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Abstract

Current theories and supporting simulations of similarity-
based retrieval disagree in their process model of semantic
similarity decisions. We compare two current computational
simulations of similarity-based retrieval, MAC/FAC and
ARCS, with particular attention to the semantic similarity
models used in each. Four experiments are presented
comparing the performance of these simulations on a
common set of representations. The results suggest that
MAC/FAC, with its identicality-based constraint on semantic
similarity, provides a better account of retrieval than ARCS,
with its similarity-table based model

1. Introduction

How does a pendulum remind us of a spring, or even of
another pendulum? This paper compares two recent
simulations of how such remindings come about: ARCS
(Thagard, Holyoak, Nelson & Gochfeld, 1990) and
MAC/FAC (Gentner, 1989; Gentner & Forbus, 1991, in
preparation; Gentner, Rattermann & Forbus, 1993). Both
models attempt to predict the fact that similarity-based
retrieval is strongly influenced by surface similarity and
weakly sensitive to structural consistency. The process
should typically retrieve literally similar matches, often
retrieve surface-similar matches, and occasionally retrieve
purely analogous matches (Gentner, Rattermann & Forbus,
1993; Gick & Holyoak, 1980, 1983; Wharton, Holyoak,
Downing, Lange and Wickens, 1991, in preparation).

Section 2 reviews MAC/FAC and ARCS. Section 3
describes four computational experiments in which we
compare MAC/FAC and ARCS. Section 4 summarizes the
results.

2. Review of MAC/FAC and ARCS

MAC/FAC: MAC/FAC (for “Many are called but few are
chosen”) uses a two-stage retrieval process. The first stage
(MAC) is a “wide-net” stage in which a crude,
computationally cheap, match process is used to pare down
the vast set of memory items into a small set of candidates
for more expensive processing. The second stage (FAC)
uses SME in literal similarity mode to apply structural
constraints to select one (or a few) best matches.
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Figure 1 summarizes the MAC/FAC algorithm. The
MAC stage operates with content vectors, a  vector
representation automatically computed from structured
representations. Each component of a content vector
represents the relative number occurrences of a particular
predicate in the corresponding structured representation.
Thus the dot product of two content vectors yields an
estimate of how likely their corresponding structured
representations will match using SME. Given a probe, its
content vector is computed and its dot product taken with
every item in memory. The output of the MAC stage is the
item with the highest dot product, along with everything
else within 10% of it.

The FAC stage uses SME to calculate, in parallel, a
structural alignment of each item retrieved by MAC with
the probe. Since MAC is sensitive only to predicate overlap
while FAC is sensitive to structure, FAC will reject much
of MAC’s output.  However, MAC’s pre-filtering
minimizes the number of structural alignments to be
computed.

ARCS: The ARCS algorithm is shown in Figure 2.
ARCS uses a localist connectionist network to apply
semantic, structural, and pragmatic constraints to selecting
items from memory. The initial stage uses semantic
similarity to select a subset of memory over which to build
a matching network. The notion of semantic similarity is

Given a database M of memory items I1..In, and a probe

Pv

1. [MAC stage] In parallel, for each item I in M
compute the dot product of the content vectors for I
and P. Return as output the maximum and every
item whose score is within p]% of it.

2. [FAC stage] In parallel, for each item I in the MAC
output, run SME with I as the base and P as the
target. The FAC score for each pair is the structural
evaluation score of the highest- ranked mapping.
The top-scoring match, plus any others within p2%
of it, are output.

(Typically pl = p2 = 10%)

Figure 1: The MAC/FAC algorithm
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Given a pool of memory items I1..In and a probe P;

1. For each item i, include it in a matching network if
there are any predicates in li that are semantically
similar to a predicate in P. The matching network
implements semantic and structural constraints.

2. Create inhibitory links between units representing
competing retrieval hypotheses, to ensure
competitive retrieval.

3. Install pragmatic constraints by creating excitatory
links between a special pragmatic node and every
predicate marked by the user as important.

