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1 Executive Summary 

This report describes the design and implementation of a wireless token bus protocol for local area 
networks. This is the second wireless token passing protocol that has been jointly designed by the 
PATH program and the faculty and students of the EECS department at UC Berkeley. 

The first wireless token bus protocol, designed by Duke Lee and Professor Pravin Varaiya, was 
successfully implemented to provide the wireless network required by an automated vehicle platoon. 
The token passing mode of wireless medium access control was chosen to provide the delivery time 
guarantees required by the safety critical control data transport required by the platoon. This protocol 
is currently also being used for safe automated vehicle merging maneuvers. 

The token bus protocol described in this report represents a significant advance over the first 
version. The earlier protocol did not permit the wireless radios to dynamically join and leave the 
network while still maintaining the quality of service for those remaining in the network. This version 
does. The earlier version also worked only when each wireless radio in the network was within range 
of every other radio in the network at all times. This version relaxes this requirement. Since mobile 
wireless LAN’s frequently encounter hidden or exposed terminal configurations, these advances greatly 
enhance the usefulness of the protocol. 

We intend that this wireless token bus protocol support the Vehicle Automation Demonstration 
to be held in 2002 in California and the autonomous agent networking needs of the Berkeley BEAR 
UAV-UGV (Unmanned Aerial Vehicle, Unmanned Ground Vehicle) testbed. We also hope that this 
protocol will be picked up by ITS (Intelligent Transportation System) network builders to build 
wireless networks for ITS Dedicated Short Range Communications (DSRC). The DSRC community 
has recently been seeking protocols to coordinate multiple access points, possibly operated by different 
jurisdictions, within the same frequency channel. This protocol is well suited for such coordination. 
We also believe that this protocol will be useful for home or enterprise networking. 

This report provides a full specification of the wireless token bus protocol. It specifies procedures 
for radios joining the network, leaving the network, detection and removal of multiple tokens, recovery 
from node or link failure, and the generation of unique ring identifiers. A formal proof is provided 
for the correctness of these procedures. The report includes a formal specification in the Teja design 
environment. The Teja tools also generate real-time code from this specification. Thus the specification 
in this report corresponds to an implementation that we plan to release shortly. The report also 
presents a generalized wireless token bus protocol that should be a seen as a blueprint for a future, 
third version of this protocol. 

We are grateful to our sponsors, CALTRANS and the Office of Naval Research, for their support 
of this two year effort. 
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2 Introduction 

We are interested in a medium-access-control (MAC) protocol for applications running on top of 
wireless ad-hoc networks and requiring some type of quality-of-service guarantees. 

2.1 Ad-hoc Networks 

Ad-hoc networks are networks where participating stations can join or leave the network at any moment 
in time. Also, stations are allowed to move. The ad-hoc nature of these networks implies the following: 

0 The physical layer of the network must be wireless (due to mobility). 

0 The topology of the network is changing dynamically: nodes (representing stations) and links 
(representing the fact that two stations are within range) are added or removed as stations join, 
leave or move. 

2.2 Applications 

Ad-hoc networks are needed to provide the communication infrastructure for applications involving 
the distributed coordination of autonomous agents. Examples of such applications are the automated 
highway project [6] (see appendix A for more details) and the Berkeley Aerobot project [4]. Apart 
from autonomous-agent systems, it can be expected that ad-hoc networks will play an important role 
in design of wireless networks for mobile internet access [5]. 

2.3 Physical Layer Model 

As we said, the physical layer must be wireless, to support mobility of nodes. This implies the 
following: 

0 Bandwidth is limited. 

0 The channel is shared among many stations 

In this paper, we also make the following assumption: a packet is either lost or delivered intact, that 
is, if the packet is corrupted, the error detection mechanism is adequate for detecting this. 

2.4 Quality of Service Guarantees 

For the applications we are interested in, the network is required to deliver certain types of data in real- 
time: for instance, in the context of the automated highway project, every vehicle periodically send 
its speed to its successor vehicle. Therefore, under normal operating conditions, the MAC protocol 
must provide the following guarantees: 

1. a minimum throughput must be guaranteed for each station; 

2. the medium-access time for each station must be bounded. 

The medium-access time is the delay from the time a station wishes to transmit data until the time 
it actually manages to transmit the data successfully. By “normal operating conditions”, we mean 
“fewa” packets are lost due to noise or other phenomena such as multi-path. 
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Figure 1: Stations arranged into multiple rings 

2.5 Motivation 

Current wireless MAC protocols such as the IEEE 802.11 (ad-hoc mode) and the ETSI Hiperlan 
do not provide the &OS guarantees that are required by some applications. In particular, medium 
is not shared fairly among stations and medium-access time can be arbitrarily long. Some more 
considerations regarding the inadequacy of CSMA-based schemes are given in section B. 

Other architectures such as the base-station mode of 802.11 or the master-slave scheme of Bluetooth 
have disadvantages like restrictions on topology (all stations connected to the central point), single 
point of failure, or limited efficiency (going through the central point). 

2.6 The Wireless Token Bus Protocol 

We call our protocol the Wireless Token Bus Protocol (WTBP). WTBP is inspired from the IEEE 
802.4 Token-Bus protocol. Token-ring protocols have many desirable properties: 

1. they achieve high medium utilization under high load, 

2. they distribute throughput in a flexible and fair manner among stations, 

3. they provide bounds on medium-access time. 

Still, there are problems to be solved when adapting a MAC protocol designed for wirelined networks 
to the wireless ad-hoc case. In this paper, we describe the design of our protocol to cope with these 
issues. In appendix C, we discuss more specifically the differences of our protocol with respect to 
IEEE 802.4 Token-Bus, our extensions to the later, and the motivations for these extensions. 

3 Overall Design and Architecture 

The stations in the network are organized into multiple logical rings as shown in Figure 1. By “logical” 
we mean that the structure of the ring is not directly related to the physical connectivity of the stations 
(which depends on their transmission ranges). The arrows in the figure represent the (logical) successor 
of each station. The dotted circles represent the transmission range of each station. 

We assume there are multiple channels available for transmission so that transmissions from neigh- 
boring rings do not conflict with each other. Within each ring, there is a token. The station in the 
ring that has the token transmits. After transmitting, the station passes the token to its successor in 
the ring. To move from one ring to another ring, a station leaves one ring and joins  another ring. 
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Figure 2: Organization of the protocol 

We also assume that each station has a unique MAC address. 
The overall architecture is shown in Figure 2. The main components are the MAC component, 

the topology manager, the channel allocator, the topology knowledge component and the admission 
control component. Although the main focus of this paper is the MAC component, we briefly describe 
the functions of the other components and how they may interact with the MAC component. 

