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Abstract

For language comprehension, using an easily
specified task instead of a linguistic theoretic
structure as the target of training and comprehension
ameliorates several problems, and using constraint
satisfaction as a processing mechanism ameliorates
several more: namely, 1) stipulating an a priori
linguistic representation as a target is no longer
necessary, 2) meaning is grounding in the task, 3)
constraints from lexical, syntactic, and task-
oriented information is easily learned and combined
in terms of constraints, and 4) the dramatically
informal, "noisy" grammar of natural speech is
easily handled. The task used here is a simple jigsaw
puzzle wherein one subject tells another where to
place the puzzle blocks. In this paper, only the task
of understanding to which block each command
refers is considered. Accordingly, the inputs to a
recurrent PDP model are the consecutive words of a
command presented in turn and the set of blocks yet
to be placed on the puzzle. The output is the
particular block referred to by the command. In a
first simulation, the model is trained on an artificial
corpus that captures important characteristics of
subjects” language. In a second simulation, the
model is trained on the actual language produced by
42 subjects. The model learns the artificial corpus
entirely, and the natural corpus fairly well. The
benefits of embedding comprehension in a
communicative task and the benefits of constraints
satisfaction are discussed.

Introduction

Understanding language, and particularly learning to
understand language, is a tricky task. A variety of
imposing practical and theoretical problems stand in
the way. This paper addresses four of these
obstacles and shows ways to surmount them and
grasp a better understanding of language learning
and understanding along the way.

The four obstacles are 1) how to specify a
satisfactory representation of the meaning of the
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language input, 2) how to ground the semantics of
concepts used in the communication 3) how to
combine lexical, syntactic, and task-oriented
information to produce comprehension, and 4) how
to handle incomplete and grammatically “noisy"
language such as natural spoken language.

The message of this paper is that using
constraint satisfaction as a processing mechanism and
employing the fact that language is learned and used
in the service of performing a task goes a long way
toward surmounting these obstacles. First, I'll
briefly discuss each obstacle in turn and show how
these two ideas can address them. Then I'll present
two simulations that show these two ideas at
work. This paper concentrates on the first two
obstacles and points to preliminary work to address
the remainder.

Obstacles

The first obstacle is the need to stipulate a
linguistic-theoretic representation as the target or
result of comprehension. One well known and
useful representation is thematic case roles, such as
agent and patient (Fillmore 1968). Unfortunately,
case roles are known to either proliferate in number
or to become inexact as situations become more
diverse and complicated. Specifying the features
that characterize concepts is similarly difficult.

Additionally, all but the most trivial
language requires something like embedded
propositions to specify the relations between

concepts. Such symbolic representations impose
strong assumptions about the representation of the
results of comprehension and place a particularly
heavy burden on Parallel Distributed Processing
(PDP) models since propositions are virtually
impossible to represent in a single vector of units.
Several PDP models have attempted 10
handle this problem. Miikkulainen and Dyer
(1991), St. John (1992), and Touretzky and Hinton
(1985) represented multiple propositions
concurrently in a hidden layer. Individual
propositions could be pulled out one at a time for
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inspection. Not only is this pull out scheme
awkward, but individual propositions still cannot
contain embeddings since there is still no way to
represent the case where one argument in a
proposition is a whole other proposition. Pollack’s
RAAM model (1988) allowed  distributed
representations in the output layer, but training
still required these representations to be unpacked
into their fundamental components.

The solution proposed here is 1o define the
target to be some casily represented task. For
example, imagine two people solving a jigsaw
puzzle where one person commands the other where
to place the blocks. The listener's job is to
understand the language input and then move a
block. The target can be a simple representation of
the updated state of the puzzle after each command.
The benefit is that the task is easy 1o represent, and
the complex linguistic structure of the language is
hidden inside the listener. If we make the listener a
PDP model, the output can be the task, and any
linguistic structures required to compute the output
reside internally in the hidden layers.

The second obstacle is the need to define the
meaning of concepts in the language. Again, the
researcher may be required to specify this
information, for example, by coding a set of
semantic features for each concept. In contrast,
Allen (1987), Elman (1990), Miikkulainen and Dyer
(1991), and St. John and McClelland (1990) showed
that the task itself can be used to specify the
semantics. That is, the needed semantics can be
leamed by a model in the service of solving some
task. These models leammed which concepts are seen
with which other concepts. Semantics, in these
models, is defined by the co-occurrence statistics of
the concepts in the corpus of training examples.