4. Run the network until it settles.

Figure 2: The ARCS algorithm

based on WordNet (Miller, Fellbaum, Kegl, & Miller,
1988), a psycholinguistic database of words and lexical
concepts. Since Thagard et al. draw the majority of their
predicate vocabulary from WordNet, the existence of lexical
relationships between words is used to suggest that their
corresponding predicates are semantically similar.

Most of the work in ARCS is camried out by the
constraint satisfaction network, which provides an elegant
mechanism for integrating the disparate constraints that
Thagard et al. postulate as important to retrieval. The use
of competition in retrieval is designed to reduce the number
of candidates retrieved. Using pragmatic information
provides a means for the system’s goals to affect the
retrieval process.

After the network settles, an ordering can be placed on
nodes representing retrieval hypotheses based on their
activation. Unfortunately, we have not been able to identify
a formal criterion by which a subset of these retrieval
hypotheses are considered to be what is retrieved by ARCS.
In the experiments below we mainly focus on the subset of
retrieval nodes mentioned by Thagard et al. in their paper.

2.1 Semantic Similarity

A key issue in analogical processing is what criterion
should be used to decide if two elements can be placed into
comespondence. In ARCS, an augmented subset of
WordNet was used to make semantic similarity decisions.
Two predicates in ARCS are considered semantically
similar if their corresponding lexical concepts in WordNet
are connected via links that denote particular relationships.
The use of WordNet as a database for simple lexical
inferences is an appealing idea. The lexical connections
found in this way should have well-founded motivations.
Nevertheless, it important to remember that WordNet was
intended as a lexicon, not a language of thought. Using the
lexical concepts of WordNet as a predicate vocabulary
requires  assuming that there exist conceptual
representations that correspond to these lexical concepts.
That does not seem an implausible assumption. However,
assuming that relationships between words, such as
synonym or antonym are used in the cognitive processing of
internal representations seems implausible.

We prefer an identicality-based account using
inexpensive inference techniques to suggest ways 10 re-
represent  non-identical relations into a canonical
representation language. Such canonicalization has many
advantages for complex, rich knowledge systems, where
meaning arises from the axioms that predicates participate
in. When mismatches occur in a context where it is
desirable to make the match, we assume that people make
use of techniques of re-representation. An example of an
inexpensive  inference technique to suggest re-
representation is Falkenhainer's (1987, 1990) minimal
ascension method, which looks for common superordinates
(e.2.. TRANSFER) when context suggested that two
predicates should match (e.g., BESTOW and DONATE).
Semantic similarity can thus be captured as partial identity.
We believe that WordNet could be used similarly, since it
has superordinate information.

Holyoak & Thagard have argued that broader (i.e.,
weaker) notions of semantic similarity are crucial in
retrieval, for otherwise we would suffer from too many
missed retrievals. Although this at first sounds reasonable,
there is a counter-argument based on memory size. Human
memories are far larger than any cognitive simulation yet
constructed. In such a case, the problem of false positives
(i.e., too many irrelevant retrievals) becomes critical. False
negatives are of course a problem, but they can be overcome
1o some extent by reformulating and re-representing the
probe, treating memory access as an iteralive process
interleaved with other forms of reasoning (as in Wharton,
Holyoak, Downing, Lange & Wickens's (1991, in press)
REMIND model). Thus we argue that strong semantic
similarity constraints, combined with re-representation, are
crucial in retrieval as well as in mapping.

How do these different accounts of semantic similarity
fare in predicting patterns of retrieval? In the rest of the
paper we compare the performance of MAC/FAC and
ARCS on a variety of examples.

3. Computational Experiments

Each experiment below has a similar structure. First each
simulation is given a memory, consisting of one or more
databases drawn from the ARCS representations.' Then
retrieval is tested with probes drawn from a small
predefined set of stories. The memory a simulation
operates over consists of one or more databases. In some
cases the memory is augmented by a particular story: e.g.,
when probing with variant Hawk stories, the Thagard et al.
encoding of the “Karla the Hawk™ story is added to
memory. (This is done to see if the retrieval system is able
to find the base story amidst the distractors, given
variations on the story as probes.)

