
tional level compared to non-SOT controls, with some
compartment-specificity to the relevant immune signaling
pathways.

Differing relationships between interferon signaling and viral
abundance in SOT recipients versus controls
In both the blood and the upper respiratory tract, SOT recipients
exhibited increased type I IFN gene expression in a viral rpM-
independent manner (Supplementary Figs. 6a and 7a). We further
explored this by comparing the relationship between IFN-stimulated
gene (ISG) expression and viral rpM in SOT recipients versus non-SOT
controls (Supplementary Fig. 8). In the blood, ISG expression strongly
correlatedwith viral rpM in non-SOTcontrols, but this relationshipwas
weaker in the SOT recipients (Supplementary Fig. 8a, c). In contrast, in
the upper respiratory tract, ISGs correlated with viral rpM in both
groups (Supplementary Fig. 8b, d). Beyond type I and type II IFN sig-
naling,we also found thatTLR signaling, neutrophil degranulation, and
other immune signaling pathways in the upper airway correlated with
SARS-CoV-2 rpM in both SOT recipients and controls (Supplemen-
tary Fig. 9).

Airway microbiome differences between SOT recipients and
controls
Next, we used nasal metatranscriptomics to assess whether the
composition of the respiratory microbiome differed between SOT
recipients and controls upon hospital admission. We found that
SOT recipients had greater upper airway microbiome alpha
diversity, as measured by the Shannon Diversity Index (SDI),

Fig. 4 | SOT recipients have higher levels of specific serum chemokines and
lower levels of IFN-gamma. a Bar plots showing proteins that are differentially
expressed between control (blue,n = 161) and transplant patients (yellow,n = 80) at
Visit 1 (adjusted P <0.05). b Box plots showing the levels of CX3CL1 and IFNG at
Visit 1. a, b P values were calculated using a linear model and Benjamini–Hochberg
correction. Boxes show the median and interquartile range (IQR), whiskers were
calculated as the 25th percentile minus 1.5 times the IQR and the 75th percentile

plus 1.5 times the IQR. c Scatter plot showing the dynamics of CXCL11 level after
hospital admission (without adjusting for SARS-CoV-2 viral rpM). The ribbons
indicate the 95% confidence interval of the linear mixed-effects model fits. P value
was calculated using a linear mixed-effects model and Benjamini–Hochberg cor-
rection. The number of patients sampled at each time point is depicted graphically
below the X axis of (c).
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compared to controls at Visit 1 (Fig. 6d, e). No differences in
bacterial community composition (beta diversity) between
groups, as measured by the Bray–Curtis Dissimilarity Index, were
found at Visit 1 (P = 0.186, Supplementary Fig. 10). Finally, we
asked whether specific taxa differed between groups, and found
that only SARS-CoV-2 was significantly more abundant in the SOT
recipients (Fig. 6f).

Immune correlates of COVID-19 severity differ between SOT
recipients and controls
We characterized differences in host correlates of COVID-19 severity15–17

between SOT recipients and non-SOT controls by comparing these
groups with respect to cell-type frequencies, gene expression, and
protein expression differences between patients with severe COVID-19
(TG 4–5) versus those with mild/moderate COVID-19 (TG 1–3).
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In both SOT recipients and controls, severe disease was char-
acterized by reductions in several immune cell populations, including
conventional dendritic cells (DCs), intermediate (CD14 +CD16 + )
monocytes, and several CD4 + T-cell subsets, as has been previously
observed17,20 (Fig. 7a). Only SOT recipients, however, had significantly
lower CD8+ central memory T cells, CD11C +CXCR5- B cells, and
CD56high CD16low NK cells in severe disease (Fig. 7a). Severe COVID-19 in
controls, but not SOT recipients, was associated with a marked
increase in several canonical proinflammatory serum cytokines and
chemokines (e.g., IL-6, CCL23, andCXCL8) (Fig. 7b). Conversely, serum
levels of IFNG and IL12B were significantly lower in severe COVID-19
among SOT recipients, but not among controls.