The approach taken in the puzzle task is to
have the model learn the meanings of words like
"big" and "blue" and the ramifications of syntactic
forms in terms of their ability to help determine to

which block the speaker is referring. Thus, words
and syntax are learned to be defined in terms of
their communicative functions. This idea of
language meaning as language use is developed much
more fully by Clark (1985). Having the target
actually be some performed task, as is the case in
this paper, makes this point especially clear,

The third obstacle is the need to combine
information from words, syntax, and the task to
understand the command specified by the speaker.
Speakers often rely on the situation to convey
important information. Constraint satisfaction is a
powerful mechanism for performing this process.
Each piece of information from any source is viewed
as a scparate constraint.  These constraints are
combined to compute a single, coherent
interpretation (cf. St. John, 1992).

The fourth obstacle is the need to handle
the grammatical informality of natural speech.
Informal constructions such as repetitions, restarts,
and ellipses are so common that they really are the
rule and not the exception. As such, they must be
treated within the normal course of processing.
Constraint satisfaction is well suited to this task.
When the language is viewed as a set of constraints,
the important factor is that there be sufficient
constraints to specify the communication, not that
the communication correspond to a specific
grammatical form.

Recent models in the literature that handle
informal grammatical forms (Lehman, 1990) and
ellipsis (Frederking 1988) first assume that input
language will be grammatical, and only when the
normal processes fail do they perform a time-
consuming search for corrections or additions that
will produce grammatical and sensible parses. The
constraint satisfaction alternative is to use the
available constraints to compute an interpretation
and only concemn itself with the grammar to the
extent that it informs that computation.

W N -
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Figure 1. The jigsaw puzzle. Pieces of varying shapes, sizes, and colors are place on an outlined figure.
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Task

The task to be use here is the simple puzzle task
introduced above. Subjects, UCSD undergraduates,
were asked to solve a series of three simple jigsaw
puzzles. Each puzzle consisted of six wooden
blocks of varying shapes, sizes, and colors that had
10 be placed on an outlined figure. Unplaced blocks
were arranged on two mats above the puzzle figure
(see figure 1). The trick was that the subjects were
required to sit on their hands and tell the
experimenter where to move the blocks. The figure
was labeled with Cartesian coordinates to facilitate
this task. Subjects’ spoken commands were recorded
and transcribed.

Since there is considerable linguistic
complexity in just referring to which block was to
be moved, I will concentrate on just this block
reference task in this paper.

Simulation 1 - Artificial Corpus

Rather than proceed directly to the natural corpus of
commands produced by subjects, I will begin with a
corpus constructed by hand. An artificial corpus is a
good place to start the investigation because features
of the language are easily controlled. As a further
simplification, this corpus contains only first moves
in the puzzle task rather than whole series of
consecutive moves. This restriction will be removed
in the second simulation.

Commands were composed from a small set
of adjectives (small, big, square, red, blue, and
green), and phrase types, such as simple noun
phrases, relative clauses, and prepositional phrases.
The commands also made use of "left", "right", and
"middle” that require paying attention to word
order, for example, "the left block,” "the right
block that is on the left page," and "the left block
on the left page." Finally, blocks could be
referenced in terms of other blocks, for example,
"the block on the right of the big blue block."

All together, there were 138 commands.
Several provisions were made to insure that the
corpus was combinatoric in the sense that roughly
equal numbers of commands referring to each of the

six blocks, and adjectives and relative terms applied
to each relevant block in roughly equal numbers. A
combinatoric corpus insures that the model will
learn the pure meaning of each term without
becoming muddied by biases in frequency. Of course
the real world may not be so kind, and the second
simulation addresses this issue.

Example Commands
the big blue block that is on the right of the left page
the big block that is on the right of the left page
the big red block that is on the left of the right page
the small blue block
the small red block that is on the left of the big blue block

Architecture. The architecture is a simple recurrent
network (Elman 1990) wherein the activation in the
internal hidden layer is copied back to the input
layer on each consecutive step. A recurrent network
is useful because it allows each word to be processed
sequentially by the same set of weights, yet allows
information from previous words to be carried
forward. The model cycles through a command one
word at a time, with activations from the hidden
layer being copied back to the input on each
consecutive step (see figure 2). The input is a
command, a representation of the blocks yet to be
placed on the puzzle, and the activations from the
recurrent hidden layer. One unit in the input layer
was used to represent each possible word, and as the
model worked through a command, the current word
was activated in the input layer and the previous
word was removed. While the input layer is
therefore local in its representation of individual
words, the internal hidden layer is free to develop
more efficient distributed representations.

The representation of to-be-placed blocks
was simply to activate one unit for each remaining
block. There was no feature description of any
block. Because this simulation deals only with the
first command in the puzzle, all six blocks were
activated for each command.

The output and target for the task was to
activate one unit for the block referred to by the
command. The target is specified after each word.

