UCLA UCLA Previously Published Works

Title

Cardiovascular Safety Reporting in Contemporary Breast Cancer Clinical Trials

Permalink https://escholarship.org/uc/item/2246s91r

Journal Journal of the American Heart Association, 11(15)

ISSN 2047-9980

Authors

Hamid, Arsalan Anker, Markus S Ruckdeschel, John C <u>et al.</u>

Publication Date

2022-08-02

DOI

10.1161/jaha.121.025206

Peer reviewed

ORIGINAL RESEARCH

Cardiovascular Safety Reporting in Contemporary Breast Cancer Clinical Trials

Arsalan Hamid ^(D), MD; Markus S. Anker ^(D), MD; John C. Ruckdeschel ^(D), MD; Muhammad Shahzeb Khan ^(D), MD, MSc; Arsal Tharwani, MD; Adebamike A. Oshunbade ^(D), MD, MPH; Rodney K. Kipchumba ^(D), BS; Samuel C. Thigpen, MD; Stefan D. Anker ^(D), MD, PhD; Gregg C. Fonarow ^(D), MD; Michael E. Hall ^(D), MD, MS; Javed Butler ^(D), MD, MPH, MBA

BACKGROUND: Several cancer therapies have been associated with cardiovascular harm in early-phase clinical trials. However, some cardiovascular harms do not manifest until later-phase trials. To limit interdisease variability, we focused on breast cancer. Thus, we assessed the reporting of cardiovascular safety monitoring and outcomes in phase 2 and 3 contemporary breast cancer clinical trials.

METHODS AND RESULTS: We searched Embase and Medline records for phase 2 and 3 breast cancer pharmacotherapy trials. We examined exclusion criterion as a result of cardiovascular conditions, adverse cardiovascular event reporting, and cardiovascular safety assessment through cardiovascular imaging, ECG, troponin, or natriuretic peptides. Fisher's exact test was utilized to compare reporting. Fifty clinical trials were included in our study. Patients were excluded because of cardiovascular events were reported in 42 (84%) trials. Heart failure was a frequent exclusion criterion (n=31; 62% trials). Adverse cardiovascular events were reported in 43 (86%) trials. Cardiovascular safety assessments were not reported in 23 (46%) trials, whereas natriuretic peptide and troponin assessments were not reported in any trial. Cardiovascular safety assessments were more frequently reported in industry-funded trials (69.2% versus 0.0%; P<0.001), and in trials administering targeted/immunotherapy agents compared with only hormonal/conventional chemotherapy (78.6% versus 22.7%, P<0.001).

CONCLUSIONS: Our findings demonstrate significant under-representation of patients with cardiovascular conditions or prevalent cardiovascular disease in contemporary later-phase breast cancer trials. Additionally, cardiovascular safety is not routinely monitored in these trials. Therefore, contemporary breast cancer clinical trials may possibly underestimate the cardiovascular risks of cancer pharmacotherapy agents for use in clinical practice.

Key Words: cancer therapy = cardio-oncology = cardiovascular disease = pharmacotherapy = safety

Breast cancer contributes to one quarter of all incident cancers in women and is the most common cause of female cancer-related mortality.¹ Furthermore, breast cancer shares a number of common risk factors with cardiovascular disease (CVD) such as age, obesity, tobacco use, alcohol intake, and hormone replacement therapy.² One third of patients with breast cancer have CVD.³ With greater efficacy and introduction of improved breast cancer therapies,

the 5-year survival of breast cancer patients has risen from 75% to 91%.⁴ Given the increased survival rate, cancer therapy-induced cardiovascular toxicity is a growing cause of morbidity and mortality in patients with breast cancer.⁵ Breast cancer pharmacotherapy agents including conventional chemotherapies (alkylating agents, antimetabolites, and antimicrotubule agents),^{6,7} targeted therapies,⁷ and immunotherapy⁸ are associated with varying degrees of adverse

Correspondence to: Javed Butler, MD, MPH, MBA, Department of Medicine, University of Mississippi Medical Center (L650), 2500 N. State St, Jackson, MS 39216. Email: butlzih@gmail.com

Preprint posted to SSRN November 9, 2021. doi: https://doi.org/10.2139/ssrn.3959661

Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.121.025206

For Sources of Funding and Disclosures, see page 9.

^{© 2022} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

JAHA is available at: www.ahajournals.org/journal/jaha

CLINICAL PERSPECTIVE

What Is New?

- We highlight that breast cancer pharmacotherapy trials under-represent patients with cardiovascular conditions.
- Cardiovascular safety assessments frequently are not reported in breast cancer pharmacotherapy trials.
- Although patients with cardiovascular disease were often excluded from breast cancer pharmacotherapy trials, included participants commonly experienced adverse cardiovascular events during these trials.

What Are the Clinical Implications?

- Breast cancer trials may underestimate the cardiovascular risks of cancer pharmacotherapy agents for the general population.
- Later-phase breast cancer pharmacotherapy trials may not be able to uncover cardiovascular risks that have not been identified in smallerscale trials and as a result, subclinical cardiotoxicity may remain undetected in these trials.
- Judiciously conducted cardiovascular safety assessments may allow inclusion of patients with cardiovascular conditions, early identification of adverse cardiovascular events, and demonstrate subclinical cardiovascular harm of pharmacotherapy.

Nonstandard Abbreviations and Acronyms

FDA US Food and Drug Administration

cardiovascular effects. Oncologic pharmacotherapyinduced cardiovascular effects can be serious and possibly fatal, including events such as myocardial infarction, arrhythmias, myocarditis, cardiomyopathy, pericardial disease, stroke, and heart failure.⁷ Recent advances in the field of oncology have led to the rapid introduction of novel therapies, resulting in a rise in the number of agents gaining US Food and Drug Administration (FDA) approval every year.⁹ Rigorous safety and efficacy testing in multiphase clinical trials must be performed before FDA approval. Given the high prevalence of CVD in women with breast cancer, it is important to understand potential cardiovascular harm from novel agents in this population. However, it is unclear whether large contemporary phase 2 and 3 clinical trials adequately assess cardiovascular safety and are able to uncover cardiovascular risks that were not identified in early-phase trials. Therefore, we assessed reporting of cardiovascular safety in breast cancer trials administering cancer pharmacotherapy through the evaluation of 3 key domains: inclusion/ exclusion of patients with cardiovascular conditions, cardiovascular safety assessments (cardiovascular laboratories or imaging assessments), and adverse cardiovascular events.

METHODS

Study Identification

We searched Embase and Medline records before January 4, 2019 for clinical trial articles assessing efficacy of cancer pharmacotherapy in breast cancer until 50 articles that fit inclusion criteria were acquired. The search strategy used was: "Breast" AND "Cancer" with trial filters activated (Figure). The inclusion criteria of studies were as follows: (1) phase 2 and 3 trials; (2) enrolled >50 participants; (3) assessed the use of cancer pharmacotherapy as primary intervention on primary or secondary end points of survival, response, or safety in patients with active breast cancer; and (4) were registered with the national clinical trials registry or other international trial registries (this permits acquisition of further eligibility criteria and adverse event data). Studies were excluded if they were (1) quality of life or cost-analysis studies, (2) expanded access programs, or (3) involved treatment of other (nonbreast) types of cancer (to limit interdisease variability). Using the above criteria, our search was conducted with an all-inclusive approach to any stage of cancer, pharmacotherapy administered, or length of follow-up for articles published in any journal. This was done to maintain generalizability of our results. Two independent reviewers screened selected studies and abstracted data; in the event of disagreement, a third reviewer resolved discordant assessments. Furthermore, corresponding authors of articles were contacted for gueries if needed. If corresponding authors failed to respond, then best judgment and consensus of reviewers was implemented. We acquired 50 published trials (Table S1) after review of 1775 records (Figure). Institutional Review Board approval was waived for this article because it is a review of publicly available data. The data that support the findings of this study are available from the corresponding author upon reasonable request.

Data Abstraction

Data from primary articles, trial databases, protocols, and supplementary files were reviewed as a pooled analysis of trial data (Figure S1). The following data were abstracted from articles, registries, protocols, or supplements: (1) publication year, (2) number of participants, (3) age, (4) race (if specified), (5) median survival duration (if reached/available), (6) trial phase, (7) funding/sponsor, (8) cancer pharmacotherapy intervention, (9) trial end point,

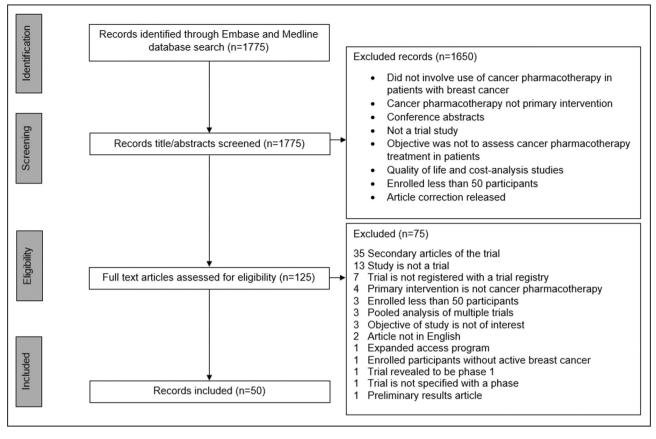


Figure. Trial search.

(10) inclusion/exclusion criteria, (11) safety assessments, and (12) adverse events. Registry data for demographics were utilized when articles did not present clear data. Data were last updated April 25, 2020.

