Lawrence Berkeley National Laboratory

Recent Work

Title

BEVATRON OPERATION AND DEVELOPMENT. XXIV NOV. DEC. 1959, JAN. 1960.

Permalink https://escholarship.org/uc/item/22b9z3dx

Author Hartsough, Walter D.

Publication Date 1960-05-25

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UCRL-9220 Particle Accelerators TID-4500 (15th Ed)

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory Berkeley, California

Contract No. W-7405-eng-48

BEVATRON OPERATION AND DEVELOPMENT. XXIV November, December 1959, January 1960

Walter D. Hartsough

May 25, 1960

Printed in USA. Price 50 cents. Available from the Office of Technical Services U.S. Department of Commerce Washington 25, D.C.

n an an Anna a Anna an Anna an

.

BEVATRON OPERATION AND DEVELOPMENT. XXIV

Contents

																			- 1	
Abstract	•												•							3
Experimental F	`ac	ilit:	ies				•				e	•	•				•			4
Beam Position	Pr	ogr	am	miı	ng			•	•			•	۰	• •	•					4
Magnet Power S	Sup	ply		٠	•	•	•	•	•		•	•	•			•				4
Shutdowns .		•			•	. •	٠	e	•	٠		•	٠	٥	•	•		•	•	4
Operation .	۰	•						•	•	•	•	o .	•	•		• .	•	•	•	5
Research .		•	•		۰	•	0	٠		•	•	•	•	٠	ø		•		•	5
Acknowledgmen	ts					•	•							•						10

* Preceding Quarterly Reports: UCRL-9058, UCRL-9011

BEVATRON OPERATION AND DEVELOPMENT. XXIV November, December 1959, January 1960

Walter D. Hartsough

Lawrence Radiation Laboratory University of California Berkeley, California

May 25, 1960

ABSTRACT

Study of particle interactions was continued this quarter. Bubble chambers, counting systems, and nuclear emulsions were used to investigate the interactions of π^{\pm} , μ^{-} , and K⁺ mesons. Two primary experiments conducted during this period were made by groups visiting this Laboratory. Nuclear emulsion stacks were exposed for ten outside groups — five exposures to a π^{-} beam and five to a K⁺ beam.

BEVATRON OPERATION AND DEVELOPMENT. XXIV November, December 1959, January 1960

Walter D. Hartsough

Lawrence Radiation Laboratory University of California Berkeley, California

May 25, 1960

EXPERIMENTAL FACILITIES

Quadrant-Mounted Targets

Table I lists the quadrant-mounted targets installed during the latter part of this quarter.

Beam Position Programming

A recently published UCRL report describes a three-channel computer (transistorized, relay-operated) that synthesizes a timedependent program for radial position control of the Bevatron beam. The system allows all the useful aperture of the Bevatron to be used at any time during the acceleration or deceleration cycle. Different beamposition program for different magnet pulses are possible as well as more than one program during a given pulse. This system is currently in use at the Bevatron.

MAGNET POWER SUPPLY

The magnet record appears in Table II.

SHUTDOWNS

Only one shutdown occurred this period _____ a scheduled shutdown December 22 for maintenance and installation of targets.

Harry G. Heard, Arbitrary Control of the Radial Position of the Internal Beam of the Bevatron, UCRL-9006, Jan. 1960.

Quadrant		Azimut	hal Location	Radial	location		Target	Target Size		
		(Ref: e of qu (deg,	entrance end adrant) min)	Outer-radius edge of target (in.)	Outer-radius edge of lip (in.)		material	a × b × c (in.)		
II		76	52	599-13/16	600-1/16		Stainless Steel	$2 \times 1/2 \times 1/2$		
II		77	08	599-11/16	599-15/16	•	Stainless Steel	$2 \times 1/2 \times 1/2$		
II		80	23	601-1/4	601-1/2	2	Stainless Steel	$2 \times 1/2 \times 1/2$		
II		80	39	601-1/4	601-1/2	•	Stainless Steel	$2 \times 1/2 \times 1/2$		
III .		19	36 (up)	599-3/8	599-1/2		Aluminum	$5 \times 1/8 \times 1/2$		
III		19	36 (dn.)	599-5/16	599-7/16	. •	Aluminum	$5 \times 1/8 \times 1/2$		
III	,	22	21	5.99-3/8	599-1/2	1	Aluminum	5 imes 1/8 imes 1/2		
III	· .	23	38 (up)	596	596-1/8		Aluminum	$5 \times 1/8 \times 1/2$		
III .		23	38 (dn.)	596	596-1/8		Aluminum	5 imes 1/8 imes 1/2		
III		72	29	597-3/4	598-1/8		Copper	$3-1/2 \times 1/2 \times 1/2$		
III	÷.,	72	36	597-3/4	598-1/8		Copper	$3 - 1/2 \times 1/2 \times 1/2$		
Ш	•	75	30	599-1/2	599-3/4		Graphite	$2-35/64 \times 1 \times 4$		
III		76	08	599-1/2	599-3/4		Graphite	$2-35/64 \times 1 \times 4$		
IV .	•	16	23	599-5/16	599-9/16		Graphite	$2-35/64 \times 1 \times 4$		
IV		17	01	599-7/16	599 - 11/16		Graphite	$2-35/64 \times 1 \times 4$		
		-	· . ·	·			· · · ·			
	. '									
			•	Beam			7 h			