A similar analysis of PBMC transcriptomics data revealed that
both SOT recipients and controls exhibited greater expression of
several immune signaling pathways in severe disease, including neu-
trophil degranulation, innate immune system signaling, IL-1 signaling,
and cellular responses to stress (Fig. 7c). The expression of PBMC
genes related to PD-1 signaling decreased in severe COVID-19 com-
pared to mild/moderate COVID-19 in both groups as well. SOT reci-
pients, however, demonstrated lower expression of genes related to
TCR signaling, CD28 signaling, and phosphorylation of CD3 and TCR
zeta chain (Fig. 7c).

Even more notable differences between groups were observed
in severity analyses of the upper airway data. For instance, severe
disease in controls was characterized by increased expression of
genes related to Toll-like receptor (TLR) signaling, whereas in SOT
recipients this was not observed (Fig. 7d). Non-SOT controls
demonstrated increases in expression of genes related to neutrophil
degranulation, IL-10, IL-4/IL-13, and innate immune signaling.

Discussion
Pharmacologic immunosuppression is necessary to prevent rejection
following SOT, but comes at the expense of increased vulnerability to
infection. While it is well known that SOT recipients can exhibit clini-
cally atypical responses to respiratory infections including COVID-1921,
the molecular features of these differences have remained unclear.
Here, we performed comparative host/microbe systems immunopro-
filing of SOT recipients and matched non-SOT controls to address this
key knowledge gap. Unexpectedly, we found that COVID-19 in SOT
recipients is not characterized by globally suppressed systemic
immune signaling, but instead by augmented innate immune respon-
ses and more subtle differences across states of COVID-19 sever-
ity (Fig. 8).

In the peripheral blood of SOT recipients, augmented innate
immune signaling was characterized by higher expression of genes
related to type I IFN, IL-1, and complement system pathways.
Throughout the course of hospitalization, SOT recipients demon-
strated consistent increases in these inflammatory signaling pathways,
as well as in PD-1 and CD28 signaling. At the protein level, SOT reci-
pients had higher levels of a few proinflammatory cytokines, such as
CX3CL1, a potent chemoattractant of T cells and monocytes, and
KITLG, which plays a role in hematopoiesis. In addition, CXCL11 levels
remained elevated over time in SOT recipients, but decreased over
time in non-SOT controls. Together, these results highlight an

unexpected state of activated innate immune signaling in SOT reci-
pients at the time of hospitalization, complemented by stable to
increased activity of PD-1 signaling andother pathways related toT-cell
signaling and exhaustion over the course of hospitalization.

We found that this state of innate immune activationwasdriven in
part by higher SARS-CoV-2 viral load in SOT recipients, as adjustment
for SARS-CoV-2 rpM impacted the magnitude of expression differ-
ences for some proinflammatory signaling pathways and cytokines. In
longitudinal analyses, however, even after adjusting for viral rpM dif-
ferences, SOT recipients demonstrated consistently greater induction
of innate immune signaling pathways in the blood, including type I IFN
signaling, compared to non-SOT controls. Furthermore, while ISG
expression in the blood strongly correlated with viral rpM in non-SOT
controls, this relationship was not consistently observed in SOT reci-
pients, suggesting a partial decoupling between IFN signaling and viral
RNA burden. This finding suggests that virus-independent factors may
be driving the augmented systemic interferon signaling observed in
SOT recipients. Perhaps this reflects non-specific compensatory innate
immune activation in the settingof impaired adaptive immunity in SOT
recipients.

In the upper airway, transcriptional differences between SOT
recipients and controls were subtle, although GSEA did reveal impor-
tant distinctions between groups at the pathway level.Most notably, as
in the blood, SOT recipients demonstrated evidence of upregulated
innate immune responses in the airways, characterized by increased
expression of genes related to type I IFN signaling, IL-1 signaling, and
complement activation. In contrast to the blood, expression of ISGs in
the upper airway was strongly correlated with SARS-CoV-2 viral rpM in
both non-SOT controls and SOT recipients.

In non-SOT control patients, higher expression of proin-
flammatory cytokines such as IL-6 correlated with COVID-19 severity,
consistent with prior studies15–17. In SOT recipients, however, we found
that the expression ofmost inflammatory cytokinesminimally differed
betweenmild/moderate and severe disease. In addition, while controls
exhibited marked severity-associated increases in the expression of
canonical proinflammatory genes, this was not observed in SOT reci-
pients. Instead, severe disease in SOT recipients was associated with
lower T-cell signaling gene expression in the blood, as well as less
robust induction of TLR signaling pathways in theupper airway (Fig. 7).
These observations suggest a profound difference in the immune
milieus in SOT versus non-SOT patients, depending on severity. The
relatively weak association between increased proinflammatory serum
cytokines in SOT patients and severe COVID-19 may have important
implications, and suggests that the clinical utility of immune mod-
ulatory therapies, such as IL-6 inhibitors (e.g., tocilizumab), or JAK
inhibitors (e.g., baricitinib)may not be the same in SOT recipients as in
the general population.

