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ARTICLE OPEN

Realistic magnetic thermodynamics by local quantization of a
semiclassical Heisenberg model
Flynn Walsh 1,2, Mark Asta 1,3✉ and Lin-Wang Wang1,4✉

Classical Monte Carlo simulation of the Heisenberg model poorly describes many thermodynamic phenomena due to its neglect of
the quantum nature of spins. Alternatively, we discuss how to semiclassically approach the quantum problem and demonstrate a
simple method for introducing a locally approximate form of spin quantization. While the procedure underestimates magnetic
short-range order, our results suggest a simple correction for recovering realistic spin–spin correlations above the critical
temperature. Moreover, ensemble fluctuations are found to provide reasonably accurate thermodynamics, largely reproducing
quantum mechanically calculated heat capacities and experimental magnetometry for ferromagnetic Fe and antiferromagnetic
RbMnF3. Extensions of the method are proposed to address remaining inaccuracies.

npj Computational Materials           (2022) 8:186 ; https://doi.org/10.1038/s41524-022-00875-8

INTRODUCTION
The Heisenberg model has been widely studied as both a classical
and quantum description of crystal magnetism. In either
interpretation, the Hamiltonian can be expressed as:

H ¼ �
X

i;j

Jij Si � Sj (1)

where i and j sum over lattices sites and Jij is an interaction energy
determined by the relative positions of i and j. Classically, Si is a
dimensionless spin vector proportional to local magnetic moment.
While atomic magnetism has fundamentally quantum origins, the
classical model largely accounts for the energies of static spin
configurations, reproducing experimental magnon spectra and
capturing magnetic contributions to the energies of electronic
structure calculations1,2. It does not, however, accurately describe
thermodynamic properties below the magnetic disordering
temperature3,4 and, while alternatives have been proposed3–10,
the efficient simulation of finite temperature magnetism remains
an outstanding problem in computational materials science.
The limited success of the classical Heisenberg model can be

understood by regarding classical moments as the quantum
expectation values of spin operators, as is detailed in the following
section. With this perspective, we consider Monte Carlo (MC)
simulation of the Heisenberg model, a popular approach to
calculating thermodynamic properties by probabilistically sam-
pling the spin-configuration space. The deficiency of classical MC
(CMC) methods is addressed and a more accurate, but similarly
general, semiclassical MC (SMC) sampling technique is proposed,
demonstrated, and discussed.

RESULTS
Background and motivation
In the more physical quantum Heisenberg model, Si operates on
spinor χ ij i to measure the spin of lattice site i. N spins of quantum
number s form a (2s+ 1)N-dimensional Hilbert space. A canonical
system in thermal equilibrium is described by density operator

ρ= e−βH/Z, where partition function Z= tr(e−βH) and β is the
reciprocal product of Boltzmann’s constant and temperature.
Thermodynamic quantities corresponding to ensemble averages,
such as energy or magnetization, are determined from ρ as
O ¼ Oh i ¼ tr ðρOÞ, where O denotes the ensemble average and
Oh i indicates a quantum expectation value.
Density operators are typically expanded as sums over energy

eigenstate projectors, although the eigensystem of Eq. (1) is not
generally solvable. Instead, states may be sampled through
quantum MC (QMC) techniques11, although current methods
appear numerically unstable for Hamiltonians containing compet-
ing interactions12, such as geometric frustration13 or even values
of Jij with opposing signs14, as is often the case in real materials.
Compared to CMC, QMC is also far more conceptually and
computationally complex, with simulation time scaling nonlinearly
with system size15.
Fortunately, magnets that are not significantly entangled may

not require a full quantum treatment. Above some temperature,
all equilibrium systems become unentangled, or separable16,
meaning that ρ may be expressed as a sum over product states
ψp

�� � ¼ χ1j i � χ2j i � � � � χNj i. Entanglement phenomena have
been primarily identified in one or two-dimensional systems at
low temperatures17,18, so we assume that separability is at least a
very a good approximation for conventional three-dimensional
magnets above a few degrees Kelvin.
Product states are attractive because their expectation values

distribute across components of the tensor product19, enabling
effectively classical evaluation of the Heisenberg Hamiltonian. For
product state ψp

�� �
, energy Ep can be determined as:

