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Test-Based Calibration of Safety Factors for
Capacity Models

Giorgio Monti1 and Floriana Petrone2

Abstract: A simple procedure to calibrate the safety factor of capacity models is presented. The calibration can be carried out based on any
available database of experimental tests, even of limited size. The procedure aims to assess the model capability of predicting the test results
and to calibrate the safety factor so that the capacity equation meets the target reliability level required by the code or sought by the calibrator.
After predicting each test of the database with the capacity equation under consideration, the test-prediction pairs are checked for the property
of linearity, and the relative error for the properties of homoscedasticity and normality. Once these properties are fulfilled—which may require
a nonlinear transformation of the test values and/or the predictions—the closed-form equation proposed in this paper is employed to compute
a target design value. The model safety factor is finally obtained by comparing such target design value with the design value obtained from
the code. The paper also proposes two approximate analytical equations to compute the tolerance factor, used to attain any given fractile, as a
function of the (even small) number of tests, with any assigned confidence level. A fundamental outcome of the procedure is that it yields an
objective indicator of the model accuracy, measured by the standard deviation of its error, which may be regarded as a parameter useful for
selecting the most reliable model among different competing ones. In the long run, the application of the proposed procedure will allow
achieving a uniform reliability level throughout all capacity models used in codes and guidelines. A further advantage is that the partial safety
factors so derived can be straightforwardly updated when more experiments become available. As an example, the proposed procedure is
herein applied to the ACI 318 shear design capacity equation for concrete members unreinforced in shear. DOI: 10.1061/(ASCE)ST.1943-
541X.0001571. © 2016 American Society of Civil Engineers.

Author keywords: Test-based calibration; Safety factors; Structural safety and reliability; Calibration procedure.

Introduction

The development of any a priori analytical capacity model should
go through a validation stage that implies an a posteriori testing of
its predictive ability over a reasonably representative set of exper-
imental results. For a meaningful comparison between predictions
and experiments, the capacity model should be formulated in a
fully probabilistic manner by including both the intrinsic uncertain-
ties, concerning the underlying material and geometry variables,
and the epistemic uncertainties, affecting the model itself (simpli-
fication, incompleteness, and approximation).

When designing a structural system to meet a certain failure prob-
ability, one should consider all uncertainties in the demand and all
uncertainties in the capacity. The latter are expressed in terms of basic
geometrical and mechanical properties, whose statistical description is
usually available. In general, capacity models are developed either by
using simplified relationships among basic variables or by neglecting
others for concisely describing the main resisting mechanisms they
aim to represent. This introduces a so-called modeling uncertainty,
which should be adequately considered when assessing the reliability
of a capacity model. Modeling uncertainty can be incorporated into a
capacity model by introducing a random variable to represent the dif-
ference between measured and predicted response (Melchers 1987).

Calibrated safety factors for construction materials and products
are provided by codes [e.g., CEN (2005) for concrete] on the basis of
probabilistic studies conducted on wide test databases, but no
standard procedure is available, either in the literature or in codes,
to define safety factors of capacity models although they are explic-
itly provided in modern codes (e.g., γRd in Eurocodes and the ϕ in
U.S. Codes). Even when some authors (Sedlacek and Kraus 2007;
Burdekin 2007) refer to the statistical determination of capacity
models, they raise the question about the modeling uncertainty
but do not provide an explicit method for assessing it.

A complete procedure to calculate safety factors of any capacity
model, regardless of its functional form, is here developed. It aims
at assessing the model capability of predicting the outcomes of a
given test database so as to meet a target exceedance probability.

Overall, this work underlines the importance of defining a co-
efficient able to fine-tune capacity models, which allows endowing
a capacity model with an objective measure of its unavoidable
error. In this sense, it would be desirable that all capacity models
developed in the future be described in terms of (1) an unbiased
expression predicting the experimental results in the average,
(2) the corresponding design expression, (3) a measure of the mod-
eling error, and (4) a safety factor calibrated on the currently avail-
able test database. In this manner, the reliability of each capacity
model could be easily and conveniently updated as more tests be-
come available, and a uniform reliability level among all capacity
equations developed for codes and guidelines could be achieved.

Definitions

For introducing and explaining the meaning of the symbols used in
the procedure, some basic definitions are provided in the following:
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Basic Random Variables

The basic random variables (RVs) are those defining all parameters
of geometric and mechanical nature involved in the model in hand.
Following the notation of Montgomery and Runger (2011), a set
of basic RVs can be conveniently collected in a vector X, that is

X ¼ ½X1 X2 : : : Xm �T ð1Þ
where each Xjðj ¼ 1; : : : ;mÞ represents, e.g., a specimen size, a
material strength, and so forth.

Test Database

A test database can be formally described as

Yi ¼ TiðXiÞþ ∈Yi
ð2Þ

where Yi = i-th test outcome; Tið·Þ = functional application repre-
senting the i-th test, being i ¼ 1,2; : : : ;Ntot the number of tests and
Ntot the total number of tests; and ∈Yi

= error of the outcome, which
includes the measurement error (on the outcome Yi) and possible
testing errors of the i-th test. Notice that each test Tið·Þ has a differ-
ent nature, being carried out by different authors in different years
with different test setups and protocols.

Capacity Model

A capacity model is a function that predicts the outcome of exper-
imental tests performed to check a specific resisting mechanism. It
is expressed either in terms of force or displacement and is formally
given as

Ci ¼ CðXiþ ∈Xi
Þþ ∈C ð3Þ

meaning that the i-th test outcome Ci is predicted through the
function Cð·Þ, where the basic RVs Xi are those coming from
the experimental tests and, as such, they include the measurement
error ∈Xi

(on the RVs). These measurement errors are hidden and
per se partly responsible for the model prediction error. Then, the
error of the model itself is represented by the term ∈C.

This amounts to saying that when calibrating a capacity model,
the errors due to both the measurements and the model are
included, where the latter accounts for inherent limitations that ac-
tually play the prevailing role.