Definition of Reporting Variables

Cardiovascular conditions were defined as any CVD. cardiovascular symptoms (for example, dyspnea, peripheral edema, or chest pain), or any abnormal cardiovascular examination/laboratory parameters (for example, ejection fraction [EF], blood pressure, or heart rate). CVD was classified as heart failure (reported as history of heart failure, symptomatic heart failure, cardiopulmonary failure, or New York Heart Association class >1), angina, ischemic heart disease/coronary artery disease, myocardial infarction (reported as history of myocardial infarction or a recent myocardial infarction), hypertension (reported as history of hypertension or with blood pressure cutoffs), arrhythmia (reported as history of arrhythmias that were uncontrolled, unstable, clinically significant, or other unspecified ECG abnormalities), QT interval prolongation, stroke (ischemic or hemorrhagic), cardiomyopathy, pericardial disease (pericarditis or pericardial effusion), pulmonary hypertension/cor pulmonale, aortic aneurysm, acute

coronary syndrome, cardiac tamponade, hypercholesterolemia/hypertriglyceridemia, cardiac/cardiorespiratory arrest, cardiac infection, structural heart disease, thrombosis (deep venous thrombosis, pulmonary embolism, or thromboembolic disease) or peripheral artery disease/carotid artery disease. Hypertension was divided into a history of hypertension and hypertension. When hypertension was listed without a blood pressure cutoff, this was considered a history of hypertension. Alternatively, hypertension with a blood pressure cutoff (eg, uncontrolled/poorly controlled hypertension [>140/90 mmHg under treatment with 2 antihypertensive drugs]) was abstracted as hypertension, because this could possibly indicate hypertension identified upon screening (however, timeline of blood pressure assessment was mostly not specified in trials). Myocardial infarctions were also subdivided into a history of myocardial infarction if the timeline was not specified or a recent myocardial infarction if timeline was specified to have been at most in the past 1 year of study enrollment, entry, randomization, or first dose of therapy.

Cardiovascular safety assessments were defined as planned evaluations at baseline or pre/post therapy administration at any time in the trial. Cardiovascular safety assessments included ECG, cardiac imaging (echocardiography, multigated acquisition scan, or cardiac magnetic resonance imaging [CMR]), natriuretic peptides (brain natriuretic peptide and N-terminal pro-brain natriuretic peptide), troponins, lipid profile, or creatine phosphokinase. Adverse cardiovascular events were defined as any reported adverse cardiovascular symptom, disease, or condition encountered at any point during the study or that may have resulted in death.

Statistical Analysis

Continuous variables were abstracted as medians or absolute counts and summarized as means and SDs. Categorical variables were summarized as frequencies and percentages. Where demographic data in trials were presented in multiple groups (interventional group or control group), demographic data for the trial overall were summarized as mean of all groups. Where demographic data were available for only 1 study group, it was extrapolated to the entire study population. Fisher's exact test was applied for comparisons of reporting by various trial characteristics (funding, type of agent, and phase of trial). A 2-sided *P* value of <0.05 was considered significant. All statistical analysis was carried out using IBM SPSS Statistics for Windows, Version 23.0 (IBM, Armonk, New York, USA).

RESULTS

General Characteristics

In total, 1775 records were screened and 50 clinical trials that cumulatively enrolled 26893 participants were included in our study (Figure and Table S1). The majority of these trials were published in 2018 (n=39; 78% trials) (Table 1). On average, trials had a population of 538 participants, median age of 55.7 years, median follow-up time of 31.3 months, median progression-free survival of 8.5 months, median overall survival of 24.0 months, and 81.1% of participants were White race (Table 1).

Included trials were most often phase 3 (n=27; 54% trials), industry sponsored (n=39; 78% trials), and reported a primary end point of therapy response (n=23; 46% trials). The most common therapy administration regimen was a combination of targeted therapy with conventional chemotherapy (n=20; 40% trials) (Table 1).

Reporting of Cardiovascular Exclusion

The majority of trials (n=42; 84% trials) listed at least 1 cardiovascular condition as an exclusion criterion, and 34 (68%) trials listed at least 1 CVD as an exclusion criterion (Table 2). The most frequently reported cause for exclusion was heart failure (n=31; 62% trials). Reported exclusion by nonspecific cardiac causes

Table 1. Trial and Participant Characteristics

Characteristic	Trials
Mean number of participants per trial	537.9±880.9
Mean of trial median follow-up, mo	31.3±21.4
Mean of participants median age, y	55.7±7.4
Mean of participants racial distribution, %	
White	81.1±12.9
Black	5.1±8.1
Asian	9.5±11.4
Other*	4.3±3.3
Trials published in year, n (%)	
2019	11 (22.0)
2018	39 (78.0)
Mean of participants median progression-free survival, mo	8.5±4.2
Mean of participants median overall survival, mo	24.0±11.4
Trial phase, n (%)	
2	23 (46.0)
3	27 (54.0)
Trial sponsor/funding, n (%)	
Industry (entirely or partially)	39 (78.0)
University/Research organization/Government	11 (22.0)
Type of agent administered, n (%)	
Targeted+Chemotherapy [†]	20 (40.0)
Targeted+Hormonal	4 (8.0)
Targeted+Chemotherapy [†] +Hormonal	3 (6.0)
Immuno+Chemotherapy ⁺	1 (2.0)
Chemotherapy [†] monotherapy	8 (16.0)
Hormonal monotherapy	2 (4.0)
Chemotherapy [†] +Hormonal therapy	12 (24.0)
Primary reported trial end point, n (%)	
Survival (progression free and overall)	20 (40.0)
Response	23 (46.0)
Safety/adverse events	2 (4.0)
Other [‡]	5 (10.0)
Available trial data sources, n (%)	
Included articles	50 (100.0)
Supplementary files	29 (58.0)
Protocols	18 (36.0)

Certain demographic data were not available in trials, including: 25 (50%) trials missing median follow-up duration, 7 (14%) trials missing median age of participants, 30 (60%) trials missing racial distribution of participants, 32 (64%) trials missing median overall survival of participants, and 26 (52%) trials missing median progression-free survival of participants.

was encountered in 26 (52%) trials (for example, listed as "uncontrolled heart disease" or "history of cardiac disease"). Other common causes of exclusion were

^{*}Other includes Native Americans, Alaskans, unknown race, or unspecified as "other race."

[†]Chemotherapy here includes cytotoxic chemotherapy agents, antimetabolites, alkylating agents, platinum agents, and microtubule-inhibiting agents.

[‡]Other includes clinical benefit rate, time to treatment failure, time to progression, resumption of menstruation, and disease control rate.

Table 2. Reporting of Cardiovascular Exclusion Criteria

Exclusion criteria	Number of trials reported exclusion, n (%)
Any cardiovascular condition	42 (84)
Any CVD	34 (68)
Heart failure	31 (62)
Arrythmia*	29 (58)
Low ejection fraction	27 (54)
Angina	26 (52)
Nonspecific cardiac cause [†]	26 (52)
Recent myocardial infarction [‡]	25 (50)
Hypertension [§]	11 (22)
History of hypertension	10 (20)
Structural disease	8 (16)
Ischemic/Coronary heart disease	8 (16)
History of myocardial infarction	6 (12)
QT interval prolongation	6 (12)
Pericardial disorders (effusion or pericarditis)	5 (10)
Stroke (ischemic or hemorrhagic)	4 (8)
Dyspnea	4 (8)
Pro-arrhythmic medication use	4 (8)
Cardiomyopathy	3 (6)
Thrombosis/thromboembolism	2 (4)
Hypotension	2 (4)
Hypercholesterolemia/ hypertriglyceridemia	2 (4)
Aortic aneurysm	1 (2)
Peripheral artery disease	1 (2)
Elevated creatine phosphokinase levels	1 (2)

CVD indicates cardiovascular disease.

*Includes arrhythmia, atrioventricular block, atrial fibrillation, bradycardia, high-risk arrhythmia, brugada, torsades, and tachycardia. These arrhythmias were largely labeled as unstable or uncontrolled.

[†]Nonspecific reporting such as "Uncontrolled cardiac/cardiovascular/heart disease, history of heart/cardiac disease or dysfunction, significant or clinically significant cardiac disorders/disease, clinically significant cardiac disease, cardiac/cardiovascular disease precluding study, nonmalignant systemic disease (cardiac), major cardiovascular comorbidity, severe heart disease with life expectancy from disease <2 years, active cardiac disease, other cardiac disease, serious cardiac disease/illness; inclusion of participants with normal cardiopulmonary/cardiac function as assessed by echocardiography, normal/ adequate cardiac function, or functionally preserved heart". The nonspecificity terms were summarized in the interest of brevity.

[‡]Recent myocardial infarction includes myocardial infarctions before specific timeline of study entry, randomization, enrollment, or first dose therapy (8 studies did not specify baseline from which recent myocardial infarctions will be excluded). Different trials listed exclusions at different timelines, 18 trials excluded patients with myocardial infarctions within 6 months, 5 trials excluded patients with myocardial infarctions within 12 months, and 2 trials excluded patients.

[§]Hypertension as classified as an elevated blood pressure cutoff. Blood pressure cutoffs varied, eg, >140/90 (while on 2 antihypertensive medication) or if systolic blood pressure was >150, >160, >180, <90 mm Hg or if diastolic blood pressures were>90 or >100 mm Hg.

arrhythmias in 29 (58%) trials, low EF in 27 (54%) trials, and a recent myocardial infarction in 25 (50%) trials (Table 2). Exclusion criteria set for EF varied from trial to trial, ranging from EF <40% to EF <55%.

Of note, 10 (20%) trials excluded patients with a history of hypertension and 11 (22%) trials excluded patients with hypertension with various blood pressure cutoffs (Table 2). Altogether, 20 (40%) trials excluded patients with a history of hypertension or hypertension (with listed blood pressure cutoffs).

Reporting of mCardiovascular Safety Assessments

Cardiovascular safety assessments were rarely reported by the included trials. Nearly half of these trials (n=23; 46% trials) did not report any cardiovascular safety assessments either at baseline or throughout treatment cycles (Table 3). The most frequently reported cardiovascular safety assessments were ECGs (n=23; 46% trials) and cardiac imaging (n=20; 40% trials) (Table 3). The 20 (40%) trials that conducted cardiac imaging assessments all utilized echocardiograms and/or multigated acquisition scans, while only 1 (2%) trial conducted some cardiac imaging assessments with CMR. Cardiac biomarker measurements were rarely reported. Assessment of creatine kinase or creatine phosphokinase levels was reported in only 2 (4.3%) trials, and no trial reported assessment of natriuretic peptides or troponins (Table 3).

Although 27 (54%) trials reported exclusion of patients based on low EF, only 20 (40%) trials reported cardiac imaging as a safety assessment (Tables 2 and 3). Further assessment of this discordance demonstrated that one quarter (n=7; 26% trials) of these 27 trials, which reported exclusion of patients with low EF, did not report any cardiac imaging (by echocardiography or myocardial gated uptake assessment) as a safety assessment performed during the trial.