M A C  

The MAC protocol is responsible for organizing a single ring. In doing so it performs the following 
functions: 

1. It ensures that each ring has a unique ring address. 

2. It makes sure that there is a single token in the ring. 

3. It allows a station to join or leave the ring. 

4. It is responsible for reconstituting a ring if the ring breaks because a station moved out of range. 

To perform these functions, the MAC protocol needs to interact with the channel allocator, the 
mobility manager and the admission control manager. 

Channel  Allocator 

We assume that there are multiple channels available for transmission. Each ring transmits on a 
channel that does not conflict with the neighboring rings. The channel allocator is responsible for 
choosing the channel that a station transmits on. To do this, it may need to coordinate with the 
channel allocators in the other stations. It may also use the information from the MAC component 
about neigboring rings (based on the packets the MAC component hears). The design of the channel 
allocator may also depend on the specific application that the network is supporting. In this paper, 
we will not be concerned with the design of the channel allocator. We will assume that transmissions 
in neighboring rings do not conflict with each other. 

Mobility Manager 

The mobility manager decides when a station should leave a ring and join another ring. It sends the 
commands {Join(RA), Leave, MakeRing} to the MAC protocol. The command “Join(RA)” causes a 
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station to join the ring with ring address RA, “Leave” causes the station to leave the current ring it 
belongs to, and “MakeRing” causes a station to form a ring consisting of only itself. 

The decision of the mobility manager to leave one ring and join another ring may be based on 
the application being supported. For example, in the design of the automated highway system [6], 
vehicles are organized into platoons. In this application, vehicles that are part of the same platoon 
can be part of the same ring. The application requires vehicles to sometimes leave one platoon and 
join another. This could then naturally be mapped by the mobility manager to a vehicle leaving one 
ring and joining another ring. 

It is also possible to design a more general purpose mobility manager for general adhoc networks. 
Such a mobility manager may use the information from the MAC component (for example, information 
about neighboring rings) to decide that it is better to leave one ring and join a different ring. 

In this paper we will not be concerned with the design of the mobility manager. 

Topology knowledge 

In a non-fully-connected network, it is important for stations to know their connectivity, e.g., when 
a station A wants to send a packet to a station B, it has to know whether a direct connection exists 
or whether routing has to take place (we discuss support for routing in section 8). In WTBP, we use 
connectivity caches for maintaining a local view of the network topology at each station. We discuss 
this in more detail in section 5.5. 

Admission Control 

There is an Admission Control Manager in each ring. The Admission Control Manager moves from 
one station to next only when the station has the right to transmit. The Admission Control Manager 
periodically solicits other stations to join if there are “resources” are available in the ring. The 
“resource” of the token ring can be defined in the following way. The MAX-MTRT is the minimum 
of the maximum latency that each station in the ring can tolerate. And the RESV-MTRT is the sum 
of THT of the station. Now the Admission Control Manager has to ensure the following inequality: 
R E S V - M T R T  < M A X - M T R T .  Only if there are enough resources left, the Admission Control 
Manager may solicit another station to join. At the time of solicitation, the Admission Control 
Manager also advertises the available resources. Only the stations that require less resource than 
what is left in the ring may join. 

4 A High-Level View of the Wireless Token Bus Protocol 

In this section we give a basic overview of WTBP. First we describe the normal operation of the 
protocol. Then we describe how the protocol behaves under various abnormal conditions. A more 
detailed description of the protocol is provided in Section 5. For simplicity, this section assumes that 
the connectivity of stations is such that each station is connected to both its successor and predecessor 
in the ring. We remove this assumption in Section 7, where a generalized version of the protocol is 
presented. 

4.1 Normal Operation 

The stations are organized into multiple rings as shown in Figure 3. There is a token in each ring. 
Each station has a next station or a successor (called NS) and a previous station or a predecessor 
(called PS). One-station rings (where PS and NS are same as the station itself) are allowed. The station 
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C 
A Ring U 

Figure 3: Stations arranged into multiple rings 

with the token transmits data. After it has finished transmitting data, the station forwards the token 
to its successor. 

For example, in Figure 3,  stations {A, . . . , G} are organized into two rings. In ring U, station A 
has the token. Its PS (denoted PS(A)) is D and its NS (denoted NS(A)) is B. After transmitting data, 
A forwards the token to B. 

There are two basic operations supported on a ring. A station may leave the ring, or a single 
station may join a ring. Using these basic operations, it is possible for a station to move between 
rings. 

B 

Figure 4: Station A leaving the @ @  ring (b) 

Leaving a Ring When a station wants to leave the ring, it waits until it gets the token. It then 
informs its predecessor that it is leaving. After this the station is free to leave the ring. The predecessor 
then sends a special token (called the set-predecessor(X) token) to the next node in the ring that it 
knows about to reconstitute the ring. The set-predecessor(X) token tells the receiver to set its PS to 
X. 

For example, suppose station A decides to leave the ring in Figure 4(a). A then informs PS(A) 
(i.e., station D) that it is leaving the ring. Station D then sends set-predecessor(D) token to B. After 
this B sets PS(B) to D, and D sets NS(D) to B. Figure 4(b) shows the ring after A has left the ring. 

Joining a Ring Each station X in the ring periodically sends a special invitation token (called the 
solicit-successor token) inviting other nodes to join the ring. In particular, X sends solicit-successor(X,Y), 
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Figure 5: Joining a ring 

where Y = NS(X), inviting a station to join “between” stations X and Y .  When a station wishing to 
join hears the so l ic i t - successor (X,Y)  token, it checks whether it is within range of Y (it will be 
within range of X, since it heard the token and we assume symmetric connectivity; in section 7, we 
remove the restriction of being in range of Y). If it ist it replies back to X. To avoid collisions in case 
many stations wish to join, each joining station waits a random amount of time before replying back 
to X. Station X decides to admit one of the replying stations in the ring, and sends the token to that 
station. 

An example of station A joining ring V is shown in figure 5. Station G sends the s o l i c i t s u c c e s s o r ( G , E )  
token. Because A wants to join and it is within range of G and E, it replies back to G. Station G 
then sets NS(G) = A and forwards the token to A. Station A then sets PS(A) = G, sets NS(A) = E, 
and sends a set-predecessor(A) token to E. This causes E to set PS(E) = A. The new ring is shown 
in Figure 5(b). 

Two things should be noted: 

1. A station must observe two successive tokens p and p’ with p.RA = p’.RA, p.Genseq = k and and 
p’.GenSeq = k + 1, in order to respond to a s o l i c i t s u c c e s s o r .  

2. After a station leaves a ring, it cannot immediately join the same or another ring, but has to 
wait for at least the maximum token-rotation time, or MTRT (see section 5.2). 

4.2 Abnormal Conditions 

Various kinds of abnormal conditions can arise which must be taken care of by the WTBP. We list 
some of these abnormal conditions and our protocol’s response. 

