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ABSTRACT OF THE DISSERTATION

High Fidelity Modeling Techniques for MEMS Resonators

by

Stephen Schein

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2023

Professor Robert T. M’Closkey, Chair

Prior resonator research is first over-viewed. Galerkin analysis applied to a perturbed

thin ring yields intuition and motivation for the primary contributions, described below.

The first contribution is a fully fleshed novel method to derive the empirical frequency

response by extracting a state space model from transient data through a Hankel matrix

based approach. This method has the advantage of not containing feed-through parasitic

capacitance present in frequency responses derived from conventional methods. Furthermore,

a zoom method is described to reduce the computational cost associated with extracting the

state space based model.

The second contribution is the use of the aforementioned empirical state space model

to fit a second order mechanistic model that accurately predicts changes in resonator dy-

namics after a mass and/or stiffness perturbation has been applied. This model is a better

alternative to older predictive models because it includes a stiffness energy component. In

addition, this new model gives the added tool of a predictive system frequency response,

which conventional models do not have. In general it is found that, especially as the modes

are close to degenerate, using lower sensitivity point masses in the outermost ring layers

ii



optimizes the predictive power of the new model. Furthermore, predicting for the effects

of as few point masses as possible limits the model due to point mass variance and higher

harmonic radial velocity components creating model prediction error.

The third contribution is in the design, building, and testing of a stiff, piezoelectric six

degree of freedom force/torque transducer to measure and inform modeling techniques for

coupling between a resonator and its base affixed center stem. A simple lightweight steel

tuning fork attached to this transducer confirms the latter’s efficacy.
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CHAPTER 1

Prior Research and Overview

Many different resonators configurations have been studied, including quadruple mass res-

onators [TPZ11] and hemispherical ([BBC13], [SMG14], [PZT11], [ZTS12], [KBK15], [TSH14]).

[CGL14] shows the development of the disk resonator that shifts most of the pertinent work

on resonators, and thus the focus of recent work and this current work is on ring-like disk

resonator gyroscopes (DRGs).

For sensor application, there are a few important tests for quantifying rate sensor per-

formance such as DRGs. The angle random walk (ARW) is a specification that shows the

error of the sensor when angular rate is integrated. Bias instability is a specification that

tell how much drift the sensor has from its mean output rate. Both can be measured via

Allen Variance tests. From a long sequence of angular rate gyro measurements, the data is

binned appropriately as a function of different sampling times, and the variance is calculated

on a sample to sample basis. The deviation (square root of variance) is then plotted against

the sampling times, and the minimum deviation is extracted as the bias instability. ARW is

extracted by looking at the Allen Deviation at a sampling time of 1 s. This measurement is

taken at the 1 s. sampling time because the error can then be extracted by multiplying the

ARW by
√
t. These will not be touched upon in this current work but are vital in the use

of the resonator as an angular rate sensor.

It is of great importance to remove frequency imbalances in a resonator to improve the

signal to noise ratio (SNR) in the vibratory mode of interest. A high SNR for a particular

mode implies a low ARW and low bias instability giving higher resonator performance.
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[TLI13] showed that a tuned resonator can then be used to effectively measure angular

rate. These gyroscopic sensors are used specifically in areas with clear need for accurate

measurements of angular rate, such as for mobile phone, automotive, robotics and spacecraft

uses [App84]. The work throughout this prospectus then focuses on effectively modeling the

resonator dynamics and tuning the sensor.

This chapter summarizes prior relevant, foundational thin ring theory, the production

and testing of the vibratory DRG (at both the micro and macro scale), discusses the per-

tinent prior research primarily concerning the modeling and modal pair tuning of ring-like

resonators, and finally overviews the current work.

1.1 Prior Relevant Analytical Thin Ring Results

This section lays the groundwork for the analytical models studied thus far, extending from

thin rings to ring-like DRGs. [Fox90] derives a theoretical framework for the study of fre-

quency splitting in thin rings, relevant due to the resonators studied consistent of a series of

concentric thin rings interconnected. To summarize, the equations relevant to a uniform thin

ring with degenerate modes are derived for “mode n” with n modal diameters by defining

a displacement ratio between the sinusoidal radial and tangential displacements. The max

strain and kinetic energies are then formulated, and the Rayleigh-Ritz method is applied

by setting the second derivative of natural frequency with respect to the displacement ratio

equal to zero, from there backing out uniform ring modal equations.

Imperfect thin rings can then considered via the addition of small masses and radial or

torsional springs. The effect of each type of perturbation is first independently analyzed in

terms of the effect on kinetic and strain energies. The imperfect ring modal equations are

then derived again via the use of the Rayleigh-Ritz method. With the general equations

derived, specific cases of the single mass, single radial spring, and single torsional spring

perturbations are observed. Finally, the single mode “trimming” or “tuning” problem, where
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multiple masses are added to the uniform thin ring, is analyzed. [RMF01] takes this theory

further to studying the trimming problem for multiple modes simultaneously. [BM17] then

performs a perturbation analysis of the uniform ring when point masses and springs are

introduced and compares these results to the former Rayleigh-Ritz analysis. The current

work is motivated by obtaining a mechanical model parameters for “mode n” in thin rings,

i.e. mass and stiffness matrices. The Galerkin method is the ideal numerical method for this

purpose, applied to imperfect thin rings in Chapter 2.

1.2 Production and Testing of the MEM-DRG

The silicon MEM-DRG consists of etched concentric thin rings that are linked through

alternating spokes to a central fixed disk. Electrodes surrounding the resonator can be used

as input forcers and output vibration sensors by taking advantage of the small capacitive

gaps between the two. This resonator has features that are generic to modally degenerate

resonators commonly proposed for MEMS Coriolis vibratory gyroscopes. Details on its

design, fabrication, and modal properties are given in [SKS15] and [CGL14]. Of interest are

the changes to the radial displacement U(θ, t) as the resonator is actuated.

Figure 1.1 illustrates this configuration. 8 sense electrodes (S1-S8) are used as pick-off

channels well spaced from one another to get a relatively complete sense of the resonator

mode shapes. The pick-off electrodes are denoted S1 through S8 and the input electrodes are

denoted D1 and D2 in Fig. 1.1. D1 and D2 are used to excite the n = 2 modes, the vibratory

mode of interest in this research, as they are orthogonal from the perspective of that mode.

Differences between resonator configurations seen in [BKS17], [SKS15], and for [BM19] as

well as this work are described. The axisymmetry of the resonator imparts modal degeneracy

to the n = 1, 2, 3 pairs of modes where the “nth” pair indicates the two modes whose radial

displacements are expressed to first order as α cosnθ+β sinnθ, for some α, β, where θ is the

angle parameter in the figure. COMSOL renditions of a single mode sans electrodes in the
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Figure 1.1: Ring resonator used in tests. The resonator is 1 cm in diameter with 24 peripheral electrodes (only those electrodes
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n = 1, 2, 3 pair of modes is seen in Figure 1.2 below.
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n = 2
<latexit sha1_base64="okGU/+5JorWEuOUkZqSDUB/7PqI=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGLExIbCwx8YQELmRvmYMNe3uX3T0TcuFH2FiosfX/2PlvXOAKBV8yyct7M5mZFySCa+O6305hY3Nre6e4W9rbPzg8Kh+fPOo4VQw9FotYdQOqUXCJnuFGYDdRSKNAYCeY3M79zhMqzWP5YKYJ+hEdSR5yRo2VOlVJbkijOihX3Jq7AFkn9ZxUIEd7UP7qD2OWRigNE1TrXt1NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSEzb9jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtkQ6qsvrxOvUbuuufeNSquZp1GEMziHS6jDFbTgDtrgAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP5knjew=</latexit><latexit sha1_base64="okGU/+5JorWEuOUkZqSDUB/7PqI=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGLExIbCwx8YQELmRvmYMNe3uX3T0TcuFH2FiosfX/2PlvXOAKBV8yyct7M5mZFySCa+O6305hY3Nre6e4W9rbPzg8Kh+fPOo4VQw9FotYdQOqUXCJnuFGYDdRSKNAYCeY3M79zhMqzWP5YKYJ+hEdSR5yRo2VOlVJbkijOihX3Jq7AFkn9ZxUIEd7UP7qD2OWRigNE1TrXt1NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSEzb9jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtkQ6qsvrxOvUbuuufeNSquZp1GEMziHS6jDFbTgDtrgAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP5knjew=</latexit><latexit sha1_base64="okGU/+5JorWEuOUkZqSDUB/7PqI=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmI5hYkYNGLExIbCwx8YQELmRvmYMNe3uX3T0TcuFH2FiosfX/2PlvXOAKBV8yyct7M5mZFySCa+O6305hY3Nre6e4W9rbPzg8Kh+fPOo4VQw9FotYdQOqUXCJnuFGYDdRSKNAYCeY3M79zhMqzWP5YKYJ+hEdSR5yRo2VOlVJbkijOihX3Jq7AFkn9ZxUIEd7UP7qD2OWRigNE1TrXt1NjJ9RZTgTOCv1U40JZRM6wp6lkkao/Wxx7oxcWGVIwljZkoYs1N8TGY20nkaB7YyoGetVby7+5/VSEzb9jMskNSjZclGYCmJiMv+dDLlCZsTUEsoUt7cSNqaKMmMTKtkQ6qsvrxOvUbuuufeNSquZp1GEMziHS6jDFbTgDtrgAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP5knjew=</latexit>
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<latexit sha1_base64="ZUiwCFXEk4ib7GruZWnSkmU2qOU=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYiJYhbtYGAshYGMZwTOB5Ah7m71kyd7esTsnhJAfYWOhYuv/sfPfuEmu0MQHA4/3ZpiZF6ZSGHTdb2dtfWNza7uwU9zd2z84LB0dP5ok04z7LJGJbofUcCkU91Gg5O1UcxqHkrfC0e3Mbz1xbUSiHnCc8iCmAyUiwShaqVVR5IZcVnqlslt15yCrxMtJGXI0e6Wvbj9hWcwVMkmN6XhuisGEahRM8mmxmxmeUjaiA96xVNGYm2AyP3dKzq3SJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3mdDKN6MBEqzZArtlgUZZJgQma/k77QnKEcW0KZFvZWwoZUU4Y2oaINwVt+eZX4tep11b2vlRv1PI0CnMIZXIAHV9CAO2iCDwxG8Ayv8Oakzovz7nwsWtecfOYE/sD5/AGaq43t</latexit><latexit sha1_base64="ZUiwCFXEk4ib7GruZWnSkmU2qOU=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYiJYhbtYGAshYGMZwTOB5Ah7m71kyd7esTsnhJAfYWOhYuv/sfPfuEmu0MQHA4/3ZpiZF6ZSGHTdb2dtfWNza7uwU9zd2z84LB0dP5ok04z7LJGJbofUcCkU91Gg5O1UcxqHkrfC0e3Mbz1xbUSiHnCc8iCmAyUiwShaqVVR5IZcVnqlslt15yCrxMtJGXI0e6Wvbj9hWcwVMkmN6XhuisGEahRM8mmxmxmeUjaiA96xVNGYm2AyP3dKzq3SJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3mdDKN6MBEqzZArtlgUZZJgQma/k77QnKEcW0KZFvZWwoZUU4Y2oaINwVt+eZX4tep11b2vlRv1PI0CnMIZXIAHV9CAO2iCDwxG8Ayv8Oakzovz7nwsWtecfOYE/sD5/AGaq43t</latexit><latexit sha1_base64="ZUiwCFXEk4ib7GruZWnSkmU2qOU=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYiJYhbtYGAshYGMZwTOB5Ah7m71kyd7esTsnhJAfYWOhYuv/sfPfuEmu0MQHA4/3ZpiZF6ZSGHTdb2dtfWNza7uwU9zd2z84LB0dP5ok04z7LJGJbofUcCkU91Gg5O1UcxqHkrfC0e3Mbz1xbUSiHnCc8iCmAyUiwShaqVVR5IZcVnqlslt15yCrxMtJGXI0e6Wvbj9hWcwVMkmN6XhuisGEahRM8mmxmxmeUjaiA96xVNGYm2AyP3dKzq3SJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3mdDKN6MBEqzZArtlgUZZJgQma/k77QnKEcW0KZFvZWwoZUU4Y2oaINwVt+eZX4tep11b2vlRv1PI0CnMIZXIAHV9CAO2iCDwxG8Ayv8Oakzovz7nwsWtecfOYE/sD5/AGaq43t</latexit>

Figure 1.2: A single mode for the n = 1 (left), n = 2 (middle), and n = 3 (right) pairs of modes in the MEM-DRG is shown.
Displacements are exaggerated to highlight the mode-shapes.
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Although the relative orientation of the modes within the nth pair very closely subtend

90◦/n for ring-type resonators [Fox90], their absolute orientations with respect to the excita-

tion and pick-off electrodes are not known a-priori. Thus, multiple inputs and pick-offs are

generally required to guarantee coupling to each mode with the relative orientation of the

modes dictating the optimal electrode arrangement. The excitation electrode arrangement in

Fig. 1.1 is ideal for exciting the n = 2 pair, however, these electrodes also collectively couple

to the n = 1, 3 pairs. The pick-off electrode arrangement has enough spatial resolution to

accurately determine the orientation of the modes in addition to not only (collectively) also

detecting each mode in the n = 1, 2, 3 pairs.

The frequency response derived from a broadband stimulus of the resonator is shown in

Fig. 1.3 and serves to illustrate the general location of the n = 1, 2, 3 pairs of modes near

6 kHz, 13.5 kHz and 24 kHz, respectively.

A potential, denoted Vbias, is applied to the “Bias” electrodes to perturb the dynamics

of the resonator in certain experiments. The resonator is tested in a vacuum bell jar at an

approximate pressure of 100µTorr. There is no thermal regulation of the resonator. Some

heating of the resonator occurs because the electrode buffer board is collocated with the

resonator inside the vacuum chamber. A thirty minute warm-up period is allotted for the

pressure and temperature to roughly stabilize. The resonator die is suspended from wire

bonds which are attached to the buffer board and to the die’s bond pads.

For the resonator in [SKS15], the outer layers of spokes have reservoirs for even finer

tuning with silver ink. These resonators weren’t used for the present studies due to the

desire to explore the full range of point mass perturbations at all points of contact on the

resonator. In [BKS17], there were no gold film disks, and resonator tuning was accomplished

via etching to remove instead of add mass.

The present resonators, used to highlight the system identification method in Chapter 3,

have a 1 µm thick, 130 µm diameter gold film disk deposited in all 96 “spoke” areas on the

outer 4 ring layers. These are then targets for leaded and unleaded solder spheres of 75 and
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Figure 1.3: Broadband frequency response of the resonator obtained from one stimulus-pick-off electrode pair. The n = 1, 2, 3
pairs of modes are evident.

35 µm respectively used for the studies described in Chapter 4.
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1.3 Unit Conversion for Resonator Pick-off Measurements

To get a realistic resonator electrode displacement instead of just using the raw voltage

output, consider the model below for the circuit associated with electrode measurement

resonator motion, with two Op-Amp buffer systems to help clean the signal up, a trans-

impedance amplifier (TIA) followed by a low pass inverting amplifier. The input voltage is

−

+

Ce

Vb

R1

C1TIA1

−

+

Rg

vout

C2

R2

Low Pass Buffer2

Figure 1.4: Op amp buffer network for sense/pick-off from resonator electrode. Capacitor Ce models the small oscillating gap
electrode well. Resulting current with constant bias voltage yields an output voltage after moving through a trans-
impedance amplifier and low pass buffer op amp circuit. Since Vout is measured, one can backtrack to approximate
the electrode gap displacement as a function of frequency.

constant, i.e. Vb = 50 V , C1 = 0.5 pF , R1 = 10 MΩ, C2 = 1 µF , and R2 = 1 kΩ. The

capacitor Ce is a simple model of the measurement electrode, and has a sinusoidal varying

gap, i.e. Ce = ϵ0A
d0+dg cos(ωt)

, where the area is calculated assuming there are 24 electrodes

surrounding the ≈ 1 cm diameter resonator with thickness of 430 µm, or A = 5.87×10−7 m2,

ϵ0 = 8.854× 10−12 F/m, d0 = 25 µm, and dg is desired as a function of frequency.

As a first step, assume that dg << d0. Then Ce ≈ ϵ0A
d0

(1 − dg
d0
cos(ωt)). To determine

the overall transfer function for the system, we have to consider the current through the

TIA, denoted ie. Since Vb is constant, ie = VbĊe = |ie| sin(ωt) = Vbϵ0A
d0

(dg
d0
sin(ωt)). If we are

interested in purely the magnitude of dg, then |dg| = |ie|d20
Vbϵ0A

. The linearized current which is

directly proportional to the electrode gap is treated at the input to the op amp system, with
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the output being the measured voltage from the second op amp, Vout and Vin is the input

signal sent to the resonator.

Vout(s)/ie(s) = Vout(s)/Vin(s)/ie(s)/Vin(s) = H(s) =
R1

1 +R1C1s

GR2C2s

1 +R2C2s
,

where Rg = 18.3 kΩ, and so based on the op-amp used, G = 49.4kΩ
Rg

+ 1 = 3.7. From here it

is straightforward to back out a frequency response for ie/Vin and then, based on the scaling

between ie and dg. To be clear,

dg(jω)/Vin(jω) =
d20

Vbϵ0A

1

H(jω)
(Vout(jω)/Vin(jω))︸ ︷︷ ︸

measured

.

1.4 Prior Results on the DRG

This section lays out the groundwork made for the current research via prior pertinent work

with various DRGs, mostly focused on work with micro-electro-mechanical disk resonator

gyroscopes (MEM-DRGs) in the M’Closkey group. Methods to tune modal frequencies in

the disk resonator include electrostatic tuning biases via specific electrodes which perturb

the strain energy of the vibratory mode as well as adding or removing mass to perturb the

kinetic energy of the mode. Specifically most of these results focus on tuning the n = 2 mode.

This is the most common mode exploited in axisymmetric vibratory gyros. The resonator

is typically mounted to a substrate, so the n = 1 mode is harder to measure. The higher

modes are typically weaker in SNR and are also thus more difficult to measure and model

effectively, however, the n = 3 modes are applicable to gyro use when two independent gyro

angular rate measurements are desired.

A systematic method in [KM06] achieves electrostatic tuning in the n = 2 modes, at

roughly 15 kHz, of a JPL-Boeing MEM-DRG. [ABS98], [YM96], [PHA03], [LC97], and

[CFH94] also use electrostatic biases to tune resonators. The advantage to this tuning pro-
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cess is in its real time nature. These tuning biases, allocated to specific electrodes, can be set

to a desired value during testing. The system contains two orthogonal forcers and two sense

channels that are antipodal to each of the forcers, as well as two orthogonal electrostatic

bias tuning electrodes.

Empirical frequency responses are then measured for each input-output pairing, and a

two degree of freedom mass-spring-damper model is assumed for the system localized to the

n = 2 mode, where the damping contains a Coriolis coupling. This gives rise to constrained

positive definite mass, spring, and damper matrices to fit the empirical frequency response

data. In essence, the least squares error between the model and empirical frequency responses

are minimized to fit the model parameters. Between experiments, the stiffness matrices are

assumed to be the parameters that are adjusted as electrostatic biases are introduced. To

tune the system, constant weights on the stiffness matrices, comprising the perturbations

in stiffness due to each electrostatic bias electrode, are found such that the generalized

eigenvalues between the stiffness matrix (with perturbations from the bias voltage electrodes)

and mass matrix are equal. The results are limited in the sense that there were only two

sense channels used for parameter fitting.

Electrostatic tuning of the resonant modes in real time is effective, however, it places

strict requirement on the bias voltage stability used in tuning. This stability must be main-

tained over the operating environment, specifically due to potential and likely temperature

variations. The important analytical contributions from this paper are related to the model-

ing procedure. Other important research then focuses on tuning resonator vibratory modes

with permanent addition/removal of mass.

In [SKM09] tuning masses are applied on a Macro-DRG (roughly 12 mm in diameter)

with the n = 2 modal frequencies centered at around 1.6 kHz. As seen in [KM06], the sys-

tem is also 2 input/2 output and empirical frequency responses are fit to mass, stiffness, and

damping matrices for each experiment. Each consists of measuring the empirical frequency

responses in the nominal or perturbed cases (for various configurations of mass perturba-
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tions). Assuming the applied mass perturbation is constant, via usage of a consistent magnet

as a mass, mass perturbation matrices (denoted dM or ∆M) are found experimentally as a

function of position of the placed mass (θ). Optimal scaling factors on ∆M matrices at

two tuning positions are found by setting the generalized eigenvalues of the perturbed mass

matrix (nominal plus the two scaled ∆M matrices) and the stiffness matrix to be the same.

This study is limited as well by its use of only the mass perturbation of the outermost ring

on the resonator and in its use of one consistent magnetic mass for tuning, i.e. the mass

perturbations are quantized, for only two tuning locations. The models used in the prior

two works are referred to as the ”mass matrix” or mechanistic model. Work going forward

before the current studies deviate from this model to a simpler one more easily tuned for

tuning.

In [SKS15], the n=2 modes located near 14 kHz (Q=50) for five MEM-DRGs are able to

be tuned to within 80 mHz from a max frequency mismatch of 30Hz via mass deposition. In

terms of the electrodes, increasing the surface area will increase the capacitive effectiveness

of the sensing or forcing. Thus, each I/O channel is a combination of 3 adjacent electrodes

combined into a single electrode. The centroid of the two pick off channels, S1 and S2 subtend

45◦, and the combined single electrodes that are D1 and D2 are antipodal to their respective

sense channels. The trade off as mentioned earlier is that this method limits the degree of

n = 2 mode shape able to be observed. Related to this work are the improvements that

tuned resonators have on force-to-rebalance operation and angle random walks, shown in

[KM14]. In [BM17] etching paper, wafer level etching is applied to systematically eliminate

resonator frequency differences. Seven resonators on a wafer are tuned to below 100mHz

frequency difference in the n = 2 mode via selective ablation. The work done in [BM19]

is the most recent work on the tuning of the MEM-DRG. The work outlines a method to

simultaneously tune frequency differences in the n = 2 and n = 3 vibratory modes. Having

two pairs of tuned modes gives two independent angular rate measurements. The result of

this work is shown on two resonators. Both vibratory modes are tuned to below 200mHz

10



from splits in the natural frequencies starting from 5-25Hz. Once tuned, the n = 2 mode

vibrates at 13.5 kHz and the n = 3 mode operates at 24 kHz. Section 4.3 expands on the

kinetic energy only model used to predictively tune the resonators in these three studies in

more detail and motivates the need for a revised model used in the present studies, inspired

by the mechanistic or “mass matrix” models used in earlier papers.