Model Error

The validation of a capacity model is conducted by comparing each
experimental result Yi in the database with the corresponding
prediction Ci, in a Yi versus Ci scatter plot. Due to ∈Y , ∈X, and∈C, test results and predictions are expected to be different, and
each comparison shows an error given by

∈i¼ Yi − Ci ð4Þ
When the above error is deemed to be excessively high, the

calibrator might consider removing the corresponding tests from
the database (trimming), ending up with N ≤ Ntot tests.

For the calibration to be efficiently carried out, the following
fundamental assumptions have to be checked:
1. Linearity of test-prediction pairs: The points ðCi;YiÞ should be

evenly and symmetrically distributed along a diagonal line.
Violation of such property indicates the presence of a nonlinear
relationship that reveals either systematic errors in the model or
the inadequacy of the formulation throughout the entire range of
the considered RVs. A viable solution is to apply an appropriate

nonlinear transformation to Yi and/or Ci. For example, if the
data are strictly positive, as is always the case for capacity mod-
els, a log-transformation is typically of use.

2. Normality of the error: The error in Eq. (4) should have a normal
distribution, which may be checked through the usual normal
probability plot. The normality assumption is necessary when
estimating fractiles corresponding to given target probabilities,
which is the purpose of this work. Violation of normality often
indicates that there is some conceptual problem with the model
assumptions and/or the test results. If in the normal probability
plot, few data points are detected to significantly deviate on
one or both ends, they should be examined and removed from
the database (trimming), if necessary. The error should also
have zero mean. In general, this can be fixed through a linear
regression.

3. Homoscedasticity of the error: Error should not increase as a
function of the predicted value. The points ðCi;∈iÞ should be
symmetrically distributed around the zero value, with an ap-
proximately constant variance. Violation of this property im-
plies heteroscedasticity, which results in confidence intervals
(used in the calibration) that do not have constant amplitude
throughout the database. Homoscedasticity tests are available
in the literature (e.g., Goldfeld and Quandt 1965). However, for
our purposes, this property can be practically verified in the
mean sense by checking that the trend of the squared error,
which may be found through a linear regression of the squared
error plot ðYi − CiÞ2, is approximately constant throughout the
database. Notice that heteroscedasticity may arise from a signif-
icant violation of the linearity assumption, and it is usually fixed
as a byproduct of the nonlinear transformation mentioned above
(Assumption 1). In some cases, it may be solved by removing
from the database (trimming) those tests showing the highest
squared errors.
If the (trimmed) database, counting N ≤ Ntot experimental tests,

does not meet the above three assumptions, it will undergo a series
of modifications that will transform it as follows:
• Original database: ðCi;YiÞ;
• Adjusted database: ð ~Ci; ~YiÞ≡ fðCi;YiÞ derived through non-

linear transformations. For example, fðCi;YiÞ≡ ðlogCi; logYiÞ;
and

• Fitted database ð ~̂Ci; ~YiÞ obtained through linear regression on
the adjusted database.
For the sake of notation simplicity, from now on ðCi;YiÞ is

intended as ð ~Ci; ~YiÞ if the database has undergone a nonlinear
transformation.

The relationship between the two variables, test and prediction,
is now of linear nature and is described by the fitted capacity model

Yi ¼ Ĉi þ ∈̂i ð5Þ
where

Ĉi ¼ β̂1Ci þ β̂0 ð6Þ
and

β̂1 ¼
P

N
i¼1 CiYi − 1

N

P
N
i¼1 Ci

P
N
i¼1 YiP

N
i¼1 C

2
i − 1

N ð
P

N
i¼1 CiÞ2

¼ SCY
SCC

ð7Þ

β̂0 ¼
1

N

XN
i¼1

Yi − β̂1

1

N

XN
i¼1

Ci ¼ Ȳ − β̂1C̄ ð8Þ

where Ȳ and C̄ = means of the two populations.
The error between the test outcome and the fitted model, called

residual, is

© ASCE 04016104-2 J. Struct. Eng.
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∈̂i ¼ Yi − Ĉi with ∈̂ ¼ Nð0; σ2Þ ð9Þ
which is a normal RV with mean zero and (unknown) variance σ2,
estimated by

σ̂2 ¼ 1

N − 2

XN
i¼1

ðYi − ĈiÞ2 ð10Þ

Having verified the relaxed condition of homoscedasticity,
as explained above, the variance can be considered as constant
throughout the database. It represents a measure of the model ac-
curacy relative to the database considered.

The calibration of the capacity model can be finally carried out.

Calibration of the Safety Factor

Having adjusted (by transformation and trimming) and fitted (by
regression) the database and having checked normality and
homoscedasticity of the error, the design value for the capacity
is computed at the mean point of the database as follows:

C̄d ¼ ¯̂C − kα;N−1;pσ̂ ð11Þ
where

¯̂C ¼ 1

N

XN
i¼1

Ĉ ¼
XN
i¼1

ðβ̂1Ci þ β̂0Þ ð12Þ

is the mean over the database ðĈi;YiÞ of the fitted capacity model
obtained from Eq. (5) and σ̂ is given in Eq. (10).

In Eq. (11), kα;N−1;p is the so-called tolerance factor, to be de-
termined with confidence level 100ð1 − αÞ%, referred to N tests
(that is, N − 1 degrees of freedom), and relative to a given fractile
having exceedance probability p. As the tolerance factor is an es-
sential component of the design capacity equation, especially when
few tests are available, some literature formulas are presented in the
next section, along with two simple closed-form equations pro-
posed by the authors.

Finally, it is important to notice that the exceedance probability
p is that relevant to the capacity design value, given by p ¼
Φð−αCβLSÞ, being αC the sensitivity factor associated to the capac-
ity (0.8 in EN 1990) and βLS the reliability index associated to the
limit state under consideration [3.8 in EN 1990 (CEN 2002) and 3.5
in the U.S. code].