Despite their increased susceptibility to SARS-CoV-2 infection
and comparatively poor outcomes with other respiratory
infections22, SOT recipients have comparable COVID-19 mortality
versus the general population, at least in propensity-matched
studies5,8–10. Our observation that severe disease in SOT recipients
is not characterized by a marked increase in mortality-associated
inflammatory cytokines such as IL-6, offers a potential explanation.

Fig. 5 | PBMC transcriptomics demonstrates that SOT recipients exhibit
increased innate immune gene expression upon hospitalization, and
over time. a Volcano plot highlighting genes differentially expressed (Padj <0.05)
between SOT recipients (yellow, n = 66) and controls (blue, n = 147) at the time of
hospitalization. b gene set enrichment analysis (GSEA) highlighting pathways dif-
ferentially enriched in SOT recipients versus controls (without adjustment for
SARS-CoV-2 viral reads per million (rpM)). A positive normalized enrichment score
(NES) value indicates that the pathway was enriched over time in SOT. A negative
NES value indicates that the pathway was enriched over time in controls. c Average
gene expression plot of leading-edge genes from significant GSEA pathways.

d Differences in the longitudinal dynamics of signaling pathways. e Longitudinal
plots highlighting changes in normalized expression of representative immune
signaling pathways that significantly differed over time in SOT recipient versus
controls. The blue and orange lines indicated the linear mixed-effects model fits,
and the ribbons indicate the 95% confidence interval of the fits. P values were
calculated with a a linear model or (b, d, e) a linear mixed-effects model with
Benjamini–Hochberg correction. The number of patients sampled at each time
point is depicted graphically below the X axis of (d). PBMC peripheral blood
mononuclear cells, SOT solid organ transplant.
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Our findings could also simply reflect higher levels of innate immune
signaling in SOT recipients versus controls across many states of
disease severity, possibly representing a compensatory effect of
immunosuppressant medications that predominantly target the
adaptive immune system.

These observations lead to a model of immune perturbation in
COVID-19 with very different profiles in SOT recipients compared to

non-SOT controls. In SOT patients on chronic immune suppression,
increased senescent CD4 +T cells and decreased plasmablast and B
cells are unable to effectively clear virus, leading to increased and
persistent viral replication. Perhaps in a compensatory effort, innate
immune responses, such as type I interferon, are upregulated and fail
to attenuate appropriately over time. This dysregulated state of
impaired B- and T-cell immunity, delayed viral clearance, and
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augmented innate immune signaling has parallels with aging-
associated inflammatory changes23, and may have important implica-
tions for themanagement of immunosuppression in SOT patients with
acute infection.

Our study has several strengths. These include a large, compara-
tive immunoprofiling study of vaccine-naïve SOT recipients during
their first encounter with a novel viral pathogen without the compli-
cation of variable vaccination histories. In addition, our cohort spans
multiple medical centers, and assesses both host and microbe using a
diverse range of assays are strengths. Our study also has limitations
including an insufficient sample size to assess differences based on
type of transplanted organ, limited clinical data regarding immuno-
suppressant dosing, a small sample size of intubated patients with
severe COVID-19, a lack of data from the primary site of infection in the
lower airway, and a lack of data specific to allograft function. In addi-
tion, our assessment of longitudinal trajectories was limited by a
reduced number of patients still hospitalized at later timepoints in the
study. Therefore, we primarily focused on findings at Visit 1, and our
longitudinal findings should be interpreted with this in mind. Finally,
further work is needed to determine whether our findings in SOT
recipients with COVID-19 also apply to other types of viral, bacterial,
and fungal respiratory infections.