Hh ip ¼ �
X

i;j

Jij Si � Sj
� �

p ¼ �
X

i;j

Jij Sih ip � Sj
� �

p; (2)

where Oh ip denotes ψpjOjψp

� �
. Equation (2) explains the success of

the classical Heisenberg model in evaluating the energies of given
magnetic structures, if classical Si is understood as quantum Sih ip.
When Sih ip is not prescribed, however—as is typically the case for

thermodynamic ensembles—classical methods are far less accurate
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as determining which values of Sih ip to consider requires significant
approximation. Most notably, conventional CMC simulations sample
spin states continuously, which is only justified in the limit of an
infinite spin quantum number20,21. Taking this limit provides the
standard derivation of the classical Heisenberg model and leads to a
scaling relation between the quantum (Jij) and classical (J1ij )
interaction energies for spin quantum number s:

sðsþ 1ÞJij ¼ s2J1ij : (3)

Perhaps unsurprisingly, the assumption of infinite s causes
unphysical thermodynamic behavior in not only CMC, but also
classical spin dynamics simulations22.
However, if Sih ip were known for all the components of a

separable representation, its thermodynamic properties could be
calculated with quantum accuracy and classical convenience. For a
separable ensemble that can be represented in terms of product
states p, the average of observable O may be expressed as a
classical sum, i.e.:

O ¼ 1
Z

X

p

e�βEp Oh ip; (4)

as detailed in Supplementary Note 1. For the determination of E,
Eq. (2) can be substituted into Eq. (4) such that the ensemble
average is expressed in terms of Sih ip, with a similar procedure
possible for other thermodynamic properties. Of course, identify-
ing specific ψp

�� �
or Sih ip is no easier than determining eigenstates,

but it may be feasible to approximate the density of product
states more accurately than classical methods. Indeed, represen-
tatively sampling states in a high-dimensional configuration space
is the fundamental purpose of MC simulations.
Previous efforts to improve the accuracy of classical simulations

can be understood from this perspective. For example, spin-wave
excitations can be quantized using Planck statistics, which
reasonably describe magnetization behavior1, although local
updating methods are generally far more efficient for atomistic
simulations. Ref. 8 approximates a density of states explicitly
calculated using first-principles methods by introducing and
adjusting an effective simulation temperature. This approach,
which can be applied in continuous time spin dynamics as well as
MC simulations9, works well at low temperatures, but requires
parameterization and underestimates8 (or overestimates9) mag-
netization at intermediate temperatures. Somewhat similarly, ref. 7

describes a method for empirically determining effective tem-
peratures, while ref. 10 reproduces a Planck distribution through
careful control of a spin dynamics thermostat. It is also worth
noting that the methods of refs. 3,7–9 directly depend on the Curie
temperature (TC), above which CMC is performed.

Semiclassical sampling by local quantization
Alternatively, we propose a more direct approach for estimating
the separable density of states based on a locally quantum
approximation of state evolution. In the simplest form of CMC, a
new state is trialed by mutating the (expected) spin of randomly
selected site k, while the spins of all other sites i ≠ k are fixed. Trial
Skh i is traditionally chosen with uniform probability for all
directions, as is classically allowed. However, it is possible to
introduce an approximate quantization by treating this ultimately
fictitious permutation as a quantum problem.
In this approach, Eq. (1) can be reframed as a single-spin

quantum Hamiltonian for site k:

Hk ¼ Ei≠k � Sk � 2
X

j

Jkj Sj
� �

; (5)

where Sj
� �

is the fixed spin of neighboring site j. (The factor of two
originates from the double summation in Eq. (1)). As Ei≠k is
constant, Eq. (5) has the elementary solutions of a spin in the
magnetic field Bk ¼ 2

P
j Jkj Sj

� �
. Specifically, Sk is quantized along

Bk with quantum number ms=−s, −s+ 1,… , s; its orthogonal
components are inherently uncertain, but their expectation values
precess around Bk in time.
The solutions of Eq. (5) can be statistically sampled according to

the following SMC procedure, which is illustrated in Fig. 1. For
each MC step, site k is randomly selected and Bk is computed. A
trial quantization along Bk (corresponding to some ms) is chosen
at random, defining the component of Skh i along Bk; any
remaining perpendicular component is then randomly chosen to
account for continuous precession. The accessible trial states Skh i
for a hypothetical scenario are drawn as rings around Bk in Fig. 1.
The trial energy is computed and acceptance or rejection is
determined according to the standard Metropolis criteria, after
which a new k is chosen for the next step. In practice, SMC
requires only marginally more effort than CMC, with spin quantum
number s being the only additional parameter.
While the impact of multiple-spin interactions on quantization

has been neglected, these solutions should still estimate the true
distribution of product states better than purely classical methods,
although the extent of the improvement is not immediately clear
as separable solutions of large ensembles are generally intract-
able. In practice, the results are notably more accurate—indeed,
the remainder of this paper demonstrates how locally quantized
SMC reasonably describes thermodynamic properties across a
wide temperature range, albeit with several caveats.