ア

• • • • •

UCR L-9220

5

						•						Table I	I									
						-					Ign	itron fault	rate									
		5 to 6	pulses	per minu	te		7	to 9 p	ulses per	minute			1() to	17_pulses	per minute			·	Tota	15	
MONTH 1957	Pulses	Faults	<u>0 amp</u> <u>P/F</u>	Pulses	Faults 000	P/F	Pulses	Faults	<u>P/F</u>	Pulses	Faults	<u>P/F</u>	Pulses	Faults	<u>P/F</u>	Pulses	a su ta E F	<u>P/F</u>	Number of pulses	Number Arc- backs	of faults Arc- throughs	P/F
June July August September October November December	1,144 72 2,711 959	5 2	144 72 542 479	12,799 5,012 7,463 5,674 1,335 359	23 11 14 10 5	550 456 533 567 267	1,744 1,372 536 1,053 1,124 2,419	1 2 1 3 4	1,744 686 536 351 605	36,648 48,854 81,217 22,926 129,138 117,513 4,082	80 70 89 40 114 124 3	458 6,979 912 573 3,133 948 1,360	17,929 33,027 20,918 11,644 14,070 23,379 11,855	9 35 5 18 4 4	1,992 945 4,183 647 3,515 5,695	106,896 89,439 98,469 22,967 56,409 167,868	124 53 97 25 50 175	878 1,686 1,015 918 1,128 1,530	70,264 195,233 202,284 140,725 168,634 199,720 184,164	6 29 29 47 80 67 41	117 247 138 123 68 115 137	562 707 1,211 828 1,139 1,097 1,055
1958																						
January February March April May June July August September October November December	1,842 3,189 1,408 751 10,340 53,897 6,498 13 - 3,931	0 4 2 34 0 - -	1,842 172 704 751 5,170 1,585 6,498 - - - -	2,423 2,146 638 888 - 759 10,381 1,990 1,619 361	2 3 0 0 0 0 8 7 1	1,212 1,071 233 888 - 759 1,297 -	305 736 1,215 188 10,337 232,988 8,873 - - 91 -	0 0 0 8 111 4 -	305 736 188 1,292 2,099 2,218 - - -	14,974 83,637 75,304 600 - 2,922 3,649 2,769 -	12 85 72 0 0 0 - -	1,248 984 1,061 600 - - - - - -	16,435 6,937 13,101 14,006 216 479 110,652 95,616 14,803 9,249 9,5 00 3,371	4 10 3 4 0 35 8 - -	4,109 694 4,367 3,501 479 3,161 11,952 - -	170, 844 77, 452 165, 124 153, 052 - 79, 836 230, 139 276, 169 237, 340 278, 548 151, 642	106 82 94 43 0 0 51 40 41 43 26 9	1,612 944 1,754 3,559 - 1,565 5,753 - 5,520 -	206,82 174,09 265,79 187,155 20,89 287,36 209,54 336,14 296,61 296,455 155,374	31 74 22 13 6 23 38 12 16 23 11 5	93 107 152 34 4 122 52 44 25 20 16 4	1,668 951 1,476 3,982 2,089 1,981 2,320 6,003 7,234 5,734 10,979 17,263
1959 January February March April May June July August September October November December	1,012 41 8569 3,314 1,352 2,547 1,069		- - - 1,105 1,247 -	320 630 6,601 1,475 521 24 - 762 981 82 9 2,599		433	1,515 457 110 - 208 637 456		637	1,146 723 67,300 1,044 27,144 369 2,348 499 11 894		8,412 	7,621 38,215 7,518 36,938 175,419 9,492 9,086 6,099 4,405 9,262 6,326 6,025	- 3 1 5 9 2 2 - 2	12,738 7,518 7,387 19,491 - - 2,202 4,631 - 3,012	301, 420 267,220 235,053 168,489 257,940 363,273 339,849 296,763 368,385 377,884 280,425	44 32 41 39 19 28 33 35 56 57 45	8,351 5,733 5,834 8,446 15,173 12,974 10,298 8,479 6,578 6,631 6,232	312,02; 306,061 53,36; 318,92; 269,061 350,60 350,60 305,82; 384,23; 291,461	11 8 9 15 9 17 4 7 4 14 20 0 7 3 20	33 27 33 37 19 10 23 23 41 50 37	7,091 8,745 6,032 6,479 11,390 15,827 13,317 9,739 8,266 6,253 6,741 5,113
1960 January	4,809	-	-	2,289	2	1,145	510	1	510	701	-	-	5,254	Z	2,627	368,039	68	5,412	381,60	23	50	5,227

5

UCRL-9220

-6-

OPERATION

-77 -

Bevatron operation is summarized in Tables III and IV and Fig.