Reporting of Adverse Cardiovascular Events

Adverse cardiovascular events were commonly encountered, as 43 (86%) trials reported at least 1 cardiovascular adverse event and 36 (72%) trials reported at least 1 CVD event (Table 4). The most frequently reported adverse events were hypertension (n=23; 46%) trials), thrombosis/thromboembolisms (n=23; 46% trials), dyspnea (n=22; 44% trials), edema (n=22; 44%), heart failure (n=19; 38% trials), and arrhythmia (n=19; 38% trials) (Table 4). The majority of trials (n=46; 92% trials) reported adverse events via a standardized grading system (ie, the National Cancer Institute common terminology criteria for adverse events/common toxicity criteria). Death caused by CVD was reported in one third of these trials (n=18; 36% trials). Common causes of death were heart failure, stroke, myocardial infarctions, thromboembolic events, arrhythmias, and cardiac arrest.

Table 3. Reporting of Cardiovascular Safety Assessments

Safety assessment	Number of trials reported assessment, n (%)
Any cardiovascular assessment	27 (54)
ECG	23 (46)
Cardiac imaging*	20 (40)
Lipid profile	5 (10)
Creatine kinase/creatine phosphokinase	2 (4)
Troponin	0 (0)
BNP/NT-proBNP	0 (0)

BNP indicates brain natriuretic peptide; and NT-proBNP, N-terminal probrain natriuretic peptide.

*Cardiac imaging was conducted in trials through echocardiograms, multigated acquisition scan, or cardiac magnetic resonance imaging (CMR). Only 1 (2%) trial reported use of CMR, while 20 (40%) trials reported use of echocardiograms and/or multigated acquisition scans as cardiac imaging modalities.

Symptoms such as dyspnea (n=22; 44% trials), peripheral edema (n=22; 44% trials), and chest pain (n=6; 12% trials) were commonly reported; however, they were primarily reported with no specified cause (Table 4). Only 1 trial reported chest pain specifically as cardiac chest pain. Furthermore, reporting of cardiovascular events in a nonspecific manner was encountered in 4 (8%) trials, with events reported as a "cardiac/cardiovascular adverse event" (Table 4).

Association of Trial Factors With Reporting

Industry-funded trials more frequently reported cardiovascular safety assessments, compared with nonindustry-funded trials (69.2% versus 0.0%, respectively, P<0.001). Furthermore, industry-funded trials more frequently reported cardiovascular adverse events, compared with non-industry-funded trials (97.4% versus 45.5%, respectively; P<0.001) (Table 5).

Trials administering targeted/immunotherapy agents more frequently reported cardiovascular safety assessments, compared with trials administering conventional chemotherapy or hormonal therapy (78.6% versus 22.7%, respectively, *P*<0.001). We also observed more frequent exclusion of participants with cardiovascular conditions in trials administering targeted/immunotherapy agents, compared with trials administering conventional chemotherapy or hormonal therapy (96.4% versus 68.2%, respectively; *P*=0.015) (Table 5).

DISCUSSION

This study provides unique insight as the first report assessing cardiovascular safety reporting within contemporary later-phase breast cancer pharmacotherapy clinical trials by 3 major criteria: eligibility, cardiovascular safety assessment monitoring, and adverse event reporting.

Table 4. Reporting of Adverse Cardiovascular Events

Adverse cardiovascular event reporting	Number of trials reported adverse events, n (%)
Reported any cardiovascular adverse event	43 (86)
Reported any CVD adverse event	36 (72)
Hypertension	23 (46)
Thrombosis/thromboembolism	23 (46)
Dyspnea	22 (44)
Edema	22 (44)
Heart failure	19 (38)
Arrhythmia*	19 (38)
Stroke	14 (28)
Low/decreased ejection fraction	12 (24)
Pericardial disease (effusion or pericarditis)	9 (18)
Myocardial infarction	8 (16)
Hypotension	8 (16)
Hypercholesterolemia/ hypertriglyceridemia	7 (14)
Cardiac/cardiopulmonary arrest	7 (14)
LV dysfunction/failure	7 (14)
Chest pain	6 (12)
lschemic heart/coronary artery disease/coronary artery stenosis	5 (10)
Cardiomyopathy	4 (8)
Nonspecific cardiac event [†]	4 (8)
QT interval prolongation	3 (6)
Cardiac decompensation/ insufficiency/circulatory collapse	3 (6)
Acute coronary syndrome	3 (6)
Creatine phosphokinase/troponin elevation	3 (6)
Cardiac tamponade	2 (4)
Palpitations	2 (4)
Pulmonary hypertension/cor pulmonale	2 (4)
Cardiac infection	2 (4)
Angina	1 (2)
Structural heart disease	1 (2)
Vasovagal episode	1 (2)
Peripheral artery disease	1 (2)

CVD indicates cardiovascular disease; and LV, left ventricle.

*Includes atrial fibrillation, atrial flutter, bradycardia, heart block, premature ventricular contraction, sinus arrhythmia, supraventricular tachycardia, tachycardia, torsades, ventricular tachycardia, ventricular arrhythmia, ventricular extrasystole, or ECG abnormality.

[†]Nonspecific reporting such as "cardiac/cardiovascular adverse events, cardiac disorder, other cardiovascular adverse events, cardiac complications, any cardiovascular disease, cardiac events not otherwise specified, cardiac other". Reporting terms were summarized in the interest of brevity.

Our findings demonstrate significant underrepresentation of patients with CVD (by exclusion of cardiovascular conditions or prevalent CVD) in these clinical trials. Although patients with CVD were often excluded from

	Trials reported	Trials reported, n (%)*					
	Reported any exclusion	Reported any cardiovascular exclusion		Reported any cardiovascular safety assessment		Reported any cardiovascular event	
Trial characteristics	Reporting	P value	Reporting	P value	Reporting	P value	
Funding		0.174		<0.001		<0.001	
Industry	31 (79.5)		27 (69.2)		38 (97.4)		
University/Research organization/ Government	11 (100.0)		0 (0.0)		5 (45.5)		
Use of targeted/immunotherapy		0.015		< 0.001		1.000	
Included in regimen	27 (96.4)		22 (78.6)		24 (85.7)		
Not included in regimen	15 (68.2)		5 (22.7)		19 (86.4)		
Use of anthracyclines		0.087		1.000		1.000	
Included in regimen	14 (100.0)		8 (57.1)		12 (85.7)		
Not included in regimen	28 (77.8)		19 (52.8)		31 (86.1)		
Phase		1.000		0.087		0.225	
2	19 (82.6)		9 (39.1)		18 (78.3)		
3	23 (85.2)		18 (66.7)		25 (92.6)		

	Table 5.	Association of Cardiovascular Safe	ty Reporting and Trial Characteristics
--	----------	------------------------------------	--

*Percentage is reported as fraction of trial characteristic group (for example, 79.5% of industry-funded trials reported any cardiovascular exclusion).

breast cancer pharmacotherapy clinical trials, included participants commonly experienced adverse cardiovascular events during these trials. Furthermore, our findings highlight that cardiovascular safety may not be routinely monitored in all breast cancer pharmacotherapy studies. Therefore, potential cardiovascular harm from these cancer pharmacotherapy agents might be underestimated and subclinical cardiotoxicity may remain undetected in later-phase breast cancer clinical trials. Lastly, other factors such as trial funding source and type of pharmacotherapy agent were associated with discrepant cardiovascular safety monitoring.

The underrepresentation of patients with CVD in cancer pharmacotherapy trials linked to FDA drug approval has previously been described by Bonsu et al. They observed that 34% of pharmacotherapy trials for any cancer type and ≈50% for breast cancer exclude patients with CVD.¹⁰ This was lower compared with our observation that 68% of breast cancer trials exclude patients with CVD and was far lower compared with our finding that 84% of trials exclude patients with cardiovascular conditions. Therefore, we highlight that in addition to direct exclusion of patients with CVD, breast cancer pharmacotherapy trials may further exclude patients with CVD by using cardiovascular symptoms (dyspnea) or cardiovascular parameters (left ventricular EF) as cardiovascular exclusion criterion. As a result, patients with cardiovascular conditions are excluded in the majority of these trials.

Similar to our observations, Bonsu et al also encountered nonspecific reported exclusion of patients with CVD in more than one third of trials compared with approximately half of trials in our study.¹⁰ The use of nonspecific/ill-defined terminology (eg, "history of cardiac disease" or "uncontrolled heart disease") possibly indicates the use of subjective exclusion criteria, resulting in the possibility of either the inclusion of patients with real risk factors for cardiovascular toxicity or exclusion of patients with minimal to no added risk of toxicity.

An evaluation of cancer trials by Bonsu et al suggested that cancer pharmacotherapy trials linked with FDA drug approval underreport adverse CVD events in comparison to population-based estimates.¹¹ Furthermore, they demonstrated that 45% of breast cancer trials do not report adverse CVD events, compared with 28% in our observation.¹¹ Our study demonstrates that cancer trials sometimes report events as symptoms (dyspnea) or abnormal parameters (decreased left ventricular ejection fraction), rather than diagnosed CVD; this may also have reflected on the findings of Bonsu et al on the underreporting of CVD. Furthermore, our study highlights a possibility that this observation of adverse event underreporting may be because of underdetection as a result of poor conduct of cardiovascular safety assessments, because nearly half of trials in our observation did not report any form of cardiovascular safety assessment. Therefore, improved conduct of cardiovascular safety assessments may possibly permit better adverse cardiovascular event detection and identification at earlier stages.

Preclinical studies offer an opportunity to study cardiovascular risks of cancer pharmacotherapy before introduction in human models. These are largely conducted in animal models, based on studied cardiovascular pharmacology and physiology. However, preclinical studies on their own are not sufficient to uncover cardiovascular risks of cancer pharmacotherapy in humans because of several limitations including size of the model (smaller animals usually utilized) and species-dependent sensitivity to myocardial injury.¹² This highlights the importance of clinical trials in uncovering cardiovascular toxicity in humans that otherwise cannot be observed in preclinical models.