Stat ion moves out  of range (or fails) Consider the ring in Figure 6(a). Suppose station A 
moves out of station D’s range. Then station D must realize this when it tries to pass the token to A. 
In our token ring protocol, a station waits for an “implicit” acknowledgement before it is convinced 
that its successor has received the token. A transmission by station A is taken by station D to be 
an implicit acknowledgement that A received the token. Other transmissions in the ring can also be 
considered as implicit acknowledgments (see detailed description of protocol). 

If station D does not receive an implicit acknowledgement, it tries to send the token again to 
station A. After several failed tries, it gives up. Now the ring is incomplete, so station D tries to close 
the ring by sending a set-predecessor(D) token to the next station it knows about in the ring (say 
station B). Station B then sets PS(B) = D and station D sets NS(D) = B. The reconfigured ring is 
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Figure 6: Station A moves out of range 

shown in Figure 6(b). Notice that A might still believe it is part of the ring and its successor is B (not 
shown in the figure). 

If the attempt to close the ring fails (because, say, all other nodes have moved out of range) then 
the node that tried to close the ring will kick itself out of the ring. That is, it assumes it is no longer 
part of the ring. Before kicking itself out, it may decide to notify its predecessor that it is leaving the 
ring. 

The above scenario works even in case A does not move out of range, but fails. In fact, since there 
is no way for a station to distinguish whether its successor has failed or moved out of range, or if the 
link between them is too noisy, our protocol will behave the same in all these cases. 

No tokens in the ring Suppose station A has the token, but it has moved out of everyone’s range 
as shown in Figure 7(a). Then other nodes will never get the token. So there must be a method to 
regenerate the token and reconstitute the ring. 

In our protocol, if a station has not received implicit acknowledgement for MAX-IDLE-TIME (c.f. 
idle- t imer,  section 5.2), it generates a new token and transmits it. 

So in Figure 7(b), either station D, B or C will eventually generate a token and try to reconstitute 
the ring. Now, it is possible for more than one station to generate the token at approximately the 
same time, but this would be resolved by the part of the protocol which eliminates multiple tokens. 

Multiple tokens in the ring Multiple tokens can arise if the token is lost and more than one 
stations generate new tokens at approximately the same time. 

To eliminate multiple tokens in the ring, we use the following technique. Each token carries two 
fields: a generation sequence number (GenSeq) and a ring address (RA). The RA is the MAC address of 
the station which originally generated the token. We call this station the owner of the token. The 
GenSeq field is an integer which is incremented by the owner every time it sees the token. Each station 
remembers the GenSeq and the RA of the last token they forwarded. A station deletes a token if the 
token’s GenSeq is less than the GenSeq that the station remembers, or the GenSeq are equal but the 
token’s RA is less than or equal to the RA remembered by the station. This protocol ensures that when 
there are multiple tokens in the ring, only one eventually survives. 

‘Another way to reset the idle- t imer is to reset whenever a station transmits a token. This approach was one of 
the competing ideas during the design of the protocol and the section 6 is based on it. One of the drawbacks of this 
approach is that if a station has been kicked out without the knowledgement of the station, the idle- t imer will expire 
before the inring- t imer,  and the station will try to connect to the ring. This can lead to multiple tokens in the ring. 
More studies needs t o  be made on this point. The actual implementation resets its inring-timer whenever a station 
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(b) 

Figure 7: No tokens in the ring 

B 

Ring U C 

Figure 8: Malformed Rings 

Malformed rings Consider the ring of Figure 8(a). Suppose D cannot forward the token to A, so 
it closes the ring with B. But A stills thinks its successor is B. In the case that A is disconnected with 
the rest of the ring, eventually A will assume the token lost, generate a new token and try to pass 
it to B. In our protocol, B accepts normal tokens (i.e., not se t - p redeces so r  or other control packets) 
only from its PS, so it refuses A’s token. Station A eventually realizes it is not part of the ring (c.f. 
i n r i n g - t i m e r ,  section 5.2), and kicks itself out of the ring. 

Various other types of abnormal conditions can also arise. WTBP attempts to take care of these 
abnormal conditions so that the stations eventually settle down into rings each with a single token. 

4.3 Other features of WTBP 

Implicit acknowledgments Suppose a station A forwards the token to its successor B. Due to 
errors such as noise, the packet might be corrupted and lost. In such a case (which might occur often 
due to the nature of the wireless channel) it would not be a good idea to declare the token lost and 
wait until some node regenerates the token: this might take up to MAX-IDLE-TIME time, which is in the 
order of token-rotation time, i.e., too long. 

Instead, when A sends the token, it sets its token-pass-t imer (c.f. section 5 . 2 )  and listens for packets 
coming from its ring. Any such packet is taken to be an implicit acknowledgement. We do not use 
explicit acknowledgments (e.g., B sending an ACK to A that the token was received correctly), both in 
order to save bandwidth (a precious resource in wireless networks), and also minimize retransmissions 

receives implicit acknowledgement. 
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(in case B’S explicit ACK gets lost). 
If an implicit acknowledgment is not received for some time, the token-pass- t imer  expires (c.f., 

section 5.2) and the token is retransmitted. After a number of retries (currently, two) the station 
engages in the close-ring operation. 

More specifically, in our implementation, packets that met one of the two following conditions were 
considered implicit acknowledgement 

1. has the same ring address as the station. 

2. from any successive nodes observed from the previous token rotation.2 

Contention resolution in joining When a station X sends a s o l i c i t s u c c e s s o r  token, it is 
possibly heard by more than one stations who wish to join. To avoid collisions when these stations 
reply back to X, each of them picks a random slots to send the s e t - s u c c e s s o r  as the reply. The size of 
the slot is based on the transmission time of s e t - s u c c e s s o r  and the Contention window is a multiple 
of slots. 

Unique address of each ring The WTBP ensures that each ring has a unique address. This 
property is important, because it allows stations to distinguish between messages coming from different 
rings. It also permits to the mobility manager to specify which ring should the station join, upon 
giving the command “Join”. 

In WTBP, the ring address is the MAC address of the owner of the token. Since no two stations 
have the same MAC address, uniqueness is ensured as long as a station cannot be owner of the tokens 
in two rings at the same time (if, for example, the owner leaves its ring, joins another ring, and creates 
a new token in the new ring). To ensure that the owner of the token is present in the ring, it is required 
that the owner “refreshes” the token every time it receives it (by incrementing the GenSeq number). 
If a station A other than the owner receives a token which has not been refreshed, A realizes that the 
owner must have left (or failed) and resumes the role of the owner, by setting the RA to its own MAC 
address. 

5 Detailed Operation of the Wireless Token Bus Protocol 

Let us now describe the details of our MAC protocol. A complete specification is given in Appendix D. 

5.1 WTBP station information 

Each station maintains the following information: 

0 TS (This Station): the MAC address of this station. 

0 PS (Previous Station): 0 if the station does not belong in any ring, otherwise, the MAC address 
of the previous station (predecessor) in the ring. 