Magnetization of Fe
The zero-field spontaneous magnetization of body-centered cubic
(bcc) Fe provides a classic benchmark for finite temperature
magnetic predictions. Figure 2 shows measurements from ref. 23

alongside notably differing CMC calculations (see Methods for
details). The experimental ground state moment of 2.2 μB/atom
implies a quantum number of s= 1.1, neglecting orbital
contributions that are suppressed under the system’s cubic
symmetry. As a transition metal, the itinerant magnetism of Fe
is less than perfectly described by a collection of atomic spinors,
but the standard Heisenberg model appears to provide a passable
approximation24. Previous studies have modeled Fe by interpolat-
ing results for s= 1 and s= 3/23, but for the purpose of
demonstration, Fig. 2 shows distinct SMC magnetization curves
for s= 1, 3/2, and 2.
All the quantized calculations greatly improve upon CMC,

although no single value of s exactly replicates experiment. Using
s= 1, as is closest to the experimentally implied value, provides
the best results near TC, but not at lower temperatures, where

Fig. 1 MC trial states allowed by local quantization. An illustration
of the semiclassical spin sampling procedure on a bcc lattice with
s= 2. Site k is randomly selected and the effective local field Bk is
determined from the fixed spins of neighboring sites Sj

� �
and the

interaction energies Jkj. A new trial value of Skh i is randomly selected
from the illustrated quantizations along Bk.
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s= 3/2 appears slightly more accurate. The next highest value of
s= 2 is generally further from experiment, expectedly approach-
ing the classical limit of infinite s—the gradual convergence of
CMC and SMC is further shown in Supplementary Fig. 2. Critical
magnetization behavior is also examined in Supplementary Fig. 3.
Some remaining inaccuracies are discussed later, but the overall
dramatic improvement clearly shows the potential of semiclassical
local quantization.

Heat capacity and magnetic short-range order
While demonstrative, direct comparison of computational
predictions to experiments is complicated by the many levels
of approximation inherent in the theory. Fortunately, ref. 3

provides effectively exact QMC heat capacities for a small bcc
ferromagnet with nearest neighbor Heisenberg interactions,
which are shown in Fig. 3 for four spin quantum numbers in
addition to infinite spin CMC (see Methods for details). Heat

capacity is defined as:

C ¼ ∂E
∂T

; (6)

from which many other thermodynamic properties can be
derived. Figure 3 shows that direct calculation of SMC heat
capacity according to Eq. (6) largely reproduces QMC at lower
temperatures, but results in significant errors around TC, with
altogether less improvement over CMC than seen in Fig. 2.
An explanation for excessive heat capacity in the critical region

follows from Eq. (6); overestimation of heat capacity implies that
simulation energies increase too rapidly with respect to tempera-
ture, which is explicitly shown in Fig. 4. Below TC, semiclassical
energies closely track QMC values, but magnetic disordering
imparts a rapid increase in energy, resulting in an overestimation
of energy that only gradually disappears at higher temperatures.
Excess energies indicate that these simulations are less ordered
than their QMC counterparts—since the error only becomes
significant as long-range order disappears, it is apparent that
locally quantized SMC systematically underestimates magnetic
short-range order (MSRO).
In contrast, Fig. 4 shows how CMC energies are correct in the

high-temperature limit despite significant error below TC. None-
theless, CMC and SMC predict very similar degrees of order above
TC, as demonstrated in Fig. 5 for nearest neighbor spins in bcc Fe.
These two observations imply that accurate CMC energies (and
related properties, such as heat capacity) above TC originate from
the sþ1

s energetic scaling that was introduced in Eq. (3). Indeed,
CMC has long been believed to underestimate MSRO on the basis
of both experiment25,26 and theory27–30. As a reference, Fig. 5
includes the significantly more ordered predictions30 of dynamic
spin-fluctuation theory31, an advanced linear-response technique
that does not explicitly consider local moments.
The observation that scaling CMC interaction parameters, as is

required to preserve the Curie temperature, leads to accurate
energies above TC implies that a similar correction factor could
recover realistic MSRO. This simple idea is tested in Fig. 5, which
includes a version of the CMC spin–spin correlations multiplied
post hoc by sþ1

s (for s= 1.1) that favorably compares to the theory
of ref. 30. The remaining discrepancy may be attributable to the
neglect of longitudinal spin fluctuations, which, although relatively

Fig. 2 Spontaneous magnetization of iron. Spontaneous magne-
tization of elemental (bcc) Fe as a function of temperature,
determined using CMC and SMC sampling for several spin quantum
numbers s and experiment23.