Words/Blocks \

Input

Hidden

#

Block Output

Recurrent /

Figure 2. The architecture of the network. See text for details.
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That is, the model is asked to produce the correct
target even after just the first word of a command is
presented. Error between the target and the model’s
response is used to change the weights of the
network via the backpropagation algorithm
(Rumelhart, Hinton, and Williams, 1986). This
training procedure requires the model to extract the
most information from each incoming word.

There were 17 units for words and 6 units
for blocks in the input layer, 40 units in both the
recurrent and hidden layers, and 6 units for blocks in
the output layer.

Results and Discussion. The model was trained
for 2000 epochs (trips through the training corpus)
with a learning rate of .01. The model mastered the
corpus entirely by activating only the correct block
for each command in the corpus.

This mastery demonstrates a number of
points.  First, the model is able to leamm and
correctly combine a number of partial constraints to
activate the correct block. For example, both "big"
and "red" refer to two blocks, but together they
specify only one block. Each adjective acts as a
constraint on the specification of a block. The
process of constraint satisfaction embodied in the
network works well to combine these constraints.

Second, the model learns to process relative
clauses, prepositional phrases, and word order
correctly. Commands like "the small block that is
on the left of the big blue block" describe two
blocks, yet the model picks the correct one as the
referent. Commands like "the block that is on the
left of the right page" and "the block that is on the
right of the left page" refer to different blocks and
so require handling the order of left and right
correctly.

the =l
the L] block bl
block il ld that (el il Ll
that [Tl ld is el
is [ |te O |on LI
on [ small el TT1]|the L]
the [IITLLd|blue ML ]|left E T T]
left LTI T]|blockMCIILT]|of E fetel]
of HIwn] 123456 |the WDl
the CITTald] square[TTT ]
right FTTIT] blue [TTTH]
page block
123456 123456

Figure 3. Processing commands. The output activa-

tions (blocks 1-6) are shown after processing each word.
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A simple way to observe what the network
has learned, and to confirm that it has not simply
memorized the training set, is to observe the
activation of the output units as a command is
processed. If the activations throughout the
command reflect the constraints on meaning imposed
by each new word, we can have greater confidence
that the model has leamned those constraints. Figure
3 provides three examples. The output activations
for the six blocks are shown in black after each
word of a command is processed.

Third, the model’s understanding of words
derives from the task - the words function to
differentiate the blocks and determine to which one
a command refers. The semantics of the terms, then,
is grounded in their functions in the puzzle task.

Fourth, neither the semantics nor any
linguistic-theoretic structures had to be specified in
the input or target. The input was the sequence of
words, and the target was simply the block
referenced by the command. To whatever extent
case roles, embedded propositions, or tree structures
needed to be computed for the task, they were
represented and computed internally in the hidden
layer of the network.

Simulation 2 - Natural Corpus

A fresh network was trained on a large corpus of
commands produced by actual subjects solving the
puzzle task. The results from this simulation are
preliminary, but they demonstrate important points,

A natural corpus is interesting in a number
of ways. Foremost, the grammar used by actual
subjects is highly informal and the language is
frequently vague since subjects can rely to a large
extent on the puzzle sitation t© convey
information. Nearly every command contained
repetitions of words or phrases, restarts, or ellipses.

A second interesting aspect of the natural
corpus is that subjects solved entire puzzles, and
these sequences of block commands demonstrated
important task constraints. Most importantly,
there was a rough standard order for placing blocks
on the puzzles: essentially from the most
constraining block to the least constraining block.
There was substantial variability in the ordering,
but statistically, an ordering is evident. If the
comprehension system can utilize these constraints,
it can resolve otherwise ambiguous language and it
can generally ease its comprehension task when these
constraints are redundant with the language of a
command. For example, if one of the two red
blocks has already been placed, the otherwise
ambiguous reference "the red block" becomes clear.



Finally, subjects were allowed to change
the positions of blocks and start over. Therefore,
consecutive references to the same blocks could
occur.  Subjects almost invariably used relative
terms like "it" or "those blocks.” Another relative
term is "the block on the left." After the first
block on the left is placed, the second block becomes
the new block on the left. The model must bind
these relative terms to the correct block on each
occasion,

Architecture. The architecture was identical to the
previous architecture except that many more words
were used by subjects, 613, and therefore more
words were represented in the input layer. The one
difference in training was that the representation of
to-be-placed blocks was updated from command to
command throughout the course of solving a
puzzle. Between commands, the activation of the
hidden layer was copied to the input layer, as within
commands. The recurrent layer was only reset to
zero activations between puzzles.  The corpus
contained 42 speakers and a total of 1495 commands.