0 NS (Next Station): 0 if the station does not belong in any ring, otherwise, the MAC address of 
the next station (successor) in the ring. 

0 RA (Ring Address) :  an address uniquely identifying the ring. In the WTBP, it is maintained as 
the MAC address of the owner of the token. 

‘This is because successive nodes can change the ring address 
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0 Seq and GenSeq: copies of the two corresponding fields of the normal token (see section 5 . 3 ) .  
They are updated whenever a token is received by the station and not deleted. 

0 MRcache and NIMRcaches: the data structures implementing the connectivity cache (see section 5.5 
for details). 

5.2 Timers 

In addition to this state variables, every station mantains a few timers used in different phases of the 
protocol. All these timers are decremented with time. 

0 i d l e - t imer  - it, is set to MAX-IDLE-TIME whenever the station transmits a token. If the tinier 
reaches 0 (we say it expires or times-out), the station assumes that the token has been lost and 
goes to the “Generate Token” state (see below). 

0 i n r i ng- t imer  - it is set to MAXNO-TOKENRECEIVED whenever a station transmitts a token, except 
if the token has been generated by this station because the i d l e - t i m e r  has expired. If the 
in r ing- t imer  expires, then the station assumes it has been kicked out of the ring and goes to 
the “Idle” state (see below). 

e token-pass- t imer  - it is set to MAXACK-TIME whenever the station sends a token If the token-pass- t imer 
expires before the station hears an implicit acknowledgment, then the station assumes that its 
successor did not receive the token correctly and retransmits it (see “ForwardTokenState” be- 
low). 

0 t o k e n 3 o l d i n g - t i m e r  - it is set to MAX-TOKENHOLDING-TIME whenever the station goes into the 
“SendData” state (see below). The station can transmit data as long as this timer is positive. 
token before the counter gets to zero. This timer is also used to check if there is enough time to 
let new nodes join the ring. 

The following relations between the time parameters are necessary: 

MAX-TOKENHOLDING-TIME < MAX-IDLE-TIME < MAXNO-TOKENRECEIVED 

We will also define the constant MTRT (maximum token-rotation time), such that 

MTRT > n e (MAX-TOKENHOLDING-TIME + MAXPROP + MAX-TOKEN-TRANSMIT-TIME) (2) 
MAX-IDLE-TIME > MTRT (3) 

where n is the maximum number of stations in the ring, MAXYROP is the maximum signal propagation 
delay, and MAX-TOKEN-TRANSMIT-TIME is the maximum time to transmit a token. 

5.3 WTBP packet formats 

WTBP uses 7 different types of packets: one type includes all data packets, and the remaining 6 
types are control packets, which we call tokens. Some fields are common to all packets, while some 
are specific to each packet type. We first discuss the common fields, and then the individual packet 
formats. 
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The fields common to all packets Every packet type contains at least the following fields: 

TT (Type): a unique code indicating the type of the packet, e.g., da t a ,  so l ic i t - successor ,  and 
so on. 

0 SA (Source Address): MAC address of the station sending the packet. 

0 DA (Destination Address): MAC address of the station the packet is addressed to. If this field is 
0, the packet was broadcasted by the sender. 

0 RA (Ring Address): the address of the ring where the sender belongs to, or 0 if the sender does 
not belong to any ring. 

The normal token This token is used during the normal behavior of the ring, when a station transfers 
the medium control to its successor. It has the following extra fields: 

0 Seq (Sequence Number): While the token circulates in the ring, this counter is increased at every 
transmission. If a token is retransmitted however, it’s an exact copy of the previous one and 
so it contains the same sequence number. The counter wraps-up when reaching its maximum 
value. 

This field is present to support the connectivity information in the caching mechanism explained 
in section 5 .5 ,  page 22. 

0 GenSeq (Generation Sequence Number): a counter, incremented by one every time the owner of 
the token (i.e., the station who generated the token last) forwards the token. GenSeq is used 
when removing duplicate tokens. It is also used by stations to discover whether the owner of 
the token has left the ring, in which case, a new station A becomes the owner of the token and 
the ring address is changed to the MAC address of A. 

The so l i c i t - succes so r  token This token is sent by a station in a ring to allow other stations to 
join the ring. In the basic version of the protocol, this token has one extra field: 

0 NS (Next Station): the MAC address of the successor of the sender of this token (which will 
become the successor of the joining node). 

The DA of the s o l i c i t s u c c e s s o r  packet is always set to 0 because this packet is broadcast. 

for nodes to join even if they are not physically connected to their logical successor. 
In the generalized protocol (section 7), the format s o l i c i t s u c c e s s o r  token is extended to allow 

The set-predecessor token There is no additional field in the set-predecessor  with respect to the 
token type. The receiver accepts the token provided its RA matches the RA of the token, and sets 
its predecessor field to the sender. The token is used by a station to close a ring, and it is also used 
during the joining phase. 

The set- successor- join and se t - successor leave  tokens The set- successor- join token is used 
during the joining phase. Once the stations willing to join have heard a s o l i c i t s u c c e s s o r ,  they wait a 
random amount of time and then they send a set- successor- join to the sender of the so l ic i t - successor .  
If the latter receives a valid set-successor- join, it uses the information enclosed to set its successor 
to the sender, which consequently becames part of the ring. 
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Figure 9: Overall organization of the protocol 

The s e t s u c c e s s o r l e a v e  token is used when a station decides to leave the ring, either because of a 
decision taken by the mobility manager, or because the station can’t reach its successor and is unable 
to close the ring with someone else. In any of these cases, the station sends a s e t s u c c e s s o r l e a v e  to 
its predecessor, to let it set its successor to a different station. 

The token-deleted token When a station receives a token of any type, one of the following reactions 
may happen: 

0 The token is accepted - this is the normal operational mode of the ring, when the token travels 
around the ring without repetitions or duplicates. 

0 The token is silently deleted - A case when this happens is when a station A has been left out 
of the ring (perhaps because some other node has closed the ring), but A doesn’t know this. It 
may happen that A generates a new token and tries to send it to the station it still thinks to 
be its successor (let’s say B) .  When receiving this token, B simply ignores it. Eventually, the 
inr ing- t imer will expire and A will realize that it is out of the ring. 

0 The token is deleted with notification to the sender - This happens when a station A has not 
heard the implicit acknowledgment and retransmits the token to its successor B. B will realize 
that and send to A a token-deleted token. 

The token-deleted doesn’t have any additional fields apart from the common fields. 

0 d a t a s i z e :  is the size (in bytes) of the data enclosed in this packet. 

0 data:  variable length field containing the data. 

Notation We denote the field A of token T as T . A  or A(T) .  Similarly, we denote the variable or timer 
V of station S as S.V or V(S). When S is clear from context (e.g., “this” station) we simply write V. 