Fig. 3 Heat capacity of a model ferromagnet for several spin
quantum numbers. Heat capacity of a bcc nearest neighbor
ferromagnets for varying spin quantum number s, calculated via
CMC, QMC (adapted from ref. 3), and SMC according to Eq. (6)
Nearest neighbor interaction energies are determined from classical
J∞ by Eq. (3).

Fig. 4 Energy of a model ferromagnet for several spin quantum
numbers. Analogous to Fig. 3, the energies of a bcc ferromagnet
with varying quantum number s according to CMC, QMC, and SMC.
While SMC appears to reproduce the QMC of ref. 3 below the
disordering point, higher temperature energies are overestimated
due to missing short-range order.
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small in Fe, can significantly affect MSRO24, as well as the specific
parameterization of the Hamiltonian.
The proposed scaling factor offers a path for correcting SMC,

either post hoc or possibly through scaling interaction parameters
Jij as in CMC. With an optimized interpolation scheme smoothly
introducing the scaling factor across the critical region, SMC could
conceivably replicate QMC across across all temperatures in a
manner reminiscent of previously employed techniques3,7. How-
ever, this approach would compromise much of the convenience
of SMC and a somewhat more straightforward method for
recovering accurate heat capacities is explored in the following
section.

Improved accuracy from fluctuations
Heat capacity may alternatively (and more conventionally) be
calculated according to the fluctuation-dissipation theorem, i.e.:

C ¼ E2 � E
2

kBT2
; (7)

which must equal Eq. (6) for a statistically valid ensemble.
However, SMC heat capacities determined in this manner, plotted
in Fig. 6, notably differ from those previously calculated in Fig. 3—
in fact, the values obtained from the fluctuation-dissipation
theorem are significantly closer to the QMC of ref. 3.
The disagreement between the heat capacities calculated from

Eqs. (6) and (7) can be attributed to a violation of balance by the
SMC sampling procedure. Local quantization clearly does not
satisfy detailed balance, as the local field at any site is frequently
changed as neighboring spins are reoriented. If a spin is re-
quantized along an updated local field, it is likely impossible to
directly return to the prior state along the former quantization
axis, which is a fundamental requirement for detailed balance. It is
less immediately obvious that this procedure violates the
statistically necessary condition of balance32, but the difference
between the two methods of calculating heat capacity, which are
formally equivalent for a properly sampled ensemble, suggest an
absence of balance. In contrast, if all spins are quantized along a
fixed axis, then (detailed) balance is recovered and both methods
of calculating heat capacity predict consistent values, which are
similar to those of Fig. 3 (this is explicitly shown in Supplementary
Fig. 1). For local quantization, issues of balance could be
circumvented by performing non-Markovian MC such as

Wang-Landau sampling33, which determines E2 from a sampled
distribution of E such that Eq. (7) reproduces Eq. (6).
However, the degree of accuracy shown in Fig. 6 suggests that

the fluctuation-based calculations are capturing more realistic
physics. Despite excessive average energies due to the under-
estimation of MSRO, the SMC calculations appear to sample
realistic energetic fluctuations. As shown in Fig. 3, the heat
capacities of Eq. (6) are about as accurate as the best existing
methods for (non-quantum) magnetic thermodynamics, exempli-
fied by the “rescaled” MC of ref. 3, which applies an empirical
correction factor to CMC based on lattice-specific QMC for a
model Hamiltonian. The fluctuation-based approach thus seems
very promising for practical calculations, although it would benefit
from a more rigorous explanation for the demonstrated accuracy.

Antiferromagnetic susceptibility of RbMnF3
While only ferromagnets have been considered up to this point,
SMC sampling works similarly well for antiferromagnets, of which
RbMnF3 is one of the simplest examples. In this compound, Mn
ions form a simple cubic sublattice with s= 5/2 and effectively
nearest neighbor exchange interactions34. Figure 2 shows the
zero-field parallel susceptibility (χ∥) of RbMnF3, both from
experiment35 and calculated with CMC and SMC via the
fluctuation-dissipation theorem:

χk ¼ M2 �M
2

kBT
: (8)

Both axes have been scaled relative to TN values to ease
comparison with experiment. SMC is expectedly far more accurate
than CMC below the disordering point, although χ∥ is somewhat
underestimated at very low temperatures. Classical χ∥ appears
slightly closer to experiment above TN, likely reflecting the
underestimation of MSRO by local quantization, although the
choice of scaling could also affect the alignment of these values.