Taken together, we find that COVID-19 in SOT recipients is char-
acterized by a biologically distinct immune state with augmented
innate signaling but lower proportions of certain adaptive immune cell
populations. The distinct immune state of SOT recipients lacks the
dynamic induction of genes and cytokines associated with severe
COVID-19 in the general population, suggesting a role for prognostic
biomarkers and therapeutic approaches in this vulnerable population.

Methods
Patient enrollment and sample collection
This study leveraged data from the IMPACC cohort18,19, which enrol-
led 1286 participants from 20 hospitals across 15 medical centers in
the United States between May 5th, 2020 and March 19th, 2021. Eli-
gible participants were participants hospitalized with SARS-CoV-2
infection confirmed by RT-PCR and symptoms or signs consistent
with COVID-19. Solid organ transplant (SOT) patients were identified
by review of medication list for immunosuppressive medications.
Patients identified as SOT recipients were confirmed by chart review
to verify transplant status and organ type. We conducted a case-
control study of patients within the IMPACC cohort, matching all
86 solid organ transplant (SOT) recipients in the cohort 2:1 by age,
sex and study site with 172 immunocompetent controls. Detailed
clinical assessments and sampling of blood and upper respiratory
tract were performedwithin ~72 hours of hospitalization (Visit 1), and
on approximately Days 4, 7, 14, 21, and 28 after hospital admission
(Supplementary Fig. 11). Biological sample collection and processing
followed a standardized protocol19 across all study sites, and tran-
scriptomic, proteomic, CyTOF, and serologic data were generated at
core laboratories.

Ethics
NIAID staff conferred with the Department of Health and Human Ser-
vices Office for Human Research Protections (OHRP) regarding
potential applicability of the public health surveillance exception
[45CFR46.102 (l) (2)] to the IMPACC study protocol. OHRP concurred
that the study satisfied criteria for the public health surveillance
exception, and the IMPACC study team sent the study protocol, and
participant information sheet for review, and assessment to institu-
tional review boards (IRBs) at participating institutions. Twelve insti-
tutions elected to conduct the study as public health surveillance,
while three siteswithprior IRB-approvedbiobankingprotocols elected
to integrate and conduct IMPACC under their institutional protocols
(University of Texas at Austin, IRB 2020-04-0117; University of Cali-
fornia San Francisco, IRB 20-30497; Case Western reserve university,
IRB STUDY20200573) with informed consent requirements. Partici-
pants enrolled under the public health surveillance exclusion were
provided information sheets describing the study, samples to be col-
lected, and plans for data de-identification, and use. Those that
requested not to participate after reviewing the information sheet
were not enrolled. Participants did not receive compensation for study
participation while hospitalized, and subsequently were offered com-
pensation during outpatient follow-up.

Common statistical analyses framework
Deidentified quality assured raw data was obtained from the IMPACC
study and made publicly available17–19. All data analyses employed R
v4.0.2. For each data type, we investigated the behavior of features
both at Visit 1 and longitudinally for scheduled visits (Visits 1–6, up to
30 days post-hospital admission, both inpatient and outpatient sam-
ples, and excluding eight additional samples (seven controls, one SOT
recipient) collected when a patient was transferred from the ward to
intensive care unit. Five COVID-19 severity trajectory groups (TG) were
identified by latent class modeling of longitudinal measures of a
7-point clinical severity ordinal scale17,18. TG 1 was characterized by
relatively mild respiratory disease and a brief hospital stay, while TG
2–4 represented patients with increasing respiratory support
requirements and longer hospital stays, and TG 5 represented patients
with severe COVID-19 that led to death within 28 days17,18. For the
severity analysis, we definedmild/moderate participants as those with
TG 1–3, and severe participants as those with TG 4–5.

For longitudinal analysis of SARS-CoV-2 nasal viral rpM and serum
anti-Spike IgG, we used generalized additive models with mixed effects
from the package gamm4 (v0.2.6). Generalized additive modeling was
preferred for these features due to their clearly non-linear trajectories.
For all other data types, we used linear mixed-effects models from the
package lme4 (v1.1.25). P values in all analyses were adjusted with
Benjamini–Hochberg correction. In addition, to confirm the robustness
of key longitudinal analyses for viral load, Olink cytokines and PBMC
genes, we performed permutation analysis24 using 1000 iterations
(randomlypermuting thepatient’s transplant/control group assignment
1000 times, and then comparing the observed test statistic to this