1.

RESEARCH

Table V lists the research activity for this quarter.

Table III

	Beam record	
Week of	Number of 8-hour shifts	Total integrated be a m (10 ¹⁵ protons)
Nov. 1-7	15	7.2
Nov $8 = 14$	20	7.4
Nov. 15-21	21	13.0
Nov. 22-28	14	8.2
Nov. 29-Dec. 5	20	10.6
Dec. 6-12	20	13.0
Dec. 13-19	19	9.6
Dec. 20-26	5	2.3
Dec. 27-Jan. 2		
Jan. 3-9	20	8.7
Jan. 10-16	21	13.9
Jan. 17-23	21	16.3
Jan. 24-30	16 ^a	11.3

Maximum beam amplitude at full energy = 3.1×10^{11} protons per pulse Maximum injected beam = 600 microamperes Average beam per 8-hour shift = 5.3×10^{14} protons

^aBeam amplitude was reduced at the request of the experimental group.

Month	Injector	, -,	Magnet power supply	Radio-frequency accelerating system	other
November 1959 December 1959 January 1960	32 12 31	• • • •	29 58 61	5 6 2	34 24 6

5

4

-9-

UCR L-9220

Ç

MU-20515

Fig. 1. BEVATRON OPERATING SCHEDULE November, December 1959, January 1960

,

Bevatron experimental research program November, December 1959, January 1960

INTERNAL GROUPS

 \sim

and Experimenters	Experiment
Alvarez: Gow, Stevenson, Watt	Test of the 72-inch hydrogen bubble chamber, using a pion beam
Barkas: Nichols	Investigation of 3.5 -Bev/c π^- - meson interactions in emulsions
Nichols	Determination of the scattering of $2\text{-Bev/c}\ \mu^-$ mesons in iron, using emulsions
Lofgren and UCRL Group: G. Goldhaber, S. Goldhaber, Stork, Ticho	Investigation of K^+ -meson interactions in hydrogen and deuterium, using the 72-inch hydrogen bubble chamber (220- to 875 Mev/cK ⁺
Powell: Birge, Shonle	π^{-} -p scattering at 730 Mev/c, using the 15-inch hydrogen bubble chamber
Segre: Lach, Lander, Steiner, Wiegand	Investigation of the interaction $\pi^- + p \rightarrow \Sigma^+ + K^+$, using counters (900- to 1200-Mev/c π^+ beam)
EXTERNAL GROUPS	
Institution and Experimenters	Experiment
Princeton University: Fitch, Perkins, Pirove	Study of $\theta_1 - \theta_2$ mass difference, counters

Beloit College, Wisconsin: Fuller

University of Washington: Masek

Chemistry bombardment: Al, Sb foils bombarded in the 6.2-Bev proton beam $(5.9 \times 10^{13} \text{ p}^+)$

جيل

È.

Study of 2-Bev/c μ - meson scattering, using counters and emulsions $(3.5-Bev/c \pi^{-} - meson beam)$

Bevatron experimental research program November, December 1959, January 1960

EXTERNAL GROUPS	
Institution and Experimenters	Experiment
Tata Institute, Bombay, India Biswas	
University of Wisconsin Fry, Groves	
University of Tennessee King, Childers	Emulsion exposures in the 3.5-Bev/c π^{-} beam
University of Washington Masek	
Tufts Institute Schneps	
N.R.L., Washington, D.C. Glaser	
Max Planck Institute of Physics, Munich, Germany Gottstein	
Oxford University, England Mulvey	Emulsion exposures in the K ⁺ -meson beam (the 700-Mev/c K ⁺ beam was degraded to 350 Mev/c)
Stevens Institute of Technology Taylor	
University of Ottawa, Canada Van Heerden	
-	,

-12-

ACKNOWLEDGMENTS

The Bevatron Operating Group includes Duward Cagle, Frank Correll, Ross Nemetz, and Glenn White as crew chiefs; crew members are Robert Allison, G. Stanley Boyle, Gary Burg, Norris Cash, Raleigh Ellisen, Robert Gisser, William Kendall, Wayne Logan, Kenneth Morgan, David Rowland, Seth Shepard, Joseph Smith, and Peter Williams. Edward J. Lofgren is the Bevatron Group Leader; Walter Hartsough, with Glen Lambertson and Wendell Olson assisting, is in charge of Bevatron operation. Support and development projects were carried out by Robert Anderson, Trancuilo Canton, Warren Chupp, Bruce Cork, Thomas Innes, Glen Lambertson, Fred Lothrop, Donald McClure, and Robert Richter. Engineering groups were headed by Clarence Harris, Electrical Engineering; Ivan Lutz, Electronic Engineering; and William Salsig, Mechanical Engineering. Lorenzo Eggertz was in charge of the Electronics Maintenance Group.

This work was done under the auspices of the U.S. Atomic Energy Commission.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

- A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.