The design value obtained with Eq. (11), should be compared, at
the mean point of the database, with that provided by the capacity
equation being calibrated. In general, a design capacity equation
can be formally expressed as

Cd;code ¼ ηCðXdÞ ¼ ηC

�
Xk

γX

�
ð13Þ

where the capacity reduction factor η depends on the code consid-
ered: for example, it corresponds to 1=γRd (with γRd ≥ 1) in
EN 1990 (CEN 2002) and to ϕ ≤ 1 in the U.S. codes. The capacity
is computed with reference to the design values Xd of the j-th basic
variables, obtained by dividing the characteristic value Xk of each
RV by the relevant partial safety factor γX. Both Xk and γX de-
pend on the code format. For example, in EN 1990 (CEN 2002),
the characteristic value is the 5% fractile of the RV distribution,
obtained as Xk ¼ X̄ − k0.05σX with k0.05 ¼ 1.645, while in the
U.S. codes, the characteristic value is the 9% fractile of the RV dis-
tribution, obtained as Xk ¼ X̄ − k0.09σX with k0.09 ¼ 1.345. In both
equations, X̄ is the mean of the RV and σX is its standard deviation.
As for the partial safety factor, in EN 1990 (CEN 2002) each RV has
its own γX, while in U.S. codes, it is always γX ¼ 1. In both codes,
for geometry properties, it is always σX ¼ 0 and γX ¼ 1, while for
material properties the standard deviation σX is provided (e.g., in EN
1992 (CEN 2005), for concrete: σX ¼ 4.86 MPa).

The sought safety factor γcal is finally obtained as the ratio be-
tween the mean of Eq. (13) over the database and Eq. (11) after
applying the inverse transformation, f−1

γcal ¼
C̄d;code

C̄d
¼ f−1ð ~̄Cd;codeÞ

f−1ð ~̄CdÞ
ð14Þ

where: ~̄Cd;code ¼ ηð1=NÞP ~CðXdiÞ, with the design values Xdi of
the RVs determined as explained above, with X̄i ¼ Xi, i.e., the
value given in each test.

If the safety factor is found to be lower than 1, then it may be
concluded that the code equation is conservative with respect to the
database examined. If it is larger than 1, then the code equation is
nonconservative with respect to the database examined, and γcal
should be applied as a divisor to Cd;code in Eq. (13).

Tolerance Factors k α;N−1;p

Tolerance factors are used to estimate any fractile of a RV distri-
bution sampled through a limited number N (in this section given
as n) of experiments. Given an (assumed) normal population of re-
sults (in this case this is the population of the error between the
test results and the model predictions already verified as normal), a
tolerance bound is the value above which lies at least 100ð1 − pÞ%
of the population, with confidence level 100ð1 − αÞ%. For
example, a suggested value for the confidence level in EN 1990
(CEN 2002) is 75%, while 50% implies the median value of the
sought fractile.

Finding a tolerance bound entails the use of the noncentral
t-distribution to find the solution to a quite complex problem ex-
pressed by the following equation having the tolerance factor k as
the unknown:

FZk
ðzpÞ¼1−α; zp¼Φ−1ðpÞ; FZk

ðzÞ¼
Z

zp

−∞
fZk

ðzÞdz;

fZk
ðzÞ¼

Z ∞
0

2

Γðn−1
2
Þ

ffiffiffiffiffiffi
n
2π

r �
n−1

2k2

�ðn−1Þ=2
ðsÞn−2e−½ðn−1Þs2�=2k2eð−n=2Þðz−sÞ2ds for k>0

Z
0

−∞
2

Γðn−1
2
Þ

ffiffiffiffiffiffi
n
2π

r �
n−1

2k2

�ðn−1Þ=2
ð−sÞn−2e−½ðn−1Þs2�=2k2eð−n=2Þðz−sÞ2ds for k<0

ð15Þ

with Φ−1ðpÞ representing the inverse cumulative standardized normal.

© ASCE 04016104-3 J. Struct. Eng.
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The solution to the above problem yields the inverse cumulative
distribution function for the noncentral t-distribution. The expres-
sion for the so-called tolerance factor is in this case

kα;n−1;p ¼ F−1
T;n−1;δðαÞ
n − 1

ð16Þ

where

δ ¼ Φ−1ðpÞ
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
¼ zp

ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
ð17Þ

is the noncentrality parameter.
A disadvantage of this approach is that the function F−1

T;n−1;δðαÞ
does not have an easily treatable analytical form and is only
available in tables. The following sections are therefore intended
to identify the most suitable and reliable approximation to Eq. (16).

Wallis Approximation

An approximation for kα;n−1;p comes from the following set of for-
mulas (generally credited to Natrella 1963 but originally proposed
by Wallis 1947):

kα;n−1;p ≈ kW;α;n−1;p ¼
zp þ sgnðzpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2p − ab

q
a

with a ¼ 1 − z2α
2ðn − 1Þ ; b ¼ z2p − z2α

n
ð18Þ

where zp ¼ Φ−1ðpÞ and zα ¼ −Φ−1ðαÞ.
This approach is widely used in on-site estimate of concrete

strength [see, for example, ACI 228.2R (ACI 2013)] or anchors
strength [see, for example, ACI 355.3R (ACI 2011a)] or even con-
crete core strength [ACI 214R (ACI 201b)].

Welch Approximations

A better approximation, especially for low values of n, is that given
by Jennett and Welch (1939) by means of the quantiles of the non-
central t-distribution

kα;n−1;p ≈ kJW1;α;n−1;p ¼
1ffiffiffiffiffiffiffiffiffiffi
n− 1

p δbnþ zα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2nþð1−b2nÞðδ2− z2αÞ

p
b2n− z2αð1−b2nÞ

ð19Þ
where

bn ¼
Γðn

2
Þ

Γðn−1
2
Þ

ffiffiffiffiffiffiffiffiffiffiffi
2

n − 1

r
ð20Þ

A simpler expression was developed by Johnson and Welch
(1940) by assuming bn ≈ 1 and 1 − b2n ≈ 1

2ðn−1Þ, as follows:

kα;n−1;p ≈ kJW2;α;n−1;p ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
δ þ zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2ðn−1Þ ðδ2 − z2αÞ
q

1 − z2α
2ðn−1Þ

ð21Þ
which yields slightly lower estimates, especially for n < 30.