Results and Discussion. The model was trained
for 400 epochs with a learning rate that gradually
dropped from .005 to .002. The model activated the
correct block most strongly on 78% of the
commands. The trained model was also tested on a
corpus of 3 novel subjects. It performed correctly
on 53% of the 134 novel commands. These figures
are certainly not great, but an examination of the
model’s successes and failures is illuminating.

First, the model handles the informality of
the grammar very well. Ellipsis of nouns and entire
phrases, restarts, and repetitions cause no trouble
for the model. For example, commands like "the
blue, the big blue, no, yeah, the big" are processed
correctly.

The model also handles the relative terms
"it" and "left" correctly, and uses the task
constraints to understand otherwise ambiguous
references like "the red block" discussed above.

The model acquires the rough standard order
of block placements readily, and even too well.
That is, on many occasions, a subject will violate
the standard order. Depending on the violation, the
model will either follow the language or follow
the standard order. More egregious violations of
order, for example choosing the smallest, least
constraining block first, are quite rare in the
corpus. In these cases, the model will override the
language input and activate the standard first block.

To some extent this effect is reasonable,
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though overly strong. A number of researchers have
found that semantic constraints can override the
language input. A telling example is to ask subjects
"how many animals of each kind did Moses take on
the ark?" Most subjects respond "two" without
noticing that Moses is not the correct biblical figure
(Erickson and Mattson, 1981; and Reder and
Cleeremans, 1990). This effect can be viewed in
terms of constraint satisfaction as a case where
conflicting constraints are present. The task
constraints representing the standard order are
stronger than the language-based constraints, and the
understander goes with the stronger set of
constraints.

In fact, it is difficult to really know how
often task constraints play an important role in
everyday comprehension. It seems reasonable to
believe that they actually play a rather large role,
and that tell-tale cases of conflict between task
constraints and language constraints are just rare.
This overriding of the language input, however, is
far more frequent in the model than for the
experimenter listening to the subjects. For this
reason, it seems necessary to reduce the effect of the
task constraints.

The question is what changes to the corpus
are needed to switch the relative strength of the task
and language constraints? One solution is suggested
by the arificial corpus.  Namely, reduce the
strength of the task constraints by making the
frequency of different commands similar. Reducing
the regularities and increasing the combinatorics of
the language in the corpus will force the model to
learn strong language constraints. This solution
strategy was pursued by St John (1992) in a
simulation study of text comprehension.

Another potential solution is to provide the
model with a pre-training task in which there are no
regularities aside from the language itself. The
model would learn strong language constraints that
it could then transfer to the puzzle task.

In general, a more combinatoric corpus with
few semantic constraints produces essentially
context free language constraints: each word means
what it says and little more. Elman (1992) has
suggested that the wide range of language contexts
provided to children as they learn their native
language serves to decorrelate the language from any
specific context. This condition produces a virtually
combinatoric corpus for children to leam, and
underlies their ability to understand unexpected
language input in the face of possible task
constraints - just like the experimenter in the
puzzle task. On the other hand, the relatively



weaker task constraints available in any given
context can still facilitate comprehension when they
cooperate with the language constraints.

Conclusions

The simulation of the natural corpus is preliminary
and more work is required to make the model
effective. In particular, some method must be found
to change the relative strength of the language and
task constraints. The strength of the task
constraints does, however, demonstrate the
powerful ability of the model to acquire and then
use task constraints for comprehension.

More generally, constraint satisfaction
provides a useful framework for leaming and using
constraints from different sources, whether lexical,
syntactic, or task-oriented.

Constraint satisfaction is also a boon to
processing informal language such as natural speech.
The model does not attempt to match an input to a
known grammatical form. Instead, all that is
required of any input is that it contain sufficient
constraints to compute the correct message, and
those constraints can come either from the language
or the task itself.

Using an easily represented task as the
target of training provides other important
advantages. First, it provides the technical
advantage of relieving the experimenter of the
burden of creating a linguistic theoretic
representation of thematic case roles, propositions,
or the like. The experimenter needs only to specify
the task, and the model is required to learn whatever
representation it needs to perform that task. This
idea has the potential to significantly advance the
science of PDP models of language comprehension.

A potentially limiting condition is the
requirement of finding an adequate task for whatever
language is desired to be learned. In this paper the
language only pertained to referencing wooden
blocks. However, with some creativity, the range
of possible tasks and language may expand
considerably.

One other advantage of using a task as the
target of training is that the meaning of concepts
and words do not have to be provided a priori in
either the input or the target. The model acquires
exactly those meanings necessary to perform the
task. In this way the semantics of the language are
grounded out in the task itself: language meaning as
language use.
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