1.5 Overview of Present Work

Chapter 2 lays the groundwork for primary contributions by analyzing the effect of width

and mass perturbations on thin rings. Specifically, the analysis highlights the effect on a thin

ring’s vibratory modes and center of mass to linear order of perturbation. Chapter 3 details

a novel method to deriving empirical frequency responses through means of extracting a

state space model from resonator ring-down data. The state space models accurately show

(potentially small) changes in the system due to mass/stiffness perturbations. For the system

at hand, analysis is shown to prove that two spatially separated inputs are required to extract

a balanced and modal coordinate model. These models are used in the Chapter 4 as empirical

models because the error between the acquired transient data and the identified state space

models is just the system noise. Chapter 4 then details the use of an updated model to

more accurately predict sensor dynamics after a mass or stiffness perturbation is applied.

This work derives analytical results pertinent to the new model and discusses experimental

prediction results given this new model. Chapter 5 describes the design and calibration of

a force/torque transducer to measure center stem coupling in resonators at the macro-scale

motivated by measurements taken with the MEM-DRG. Results are presented that confirm

the measurement efficacy of this transducer, and point mass perturbations are applied to

two separately tested resonators mounted on the transducer in order to reduce the stem

coupling: (1) a lightweight steel tuning fork with its tuning fork mode at ≈ 400Hz and (2)

a steel Macro-DRG with n = 2 modes at ≈ 1.6 kHz.
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CHAPTER 2

Galerkin Analysis of Thin Rings

2.1 Introduction

Due to the ring resonator gyroscope being comprised of connected thin rings, the natural

place to begin with analyzing the sensor is with a single thin ring. The figure below shows

a uniform thin ring, which is the starting point for any such analysis.

𝜽

𝒉

𝑹

𝒉

𝑳

Figure 2.1: A uniform thin ring is shown in top (left) and isometric (right) views. The center of mass is highlighted, and is
located at the ring center. Dashed lines fix a coordinate frame with the right hand side at 0◦. Any perturbation
analyzed is either a point mass or width perturbation applied to this uniform thin ring. The angular coordinate θ
along the ring, the ring height L, the ring width h, and the ring radius R are depicted.

This chapter derives and highlights key results from the analysis of an imperfect thin ring,

i.e. a uniform ring with mass and/or stiffness perturbations. The weak Galerkin method is

used on a linear PDE describing thin ring vibration to gain key insights into the perturbations
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to modal properties and to ring center of mass first generally and then focused on each

vibrational mode in the n = 2 mode pair.

2.2 Galerkin Analysis for a thin ring

The equation of motion for a thin in-extensible ring with variable width takes the following

form for the tangential displacement of a thin ring, denoted w:

Rm(ẅ(θ, t), h(θ), ρ(θ)) +Rs(w(θ, t), h(θ), ρ(θ)) = 0,

where

Rm = −ρhLRẅ + ρ,θhLRẅ,θ + ρh,θLRẅ,θ + ρhLRẅ,2θ

Rs = +κ
(
w,θ + w,3θ

)
g,3θ + 3κ

(
w,2θ + w,4θ

)
g,2θ

+ κ
(
w,θ + 4w,3θ + 3w,5θ

)
g,θ + κ

(
w,2θ + 2w,4θ + w,6θ

)
g

g(θ) := h3, κ = EL
12a3

, and (·),nθ denotes the nth partial with respect to θ, as seen in [Beh18].

Thermoelastic damping is assumed to be negligible to simplify the analysis. Galerkin

analysis of (2.2) can be used to estimate mass and stiffness matrices for the nth pair of

modes, where the following basis functions are used:

f1(θ) = cos(nθ) (2.1)

f2(θ) = sin(nθ) (2.2)

−u,θ(θ, t) = w(θ, t), and thus trial solutions for the θ component of the tangential and radial
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displacements from earlier can be written as

W (θ, t) = x1(t)f1(θ) + x2(t)f2(θ) (2.3)

U(θ, t) = x2(t)f1(θ)− x1(t)f2(θ) (2.4)

2.2.1 Obtaining mass and stiffness matrices via Galerkin Analysis

Analysis with these basis functions yields the following oscillator model:

(M +∆M)ẍ+ (K +∆K)x = 0, x(t) =
[
x1 x2

]T
, (2.5)

Alternatively, and for sake of brevity, assume x1 = B1e
jωt, x2 = B2e

jωt, representing the

frequency dependent amplitudes attached to the θ component in the tangential and radial

displacements. These are then the components used in the Galerkin analysis.

The system of integral equations for the unknown constant basis weights B1, B2 are

obtained from

∫ 2π

0

(Rm +Rs)f1(θ)dθ = 0∫ 2π

0

(Rm +Rs)f2(θ)dθ = 0,

yielding a generalized eigenvalue equation that is obtained from these residual integral equa-

tions and are gathered as (Rm+Rs)b = 0. b represents the vector of unknown basis function

weights, i.e. b =
[
B1 B2

]T
, corresponding to the the unknown amplitudes of the nth pair

of vibrational modes. The residuals can be decomposed into mass and stiffness matrices, or

(Rm +Rs)b = (−Mω2 +K)b = 0,where M =M +∆M , and K = K +∆K .

The Galerkin method proceeds to obtain desired solution to the ring equation of motion

as follows:
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1. ForRm, substitute the radial displacement U(θ, t) appropriately as the de-facto solution

because of the known relationship between W and U .

2. Integrate the resultant with respect to each basis function, denoted R1m,R2m.

3. The terms attached to B1, B2 for the resultant Rm makes up a scaled version of the

total mass matrix, denoted M.

4. Repeat the process for Rs to back out the total stiffness matrix, denoted K.

There are allowed two mass perturbations and one width perturbation to capture the

effect of one mass perturbation added to the nominal non-degenerate state in a thin ring,

modeled with an aggregate small mass and stiffness perturbation.

The mass perturbation is added in the density term, and the stiffness perturbation is

defined in terms of the ring width as

h(θ) = h0(1 + ϵh cos(p(θ −Ψh)), (2.6)

ρ(θ) = ρ0(1 + 2π(ϵm1δ(θ −Ψ1) + ϵm2δ(θ −Ψ2))). (2.7)

Figure 2.2 highlights an example of a 1θ width perturbation with two point mass pertur-

bations to help visualize Ψh, Ψ1, and Ψ2 relative to width and point mass perturbations to

a thin ring.

Applying the Galerkin procedure after plugging in the perturbed h and ρ terms to the full

differential equation yields mass and stiffness matrices with appropriate perturbed matrices.

Isolating the O(ϵ) terms yields a first order approximation for ∆M and ∆K . Let Γ =
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Figure 2.2: Imperfect ring with 1θ width perturbation with maximum thickness at θ = ψh. θ = Ψ1 and θ = Ψ2 localize two
point masses, denoted m1 and m2, with “weights” proportional to ϵm1 and ϵm2 respectively.

nRh0Lπρ0. Then,

∆M = ∆Mm1
+∆Mm2

+∆Mh
,

∆Mmi
=

Γϵmi

2n
[(n2 + 1)I + (n2 − 1)C(Ψi, n)], i = 1, 2

∆Mh
=


Γϵh(n

2−1)
2n

C(Ψh, n) p = 2n

0 p ̸= 2n

,

∆K =


3
4
ϵhn

2(n2 − 1)2πκh30S(Ψh, n) p = 2n

0 p ̸= 2n

,
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where I ∈ R is the identity matrix, and where

C(θ, n) =

cos(2nθ) sin(2nθ)

sin(2nθ) − cos(2nθ)

 ,
S(θ, n) =

 sin(2nθx) cos(2nθ)

cos(2nθ) − sin(2nθ)

 .
The key takeaways from the Galerkin analysis with only linear perturbation dependencies,

i.e. O(ϵ), are that in the perturbed ring containing stiffness, i.e. width, and mass, i.e. point

mass, perturbations from a uniform thin ring, each point mass contributes an additive change

in the mass matrix, and point masses do not contribute to changes in the stiffness matrix;

only a width perturbation accomplishes this.

2.3 Mass/Stiffness Perturbation Matrices for n = 2 Modes with

Point Mass Perturbations and p = 1θ, 2θ, 3θ, 4θ Width Pertur-

bations

For sake of brevity, and without loss of generality in how the results qualitatively extend

to other vibrational mode pairs, the analysis is now focused exclusively to the n = 2 mode

pair and on only linear dependencies in perturbation parameters. All width perturbations

are also assumed fixed at Ψh = 0. The n = 2 mode pair mass and stiffness nominal and

perturbation matrices pertinent to the point mass perturbation are then as follows:

M =
5

2
ΓI, K = 36πh30κI,

∆M = ∆Mm1
+∆Mm2

+∆Mh
,

∆Mmi
=

Γϵmi

4

5 + 3 cos(4Ψi) 3 sin(4Ψi)

3 sin(4Ψi) 5− 3 cos(4Ψi)

 , i = 1, 2.
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The p = 1, 2, 3, 4 ring width perturbations are exaggerated and visualized in Figure 2.3. The

𝜽

(a) p = 1θ width perturbed ring top view

𝜽

(b) p = 2θ width perturbed ring top view

𝜽

(c) p = 3θ width perturbed ring top view

𝜽

(d) p = 4θ width perturbed ring top view

Figure 2.3: Exaggerated views of p = 1θ, 2θ, 3θ, 4θ width perturbations.

effects of the width perturbations on the mass and stiffness matrices up to linear dependency

are separately listed below to highlight that the only linear effect on the mass and stiffness

matrices due to width perturbations for the n = 2 mode pair is with a 4θ ring width
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perturbation.

∆Mh
=


3Γϵh
4
I p = 4

0 p ̸= 4

, (2.8)

∆K =


27ϵhπκh

3
0

0 1

1 0

 p = 4

0 p ̸= 4

. (2.9)

Although perhaps uninteresting due to the fact that the 1θ, 2θ, and 3θ width perturbations do

not contribute to a change in the mass and stiffness matrices, it is necessary to be complete

with usage of p = 1, 2, 3, 4 for the pθ width perturbations. As seen in the subsequent

section, there are differences in how each width perturbation affects the center of mass in

the structure, which is a vital portion of the analysis, yielding a simple sense as to where

there may be energy losses in the structure if say the ring were held fixed to some base in

the ring center.

2.4 Modal Center of Mass Motion

With infrastructure in place for the Galerkin analysis, the ring displacements can be sep-

arated into x and y coordinate components, denoted Xring and Yring, respectively. These

are defined as functions of θ, and are obtained by projecting the radial and tangential dis-

placement components appropriately combined along with the nominal thin ring locations

projected to x and y coordinates. Figure 2.4 highlights these component projections visually.

Combining all projected components yields:

Xring(θ) = U(θ) cos(θ) +W (θ) sin(θ) +R cos(θ), (2.10)

Yring(θ) = W (θ) cos(θ) + U(θ) sin(θ) +R sin(θ). (2.11)
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Figure 2.4: A uniform thin ring is shown along with its radial and tangential displacements at θ. Projecting the magnitude R
vector from ring center to the ring angle of θ as well as U(θ) and W (θ) onto the x and y axes yields Xring (red)
and Yring (green).

To obtain the ring center of mass, denote Mx and My as the moments of inertia about the

x-axis and y-axis, respectively, and denote mtot as the total ring mass. Then,

mtot =

∫ 2π

θ=0

ρ(θ)dV = La

∫ 2π

θ=0

ρ(θ)dθ,

Mx =

∫ 2π

θ=0

Xring(θ)ρ(θ)dV = La

∫ 2π

θ=0

Xring(θ)ρ(θ)dθ,

My =

∫ 2π

θ=0

Yring(θ)ρ(θ)dV = La

∫ 2π

θ=0

Yring(θ)ρ(θ)dθ,

and thus the motion for the center of mass in x and y coordinates is defined by

Xcm =Mx/mtot, Ycm =My/mtot. (2.12)
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Splitting these into terms attached to B1 and B2 then yields the x and y components of the

center of mass local to each individual vibrational mode defined by the nθ basis functions.

2.4.1 Center of Mass for n = 2 Modes with Point Mass Perturbations and

p = 1θ, 2θ, 3θ Width Perturbations

Computing the center of mass for the point mass perturbations and any width perturbation

yields
[
Xcm Ycm

]T
= (C + ∆C). C depends on the width perturbation defined by p, and

has the following form:

C =



ϵh
4

 0 1

−1 0

b p = 1

0 p = 2

3ϵh
4

 0 1

1 0

b p = 3

. (2.13)

∆c is associated with the point mass perturbations, and has the following form

∆C = ∆Cm1
+∆Cm2

, (2.14)

∆Cmi
= ϵmi

a cos(ψi)
a sin(ψi)

+

 cos(ψi) sin(ψi)

− sin(ψi) cos(ψi)

b

 , i = 1, 2. (2.15)

Again, b is the vector containing the unknown amplitudes of the nth vibrational modes, or

b =
[
B1 B2

]T
.

2.4.2 Effect of Point Mass Perturbations on Center of Mass for n = 2 Modes

with 4θ Width Perturbation

To simplify the subsequent analysis, assume a p = 4 ring width perturbation is located

at Ψh = 45◦. For n = 2, the only width perturbation that has a linear dependency on
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the perturbation parameter is when p = 4, however, unlike ∆K in (2.8), due to the ring

essentially being rotated by 45◦, ∆K = 27ϵhπκh
3
0I, where I ∈ R2x2 is the identity matrix.

As seen in Figure 2.5, due to the axial symmetry of the width perturbation about the ring

center, the center of mass nominally with the width perturbation is C = 0, however, crucially

this width perturbation detunes the n = 2 mode pair. ∆C is associated with the point mass

perturbations, and is the same as in (2.14).

Figure 2.5: The 4θ width perturbation centered at 45◦ is shown. The n = 2 mode pair is detuned, and the perturbation fixes
the mode pair at 0◦ and 45◦ in order of their vibrational frequencies, with mode shapes are shown in dashed gray.
The perturbation maintains axial symmetry about the ring center and thus the center of mass remains fixed.

Conventional tuning techniques in the group, while restricting the number of point masses

to two point masses, would without loss of generality place two point masses of perturbation

amplitudes ϵm1 = ϵm2 = ϵm, with ϵm accounting for the width perturbation detuning due

with weight ϵh, at Ψ1,2 = ±45◦ such that the n = 2 ring modes are tuned, as seen in

Figures 2.6 and 2.7 below.
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Figure 2.6: Snapshots of n = 2 mode located at 0◦ when two trimming point masses are placed at ψm1,m2 = ±45◦, unbalancing
the ring. With the mode, the masses also move with the ring and thus as a result, the center of mass is clearly
displaced along the x-axis.

Figure 2.7: Snapshots of n = 2 mode located at θ = 45◦ when two trimming point masses are placed at ψm1,m2 = ±45◦,
unbalancing the ring. In vibration, the masses also move with the ring and thus as a result, the center of mass is
clearly displaced along the y-axis.

Although the n=2 modes are now tuned, the point masses perturb the center of mass such

that the center of mass displacement to linear perturbation order, plugging in the correct
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mass locations and equal weights, is

∆C = ϵm

√2a

0

+

√2 0

0
√
(2)

b

 . (2.16)

In other words, in general, the position of the point masses shifts the position of center

of mass by
√
2aϵm on the x-axis. For the initially lower frequency mode located at 0◦, the

center of mass oscillates with weight
√
2ϵmB1 on the x-axis, however, for the initially higher

frequency mode located at 45◦, the center of mass oscillates with weight
√
2ϵmB2 on the

y-axis.

In a resonator with a fixed center disk (or center stem) connected to the coupled thin

rings, any modal displacement in the center of mass requires a reaction force from the base

holding the resonator fixed, not only coupling the resonator vibrational modes to the center

stem, but also leading to energy losses in the resonator vibrational modes.

Now consider a slightly different set of four chosen tuning masses at ±45◦ and ±135◦,

such that the point mass weight, ϵm, for all four point masses is chosen, accounting for the

width perturbation detuning with weight ϵh, in order to tune the n = 2 ring vibrational

modes. With the knowledge that the effects of the point masses on the perturbed center of

mass displacement are additive, it can quickly be shown that ∆C = 0, and thus the n=2

ring modes are now tuned without a change to the center of mass, i.e. there is no coupling

between a fixed ring center and ring vibration, seen clearly below in Figure 2.8 and 2.9.
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Figure 2.8: Snapshots of n=2 mode located at θ0◦ when four trimming point masses are placed at ψm1,m2 = ±45◦ and
ψm3,m4 = ±135◦, keeping the ring balanced. In vibration, although the masses move with the ring, the center of
mass remains fixed at the ring center and is not displaced.

Figure 2.9: Snapshots of n=2 mode located at θ = 45◦ when four trimming point masses are placed at ψm1,m2 = ±45◦ and
ψm3,m4 = ±135◦, keeping the ring balanced. In vibration, although the masses move with the ring, the center of
mass remains fixed at the ring center and is not displaced.
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2.5 Extension to Resonator System Measurement and Modeling

In essence the prior subsection lays out a simple toy example in the context of n = 2 ring

modes with a p = 4 width perturbation, but crucially highlights that with knowledge of how

point masses affect the coupling between resonator mode vibration and a fixed resonator

stem would help inform potential methods of point mass placement to reduce that coupling

while simultaneously tuning the vibratory modes if desired.

The results of the work in Chapter 5 extends the insight gained by analyzing a thin

ring to the modeling, measurement, and mitigation of stem/resonator coupling through the

design, construction, and testing of a six degree of freedom force/torque sensor to fully detect

stem/resonator coupling for a simple oscillator, a lightweight steel tuning fork, with tuning

fork modes that are already well modeled in terms of their resonator/fixed base interaction.

Before even arriving at this end goal, it was first crucial to accurately arrive at a

model of the system of interest, whether that be an isolated resonator or a combined res-

onator/transducer system, localized from both of which extraction of modal information is

required for any further physical modeling or analysis. This motivates the system identifi-

cation technique in the following chapter.
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CHAPTER 3

Hankel Matrix State Space ID from Ring-Down Data

Extracting modal properties localized to a certain vibratory mode is of crucial importance in

the modeling and tuning of these sensors. A signal analyzer can generate an empirical set of

frequency responses to extract a parametric model for the multi-input, multi-output (MIMO)

system or simulations can generate frequency responses via applications such as COMSOL.

Of note are the parametric models fit from empirical frequency responses in [SKS15], [KM06],

and [SKM09]. The empirical frequency responses are generated via a signal analyzer that

detects the system response in real time when a chirp signal (or a random white noise

sequence) is used as the test input.

This chapter describes in detail analytical and experimental results for an alternative

method (used in [BM19]) to better extract empirical frequency responses for a particular

resonator mode. The advantage of this new method for deriving an empirical frequency

response via ring-down data is in eliminating parasitic coupling and feed-through dynamics

present in typical empirical frequency responses typically seen when measuring the motional

frequency response during as the system sees an input stimulus. The chapter is organized as

follows. Section 3.1 reviews conventional Hankel Matrix based state space model identifica-

tion in great detail. Section 3.2 extends and customizes the technique to resonators via the

use of burst chirp excitation, Section 3.3 highlights experimental results for the n = 1, 2, 3

vibratory mode pairs, and Section 3.4 rigorously discusses how the model captures the com-

bined effect of the resonator and input/output smoothing and anti-alias filters as well as

how the forcing scheme is necessary and sufficient for complete system model identification.
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Section 3.5 derives a “zoom” method to reduce computational cost and shows results from

the resonator that highlight the method’s efficacy. Section 3.6 concludes the chapter and

discusses potential applications of this modeling process, such as to fit the predictive model

seen in Chapter 4.

3.1 State Space Resonator Model ID

The resonator is assumed to be modeled by a linear difference equation

xk+1 = Axk +Buk, (3.1)

yk = Cxk, (3.2)

where yk represents the pick-off measurements in response to the applied stimulus uk. The

integer index k represents the sample number for the state, and input and output variables. It

is assumed that a uniform sample period of ts is used in an experiment and consequently, the

model inherits this sample period. There are ni input channels, no output channels, and state

dimension ns. Thus, xk ∈ Rn
s , yk ∈ Rn

o , uk ∈ Rn
i A ∈ Rns×ns , B ∈ Rns×ni , and C ∈ Rno×ns .

Given input and output sequences {uk} and {yk}, the objective is to determine {A,B,C},
the model matrices, based on the test data. If only the modal frequencies, time constants,

and mode shapes are desired then it is only necessary to determine {A,C}. If the motional

frequency response is further required, then it is necessary to also determine B for a complete

input-output description of the resonator.

Such models arise when testing linear systems according to the block diagram in Fig-

ure 3.1, where Hs, Ha and Hsys represent smoothing filters, anti-alias filters, and the system

under test, respectively. The input sequence is specified and implemented by the digital

signal processing unit (DSP), and the DSP also samples the response to input stimulus.

The DAC implements a zero-order hold on the discrete-time signal u⃗ and the ADC sam-
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DAC/
ZOH
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-Hsys
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-ADC y⃗

Figure 3.1: Block diagram for generating test data. The system under test, anti-alias filter, and smoothing filter are denoted
Hsys, Ha, and Hs, respectively.

ples the continuous-time signals to yield the discrete-time signal y⃗. If all dynamic elements

in the block diagram are linear, then the sampled data nature of the experiments calls

for the discrete-time system described by (3.1) and (3.2) as a model for the resonator,

which describes the relationship between the input-output samples and the state variable

x⃗, e.g., [AW11]. The state variables include those of the system, smoothing filters, and

anti-alias filters. The models are often denoted with the triplet {A,B,C}.

The modal frequencies and associated damping are determined from analysis of the eigen-

values of A: a resonator mode with frequency ω0 and decay envelope e−αt, α > 0, will produce

an eigenvalue pair e(−α±jω0)ts of A. Mode shapes can be determined from analysis of C and the

eigenvectors of A –more details are given in Section 3.2.3. The motional frequency response

excluding the effects of parasitic forcer-pickoff coupling requires estimating B as well.

3.1.1 Ho-Kalman Procedure

The foundation of the system identification method is the Ho-Kalman algorithm [HK66].

The Ho-Kalman algorithm estimates {A,B,C} based on the pulse response of the system.