Fig. 6 | Upper airway host gene expression and the nasal microbiome differ
between SOT recipients and controls. a Gene set enrichment analysis (GSEA)
highlighting pathways differentially enriched in solid organ transplant (SOT) reci-
pients (yellow, n = 63) versus controls (blue, n = 125) in the upper respiratory tract
(without adjustment for SARS-CoV-2 viral reads permillion (rpM)). bDifferences in
the longitudinal dynamics of signalingpathways. A positive normalized enrichment
score (NES) value indicates that the pathway was enriched over time in SOT. A
negative NES value indicates that the pathway was enriched over time in controls.
c Longitudinal plots highlighting changes in normalized expression of repre-
sentative immune signaling pathways that showed significantly different dynamics
in SOT recipients versus controls. The ribbons indicate the 95% confidence interval
of the linearmixed-effectsmodel fits. P values were calculatedwith a a linearmodel
or b, c a linear mixed-effects model with Benjamini–Hochberg correction. d Box

plot demonstrating differences in upper airway bacterial microbiome alpha
diversity in SOT recipients (n = 86) versus controls (n = 172). Boxes show themedian
and interquartile range (IQR),whiskerswere calculatedas the 25th percentileminus
1.5 times the IQR and the 75th percentile plus 1.5 times the IQR. P values were
calculated with the two-sided Wilcoxon rank-sum test. e Robust regression with
95% confidence intervals highlighting the longitudinal changes in upper airway
alpha diversity following hospitalization. f Radial plot highlighting differential
abundance from genus (inner most ring) to phylum (outer most ring) and phylo-
genetic relatedness (inner tree) of taxa differentially enriched in SOT recipients
versus controls. P values in (e, f) were calculated with a linear mixed-effects model
and f Benjamini–Hochberg correction). The number of patients sampled at each
time point is depicted graphically below the X axis of (c, e).
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distribution to assess its significance), and calculated the P value as
follows:

permuted� P = ðnumber of iterations with test statistic more

extreme than the observed test statisticÞ=1000

For each of these three validation analyses, our findings remained
statistically significant (permuted-P <0.01).

Analysis of nasal metatranscriptomics data
Taxonomic alignments from nasal metatranscriptomics data were
obtained from raw fastq files using the CZ-ID pipeline25, which first
removes human sequences via subtractive alignment against human
genome build 38, followed by quality and complexity filtering. Sub-
sequently, reference-based taxonomic alignment at both the nucleo-
tide and amino acid levels against sequences in the National Center for
Biotechnology Information (NCBI) nucleotide (NT) andnon-redundant

Fig. 7 | Host immune correlates of COVID-19 severity differ between SOT reci-
pients and controls. a Dot plot of immune cell populations that are up- or
downregulated in severe patients (TG 4–5, red) compared to mild/moderate
patients (TG 1–3, green) within each of the control (n = 107) and transplant (n = 54)
groups.bDot plot of proteins that are up- or downregulated in severe compared to
mild/moderate patients within each of the control (n = 161) and transplant (n = 80)
groups. c Plots highlighting signaling pathways identified by gene set enrichment
analysis (GSEA) from peripheral blood mononuclear cell (PBMC) transcriptomics

that were differentially upregulated in severe versus mild/moderate COVID-19 in
solid organ transplant (SOT) recipients (right, n = 66) or controls (left, n = 147).
d Plots highlighting GSEA-identified signaling pathways from nasal transcriptomics
that were differentially upregulated in severe versus mild/moderate COVID-19 in
SOT recipients (right, n = 63) or controls (left, n = 125). P values for all analyses were
calculated with a linear model and Benjamini–Hochberg correction. CyTOF cyto-
metry by time of flight, PBMC peripheral blood mononuclear cells.
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(NR) databases, respectively, is carried out, followed by assembly of
the readsmatching each taxon. Taxawereaggregated to the genus and
higher phylogenetic levels from NCBI for analyses26. For all analyses
using SARS-CoV-2 viral rpM, log transformation of total reads per
million (rpM) aligned to the Beta-coronavirus genus was used. Alpha
diversity (Shannon Diversity Index) was calculated using the vegan
package v.2.6 in R. Differential abundance analyses for Visit 1 samples
were performed using linear mixed effect modeling (using the R
package nlme v3.1-162) to evaluate SOT effect on individual taxon
levels at the genus, family, class, order, phylum, and superphylum
levels (rpMs from lower taxon levels were summed to create higher
phylogenetic level rpM), using the following R formula:

Taxon abundance � transplant status + 1jenrollment siteð Þ

In addition, to confirm the finding from linear mixed effect
modeling that Betacoronavirus was the only taxa with significant
relative abundance changes in SOT recipients, we analyzed Visit
1 samples with “Analysis of Compositions of Microbiomes with Bias
Corrections” (ANCOM-BC)27 which also identified Betacoronavirus as
the only significant differentially abundant taxon. Principle coordinate
analysis (PCoA) of the Bray–Curtis dissimilarity index was performed
on Visit 1 nasal metatranscriptomics samples, with significance calcu-
latedwith Adonis using theRpackage vegan (v2.6). Alpha diversitywas

calculated based on the Shannon Diversity Index:

H0 = �
Xs

i= 1

piln pi

� �
ð1Þ

Where s is the number of species and pi is the proportional abundance
of species i. Beta diversity was calculated based on the Bray–Curtis
Dissimilarity Index:

BCjk = 1�
P

xij � xik
���

���
P

xij + xik
� � ð2Þ

Where xij and xik represent the quantity of species (i) and two sites (j
and k).

Analysis of SARS-CoV-2 viral abundance
SARS-CoV-2 viral abundance was calculated as log10 (rpM+1),
where rpM is the reads per million of SARS-CoV-2 as measured by
nasal metatranscriptomics. The viral rpM in each organ transplant
type was compared using a likelihood ratio test on the null and

Fig. 8 | Summary schematic highlighting inflammatory dysregulation in SOT
recipients hospitalized for COVID-19 based on host/microbe multiomic pro-
filing. At the time of hospital admission, solid organ transplant (SOT) recipients
had higher SARS-CoV-2 abundance, lower anti-SARS-CoV-2 antibody titers, and
augmented innate immune gene and protein expression compared to non-SOT
controls. Over time, SOT recipients had impaired viral clearance and exhibited
persistently increased expression of innate immune signaling pathways. In the

upper airway, SOT recipients exhibited differences in the microbiome and tran-
scriptome. In the blood, SOT recipients demonstrated differences in immune cell
populations as well as in the expression of genes and proteins central to innate
immune responses. Severe disease in transplant recipients was characterized by a
less robust induction of proinflammatory genes and chemokines, as well as by
differences in immune cell populations. EMRA effector memory re-expressing
CD45RA, EM effector memory, CM central memory. Created in BioRender33.
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alternative models in R:

Null : viral rpm � 1

Alternative : viral rpm � organ type

Where viral_rpm was the log10-transformed viral rpM, and organ_type
was the organ transplant type. Longitudinal analysis of SARS-CoV-2
viral rpM was performed using the gamm4 function from the gamm4
package (v0.2.6), using the following R formula:

viral rpm � sðevent date, bs= 00cr00Þ
+ sðevent date, bs = 00cr00, by = transplantÞ+ transplant

with random effects (1|pid), ie, participant random intercept. In the
formula, viral_rpm was the log10-transformed viral rpM as described
above, s(event_date, bs = ”cr”) was the cubic spline fit on the number of
days post hospitalization, s(event_date, bs = ”cr”, by=transplant) was
the cubic spline fit on the interaction between the number of days post
hospitalization and transplant status, and transplant is the transplant
status. P value was calculated using the Chi-squared test on the gam
component’s reference degrees of freedom and F-statistics.

Analysis of SARS-CoV-2 antibody titers
Antibody levels against the recombinant SARS-CoV-2 spike protein
receptor-binding domain (RBD) were measured by enzyme-linked
immunosorbent assay (ELISA)17. Briefly, following heat inactivation at
56 °C for 1 hour, serum samples were added to plates coatedwith RBD.
Optical density (OD) was measured in a Synergy 4 (BioTek) plate
reader at 490nm. The area under the curve (AUC) was calculated,
considering 0.15 OD as the cutoff. For the Visit 1 analysis, we log2-
transformed the area under the curve (AUC) values andmodeled them
with linear regression. For the longitudinal analysis, we also log2-
transformed the AUC values, and used the linearmixed-effectsmodels
to fit the null and alternative models in R:

Null : z � event date + transplant + 1jpidð Þ

Alternative : z � event date + transplant + event date : transplant

+ 1jpidð Þ

Where z is the log2-transformedAUC, event_date is the number of days
post-admission, transplant is the transplant status, event_date:trans-
plant is the interaction term between event_date and transplant
status, and (1|pid) is the participant random intercept. The P values
were calculated using likelihood ratio test, and adjusted with
Benjamini–Hochberg correction. For visualization of longitudinal
antibody levels, data were fit to a third-order polynomial.