For brevity we specify the probe set and memory
contents symbolically, using “/" to distinguish probe set
from memory and “+" to indicate set union. Thus

'To date we have been unsuccessful in getting ARCS to run on
the representations we used in (Forbus & Gentner, 1991). ARCS’
network does not settle after even 1,000 iterations, and run times
of up to nine hours have been required.
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HAWK/(PLAYS+Karla Base) indicates an experiment
where the database of plays was probed with the Hawk
stories. A description of the datasets used and a summary
of conventions are given in Figure 3.

Both  MAC/FAC and ARCS take propositional
representations as inputs, but their representation
conventions are quite different. The most crucial difference
is that structure-mapping treats attributes, relations, and
functions differently, whereas ARCS does not distinguish
them. We used the following rules in translation: (1) One-
place predicates were classified as attributes, (2) multi-
argument predicates were classified as relations, and (3)
since the arguments to CAUSE could be either events or
modal propositions, we treated predicates used as
arguments to a CAUSE statement either as modal relations
(e.g., BECOMING-TRUE) or functions (e.g., MARRIED,
KILLED).

Replication of computational experiments is still
something of a novelty, and standards for ensuring that
reported simulation results are repeatable have not yet been
established in cognitive science. Nevertheless, we have
taken many precautions to ensure that we have run ARCS
correctly. Where numerical information was reported, for
instance, we matched results to several decimal places.
One concern was what should count as a retrieval in ARCS.
Neither the original ARCS paper nor the code defines a

Databases:

FABLES = 100 encodings of Aesop’s fables, encoded by
Thagard et al.

PLAYS = 25 encodings of Shakespeare’s plays, encoded

by Thagard et al.
m H -

HAWK = Thagard et al.’s encoding of the “Karla the
Hawk" story set, i.e., original story, analog, appearance
match, false analogy, and literal similarity versions.
Databases using these probes have the original story
added to memory, except when the original story itself is
used as a probe.

SG = Thagard et al.’s encoding of the Sour Grapes fable
plus variations, i.e., original story, analog, appearance,
and literal similarity versions. Databases using these
probes have the original story added to memory, except
when the original story itself is used as a probe.

H&WSS = Thagard et al."s encoding of Hamlet and West
Side Story. When Hamlet is used as a probe it is
removed from memory. West Side Story is never placed
in memory.

Convention: For convenience, we refer to an
experimental setup by the probe stories followed by the
database used, e.g., SG/(FABLES+PLAYS) means that
the Sour Grapes fables were used as probes with a
memory consisting of both plays and fables. When a
story is used as a probe, it is removed from memory first.

Figure 3: Databases and experimental stories used in
the experiments
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ARCS results. Numbers in parentheses represent the
level of activation computed by ARCS.

Probe Results Sec

Sour Grapes, Sour Grapes (0.28) 120
appearance

Sour Grapes, Sour Grapes (0.21) 81
analog

Sour Grapes, Sour Grapes (0.25) 123
literal similarity

MAC/FAC Results. Numbers in parentheses represent

the scores for that story.

Probe Results Sec

Sour Grapes, FAC: Sour Grapes (0.53) 0.3
appearance MAC: Sour Grapes (0.56)

Sour Grapes, FAC: Sour Grapes (2.03) 0.2
analog MAC: Sour Grapes (0.62)

Sour Grapes, FAC: Sour Grapes (2.03) 0.2
literal similarity | MAC: Sour Grapes (0.62)

Table 1: Results for SG/Fables experiment

criterion for distinguishing when an item is actually
retrieved (indeed, stories with negative activations were
sometimes considered retrievals). In reporting ARCS
results we cut off the list of retrieved results where they did.
In some cases (e.g., fables) this represented a sharp
boundary, in other cases (e.g., plays) it did not.