However, the latter approximation does not give accurate results
for α ¼ 0.5.

Two Proposed Approximations

By considering that Eq. (20) can be approximated as

bn ≈ 1 − 1

4n − 5
ð22Þ

the following expression for calculating the tolerance factor is here
proposed (where MP stands for Monti-Petrone):

kα;n−1;p ≈ kMP1;α;n−1;p ¼
zp
A
4n− 6

4n− 5
þ zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n− 1
þ 1

2ðn− 1Þ
�
zp
A

�
2

s

with A¼ 1− 1

2ðn− 1Þ ð1þ z2αÞ ð23Þ

Eq. (23) represents an as accurate yet simpler version of Eq. (16)
that allows avoiding the computation of the Gamma function.

The proposed equation can be further simplified to

kα;n−1;p ≈ kMP2;α;n−1;p ¼ zp
A

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2α

n − 1

�
1þ 1

2

z2p
A2

�s
ð24Þ

which yields slightly higher estimates, especially for n < 10.

Fig. 2. Comparison of different approximations for the tolerance fac-
tor, for p ¼ 0.05 and α ¼ 0.25 (75% confidence level) with n ¼
3; ...; 10

Fig. 1. Comparison of different approximations for the tolerance
factor, for p ¼ 0.05 and α ¼ 0.10 (90% confidence level) with
n ¼ 3; ...; 10

© ASCE 04016104-4 J. Struct. Eng.
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When n is large, say > 50, A ≈ 1, and Eq. (24) simplifies to

kMP2;α;n−1;p ¼ zp þ zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ z2p
2ðn − 1Þ

s
ð25Þ

Comparison among Approximations

The approximations proposed above are compared in Figs. 1–3,
where, for the purpose of demonstration, the tolerance factor for
p ¼ 0.05 [the so-called characteristic value in EN 1990 (CEN
2002)] is sought. Since all approximations tend asymptotically
to the exact solution, the comparison is only shown for
n ¼ 3; : : : ; 10, which refers to the condition of operating on a
small-size database. The comparison is carried out between the
exact solution found by solving Eq. (16) and the approximate
solutions of Eqs. (18), (19), (21), (23), and (24).

Fig. 1 shows the comparison for α ¼ 0.10 (90% confidence
level). It can be seen that Wallis (1947) considerably underesti-
mates the tolerance bound by an amount comparable to Johnson
and Welch (1940), while the second proposed approximation in
Eq. (24), being simpler in its formulation, yields an overestimate.
The approximation by Jennet and Welch (1939) is very satisfactory,
such as the first proposed approximation in Eq. (23), though it
slightly overestimates the tolerance factor for N < 5.

Fig. 2 shows the comparison for α ¼ 0.25 (75% confidence
level). It can be seen that Wallis (1947) underestimates consider-
ably the tolerance bound by an amount comparable to Johnson
and Welch (1940), while the second proposed approximation in
Eq. (24) again yields an overestimate. Both approximations by
Jennet and Welch (1939) and the first proposed in Eq. (23) practi-
cally coincide with the exact solution, with the latter having the
advantage of being much simpler.

Fig. 3 shows the comparison for a confidence level α ¼ 0.50
(median value). It can be seen that both Wallis (1947) and Johnson
and Welch (1940) yield a constant value, thus failing to account
for the variation with the number of data. The second proposed
approximation in Eq. (24) overestimates the factor. Again, both
the approximations by Jennet and Welch (1939) and the first pro-
posed approximation in Eq. (23) are closer to the exact solution.

Overall, it can be concluded that both Eqs. (23) and (24) provide
a better approximation than the equations available in the literature,
and especially the former can be safely adopted in Eq. (14) for the

calibration of the safety factor. Its simplified expression in Eq. (25)
is recommended in the case of large databases.

Summary of the Calibration Procedure

The entire calibration procedure is here summarized in five steps,
recalling the main equations to be used:

Step 1: Consider the entire database with N data. Predict each
test result Yi in the database through the capacity model, by
plugging in the equation Ci ¼ CðXiÞ the values Xi given in the test,
which already include the error ∈Xi

. Therefore,N data pairs ðCi;YiÞ
are obtained.

Step 2: Check the property of linearity of the test-prediction
pairs, ðCi;YiÞ. Compute the errors in Eq. (4) and check the
properties of normality and homoscedasticity. If these properties
(LNH) are not satisfied, treat the data by appropriate nonlinear
transformations and/or by removing outliers and/or by performing
linear regression to have ∈̂ ¼ Nð0; σ2Þ. The data pairs become
ð ~̂Ci; ~YiÞ. Repeat Step 2 until LNH are satisfied.

Step 3: Collect the coefficients β̂1 and β̂0 from Eqs. (7) and (8),
and the error variance σ̂2 from Eq. (10). The latter represents the
model accuracy with respect to the database considered.

Step 4: Compute the tolerance factor kα;N−1;p for the desired
values of α and p, with Eq. (23) or Eq. (24), [or Eq. (25) in the
case of a large database].

Step 5: Calculate the design value of the capacity model C̄d
as per Eq. (11) and the design value as given by the relevant code
Cd;code as per Eq. (13), and finally compute the safety factor
from Eq. (14).