5.4 Finite-state-machine specification 

We will describe WTBP using automata extended with timers and C-like code to test and update 
variables. To ease the task, the specification of WTBP is actually done hierarchically, i.e., in multi- 
level automata. The states in a higher-level automaton are macro-states which expand into detailed 
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lower-level automata. When a high-level automaton enters a macro-state, it yields control to the 
lower-level automaton, and when the low-level automaton finishes execution, it hands control back 
to the high-level automaton. Only one automaton is active at any given time, that is, the model is 
equivalent to a “flat” model of a single automaton. 

The highest-level automaton describing WTBP is as shown in Figure 9. The macro states are { 
InRing, Idle, Join }. In the Idle state, the station is waiting for a command from its topology manager. 
In the WaitingToJoin state, the station is waiting to join a ring. In the InRing state, the station is 
part of a ring. We now describe the automata corresponding to these macro-states in detail. 

WaitForToken: The station waits for a token. When it receives one, it moves to the state 
ProcessToken. 

ProcessToken: In ProcessToken, the station looks at the token to see which of the boolean 
conditions SSL-Valid(token), MT-Valid(token) or CR-Valid(token) is true. These conditions are 
given below: 

1. S S L V a l i d ( t o k e n )  E ( t o k e n . T T  == set-successor-leave). 

2. M T - V a l i d ( t o k e n )  E ( t o k e n . T T  == normal && t o k e n . S A  == PS). 

3. C R - V a l i d ( t o k e n )  E ( t o k e n . T T  == set-predecessor && tolcen.RA == RA).  

Upon the SSL-Valid(token) condition being true, the station moves to the SetSuccessorLeave 
state; when CR-Valid(token) is true, the station moves to the CloseRing state; and when 
MT-Valid(token) is true, the station moves to the Manage-Token state. If none of these con- 
ditions are true, the station deletes the token and moves back to the WaitForToken state. By 
deleting a token, we mean that an notification is sent to the sender of the token.3 

SetSuccessorLeave: In the SetSuccessorLeave state, the station sets NS = NULL. The station 
maybe asked to leave, in which case it goes to the LeavingRing state. Otherwise, it sets the 
token.TT = set-predecessor, and goes to the ForwardToken state. 

ManageToken: The ManageToken state eliminates multiple tokens in the ring. It does this by 
checking whether it is a duplicate token because it matches the GenSeq of a token it has seen 
before, or whether the token’s address is “less” than the address of a token it has previously 
transmitted. In these cases, it deletes the token. If the station is the owner of the token, it 
refreshes the token by incrementing token.GenSeq. The manage-token() function is shown in 
Figures 11 and 12. 

CloseRing: The station sets its PS = token.SA. It then checks whether the owner of the token 
has left the ring. The close-ring() function is shown in Figure 13. 

GenerateToken: In the GenerateToken state, the station generates a new token by setting to- 
ken.GenSeq = GenSeq + 2, and token.RA = TS. So the station becomes the owner of the new 
token generated. 

3Another competing ideas for the token deleting policy is to delete duplicate tokens silently by not notifying the 
sender of the token. If it is highly probable that the token received by the current station is still in the ring and the 
sender of the token will hear it soon, then silently deleting the token is a better choice. This can be a highly probable 
case in highly connected network. 
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Figure 10: The InRing automaton 

manage-token(token): 
manage-token(token) { 

delete-token = FALSE; 
if (is-duplicate-token(token) I( address-&(token)) { 

} else if (token-owner(token)) { 

} else { 

delete-token = TRUE; 

refresh-token(token); 

} 

Figure 11: manage-token() function 
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duplicate-token(token) (token.GenSeq < GenSeq && token.RA G TS) 

address-@(token) (GenSeq > token.GenSeq) 1 1  ( (token.GenSeq = GenSeq) && (RA > token.RA) ) .  
token-owner(token) token.RA K TS 

1 1  (token.GenSeq 5 GenSeq && token.RA != TS && token.RA RA) 

Figure 12: Functions called by manage-token() 

close-ring( token) : 
closering(token) { 

PS = token.SA; 
if (token.GenSeq == GenSeq && token.RA != TS) 

else 
generate-token = TRUE; 

generate-token = FALSE; 
1 

~~ ~ 

Figure 13: Close-Ring() function 

0 SendData: In the SendData state, the station sends data. After this, the station maybe asked to 
leave, in which case it goes to the LeavingRing state. Otherwise, it goes to the SolicitSuccessor 
state. 

0 SolicitSuccessor: In the SolicitSuccessor state, a station may invite other stations to join the 
ring. It does this only if its RA has not changed. It does this by sending a so l i c i t - successor  
token to which other stations respond. It then accepts one of these stations into the ring. After 
doing this, it sets the token.TT = normal and goes to  the ForwardToken state. 

0 ForwardToken: In the ForwardToken state, the station sends the token to its NS. If it does not 
receive an acknowledgement, then it sets the token.TT = set-predecessor,  and attempts to 
close the ring with another station. If it is successful in one of these attempts, it goes to the 
WaitForToken state. Otherwise, it kicks itself out of the ring, and goes to the LeavingRing state. 

Solicit Successor State The automaton for the Solicit Successor macro-state is shown in Figure 14. 
The states of the automaton are as follows: 

0 CheckToSolicit: The station only solicits a successor with some probability p and when the 
admission control module allows it to do so. It then checks to see whether its RA has changed. 
If the RA has not changed, it goes to the SendSolicitSuccessorMessage state. Otherwise, it goes 
to the Done state. 

0 SendSolicitSuccessorMessage: In this state, the station sends a so l i c i t - successor  token. If it 
receives a valid response before a timeout, it sets its NS to the sender of the response. Otherwise, 
it tirnesout and goes to the Done state. 

0 Done: Finished with Solicit Successor 

19 



Timeout 

SOLICIT-SUCCESSOR-TIME 

f \ 
Check To 
Solicit 

else 

< 

Solicit 

V < 
Send 

\ 

- 

\ / 

Solicit-Successor 
Message 

Received token r 

where (r.TT = set-successorjoin) 

":- NS = r.SA 

Figure 14: Solicit Successor automaton 

Forward Token macro-state The automaton for the Forward Token macro-state is shown in 
Figure 15. 

The states of the automaton are as follows: 

0 StartForwardToken: The station first checks to see whether the NS field is valid (i.e., it is not 
set to NULL). If the field is valid, it goes to the SendAckData state, otherwise it goes to the 
SenderCloseRing state. 

0 SendAckData: In the SendAckData, the station sends the token to NS and waits for an implicit 
acknowledgement. If it fails to receive an implicit acknowledgement, it tries again. After two or 
more failures, it gives up and goes to the SenderCloseRing state. If it succeeds, it goes to the 
Done state. 