3.1 Experiment 1: Sour Grapes Comparison

In the first study the memory set consists of the fables,
including the Sour Grapes fable, and the probes are
variants of Sour Grapes. Table 1 shows the results. The
results for ARCS match those reported for the simulation
by Thagard et al. The MAC/FAC results are quite similar.
Thus both systems successfully retrieve Sour Grapes from a
database of fables when given variations of it. However,
MAC/FAC is substantially faster. The runtime difference is
fairly typical; MAC/FAC tends to be two orders of
magnitude faster than ARCS when tested with identical
data on the same computer.

3.2 Experiment 2: Effects of additional memory
items on retrieval (Sour Grapes)

To check the stability of results under changes in memory
contents, we reran Experiment 1, adding the database of 25
Shakespeare plays encoded by Thagard et al. to the fables
database. We then tested the simulations to see if they
would retrieve Sour Grapes from the database of 125 fables
and plays when probed with variations of Sour Grapes. The
results are show in Table 2. MAC/FAC’s results remain
unchanged, except for a small increase in processing time.
ARCS, on the other hand, is distracted by the plays in one
of the probe conditions. Increasing the memory by 25%
has led to different results with ARCS. The results also
hint at a possible size bias in ARCS; it appears to prefer
larger descriptions in retrieval, at the cost of correct
matches.



ARCS Results
Probe Results Sec
Sour Grapes Sour Grapes (0.28) 327
appearance
Sour Grapes, The Taming of the Shrew 251
analog (0.22),
Merry Wives (0.18),
[11 stories],
Sour Grapes (-0.19)
Sour Grapes, Sour Grapes (0.25) 373
literal similarity
MAC/FAC Results
Probe Results Sec
Sour Grapes FAC: Sour Grapes (0.53) 04
appearance MAC: Sour Grapes (0.56)
Sour Grapes FAC: Sour Grapes (2.03) 03
analog MAC: Sour Grapes (0.62)
Sour Grapes, FAC: Sour Grapes (2.03) 0.3
literal similarity | MAC: Sour Grapes (0.62)

Table 2: Results of SG probes, database = Fables +
Plays

3.3 Experiment 3: Larger Probe sizes

While the results for MAC/FAC in Experiment 2 are
satisfactory, ARCS’ seemingly poor performance requires
further investigation. Does the relative size of the probe
matter in the memory swamping effect? To find this out,
we again ran both simulations, first with the plays database
as memory, then with the 25 plays and 100 fables as
memory, this time using as probes the Hamlet and West
Side Story encodings as probes, as represented by Thagard
et al. Given Hamlet as a probe, the question is whether the
systems can retrieve a tragedy, or at least another play.
Given West Side Story as a probe, the challenge is more

ARCS results. Numbers in parentheses represent levels

specific: to retrieve Romeo & Juliet, the analogous play.

Table 3 shows the results for plays only in memory, and
Table 4 shows the results with both plays and fables in
memory. The good news for ARCS is that the fables have
only minimally intruded on the activation for the top
ranked retrieved plays. A Midsummer Night's dream is
ARCS’ top-ranked retrieval for West Side Story, but it did
also, as stated by Thagard et al., retrieve Romeo & Juliet.

MAC/FAC, on the other hand, only retrieves Romeo &
Juliet with either probe. For West Side Story this is indeed
the expected result (and we believe more intuitive that
ARCS' result), but what is happening with Hamlet?
Examining the structural evaluation scores (e.g., the FAC
scores) reveals that FAC considers the match between West
Side Story and Romeo & Juliet 1o be excellent (16.51),
which makes sense because the encodings of West Side
Story and Romeo & Juliet have almost isomorphic
structure. When Hamlet is the probe, FAC is relatively
indifferent: the FAC scores were as follows: Romeo &
Juliet (6.79), Julius Caesar (5.49), Macbeth (3.72), Othello
(2.67). The drop-off from Romeo & Juliet is 20%, which is
below than MAC/FAC’s default cutoff of 10%.