Application of the Calibration Procedure

The calibration procedure is here applied to the ACI 318 (ACI
2014) design capacity equation, relative to the shear strength Vc
of reinforced concrete (RC) members unreinforced in shear and
subjected to shear and flexure only, given as

Vc ¼ ϕ · 0.166
ffiffiffiffiffi
f 0
c

p
bwd ð26Þ

where ϕ ¼ 0.75 = strength reduction factor; f 0
c = specified com-

pressive strength of concrete (in MPa); and bw · d = cross sectional
area (in mm2). Therefore, the vector of the RVs takes on the
form X ¼ ½ f 0

c bw d �T .
A reference database of 216 experimental tests conducted by

several authors and collected by Reineck et al. (2003) was consid-
ered. The appendix lists all the tests with the corresponding values
of X and Y.

Step 1: The entire database with Ntot ¼ 216 data is considered.
Each test result Yi in the database, as listed in the appendix, is pre-
dicted by means of the capacity model in Eq. (26), using the values
of the RVs Xi given in the test (all safety factors are set equal to 1 as
per U.S. provisions). Then, nine pairs ðCi;YiÞ showing an absolute
error ratio (j1 − Ci=Yij) larger than 75% are detected, which might
reveal some macroscopic error either in the test setup or in the
measurement of input and/or output quantities. Keeping these val-
ues might alter the calibration procedure and, since in number stat-
istically irrelevant, they are removed thus reducing the size of the
database to N ¼ 207. The resulting scatter plot ðCi;YiÞ is shown in
Fig. 4 along with a logarithmic regression fitting the data.

Step 2: The errors are computed from Eq. (4). The error scatter
plot ðCi;∈iÞ is shown in Fig. 5, while the error normality plot is
shown in Fig. 6. Looking at the figures, it is clearly seen that the
properties of linearity and normality are not satisfied. However,
the relationship between tests and predictions appears to follow

Fig. 3. Comparison of different approximations for the tolerance
factor, for p ¼ 0.05 and α ¼ 0.50 (median value) with n ¼ 3; ...; 10
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Fig. 4. Scatter plot of the pairs ðCi;YiÞ (original database)

Fig. 5. Scatter plot of the error (original database)

Fig. 6. Normality plot of the error (original database)

Fig. 7. Scatter plot of the pairs ð ~Ci; ~YiÞ≡ ðlogCi; logYiÞ (adjusted
database)

Fig. 8. Scatter plot of the error (adjusted database)

Fig. 9. Normality plot of the error (adjusted database)
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a logarithmic trend (solid line in Fig. 4). Then the data points are
treated with a logarithmic transformation so that ð ~Ci; ~YiÞ ¼
fðCi;YiÞ ¼ ðlogCi; logYiÞ, where log is the natural logarithm.
The scatter plot of the ð ~Ci; ~YiÞ pairs, that of the error, and the normal-
ity plot of the adjusted database are shown in Figs. 7–9, respectively,
where it can be seen that both the linearity and the normality proper-
ties of the scatter plot have significantly improved. Finally, since the
error still shows a nonzero mean, a linear regression is performed.

Figs. 10–12 show the effects of this further transformation
ð ~̂Ci ¼ β̂1

~Ci þ β̂0Þ, as the error is now actually a normal RV with
zero mean.

The only check left is to verify whether the error is homosce-
dastic. As mentioned above, this can be verified in the mean sense
by observing that the mean of the squared error, see solid trend line
in Fig. 13, is approximately horizontal throughout the database.

Step 3: The regression coefficients are β̂1 ¼ S ~C ~Y=S ~C ~C ¼ 0.7384

and β̂0 ¼ ~̄Y − β̂1
~̄C¼ 0.5750 obtained from Eqs. (7) and (8), respec-

tively, and the variance σ̂2 is obtained from Eq. (10) as follows:Fig. 10. Scatter plot of the pairs ð ~̂Ci; ~YiÞ (fitted database)

Fig. 11. Scatter plot of the error (fitted database)

Fig. 12. Normality plot of the error (fitted database)

Fig. 13. Scatter plot of the squared error (fitted database)

Fig. 14. Scatter plot of the pairs ð ~̂Ci; ~YiÞ (fitted database) showing
the design lines obtained with ACI 318 (ACI 2014) (solid line) and
with the proposed procedure (dashed line)
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σ̂2 ¼ 1

N − 2

XN
i¼1

ð ~Yi − ~̂CiÞ
2 ¼ 0.00911 ð27Þ

which is practically coincident with the value of the intercept of the
regression line equation shown in Fig. 13. This can be regarded as a
relaxed proof of homoscedasticity.

Step 4: The tolerance factor kα;N−1;p is computed with Eq. (25)
as the database is sufficiently large (N ¼ 207). A confidence
level of 75% (α ¼ 0.25) is assumed as suggested in EN 1990
(CEN 2002), from which zα ¼ 0.674. For the exceedance
probability p¼ Φð−αCβLSÞ is considered, from which zp ¼
αCβLS ¼ 0.8 · 3.5 ¼ 2.8, so that

kMP2;0.25,207;p ¼ zp þ zα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ z2p

2ðN − 1Þ

s
¼ 2.869 ð28Þ

Step 5: Finally, the safety factor is computed from Eq. (14) as
follows:

γcal ¼
C̄d;code

C̄d
¼ exp½ϕ 1

207

P
207
i¼1

~CðXi − k0.09σXi
Þ�

expð 1
207

P
207
i¼1

~̂C−kMP2;0.25;207;p ~̂σÞ
¼ 0.98 ð29Þ

where expð·Þ≡ f−1½logð·Þ�, and where, again, ~Cð·Þ≡ logCð·Þ.
The standard deviation σX has been taken equal to zero for the
geometry RVs, while for the concrete strength it has been assumed
as σfc ¼ 8=k0.05 ¼ 8=1.645 ¼ 4.86 MPa, in agreement with EN
1992 (CEN 2005), so that σX ¼ ½ 4.86 0 0 �T . The safety factor
so obtained is very close to the unit and shows that the ACI 318
(ACI 2014) design equation for the shear capacity meets the
reliability requirement of the U.S. code.