Large, later-phase clinical trials present an opportunity to uncover cardiovascular risks (particularly subclinical cardiovascular risks) not previously demonstrated in smaller trials, and ultimately these later-phase trials are the primary drivers of decision making in clinical practice. Currently, guidelines on the management of patients with high cardiovascular risk receiving cancer pharmacotherapy are nonexistent. However, studies suggest the use of less cardiotoxic agents (or at minimal dose), risk class allocation based on risk scores from initial evaluation, then appropriate monitoring (with periodic echocardiography, ECG, troponin, natriuretic peptides), and management.¹³ Patients with cardiovascular risks still receive cancer pharmacotherapy but the criteria for their inclusion are not standardized. Therefore, exclusion of patients who otherwise could be candidates to receive therapy in clinical practice may impact the generalizability of results garnered from trials.

Cancer trials are not the only type of trials that exclude patients with comorbidities/multimorbidity. Patients included in clinical trials have half as many medical comorbidities as compared with the general population.¹⁴ The percentage of included patients with comorbidities varies depending on the patient condition under treatment.¹⁴ While a more inclusive approach to clinical trials may generate more generalizable data, this raises several issues with primary trial outcomes. Clinical trials are often created with narrowly defined populations (for example, by excluding patients with CVD), with the intention of generating results specific to the primary outcome.¹⁵ Factors such as regimen compliance¹⁶ and patient survival^{17,18} are directly impacted by the presence of comorbidities (such as CVD) in patients with cancer. These factors are therefore likely to affect trial success and may alter results, particularly with respect to cancer trials where more than one third of all trials in our observation used survival end points to determine therapy efficacy. Because of these reasons, breast cancer trials may opt to include healthier populations when assessing pharmacotherapy in the interest of primary outcomes.

Rather than exclude patients with CVD, cancer trials may possibly consider improvement in protocoldriven safety assessments (baseline, pretreatment, and posttreatment), and identification of high-risk participants who require more frequent assessment or dose adjustments. Early changes in left ventricular strain and effective arterial elastance in patients with breast cancer receiving pharmacotherapy have been indicative of future heart failure symptoms.¹⁹ Furthermore, brain natriuretic peptide²⁰ and troponin²¹ are proven predictors of cancer pharmacotherapy-related cardiotoxicity and cardiac events. However, reporting of cardiac imaging as a safety assessment was observed in less than half of trials, and no trials we studied reported using troponin, brain natriuretic peptide, or N-terminal pro-brain natriuretic peptide for screening or safety assessments.

The European Society of Cardiology supports the use of natriuretic peptides and cardiac troponins in patients receiving cancer pharmacotherapy.²² Biomarkers can help risk stratify patients at baseline and uncover early cardiac injury or strain. Elevations in cardiac biomarkers can indicate patients requiring closer monitoring, initiation of cardioprotective therapy, and do not necessarily mean cessation of therapy.²² However, baseline troponin levels at times may not always correlate with increased risks of cancer pharmacotherapy-related cardiotoxicity.^{23,24} As a result, their consistent use may not be widely adopted as yet. The European Society of Cardiology recommendations on cardiac biomarkers have evolved to more clearly defined timelines of collection from the 2016 to 2020 position statements.^{22,25} Therefore, in the evolving field of cardio-oncology, the consensus on their use in routine surveillance in pharmacotherapy-induced cardiotoxicity is also evolving. While biomarker assessments offer better surveillance of cardiotoxicity in patients receiving cancer pharmacotherapy, there are still no established standards with respect to assay selection, cut-off values for clinically significant changes, and the ideal timing of sampling.²² This may suggest why biomarker analyses were not conducted in any of the contemporary breast cancer trials assessed in our study. Cardiac biomarkers offer an opportunity for cancer pharmacotherapy trials in the future to identify and prevent cancer pharmacotherapy-induced cardiotoxicity.

While 20 (40%) trials reported use of cardiac imaging modalities, we observed only 1 (2%) trial that reported use of CMR. CMR as a modality offers the benefit of early identification of cancer pharmacotherapy-induced cardiotoxicity compared with echocardiograms or multigated acquisition scans with the utility of T1/T2 mapping, the ability to detect subtle decreases in left ventricular ejection fraction, myocardial edema (in T2 images), early inflammation, and early fibrosis.²⁶ In the future, we suggest that cancer pharmacotherapy trials may utilize CMR in higher-risk populations to allow inclusion of participants with cardiovascular conditions because of the comfort of identification of early cardiotoxicity, before the development of overt cardiotoxicity. However, because of cost constraints, CMR is largely used when echocardiograms and multigated acquisition scans are indeterminate,²⁶ which may explain why we observed its negligible use in cancer pharmacotherapy trials. Lack of use of cardiac biomarkers as well as cardiac imaging (particularly CMR) may result in a missed opportunity for the identification of newly uncovered cancer pharmacotherapy-induced cardiotoxicity. Improved conduct in cardiovascular safety assessments may permit better detection of incident early CVD, patients requiring dose adjustments, and may uncover subclinical risks of therapy. This would permit safer inclusion of participants with comorbidities and would generate data that could lead to betterinformed decision making in clinical practice.

Trials frequently reported adverse cardiovascular events despite most of them excluding patients with prevalent CVD. Hypertension was the most commonly reported adverse event among trials and can be caused by a variety of agents.²⁷ Specifically, it is one of the most common adverse effects of targeted therapies.^{25,28} Targeted therapies are relatively new and were evaluated in a majority of trial regimens in our study. An analysis of clinical trials with patients receiving targeted therapy reported cardiotoxic adverse events more often than any other type of adverse event.²⁹ In our study, clinical trials excluded patients with CVD more frequently and took greater caution in the conduct and reporting of cardiovascular safety assessments when targeted therapy or immunotherapy were administered (as the sole therapy or in combination with other agents). This may be because targeted therapies are relatively newer agents and exhibit a large variety of cardiotoxic effects, ranging from cardiac pump dysfunction (HER2 monoclonal antibodies/ HER2 inhibitors) to prolonged QT interval (tyrosine kinase inhibitors), which is why more stringent monitoring is required.⁷ In contrast, while anthracyclines are known to cause cardiovascular dysfunction, we observed no significant difference in reporting irrespective of anthracycline use.²⁵

Industry funding/sponsorship may play a role in the presentation of positive results and outcomes; however, for the most part, this has no effect on study quality.^{30,31} Our study similarly demonstrated better study practices in industry-funded trials with greater reporting of safety assessments and adverse cardiovascular events. Industry-funded studies are often thoroughly scrutinized; thus, they may take further precautions to maintain safety and transparency in trials.³¹

Our study has some limitations that must be taken into consideration. Detailed safety assessments are often reported in study protocols, and protocols were unavailable for two thirds of trials (Table 1). We thoroughly searched for protocols of all trials, but many trials do not upload trial protocols. Hence, throughout our study we can only comment on what trials opted to report (in terms of safety assessments and eligibility criteria). Furthermore, this study retrieved trials conducted in patients with breast cancer; therefore, results cannot be generalized to other cancer types.

CONCLUSIONS

The study populations of contemporary later-phase breast cancer trials administering pharmacotherapy are underrepresentative of patients with CVD. This possibly results in a lack of generalizability of generated data. Before the initiation of pharmacotherapy and during its course, cardiovascular safety assessments are rarely reported, suggesting room for improvement in the conduct and reporting of cardiovascular safety assessments. Reporting of cardiovascular safety assessment data may depend on the source of trial funding and the type of agent administered. Judiciously conducted cardiovascular safety assessments may allow inclusion of patients with CVD, early identification of adverse cardiovascular events, and demonstrate subclinical cardiovascular harm of pharmacotherapy. Thus, later-phase breast cancer clinical trials may not be able to uncover cardiovascular risks that have not been identified in smaller-scale trials. These findings suggest that contemporary later-phase breast cancer clinical trials may underestimate the cardiovascular risks of cancer pharmacotherapy. Trials conducted in populations more inclusive of CVD, with increased scrutiny in monitoring of cardiovascular harm related to novel cancer therapies, could possibly lead to more informed clinical decision making for oncology patients with CVD in clinical practice.

ARTICLE INFORMATION

Received December 25, 2021; accepted April 29, 2022.

Affiliations

Department of Medicine (A.H., M.S.K., R.K.K., S.C.T., J.B.), Division of Hematology/Oncology, Department of Medicine, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS (J.C.R.) and Division of Cardiology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (A.A.O., M.E.H.), University of Mississippi Medical Center, Jackson, MS (Department of Cardiology (CVK), Charite Universitatsmedizin Berlin (M.S.A.); Department of Health Center for Regenerative Therapies (BCRT) (M.S.A., S.D.A.); DZHK (German Centre for Cardiovascular Research), partner site Berlin (M.S.A., S.D.A.), Berlin, Germany; Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH (A.T.); and Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA (G.C.F.).

Sources of Funding

None.

Disclosures

Dr Markus Anker reports personal fees from Servier, outside the submitted work. Dr John Ruckdeschel serves on the Boards of Genyous-Omnitura and Real-Time Micro Spectroscopy, and he has received research support from the National Cancer Institute, Novartis, Immunomedics, and EpicentRx. Dr Gregg Fonarow serves as a consultant for Abbott, Amgen, AstraZeneca, Bayer, Janssen, Medtronic, Merck, and Novartis. Dr Javed Butler serves as a consultant for Abbott, Adrenomed, Amgen, Array, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squib, CVRx, G3 Pharmaceutical, Impulse Dynamics, Innolife, Janssen, LivaNova, Luitpold, Medtronic, Merck, Novartis, NovoNordisk, Relypsa, Roche, V-Wave Limited, and Vifor. The remaining authors have no disclosures to report.