3.4 Experiment 4: Hawk stories

The goal in the Hawk studies was to replicate the results of
(Gentner, Rattermann, & Forbus, 1993). Subjects were
given a set of stories to read, and later attempted to retrieve
these stories given variations as probes. The observed
retrieval ordering was literal similarity, appearance,
analogy, first-order overlap. Thagard et al. simulated this
experiment for one story set. Using the relative activation
levels of the stories computed by ARCS as relative retrieval
probabilities for human subjects, ARCS’ order of retrieval
was: literal similarity, first-order overlap, appearance,
analogy. This is not a close match. (Our own simulation of
these results with MAC/FAC matched the human ordinal
results.)

of activation for that item. ARCS Results.

Probe Results Sec Probe Results Sec
Hamlet Romeo & Juliet (0.54), King Lear (0.53), | 1843 Hamlet Romeo & Juliet (0.531), 4112
Othello (0.46), Cymbeline (0.42), King Lear (0.528), Othello (0.45),

Macbeth (0.41), Julius Caesar (0.38) Cymbeline (0.41), Macbeth (0.40),
West Side | Midsummer Night's Dream (0.58), 2539 Julius Caesar (0.37)
Story | Romeo & Juliet (0.57) West Side | Midsummer Night’s Dream (0.58), 5133
Story Romeo & Juliet (0.57)
MAC/FAC results. Numbers in parentheses represent
scores for that item. MAC/FAC Results
Probe Results Sec Probe Results Sec
Hamlet FAC: Romeo & Juliet (6.79) 22 Hamlet FAC: Romeo & Juliet (6.79) 26
MAC: Othello (0.86), Macbeth (0.85), MAC: Othello (0.86), Macbeth (0.85),
Romeo & Juliet (0.83), Romeo & Juliet (0.83), Caesar (0.81),
Julius Caesar (0.81) Fable52 (0.80)
West Side | FAC: Romeo & Juliet (16.51) 13 West Side | FAC: Romeo & Juliet (16.51) 8
Story MAC: Romeo & Juliet (0.88) Story MAC: Romeo & Juliet (0.88)

Table 3: Results for Hamlet, West Side Story as
probes, Plays database.
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Table 4: Results for Hamlet, West Side Story as
probes, Plays + Fables database.



However, our purpose here is to pursue two specific
questions. Using Thagard et al.’s encodings, we ask (1) do
the systems perform appropriately; and (2) do the two
systems continue to perform appropriately when distractors
are added to memory? Both simulations were run with the
Hawk stories as probes, and with either the fables (plus the
Karla story) as memory or with both fables and plays (plus
the Karla story) as memory. The results are shown in
Table 5 and Table 6 respectively.

No matter which database is used, MAC/FAC always

(c.f. the specificity conjecture of Forbus & Gentner, 1989).

As was suggested by experiments 1 and 2, the ARCS
results vary considerably with different distractor sets. This
means that the use of relative activations to estimate
relative frequencies is not a stable measure. Specifically,
the relative ordering of first-order overlap and analogy
reverses when the database of fables is augmented with the
plays. The position of the Karla story in the activation
rankings is also alarming. The appearance story, which