In the scatter plot of Fig. 14, relative to the pairs ð ~̂Ci; ~YiÞ, two
lines are reported, which represent the design lines obtained with
ACI 318 (ACI 2014) (dashed line) and with the proposed procedure
(solid line). The two lines are very close, and it can also be observed
that only two points fall in the unsafe zone below the design

lines. These are the two outliers in Figs. 12 and 13 showing the

highest ~̂∈i ¼ ~Yi − ~̂Ci.

Conclusions

This work presents a simple procedure to calibrate the partial safety
factor of capacity models on the basis of experimental tests, even if
they are available in limited number. The procedure aims to obtain a
relationship between test results and predictions, which must fulfill
the property of linearity with the error being normal and homosce-
dastic throughout the database. This relationship can be established
through nonlinear transformation, trimming, and regression-fitting
of the test-prediction database and is used to find the design value
corresponding to the exceedance probability targeted in the code.
The safety factor is then found by comparing such design value
with the corresponding design value obtained with the capacity
model provided by the code.

As a byproduct, the procedure yields an objective measure of the
model accuracy with respect to the database considered, given by
the error standard deviation. This should always be computed and
made available by authors when validating models on experimental
databases, so that it could be used as an objective measure of ac-
curacy when comparing different models on the same database.

For the case of a limited number of tests, two approximate ana-
lytical equations for calculating the tolerance factors are proposed,
which can be used to compute any fractile of a random variable with
a given confidence level. The accuracy of the proposed tolerance
factors is verified and proved by comparing them with the exact sol-
ution and with other formulas currently available in the literature.

The proposed methodology has been applied to the shear capac-
ity equation of RC beams without shear reinforcement provided by
ACI 318 (ACI 2014). The calibration, carried out on 216 experi-
mental tests collected from the literature, demonstrated that that
equation fulfills the reliability requirements of ACI and, above
all, that the proposed procedure is of straightforward applicability.

Appendix. Database of Experimental Tests Considered for the Application of the Calibration Procedure

Reference authors Beam name bw (mm) d (mm) f1c (MPa) Vexp (kN)

Ahmad and Kahloo (1986) C2 127 184 62.9 75.6
Ahmad and Kahloo (1986) A2 127 203 59.3 68.9
Ahmad and Kahloo (1986) B2 127 202 65.5 69.1
Ahmad and Kahloo (1986) A1 127 203 59.3 57.8
Ahmad and Kahloo (1986) C1 127 184 62.9 54.3
Ahmad and Kahloo (1986) B1 127 202 65.5 51.3
Ahmad and Kahloo (1986) A8 127 208 59.3 48.9
Ahmad and Kahloo (1986) B8 127 208 65.5 46.7
Ahmad and Kahloo (1986) C7 127 207 62.9 45.5
Ahmad and Kahloo (1986) B7 127 208 65.5 46.3
Ahmad and Kahloo (1986) C8 127 207 62.9 44.6
Aster and Koch (1974) 3 1,000 250 26 220.7
Aster and Koch (1974) 2 1,000 250 25.7 216.3
Aster and Koch (1974) 12 1,000 500 26 323.7
Aster and Koch (1974) 10 1,000 500 19 255.1
Aster and Koch (1974) 9 1,000 500 18.9 254.1
Aster and Koch (1974) 16 1,000 750 28.8 392.4
Aster and Koch (1974) 11 1,000 500 23.3 261
Aster and Koch (1974) 8 1,000 500 29.5 280.6
Aster and Koch (1974) 17 1,000 750 27.3 349.2
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Appendix (Continued.)

Reference authors Beam name bw (mm) d (mm) f1c (MPa) Vexp (kN)

Bhal (1968) B1 240 300 22.5 71.5
Bhal (1968) B3 240 900 26.7 165
Bhal (1968) B6 240 600 24 114
Bhal (1968) B2 240 600 28.8 119.5
Bhal (1968) B4 240 1,200 24.5 180
Bhal (1968) B5 240 600 25.8 106
Bhal (1968) B7 240 900 26.5 137
Bhal (1968) B8 240 900 26.9 125
Bresler and Scordelis (1963) 0A-2 305 466 23.3 178
Bresler and Scordelis (1963) 0A-1 310 461 21.4 166.9
Bresler and Scordelis (1963) 0A-3 307 462 35.9 189.1
Chana (1981) 2.3 203 356 33.9 99.4
Chana (1981) 2.1 203 356 37 96
Chana (1981) 2.2 203 356 31.2 87.4
Collins and Kuchma (1997) B100 300 925 34.2 225
Collins and Kuchma (1997) B100L 300 925 37.1 223
Collins and Kuchma (1997) B100B 300 925 37.1 204
Collins and Kuchma (1997) B100H 300 925 93.2 193
Cossio and Siess (1960) A-12 152 254 25.4 59
Cossio and Siess (1960) A-14 152 254 26.1 54.7
Cossio and Siess (1960) A-13 152 254 21 46.9
Cossio and Siess (1960) A2 152 254 29.9 41.8
Cossio and Siess (1960) A3 152 254 18.5 34.3
Elzanaty et al. (1986) F12 178 269 19.7 54.6
Elzanaty et al. (1986) F10 178 268 62.2 78
Elzanaty et al. (1986) F14 178 269 38 64.6
Elzanaty et al. (1986) F15 178 268 60.3 68
Elzanaty et al. (1986) F11 178 272 19.7 45.5
Elzanaty et al. (1986) F2 178 270 75.3 67
Elzanaty et al. (1986) F6 178 267 62.2 62
Elzanaty et al. (1986) F9 178 268 75.3 64
Elzanaty et al. (1986) F1 178 272 62.2 58.6
Elzanaty et al. (1986) F13 178 272 38 47
Elzanaty et al. (1986) F8 178 273 38 46.7
Feldman and Siess (1955) L-2A 152 252 34.9 80.1
Feldman and Siess (1955) L-3 152 252 26.6 53.4
Feldman and Siess (1955) L-4 152 252 24.5 51.2
Feldman and Siess (1955) L-5 152 252 26.5 51.2
Grimm (1997) s2.4 300 328 89.4 229.8
Grimm (1997) s3.4 300 690 89.4 379
Grimm (1997) s2.2 300 348 86.7 187.1
Grimm (1997) s1.3 300 146 89 98.6
Grimm (1997) s3.2 300 718 89 259.1
Grimm (1997) s1.2 300 152 86.6 75.8
Grimm (1997) s1.1 300 153 85.6 70.1
Grimm (1997) s2.3 300 348 89 123.1
Grimm (1997) s3.3 300 746 89.7 192.8
Hallgren (1994) B91SD2-4-61 156 195 57.8 90
Hallgren (1994) B91SD1-4-61 156 194 57.8 88.5
Hallgren (1994) B91SD6-4-58 150 196 55.4 82.5
Hallgren (1994) B91SD3-4-66 156 195 62.4 81.5
Hallgren (1994) B91SD5-4-58 156 196 55.4 78
Hallgren (1994) B91SD4-4-66 155 195 62.4 79
Hallgren (1994) B90SB13-2-86 163 192 81.9 82.5
Hallgren (1994) B91SC1-2-62 156 193 58.7 71
Hallgren (1994) B90SB5-2-33 156 191 31.2 56
Hallgren (1994) B90SB18-2-45 155 194 42.7 63
Hallgren (1994) B91SC4-2-69 156 195 65.6 74
Hallgren (1994) B91SC2-2-62 155 196 58.7 69.5
Hallgren (1994) B90SB10-2-31 157 193 29.5 53.5
Hallgren (1994) B90SB14-2-86 158 194 81.9 76.5
Hallgren (1994) B90SB6-2-33 156 194 31.2 53.5
Hallgren (1994) B90SB22-2-85 158 193 80.4 75.5
Hallgren (1994) B90SB17-2-45 157 191 42.7 59
Hallgren (1994) B90SB9-2-31 156 192 29.5 49
Hallgren (1994) B90SB21-2-85 155 194 80.4 69
Hamadi and Regan (1980) G2 100 372 22.3 41