The pulse response is the matrix-valued sequence {Yk}, Yk ∈ Rno×ni , where Y0 = 0, Yk =

CAk−1B, k > 0. R denotes the field of real numbers. The pulse response is generated

by stimulating the system, starting from a state of rest (x⃗0 = 0), to unit pulses that are

sequentially applied to each of the ni input channels. In other words, the lth column of the

pulse response represents the sequence of output vectors that are obtained when the lth input

channel is a unit pulse and all other input channels are zero. A realization of the system is

obtained by analyzing the following block-Hankel matrices formed from the pulse response
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data,

H0 =



Y1 Y2 · · · Ync

Y2 Y3 · · · Ync+1

Y3 Y4
...

...
...

. . .
...

Ynr Ynr+1 · · · Ynr+nc−1


,

H1 =



Y2 Y3 · · · Ync+1

Y3 Y4 · · · Ync+2

Y4 Y5
...

...
...

. . .
...

Ynr+1 Ynr+2 · · · Ynr+nc


,

(3.3)

where H0,H1 ∈ Rnonr×ninc . The column and row dimensions use nc and nr pulse response

samples, respectively. The number of samples that are used to create these matrices is

based on the expected model order as well as the need to accurately capture time constants

associated with the decay rates. Based on the model generating the pulse response data, H0

is factored as a product,

H0 = OC, (3.4)

where O and C are the observability and controllability matrices associated with the real-

ization,

O =



C

CA

CA2

...

CAnr−1


∈ Rnonr×ns ,

C =
[
B AB A2B · · · Anc−1B

]
∈ Rns×ninc .

(3.5)
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If the state space model defined by (3.1) and (3.2) is minimal, then the factorization shows

that rankH0 = rankO = rank C = ns (the state dimension) when a sufficiently large number

of pulse response points are used in forming H0 (typically, nonr >> ns and ninc >> ns). In

this manner C and B are obtained from O and C, and since H1 = OA C, A is computed

A = O†H1C†, (3.6)

where O† and C† represent left and right inverses of O and C, respectively, i.e. O†O = I and

CC† = I, where I denotes the identity matrix.

In practice, a model of a to-be-determined order is extracted from pulse response mea-

surements obtained in an experiment. In this case, H0 and H1 are still formed from the

samples of the transient response. The measurement samples include buffer noise and effects

of disturbances and consequently H0 is typically full rank, however, there are often a handful

of dominant singular values that can be used to closely approximate H0 with a lower rank

matrix that is then factored according to (3.4). Thus, the first step in analyzing H0 is to

compute its singular values where the number of dominant singular values provides insight

into an adequate model order. Suppose UΣV T is a singular value decomposition (SVD)

of H0 , where U and V are orthogonal matrices, and (·)T denotes transpose. If the first r

singular values of H0 are dominant, i.e. σr >> σr+1, then H0 can be approximated by a rank

r matrix H0,r = UrΣrV
T
r where Ur is a sub-matrix of U formed from its first r columns, Vr is

a sub-matrix of V formed from its first r columns, and Σr is a diagonal matrix with diagonal

elements {σ1, σ2, . . . , σr} (the first r singular values). Thus, H0 is replaced by a lower rank

approximation which retains the dominant singular values and the corresponding left and

right singular vectors. This approach was first proposed in [ZM74] as a variant of the basic

Ho-Kalman algorithm. The results in this paper demonstrate that this approximation of H0

works quite well when the signal-to-noise ratio associated with the measurements is high.

The factorization of H0,r is not unique, however, other factorizations correspond to different
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coordinate representations of an r-state realization with the same input-output behavior.

One choice of factorization based on the SVD is O = UrΣ
1
2
r and C = Σ

1
2
r V T

r . The state space

C matrix is defined as the first no rows of O, and B is defined as the first ni columns of

C. The left and right inverses of the factors are O† = Σ
− 1

2
r UT

r and C† = VrΣ
− 1

2
r and the

computation of A is given by (3.6).

3.2 Application to Resonators

The modeling approach proposed in this section can be applied to any MEMS resonator,

however, the Ho-Kalman procedure will be adapted for determining models of the resonator

schematic shown in Figure 1.1, where further resonator and experimental details are also

described. The input and output electrode arrangement defines a 2-input, 8-output system

(no = 8 and ni = 2 in (3.1) and (3.2)). Although it is a relatively simple task to locate

the modal frequencies to within a few Hz, this system identification technique extracts de-

tailed information on the modal frequencies, damping, and mode orientations even when the

frequencies within a given pair are essentially equal.

3.2.1 Transient Response Data

Models are separately developed for each pair of vibratory modes. The Ho-Kalman procedure

is applied to measurements of the resonator’s transient, unforced response. The input is not

impulsive, however, because the energy density of a pulse is too small to evoke a measurable

response due to physical limits on the pulse amplitude. Although it is possible to estimate the

pulse response of a system using persistent excitation signals (for example, wideband random

inputs), this approach may not be desirable in MEMS resonator applications. First, coupling

between the excitation and pick-off electrodes can easily obscure the resonator’s motional

response, eg. [GBG18], and the use of persistent signals will always include effects of coupling

due to the signal processing that is used to derive the pulse response estimate. Second,
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the smoothing required to recover the pulse response from input-output data generated

with persistent input signals is generally associated with long testing times in order to

obtain accurate estimates of mean-square spectra or correlation functions. It is important

that the resonator dynamics be time invariant during such tests, however, this may be

difficult to achieve in some cases, e.g. modal frequency drift due to small changes in resonator

temperature.

The proposed testing technique employs a periodic burst chirp signal applied to each input

channel. The burst energy is constrained to be in a neighborhood of a pair of degenerate

modes and, thus, produces a strong response from these modes. One period of the scalar-

valued periodic burst chirp excitation signal v, written as a continuous-time function, is

v(t) =


0, t ∈ [0, τp − τb)

a cos
(
2πfch(t)(t− τp + τb)

)
, t ∈ [τp − τb, τp)

(3.7)

The time-dependent frequency of the burst is given by

fch(t) =
1

2τb
(fhi − flow)(t− τp + τb) + flow. (3.8)

The duration of the burst is τb seconds, τp is the signal period (τp > τb), and a is the amplitude

of the burst. This signal concentrates its energy in the frequency band [flow, fhi] Hz. The

burst duration, amplitude, and the frequency band where its energy is concentrated are

easily adjusted using parameters in the time-domain description of the function. The phase

of burst is chosen so that the burst occurs at the end of the period. Both input channels

are stimulated with the periodic burst chirp (3.7), however, a time delay equivalent to half

a period is introduced between the bursts appearing in each channel, in other words, the

resonator input is defined

u⃗(t) =

 v(t)

v(t− τp/2)

 (3.9)

where τp/2 > τb so that there is an input-free transient period between bursts. Discrete-time
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versions of these signals are defined as vk = v(kts) and u⃗k = u⃗(kts),

vk = 0, k ∈ [0, Np −Nb − 1]

and

vk =a cos
(
2πfch,k(k −Np +Nb)ts

)
k ∈ [Np −Nb, Np − 1],

where fch,k = fch(kts) is an appropriate update of the frequency function in (3.8). The signal

processing equipment implements the discrete-time signals such that there are Np samples

in one period and Nb samples in the burst portion of the signal (Npts = τp and Nbts = τb).

It is also assumed that the number of points in one period is even (this simplifies notation

in the analysis to follow and can be relaxed). The signal (3.9) is implemented as the input

for all tests reported in this paper. The period and chirp frequency range are adjusted to

suit the testing of a specific pair of modes. An example of u⃗ is shown in Figure 3.2 where

τb = 1 second and τp = 10 seconds. The chirp frequency range is chosen to excite either

the n = 1, n = 2 or n = 3 pair of modes, however, the sinusoidal oscillation of the chirp

cannot be resolved on the displayed time scale. It is necessary to stagger the bursts as

shown in (3.9) because simultaneously applying the same stimulus to each input channel is

equivalent to exciting the resonator with a single “virtual” electrode –such a test may not

adequately excite both modes in a degenerate pair (for example, the virtual electrode may

be located near a radial node of the mode shape and therefore will weakly couple to that

mode). A more rigorous explanation for this is shown in 3.4.2.

3.2.2 Defining the Hankel matrices

The transient data between bursts is used to form the block-Hankel matrices (3.3). Since

u⃗ = 0 in these intervals, there is no parasitic input-output coupling and so the resonator

model built from this data will not feature this coupling. An example of measurements
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Figure 3.2: Burst chirp input (3.9) applied to the electrodes D1 and D2. The signals in each input channel are periodic (τp = 10
seconds) and have identical bursts of duration τb = 1 second, however, there is a 5 second delay (τp/2) between the
input channels. The interval between bursts generates input-free transient data from which the resonator model is
developed.

when the bursts are designed to excite the n = 1 pair are shown in Figure 3.3. The data

segment corresponding to t ∈ [0, 3] (highlighted red) is used in lieu of the first column

of the resonator’s pulse response, and the data segment corresponding to t ∈ [5, 8] (also

highlighted red) is substituted for the second column of the resonator’s pulse response. Since

ts = 1/70000 second, there are over 200k data points recorded from each each pick-off for

each transient data segment. The data used for modeling the resonator is acquired in a time

interval that is less than one period of the input and in essence provides a “snapshot” of the

resonator dynamics that is less susceptible to temperature-induced drift.

In contrast to the traditional Ho-Kalman procedure, this analysis does not directly yield

the state-spaceB matrix but instead identifies “initial conditions” for the model’s state vector

at the start of the two data segments (at t = 0 and t = 5 in Figure 3.3). Let x⃗0,1, x⃗0,2 ∈ Rns
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correspond to the model state at t = 0 and t = 5, respectively. Define X =
[
x⃗0,1 x⃗0,2

]
.

The transient responses are assumed to be generated by Yk = CAkX ∈ R8×2, k ≥ 0, where

the index value k = 0 refers to the first data sample in both data segments. The Hankel

matrices for this scenario are slightly modified with a shift in indices,

H0 =


Y0 Y1 · · ·
Y1 Y2 · · ·
...

...
. . .

 , H1 =


Y1 Y2 · · ·
Y2 Y3 · · ·
...

...
. . .

 . (3.10)

Note that

H0 = OCX , H1 = OACX , (3.11)

where O is given in (3.5) and CX

CX =
[
X AX A2X · · · Anc−1X

]
∈ Rns×ninc .

Thus, analysis of H0 and H1 yield A, C and X for the pair of modes under consideration.

The number of block-columns and block-rows in the Hankel matrices are denoted nc

and nr. In general, one dimension must be large enough to accurately capture the time

constants of the modes. A lower bound for the number of transient data points required

in the analysis can be estimated. Suppose a resonant mode has modal frequency f Hz and

time constant τ seconds. For standard sampling of the resonator transient response at least

four samples per period of oscillation is desirable so fs > 4f , where fs is the sampling rate

in Hz (fs = 1/ts, for sample period ts seconds). An accurate measurement of the resonator

time constant requires a data record of minimum length, for example, τ seconds (one time

constant). Thus, the number of points in the transient data record that is used to form the

Hankel matrices must be at least fsτ > 4fτ ≈ Q, where Q is the quality factor associated

with the mode. For high quality factor resonators, the data sets can become quite large and

although storage is typically not an issue, the analysis of large Hankel matrices can require
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significant computation. The “zoom” technique proposed in Section 3.5 significantly reduces

the burden of storing and processing large data sets.

3.2.3 Modal frequencies, damping, and orientation

The A and C matrices can be analyzed for modal frequencies, damping and mode orientation.

Since the identified model is obtained by sampling a continuous-time system with sample

period ts, a mode with exponential decay rate σ (units of s−1) and modal frequency ωn (units

of rad/s) will be associated with eigenvalues of the form e(−σ±jωn)ts , where j =
√
−1. Thus,

analysis of the eigenvalues of A yield the modal frequencies and time constants.

The mode orientation can be determined from the eigenvectors of A. First, referring to

the pick-off electrode arrangement in Figure 1.1, the angular reference bisects the S1 pick-off

electrode and establishes the origin for angle measurements and hence the orientation of a

mode shape. The position of S1 with respect to the angle origin is denoted θ1 = 0◦, the

position of S2 with respect to the angle origin is denoted θ2 = 15◦ and so forth through

S8 with θ8 = 315◦. Although the mode shapes for the resonator in Figure 1.1 do contain

higher-order harmonics in θ, eg. [BKS17], they are very small in amplitude compared to the

dominant terms. Thus, it is assumed a mode shape is defined by a cos(2n(θ−ϕ)), where ϕ is

the orientation, for a mode in the nth pair of degenerate modes. The amplitude of the mode

shape as measured by the pick-off electrodes is proportional to


a cos(2n(θ1 − ϕ))

a cos(2n(θ2 − ϕ))
...

a cos(2n(θ8 − ϕ))

 =


cos(2nθ1) sin(2nθ1)

cos(2nθ2) sin(2nθ2)
...

cos(2nθ8) sin(2nθ8)


︸ ︷︷ ︸

Θ

α
β



where α = a cos(2nϕ) and β = a sin(2nϕ), and Θ is defined as indicated. The objective is

to determine α and β from analysis of the identified model. Let w⃗ be an eigenvector of A
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corresponding to eigenvalue e(−σ+jωn)ts and consider the unforced response of the resonator

with initial condition x⃗0 = 1
2
(w⃗ + w⃗∗), where ∗ denotes complex-conjugate. This initial

condition only involves one mode. The transient response, as measured by the pick-offs,

would be

yk = CAk
1

2
(w⃗ + w⃗∗)

= e−σkts cos(ωnkts)Re(Cw⃗),

where Re(Cw⃗) ∈ R8 denotes the real part of Cw⃗. Alternatively, the imaginary part of

Cw⃗ can be used since this corresponds to replacing cos with sin in the transient response.

Assuming the anti-alias filters are identical, an element of Re(Cw⃗) represents the amplitude

of the mode shape expressed at the electrode of the corresponding measurement channel.

Thus, α and β are determined from the following least squares problem,

argmin
α,β

∥∥∥∥∥∥Θ
α
β

− Re(Cw⃗)

∥∥∥∥∥∥ ,
where ∥ · ∥ denotes the Euclidean norm. The orientation ϕ of the mode with respect to the

angle reference is computed from α and β.

3.2.4 Completing the resonator model

The B matrix in the resonator model can be determined once A and X have been extracted

from the Hankel matrix analysis. The relationship between the columns of B, denoted

b⃗1, b⃗2 ∈ Rns , and X is

X =

x⃗0,1
x⃗0,2

 =

 I ANp/2

ANp/2 I

Γ⃗b1
Γ⃗b2

 , (3.12)

where

Γ = (I − ANp)−1

(
Np−1∑
k=0

ANp−1−kvk

)
∈ Rns×ns .
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The resonator is asymptotically stable due to the fact that there is always some energy

dissipation so det
(
I − ANp

)
̸= 0. Therefore, Γ is always well-defined. The determinant of

the matrix in (3.12) is equal to det
(
I − ANp−2Nb

)
and is similarly non-zero. The elements of B

in (3.12) are easily established by simulating the model from the identified initial conditions

and knowledge of the burst chirp signal, vk, all assuming the resonator has settled into its

periodic response to the periodic input u⃗.

3.3 Identification Results

The modeling results for the n = 1, 2, 3 pairs of modes are presented in this section. The

period of the input is 10 seconds in all cases, however, the burst chirp frequency parameters

are tailored to a given pair based on the modal frequencies estimated from Figure 1.3. The

input signal parameters are reported in Table 3.1. The chirp frequency span is 100Hz. The

burst amplitude is 9 volts and its duration is 1 second (ts = 1/70000 second, Np = 700 k

and Nb = 70 k). The block-Hankel matrices have the same dimension nr = 5 for all cases,

however, nc = 210000 for n = 1, 2, and nc = 105000 for n = 3. These choices correspond

to using 3 seconds and 1.5 seconds of transient data in the formation of H0 and H1 –this is

adequate to accurately identify the time constants associated with the modes.

The five largest singular values of H0 for each case (Vbias = 0) are given in Table 3.2.

Since σ4 exceeds σ5 by at least two orders of magnitude in all cases, H0 is approximated by

a rank 4 matrix. Thus, ns = 4 and A, C and X are obtained from analysis of H0,4 and H1.

The quality of the models can be assessed by simulating the model from the identified initial

Table 3.1: Burst chirp input parameters

Pair flow (Hz) fhi (Hz) a (V) τp (s) τb (s)

n = 1 6525 6625 9 10 1
n = 2 13500 13600 9 10 1
n = 3 23825 23925 9 10 1
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Table 3.2: Five largest singular values of H0

Pair σ1 σ2 σ3 σ4 σ5 σ4/σ5

n = 1 338 315 226 212 0.12 1841
n = 2 154 147 124 118 0.09 1332
n = 3 15.9 12.6 12.1 9.6 0.12 81

conditions: CAkx⃗0,1, k ≥ 0, is compared to the transient response measurements starting

at t = 0; similarly CAkx⃗0,2, k ≥ 0, is compared to the transient response measurements

starting at t = 5. Residuals are formed from the difference between the simulations and

measurements (over the same 3 second data segment used in forming the Hankel matrices),

thus, there is a residual associated with x⃗0,1 and with x⃗0,2. Since each residual has eight

“channels” corresponding to the eight pick-offs for the transient measurements taken at

t = 0 and t = 5, the power spectrum of each channel for each transient record is computed

and then summed to a scalar-valued function of frequency –the square root is graphed and

compared to the measured baseline noise spectrum, which is aggregated in a similar manner

to the residuals for the eight “channels” . The baseline noise spectrum is the same over all

tests. In a similar manner, the power in the transient signals are computed for the time

intervals starting at t = 0 and t = 5 (although the transient response of the resonator is not

a stationary signal the PSD computation still quantifies its power distributed as a function of

frequency over the 3-second interval). In order to have a reasonable degree of smoothing for

the relatively short duration data sets, the frequency resolution is only 100Hz. The power

in transient should be much larger than the power in the residual in a neighborhood of the

pair of modes under test if the model is accurately reproducing the transient response.

The frequency response of the models is also compared to non-parametric frequency

response estimates. The columns of the model’s B matrix are determined according to Sec-

tion 3.2.4 and then the discrete-time frequency response is computed via C (ejωts − A)
−1
B,

where ω is the frequency variable in units of rad/s and B =
[⃗
b1 b⃗2

]
. The non-parametric fre-

quency response is estimated from single-input-at-a-time tests using a periodic band-limited

chirp excitation signal. The ratio of the discrete Fourier transform (DFT) of one period of
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a pick-off measurement to the DFT of one period of the input (applied to either D1 or D2)

yields the empirical frequency response estimate for the corresponding input-output channel.

The non-parametric method includes the effects of input-to-pick-off, or “feedthrough”, cou-

pling. The parametric models, however, completely reject any feedthrough and only show

components associated with resonator motion.

The feedthrough is largely associated with capacitive coupling between electrodes, and

since the input electrodes are driven by buffered voltage sources, the currents picked up by

the pick-off electrodes generally increase with increasing frequency. This creates the trend

in Figure 1.3 up to the bandwidth of the pick-off buffers which is approximately 30 kHz.

The feedthrough can be estimated using the models and measurement data: 1) the model

is simulated over the time window that the burst is active; 2) this result is subtracted from

the contemporaneous measurement data to produce a short (about τb second) record of data

that has had the resonator motional component removed; 3) the non-parametric frequency

response estimate is applied to this short segment along with the corresponding segment of

burst chirp signal. Although the short data records do not give high frequency resolution, this

is typically not necessary since the feedthrough is nearly constant in a small neighborhood

of the modes. The feedthrough is significant for the n = 2, 3 modes and so it is estimated

for these cases.

3.3.1 Results for the n = 1 modes

The periodic response of the resonator is shown in Figure 3.3 for a subset of pick-offs. The

power spectra of the transient, the residual and pick-off noise are shown in Figure 3.4. An

interesting feature in the spectra in Figure 3.4 is the presence of the second harmonic near

13 kHz. This harmonic is not captured by the linear resonator model and so the power in

the residual and transient data PSDs are equal in a neighborhood of this harmonic. Signed

amplitudes and fit sinusoids for the mode pair to determine mode orientation are plotted in

Figure 3.5. The modal properties extracted from the identified model are given in Table 3.3
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Table 3.3: n = 1 modal properties extracted from model

f1 (Hz) f2 (Hz) τ1 (s) τ2 (s) ϕ1 (deg) ϕ2 (deg)

6559.17 6604.80 4.66 2.45 7.3 -82.3

and the frequency response of the model and a non-parametric estimate are compared in

Figure 3.6.

3.3.2 Results for the n = 2 modes

The n = 2 pair of modes is an interesting case because this pair has been “tuned” using the

algorithm introduced in [BKS17] and deposition technique from [SKS15]. The modal fre-

quencies are very nearly equal and separate resonances cannot be distinguished in frequency

response plots. Nevertheless, the modeling technique is able to clearly identify two modes

and, importantly, their mode orientations. The periodic response of the resonator is shown

in Figure 3.7 for a subset of the pick-offs when Vbias = 0.

As a further demonstration of power of the proposed modeling technique, the n = 2

modes are perturbed by applying Vbias ̸= 0. The perturbed modes exhibit small changes

in modal frequencies, however, it is shown that the mode orientations are quite sensitive to

Vbias. Signed amplitudes and fit sinusoids for the mode pair to determine mode orientation are

plotted in Figure 3.8. A summary of the modal properties are given in Table 3.4. Figure 3.9

compares the PSD of the residual to the PSD of the transient data when Vbias = 0. The

frequency response of the model versus a non-parametric estimate is shown in Figure 3.10.

Significant feedthrough is evident in certain input-output channels.

3.3.3 Results for the n = 3 modes

The response of the resonator to the periodic burst chirp input adapted to excite the n = 3

pair of modes is shown in Figure 3.11. The feedthrough coupling is quite evident in the

time response. The five largest singular values of H0 are reported in Table 3.2. Signed
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Figure 3.3: Response of n = 1 modes to the input in Figure 3.2. Only a subset of the pick-offs are shown (four, out of eight,
pick-offs). The data highlighted in red is used to form the Hankel matrices after detrending to remove offsets. The
model state x0,1 is associated with t = 0, while x0,2 is associated with t = 5.
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n=1 modes

Figure 3.4: (Left) Spectrum associated with the transient data used for model development. The n = 1 pair of modes are near
6.6 kHz. A second harmonic is also evident. The dashed vertical line is located at the n = 2 modal frequencies.
(Right) Spectrum of the residuals compared to the noise floor (dashed). The model has removed significant power
from the transient data at the n = 1 modal frequencies. The model is linear and does not capture the harmonic
distortion near 13 kHz.