Supplemental Material

Table S1 Figure S1

REFERENCES

- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2018;68:394–424. doi: 10.3322/caac.21492
- Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, et al. Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. *Circulation.* 2018;137:e30–e66. doi: 10.1161/CIR.00000000000556
- Ng HS, Vitry A, Koczwara B, Roder D, McBride ML. Patterns of comorbidities in women with breast cancer: a Canadian populationbased study. *Cancer Causes Control.* 2019;30:931–941. doi: 10.1007/ s10552-019-01203-0
- 4. American Cancer Society. Cancer Facts & Figures 2019. *Cancer*. 2019. Available from: https://www.cancer.org/content/dam/cancer-org/ research/cancer-facts-and-statistics/annual-cancer-facts-and-figur es/2019/cancer-facts-and-figures-2019.pdf Accessed May 2020
- Shakir DK, Rasul KI. Chemotherapy induced cardiomyopathy: pathogenesis, monitoring and management. *J Clin Med Res.* 2009;1:8–12. doi: 10.4021/jocmr2009.02.1225
- Pai VB, MCJDS N. Cardiotoxicity of chemotherapeutic agents. *Drug* Saf. 2000;22:263–302. doi: 10.2165/00002018-200022040-00002
- Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375:1457–1467. doi: 10.1056/NEJMra1100265
- Asnani A. Cardiotoxicity of immunotherapy: incidence, diagnosis, and management. *Curr Oncol Rep.* 2018;20:44. doi: 10.1007/ s11912-018-0690-1
- Centerwatch.com. FDA Approved Drugs for Oncology. 2019. Available from: https://www.centerwatch.com/drug-information/fda-approveddrugs/therapeutic-area/12/oncology. Accessed May 2020.
- Bonsu J, Charles L, Guha A, Awan F, Woyach J, Yildiz V, Wei L, Jneid H, Addison D. Representation of patients with cardiovascular disease in pivotal cancer clinical trials. *Circulation*. 2019;139:2594–2596. doi: 10.1161/CIRCULATIONAHA.118.039180
- Bonsu JM, Guha A, Charles L, Yildiz VO, Wei L, Baker B, Brammer JE, Awan F, Lustberg M, Reinbolt R, et al. Reporting of cardiovascular events in clinical trials supporting FDA approval of contemporary cancer therapies. *J Am Coll Cardiol.* 2020;75:620–628. doi: 10.1016/j. jacc.2019.11.059
- Madonna R, Cadeddu C, Deidda M, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Spallarossa P, Tocchetti CG, et al. Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a position paper of the italian working group on drug cardiotoxicity and cardioprotection. *Heart Fail Rev.* 2015;20:621–631. doi: 10.1007/s10741-015-9497-4
- Herrmann J, Lerman A, Sandhu NP, Villarraga HR, Mulvagh SL, Kohli M. Evaluation and management of patients with heart disease and cancer: cardio-oncology. *Mayo Clin Proc.* 2014;89:1287–1306. doi: 10.1016/j. mayocp.2014.05.013
- Hanlon P, Hannigan L, Rodriguez-Perez J, Fischbacher C, Welton NJ, Dias S, Mair FS, Guthrie B, Wild S, McAllister DA. Representation of people with comorbidity and multimorbidity in clinical trials of novel drug therapies: an individual-level participant data analysis. *BMC Med.* 2019;17:201. doi: 10.1186/s12916-019-1427-1
- Mosenifar Z. Population issues in clinical trials. Proc Am Thorac Soc. 2007;4:185–188. doi: 10.1513/pats.200701-009GC
- Sogaard M, Thomsen RW, Bossen KS, Sorensen HT, Norgaard M. The impact of comorbidity on cancer survival: a review. *Clin Epidemiol.* 2013;5:3–29. doi: 10.2147/CLEP.S47150

- Iachina M, Green A, Jakobsen E. The direct and indirect impact of comorbidity on the survival of patients with non-small cell lung cancer: a combination of survival, staging and resection models with missing measurements in covariates. *BMJ Open*. 2014;4:e003846. doi: 10.1136/ bmjopen-2013-003846
- Saussele S, Krauss MP, Hehlmann R, Lauseker M, Proetel U, Kalmanti L, Hanfstein B, Fabarius A, Kraemer D, Berdel WE, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML study IV. *Blood.* 2015;126:42–49. doi: 10.1182/blood-2015-01-617993
- Narayan HK, Finkelman B, French B, Plappert T, Hyman D, Smith AM, Margulies KB, Ky B. Detailed echocardiographic phenotyping in breast cancer patients. *Circulation*. 2017;135:1397–1412. doi: 10.1161/ CIRCULATIONAHA.116.023463
- Skovgaard D, Hasbak P, Kjaer A. BNP predicts chemotherapy-related cardiotoxicity and death: Comparison with gated equilibrium radionuclide ventriculography. *PLoS One.* 2014;9:e96736. doi: 10.1371/journal. pone.0096736
- Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. *Circulation*. 2004;109:2749–2754. doi: 10.1161/01.CIR.0000130926.51766.CC
- 22. Pudil R, Mueller C, Celutkiene J, Henriksen PA, Lenihan D, Dent S, Barac A, Stanway S, Moslehi J, Suter TM, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: a position statement from the cardio-oncology study group of the heart failure association and the cardio-oncology council of the European Society of Cardiology. *Eur J Heart Fail.* 2020;22:1966–1983. doi: 10.1002/ejhf.2017
- Feola M, Garrone O, Occelli M, Francini A, Biggi A, Visconti G, Albrile F, Bobbio M, Merlano M. Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin i and brain natriuretic peptide. *Int J Cardiol.* 2011;148:194–198. doi: 10.1016/j.ijcard.2009.09.564
- 24. Leya J, Hayek S. American college of cardiology. Role of troponin and bnp in the management of patients with cancer. 2017. Available from: https://www.acc.org/latest-in-cardiology/articles/2019/12/10/15/15/ role-of-troponin-and-bnp-in-the-management-of-patients-with-cancer. Accessed February 2022
- 25. Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC committee for practice guide-lines: the task force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). *Eur Heart J.* 2016;37:2768–2801. doi: 10.1093/eurhearti/ehw211
- de Baat EC, Naaktgeboren WR, Leiner T, Teske AJ, Habets J, Grotenhuis HB. Update in imaging of cancer therapy-related cardiac toxicity in adults. *Open Heart*. 2021;8:e001506. doi: 10.1136/openhrt-2020-001506
- Chang HM, Okwuosa TM, Scarabelli T, Moudgil R, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: part 2. *J Am Coll Cardiol.* 2017;70:2552–2565. doi: 10.1016/j.jacc.2017.09.1095
- Chen ZI, Ai DI. Cardiotoxicity associated with targeted cancer therapies. *Mol Clin Oncol.* 2016;4:675–681. doi: 10.3892/mco.2016.800
- Seruga B, Sterling L, Wang L, Tannock IF. Reporting of serious adverse drug reactions of targeted anticancer agents in pivotal phase III clinical trials. *J Clin Oncol.* 2011;29:174–185. doi: 10.1200/ JCO.2010.31.9624
- Riaz H, Raza S, Khan MS, Riaz IB, Krasuski RA. Impact of funding source on clinical trial results including cardiovascular outcome trials. *Am J Cardiol.* 2015;116:1944–1947. doi: 10.1016/j. amjcard.2015.09.034
- Bekelman JE, Li Y, Gross CP. Scope and impact of financial conflicts of interest in biomedical research: a systematic review. JAMA. 2003;289:454–465. doi: 10.1001/jama.289.4.454

SUPPLEMENTAL MATERIAL

Table S1. List of all included studies.

Serial	Title	Citation
Number		
1	Sorafenib in combination with	Mavratzas A, Baek S, Gerber B, Schmidt
	docetaxel as first-line therapy	M, Moebus V, Foerster F, Grischke EM,
	for HER2-negative metastatic	Fasching P, Strumberg D, Solomayer E, et
	breast cancer: Final results of	al. Sorafenib in combination with docetaxel
	the randomized, double-blind,	as first-line therapy for HER2-negative
	placebo-controlled phase II	metastatic breast cancer: Final results of
	MADONNA study	the randomized, double-blind, placebo-
		controlled phase II MADONNA study.
		Breast. 2019;45:22-28
2	Randomized phase II study	Aapro M, Ruiz-Borrego M, Hegg R,
	evaluating weekly oral	Kukielka-Budny B, Morales S, Cinieri S,
	vinorelbine versus weekly	Freitas-Junior R, Garcia-Estevez L,
	paclitaxel in estrogen	Szombara E, Borges GS, et al.
	receptor-positive, HER2-	Randomized phase ii study evaluating
	negative patients with	weekly oral vinorelbine versus weekly
	advanced breast cancer	paclitaxel in estrogen receptor-positive,
	(NorBreast-231 trial)	HER2-negative patients with advanced
		breast cancer (NorBreast-231 trial).
		<i>Breast</i> . 2019;45:7-14

3	Concurrent neoadjuvant	Yu KD, Wu SY, Liu GY, Wu J, Di GH, Hu
	chemotherapy and estrogen	Z, Hou YF, Chen CM, Fan L, Tang LC, et
	deprivation in patients with	al. Concurrent neoadjuvant chemotherapy
	estrogen receptor-positive,	and estrogen deprivation in patients with
	human epidermal growth	estrogen receptor-positive, human
	factor receptor 2-negative	epidermal growth factor receptor 2-
	breast cancer (CBCSG-036):	negative breast cancer (CBCSG-036): A
	A randomized, controlled,	randomized, controlled, multicenter trial.
	multicenter trial	Cancer. 2019;125:2185-2193
4	A multi-national, randomised,	Fujiwara Y, Mukai H, Saeki T, Ro J, Lin
	open-label, parallel, phase III	YC, Nagai SE, Lee KS, Watanabe J,
	non-inferiority study	Ohtani S, Kim SB, et al. A multi-national,
	comparing NK105 and	randomised, open-label, parallel, phase III
	paclitaxel in metastatic or	non-inferiority study comparing NK105 and
	recurrent breast cancer	paclitaxel in metastatic or recurrent breast
	patients	cancer patients. Br J Cancer.
		2019;120:475-480
5	Efficacy and safety of	Tesch H, Stoetzer O, Decker T, Kurbacher
	everolimus plus exemestane	CM, Marme F, Schneeweiss A,
	in postmenopausal women	Mundhenke C, Distelrath A, Fasching PA,
	with hormone receptor-	Lux MP, et al. Efficacy and safety of
	positive, human epidermal	everolimus plus exemestane in
	growth factor receptor 2-	postmenopausal women with hormone

	negative locally advanced or	receptor-positive, human epidermal growth
	metastatic breast cancer:	factor receptor 2-negative locally
	Results of the single-arm,	advanced or metastatic breast cancer:
	phase IIIB 4EVER trial	Results of the single-arm, phase IIIB
		4EVER trial. Int J Cancer. 2019;144:877-
		885
6	PF-05280014 (a trastuzumab	Pegram MD, Bondarenko I, Zorzetto MMC,
	biosimilar) plus paclitaxel	Hingmire S, Iwase H, Krivorotko PV, Lee
	compared with reference	KS, Li RK, Pikiel J, Aggarwal R, et al. PF-
	trastuzumab plus paclitaxel	05280014 (a trastuzumab biosimilar) plus
	for HER2-positive metastatic	paclitaxel compared with reference
	breast cancer: a randomised,	trastuzumab plus paclitaxel for HER2-
	double-blind study	positive metastatic breast cancer: A
		randomised, double-blind study. Br J
		Cancer. 2019;120:172-182
7	Randomized Phase II Study	Johnston S, Puhalla S, Wheatley D, Ring
	Evaluating Palbociclib in	A, Barry P, Holcombe C, Boileau JF,
	Addition to Letrozole as	Provencher L, Robidoux A, Rimawi M, et
	Neoadjuvant Therapy in	al. Randomized phase II study evaluating
	Estrogen Receptor–Positive	palbociclib in addition to letrozole as
	Early Breast Cancer:	neoadjuvant therapy in estrogen receptor-
	PALLET Trial	positive early breast cancer: PALLET Trial.
		J Clin Oncol. 2019;37:178-189