© ASCE 04016104-9 J. Struct. Eng.

 J. Struct. Eng., 2016, 142(11): 04016104 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y 

on
 0

7/
19

/1
8.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Appendix (Continued.)

Reference authors Beam name bw (mm) d (mm) f1c (MPa) Vexp (kN)

Hamadi and Regan (1980) G1 100 370 28.8 44.5
Hamadi and Regan (1980) G4 100 372 20.9 30.3
Hanson (1961) B2 152 267 29.3 52.4
Hanson (1961) B4 152 267 29.4 42.8
Hanson (1961) BW4 152 267 28.2 40
Hanson (1961) A4 152 267 19.9 33.8
Kani (1967) 274 612 270 25.8 250.2
Kani (1967) 272 611 271 25.6 227.8
Kani (1967) 273 612 271 25.8 206.2
Kani (1967) 74/75 152 524 25.9 107.9
Kani (1967) 83 156 271 26.1 65
Kani (1967) 60 155 139 25.4 39.3
Kani (1967) 97 152 276 25.9 62.5
Kani (1967) 71 155 544 26 102.1
Kani (1967) 3,043 154 1,092 25.7 166
Kani (1967) 63 154 543 24.9 93.2
Kani (1967) 3,044 152 1,097 28 159.1
Kani (1967) 96 156 275 24 56.3
Kani (1967) 3,046 155 1,097 25.4 154.2
Kani (1967) 84 151 271 26.1 55.4
Kani (1967) 66 156 541 25.1 90.8
Kani (1967) 3,045 155 1,092 26.9 152.4
Kani (1967) 3,047 155 1,095 25.4 147.1
Kani (1967) 81 153 272 26.1 51.2
Kani (1967) 91 154 269 26.1 51
Kani (1967) 79 153 556 24.8 83.7
Kani (1967) 52 152 138 23.6 28.9
Kani (1967) 64 156 540 24.4 79
Kani (1967) 58 152 138 25.9 28.9
Kani (1967) 48 152 133 23.5 27.1
Kani (1967) 92 152 270 26.1 45.9
Kani (1967) 56 153 137 25.9 28
Krefeld and Thurston (1966) 18B2 152 316 18.9 72.1
Krefeld and Thurston (1966) 18C2 152 316 21.5 73.4
Krefeld and Thurston (1966) 12A2 152 238 28.6 64.1
Krefeld and Thurston (1966) 18A2 152 316 18.3 63.2
Krefeld and Thurston (1966) 11A2 152 314 28.7 73.4
Krefeld and Thurston (1966) OCA 254 456 36.4 146.9
Krefeld and Thurston (1966) 6CC 152 250 36.5 63.2
Krefeld and Thurston (1966) 4AAC 152 254 27.7 57.9
Krefeld, andThurston (1966) 6AAC 152 250 32.7 60.1
Krefeld and Thurston (1966) 18D2 152 316 21 60.1
Krefeld and Thurston (1966) 6AC 152 250 32.4 59.2
Krefeld and Thurston (1966) OCB 254 456 36.4 133.5
Krefeld and Thurston (1966) 5AAC 152 252 31.2 57
Krefeld and Thurston (1966) 4AC 152 254 29 53.8
Krefeld and Thurston (1966) C 203 483 15.9 84.6
Krefeld and Thurston (1966) 5CC 152 252 35.6 57.4
Krefeld and Thurston (1966) 5AC 152 252 31.2 54.3
Krefeld and Thurston (1966) 3AAC 152 256 32.8 55.6
Krefeld and Thurston (1966) 3AC 152 256 30.3 53.4
Krefeld and Thurston (1966) 17A2 152 243 20.9 44.1
Krefeld and Thurston (1966) 3AC 152 256 19.8 44.1
Krefeld and Thurston (1966) OCB 152 254 33.9 52.5
Krefeld and Thurston (1966) 16A2 152 240 21.1 41.8
Krefeld and Thurston (1966) 4CC 152 254 36.5 52.5
Krefeld and Thurston (1966) OCA 152 254 33.9 48.5
Krefeld and Thurston (1966) 3CC 152 256 19.5 35.6
Laupa and Siess (1953) S4 152 263 29.3 55.6
Laupa and Siess (1953) S13 152 262 24.9 49.8
Laupa and Siess (1953) S3 152 265 30.7 53.1
Laupa and Siess (1953) S5 152 262 28.4 49.8
Laupa and Siess (1953) S2 152 269 25.6 42.5
Laupa and Siess (1953) S11 152 267 14 33.8
Leonhardt and Walther (1962) P9 500 146 24.2 107.8
Leonhardt and Walther (1962) 5r 190 270 28 76.5
Leonhardt and Walther (1962) P8 502 148 24.2 92.8
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Appendix (Continued.)