DISCUSSION
The use of fluctuations for thermodynamic calculations largely
resolves the primary source of error in SMC, but a few issues remain.
In particular, local quantization systematically undersamples

Fig. 5 Magnetic short-range order in iron. Predictions of MSRO in
bcc Fe by several theories, represented by the normalized nearest
neighbor spin–spin correlation: Si � Sj= SiSj

� �
for nearest neighbors i

and j. Very similar CMC and SMC results are compared to dynamic
spin-fluctuation theory30, which predicts significantly larger MSRO
due to quantization effects. The discrepancy can be mostly
eliminated using the sþ1

s correction factor deduced from comparison
of QMC and CMC.

Fig. 6 Improved and benchmarked heat capacities of the model
ferromagnet. The QMC heat capacities from Fig. 3 (and ultimately
ref. 3) compared to SMC calculations using Eq. (7), which are
significantly more accurate than those shown in Fig. 3. The
“rescaled” MC (RMC) results from ref. 3, which provide a similar
degree of accuracy, are also shown.
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low-temperature excitations, which can be seen across a range of
properties in Figs. 2, 6 and 7. Magnetization, for instance, should
scale as an exponential of temperature in the 0 K limit, but it appears
asymptotic in Fig. 2—as shown more clearly in Supplementary Fig.
4, SMC magnetization does not significantly deviate from the
ferromagnetic state below ~TC/5. In reality, excitations in this region
are dominated by long-wavelength spin-waves, which, while
theoretically compatible with SMC, do not appear adequately
sampled by local quantization. The omission of these excitations
similarly explains a slight underestimation of heat capacity and
susceptibility at low temperatures, as these properties reflect,
respectively, energetic and magnetic fluctuations.
The absence of non-local quantizations may also be seen at

higher temperatures. As shown in Fig. 6, QMC predicts slightly
lower critical temperatures for s= 1/2 and s= 1 than for higher
spin simulations, an effect which is not captured by SMC. For these
lower quantum numbers, the locally allowed quantizations are
limited and higher in energy, leaving room for lower energy,
longer range excitations to play a role in the disordering transition,
slightly reducing TC from the classical values. Single-site quantiza-
tion also appears to inadequately predict MSRO, as seen in Fig. 4,
with the implication that quantum MSRO originates from
quantization states involving multiple spins.
We hope that this work will motivate further study and

development of semiclassical sampling methods, including
resolutions of these issues. One apparent next step would be
the simultaneous quantization of multiple neighboring spins,
analogous to cluster flipping algorithms employed in CMC
simulations36. When permuting multiple spins, new states could
be drawn from the separable component of the local exact
solution, which could be easily precomputed for small clusters.
While extracting product states from these solutions may be
nontrivial, their inclusion could allow lower energy excitations that
improve simulation accuracy at low temperatures and promote
high-temperature MSRO.
Opportunities for improvement notwithstanding, the simplest

form of locally quantized SMC appears to provide a physics-based,
parameter-free method for calculating magnetic contributions to
thermodynamic properties that is at least as accurate as current
methods with increased convenience and generality.

METHODS
Simulations of Fe (Figs. 2 and 5) used ten values of Jij from ref. 2 for atomic
separations up to and including rij ¼ 3

2
3
2
3
2

� �
, which is associated with an

energy several times larger than that of any longer range interaction. The
selected Jij predict a TC close to the experimental value, although, given the

limitations of the Heisenberg model24, inaccuracy of the local density
approximation used in parameterization37, and neglect of temperature
scaling and phonon coupling38,39—among other factors—the degree of
accuracy presumably involves some cancellation of errors. After an
equivalent period of equilibration, 105 MC passes were performed for
2.5 ⋅ 105 atoms over 1250 temperatures. For Fig. 5, similar simulations were
performed at intervals of 5 K.
Simulations for Figs. 3, 4 and 6 considered 512 spins to match the QMC

of ref. 3; 5 ⋅ 106 MC passes were performed at 256 temperatures.
Calculations of susceptibility in RbMnF3 for Fig. 7 involved 106 passes for
1.25 ⋅ 105 magnetic sites.
In the case of Bk= 0, the local Hamiltonian of Eq. (5) imposes no specific

quantization, so trial Sk should be oriented randomly. While irrelevant for
most simulations, this procedure ensures that s ¼ 1

2 SMC trajectories with
initially collinear spins are not restricted to the original quantization axis
(i.e., an Ising model), as would otherwise occur. In practice, these
calculations were initialized with randomly oriented spins to avoid any
such issues.
Simulations were implemented in Julia40 and plot data from refs. 3,30,35

were reproduced using WebPlotDigitizer41.
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