retrieves the Karla story, irrespective of which variant story
is used as a probe. The MAC scores explain why: In each ARCS Results.
case the Karla story is at the top of the ranking, indicating ~ |-Erobe Rads e
that the predicate overlap is greater for Karla and variant Karla, Karla™ base (0.67) 614
than for any other story. The fact that the Karla base story ~ [—literal similarity ,
is retrieved for the literal similarity and appearance Karla, fablef'f (0.40),[16 stories], 408
variants is expected. Its retrieval when the analogy is used | —2Ppearance K‘fﬂa base (-0.018) :
as a probe is also reasonable (although if ARCS always | Karla, Pezicles D.00); [17 wories), |24
retrieved analogs successfully it would be an implausible [ analogy Karla” base (0.32)
model). Retrieving the base story when the first-order Karla, f‘"‘}"f (0.58), [22 stories], 45
overlap story is used as a probe is not so reasonable. We first-order Karla™ base (-0.38)
believe this occurs because the Thagard et al overlap
representations are rather sparse, with almost no surface
information, and thus are less natural than might be desired MAC/FAC Results.
Probe Results Sec
Karla, FAC: “Karla"(16.07) 7
:rRobCes Results — - literal similarity | MAC: “Karla"(0.81),
i Fable71 (0.74)
Karla, o Karla" base (0.67) 315 Karla, FAC: “Karla™ (7.92). 21
__literal similarity appearance MAC: “Karla" (0.71),
Karla, Fable55 (0.4), [7 fables], 176 Fable52(0.71),
appearance “Karla” base (-0.17) Julius Caesar (0.69),
Karla, fubch‘? (0.33), [7 fables], 127 Othello (0.68), Macbeth (0.67),
= il::'m FK:III;3 ?3359(0—%2?1 = Fable71(0.66), Two Gentlemen
ar| able 8 ' of Verona (0.65),
first-order overlap | Fable55 (0.0903), [13 fables], Fable27(0.65), Hamlet (0.65),
“Karla” base (-0.11) Fable5(0.64)
Karla, FAC: "Karla"(8.57) 37
MAC/FAC Results. analogy MAC: “Karla” (0.81),
Rbl:, ::S(':-l“sxaﬂ TET gec Julius Caesar (0.78), Two
s a" (16. Gentlemen of Verona (0.78),
literal similarity MAC: “Karla" (0.81), Fable52 (0.77), Fable5(0.77),
Fable71 (0.74) Macbeth (0.76),
Karla, FAC: “Karla"” (7.92) 7 As You Like 1t(0.76),
appearance MAC: “Karla" (0.71), Fable71(0.76), Fable45(0.75),
;ablcig g)gs 1 ).:abl;?:)(o.ﬁ). Fable59(0.75), Fable27(0.75),
able27(0.65), Fable5(0.64) Othello(0.75)
Karla, FAC: “Karla" (8.57) 14 Karla, FAC: “Karla”(5.33), 226
analogy MAC: “Karla™(0.81), first-order Fable5(5.33),
Fable52 (0.77), Fable5 (0.77), overlap As You Like It (4.96)
Fable71(0.76), Fable45(0.75), MAC: “Karla"(0.73),
Fable59(0.75), Fable27(0.75) Julius Caesar(0.72), Two
Karla, FAC: “Karla” (5.33), 7 Gentlemen of Verona (0.72),
first-order overlap | Fable5 (5.33) Fable71(0.71), Fable52(0.71),
MAC: “Karla" (0.73), Fable5 (0.71), Macbeth(0.70),
Fable71(0.71), Fable52(0.71), As You Like It (0.70),
Fable5(0.71), Fable45(0.69), Othello (0.69), Fable45 (0.69),
Fable59(0.68),Fable27(0.68) Hamlet(0.68)

Table 5: Results for HAWK probes, database =
Fables + “Karla” base story
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Table 6: Results for HAWK probes, with database =
Fables + Plays + “Karla’ base story



should retrieve the base almost as often as the literal
similarity story, has dropped from ninth in the ranking to
18th. Depending on the retrieval cutoff, the conclusion
might be that ARCS fails to retrieve the Karla story given
the very close surface match.

4. Conclusions

The results of cognitive simulation experiments must
always be interpreted with care. In this case, we believe
our experiments provide evidence that structure-mapping’s
identicality constraint better models retrieval than Thagard
et al.’s notion of semantic similarity. In retrieval, the
special demands of large memories argue for simpler
algorithms, simply because the cost of false positives is
much higher. If retrieval were a one-shot operation, the
cost of false negatives would be higher. But in normal
situations, retrieval is iterative, interleaved with the
construction of the representations being used. Thus the
cost of false negatives is reduced by the chance that
reformulation of the probe, due to re-representation and
inference, will subsequently catch a relevant memory that
slipped by once.

Finally, we note that while ARCS’ use of a localist
connectionist network to implement constraint satisfaction
is in many ways intuitively appealing, it is by no means
clear that such implementations are neurally plausible,
Overall, we believe the evidence suggests that MAC/FAC
captures similarity-based retrieval phenomena better than
ARCS does.
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