Figure 3.5: n = 1 signed amplitudes (stars) and least-squares fit sinusoids (solid) for each mode. Modes are clearly close to 90◦

apart, consistent with orthogonality for the n = 1 mode pair.
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Figure 3.6: Non-parametric frequency response magnitude (dash-dot) is compared to the model frequency response for the
n = 1 pair of modes. The “◦” are derived from analysis of the model’s eigenvectors –see Section 3.4.
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Figure 3.7: Response of n = 2 modes to the input in Figure 3.2 when Vbias = 0. Only a subset of the pick-offs are shown (four,
out of eight, pick-offs). The data highlighted in red are used to form the Hankel matrices after detrending to remove
offsets.
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Figure 3.8: n = 2 signed amplitudes (stars) and least-squares fit sinusoids (solid) for each mode. Modes are clearly close to 45◦

apart, consistent with orthogonality for the n = 2 mode pair.

Table 3.4: n = 2 modal properties determined from model

Vbias (V)

0 15 30 45

f1 (Hz) 13548.95 13548.89 13548.87 13548.79

f2 (Hz) 13549.04 13548.96 13548.90 13548.85

f2 − f1 0.09 0.07 0.03 0.06

τ1 (s) 1.08 1.08 1.08 1.08

τ2 (s) 1.08 1.08 1.08 1.08

ϕ1 (deg) -3.7 -2.3 5.5 31.0

ϕ2 (deg) 41.4 42.8 50.5 75.8

|ϕ2 − ϕ1| 45.1 45.1 45.0 44.8
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n=2 modes

Figure 3.9: (Left) Spectrum associated with the transient data used for model development. The n = 2 pair of modes are
near 13.5 kHz. (Right) Spectrum of the residuals compared to the noise floor (dashed). The residual spectra are
essentially equal to the noise spectrum.

Table 3.5: n = 3 modal properties determined from model

f1 (Hz) f2 (Hz) τ1 (s) τ2 (s) ϕ1 (deg) ϕ2 (deg)

23867.31 23901.07 0.43 0.43 15.5 -14.5

amplitudes and fit sinusoids for the mode pair to determine mode orientation are plotted in

Figure 3.12. A summary of the modal frequencies and mode orientations extracted from the

4-state model are given in Table 3.5. The power spectrum of the residual and transient are

shown in Figure 3.13. Finally, Figure 3.14 compares the frequency responses of the model

and non-parametric estimate.

48



Figure 3.10: Frequency response magnitudes showing the n = 2 pair of modes. The non-parametric estimate (dash-dot) has
significant feedthrough coupling (estimated shown) in some input-output channels. The model frequency response
is not afflicted by the coupling.
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Figure 3.11: Response of n = 3 modes to the input in Figure 3.2 when Vbias = 0. Only a subset of the pick-offs are shown
(four, out of eight, pick-offs). The data highlighted in red is used to form the Hankel matrices. The feedthrough
coupling is a significant issue for these modes as evidenced by the measurement values at the times the burst is
active, cf. Figure 3.2.
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Figure 3.12: n = 3 signed amplitudes (stars) and least-squares fit sinusoids (solid) for each mode. Modes are clearly close to
30◦ apart, consistent with orthogonality for the n = 3 mode pair.

n=3 modes

Figure 3.13: (Left) Spectrum associated with the transient data used for model development. The n = 3 pair of modes are near
24 kHz. (Right) Spectrum of the residuals compared to the noise floor (dashed).
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Figure 3.14: Non-parametric (dash-dot) and model frequency response magnitude for the n = 3 modes. The estimated
feedthrough coupling is also shown. The “◦” are derived from analysis of the model’s eigenvectors –see Sec-
tion 3.4.
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3.4 Discussion

The veracity of the identified models is confirmed in several ways. First, comparing model

and non-parametric frequency responses shows very close agreement between the resonant

frequencies and peak magnitude at these frequencies. The model and non-parametric fre-

quency responses differ away from the resonant frequencies, though, because of the feedthrough

coupling. Although not shown here, if the feedthrough estimate is summed with the model

frequency response, the non-parametric frequency response is recovered.

The mode orientations can also be estimated from the magnitudes of the frequency re-

sponses at a given resonant frequency –mapping the magnitudes to the electrode locations

gives insight into orientation of the mode under consideration. This approach can only be

applied when the modal frequencies are significantly detuned because the two modes respond

in an essentially decoupled manner. The model yields mode orientations that are consistent

with the non-parametric frequency responses in the n = 1, 3 cases. For these cases the

elements of Re(Cw⃗) are graphed in the frequency response plots at the modal frequency

corresponding to the eigenvector w⃗. Since all elements can be scaled by the same factor

without changing the mode shape, the scaling is employed to match one element in Re(Cw⃗)

to the frequency response magnitude. Figs. 3.6 and 3.14 show the scaled elements of Re(Cw⃗)

for both modes as the “◦” points –note how all of these amplitude estimates using the eigen-

vector coincide with the frequency response magnitudes at the resonant frequencies. This

confirms that mode orientations derived from the models are consistent with those derived

from the frequency response plots.

The spectra of the residuals compared to the noise floor and spectra of the transient

data is a measure of how well the model captures the transient response measurements. The

residual in the n = 2, 3 cases is indistinguishable from the noise floor measurement. In other

words, the model has removed any trace of the transient response from the residual. The

n = 1 residual still shows some power at the modal frequencies but the RMS value of the
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residual is more than two orders of magnitude smaller than the transient response RMS value.

Also note that the model identifies poorly matched time constants for these modes. The time

constant mismatch is not readily apparent from the time domain data because both modes

are mixed into each output channel. Although the source of the mismatched time constants

has not been identified with certainty, the fact that the n = 1 modes are not isolated from

the substrate makes them very susceptible to the boundary conditions/mounting method of

the die (in contrast, the n = 2, 3 pairs are nominally isolated from the substrate). It was

mentioned in Chapter 1 that the resonator die is suspended from wire bonds. This mounting

method reduces interaction between the die and its supporting substrate when testing the

n = 1 modes. Although this mounting method produces the longest time constants for the

n = 1 modes, the time constants are still sensitive to how the wire bonds are attached to the

buffer board, e.g., removing and reattaching the die will change the n = 1 time constants.

The sensitivity of the n = 1 modes to its boundary conditions, and the fact that they are

very susceptible to vibration imposed on the die, make them unsuitable for exploitation

in vibratory gyros, however, they are included here to demonstrate the generality of the

proposed modeling method.

Finally, the mode orientations obtained from the models should conform to known prop-

erties of modally degenerate ring-type resonators. The mode orientations determined from

analysis of the models satisfy |ϕ1 − ϕ2| ≈ 90◦/n with at most a 0.5◦ deviation for all of

the cases considered in Section 3.3, including the n = 2 modes for different values of Vbias.

This result is consistent with the modal properties of slightly perturbed ring resonators. It

is important to note that the model was in no way constrained to enforce a relationship

between the orientations of the modes in a given pair –this observation lends considerable

credibility to the modeling approach. Further investigation of the n = 2 modes yields addi-

tional insight. The modal frequencies are weakly perturbed by Vbias as shown in Table 3.4 yet

the mode orientations are very sensitive to Vbias. This behavior is well-known in structural

systems with nearly equal eigenvalues: although the eigenvalues are continuous functions
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of the perturbation parameter (in this case the “stiffness” created by the electrostatic force

gradient when Vbias ̸= 0), the eigenvectors are generally not continuous functions of the

perturbation parameter so it is no surprise that the mode orientations display sensitivity to

Vbias. The foregoing discussion addresses the ability of the model to provide accurate modal

information for degenerate mode resonators.

One outstanding issue is why the first four singular values of H0 are orders of magnitude

larger than the remaining singular values. This fact implies that a model order of four

(ns = 4) can accurately represent the transient data. The anticipated minimum model order

is four because this corresponds to the two oscillator model that is necessary to capture

both modes in a degenerate pair, however, the testing block diagram in Figure 3.1 shows

that the smoothing and anti-alias filters filters are part of the signal chain that includes

the resonator and, thus, their effects are present in the measurements. There are a total

of 76 states associated with these filters –each of the eight pick-offs is filtered by an 8-pole

anti-alias filter and each of the two resonator inputs is preceded by a 6-pole smoothing filter.

Despite the large number of states in these filters, the analysis in Section 3.3 highlights that

a 4-state model can very accurately reproduce the transient measurement data.

The truncation of H0 to a rank 4 matrix preserves the dynamic features that produce the

highest energy in the pick-off measurements. These high energy modes are the resonator’s

modes due to their relatively long time constants when compared to the time constants of

the anti-alias and smoothing filters. Nevertheless, the filters do contribute gain and phase

shifts to the measurement data and, therefore, must be reflected in some manner in the

4-state models.

Since the Hankel matrix modeling technique produces models that are equivalent to

models based on balanced truncation (using finite-time gramians), a realization of the system

that includes the four resonator states and the filter dynamics can be transformed into block

modal form. Truncating all of the states except the resonator states yields an “A” matrix

whose eigenvalues match those of the resonator, however, the magnitude and phase shifts
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produced by the smoothing and anti-alias filters in a neighborhood of the resonator modal

frequencies are embedded into the B and C matrices of the truncated realization. Thus,

the Hankel matrix analysis produces a model in which the resonator modes are faithfully

captured, however, the identified B and C matrices include the effects of the input and

output filters. Section 3.4.1 below provides additional details and, in summary, proves that

the pure resonator system dynamics, Hres, can still be recovered even in the presence of

input and sensing filters, Ha and Hs.

In the context of a resonator with two (possibly degenerate) modes, 3.4.2 shows that

independent burst input sequences will, on average, equally excite both modes in a mode

pair, thereby facilitating the identification of vibrational modes from measurements. Section

3.4.2 also highlights that whether the burst is random or deterministic, the two inputs need

to be separated in time to generate two separate initial conditions for the transient ring-down

model.

3.4.1 Effect of Input and Output Filters

The effects of the smoothing filters located at the resonator input and anti-alias filters lo-

cated at the resonator output are quantified. It is demonstrated that the identified models

have modified C and B such that the magnitude and phase shift introduced by the filters at

the modal frequencies is preserved in the identified models. It was shown in [Jon84] that as

structural damping approaches zero, balanced coordinates coincide with modal coordinates.

The significance of this result is that the Hankel matrix modeling technique produces mod-

els that are equivalent to models based on balanced truncation. Thus, since the balanced

realization coordinates coincide with modal coordinates as the modal damping is reduced

to zero, the system consisting of the resonator and filters can be studied in modal coordi-

nates. Assume that the anti-alias filter, smoothing filter and resonator have models given

by {Aa, Ba, Ca, 0}, {As, Bs, Cs, 0} and {Ar, Br, Cr, 0}, respectively. The discrete-time case is

studied, however, the coordinate transformations are identical for continuous-time models.
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It is assumed that all subsystems are strictly proper. A realization for the state-space matrix

of the series connection of these dynamic elements Figure 3.1 is given by

x̃k+1 = Ãx̃k + B̃uk, yk = C̃x̃k,

where

Ã =


Aa BaCr 0

0 Ar BrCs

0 0 As

 , B̃ =


0

0

Bs

 , C̃ =
[
Ca 0 0

]
.

The vector x̃k is a concatenation of the states of the filters and resonator. The “0” blocks

represent appropriately dimensioned matrices of zeros. The partitions Ã, B̃, and C̃ are

compatible. Define the following matrix

T =


I T1 T3

0 I T2

0 0 I


where T1, T2, and T3 are solutions to the following Sylvester equations,

AaT1 − T1Ar = −BaCr, (3.13)

ArT2 − T2As = −BrCs, (3.14)

AaT3 − T3As = −BaCrT2. (3.15)

The blocks of T are compatible rank wise with Ã. Sylvester equation (3.13) has a solution

if the eigenvalues of the Aa and Ar are disjoint. Since the eigenvalues of Ar represent the

lightly damped resonator modes and eigenvalues of Aa are the anti-alias filter poles, it is

reasonable to assume that the solvability condition is satisfied. A similar argument can

be made for (3.14). Sylvester equation (3.15), which involves Aa and As, may not have a

solution if identical anti-alias and smoothing filters are used, however, for the tests conducted
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in Section 3.3, the anti-alias filter poles and smoothing filter poles are disjoint. Assuming

the Sylvester equations are solvable, T block diagonalizes A

T−1ÃT =


Aa 0 0

0 Ar 0

0 0 As

 , T−1B̃ =


T1T2 − T3

−T2
I

Bs

C̃T = Ca

[
I T1 T3

]
.

Modal truncation which retains the dynamics present from the modal portion of the system

response produces

{Ar,−T2Bs, CaT1} (3.16)

with corresponding frequency response

−CaT1(zI − Ar)
−1T2Bs, z = ejωts (3.17)

where ω is the frequency variable. The modal truncation doesn’t affect the resonator modes,

however, the total frequency response is modified by the filters at the input and output.

The precise manner in which the frequency response is modified is derived below. The

original Sylvester equations can first be manipulated to relate the resonator state space

model {Ar, Br, Cr} to the overall identified frequency response model in (3.16). From (3.13),

−(zI − Aa)T1 + T1(zI − Ar) = −BaCr,

which is rearranged to

−CaT1 + Ca(zI − Aa)
−1T1(zI − Ar) = −Ca(zI − Aa)

−1BaCr. (3.18)
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Similarly (3.14) yields

−(zI − Ar)T2 + T2(zI − As) = −BrCs,

which is again rearranged to

−T2(aI − As)
−1Bs + (zI − Ar)

−1T2Bs = −(zI − Ar)
−1BrCs(zI − As)

−1Bs. (3.19)

Left multiplying the right-hand side of (3.19) by the right hand side of (3.18), and similarly,

the left hand sides of these expressions, yields

Ha(ω)︷ ︸︸ ︷
Ca(zI − Aa)

−1Ba

Hres(ω)︷ ︸︸ ︷
Cr(zI − Ar)

−1Br

Hs(ω)︷ ︸︸ ︷
Cs(zI − As)

−1Bs =

−CaT1(zI − Ar)
−1T2Bs︸ ︷︷ ︸

model from truncation, (3.17)

+CaT1T2(zI − As)
−1Bs

− Ca(zI − Aa)
−1T1(zI − Ar)T2(zI − As)

−1B2 + Ca(zI − Aa)
−1T1T2Bs. (3.20)

This utility of this relationship is explained. If the resonator has a continuous-time mode

−α + jωn, α > 0, then Ar has an eigenvalue equal to λ = e(−α+jωn)ts with associated right

and left eigenvectors v and u, i.e. Arv = λv and u∗Ar = λu∗ (u∗ represents the conjugate-

transpose of the column vector u). Let z = σ = ejωnts , localizing the analysis to a neighbor-

hood of the mode. Then,

(zI − Ar)
−1 =

∑
i

1

z − λi
viu

∗
i ,

which is the spectral decomposition of (zI−Ar)−1, and the summation is over all eigenvalues

of Ar.
1

z−λvu
∗ dominates relative to all other spectral terms in the summation assuming α

is small. Thus,

(zI − Ar)
−1 ≈ 1

z − λ
vu∗ =

e−jωnts

1− e−αts
vu∗.
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This expression is unbounded as α → 0, thus

e−jωnts

1− e−αts
vu∗ ≈ 1

σ
vu∗.

The left hand side of the frequency response relation (3.20) is approximated by

Ha(ωn)Hres(ωn)Hs(ωn) ≈ Ha(ωn)
1

σ
Crvu

∗BrHs(ωn), (3.21)

and the right-hand side is approximated by

−Ca
1

σ
vu∗T2Bs+CaT1T2(jωnI−As)−1Bs−Ca(jωnI−Aa)−1T1(jωnI−Ar)T2(jωI−As)−1Bs

+ Ca(jωnI − Aa)
−1T1T2Bs. (3.22)

Assuming there are no transmission zeros in Ha or Hs at λ (this condition is easy to satisfy

in practice given the high frequency roll-off associated with the smoothing and anti-aliasing

filters) then the dominant terms in (3.21) and (3.22) are the terms containing (zI − Ar)
−1

and must match. Note that the terms in (3.20) without 1/σ remain bounded as σ → 0.

Thus,

Ha(ωn)Hres(ωn)Hs(ωn) ≈ −CaT1(jωnI − Ar)
−1T2Bs.

In other words, the truncated system preserves the magnitude and phase of the smoothing

and anti-alias filters for frequencies in a neighborhood of the resonator modal frequencies.

3.4.2 Sufficiency of Model Excitation and Identification

Assume a model of

(I + ϵM0)ẍ+ ϵD0ẋ+ ω2
0(I + ϵK0)x = u,

whereM0, K0, D0 are all assumed positive definite andM0, K0 are assumed symmetric. With

the assumption of Rayleigh damping, the damping is then a linear combination of the mass
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and stiffness, so the model is then

(I + ϵM0)ẍ+ ϵ(αM0 + βK0)ẋ+ ω2
0(I + ϵK0)x = u,

where α > 0 and β > 0 are constants. K0 andM0 can be simultaneously diagonalized via the

transformation matrix T =M
− 1

2
0 O For the state change x = Tz where O−1M

− 1
2

0 diagonalizes

K0. Applying the transformation yields a new model

(I + ϵ

m1 0

0 m2

)z̈ + ϵ(α

m1 0

0 m2

+ β

k1 0

0 k2

)ż + ω2
0(I + ϵ

k1 0

0 k2

)z = T−1u.

Decoupling the system into two systems with z =

z1z2
 yields

(1 + ϵm1)z̈1 + ϵ(αm1 + βk1)ż1 + ω2
0(1 + ϵk1)z1 = ũ1, (3.23)

(1 + ϵm2)z̈2 + ϵ(αm2 + βk2)ż2 + ω2
0(1 + ϵk2)z2 = ũ2, (3.24)

where ũ1 and ũ2 are transformed inputs of the original input u applied to the decoupled

state system. Begin by looking at the Gramian from the state space equation generated

from Equation 1. Let z̃1 =

z1ż1
. Then

A1 =

 0 1

−ω2
0(1+ϵk1)

1+ϵm1
− ϵ(αm1+βk1)

1+ϵm1

 , B =

0
1

 .
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The same approach for z̃2 =

z2ż2
 yields

A2 =

 0 1

−ω2
0(1+ϵk1)

1+ϵm1
− ϵ(αm1+βk1)

1+ϵm1

 , B =

0
1

 .
Thus, the continuous time solution is described by the initial conditions at the start of the

ring-down and the system matrix A, where the aggregate solution z̃ =

z̃1z̃2
.

Let z̃1(0) and z̃2(0) be the initial conditions describing the ring-down, once the inputs

are turned off, for each oscillator described by A1 and A2 respectively. Then z̃1 = eA1tz̃1(0)

and z̃2 = eA2tz̃2(0).

Constructing the Hankel matrix via simulating the full state at multiple times ti, i =

0, ..., nc, where nc is then the Hankel column dimension and t0 = 0, yields

Ms =



z̃1(0) eA1t1 z̃1(0) eA1t2 z̃1(0) · · ·
z̃2(0) eA2t1 z̃2(0) eA2t2 z̃2(0) · · ·

eA1t1 z̃1(0) eA1t2 z̃1(0)
. . .

eA2t1 z̃2(0) eA2t2 z̃2(0)
. . .

...
...


.

If the modes aren’t degenerate then A1 ̸= A2, then the Hankel matrix is full rank. Even

with a single initial condition, if the modes are equally excited then the full model will be

identified with balanced coordinates.
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If the modes are degenerate, then A1 = A2 = A and the Hankel matrix is then

Ms =



z̃1(0) eAt1 z̃1(0) eAt2 z̃1(0) · · ·
z̃2(0) eAt1 z̃2(0) eAt2 z̃2(0) · · ·

eAt1 z̃1(0) eAt2 z̃1(0)
. . .

eAt1 z̃2(0) eAt2 z̃2(0)
. . .

...
...


,

where Ms ∈ Rnc×nr . The matrix rank is min(nr/2, nc/2) because clearly each “even” row

differs by the previous one by a scalar factor. The chosen row dimension typically is smaller

than that associated with the simulation time, i.e. nc > nr, so the matrix rank is nr/2. Given

that the matrix is then “half” rank and in essence the Hankel matrix contains simulation

data for the model from one of the two states. The recovered model from the Hankel singular

values will then be one oscillator instead of the two identical copies that may be expected

from the onset. With a single initial condition for the completely degenerate modes, a one

oscillator (one input) model accurately describes the system.

Now assume that the system is still degenerate but has been hit with two inputs that are

delayed from one another (the dual input case) so that two different initial conditions can be

identified at the beginning of each set of ringdown data. In this case since the two inputs are

separated enough both physically and spatially the modes are equally excited. Denote the

initial condition at the start of the ring-down for ũ1 and ũ2 as z̃1 =

z̃11z̃12
 and z̃2 =

z̃21z̃22
.

Then the aggregate Hankel matrix for this set of ring-down “dual input” data for the same
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simulation time as before is

Md =



z̃11(0) z̃21(0) eAt1 z̃11(0) eAt1 z̃12(0) eAt2 z̃11(0) eAt2 z̃12(0) · · ·
z̃12(0) z̃22(0) eAt1 z̃12(0) eAt1 z̃22(0) eAt2 z̃12(0) eAt2 z̃22(0) · · ·

eAt1 z̃11(0) eAt1 z̃12(0) eAt2 z̃11(0) eAt2 z̃12(0)
. . . . . .

eAt1 z̃12(0) eAt1 z̃22(0) eAt2 z̃12(0) eAt2 z̃22(0)
. . . . . .

...
...

...
...


,

whereMd ∈ R2nc×2nr and is generally full rank. With this two input/two output system, two

different initial conditions are necessary and sufficient to fully model the two input system,

especially as the modes are close to degenerate.

3.5 Zoom Analysis

The Hankel matrices analyzed in Section 3.3 have dimension up to 40 × 420000 (nr = 5,

no = 8, nc = 120000 and ni = 2). The column dimension must be large in order to faithfully

capture the modal time constants. Although an “economy” SVD can efficiently produce the

necessary factorization for modeling, it is possible to greatly reduce both the size of the test

data sets and dimension of the Hankel matrices without compromising the integrity of the

models. The proposed approach is termed “zoom analysis” given its similarity to the signal

processing used in “zoom-FFT” spectral analysis [Bro90].