Analysis of PBMC and nasal RNA-seq data
Nasal turbinate swabs collected into DNA/RNA shield reagent (Zymo
Research) underwent RNA extraction using the Quick DNA/RNA Mag-
Bead kit (ZymoResearch)17. Ribosomal depletion, cDNA synthesis, and
library preparationwere then carriedout using theTotal StrandedRNA
Prep with Ribo-Zero Plus kit (Illumina), following the manufacturer’s
instructions17,18.

In total, 2.5 × 105 PBMCs homogenized in 200mL of Buffer RLT
(Qiagen) underwent RNA extraction using the Quick RNAMagBead Kit
(Zymo Research). Library preparation was then carried out using the
SMART-Seq v4 Ultra Low Input RNA Kit (Takara Bio). Barcoded and
normalized libraries were pooled prior to loading. Paired-end Illumina
sequencing was carried out on a NovaSeq 6000 instrument.

We retained protein-coding genes that had a minimum of 10
counts in at least 70% of the samples. We calculated normalization
factors to scale library sizes using the calcNormFactors function from
the edgeR package28 v3.40.2, then normalized the gene counts using
the voom function (normalize.method = “quantile”) from the limma
package29,30 v3.46.0, fitted a linear model for the gene expression
with lmFit function (default settings), calculated the empirical Bayes
statistics with eBayes function (default settings), and calculated the
P values for differential expression controlling for FDR. We controlled
for log-transformed viral rpM in certain analyses when indicated.

For longitudinal analyses, we accounted for repeatmeasures from
the same individual using duplicateCorrelation from the limma pack-
age, and modeled the interaction between days post-admission and
transplant status using the R formula:

z � event date + transplant + event date : transplant

Where z is the log-transformed normalized expression count,
event_date is the number of days post-admission, transplant is the
transplant status, and event_date:transplant is the interaction term
between event_date and transplant status.

Fold-change values from all genes (regardless of their adjusted
P values) in the Visit 1 differential expression analyses, representing the
fold-change of transplant patients over control patients, and long-
itudinal analyses, representing the interaction term of days post-
admission and transplant status, were used as the input for Gene Set
Enrichment Analysis (GSEA). We used the gsePathway function from
the ReactomePA v1.42.0 package to search for enriched pathways in
the Reactome database, withminimumandmaximumgeneSet sizes of
3 and 1000, respectively.

For analysis of the relationship between interferon signaling and
viral rpM at Visit 1, we first subset the total PBMC and nasal RNA-Seq
data to genes within the Reactome Interferon Signaling pathway (R-
HSA-913531, n = 308). We then split the data by transplant status and
modeled the relationship between interferon signaling gene expres-
sion and log2-transformed viral rpM for controls and transplant reci-
pients separately, using the approach described above. Additionally,
we repeated this analysis for the total nasal RNA-Seq dataset, and the
results were used as input for GSEA as described above.

Analysis of CyTOF data
PBMCswerephenotypedon the FluidigmHeliosmass cytometer using
a panel of 46 surface and intracellularmarkers, and the cell types were
annotated using an automated annotation pipeline17. Briefly, this
involved clustering cells from a single sample into 1000 K-means
clusters. Using Clustergrammer231, a subset of samples was then
manually annotated to create a training dataset. Then, the cosine
similarity of every cluster to all possible cell types within the training
datasets was calculated, and that cluster was assigned to either its
highest similarity score cell type or the greatest consensus cell type
across the training datasets17. The cluster cell-type annotationwas then
assigned back to the single cells within that cluster, and the number of
cells was calculated for a cell type within a given single sample17.

Prior to analysis, we removed cells identified as red blood cells,
multiplets, debris, and those that were not identifiable with high
confidence. These counts were converted to proportions per sample,
by dividing each cell-type count by the total cell count. The minimum
proportion per cell type across all samples was added to each sample
prior to log2-transformation, to avoid taking the logarithm of zeros.