0 SenderCloseRing: In the SenderCloseRing state, the station tries to close ring with another 
station in the ring. 

0 Done: Finished with Forward token. 

The idle- timer is reset in the ForwardToken state. The inring- timer is also reset in the Forward- 
Token state provided the token being sent was not generated because of an idle- timer timeout. 

5.4.2 Waiting t o  Join macro-state 

Figure 16 shows the automaton for WaitingToJoin macro-state. We describe each of the states below: 

0 WaitForSolicitSuccessorToken: The station waits for a so l i c i t - successor  token. When it re- 
ceives one, it moves to the next state. 

0 WaitForContentionTimer: The station sets a contention-timer. If the station hears something 
from the ring from which it received the so l i c i t - successor  token before the timeout, it returns 
back to the WaitForSolicitSuccessor state. Otherwise on timeout, it goes to the SendSetSucces- 
sorMessage. 
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Figure 17: The Idle automaton 

0 SendSetSuccessorMessage: The station sends a set- successor- join token to the sender of the 
so l ic i t - successor  token. If it hears something from the ring which is not meant for it, it goes 
to the WaitForSolicitSuccessorToken state. Or if it does not hear anything for MaxEnterTime, 
it timesout and goes to the WaitForSolicitSuccessorToken state. Otherwise, if it gets a token 
before the timeout, it goes to the SendData state. 

0 SendData: After sending data, it sets the token.TT = set-predecessor  and goes to the Forward- 
Token state. 

0 ForwardToken: This is the same as the ForwardToken state in Section 5.4.1. 

5.4.3 Idle macro-state 

Figure 17 shows the automaton for the idle macro-state. 

0 LeavingRing: The station sends a se t- successor leave  token to its PS. After this it moves to the 
Left state. 

0 Left: Once the station arrives into this state, it stays here for MTRT time. In this state, thc 
station waits for a command from the topology manager. It either makes itself into a ring and 
moves to the WaitForToken state, or it moves to the WaitForSolicitSuccessor state. 

5.5 Connectivity Caches 

5.5.1 Need for topology knowledge 

In a non-fully-connected network, it is important for stations to know their connectivity, e.g., when a 
station A wants to send a packet to a station B, it has to  know whether a direct connection exists or 
whether routing has to take place (we discuss support for routing in section 8). 

Other situations where topology knowledge is desirable in WTBP are the following: 

0 When a station wants to join a ring, it will probably choose to join in a logical position where 
it has the highest connectivity with its neighbors. 

0 When a station cannot reach its successor, it may decide either to close the ring, or kick itself 
out of the ring, if closing the ring would leave too many stations out. To make this decision, 
topology knowledge is essential. 
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Figure 18: A mobile station passing near a ring 

0 When a station decides to close the ring, it is beneficial to keep as much nodes in the ring as 
possible. The knowledge of the transmission order of the stations allows the closing station to 
choose to close the ring with a station that will form a new ring with the least number of kicked 
out nodes. 

We should note that topology knowledge, although essential for performance, does not affect the cor- 
rectness of the protocol. Therefore, many approaches to building and maintaining topology knowledge 
can be envisaged, also depending on the application requirements, degree of mobility, and so on. 

5.5.2 The approach taken in WTBP 

Instead of an “active” approach, where stations try to figure out the needed topology information 
by sending control packets explicitly, the WTBP uses a “passive” approach where stations listen to 
packets being transmitted around them and update one or more local caches, namely, one MRcache 
(my-ring) and zero or more NIMRcaches (not-in-my-ring), for every ring the station can hear from. We 
briefly discuss the two types of caches in what follows. 

NIMRcache. For each RA heard, an RA-NIMRcache is maintained, which keeps a FIFO queue of 
entries of the form (Sender ID, Timestamp). An entry (A,t) means station A was heard transmitting 
at ring RA at time t. Each time a packet is heard with ring address RA, a new entry is inserted at the 
tail of the queue. If the queue is full, its head is removed. 

Figure 18 shows a situation in which a mobile station (station 6) comes in contact with a ring, and 
then moves away. On the bottom of the figure a possible evolution of the mobile station’s NIMRcache 
content (only sender IDS) is shown. 

MRcache. This cache relies on the Seq field of the token. Before sending out a token, a station 
increments its Seq number by one. The Seq number will be incremented for each station visited by the 
token. Whenever a station hears a token from its own ring, the token is given to a MRcache component 
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for processing. As long as the processed tokens have consecutive Seq numbers, the component just 
builds a table whose entries have the same format used in the NIMRcache. 

If a token is heard whose Seq number is oldSeq+n, where oldSeq is the Seq value in the previously 
heard token and n > 1, then before the entry for the sender of the token is added to the table n - 1 
entries are filled with a special value that will be indicated as U (“unknown” or “unreachable” station). 
U entries represent the knowledge of the fact that a certain number of stations are present between 
the previous and the current sender of the token, but those stations have not been heard sending the 
token by this station. The reason for not hearing the token may be a large distance among the sender 
and this station, or a collision/noise that garbled the token (note that the garbling may be just local 
to this station, while the token correctly reached its destination). 

Once a station receives the token, it has built an image of its connectivity to other stations in the 
ring, as well as a knowledge about the position of stations that are not reachable. After the token has 
been sent successfully, the cache is emptied to be rebuilt in the next token rotation. Figure 19 shows 
an example of a possible ring and how the ring cache is updated. 

The information carried by the Us in the tables are particularly important for closing the ring. 
Suppose in the example of the above figure station 6 becomes unreachable. After trying to send the 
token two times, station 5 will close the ring with station 1, leaving 6 out of the ring. 

Suppose now station 1 is the one failing. Node 6 can close the ring only with station 5, because 
it’s the only station remaining within its range. However, doing so would throw out three stations 
from the ring. Therefore, 6 might decide instead to kick itself out of the ring. 

6 Proof of Stabilization 

We next provide a proof that our protocol is self-stabilizing. This means that, if transmission errors 
stop happening and the topology stops changing, then eventually all stations will belong to well-formed 
rings, with a single token circulating in each ring. 

Our proof will be organized into three phases. Assuming that the assumptions hold from time To 
onwards, we first show that multiple equivalent tokens (i.e., tokens having the same ring address) will 
be eliminated by some time TI > To. Using this, we then show that stations organize themselves into 
well-formed rings by time T2 > 2’1, and these rings do not change thereafter. Finally we show that 
there is a single token within each ring by time T3 > Tz. 
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Definitions and Assumptions 

We say tokens a and b are equivalent provided a.RA = b.RA. We define the priority (of a station or a 
token z) to be the pair (9 ,  r )  where g = z.GenSeq and r = x.RA. We define (91, T I )  > ( 9 2 , ~ )  when 
either 91 > g2, or g1 = 92 and 7-1 > 7-2.  A ring R is a set of nodes. We say that R is well-formed if for 
each node z E R, NS(PS(z)) = x. We call a well-formed ring of one station a self-ring. 