8	Safety, activity, and	Gavila J, Oliveira M, Pascual T, Perez-
	molecular heterogeneity	Garcia J, Gonzalez X, Canes J, Pare L,
	following neoadjuvant non-	Calvo I, Ciruelos E, Munoz M, et al.
	pegylated liposomal	Safety, activity, and molecular
	doxorubicin, paclitaxel,	heterogeneity following neoadjuvant non-
	trastuzumab, and	pegylated liposomal doxorubicin,
	pertuzumab in HER2-positive	paclitaxel, trastuzumab, and pertuzumab
	breast cancer (Opti-HER	in HER2-positive breast cancer (Opti-HER
	HEART): an open-label,	HEART): An open-label, single-group,
	single-group, multicenter,	multicenter, phase 2 trial. BMC Med.
	phase 2 trial	2019;17:8
9	Intense dose-dense	Schneeweiss A, Mobus V, Tesch H,
	epirubicin, paclitaxel,	Hanusch C, Denkert C, Lubbe K, Huober
	cyclophosphamide versus	J, Klare P, Kummel S, Untch M, et al.
	weekly paclitaxel, liposomal	Intense dose-dense epirubicin, paclitaxel,
	doxorubicin (plus carboplatin	cyclophosphamide versus weekly
	in triple-negative breast	paclitaxel, liposomal doxorubicin (plus
	cancer) for neoadjuvant	carboplatin in triple-negative breast
	treatment of high-risk early	cancer) for neoadjuvant treatment of high-
	breast cancer (GeparOcto—	risk early breast cancer (GeparOcto—
	GBG 84): A randomised	GBG 84): A randomised phase III trial. Eur
	phase III trial	<i>J Cancer</i> . 2019;106:181-192

10	A randomized and open-label	Wu X, Tang P, Li S, Wang S, Liang Y,
	phase II trial reports the	Zhong L, Ren L, Zhang T, Zhang Y. A
	efficacy of neoadjuvant	randomized and open-label phase ii trial
	lobaplatin in breast cancer	reports the efficacy of neoadjuvant
		lobaplatin in breast cancer. Nat Commun.
		2018;9:832
11	Neoadjuvant chemotherapy	van Ramshorst MS, van der Voort A, van
	with or without anthracyclines	Werkhoven ED, Mandjes IA, Kemper I,
	in the presence of dual HER2	Dezentje VO, Oving IM, Honkoop AH, Tick
	blockade for HER2-positive	LW, van de Wouw AJ, et al. Neoadjuvant
	breast cancer (TRAIN-2): a	chemotherapy with or without
	multicentre, open-label,	anthracyclines in the presence of dual
	randomised, phase 3 trial	her2 blockade for HER2-positive breast
		cancer (TRAIN-2): A multicentre, open-
		label, randomised, phase 3 trial. Lancet
		<i>Oncol.</i> 2018;19:1630-1640
12	A Randomized Phase II	Yardley DA, Shipley D, Zubkus J, Wright
	Study of	GL, Ward PJ, Mani A, Shastry M, Finney
	Eribulin/Cyclophosphamide	L, DeBusk L, Hainsworth JD. A
	or	randomized phase ii study of
	Docetaxel/Cyclophosphamid	eribulin/cyclophosphamide or
	e as Neoadjuvant Therapy in	docetaxel/cyclophosphamide as
		neoadjuvant therapy in operable HER2-

	Operable HER2-negative	negative breast cancer. Clin Breast
	Breast Cancer	Cancer. 2019;19:1-9
13	Atezolizumab and nab-	Schmid P, Adams S, Rugo HS,
	paclitaxel in advanced triple-	Schneeweiss A, Barrios CH, Iwata H,
	negative breast cancer	Dieras V, Hegg R, Im SA, Shaw Wright G,
		et al. Atezolizumab and nab-paclitaxel in
		advanced triple-negative breast cancer. N
		Engl J Med. 2018;379:2108-2121
14	Combination versus	Shao B, Song G, Li H, Dil L, Jiang H,
	sequential paclitaxel plus	Liang X, Yan Y, Zhang R, Ran R, Wang J,
	gemcitabine as first-line	el al. Combination versus sequential
	chemotherapy for women	paclitaxel plus gemcitabine as first-line
	with metastatic breast	chemotherapy for women with metastatic
	cancer: a prospective	breast cancer: A prospective randomized
	randomized phase II study.	phase II study. <i>J BUON</i> . 2018;23:1583-
		1590
15	Fulvestrant plus goserelin	Kim JY, Im SA, Jung KH, Ro J, Sohn J,
	versus anastrozole plus	Kim JH, Park YH, Kim TY, Kim SB, Lee
	goserelin versus goserelin	KS, et al. Fulvestrant plus goserelin versus
	alone for hormone receptor-	anastrozole plus goserelin versus
	positive, HER2-negative	goserelin alone for hormone receptor-
	tamoxifen-pretreated	positive, her2-negative tamoxifen-
	premenopausal women with	pretreated premenopausal women with

	recurrent or metastatic breast	recurrent or metastatic breast cancer
	cancer (KCSG BR10-04): a	(KCSG BR10-04): A multicentre, open-
	multicentre, open-label,	label, three-arm, randomised phase II trial
	three-arm, randomised phase	(FLAG study). Eur J Cancer.
	II trial (FLAG study)	2018;103:127-136
16	Intermittent versus	Claessens AKM, Bos M, Lopez-Yurda M,
	continuous first-line treatment	Bouma JM, Rademaker-Lakhai JM,
	for HER2-negative metastatic	Honkoop AH, de Graaf H, van Druten E,
	breast cancer: the Stop & Go	van Warmerdam LJC, van der Sangen
	study of the Dutch Breast	MJC, et al. Intermittent versus continuous
	Cancer Research Group	first-line treatment for her2-negative
	(BOOG)	metastatic breast cancer: The stop & go
		study of the dutch breast cancer research
		group (BOOG). Breast Cancer Res Treat.
		2018;172:413-423
17	Paclitaxel With Inhibitor of	Bardia A, Parton M, Kummel S, Estevez
	Apoptosis Antagonist,	LG, Huang CS, Cortes J, Ruiz-Borrego M,
	LCL161, for Localized Triple-	Telli ML, Martin-Martorell P, Lopez R, et al.
	Negative Breast Cancer,	Paclitaxel with inhibitor of apoptosis
	Prospectively Stratified by	antagonist, LCL161, for localized triple-
	Gene Signature in a	negative breast cancer, prospectively
	Biomarker-Driven	stratified by gene signature in a biomarker-
	Neoadjuvant Trial	

	al. <i>J Clin Oncol</i> .
2018:JCO2017748392	2
18 Multicenter Phase II Study of Cruz C, Llop-Guevara	A, Garber JE, Arun
Lurbinectedin in BRCA- BK, Perez Fidalgo JA,	, Lluch A, Telli ML,
Mutated and Unselected Fernandez C, Kahatt G	C, Galmarini CM, et
Metastatic Advanced Breast al. Multicenter phase I	I study of
Cancer and Biomarker Iurbinectedin in BRCA	-mutated and
Assessment Substudy unselected metastatic	advanced breast
cancer and biomarker	assessment
substudy. J Clin Onco	nl. 2018;36:3134-
3143	
19 Everolimus Plus Exemestane Jerusalem G, de Boer	RH, Hurvitz S,
vs Everolimus or Yardley DA, Kovalenk	o E, Ejlertsen B,
Capecitabine Monotherapy Blau S, Ozguroglu M,	Landherr L, Ewertz
for Estrogen Receptor– M, et al. Everolimus pl	lus exemestane vs
Positive, HER2-Negative everolimus or capecita	abine monotherapy
Advanced Breast CancerThe for estrogen receptor-	positive, HER2-
BOLERO-6 Randomized negative advanced bre	east cancer: The
Clinical Trial BOLERO-6 randomize	ed clinical trial. JAMA
Oncol. 2018;4:1367-13	374
20 UCBG 2-08: 5-year efficacy Campone M, Lacroix-	Triki M, Roca L,
results from the Spielmann M, Wildiers	s H, Cottu P, Kerbrat
UNICANCER-PACS08 P, Levy C, Desmouling	s I, Bachelot T, et al.

	randomised phase III trial of	UCBG 2-08: 5-year efficacy results from
	adjuvant treatment with	the UNICANCER-PACS08 randomised
	FEC100 and then either	phase iii trial of adjuvant treatment with
	docetaxel or ixabepilone in	FEC100 and then either docetaxel or
	patients with early-stage,	ixabepilone in patients with early-stage,
	poor prognosis breast cancer	poor prognosis breast cancer. <i>Eur J</i>
		Cancer. 2018;103:184-194
21	Adjuvant dose-dense	van Rossum AGJ, Kok M, van Werkhoven
	doxorubicin-	E, Opdam M, Mandjes IAM, van Leeuwen-
	cyclophosphamide versus	Stok AE, van Tinteren H, Imholz ALT,
	docetaxel-doxorubicin-	Portielje JEA, et al. Adjuvant dose-dense
	cyclophosphamide for high-	doxorubicin-cyclophosphamide versus
	risk breast cancer: First	docetaxel-doxorubicin-cyclophosphamide
	results of the randomised	for high-risk breast cancer: First results of
	MATADOR trial (BOOG	the randomised MATADOR trial (BOOG
	2004-04)	2004-04). Eur J Cancer. 2018;102:40-48
22	Results From the First	Woodward N, De Boer RH, Redfern A,
	Multicenter, Open-label,	White M, Young J, Truman M, Beith J.
	Phase IIIb Study	Results from the first multicenter, open-
	Investigating the Combination	label, phase IIIb study investigating the
	of Pertuzumab With	combination of pertuzumab with
	Subcutaneous Trastuzumab	subcutaneous trastuzumab and a taxane
	and a Taxane in Patients	in patients with HER2-positive metastatic