Since the transient response of a pair of degenerate modes is a narrow-band phenomenon,

it is possible to downsample the response using demodulation frequency f0 in a neighborhood

of the pair of modes under study. Figure 3.15 illustrates how the sampled resonator output y⃗k

is manipulated –it is the same block diagram that is used for standard zoom spectral analysis,

however, the downsampled data sequences, denoted y⃗c,k and y⃗s,k are now used to form H0

and H1. The sample period associated with y⃗c,k and y⃗s,k is tD = Dts, where the positive

integer D is the decimation factor, and “LPF” denotes unity DC gain low-pass filters that
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y⃗k - i×?e
j2πf0kts

-LPF - ↓ D - y⃗c,k + jy⃗s,k

Figure 3.15: Block diagram for zoom analysis. The demodulated signals y⃗c,k and y⃗s,k are used to form the Hankel matrices,
however, the decimation operation greatly reduces the size of the data sets and, thus, the dimensions of the Hankel
matrices.

remove the high frequency products. The lower data rate associated with the demodulated

signals is where the savings is realized. Since y⃗k is a vector-valued signal, the operations

in Figure 3.15 are performed element-wise. Note that the storage requirements are reduced

by a factor of D/2 because the number of output channels is effectively doubled. Non-

parametric zoom-FFT techniques use the spectrum of the demodulated signals to recover

the spectrum of the original signals in a neighborhood of ω0. In the Hankel matrix analysis,

though, it is necessary to convert the properties of the identified “baseband” model into

properties of the resonator. In view of the modeling results in Section 3.3, it can be assumed

that the model generating the transient data is composed of m oscillators and is given by

y⃗k = CAkx⃗0, k ≥ 0, where A ∈ R2m×2m, so ns = 2m (m = 2 for the resonator analyzed

throughout this research). The analysis proceeds by representing A in a special basis. Since

the system is composed of m oscillators, the eigenvalues of A are given by e(−σl±jωl)ts , ωl > 0,

l = 1, 2, . . . ,m, where the exponential decay rate and modal frequency for the lth mode are

given by σl and ωl, respectively. Even if there are some repeated eigenvalues, it is assumed

that A is non-defective and so A is diagonalizable. Let the columns of T+ ∈ Cns×m span

the A-invariant subspace associated with the eigenvalues e(−σl+jωl)ts , l = 1, 2, . . . ,m. The

complex-conjugate of T+ is denoted T−. The columns of T− span the A-invariant subspace

associated with the eigenvalues e(−σl−jωl)ts . Since these invariant subspaces only intersect

at 0, the matrix T =
[
T+ T−

]
∈ Cns×ns is invertible. The change of basis yields a block

diagonal format,

T−1AT =

A+ 0

0 A−


where A+ ∈ Cm×m has eigenvalues e(−σl+jωl)ts , l = 1, 2, . . . ,m, and A− is the complex
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conjugate of A+ with eigenvalues {e(−σl−jωl)ts}. The measurement sequence from a transient

response with initial condition x⃗0 ∈ Rns is

y⃗k = CAkx⃗0

= CT

(A+)k 0

0 (A−)k

T−1x⃗0.

An expression for the demodulated components of y⃗k is derived. The demodulating sinu-

soid is assumed to be cos(ω0kts), ω0 = 2πf0 > 0. In general, the phase of the demodulating

sinusoid should be an arbitrary parameter since it is not possible to control the phase rela-

tive to the data that is used for forming the Hankel matrices. Including a phase parameter

only complicates the analysis without changing the fundamental result, thus, the phase is

assumed to be zero as shown. Multiplying y⃗k by the sinusoid yields,

cos(ω0kts)y⃗k

=
1

2
CT

(A+)kejω0kts 0

0 (A−)kejω0kts

T−1x⃗0

+
1

2
CT

(A+)ke−jω0kts 0

0 (A−)ke−jω0kts

T−1x⃗0.

(3.25)

The demodulation frequency ω0 is selected to be near the set of frequencies {ω1, ω2, . . . , ωm}.
It is possible for ω0 to be greater than these frequencies, less than these frequencies, or in the

midst of this set. The examples shown below demonstrate that identified modal properties

are robust to the choice of ω0. The low-pass filter is designed so that its corner frequency is

greater than |ωl−ω0|, l = 1, 2, . . . ,m, so that contributions from all oscillators are preserved

in the demodulated signal. Furthermore, D is selected to avoid aliasing. This permits the

truncation of the blocks in (3.25) that generate the terms with approximate frequencies

±2ω0 (the eigenvalues of A
+ejω0ts and A−e−jω0ts). The decimation operation simply replaces
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k with Dk in the right-hand side terms. The sample period of the downsampled data is

tD = Dts. Thus,

y⃗c,k =
1

2
CΦkx⃗0, (3.26)

where

Φ := T

(A+)De−jω0tD 0

0 (A−)Dejω0tD

T−1 ∈ Rns×ns .

It can be shown that Φ is real if A is real.

Application of the Hankel matrix analysis technique to the demodulated signal y⃗c,k will

yield estimates for C, Φ and x⃗0. Although C and x⃗0 are associated with the original system,

it is not possible to recover the modal frequencies ωl, l = 1, . . . ,m, from analysis of Φ alone

because the eigenvalues of Φ are the set {e(−σl±j(ωl−ω0))tD} and it is not a priori known if the

beat frequency |ωl − ω0| corresponds to a mode whose natural frequency is greater than, or

less than, the demodulation frequency ω0. The ambiguity can be eliminated by considering

the demodulated signal y⃗s,k in addition to y⃗c,k.

The expression for y⃗s,k is

y⃗s,k =
1

2
CT

j(A+)Dke−jω0ktD 0

0 −j(A−)Dkejω0ktD

T−1x⃗0

=
1

2
CM︸︷︷︸
Cs

Φkx⃗0,

where

M = T

jI 0

0 −jI

T−1 ∈ Rns×ns ,

and the matrix Cs ∈ Rn0×ns is defined as indicated. It is important to express y⃗s,k and

y⃗c,k with the same dynamics matrix Φ because the Hankel matrix analysis is applied to the
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base-band system with augmented outputs. The definition of Yk is updated to

Yk =
1

2

C
Cs

ΦkX, k ≥ 0

whereX is the matrix of initial conditions associated with the transients starting at t = 0 and

t = 5 as shown in Figure 3.16. Analysis of the Hankel matrices formed from the demodulated

data yield C, Cs, Φ and X.

The modal frequency and damping terms associated with the oscillators are determined

as follows. Only a single output is necessary to describe the process so it can be assumed y⃗,

and, hence, y⃗c,k and y⃗s,k, are scalar-valued. Let w⃗ ∈ Cns be an eigenvector of Φ whose cor-

responding eigenvalue is e(−σ+jω̃)tD , where the eigenvalue is chosen so that ω̃ > 0. There are

two cases to consider. Suppose the “baseband” frequency ω̃ is associated with an oscillator

whose frequency is greater than ω0. In other words, ω̃ = ωl − ω0 for some l ∈ [1, . . . ,m]. In

this case the eigenvector w⃗ may be expressed as w⃗ = T+z⃗ for some unique z⃗ ∈ Cm, z⃗ ̸= 0.

The output matrix associated with the y⃗c,k “channel” is C and Cw⃗ ∈ C is its product with

the eigenvector (since a single output is assumed for this argument). Without loss of gener-

ality, it is assumed Cw⃗ ̸= 0 otherwise the pick-off associated with this output is located at a

node of the mode and so no response is observed (another output channel must be selected).

Represent Cw⃗ = α + jβ, α, β ∈ R. Now, consider the product of w⃗ with the output matrix

associated with y⃗s,k,

Csw⃗ = CMT+z⃗

= jCT+z⃗

= −β + jα

Define the matrix S ∈ R2×2

S =

Re(Cw⃗) Im(Cw⃗)

Re(Csw⃗) Im(Csw⃗)

 . (3.27)
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For the case considered above, namely ωl > ω0,

detS = det

 α β

−β α

 = α2 + β2 > 0

The second case to consider is when ω̃ = ω0−ωl > 0, for some l ∈ [1, . . . , n]. In this case,

the demodulation frequency is greater than the oscillator frequency and the eigenvector w⃗ can

be represented w⃗ = T−z⃗, for some unique z⃗ ∈ Cm, z⃗ ̸= 0. As before, suppose Cw⃗ = α + jβ

for a new set of {α, β}. Consider,

Csw⃗ = CMT−z⃗

= −jCT−z⃗

= β − jα

In this case, detS = −(α2 + β2) < 0. Thus, the sign of detS determines whether the modal

frequency is less than or greater than the demodulation frequency.

In summary, each output channel is demodulated to produce the baseband signals y⃗c,k

and y⃗s,k. A linear model is fit to the baseband data and yields C, Cs, Φ and x0. Consider an

eigenvalue/vector pair of Φ: e(−σ+jω̃)tD and w⃗, for which ω̃ > 0 (since the eigenvalues of Φ

appear in conjugate-pairs, m eigenvalues can be chosen to satisfy this constraint). Selecting

the same row in C and Cs, S is computed and the modal frequency of the oscillator is

recovered from

ω0 + ω̃ sgn (detS) , (3.28)

where sgn is the signum, or sign, function. This calculation can be performed for each

output channel to check consistency of frequency estimates. The exponential decay rate σ

is preserved in the demodulated data and so can be directly obtained from the eigenvalue

e(−σ+jω̃)tD .
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Figure 3.16: An example of the S6 electrode measurement of the n = 1 test from Figure 3.3 demodulated with f0 = 6560Hz
into components y⃗c,k (top) and y⃗s,k (bottom). The highlighted segments (red) are used to construct the Hankel
matrices. The decimation factor is D = 100 so the sample period is tD = Dts = 1/700 second.

70



3.5.1 Zoom analysis applied to resonator

The zoom technique is applied to the n = 1, 2, 3 resonator modes in order to determine modal

frequencies, time constants, and mode orientations. In order to assess consistency with the

results presented in Section 3.3, the same data sets are used for the zoom analysis since these

data are stored and can be processed according to the zoom method. The low-pass filters are

4-pole Butterworth filters with 200Hz corner frequencies and D = 100. The only parameter

that is changed is ω0 since that is dependent on the which pair of degenerate modes is to

be analyzed (ω0 is reported as f0, with unit Hz, in the tables). As in the prior analysis, two

3-second transient data segments are used to form the Hankel matrices for n = 1, 2, so nr = 5

and nc = 2100, however, no = 16 because demodulation of y⃗k into y⃗c,k and y⃗s,k doubles the

number of output channels. The dimensions of the Hankel matrices are now 80× 4200. For

n = 3, 1.5 seconds of data are used. An example of the demodulated S6 pick-off for n = 1

is shown in Figure 3.16 (compare to Figure 3.3). The singular values of H0 are presented

in Table 3.6 for three demodulation frequencies applied to each pair of modes. Although

the singular values are different from the non-zoom analysis, σ4 remains more than two

orders of magnitude larger than σ5 so ns = 4 is still a reasonable choice for the model order

(demodulation reduces the signal power and this is reflected in the new singular values).

Analysis of the Hankel matrices yields Φ, C, Cs and X for each demodulation frequency.

The mode orientations can be determined using the process described in Section 3.2.3 with

the eigenvectors of Φ without modification. The modal properties determined from the zoom

analyses yield the same values as quoted in Tables 3.3, 3.4 and 3.5 so no separate summaries

for the zoom analyses are required. Note that the modal properties are independent of the

choice of f0.
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Table 3.6: Singular values of H0 for zoom analysis

Pair f0 (Hz) σ1 σ2 σ3 σ4 σ5 σ4/σ5

n = 1
6550 46.0 45.8 30.8 30.7 0.0093 3291
6580 46.0 45.8 30.9 30.6 0.0095 3233
6610 45.9 45.9 30.9 30.6 0.0093 3280

n = 2
13540 21.4 21.1 17.2 17.0 0.0071 2381
13550 22.7 19.8 18.3 15.8 0.0072 2186
13560 21.4 21.1 17.2 17.0 0.0072 2348

n = 3
23860 2.01 1.98 1.58 1.53 0.0079 193
23880 2.04 1.94 1.60 1.51 0.0079 191
23910 2.03 1.96 1.56 1.55 0.0081 192

3.6 Conclusion

This chapter highlighted the use of a novel method to identify empirical frequency responses

in general for any system, but more specifically for a MEM-DRG. By using transient data

to fit a state space model using a Hankel matrix based approach, the empirical model is not

limited by potential parasitic feed-through. The process is shown to be useful for the n=1,

n=2, and n=3 vibratory modes for the DRG, with each mode showing different potential

advantages to the modeling process.

Analytical results in this chapter first highlight the need to strategically stagger the burst

chirp inputs. Second, the ability for the truncated system to preserve the magnitude and

phase of the smoothing/anti-alias filters in a neighborhood of the resonator modal frequencies

is derived. In other words in the truncated system, one can decouple the filter and resonator

dynamics local to the modal frequencies.

The state space model is so close to the actual transient data that we take it as an

”empirical” model. For Chapter 4, where the focus is on the n=2 vibratory modes, this

model is optimally converted into a predictive mechanical model for DRGs.
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CHAPTER 4

A Mechanistic Modeling Approach for the MEMS

Resonator

4.1 Introduction

Chapter 3 establishes a method to extract an accurate state space model for the resonator.

Thus, this chapter explores if an improved predictive mechanistic model can be developed

to inform mode pair tuning procedures.

Prior predictive models, although physical, only use changes in kinetic energy to inform

the tuning process. Although the use of a mass and stiffness matrix for the physical model

in this chapter yields more flexibility in terms of a spring energy term, this new physical

model, for reasons discussed in Section 4.6, is purely complementary to the prior predictive

models used such as that in [BM19], however, this model does benefit from the ability to

view prediction results using system frequency responses, which older models do not contain.

4.2 Mechanistic Model Fitting Procedure

Consider a mechanical system modeled by the continuous time equation

Mlẍ+Dlẋ+Klx = u,

y = C1lx+ C2lẋ,
(4.1)
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where u represents the applied stimulus from which y, the pick-off measurements, are ob-

tained for the lth nominal state of the system. Ml ∈ R2x2 is the mass matrix, Dl ∈ R2x2 is

the damping matrix, Kl is the stiffness matrix, and C1l , C2l ∈ R8x2 encapsulate the dynamics

associated with any the pick-off locations and electronics necessary to acquire data from the

system. Now consider for this lth state of the system that an empirical frequency response

has been obtained, denoted Hl(ω) ∈ C8x2. It is then desired to fit the model parameters

from (4.1). If the error, at each frequency, indexed by q, in a user defined band where the

system dynamics occur, between the determined empirical frequency response and model

frequency response is minimized then the obtained model matrices in the system model

are considered optimally fit. Let H̃l(ωl,q) = (C1l + C2ljωl,q)(−Mlω
2
l,q + Dljωl,q + Kl)

−1 be

the continuous-time frequency response function for the mechanistic model. Now, define

Zl,q = −Mlω
2
l,q +Dljωl,q +Kl and Rl,q = C1l + C2ljωl,q as the “denominator” and “numer-

ator” of the frequency response function. The error reduction between Hl and H̃l for each

ωl,q to optimally fit the model parameters can be accomplished by solving the following.

min
Ml>I,Dl∈R2x2,

Kl>0,C1l
,C2l

∈R8x2

max
q=1,...,ml

σ(Rl,q −Hl(ωl,q)Zl,q),

where σ represents the singular value of the multi-dimensional frequency response and ml

is the total number of frequency points considered for the optimization in the user defined

grid. This optimization problem is non-convex, however, an equivalent formulation is found

of a more standard generalized eigenvalue minimization problem with LMI constraints via

Schur’s complement.

min
γ>0

γ,

sub. to : Jl,q > 0 ∀ q

Ml > I,Dl ∈ R2x2,

Kl > 0, C1l , C2l ∈ R8x2,

(4.2)
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Jl,q =

 γI (Rl,q −Hl,qZl,q)
∗

(Rl,qk −Hl,qZl,q) γI

 ,
where (·)∗ is the complex conjuate operation. It is possible to optimally fit model parameters

simultaneously based on multiple sets of nominal resonator state data. In that case l is the

index denoting the current nominal state of the resonator. Only one nominal state of the

resonator is fit at a time to then be used for point mass predictions. The optimization is

solved using programs such as those in MATLAB’s Robust Control Toolbox, so long as the

constraints are real-valued. Details of transforming the positive-definiteness of the complex-

valued constraint Jl,q to one that is real-valued are briefly discussed. An analog to Jl,q > 0

must be formed. Ann equivalent formulation of the above inequality is

 Re(Jl,q) Im(Jl,q)

−Im(Jl,q) Re(Jl,q)

 > 0.

Expanding and then constructing the above matrix yields an equivalent positive-definiteness

constraint on Jl,q > 0.

Intuitively, it should be easier to determine the effect of a mass or stiffness perturbation to

the system with a model of this form. The next section focuses on determining a functional

form of the perturbed mass matrix when a small mass perturbation is added to a MEM-DRG.

The experimental results for the n = 2 vibrational mode are then given in the subsequent

section, highlighting the model’s predictive efficacy.

4.3 Predictive Resonator Model

4.3.1 Resonator Description

Although the fitting procedure is general for any mechanical linear system, the MEM-DRG,

with schematic shown in Figure 1.1, will be used due to the existence of vibrational mode
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pairs, ideally modally degenerate but realistically not. The outer ring layers, where a total

of 96 potential point mass perturbations can be placed are ordered from k = 1 (innermost

ring layer) to k = 4 (outermost ring layer). Other details such as experimental conditions

are highlighted in Section 1.2.

4.3.2 Eigensystem Analysis of Mass Perturbations on the Uniform Thin Ring

Once the resonator system model matrices for the lth experiment are optimally fit, the

key next step is to establish a way to accurately predict changes to the model when point

masses are added to the resonator at various specified locations around the resonator in the

analytical form of a change in mass matrix before and after a mass perturbation is placed

as a function of the point mass placement θ. This is accomplished first in Chapter 2 via

analysis of a uniform thin ring and then in Section 4.3.3 by extending the ring analysis to

the resonator, which can be modeled using various superposed thin rings with finite element

analysis in COMSOL as a guide.

Plugging into the form of ∆M obtained via Galerkin Analysis in Chapter 2 for the n = 2

vibrational mode yields

∆M = Γ2

5
8
+ 3

8
cos(4θ) 3

8
sin(4θ)

3
8
sin(4θ) 5

8
− 3

8
cos(4θ)

 . (4.3)

It is crucial to generalize this analysis to a case where the nominal state of the ring isn’t

uniform. That analysis seen in Chapter 2 is expanded upon here. For this nominal state of

the ring, the modes are detuned and there are two distinct modal frequencies (ω1, ω2) and

eigenvectors v1, v2. The generalized eigenvalue problem (assuming negligible damping) is as

follows with a point mass placed along the ring at θ with a to be determined perturbation
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∆̃M(θ) to the nominal mass matrix M :

ω2
i (M + ∆̃M(θ))vi = Kvi, i = 1, 2.

The mass matrix and stiffness matrix are assumed to be perturbed from scalar times identity

by a series of small mass perturbations placed throughout the ring and small ring width

perturbations, both of which are of order ϵM , ϵK . It is reasonable to assume that M ≈
mI, K ≈ kI. In all experimental models fit shown in this study, the mass and stiffness

matrices relatively differ from scalar times identity by roughly 3 percent at most, so this is

a valid assumption. Thus the eigenvalue problem is

ω2
i (mI + ∆̃M(θ))vi = kIvi, i = 1, 2. (4.4)

It is clear that ∆̃M(θ) = ∆M(θ) from (4.3). This result, given the assumptions, is important

for a few reasons. First, (4.3) gives a functional form for the perturbation to a mass matrix

when a point mass is placed anywhere on a potentially non-uniform thin ring. Second, the

analysis in Section 2.3 shows that the mass matrix perturbations are additive for multiple

point masses. Thus, for a nominal ring state (M,K), the post-perturbation mass matrix

M̃ =M +
∑p

i=1∆M(θi), where p is the total number of point masses placed on the ring and

θi is the orientation of the ith point mass.

4.3.3 Multi Layered Ring-Resonator model

The model is extended to resonators for multiple point masses, which generalizes the single

point mass term into a summation over multiple ring spoke layers, as seen in Figure 1.1. For

each layer index k the radial and tangential velocity amplitudes αk and βk scale.

The full FEM analysis for this ring-type resonator design is shown in Figure 4.1 and is

also seen in [BM19, Beh18].
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Figure 4.1: Finite Element Analysis for ring-type resonator showing non-negligible contribution magnitude of n = 6 and n = 10
modal radial (top) and tangential (bottom) velocity FS coefficients to n = 2 modal velocity amplitudes, significantly
in innermost layers

For the n = 2 mode, the 6θ and 10θ harmonics of the Fourier Series coefficients for the

spoke radial velocities are non-negligible, especially as you look at the innermost layers. In

other words, based on this model, the predictions will have low variance for the outermost

ring layers and higher variance for the innermost ring layers. Further analysis on these added

harmonics is performed for the innermost two layers in Section4.6.3.

The velocity amplitudes derived from finite element analysis performed in [BM19] for the
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n = 2 mode in this resonator design are highlighted in Table 4.1

Relative Velocity Amplitudes for n = 2
Ring
layer k

αk βk

k = 1 1.0000 0.4949
k = 2 0.9289 0.4603
k = 3 0.8506 0.4214
k = 4 0.7868 0.3886

Table 4.1: Velocity amplitudes are normalized to the radial velocity amplitude for inner layer k=1 and are computed via finite
element analysis

The pair (k,i) represent both a layer and orientation, i.e. a spoke location, for mass

deposition. Based on the velocity amplitudes in Table 4.1, the sensitivity γ1 is related to

the change in the frequency split if the reference mass m0 is placed on the anti-node of the

innermost spoke layer (k = 1). If mass is deposited at an anti-node, then the change in

frequency split (frequency increase if placed on lower frequency anti-node and decrease if

placed on higher frequency anti-node) is

γk = γ1
(α2

k − β2
k)

(α2
1 − β2

1)
. (4.5)

The focus of this work is on the n = 2 vibratory mode so the n portion of the subscript is

dropped for the remainder of this chapter.