We assume that from time To onwards: 

1. Topology is fixed (i.e., if x and y are within each other’s range then they continue to remain so). 

2. Messages do not get lost. 

Also recall the relations of time parameters from equations 1-3 in section 5.2. These relations, along 
with the above assumptions, imply that: 

3 .  MTRT is the maximum time it takes for a token to go through all stations. 

4. A token does not survive for more than MTRT, unless if it visits its owner. 

Elimination of Equivalent Tokens 

Using the next few lemmas, we show that starting at time t ,  multiple equivalent tokens get eliminated 
by time t + 2MTRT. 

Lemma 6.1 While a station is i n  the InRing phase, the priority of the station increases with t ime. 

Proof: A station x accepts a token p only if, either x is not the owner of p and z.GenSeq < p.GenSeq 
(after which x sets z.GenSeq = p.GenSeq), or x is the owner and z.GenSeq == p.GenSeq (after which 
z sets z.GenSeq = p.GenSeq + 1). Therefore, if x accepts a 
accept a token for a while, it will generate its own token 
again 2’s priority increases. 

Lemma 6.2 Pick any token p at t ime t o  2 To, and build 
((zo, t o ) ,  (21, t l ) ,  (x2 , t2) ,  ..., (xrn ,  tm) ) ,  where t n  i s  the time 
exists a station xi = x i  in the list such that 0 <_ i < j 5 m, 
and xk owns p. 

token, x’s priority increases. If z does not 
after increment z.GenSeq by 2, therefore, 

an ordered list of the path taken by p ,  say 
that x ,  transmits p and ti+l > t i .  If there 
then there must  be a k such that i 5 k 5 j ,  

Proof: Let’s assume the contradiction: Suppose we find xi  = x j  such that 0 5 i , j  5 m but we cannot 
find the owner of p ,  xk, such that i 5 IC 5 j. This means that the p.GenSeq when p arrives at xi is equal 
to p.GenSeq when p arrives at xj, because no station other than the owner of the token modifies the 
generation sequence number. Now, z j  remains at InRing from time ti until t j  (otherwise, it wouldn’t 
accept any token at time t3 ) .  This is because tj - ti < MTRT (by the assumptions) and the fact that a 
node waits MTRT before it joins again. Therefore, from Lemma 6.1, p.GenSeq 5 zj.GenSeq at time t j .  

Thus, x j  would have deleted the token instead of transmitting it. Contradiction. 

Lemma 6.3 Startin,g at t ime TO, no multiple equivalent tokens exist at t ime TI = TO + 2MTRT. 

Proof: Consider tokens at time 2’0 whose owner is y. Then from Lemma 6.2 and the assumptions, 
all such tokens will either visit again y by time t’ E [TO, TO + MTRT], or get deleted. So, at time 
t‘, y.GenSeq 2 p.GenSeq for all tokens p owned by y. Moreover, since during [TO, t’] y deletes all 
tokens with p.GenSeq 5 y.GenSeq, at time t’ there will be at most one token such that y.GenSeq == 
p.GenSeq. At most this token will survive when visiting y the next time, which happens at the latest 
at t’ + MTRT 5 TO + 2MTRT. (As in the proof of Lemma 6.2, y must either remain in InRing during 
[t’, t’ + MTRT] or no tokens are accepted by y, that is they all get deleted.) w 
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Lemma 6.4 If there were n o  multiple equivalent tokens at t ime  t 2 To, then n o  m,ultiple equivalent 
tokens exist at t ime t‘ 2 t .  

Proof Because of our assumption of no transmission errors, it is impossible for multiple equivalent 
tokens to be generated (say, due to packet corruption). Then a station must have generated a token 
when a token that it has previously generated is still in the graph. But this is impossible, from the 
fact that MAX-IDLE-TIME > MTRT and assumption 4. 

Lemma 6.5 No multiple equivalent tokens exist at any t ime  t 2 To + 2MTRT 

Proof From Lemma 6 .3  and Lemma 6.4. 

Ring Repair 

In this section we will show that when there are no multiple equivalent tokens, stations organize 
themselves into well-formed rings. 

Lemma 6.6 Suppose there are n o  multiple equivalent tokens in the ring. Then  if a station performs 
a jo in  operation, it joins a well-formed ring, whose owner i s  also in the ring. Furthermore, n.0 station 
in such a ring is  ever kicked out. 

Proof Assume station s joins a ring between stations u and v. For this to happen, .s must observe 
a token p with p.Genseq = k ,  and again observe a token p’ with p’.GenSeq = IC + 1 and p.RA = p’.RA. 
This implies that the owner of token is in the ring (otherwise, the RA of the token would have changed 
by the new owner), and that the ring is well-formed (otherwise, the token would not come back). After 
the transmission of p‘, no inring- timer expires, since between p and p’ at most MTRT time has elapsed 
and MTRT < MAXNO-TOKENRECEIVED. Because of this and the fact that no erroneous transmissions 
occur, no stations are ever kicked out. 

Lemma 6.7 Suppose there is  a ring which remains non-well-formed f o r  more than MAXNO-TOKENRECEIVED 
t ime.  Then ,  some sta,tion goes to  state “Idle” during this t ime.  

Proof Let R be a non-well-formed ring during the interval [T, TI], where T’ > TfMAXNO-TOKENRECEIVED. 
From the definition of well-formed rings, there is some station y E R such that (y.PS).NS # y. Let 
2 = y.PS. Either z passes a token to y during the interval [T,T’], or y’s inring-t imer expires by 
timc TI, y goes into state “Idle”, and we’re done. Let t’ be the last time n: passed a token to y in the 
interval [T,T’]. Now, at time t’, x.NS = y (since n: sends the token to its NS), but at time TI, z.NS # y. 
The NS of a station changes only when a station tries to close the ring (this cannot happen because of 
the assumption for no packet loss), or when the station’s inring- timer expires and the station moves 
to “Idle”. Therefore, z must go to  “Idle” during the interval [t‘, TI]. 

Lemma 6.8 Every station i s  eventually part of a well-formed ring that does not  change. 

Proof From Lemma 6.7, all nodes which do not belong to well-formed rings will eventually be kicked 
out. Since no packets are lost, all these nodes will eventually join some ring. From Lemma 6.6, this 
will be a well-formed ring that does not change. w 
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Multiple token resolution 

We next assume that all stations have organized themselves into rings. The next lemma shows that 
even if there are multiple tokens within a ring, after some time, the ring will stabilize with a single 
token in the ring. 

Lemma 6.9 Suppose each station belongs to a well-formed ring at t ime  t 2 T I .  Then  b y  tinre t + 
2MTRT + MAX-IDLE-TIME, there will be a single token in each ring. 