With HER2-positive	breast cancer (SAPPHIRE). Clin Breast
Metastatic Breast Cancer	Cancer. 2019;19:216-224
(SAPPHIRE)	
Effect of Adjuvant	Joensuu H, Fraser J, Wildiers H, Huovinen
Trastuzumab for a Duration	R, Auvinen P, Utriainen M, Nyandoto P,
of 9 Weeks vs 1 Year With	Villman KK, Halonen P, Granstam-
Concomitant Chemotherapy	Bjorneklett H, et al. Effect of adjuvant
for Early Human Epidermal	trastuzumab for a duration of 9 weeks vs 1
Growth Factor Receptor 2–	year with concomitant chemotherapy for
Positive Breast Cancer: The	early human epidermal growth factor
SOLD Randomized Clinical	receptor 2-positive breast cancer: The
Trial	SOLD randomized clinical trial. JAMA
	<i>Oncol.</i> 2018;4:1199-1206
Double-Blind Phase III Trial	Miller KD, O'Neill A, Gradishar W, Hobday
of Adjuvant Chemotherapy	TJ, Goldstein LJ, Mayer IA, Bloom S,
With and Without	Brufsky AM, Tevaarwerk AJ, Sparano JA,
Bevacizumab in Patients	et al. Double-blind phase III trial of
With Lymph Node–Positive	adjuvant chemotherapy with and without
and High-Risk Lymph Node-	bevacizumab in patients with lymph node-
Negative Breast Cancer	positive and high-risk lymph node-negative
(E5103)	breast cancer (E5103). J Clin Oncol.
	2018;36:2621-2629
	Metastatic Breast Cancer (SAPPHIRE) Effect of Adjuvant Trastuzumab for a Duration of 9 Weeks vs 1 Year With Concomitant Chemotherapy for Early Human Epidermal Growth Factor Receptor 2– Positive Breast Cancer: The SOLD Randomized Clinical Trial Double-Blind Phase III Trial of Adjuvant Chemotherapy With and Without Bevacizumab in Patients With Lymph Node–Positive and High-Risk Lymph Node–

25	Talazoparib in patients with	Litton JK, Rugo HS, Ettl J, Hurvitz SA,
	advanced breast cancer and	Goncalves A, Lee KH, Fehrenbacher L,
	a germline BRCA mutation	Yerushalmi R, Mina LA, Martin M, et al.
		Talazoparib in patients with advanced
		breast cancer and a germline brca
		mutation. N Engl J Med. 2018;379:753-
		763
26	Phase III Randomized Study	Slamon DJ, Neven P, Chia S, Fasching
	of Ribociclib and Fulvestrant	PA, De Laurentiis M, Im SA, Petrakova K,
	in Hormone Receptor-	Bianchi GV, Esteva FJ, Martin M, et al.
	Positive, Human Epidermal	Phase iii randomized study of ribociclib
	Growth Factor Receptor 2–	and fulvestrant in hormone receptor-
	Negative Advanced Breast	positive, human epidermal growth factor
	Cancer: MONALEESA-3	receptor 2-negative advanced breast
		cancer: MONALEESA-3. J Clin Oncol.
		2018;36:2465-2472
27	A randomized, double-blind,	O'Shaughnessy J, DeMichele A, Ma CX,
	phase 2 study of ruxolitinib or	Richards P, Yardley DA, Wright GS,
	placebo in combination with	Kalinsky K, Steis R, Diab S, Kennealey G,
	capecitabine in patients with	et al. A randomized, double-blind, phase 2
	advanced HER2-negative	study of ruxolitinib or placebo in
	breast cancer and elevated	combination with capecitabine in patients
		with advanced her2-negative breast

	C-reactive protein, a marker	cancer and elevated c-reactive protein, a
	of systemic inflammation	marker of systemic inflammation. Breast
		Cancer Res Treat. 2018;170:547-557
28	A randomized phase II trial of	Takano T, Tsurutani J, Takahashi M,
	trastuzumab plus	Yamanaka T, Sakai K, Ito Y, Fukuoka J,
	capecitabine versus lapatinib	Kimura H, Kawabata H, Tamura K, et al. A
	plus capecitabine in patients	randomized phase ii trial of trastuzumab
	with HER2-positive	plus capecitabine versus lapatinib plus
	metastatic breast cancer	capecitabine in patients with her2-positive
	previously treated with	metastatic breast cancer previously
	trastuzumab and taxanes:	treated with trastuzumab and taxanes:
	WJOG6110B/ELTOP	WJOB6110B/ELTOP. Breast. 2018;40:67-
		75
29	Neoadjuvant PF-05280014 (a	Lammers PE, Dank M, Masetti R, Abbas
	potential trastuzumab	R, Hilton F, Coppola J, Jacobs I.
	biosimilar) versus	Neoadjuvant PF-05280014 (a potential
	trastuzumab for operable	trastuzumab biosimilar) versus
	HER2+ breast cancer	trastuzumab for operable HER2+ breast
		cancer. <i>Br J Cancer.</i> 2018;119:266-273
30	Efficacy and safety of ABP	von Minckwitz G, Colleoni M, Kolberg HC,
	980 compared with reference	Morales S, Santi P, Tomasevic Z, Zhang
	trastuzumab in women with	N, Hanes V. Efficacy and safety of ABP
	HER2-positive	980 compared with reference trastuzumab
1		

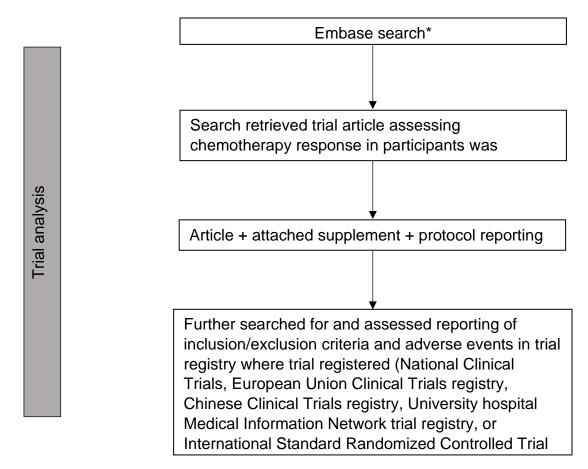
	early breast cancer (LILAC	in women with HER2-positive early breast
	study): a randomised,	cancer (LILAC study): A randomised,
	double-blind, phase 3 trial	double-blind, phase 3 trial. Lancet Oncol.
		2018;19:987-998
31	Bi-weekly eribulin therapy for	Ohtani S, Nakayama T, Yoshinami T,
	metastatic breast cancer: a	Watanabe KI, Hara F, Sagara Y,
	multicenter phase II	Kawaguchi H, Higaki K, Matsunami N,
	prospective study (JUST-	Hasegawa Y, et al. Bi-weekly eribulin
	STUDY)	therapy for metastatic breast cancer: A
		multicenter phase II prospective study
		(JUST-STUDY). Breast Cancer.
		2018;25:438-446
32	Efficacy and safety of	Masuda N, Toi M, Yamamoto N, Iwata H,
	trastuzumab, lapatinib, and	Kuroi K, Bando H, Ohtani S, Takano T,
	paclitaxel neoadjuvant	Inoue K, Yanagita Y, et al. Efficacy and
	treatment with or without	safety of trastuzumab, lapatinib, and
	prolonged exposure to anti-	paclitaxel neoadjuvant treatment with or
	HER2 therapy, and with or	without prolonged exposure to anti- HER2
	without hormone therapy for	therapy, and with or without hormone
	HER2-positive primary breast	therapy for HER2-positive primary breast
	cancer: a randomised, five-	cancer: A randomised, five-arm,
	arm, multicentre, open-label	multicentre, open-label phase II trial.
	phase II trial	Breast Cancer. 2018;25:407-415

33	Ribociclib plus endocrine	Tripathy D, Im SA, Colleoni M, Franke F,
	therapy for premenopausal	Bardia A, Harbeck N, Hurvitz SA, Chow L,
	women with hormone-	Sohn J, Lee KS, et al. Ribociclib plus
	receptor-positive, advanced	endocrine therapy for premenopausal
	breast cancer	women with hormone-receptor-positive,
	(MONALEESA-7): a	advanced breast cancer (MONALEESA-7):
	randomised phase 3 trial	A randomised phase 3 trial. Lancet Oncol.
		2018;19:904-915
34	Neoadjuvant endocrine	Sato N, Masuda N, Morimoto T, Ueno T,
	therapy with exemestane	Kanbayashi C, Kaneko K, Yasojima H, Saji
	followed by response-guided	S, Sasano H, Morita S, et al. Neoadjuvant
	combination therapy with low-	endocrine therapy with exemestane
	dose cyclophosphamide in	followed by response-guided combination
	postmenopausal patients with	therapy with low-dose cyclophosphamide
	estrogen receptor-positive	in postmenopausal patients with estrogen
	breast cancer: A multicenter,	receptor-positive breast cancer: A
	open-label, phase II study	multicenter, open-label, phase II study.
		Cancer Med. 2018
35	Induction therapy with	Inoue K, Ninomiya J, Saito T, Kimizuka K,
	paclitaxel and bevacizumab	Kurosumi M. Induction therapy with
	followed by switch	paclitaxel and bevacizumab followed by
	maintenance therapy with	switch maintenance therapy with eribulin in
	eribulin in Japanese patients	japanese patients with HER2-negative
L		