For the Visit 1 analysis, the log2-transformed cell-type proportions
were modeled with linear regression. For the longitudinal analysis, the
log2-transformed cell-type proportions were modeled with linear
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mixed-effects models to fit the null and alternative models in R:

Null : z � event date + transplant + 1jpidð Þ

Alternative : z � event date + transplant + event date : transplant

+ 1jpidð Þ

Where z is the log2-transformed cell-type proportion, event_date is the
number of days post-admission, transplant is the transplant status,
event_date:transplant is the interaction term between event_date and
transplant status, and (1|pid) is the participant random intercept. The
P values were calculated using likelihood ratio test, and adjusted with
Benjamini–Hochberg correction.

Analysis of serum inflammatory protein (Olink) data
All samples were processed with the Olink 92-protein multiplex
inflammatory panel (Olink Proteomics), according to the manu-
facturer’s instructions17. Target protein quantification was performed
by real-time microfluidic qPCR via the Normalized Protein Expression
(NPX)manager software. Data were normalized using internal controls
in every sample, inter-plate control and negative controls, and cor-
rection factor and expressed as log2 scale proportional to the protein
concentration. For additional quality control, we set any NPX mea-
surements below the assay’s limit of detection (LOD) to zero. Next, we
excluded proteins that were detected in fewer than 20% of samples,
resulting in 84 proteins for analysis.

For the Visit 1 analysis, we standardized the NPX values and
modeled them with linear regression in R, with and without adjusting
for SARS-CoV-2 viral rpM:

z � transplant

z � transplant + log 10 viral rpM+ 1ð Þ

Where z is the standardized protein level, transplant is the SOT sta-
tus, and viral_rpM is the SARS-CoV-2 viral rpM as measured by nasal
swab metatranscriptomics. The P values were calculated for the
transplant coefficient, and adjusted with Benjamini–Hochberg
correction.

For the analysis of protein levels and SARS-CoV-2 rpM, we fit the
following linear model for the SOT and the control groups separately
in R:

z � log 10 viral rpM+ 1ð Þ

For the analysis of protein levels and COVID-19 severity, we fit the
following linear model:

z � transplant + transplant : TG

Where transplant:TG is the interaction term between SOT status and
disease severity. This formulation allows us to find two separate
coefficients (i.e., two separate log fold-change values) for the effects
of severity, one for the SOT group and one for the control group. The
P values were calculated for each of these two coefficients, and
adjusted with Benjamini–Hochberg correction.

For the longitudinal analysis, we also standardized theNPXvalues,
and used the linearmixed-effects models to fit the null and alternative
models in R:

Null : z � event date + transplant + 1jpidð Þ

Alternative : z � event date + transplant + event date : transplant

+ 1jpidð Þ

Where z is the standardized longitudinal protein level, event_date is
the number of days post-hospital admission, transplant is the
transplant status, event_date:transplant is the interaction term
between event_date and transplant status, and (1|pid) is the participant
random intercept. The P valueswere calculated using a likelihood ratio
test, and adjusted with Benjamini–Hochberg correction.

Analysis of immunosuppressive medications
Mycophenolate and tacrolimus were the most common immunosup-
pressive medications at admission in this cohort of SOT recipients,
being received by 55.8% and 73.3%, respectively. We modeled the
relationship between severedisease, defined as trajectory group 4or 5,
and whether SOT recipients were receiving mycophenolate or tacro-
limus, independently, with logistic regression. We modeled the rela-
tionship between visit-1 nasal SARS-CoV-2 rpMand serumanti-RBD IgG
AUC, both as described above, with linear regression.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The clinical metadata, antibody titer, RT-qPCR, mass cytometry and
Olink proteomics data have been deposited in ImmPort under acces-
sion number SDY1760. The RNA-sequencing data have been deposited
in dbGAP under accession number phs002686 (https://www.ncbi.nlm.
nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002686.v2.p2).
The analyzed data used to generate the figures are provided in the
Source Data file. Source data are provided with this paper.

Code availability
All analysis code has been deposited at https://bitbucket.org/
kleinstein/impacc-public-code/src/master/solid_organ_transplant_
manuscript/.
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