The point mass sensitivity for a layer k in [SKS15] is defined as γk = ∆̃−∆, which has

units of Hz, where ∆ is the nominal modal frequency split, and ∆̃ is the modal frequency

split after a single point mass has been applied on ring layer k. Of note is that this sensitivity

does not vary along a particular ring layer, however, experimentally this value is determined

by a series of single mass depositions where the value of γk can be determined via an average.

In this modeling process, the coordinate frame is established by the placement of the

sense channels around the ring and the set of orthogonal inputs, designating generalized

system inputs.
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In this mechanistic model, the analog to a sensitivity γk is ||∆M,k||, where || · || refers to
the matrix Frobenius norm. Γk := ||∆M,k|| is proportional to the sensitivity and is dependent

on ring layer k. Γk can be apriori determined analytically after the modal properties of a

resonator without point mass adjustment is measured. Thus ∆M,k can be rewritten as a

constant multiplying a norm 1 matrix, i.e. Γk∆M for each point mass perturbation, where

∆M is the analytical form of the change to the mass matrix derived in the prior section for

a thin ring and Γk is the norm of ∆M that varies based on spoke layer k. The matrix norm

is obtained in the following manner:

For this particular resonator design, γ1 was experimentally determined for a particular

type of solder sphere in [BM19]. (4.5), in addition to a ratio of densities of solder sphere

used in this study over the prior study, converts the sensitivity to that used in this study

for the outermost ring layer, having the least experimental variance. Γ4 is then determined

for four single mass depositions in the outermost layer by iterating Γ4 until the predicted

and computed sensitivities match. This is then normalized by its nominal mass matrix norm

||Ml||2 so that the averaged Γ4 represents the norm of ∆M when the nominal mass matrix

has unit norm. Converting between Γ4 and Γk for another ring layer k is the same as the

conversion for the sensitivity in (4.5).

Predicting the state of a resonator via the mechanistic model with an empirically obtained

Γk is then straightforward based on the prior analytical and ring-resonator FEM results:

Ml+N ẍ+Dlẋ+Klx = u, (4.6)

y = C1lx+ C2lẋ, (4.7)

where l is the index for the pre-perturbation experiment/state of a single resonator. Ml+N =

Ml +
∑96

i=1 µi||Ml||Γk(i)∆M(θi), and
∑96

i=1 µi = N , where N is the total number of point

masses for which a prediction is made, i is the position on the resonator where a point mass

could be placed, θi is the angle where a point mass is placed on the as a function of position
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i, where µi is 1 if a point mass is placed at location i and 0 otherwise, and the ||Ml||2 factor

multiplying Γk(i) is compensating for the step taken in the computation of Γk, ensuring that

∆M is normalized for a mass matrix close to identity with unit norm.

4.4 Application to Resonator

4.4.1 Two Step Model Fitting

The process to fit the predictive model contains two primary steps. More information is

contained in the prior Chapter 3, but important details are reviewed here. First, a ring-

down model is fit for the system localized to the n = 2 mode. For any nominal state of the

resonator, the discrete-time linear state-space model for that mode takes the form below for

a particular vibratory mode.

x⃗k+1 = Alx⃗k +Blu⃗k,

y⃗k = Clx⃗k,
(4.8)

where Al ∈ R4x4, Bl ∈ R8x2, Cl ∈ R8x4, and y⃗k ∈ R8x1 represents the pick-off measurements

in response to the applied stimulus u⃗k ∈ R2x1, specifically each input contained in u⃗k is fed

a chirp focused in a frequency range containing the modal peaks, turned on for 1 second,

followed by 9 seconds of no input for a total period of 10 seconds, however, each unique input

is time delayed by five seconds relative to the other. The state space model fit from em-

pirical transient data accurately describes the system without parasitic feed-through effects,

and thus can be effectively used to both fit and to check the predictive capabilities of the

mechanistic model, i.e. as an empirical model. To that effect, it is necessary to extract the

modal properties inherit to the n = 2 vibrational mode. Al and Cl matrices can be analyzed

for modal frequencies, damping and mode orientation. Since the identified model is obtained

by sampling a continuous-time system with sample period ts, a mode with exponential decay
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rate σ (s−1) and modal frequency ωn (rad/s) will be associated with eigenvalues of Al of the

form e(−σ±jωn)ts . Analysis of the eigenvalues of Al yield the modal frequencies and time

constants and the mode orientation can be determined from the eigenvectors of Al.

Hl(ω) = Cl(e
jωtsI −Al)

−1Bl is therefore the empirical frequency response used to fit the

nominal predictive model matrices. Figure 4.2 below shows the mechanistic model relative to

empirical frequency response data for a representative nominal state of the resonator focused

on the n = 2 modes. A linear chirp signal with 0 to 30 kHz band over a ten second period

sent to a single input at a time yields the empirical data. These are plotted for the S4/D1

and S5/D1 channels only. Present in the empirical data especially for S5/D1 is capacitive

feed-through, which the modeling process inherently removes. Also plotted is the relative

error between the transient based state space and predictive models. To effectively compare

these models define σ̄(Hl(ω) − H̃l(ω))/σ̄(Hl(ω)), where σ̄ is the max singular value of the

system’s MIMO frequency response, as a relative error varying as a function of frequency

between the ring-down and predictive models. The maximum over all frequencies in the

band of interest for all nominal states of the resonator is no larger than one percent.

4.4.2 Discrete Time State Space Model to Continuous Time Mechanistic Model

The modeling process for the system at hand is discussed, leading to rationalization for

purely fitting a continuous time mechanistic model from the discrete time state space model.

For the initial state space discrete time model, the block diagram in Figure 3.1, where

Hs, Ha and Hsys represent smoothing filters, anti-alias filters, and the system under test,

respectively. Any onboard electronics for the forcer and pick-off channels are aggregated in

the smoothing and anti-alias filters respectively. The DAC implements a zero-order hold on

the discrete-time signal u and the ADC blocks sample the continuous-time signals to yield

the discrete-time signal y. A discrete-time model of the form (4.8) describes the relationship

between the input-output samples and the state variable x [AW11] assuming all dynamic

elements in the block diagram are linear.
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Figure 4.2: (top) The predictive model (solid) and empirical (dashed) frequency responses for single pick-off (S6)/dual forcer
channels of interest and (bottom) relative error between transient and predictive models are shown for a ”nominal”
state of the resonator n = 2 mode pair after some mass has been loaded on the resonator, highlighting the veracity
of the predictive model fit to the state space system model.

The state variables for the lth experiment are then denoted with the triplet {Al, Bl, Cl}
and includes those of the system, DAC/ZOH, ADC, smoothing filters and anti-alias filters.

In general, the aggregate effect of these components outside of the primary system can

be assumed to be a magnitude and phase shift, i.e. the components before and after the

resonator can be assumed to have a somewhat fixed effect, specifically for a narrow frequency

band.

For the tests performed in this study, the smoothing and anti-alias filters (with pickoff

and forcer electronics included) are fairly similar, so most of the discrepancies between

experimentally identified model and the true system are from the ZOH.
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Regardless, it is important to recognize that for the tests performed in this study predic-

tions and results were found within a 20 Hz frequency range conservatively and within that

range the effects are roughly a gain and a phase adjustment. Thus, even though the mecha-

nistic model is continuous, the inclusion of C1l and C2l matrices for fitting the lth nominal

state of the resonator gives flexibility to account for a constant magnitude and phase shift

due to these extra components before and after the resonator system. Thus, it is not only

justified to include those matrices in the model but to go right ahead and fit the continuous

time mechanistic model straight from the discrete time state space model.

4.4.3 Predictive Frequency Response

One additional flexibility of the mechanistic model is a full system frequency response to

compare to the actual state of the system in addition to the modal properties, which older

models do have. This yields the ability to take a deeper dive on the prediction results seen

in the above section.

The frequency responses presented in Section 4.5 are all taken for output pick-offs S4 and

S5 in the presence of D1 and D2. Referring back to Figure 1.1, the force and sense channels

in focus are all orthogonal from the perspective of the n = 2 vibrational mode. Neither

pick-off is equivalently located, i.e. ±90◦ or antipodal, to the forcers making for a good set

of input/output channels for which both mode-shapes can generally be made out from the

magnitudes of the vibrational modes.

For the outermost layer deposition results in from which the fundamental sensitivity is

obtained, it should be clear that the frequency responses will be the same when looking at

the prediction results after one point mass has been applied in Figure 4.3. Since the vacuum

chamber temperature wasn’t kept consistent between tests, it is expected to see somewhat

of a shift between the predicted and actual observed models, however, what’s critical is that

the shape and modal peaks are essentially the same, which is what is observed.
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4.5 Predictive Results

Initially the process in Section 4.4.1 is applied to a resonator to calculate a consistent point

mass sensitivity, and thus a norm of the analytical dM matrix, adjusted depending on the

ring layer(s) used for point mass application. From here, (4.6) predicts the mechanistic

model matrices after a set of perturbations have been applied. Predictions are made for each

layer individually in terms of putting down up to 4 point masses and predicting the state of

the resonator after that many point masses have been placed for the outermost two layers.

In addition two types of point masses are used for these tests: (1) Large (75 µm diameter)

leaded solder spheres and (2) Small (35 µm diameter) unleaded solder spheres. The results

of these predictions in terms of the post-perturbation modal properties are listed in this

section and discussed in Section 4.6.

4.5.1 Predictions for Large Mass Perturbations

The results when point masses are applied to the outermost three ring layers are given below.

Each figure contains modal frequencies, modal frequency split, and modal orientations. These

are computed for the nominal state of the resonator, predicted for up to 4 point masses placed

one after the other in a 60◦ arc on a single ring layer, and then compared against the modal

properties measured after placing a point mass and measuring the transient based model for

the new nominal state of the resonator.

In total, the model based predictions for the post-perturbation resonator states are fairly

accurate for layers k = 2, 3, 4, where all of the orientations are accurately predicted but a few

of the post-perturbation frequency splits are not as accurately predicted. These errors can

be attributed to error in the actual mass on the solder spheres, slight orientation deviation

of mass placement on the mass deposition sites, and higher harmonic effects on the n = 2

vibrational mode, discussed in Section 4.6.3.

When the vibrational modes get closer to being tuned, it is a better idea to use a point
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Figure 4.3: (top) Predicted (circles) and measured (stars) modal properties for small point masses placed on ring layer 4
(outermost) relative to nominal modal properties and (bottom) predicted (dash-dot) and measured (solid) frequency
response magnitude after 1 large point mass is placed on ring layer 4, adjusting nominal (dashed) resonator state.

mass with lower sensitivity/mass so that it is easier to keep the modal frequency split in a

fairly small range. Observing these states of the resonator for the outer two ring layers for

smaller masses can also give a sense as to how the the mechanistic model performs as the

modal properties can highly vary as the modes get close to degeneracy.
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Figure 4.4: Predicted (circles) and measured (stars) modal properties for small point masses placed on ring layer 3 relative to
nominal modal properties and (bottom) predicted (dash-dot) and measured (solid) frequency response magnitude
after 3 large point masses are placed on ring layer 3, adjusting nominal (dashed) resonator state.

4.5.2 Predictions for Small Mass Perturbations

A scaling factor relating the small and large masses based on the ratio of solder sphere

densities and cubed diameters is used to normalize the sensitivity in the small mass cases

used in experiments on the outermost two layers. The discrepancy in mass is accounted for
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Figure 4.5: (top) Predicted (circles) and measured (stars) modal properties for small point masses placed on ring layer 2 relative
to nominal modal properties and (bottom) predicted (dash-dot) and measured (solid) frequency response magnitude
after 2 large point masses are placed on ring layer 2, adjusting nominal (dashed) resonator state.

when calculating the norm of ∆m, i.e. the sensitivities are normalized to the larger diameter

mass.

The results of the small perturbation studies on the outermost two layers is below in

similar figures used in the prior section. The masses are placed strategically so that the

model’s efficacy can be determined as the modal orientations are more sensitive to small
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changes when the modal frequency split is small.

Figure 4.6: (top) Predicted (circles) and measured (stars) modal properties for small point masses placed on ring layer 4 (2nd
outer) relative to nominal modal properties and and (bottom) predicted (dash-dot) and measured (solid) frequency
response magnitude after 4 small point masses are placed on ring layer 4, adjusting nominal (dashed) resonator
state.

To restate, the larger solder sphere cases were obtained when the modal frequency splits

were relatively large. The smaller solder sphere cases were then obtained when the modal

frequency splits were relatively small. From these results it would appear as if fine-tuning
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Figure 4.7: (top) Predicted (circles) and measured (stars) modal properties for small point masses placed on ring layer 3 (outer)
relative to nominal modal properties and (bottom) predicted (dash-dot) and measured (solid) frequency response
magnitude after 4 small point masses are placed on ring layer 3, adjusting nominal (dashed) resonator state.

the resonator, i.e. using small point masses to get the modal frequencies close to degenerate,

can be constrained to mass deposition sites on the two outermost layers.
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4.6 Discussion

4.6.1 Predictive Capability

The results in Section 4.5 show that the modal properties are predicted qualitatively well for

the outermost layers and up to a few steps ahead in terms of point masses placed, whether

small or large. Crucially the model still predicts quite well when the frequency split is quite

small and masses are placed on the outermost two layers. The frequency responses further

highlight the predictive efficacy of this model as the splits get small and the modal properties

become sensitive. Figure 4.3 shows frequency shifts between the predicted and actual results

due to experimental temperature discrepancies but very similar shaped magnitude spectra.

To show these ideas more quantitatively for each case presented in the above results

section, an absolute error is computed for modal frequency split and orientation between the

predictive model and the transient space model used to fit a nominal state of the resonator.

Results are presented in Tables 4.2 and 4.3 below, where “PM” refers to point mass and “S”

and “L” are small and large respectively, referring to the two sizes of mass depositions used

in these tests.

Modal Frequency Split Model Absolute Error (Hz.)
N PM
Ahead

k=4
LPM

k=3
LPM

k=2
LPM

k=1
LPM

k=4
SPM

k=3
SPM

1 PM 0.0555 0.1833 0.0799 0.4674 0.0068 0.0062
2 PM 0.1293 0.2861 0.0953 1.1331 0.0009 0.0085
3 PM 0.0936 0.0255 0.2765 0.4926 0.0067 0.0077
4 PM 0.0809 0.2124 0.2248 0.2168 0.0112 0.0042

Table 4.2: Modal frequency split absolute error between N point mass (PM) ahead predictive and transient state space model

To capture even more of how the predictive capability as it pertains to the ring layers, each

nominal state of the resonator has a predictive model fit and one step ahead predictions are

computed. Table 4.4 shows average modal property absolute errors between the predictive

and transient models.
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Mode Orientation Model Absolute Error (Deg.)
N PM
Ahead

k=4
LPM

k=3
LPM

k=2
LPM

k=1
LPM

k=4
SPM

k=3
SPM

1 PM 0.0259 0.2103 0.0195 0.6081 0.0778 0.6073
2 PM 0.0120 0.1318 0.2431 0.6970 0.0570 2.1394
3 PM 0.0174 0.2973 0.2724 1.4115 0.2922 0.6544
4 PM 0.1307 0.5076 0.7092 2.5769 0.2188 0.1135

Table 4.3: Modal orientation absolute error between N point mass (PM) ahead predictive and transient state space model

Average Model Error for 1 Step Ahead Predictions
Mod.
Prop.

k=4
LPM

k=3
LPM

k=2
LPM

k=1
LPM

k=4
SPM

k=3
SPM

Freq.
(Hz.)

0.0479 0.1279 0.0768 0.5900 0.0084 0.0051

Ori.
(Deg.)

0.0548 0.1810 0.1853 0.5944 0.0965 0.8013

Table 4.4: Average modal property absolute errors over all ring layers.

With the results shown in a more quantitative manner, there are a few key takeaways:

1. The model does a poor job of predicting the effect of placing any number of point

masses on the innermost ring layer. The error in frequency split being at max more

than 1 Hz and the orientation error being more than 1◦ is pretty undesirable here,

given that the frequency split in these cases is fairly large. This is more succinctly seen

in the average results as well contrasting the innermost layer with the other layers.

More details to explain this failing of the model are seen in Section 4.6.3.

2. The model performs decently well in predicting dynamic changes when masses are

applied for a state close to modal degeneracy. Specifically, when the modal split is

below 0.1 Hz as small point masses are applied to the second outermost layer, the

modal frequency splits are well predicted but the modal orientation prediction is more

erroneous. This is not surprising due to the high sensitivity of the modal orientations

as the modal split reaches degeneracy, seen quite clearly in Figure 4.7.
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4.6.2 Temperature Based Modal Frequency Shift

There is a clear shift in the experimentally measured and predicted modal frequencies that

initially brings into question if the predictive model is accurate, especially as you predict for

a few point masses simultaneously. Each experiment notably is not temperature regulated,

so although the vacuum chamber used for testing any resonator is allowed a decently long

startup time in order for the test temperature to reach steady state, there is no set temper-

ature, which at steady state might vary between tests. The model does not incorporate this

potential discrepancy because although a temperature difference shifts the absolute modal

frequencies, the frequency split crucially is not affected., highlighted in Figures 4.6 and 4.7.

Although the magnitudes are shifted, the inherent structure in the frequency responses is

similar, and the error data in the previous section illustrates a minuscule difference in the

frequency split for these case, again not due to a temperature difference between experiments.

4.6.3 Sensitivity of Inner Ring Layer Predictions

Based on the modeling approach in this paper, the basis functions only take into account

the nth mode, or specifically n = 2. With this in mind, for the innermost ring layer for

which mass depositions can be placed, the 6th and 10th harmonics of radial displacement

carry significant contribution and thus affect the vibrational modes after a point mass has

been placed. This effect can be seen pretty clearly in Figure 4.8. For layer 1, the four

mass depositions were placed sequentially in 15◦ increments around the resonator. Thus, the

sinusoidal functional form of the dM, and thus the frequency split as the 60◦ arc is journeyed

across is clear in the predictions, however, the actual results are corrupted by phase and

magnitude adjustments to the change in mass based on those significant higher harmonics.

The figure also highlights that the frequency responses are not too different, sans a necessary

adjustment to the sensitivity of dM, such that the lower modal frequency could shift more

than predicted. Due to the variance for optimal sensitivities for the inner-most layers being
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Figure 4.8: (top) Predicted (circles) and measured (stars) modal properties for large point masses placed on ring layer 1 relative
to nominal modal properties, i.e. 0 point masses placed and (bottom) predicted (dash-dot) and measured (solid)
frequency response magnitude after 2 large point masses are placed on ring layer 1, adjusting nominal (dashed)
resonator state

too high, the outermost three layers should be the only point mass placement layers used

for predictive purposes.
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4.6.4 Tuning of the n = 2 Modal Frequencies

With the physical model fleshed out and its sensitivity highlighted, a tuning algorithm spe-

cific to this model is described. Consider (M0, K0), representing the mass and stiffness matrix

pair contained in the predictive model of the current nominal state of the resonator for the

nth mode. It is desired to obtain a solution for placement of point masses, constrained by

the total number of point masses placed, on the resonator such that the generalized eigen-

values between M0 and K0 are as close as possible to one another. An initial normalization

process can be made to make any potential optimization problem more standard across all

nominal resonator states. Let M̃0 = (1/ω̄2)TM0T
∗, where T =

√
K−1

0 and ω̄ is the mean

modal frequency in rad/s for the current nominal resonator state and the nth vibrational

mode. Then the transformation yields K̃0 = α ∗ I, where α is some real scalar close to 1.

Let M̃ = M̃0 +
∑

i µi∆̃M,i, be the desired mass matrix after mass perturbations have been

applied, i.e. mode tuning requires M̃ to be as close to scalar times identity as possible. This

can be accomplished by optimizing the individual entries of the transformed mass matrix as

mass perturbations are potentially applied.

Define the entries of the desired transformed mass matrix, nominal mass matrix, and

mass perturbations as

M̃ =

m11 m12

m12 m22

 , M̃0 =

m011 m012

m012 m022

 , ∆̃M,i =

dmi11 dmi12

dmi12 dmi22

 ,
where the entries of the mass perturbation matrix vary depending on type of mass, ring layer

placed, and theta along the ring layer. Each decision variable indexed by i is a function of

these, giving a total of N = 12K integer decision variables, where K is the number of ring

layers used, there are 2 total point masses used, and there are 6 unique placement location

in terms of their mass matrix effect per layer. Thus, a solution is denoted by the vector

x = {µ1, . . . , µN}.
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The objective function is then min(β1|m11−m22|)+β2|m12|), where β1, β2 are adjustable
constants, as the goal is to minimize the absolute value of the difference between the diagonals

as well as the off-diagonals so that the resultant mass matrix is close to scalar times identity,

where it is initially unknown what the contribution of each to the overall objective should

be. Because the decision variables µi are purely integer valued, the solution space can be

divided into four constrained sets with four separate optimization problems as follows:

(1) : min(β1(m11 −m22) + β2(m12)),

m11 > m22,m12 > 0.

(2) : min(β1(m11 −m22) + β2(−m12)),

m11 > m22,m12 < 0.

(3) : min(β1(m22 −m11) + β2(m12)),

m11 < m22,m12 > 0.

(4) : min(β1(m22 −m11) + β2(−m12)),

m11 < m22,m12 < 0.

where m11 = m011 +
∑

i µidmi11 , m12 = m012 +
∑

i µidmi12 , m22 = m022 +
∑

i µidmi22 .

Common among all such tuning optimization problems of this type are constraints on

point mass placement, namely a constraint on the total number of point masses that can be

used and the total number of point masses that can be placed at a particular location, which

is 4 for a combination of small and large point masses given that for the n = 2 mode there is

repetition in the effect around the resonator when a point mass is placed in 90◦ increments

from a particular mass placement location.

There are optional constraints additionally to achieve simultaneous modal frequency tun-

ing and modal orientation placement, which all optimization problems also share. This set
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of constraints is described. Let R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 be the rotation matrix that

diagonalize M̃ . Thus, R(θ0) diagonalizes M̃0. It follows that tan(2θ0) =
2m012

m011−m022
and

tan(2θ) = 2m12

m11−m22
. Note that although θ0 and θ are not the modal orientations of the first

mode before and after the tuning process, δθ = θ − θ0 does correspond to the change in

modal orientation of the first mode, given that the pick-off orientation is consistent in all

tests. Thus, if the first mode’s nominal modal orientation is known and the first mode’s

desired modal orientation is selected, then constraints can be made on the change in modal

orientation such that the modal orientation post-tuning is bounded above and below, i.e.

the post-tuning modal orientation can be constrained to be within a set of angles. For in-

stance, δθ can be specified to be 15± 1 deg. It is important to specify the range to be large

enough that a optimization solution is achievable given the constraint on the total number

of allowable placed point masses.