Reference authors Beam name bw (mm) d (mm) f1c (MPa) Vexp (kN)

Leonhardt and Walther (1962) 6r 190 270 28 68.2
Leonhardt and Walther (1962) 7–2 190 270 29.4 68.2
Leonhardt and Walther (1962) C4 225 600 37.2 147.2
Leonhardt and Walther (1962) D4/l 200 280 33.6 74.1
Leonhardt and Walther (1962) D4/2l 200 280 33.6 74.1
Leonhardt and Walther (1962) 8–1 190 270 29.4 65.7
Leonhardt and Walther (1962) 8–2 190 270 29.4 65.7
Leonhardt and Walther (1962) C2 150 300 37.2 64.8
Leonhardt and Walther (1962) 7–1 190 270 29.4 62.3
Leonhardt and Walther (1962) 61 190 270 28 60.8
Leonhardt and Walther (1962) D4/2r 200 280 33.6 68.7
Leonhardt and Walther (1962) 51 190 270 28 60.3
Leonhardt and Walther (1962) D3/l 150 210 36.6 46.4
Leonhardt and Walther (1962) C3 200 450 37.2 99.1
Leonhardt and Walther (1962) D3/2r 150 210 36.6 44.5
Leonhardt and Walther (1962) D2/2 100 140 35.4 23.3
Leonhardt and Walther (1962) D3/2l 150 210 36.6 41.2
Leonhardt and Walther (1962) D2/l 100 140 35.4 21.2
Leonhardt and Walther (1962) C1 100 150 37.2 21.6
Marti and Pralong Th limann (1977) PS11 400 144 28.1 90
Mathey and Watstein (1963) IIIa–17 203 403 27.8 90
Mathey and Watstein (1963) IIIa–18 203 403 23.9 82.5
Mathey and Watstein (1963) Va–20 203 403 24.3 67.4
Mathey and Watstein (1963) Va–19 203 403 22.3 64.7
Mathey and Watstein (1963) VIa–24 203 403 25 55.7
Mathey and Watstein (1963) VIa–25 203 403 24.5 51
Morrow and Viest (1957) B65A6 308 356 37.9 179.5
Morrow and Viest (1957) B70A6 305 356 42.7 182.5
Morrow and Viest (1957) B56A4 305 375 23.7 141.1
Morrow and Viest (1957) B70A4 305 368 25.9 134.5
Morrow and Viest (1957) B56B2 305 368 14 102.2
Morrow and Viest (1957) B56B4 305 368 25.9 124.8
Morrow and Viest (1957) B56B6 305 372 43.4 141.6
Morrow and Viest (1957) B84B4 305 363 25.9 112.7
Morrow and Viest (1957) B70B2 305 365 15.5 90.6
Morrow and Viest (1957) B56E4 305 368 27 111
Mphonde and Frantz (1984) AO–7–3a 152 298 36.9 82
Mphonde and Frantz (1984) AO–3–3b 152 298 20.3 64.3
Mphonde and Frantz (1984) AO–7–3b 152 298 40.7 82.4
Mphonde and Frantz (1984) AO–3–3c 152 298 26.6 66.6
Mphonde and Frantz (1984) AO–15–3b 152 298 91.7 99.7
Mphonde and Frantz (1984) AO–15–3c 152 298 89.9 97.4
Mphonde and Frantz (1984) AO–15–3a 152 298 79.6 92.9
Mphonde and Frantz (1984) AO–11–3b 152 298 73 89.2
Mphonde and Frantz (1984) AO–11–3a 152 298 73.3 89.2
Niwa and Yamada (1987) 2 600 2,000 24.9 382
Niwa and Yamada (1987) 1 600 2,000 25.8 402
Niwa and Yamada (1987) 3 300 1,000 23.4 102
Podgorniak-Stanik (1998) BN50 300 450 35.2 131.9
Podgorniak-Stanik (1998) BN25 300 225 35.2 73
Podgorniak-Stanik (1998) BN100 300 925 35.2 192.1
Podgorniak-Stanik (1998) BN12 300 110 35.2 40.1
Podgorniak-Stanik (1998) BH50 300 450 94.1 131.9
Podgorniak-Stanik (1998) BRL100 300 925 89.3 164.1
Podgorniak-Stanik (1998) BH100 300 925 94.1 193.1
Rajagopalan and Ferguson (1968) S–13 152 265 22.5 40
Rajagopalan and Ferguson (1968) S–2 154 265 31.4 37.4
Rajagopalan and Ferguson (1968) S–5 152 262 26.5 33.6
Rajagopalan and Ferguson (1968) S–1 154 259 34.7 35.6
Rajagopalan and Ferguson (1968) S–3 152 267 27.5 31.1
Rajagopalan and Ferguson (1968) S–9 152 262 23.8 24.5
Rajagopalan and Ferguson (1968) S–4 152 268 31.4 28
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