<u></u>		
	with HER2-negative	metastatic breast cancer: A multicenter,
	metastatic breast cancer: A	collaborative, open-label, phase II clinical
	multicenter, collaborative,	study for the SBCCSG 35 investigators.
	open-label, phase II clinical	BMC Cancer. 2018;18:671
	study for the SBCCSG 35	
	investigators	
36	The efficacy and feasibility of	Takabatake D, Kajiwara Y, Ohtani S, Itano
	dose-dense sequential	Y, Yamamoto M, Kubo S, Ikeda M,
	chemotherapy for Japanese	Takahashi M, Hara F, Aogi K, et al. The
	patients with breast cancer	efficacy and feasibility of dose-dense
		sequential chemotherapy for japanese
		patients with breast cancer. Breast
		Cancer. 2018;25:717-722
37	Randomized phase II trial of	Kornblum N, Zhao F, Manola J, Klein P,
	fulvestrant plus everolimus or	Ramaswamy B, Brufsky A, Stella PJ,
	placebo in postmenopausal	Burnette B, Telli M, Makower DF, et al.
	women with hormone	Randomized phase ii trial of fulvestrant
	receptor-positive, human	plus everolimus or placebo in
	epidermal growth factor	postmenopausal women with hormone
	receptor 2-negative	receptor-positive, human epidermal growth
	metastatic breast cancer	factor receptor 2-negative metastatic
	resistant to aromatase	breast cancer resistant to aromatase

	inhibitor therapy: Results of	inhibitor therapy: Results of PrE0102. J
	PrE0102	<i>Clin Oncol.</i> 2018;36:1556-1563
38	A randomized Phase III trial	Chen J, Yao Q, Huang M, Wang B, Zhang
	of neoadjuvant recombinant	J, Wang T, Ming Y, Zhou X, Jia Q, Huan
	human endostatin, docetaxel	Y, et al. A randomized phase iii trial of
	and epirubicin as first-line	neoadjuvant recombinant human
	therapy for patients with	endostatin, docetaxel and epirubicin as
	breast cancer (CBCRT01)	first-line therapy for patients with breast
		cancer (CBCRT01). Int J Cancer.
		2018;142:2130-2138
39	Carboplatin in BRCA1/2-	Tutt A, Tovey H, Cheang MCU, Kernaghan
	mutated and triple-negative	S, Kilburn L, Gazinska P, Owen J,
	breast cancer BRCAness	Abraham J, Barrett S, Barrett-Lee P, et al.
	subgroups: The TNT Trial	Carboplatin in brca1/2-mutated and triple-
		negative breast cancer BRCAness
		subgroups: The TNT Trial. Nat Med.
		2018;24:628-637
40	Open-label randomised	Cortes J, Perez-Garcia J, Levy C, Gomez
	phase III trial of vinflunine	Pardo P, Bourgeois H, Spazzapan S,
	versus an alkylating agent in	Martinez-Janez N, Chao TC, Espie M,
	patients with heavily	Nabholtz JM, et al. Open-label randomised
	pretreated metastatic breast	phase III trial of vinflunine versus an
	cancer	alkylating agent in patients with heavily

		pretreated metastatic breast cancer. Ann
		Oncol. 2018;29:881-887
41	Everolimus Plus Letrozole for	Safra T, Kaufman B, Kadouri L, Efrat Ben-
	Treatment of Patients With	Baruch N, Ryvo L, Nisenbaum B, Evron E,
	HR(+), HER2(-) Advanced	Yerushalmi R. Everolimus plus letrozole
	Breast Cancer Progressing	for treatment of patients with HR(+),
	on Endocrine Therapy: An	HER2(-) advanced breast cancer
	Open-label, Phase II Trial	progressing on endocrine therapy: An
		open-label, phase II trial. Clin Breast
		Cancer. 2018;18:e197-e203
42	Randomized phase II study	Nakayama T, Sagara Y, Takashima T,
	of anastrozole plus tegafur-	Matsunami N, Masuda N, Miyoshi Y,
	uracil as neoadjuvant therapy	Taguchi T, Aono T, Ito T, Kagimura T, et
	for ER-positive breast cancer	al. Randomized phase II study of
	in postmenopausal Japanese	anastrozole plus tegafur-uracil as
	women (Neo-ACET BC)	neoadjuvant therapy for ER- positive
		breast cancer in postmenopausal
		japanese women (Neo-ACET BC). <i>Cancer</i>
		Chemother Pharmacol. 2018;81:755-762
43	Phase III, randomized,	Pivot X, Bondarenko I, Nowecki Z, Dvorkin
	double-blind study comparing	M, Trishkina E, Ahn JH, Vinnyk Y, Im SA,
	the efficacy, safety, and	Sarosiek T, Chatterjee S, et al. Phase III,
	immunogenicity of SB3	randomized, double-blind study comparing


	(trastuzumab biosimilar) and	the efficacy, safety, and immunogenicity of
	reference trastuzumab in	SB3 (trastuzumab biosimilar) and
	patients treated with	reference trastuzumab in patients treated
	neoadjuvant therapy for	with neoadjuvant therapy for human
	human epidermal growth	epidermal growth factor receptor 2-positive
	factor receptor 2-positive	early breast cancer. J Clin Oncol.
	early breast cancer	2018;36:968-974
44	Adjuvant anastrozole versus	De Placido S, Gallo C, De Laurentiis M,
	exemestane versus letrozole,	Bisagni G, Arpino G, Sarobba MG,
	upfront or after 2 years of	Riccardi F, Russo A, Del Mastro L, Cogoni
	tamoxifen, in endocrine-	AA, et al. Adjuvant anastrozole versus
	sensitive breast cancer	exemestane versus letrozole, upfront or
	(FATA-GIM3): a randomised,	after 2 years of tamoxifen, in endocrine-
	phase 3 trial	sensitive breast cancer (FATA-GIM3): A
		randomised, phase 3 trial. Lancet Oncol.
		2018;19:474-485
45	Addition of the PARP inhibitor	Loibl S, O'Shaughnessy J, Untch M, Sikov
	veliparib plus carboplatin or	WM, Rugo HS, McKee MD, Huober J,
	carboplatin alone to standard	Golshan M, von Minckwitz G, Maag D, et
	neoadjuvant chemotherapy in	al. Addition of the PARP inhibitor veliparib
	triple-negative breast cancer	plus carboplatin or carboplatin alone to
	(BrighTNess): a randomised,	standard neoadjuvant chemotherapy in
	phase 3 trial	triple-negative breast cancer

	Lanast Onest 2019:40:	
	Lancet Oncol. 2018;19:4	197-509
46 Phase III, Randon	zed study Johnston SRD, Hegg R,	Im SA, Park IH,
of dual human epi	ermal Burdaeva O, Kurteva G,	Press MF,
growth factor rece	tor 2 Tjulandin S, Iwata H, Sir	non SD, et al.
(HER2) blockade	rith Phase III, randomized st	udy of dual human
lapatinib plus trast	zumab in epidermal growth factor	receptor 2 (HER2)
combination with a	h blockade with lapatinib p	blus trastuzumab in
aromatase inhibito	in combination with an arou	matase inhibitor in
postmenopausal v	omen with postmenopausal womer	with her2-
HER2-positive, ho	mone positive, hormone recep	tor-positive
receptor-positive r	etastatic metastatic breast cance	r: ALTERNATIVE.
breast cancer:	J Clin Oncol. 2018;36:74	41-748
ALTERNATIVE		
47 Pertuzumab and t	astuzumab Wildiers H, Tryfonidis K,	Dal Lago L,
with or without me	ronomic Vuylsteke P, Curigliano	G, Waters S,
chemotherapy for	Brouwers B, Altintas S,	Touati N, Cardoso
patients with HER	-positive F, et al. Pertuzumab and	d trastuzumab with
metastatic breast	ancer or without metronomic c	hemotherapy for
(EORTC 75111-10	114): an older patients with HER2	2-positive
open-label, rando	ised, metastatic breast cance	r (EORTC 75111-
phase 2 trial from	ne Elderly 10114): An open-label, r	andomised, phase
	2 trial from the Elderly T	ask Force/Breast

	Task Force/Breast Cancer	Cancer Group. Lancet Oncol.
	Group	2018;19:323-336
48	Comparing neoadjuvant nab-	Gianni L, Mansutti M, Anton A, Calvo L,
	paclitaxel vs paclitaxel both	Bisagni G, Bermejo B, Semiglazov V, Thill
	followed by anthracycline	M, Chacon JI, Chan A, et al. Comparing
	regimens in women with	neoadjuvant nab-paclitaxel vs paclitaxel
	ERBB2/ HER2-negative	both followed by anthracycline regimens in
	breast cancer-the evaluating	women with ERBB2/ HER2-negative
	treatment with neoadjuvant	breast cancer-the evaluating treatment
	abraxane (ETNA) trial a	with neoadjuvant abraxane (ETNA) trial: A
	randomized phase 3 clinical	randomized phase 3 clinical trial. JAMA
	trial	Oncol. 2018;4:302-308
49	Sequential versus	Zhang Y, Ji Y, Li J, Lei L, Wu S, Zuo W,
	simultaneous use of	Jia X, Wang Y, Mo M, Zhang N, et al.
	chemotherapy and	Sequential versus simultaneous use of
	gonadotropin-releasing	chemotherapy and gonadotropin-releasing
	hormone agonist (GnRHa)	hormone agonist (GnRHa) among
	among estrogen receptor	estrogen receptor (ER)-positive
	(ER)-positive premenopausal	premenopausal breast cancer patients:
	breast cancer patients:	Effects on ovarian function, disease-free
	Effects on ovarian function,	survival, and overall survival. Breast
	disease-free survival, and	Cancer Res Treat. 2018;168:679-686
	overall survival	

50	Neoadjuvant letrozole for	Skriver SK, Laenkholm AV, Rasmussen
	postmenopausal estrogen	BB, Handler J, Grundtmann B, Tvedskov
	receptor-positive, HER2-	TF, Christiansen P, Knoop AS, Jensen
	negative breast cancer	MB, Ejlertsen B. Neoadjuvant letrozole for
	patients, a study from the	postmenopausal estrogen receptor-
	Danish Breast Cancer	positive, HER2-negative breast cancer
	Cooperative Group (DBCG)	patients, a study from the Danish Breast
		Cancer Cooperative Group (DBCG). Acta
		Oncol. 2018;57:31-37

Figure S1. Data collection strategy.

*The search string applied was "breast:ti,ab,kw AND cancer:ti,ab,kw AND ([controlled clinical trial]/lim OR [randomized controlled trial]/lim)".