With these constraints in mind, solving the optimization problems yields up to four

optimal solutions (only two given a modal orientation constraint) that have an optimal

solution amongst them, denoted xopt.

4.7 Conclusion

A new predictive model is derived using analysis on the thin ring and extended to the desired

ring resonator by applying FEM analysis on the ring resonator to the system in question.

This new model is optimally fit from the Hankel based state space model seen in Chapter 3

using an LMI procedure to minimize the error between the system frequency responses. This

new model performs well predictively with a few point masses and for the outer ring layers.

The inner ring layer predictions, for this model and older models, are poor and as such these

layers shouldn’t be used to fine tune modal frequencies, however, these layers can be used

to assist in initially reducing a larger frequency split without the use of many point masses
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given the inner ring layers have higher frequency split sensitivity. Because this new model is

complementary to older models, both can be used in making predictions. A potential tuning

algorithm for this model is also rigorously derived.
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CHAPTER 5

Measuring and Modeling Resonator Stem Reactions

Analysis of the center of mass in Sections 2.4.1 and 2.4.2 highlights a key oversight in mode

pair tuning a MEM-DRG. Although steps may have been taken to tune a resonator, such

as with the use of tuning masses, this new state of the resonator may now be imbalanced

such that there is significant coupling between the n = 2 modes and the resonator’s center

stem. The objective of this chapter is to model and measure this coupling for disk resonators.

The first step is the design, fabrication, and calibration of a six degree of freedom (DOF)

Force/Torque (F/T) transducer for measuring stem reactions. Successful attempts are made

to mitigate resonator/base motion coupling using properly placed tuning masses.

5.1 Overview

Extending the prior section’s motivation to resonators, recall that manufacturing issues/imprecision

yield an inability to apriori predict the degree and location of resonator/stem coupling and

imbalance. Crucially there are also no published works relative to measuring center stem

reactions for a ring-like disk resonator gyroscope.

As mentioned, these measurements can inform structure balancing to reduce stem re-

actions and thus coupling based energy losses, which in turn yields higher Q factors in

resonator modes of interest. The primary challenge in these stem force and torque reaction

measurements is that these measured reactions in the form of displacements are a few orders

of magnitude lower than ring displacements present in the rings of the resonator gyroscope.
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In other words great care must be taken in the design of a reaction transducer in order to

even pick up the reactions themselves.

5.2 Motivation: Evidence of Micro-Resonator Die Motion

The initial desired applied system for measurement of stem reaction forces and torques is

the micro scale resonator seen in Chapters 3 and 4. Rudimentary measurements with a laser

vibrometer show that these reactions can be measured in the resonator’s silicon base, and

initial attempts to design a F/T transducer test bed along with challenges are described.

5.2.1 Resonator and Vibrometer Measurements

Section 1.2 describes the experimental conditions of the vacuum chamber. The MEM-DRG

setup is similar to earlier tests with the addition of a laser vibrometer, aligned to hit the

die side via a quartz prism, which detects planar die displacement when the n = 1 or n = 2

vibrational modes are actuated. Figure 5.1 highlights the position of the prism, MEM-DRG,

and vibrometer laser/quartz prism in the vacuum chamber.

To gain insight into an electrode based system design to measure the die motion, it is

desired to plot the frequency responses for the vibrometer in units of mm/V instead of the

acquired V/V units. The sensitivity on the vibrometer velocity measurement, denoted S, is

S = 5 mm/s/V for all measurements. Thus to convert to a displacement, take the measured

frequency response, multiply by the sensitivity and integrate, orHmm/V (jω) =
S ·HV/V (jω)

jω
.

The n = 1 and n = 2 resonator vibratory modes seen in the die motion are captured in the

frequency responses, with magnitudes having units of µm/V , in sections 5.2.2 and 5.2.3.

The appropriate conversion for resonator pick-offs is reviewed in Section 1.3.

For both the n = 1 and n = 2 resonator vibratory modes, the goal is to see these

modes expressed, although with smaller displacement, in the die motion as measured by the

vibrometer. The vibrometer output is treated as a random signal, and, as such, correlation
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Figure 5.1: Experimental setup (left) is shown for measuring MEM-DRG vibrational modes and planar die motion simultane-
ously. Tungsten wires with a base holding the wire bottoms fixed (right) act as vibration isolation for the resonator
and die, reducing the noise floor for vibrometer measurements.

analysis is employed to estimate the frequency response between the vibrometer output and

the forced input to the resonator, i.e. band limited chirp containing the resonator modes.

Multiple data sets are taken and averaged to obtain an estimated frequency response. For

n = 1, the input has a 150 Hz bandwidth and 20 averages are taken for a 5 second input

chirp signal. For n = 2, the input has a 10 Hz bandwidth and 20 averages are taken for a

10 second input chirp signal, as these modes are close to degenerate so a focused bandwidth

is necessary.

Frequency responses are shown for experiments where the die is fixed onto three Tungsten

wires. For each vibrometer frequency response figure, the first column corresponds to the

response from input D1 and the second column corresponds to the response from input D2.

For the resonator magnitude responses, the top row corresponds to the response from input

D1 and the second row corresponds to the response from input D2.
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The identified frequencies, for both n = 1 and n = 2 modes, between the tests performed

using D1 and D2 are slightly shifted due to slight temperature changes between these tests

as the resonator is not temperature regulated, however, each test yields the same frequency

split for both mode pairs.

5.2.2 n=1 Responses

For the n = 1 modes, the resonator stem is not a node, so strong coupling between the

resonator and its stem is expected. This is confirmed in Figure 5.2. Although the wires

dampen the modes and die motion slightly, the n = 1 modes are clearly seen in the vibrometer

measurement. The n = 1 responses are fairly similar between the repeated tests, highlighting

Figure 5.2: Vibrometer (left) and resonator (right) frequency responses focused on n = 1 when die is on tungsten wires.
Resonator responses for S3 and S8 are shown separately for D1 (top) and D2 (bottom).

the repeatability of such experiments.

5.2.3 n=2 Responses

The more important set of experiments to analyze are those done for the n = 2 modes

because the stem is a node for the resonator, hence an ideal MEM-DRG would have no

coupling to its stem, which would show in terms of die motion, for the n = 2 modes.

Figure 5.3 highlights the small yet still significant coupling present between the resonator
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and stem as the modes, although close to tuned, are apparent in the vibrometer responses.

Comparison of the n = 1 and n = 2 are encouraging, as the base motion in n = 1 modes are

Figure 5.3: Vibrometer (left) and resonator (right) frequency responses focused on n = 2 when die is on tungsten wires.
Resonator responses for S3 and S8 are shown separately for D1 (top) and D2 (bottom).

expected to be significantly higher than that in the n = 2 modes.

5.2.4 Challenges

The work shown in this section highlights that the motion of the base in a micro resonator

can be measured at a single point on the resonator die, however, a few initial designs (not

shown for sake of brevity) were created with the intention to measure multiple locations

simultaneously on the resonator base. A design with two electrodes measuring one side

of the base and two other electrodes measuring a perpendicular side would yield an over-

determined system of sense channels from which the planar triplet of stem reaction forces

and torques, i.e. {fx, fy,mz} can be extracted, however, this doesn’t take into account the

challenges in building, testing, and calibrating this micro-scale transducer. These electrodes

would have to be mounted in such a way so that each electrode can be properly aligned

relative to the sides of the resonator base. Because the motion of the base is significantly

smaller relative to the resonator motion, these electrodes would have to be placed extremely

close to the base itself so that the change in nominal gap can actually be measured as a
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healthy output signal.

A workaround to study stem reaction forces for the disk resonator is to scale up the

entire system to a macro scale. The advantages of this approach include (1) The mass

perturbations are achieved on the macro scale via application of small temporarily placed

magnets, and more importantly (2) A base can be designed and built with a six DOF F/T

transducer internal to that base, which includes sensing of the {fz,mx,my} triplet of stem

reactions that would be almost impossible to design for in the micro-scale system.

The following section explores single axis, coupled oscillator models building up to the full

resonator/transducer/base system to inform the macro-scale F/T transducer design process.

5.3 Simple Coupled Oscillator System Model

A simple force transducer has the following properties:

1. ωbase < ωres,1 < ωres,2 < ωtr, i.e. the resonant frequencies fall between the maximum

vibration isolation mode frequency ωbase and minimum transducer mode ωtr.

2. There is a wide frequency range where the gain is constant for the frequency response

from input force applied on the transducer and output transducer displacement. In

essence this implies that any transducer should have a regime where the reaction force

picked up by the transducer is proportional to its displacement.

Figure 5.4 shows a diagram of a simple resonator/transducer/vibration isolation base

system.

If the transducer/base are isolated, i.e. there’s no resonator, and then looking at a

mass/stiffness linear system model for the state y⃗ = {ybase, ytr}, the mass and stiffness
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Figure 5.4: A coupled oscillator model highlights the resonator comprised of a spring-coupled (kc) pair of mass spring systems,
the transducer, a mass-spring system coupled to both the base and resonator, and a base with mbase >> mtr. F (i)
denotes an applied force on the transducer mass, and ytr represents the transducer mass displacement.

matrices are

M =

mbase 0

0 mtr

 ,
K =

kbase + ktr −ktr
−ktr ktr

 .
Looking at a mass/stiffness linear system model for the state y⃗ = {ybase, ytr, yres,1, yres,2}, the
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mass and stiffness matrices are

M =


mbase 0 0 0

0 mtr 0 0

0 0 mres,1 0

0 0 0 mres,2

 ,

K =


kbase + ktr −ktr 0 0

−ktr ktr + kres,1 + kres,2 −kres,1 −kres,2
0 −kres,1 kres,1 + kc −kc
0 −kres,2 −kc kres,2 + kc

 .

y refers to ytr as the transducer displacement is of the most interest in the analysis.

After normalizing all parameters in both models by the transducer mass, the following

values are set to keep the base mode, resonator modes, and transducer mode separated in

order to easily analyze the simple with and without resonator models relative to each other

mbase = 20, mtr = mres,1 = 1, mres,2 = 1.02,

kbase = 1, ktr = 100, kres,1 = kres,2 = kc = 4.

This places the resonator modes near 2 Hz, the base isolation mode at
√

1/20 Hz, and

the transducer mode at 10 Hz, all of which are well separated in frequency.

The frequency responses of interest in the model are described where the output for all

frequency responses is the transducer spring force, or Fsp,tr = ktr(ytr−ybase). H1(ω) represents

Fsp,tr relative to the applied force on the transducer, H2(ω) represents Fsp,tr relative to an

input disturbance to the base, and H1,nobase(ω) (green dashed) is again Fsp,tr relative to the

applied force on transducer, but without a base present, where Figure 5.5 highlights these

frequency responses for the single axis system model with and without a resonator coupled

to the transducer/base system.
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Figure 5.5: Pertinent transducer frequency responses are shown for the system with (left) and without (right) a resonator. In
each plot, Fsp,tr relative to the applied force on the transducer is shown without the seismic isolation base (green
dashed) and with the base (blue). Fsp,tr relative to an input base disturbance Fbase is also shown (red)

A few key insights about the frequency responses for each system are noted. First, without

a base, a flat region for the transducer is not established and the resonator modes are not

observed. Second, for H1, there is a large frequency range between 0.3 and 6 Hz where the

transducer is usable. This is sufficient given the resonator modes are located around 2 Hz.

Zooming in on the frequency responses between 1 and 3 Hz, for H1, the system gains are

slightly but not significantly different with and without a resonator. Thus it can be assumed

a transducer need not be calibrated with a resonator mounted. Finally, the gain associated

with H2 is at least an order of magnitude lower than that in H1 for both systems and so an

input disturbance on the base will have little effect on the observed spring force, especially

if the base mass is made significantly larger than the transducer and resonator masses.

Additionally it is important to study the effect of model parameters on transducer detec-

tion of the resonant modes. Of specific interest is the effect of the seismic base mass, while

keeping ωbase fixed, on the ratio of stem force Fst to transducer measured force Ftr := Fsp,tr,

which should be unity for an effective transducer for it to operate as an effective force trans-
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ducer. Based on the model,

Fst = kres,1(yres,1 − ytr) + kres,2(yres,2 − ytr),

Ftr = ktr(ytr − ybase).

Varying the seismic mass, and then computing and plotting the force ratio for each resonator

mode, yields Figure 5.6 below. As the seismic mass is increased, the ratio for both resonator

modes converges to within 1 percent of unity.

Figure 5.6: Force ratio is shown (left) between Ftr and Fst as the seismic mass is increased with ωbase fixed. The ratio converges
close to unity as the seismic mass now overwhelmingly dominates in the total system mass (right).

5.4 Design of a Stiff Piezo-Electric (PZT) Based F/T Transducer

for Macro-scale Applications

The need to measure the set of stems forces and moments, denoted by the sextuplet

{fx, fy, fz,mx,my,mz},

helps inform the pick-off layout in the transducer. Additionally, the intuition gained from the

simple models in the prior section guides the design for the six DOF F/T transducer. The
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need for this transducer to be stiff dictates the use of stiff sensing elements, which motivates

the use of piezoelectric elements (PZTs) instead of using a set of strain gauges.

5.4.1 Transducer Design

The transducer contains mostly aluminum with six 10x10x2 mm PZTs as sensing elements.

Specifically, the PZTs are placed into two PZT layers. In the “Vertical” layer, the PZTs

are placed such that compression/expansion primarily occurs vertically. This setup is in

theory ideal for the measurement of F/T triplet {fz,mx,my}. In the “Horizontal” layer of

PZTs, compression/expansion primarily occurs horizontally, and, as a result, this layer is

meant to measure the other triplet {fx, fy,mz}. The isometric views in Figure 5.7 highlight

that the “Vertical” layer of PZTs simply bridge the top and middle aluminum layers. The

“Horizontal” layer of transducer pick-offs connects the aluminum middle and bottom layers

via aluminum block extrusions.

5.4.2 PZT Charge Amplification

Although the PZTs in the F/T transducer help to stiffen the overall sensor, the displacements

in the PZTs are fairly small. As pick-offs, these PZTs convert displacement to a small output

charge. A commonly accepted model of a PZT is a resistor and capacitor in parallel, with

the majority of impedance contained in its capacitance.

Thus, circuits need to be built to amplify the output charge from the PZTs without

sacrificing the PZT Signal to Noise Ratio. A common method (and that used for this system)

is a current-mode charge amplifier which, upon initial view in Figure 5.8 below, looks eerily

similar to a Trans-Impedance amplifier. The difference here is that the feedback components

are chosen such that a low frequency corner is established for the system (Vo/Qi), such that

the gain over a wide range of frequencies is constant until the load induced by the PZT

attenuates it.
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Figure 5.7: Solidworks rendition in an rotated side view of the F/T transducer made from aluminum (gray) which sandwiches
the “Vertical” PZT (blue) and “Horizontal” PZT (red) layers. The top and middle aluminum layers are made
transparent so the PZTs are visible. Transducer dimensions can also be seen.

Values for the resistors and capacitors of Ri = 10Ω, Rf = 10MΩ, and Cf = 1nF are

chosen such that there is a healthy system gain, which is inversely proportional to Cf , the

low frequency corner is established at ωlow = 15Hz, and the high frequency corner can be

roughly approximated using the PZT capacitance only.

To clarify, system identification of this amplifier is made using a Signal Analyzer to

generate the system gains in the plot to the right in Figure 5.8 with and without a PZT as

a load (not displayed) on the input current source for the charge amplifier.

110



−

+

OA

Rf

Cf

Ri

Is

Vo

Usable Frequency 
Range

Figure 5.8: The charge amplifier (left) in current mode is shown with a current source. The frequency response magnitudes,
Vo/Qi (right) highlight the effect of the PZT in establishing the charge amplifier’s high frequency corner. The
amplification has constant gain roughly between 100 and 1000 Hz.

5.5 Calibration of F/T Transducer

After the F/T transducer is designed and built, it must be calibrated so there is knowledge

as to how the imparted forces on the top of the transducer, at the interface of the resonator

and transducer, are related to the PZT displacements in the transducer. That details of the

calibration process are discussed.

5.5.1 Impact Hammer Forcing

Ideally the transducer calibration is achieved by mounting a calibration block on top of

the transducer and applying known forces to the sides and tops of that plate. For this

transducer and calibration block seen in Figure 5.9, the transducer is calibrated with ping

tests, with impulsive forces applied via the PCB 086E80 hammer containing an internal force

transducer. Its sensitivity of ∼ 100mV/lbf is quite suitable for the forces that can be applied

to the transducer by hand.

Figure 5.10 indicates that the applied impulse in the time domain corresponds to a

flat constant energy input spectrum in a reasonable frequency range, and representative

111



Figure 5.9: PZT based F/T transducer with PCB 086E80 Impact Hammer for use in calibration. At least six linearly indepen-
dent location-wise impact tests are necessary to effectively calibrate the transducer. The large base with vibration
isolation is not shown.

frequency responses in Figure 5.11 between PZTs and the input force are also shown to

highlight the operable region of the transducer.

Figure 5.10: Time-Domain (left) and Magnitude (right) Spectrum of input ping at one side location from PCB 086E80 Impact
Hammer internal force cell to highlight input energy into system

To obtain a full rank transformation matrix between the six PZT channels and the six

forces and torques, at least six experiments are performed (and preferably more to better

inform the transformation matrix), where the transducer is forced with known forces and

torques such that the F/T vectors are linearly independent.

112



Transducer 
Modes

Seismic 
Isolation 
Modes

Figure 5.11: PZT to PCB Hammer Force Cell (FC) frequency responses from a representative PZTs showing a clear flat
frequency region of operation for the isolated transducer in between the base vibration isolation modes at ∼40Hz
and the lowest transducer modes at ∼2kHz.

Those force and moment components at the transducer mounting plate are deduced from

kinematics, made clear in Figure 5.12, where the dimensions and forcing locations are shown

for the isolated calibration plate.

Thus, the location and line-of-action of the applied solenoid force will be converted into

a six element vector with elements {fx, fy, fz,mx,my,mz}. The units of the first three

elements are N, and the last three are N-m. Experiment p will yield the vector v(p) ∈ R6

whose elements convert the solenoid force into {fx, fy, fz,mx,my,mz}. This vector does not
depend on frequency but is only applicable when the solenoid force frequency is sufficiently

lower than the loaded transducer modal frequencies.

5.5.2 Obtaining Transformation between PZT voltages and Applied Forces and

Torques

The frequency dependent transformation matrix T (ω) ∈ C6x6 converts the PZT voltages into

the transducer mounting plate forces and moments {fx, fy, fz,mx,my,mz}. The units of the
elements are N/V or N-m/V.

With these definitions in place the frequency dependent transducer plate forces and
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Figure 5.12: Side (left) and Top (right) views of the isolated calibration plate are shown. Applied force locations are shown
in red. Kinematics are calculated using vector from force location to transducer center/interface and given plate
dimensions. Series of dashes signify equal length segments.

moments as a function of the solenoid amplifier voltage for Experiment p are given by

v(p)KsfH
(p)
F (ω) ∈ C6. (5.1)
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These forces and moments as a function of solenoid input are also obtained by converting

the PZT frequency responses,

T (ω)H
(p)
S (ω) = v(p)KsfH

(p)
F (ω). (5.2)

If n experiments are conducted, then the results can be packed into

T
[
H

(1)
S H

(2)
S · · · H

(n)
S

]
=
[
v(1) v(2) · · · v(n)

]

KsfH

(1)
F 0 · · ·

0 KsfH
(2)
F

...
. . .

KsfH
(n)
F

 .

(5.3)

Multiplying on the right by the inverse of the diagonal n × n matrix yields (after factoring

out Ksf ):

T
[
H

(1)
S H

(2)
S · · · H

(n)
S

]

1/H

(1)
F 0 · · ·

0 1/H
(2)
F

...
. . .

1/H
(n)
F

 =
[
v(1) v(2) · · · v(n)

]
Ksf .

(5.4)

The left-hand side simplifies to

T

PZT vs. force cell frequency responses, H︷ ︸︸ ︷[
H

(1)
S /H

(1)
F H

(2)
S /H

(2)
F · · · H

(n)
S /H

(n)
F

]
=
[
v(1) v(2) · · · v(n)

]
︸ ︷︷ ︸

V

Ksf , (5.5)
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which is succinctly expressed as

TH = VKsf . (5.6)

From here, T is computed on a frequency-by-frequency basis,

T = KsfVH∗(HH∗)−1. (5.7)

5.5.3 Usable Range of F/T Transducer for Stem Reaction Measurements

There are a few initial issues with even considering using this F/T transducer for application

with the macro scale steel resonator. As seen in Figure 5.11, the lowest transducer mode

with calibration block on top is around 2 kHz. This is close enough to the resonator n = 2

vibration modes at about 1.6 kHz such that the transducer is not operating a pure stiffness

regime, i.e. the frequency response is not flat anymore. Furthermore, putting the macro

resonator on the transducer adds mass loading to the overall system and as such the lowest

(loaded) transducer mode would decrease from its initial frequency.

5.6 Lightweight Tuning Fork and F/T Transducer Calibration

It is still necessary to show that the F/T transducer is effective in its operation when a

resonator is mounted, which necessitates a lighter weight resonator with lower frequency

modes, leading to the design and use of a lightweight steel tuning fork resonator to highlight

that the full system can be effectively calibrated, i.e. the transducer can measure stem

reactions. The design of the tuning fork and calibration of the transducer for use in detecting

the stem reactions in the tuning fork are discussed.
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5.6.1 Tuning Fork Design and Planar Tuning Fork Modes

The equation for the tuning fork mode as formulated using conventional Beam theory in

[HBW99] is

fTF =
N

2πL2

√
EI

ρA
,

where N ≈ 3.516 arises from the boundary conditions associated with the cantilevered nature

of the tines, L is the tine length, E is the Young’s modulus of the steel comprising the tines,

I is the moment of inertia of the rectangular tine cross section, ρ is the tine material density,

and A is the tine cross sectional area. Because the prongs are designed with a rectangular

cross-section, I/A = a2/12, where a is the tine cross-section width, and thus,

fTF =
3.516

2πL2

√
Ea2

12ρ
, (5.8)

To be well within the operating flat region of operating frequency for the F/T transducer,

a tuning fork modal frequency of 400 Hz was chosen to design the tuning forks around.

Additionally, the need for the tuning fork to be magnetic in order to easily study the effect

of point mass magnet placement, meant that the tuning fork had to be steel. With this in

mind, given a steel bar of cross-sectional width of 2 mm to be used to construct the tines,

L = 63 mm is sufficient for the tuning fork mode to be close to 400 Hz.

Simulating the vibrational modes of this tuning fork design yields two modes near 400

Hz, the tuning fork mode and a side to side mode, visualized in Figure 5.13.

Both modes are present in a narrow frequency band around 400 Hz, however, the tuning

fork mode is of interest for operation of the tuning fork as a resonator. Thus, although tests

involving the tuning fork may yield two vibrational modes, the focus is purely on the tuning

fork mode.
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Figure 5.13: The tuning fork modes near 400 Hz for this tuning fork design. The steel tines are mounted on an aluminum
base, and the green arrows represent the fixed boundary condition on the base. The side-to-side (left) mode has a
mode-shape where the tines move in phase, whereas for the tuning fork (right) mode, the tines move in anti-phase

5.6.2 Calibration Results

With a new lightweight tuning fork, the F/T transducer is effective in detecting stem re-

actions. There is a need to calibrate with the tuning fork on the transducer, as there are

mass loading effects that contribute to small but noticeable changes between reactions de-

tected with and without the tuning fork on the transducer. Figures 5.14 and 5.15 contain

diagrams of this setup used for calibration. For sake of brevity, the large metal base with

pliable springs used for vibration isolation are not shown. Each figure shows representative
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results for calibration ping tests performed from the side and top of the calibration block

respectively.

Figure 5.14: Representative diagram (center) of superposition check for horizontally applied forces. PZT-to-force frequency
responses for horizontally (left) and vertically (right) facing PZTs.

It is expected that the average of the red and blue responses for all representative tests and

PZTs average out to the result of the green response, and, although the responses are shown

on a log-log scale, the response show this to be the case. Additionally, it is important to note

that the tuning fork and side-to-side modes are visible near 400 Hz. Finally, a positive or

negative sign (0◦ or 180◦ phase) in the flat region of the response is expected, which indicates

the PZT’s displacement in its primary direction of motion is compressive/expansive. The

responses are fairly flat, so the frequency response for each PZT taken at 200 Hz informs the

transformation for each ping test given the locations of applied forces relative to the center

interfaces are known.

For some tests and PZT-to-force responses, the gain is very small and additionally the

frequency response phase is far from 0◦ or 180◦. If these small gain responses are used as is,

the transformation distorts reactions predictions, however, the predictive power is improved

if the PZT is assumed to act purely compressively/expansively. In summary, H is computed

for each test by projecting the response at a single frequency onto the real axis.

The calibration procedure is completed at n = 21 different locations, as seen in Fig-
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Figure 5.15: Representative diagram (center) of superposition check for vertically applied forces. PZT-to-force frequency re-
sponses for horizontally (left) and vertically (right) facing PZTs.

ure 5.12. At each location, a mount with a pliable spring turns the impact hammer into a

pendulum such that the rubber tip strikes the same desired forcing location consistently. For

the impact tests performed, Table 5.1 below highlights the six element vectors vi for each

test.

The vectors in this table are listed as rows, where each row corresponds to a different

forcing location on the calibration block. This table yields matrix V with condition number

σ̄(V)/σ(V) = 2.69.

Two checks ensure a properly accurate transformation after projecting the PZT-to-force-

cell responses onto the real axis for each impact test location. First, the singular values of

H are computed as a function of frequency, seen in Figure 5.16.

For the usable frequency region of the transducer, singular values are constant, and thus

a condition number of the matrix H can be computed at a single frequency in this usable

range to ensure minimal error in the computation of the transformation matrix T , i.e.

σ̄(H)/σ(H) = 3.83.
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Table 5.1: Associated force/torque reactions at stem for impact tests from kinematics. Each test yields a six element column
vector. The first three elements show the direction and sign of the force, with line of action constrained to a single
Cartesian axis. The last three elements yield the moment arms for each moment rectangular component.

Fx(N/N) Fy(N/N) Fz(N/N) Mx(cm-N/N) My(cm-N/N) Mz(cm-N/N)

0 0 -1 -1.55 -1.55 0
0 0 -1 -1.55 -0.85 0
0 0 -1 -1.55 0.85 0
0 0 -1 -1.55 1.55 0
0 0 -1 0 -1.55 0
0 0 -1 0 1.55 0
0 0 -1 1.55 -1.55 0
0 0 -1 1.55 -0.85 0
0 0 -1 1.55 0.85 0
0 0 -1 1.55 1.55 0
0 1 0 -0.953 0 -1.133
0 1 0 -0.953 0 0
0 1 0 -0.953 0 1.133
-1 0 0 0 -0.953 0
-1 0 0 0 -0.953 1.133
0 -1 0 0.953 0 -1.133
0 -1 0 0.953 0 0
0 -1 0 0.953 0 1.133
1 0 0 0 0.953 -1.133
1 0 0 0 0.953 0
1 0 0 0 0.953 1.133

Second, once T is computed, the predictive power of the matrix is checked. The relative

error between V and TH for all cases used for the calibration is checked, i.e.

||V− TH||2/||V||2 < 0.08,

which is sufficient in terms of predictive power. With the calibration complete and the

transformation matrix obtained, the F/T transducer can now be used to effectively measure

stem reactions.
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Figure 5.16: The singular values of H are plotted for the tuning fork/transducer setup. The usable frequency range for cali-
bration is roughly between 100/,Hz and 300/,Hz. The condition number (σ1/σ6)in this usable frequency range is
small. Base isolation modes and tuning fork modes are apparent.

5.7 Measuring Stem Reactions in Tuning Fork

With the F/T transducer, regardless of being calibrated or not, coupling coefficients between

the transducer and resonator are computed. This section derives coupling coefficients for

the full resonator/transducer system using the transient ring-down technique discussed in

Chapter 3 and the observability Gramian.

Although the full system with the macro-scale resonator couldn’t be calibrated, an ad-

hoc study is performed in which masses are added to the resonator. Coupling coefficients

between the resonator and the individual PZTs are computed for the nominal and mass

perturbed states of the system.

With the F/T calibration achieved for the tuning fork system, coupling coefficients can be

computed between the tuning fork resonator and the transducer reactions obtained using the

calibration transform matrix. In essence, for both systems the energy associated with each

PZT or stem reaction is normalized by the energy contained in the motion of the resonator,
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standardizing the notion of a “coupling coefficient”.

5.7.1 Obtaining Stem Reaction Coupling Coefficients with the Observability

Gramian

For the full coupled resonator/transducer system, a transient ring-down test local to a pair of

vibrational modes yields a discrete-time state space model, denoted by the triplet {A, xo, C},
as seen previously in Chapter 3. In order to obtain coupling coefficients for each vibrational

mode in the pair, the model is transformed such that the dynamic matrix A is now block

diagonal, i.e. each mode has an A matrix expressed such that the state space model can be

decoupled into two models for each mode. More specifically, there exists a transformation

T , such that

Ã = T−1AT =

Ã1 0

0 Ã2

 ∈ R4x4, C̃ =

C̃1

C̃2

 , x̃0 = [x̃0,1 x̃0,2

]
. (5.9)

In the transformed coordinates, coupling coefficients are calculated by first computing

signal energies contained in the transients from each PZT pick-off channel and from the

vibrometer pick-off for each mode using the controllability Gramian as seen below.

ÃiGi,j −Gi,j = −C̃T
i,jC̃i,j, (5.10)

||yi,j||22 = x̃T0,i,jGi,jx̃0,i,j, i = 1, 2; j = 1, . . . , 6, (5.11)

where N is the number of total pick-offs in the combined systems, where the first six sig-

nal energies are associated with either the PZTs or stem reactions respective to the full

resonator/transducer systems discussed below.

For the tuning fork/transducer system, the laser vibrometer is the single resonator

pick-off, so the computation proceeds as follows: The resonator pick-off energy is computed
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as

ÃiGi,res −Gi,res = −C̃T
i,resC̃i,res, (5.12)

||yi,res||22 = x̃T0,i,resGi,resx̃0,res, i = 1, 2. (5.13)

The resonator pick-off energy is computed first using Equation 5.12. For this system, C̃i,res

and x̃0,i,res are the constant coefficients C and x0 associated with the vibrometer for the

ith vibrational mode. The PZT signal energies are then normalized by the this vibrometer

energy using Equation 5.14, yielding coupling coefficients for each PZT and each vibra-

tional mode. To reiterate the transformed PZT signals take the stem reaction sextuplet

{fx, fy, fz,mx,my,mz}. For instance y1,rxn2 corresponds to the transient associated with the

fy reaction for the 1st vibrational mode.

||yi,pztk ||22 = ||yi,k||22/||yi,res||22, i = 1, 2; k = 1, . . . , 6 (5.14)

5.8 Results of Transient Ring-down Modeling for TF Setup

5.8.1 Tuning Fork/Transducer Experimental Setup

The full tuning fork/transducer setup is below. A solenoid actuator operates as a single

input, a vibrometer is the single resonator pick-off, and the transducer contains six PZT

pick-offs.

A 5 second burst chirp actuates the tine in a roughly small bandwidth about 400 Hz,

close to the tuning fork modal frequency. The input sent to the solenoid actuator and the

resulting vibrometer are shown for the nominal state of the tuning fork. The significant

beating in the pick-off data for the nominal system is indicative of the significant coupling

present in both the side-to-side and tuning fork modes, however, in the perturbed system

the beating is diminished in the reactions but remains in the vibrometer pick-off, indicating
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Figure 5.17: Tuning Fork/Transducer Experimental Setup Diagram (left) and Snapshot (right). The laser vibrometer remains
in a fixed location for all experiments, and the solenoid pings the tuning fork. A solid block of steel with epoxied
erasers as pliable springs act as a vibration isolation from the surface the entire system is sitting on. In the
snapshot, proto-boards contain PZT charge amplifiers.

that the coupling has been reduced in one of the vibratory modes, which ends up being the

tuning fork mode.

From these time-domain plots, a portion of the transient data is used to fit a system

model, which is then used to calculate coupling coefficients, the results of which are seen in

Table 5.2. The dominant Fy and Mz are highlighted in red to show the significant coupling

decrease in the system. The mass perturbed tuning fork’s time constant is longer as an effect

of this decreased coupling.

Table 5.2: Coupling Coefficients for Transducer Reactions in Nominal and Mass Perturbed Tuning Fork

Force/Torque (F/T) Nominal System Perturbed System

Reactions Coupling Coefficients F/T Coupling Coefficients

Fx (N/V )2 0.0196 2.45e-5

Fy (N/V )2 0.15 1.65e-4

Fz (N/V )2 0.0053 6.57e-6

Mx (N -cm/V )2 5.871 6.028e-3

My (N -cm/V )2 0.0146 9.49e-7

Mz (N -cm/V )2 0.0032 5.87e-6
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Figure 5.18: Time Domain plots of vibrometer output, input burst, and reaction forces and torques for nominal (left) and mass
perturbed (right) cases. For both states of the tuning fork, Fy and Mz are unsurprisingly the dominant stem
reactions detected by the transducer. Both the side-to-side and tuning fork modes are apparent.
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Figure 5.19: Enlarged time-domain plot of vibrometer responses for nominal (blue), where σ = 0.18s−1, and mass perturbed
(red), where σ = 0.34s−1, tuning fork. The longer time constant, i.e. less motional damping, is quite apparent.
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5.9 Ring-down Models for Macro-DRG

5.9.1 Coupling Coefficients

For the steel macro ring-resonator/transducer system, there are two resonator pick-

offs. The computation proceeds as follows after applying Equation 5.10. The resonator pick-

off energy is computed using Equation 5.12, however, C̃i,res and x̃0,i,res are now the block C

and x0 matrices associated with two resonator pick-offs for the ith vibrational mode. The

PZT signal energies are then normalized by this resonator pick-off energy yielding coupling

coefficients for each PZT and vibrational mode using Equation 5.14.

5.9.2 Experimental Setup

The experimental setup is almost identical to that described in [SKM09] in that the same

solenoid forcers and brass capacitive pick-offs are used to actuate and sense motion respec-

tively in the steel ring resonator, however, the transducer is mounted underneath the res-

onator providing six additional pick-offs corresponding to PZT output voltages, a scrambled

version of the stem reactions. The experimental setup in Figure 5.20 shows the two forcers

and two pick-offs in the resonator, ensuring both n = 2 vibrational modes are actuated and

observation of each mode-shape in terms of its orientation and modal frequency.

5.9.3 Obtaining Point Mass Sensitivities

The effect of point masses on the coupling coefficients needs is measured. To ensure that

the n = 2 frequency split remains for consistent coupling coefficient comparisons, pairs of

one and two point masses are placed 45◦ apart. Single pair and dual pairs of point mass are

placed in 15◦ increments around the outer layer of the steel resonator to quantify the point

mass sensitivity on coupling coefficients for both vibrational modes, which in turn informs

where to place point masses to balance both modes in the steel resonator. θ refers to the
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Figure 5.20: Experimental setup for transient tests with an 11.6 cm diameter steel Macro-DRG. Resonator forcers, labeled D1

and D2, are electromagnetic actuators, and resonator capacitive pick-offs, labeled S1 and S2, are used to measure
radial deflection. A significant amount of small magnets are intentionally placed, creating reversible perturbations
in the resonator mass distribution and thus reducing coupling between the resonator and transducer motion for
both n = 2 vibratory modes. The resonator is mounted on top of the F/T transducer.

angle that is in between the pair of masses, and tables below show the results of these tests

in terms of perturbations to coupling coefficients.
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Table 5.3: Single and Dual Mass Pair Coupling Coefficient Sensitivities, Mode 1

θ, Pair Type PZT1 PZT2 PZT3 PZT4 PZT5 PZT6
0◦, single 1.643 0.254 -1.868 1.658 3.195 0.746
0◦, dual 2.957 0.624 -3.406 2.682 6.369 1.541

45◦, single 0.684 0.184 0.028 2.980 1.682 0.093
45◦, dual 0.948 0.462 -0.016 5.842 3.420 0.145

90◦, single -1.462 0.202 1.747 4.240 0.293 -0.624
90◦, dual -3.028 0.519 3.638 8.813 0.498 -1.189

135◦, single -2.096 0.047 1.454 1.006 -0.960 -0.696
135◦, dual -4.000 0.123 3.372 2.398 -1.994 -1.318

180◦, single -1.671 -0.115 1.990 -1.823 -2.604 -0.700
180◦, dual -3.344 -0.114 4.146 -3.755 -4.817 -1.312

225◦, single 0.355 -0.128 0.760 -2.427 -1.906 -0.012
225◦, dual 0.571 -0.051 1.389 -4.895 -3.561 -0.053

270◦, single 1.801 -0.120 -1.372 -3.594 -0.584 0.859
270◦, dual 3.643 -0.097 -2.655 -6.879 -1.073 1.892

315◦, single 1.487 0.010 -1.908 -1.537 1.147 0.800
315◦, dual 2.888 0.029 -3.644 -3.084 2.477 1.749

Table 5.4: Single and Dual Mass Pair Coupling Coefficient Sensitivities, Mode 2

θ, Pair Type PZT1 PZT2 PZT3 PZT4 PZT5 PZT6
0◦, single 0.983 0.921 1.323 0.697 -0.059 1.518
0◦, dual 1.934 1.800 2.662 1.580 -0.126 3.029

45◦, single 2.390 -0.002 2.645 0.474 0.647 3.164
45◦, dual 4.718 -0.151 5.595 1.010 1.508 6.406

90◦, single 1.834 -0.761 1.154 -0.206 0.708 1.829
90◦, dual 3.453 -1.559 2.403 -0.384 1.613 3.497

135◦, single 0.097 -2.024 0.154 -0.695 0.862 0.032
135◦, dual 0.364 -3.805 0.220 -1.053 2.012 0.165

180◦, single -1.419 -1.483 -0.629 -0.500 0.220 -1.509
180◦, dual -2.920 -2.880 -1.207 -0.846 0.449 -3.074

225◦, single -2.387 -0.106 -2.036 -0.270 -0.472 -3.136
225◦, dual -4.644 -0.231 -3.698 -0.488 -0.809 -6.033

270◦, single -1.066 1.458 -1.662 0.158 -0.606 -1.677
270◦, dual -2.102 2.963 -3.054 0.350 -0.955 -3.301

315◦, single 0.019 2.375 -0.357 0.896 -0.629 0.053
315◦, dual 0.031 4.941 -0.681 2.100 -0.977 0.090
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5.9.4 Ad-Hoc Mass Balancing Results

The n = 2 modes are located near 1650 Hz and thus a 10 second burst chirp is applied to both

inputs, each staggered relative to the other. Experimental results with and without mass

perturbations intentionally placed to mass balance the structure are discussed. A transient

data set, shown in Figure 5.21 is captured for all PZTs and resonator pick-offs to inform a

full system state space mode from which coupling coefficients for each mode are extracted.

This is repeated after 100 point masses are placed on the structure to reduce the coupling

coefficients for each mode in all PZTs.

Because the setup with the steel resonator cannot be effectively calibrated, it is impossible

to relate the PZTs to prescribed forces, and the coupling coefficients here are kept in terms

units from the raw I/O data of (V/V )2. The table and time domain plots highlight that

a significant reduction in imbalance for both n = 2 vibrational modes can be achieved,

however, a lot of point masses need to be placed because balancing the structure with

regards to both modes simultaneously is extremely difficult, i.e. most placement locations

increase the coupling coefficients in one mode while increasing that of the other mode.
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Figure 5.21: Pickoff voltages are shown with resonator pick-offs (bottom) having similar signal energy between nominal and
mass perturbed tests. The reduction in system coupling is most apparent when looking at PZTs 1 and 6.
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5.10 Conclusion

This chapter highlighted the use of a vibrometer to observe motion in a resonator die for its

n = 1 and n = 2 modes, highlighting coupling between the motion of the MEM-DRG and

its substrate. A PZT based, six DOF F/T transducer design is informed by a simple single

axis coupled oscillator model, and characterizes reaction forces and moments that exist due

to this coupling.

By using transient data to fit a Hankel based state model combined with computing

specific observability Gramians for each pick-off, coupling coefficients are computed for a

resonator vibrational mode pair.

Design and use of a lightweight tuning fork assists in yielding a full system where the

transducer can be calibrated, and, as a result, the PZT responses can be unscrambled into

stem reactions. Coupling coefficients are then quantified in the tuning fork mode for all

6 stem reactions. Intentionally applied masses to a single tine dramatically reduces this

coupling and increases the time constant for this mode.

The transducer cannot be calibrated for the steel DRG, although an ad-hoc approach

reduces these coupling coefficients in each PZT for both n = 2 modes simultaneously, albeit

with significant mass loading.
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CHAPTER 6

Conclusion

From the study of ring-type and tuning fork resonators in this thesis, the following remarks

can be made as a summary.

• MEM-DRGs can be manufactured efficiently, however, small fabrication errors are

introduced which break the symmetry of the structure. To recover the symmetry of

the structure, post-fabrication processing is required, adding mass being the focus of

this work.

• A model is developed for imperfect thin rings using the weak Galerkin method, a

method suited for extracting mass and stiffness matrices for a vibrational system.

First, mass and stiffness matrix perturbations local to a mode pair are computed,

relative to small point mass and ring width perturbations. Second, these point mass

perturbations yield changes to the ring center of mass, which motivates the need for the

design and testing of a force-torque transducer for resonators to measure stem reaction

forces.

• The DRG vibrational modes must first be identified. A transient based system iden-

tification method yields accurate models localized to a single mode pair. This model

captures modal frequencies in the n = 1, n = 2, and n = 3 mode pairs precisely

while simultaneously yielding orthogonal mode orientations. In a MEM-DRG with

turned n = 2 modes, the model measures large changes in modal properties when

small stiffness perturbations in the form of an electrostatic bias are applied.
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• A zoom method for this model is also developed, which shifts the transient data to a

base-band with decimation and a base-band modulation frequency, identifies a base-

band model, and then shifts the base-band model to the frequency range of interest

using that same modulation frequency. This method significantly reduces computa-

tional time for the modeling technique.

• A predictive model is developed for ring type resonators which includes stiffness and

mass matrix components. A linear matrix inequality based optimization fits this model

from the transient state space model developed for a nominal state of the resonator.

The Galerkin based model for imperfect rings is extended to ring-like resonators. Ex-

periments with single mass perturbations placed on multiple ring layers are completed,

showing the predictive capabilities of the model. The model is quite effective for

predicting the effect of single point masses on the outer ring layers, however, the ef-

fectiveness diminishes when trying to predict the effect of multiple mass perturbations

and/or of placing a point mass on an inner ring layer.

• The design, construction, and testing of a six DOF F/T transducer is first motivated

by rudimentary experiments where a laser vibrometer measures base motion when

resonator vibrational modes are actuated. The creation of a transducer on the micro

scale is a huge technical challenge, so a transducer is made and tested on resonators

at the macro scale.

• A simple 4 state, coupled oscillator system with a resonator, transducer, and vibra-

tion isolation base is analyzed informing relative stiffness and mass parameters in the

transducer design.

• A PZT based F/T transducer is built which exhibits properties similar to those seen

in the simple model, however, the usable frequency range of the transducer is limited

as the lowest transducer mode is near 2 kHz.
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• For a lightweight steel tuning fork with vibrational mode near 400 Hz, the transducer

is calibrated using impact tests. Stem reactions are measured via the PZT pick-offs

using a similar transient modeling approach. A laser vibrometer measures the tine

motion.

• Coupling constants are computing using transients from the transducer and vibrom-

eter via an observability Gramian approach. Coupling constants associated with the

dominant stem reactions are decreased using intentionally placed point masses.

• For a macro steel DRG with two capacitive resonator pick-offs, where the n = 2

mode pair is located near 1.6 kHz, the transducer cannot be calibrated. Coupling con-

stants between PZTs and resonator pick-offs are calculated using the same observability

Gramian approach.

• An ad-hoc approach enables a significant decrease in coupling constants. Coupling

constants are measured when individual point masses are placed around the DRG,

informing placement of multiple point masses to decrease coupling for both n = 2

vibrational modes.
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