Proof Consider the highest priority token at time t’ = t + MAX-IDLE-TIME (there must be a token in 
the ring at time t’, because at least one of the tokens transmitted during the interval [t, t’] must have 
survived). By following this token around the ring, we can show that by time within t’+ 2MTRT, there 
will be exactly one token in the ring and each station in ring will have the same ring address as the 
token. 

Using Lemmae 6.5, 6.8 and 6.9, we can conclude that eventually every station belongs to a ring, 
and there is a single token in each ring. 

7 The Generalized Wireless Token Bus Protocol 

Motivation. Under the basic protocol presented in section 4, a ring that includes all stations cannot 
always be formed. For example, consider the four stations and the connectivity situation depicted in 
figure 20(a). Two stations connected with a solid line means they are in range with each other. 
Assuming we start from a situation where no ring is formed, then no ring that includes all stations 
can be formed in this case. This is because in order for a station to join a ring, it has to be connected 
to both its predecessor (who sends the solicit-successor) and its to-be successor. This is not always 
true, as shown in figure 20. Assume, for example that we start with a one-station ring (fig. 20(b)) 
and then another station joins (fig. 20(c)). At this point, no station can join this ring anymore. In 
the end, two distinct rings will be formed (fig. 20(d)). 

(a) (b) (c )  ( 4  

Figure 20: Motivation for the generalized protocol. 

The basic protocol can be generalized so that, given any network topology, it can form a token-ring 
including all stations in this network, as long as every station is connected to at least one other station. 
We show how this can be done in this section. 

7.1 High-level description of the generalized protocol 

In a nutshell, the features of the generalized protocol are the following. 

27 



7.1.1 No requirements on topology 

A station A is not required to be directly connected to its logical successor B.  A forwards the token 
to B along a sequence of relay stations C1 . . . C, (using source routing, that is, the token contains the 
route). The sequence (A ,  C1, ..., C,,, B) is the token route from A to B and is learned when A joins, 
as explained below. Each station stores the token route to its successor in a variable TR. 

For example, consider a network represented by the graph of figure 21. A, B ,  ... are wireless stations. 
A link represents the fact that two stations are within range of each other. One possible ring formed 
on top of this network is shown in figure 22(a), where the dotted arrows represent the successors: 
NS(A) = E ,  NS(E) = C ,  and so on. The dashed arrows represent the token routes: TR(C)  = (C, D ) ,  
TR(D) = ( D ,  C,  B )  , and so on. 

E 

Figure 21: An example network. 

Figure 22: Two possible rings for the network of figure 21. 

Each station X with TR(X) = (Yl, ..., Y k )  maintains invariant the facts: (a) Yl = X ,  (b) Y k  = 
NS(X), and (c) TR(X) is loop-free. 

7.1.2 Format of s o l i c i t s u c c e s s o r  token 

The format of the so l ic i t - successor  token is extended to sol ic i t -successor(Yk = X , Y k - 1 ,  ..., Yo = 
Y ) ,  where X is the station that sends the token, Y = NS(X), and ( X  = Yk, Ykp1, ..., YO = Y) is the 
token route from X to Y ,  k 2 1. The meaning is: 

“If you are station 2, you can join the ring with logical predecessor X and logical successor 
Y. The token-route from 2 to Y should be chosen as 2 -+ U, -+ U,-l -+ . . .  -+ Yl + YO, 
where i is the smallest index in [0, k ]  such that 2 is connected to yZ.” 
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In the best case, 2 is connected to Y and chooses i = 0. In the worst case, 2 chooses i = k (it can 
do that, since it is certainly connected to X ,  or else it could not have received the so l ic i t - successor  
token). 

Ring formation. Continuing the above example, figure 23 shows a sequence of possible steps that 
results in the formation of the ring of figure 22(a). 

. - .  . .  . .  

3 B  ,.:' 

Initial ring with one node: B A%D 

E 

B sends s o l i c i t - s u c c e s s o r ( B ,  B ) .  AQc ~ 

A ,  C, E reply to B. 
E joins the ring. ' 1 .  I 

' I  

E .' 

E sends s o l i c i t - s u c c e s s o r ( E ,  B) .  
A,  C reply to E.  
C joins the ring. 

I 

4 E .__.__:' 

Figure 23: Steps in the formation of the ring of figure 2l(a). 

Non-uniqueness of logical rings. Different logical rings can be formed on the same network, 
depending on the order in which stations send solicit-successor packets, and the order in which new 
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stations are accepted. For example, another possible ring for the network of figure 21 is shown in 
figure 22(b). This ring could have been formed if the order of joining stations had been A,  E ,  C, D ,  B.  
The two rings of figure 22 do not have the same properties in terms of performance: ring (a) can be 
said to be “better” than ring (b), in the sense that the total number of hops in a rotation of the token 
along ring (a) is 6, whereas along ring (b) it is 7. This means that more time is spent transmitting 
the token in ring (b) than in ring (a), which implies a longer token-rotation time. 

7.1.3 Per-hop implicit acknowledgments 

Implicit acknowledgments are still used in forwarding the token. Since now the token may have to be 
relayed over more than one hops, a number of per-hop implicit acknowledgments form an end-to-end 
implicit acknowledgment. For example, let the token route from A to D be (A ,  B ,  C, D ) .  Then, when 
A hears B forwarding the token to C it assumes the token implicitly acknowledged, when B hears C 
forwarding the token to D it assumes the token implicitly acknowledged, and so on. 

7.1.4 Close-route and close-ring operations 

The close-ring operation is extended as follows. 
The forwarding of the token can fail at any point along the token route (because a relay station 

does not hear an implicit acknowledgment after a number of retransmissions) and not just at the 
originator of the token. If this happens at a relay station other than the originator, this station sends 
its connectivity information backwards (i.e., along the reverse route) to the originator, using a special 
packet, called conn-info. Every station in the reverse route adds its own connectivity information 
to this packet. Implicit acknowledgments are used in the transmission of conn-info as well. If the 
originator receives the conn-info packet, it decides whether to try to close the route or the ring, or to 
kick itself out, if it thinks that the first two are not possible. If the conn-info packet is lost then this 
is similar to loss of the token: the token will eventually be regenerated by some station. 

We illustrate the process through an example. Consider the token route (A ,  B ,  C, D ,  E ,  F ) .  Say C 
cannot pass the token to D ,  but thinks it is connected directly to E.  C will send a corn-info packet 
back to A, along the route (C,B,A).  B will add to this packet its own connectivity state (suppose 
none except C and A). A (the originator), upon receiving corn-info, will check its own connectivity 
cache, to see whether it should attempt to close the route. Say A is connected only to B. Then it 
may decide to try to close the route by setting TR(A) = (A, B ,  C, E ,  8’). It will then re-send the token 
along this new route. Notice that since the route “shrinks” after each close-route, this operation will 
eventually terminate. 

If A decides not to attempt closing the route, it may try to close the ring. For instance, say B 
thinks it is also connected to some other station G in the ring (this information is contained in the 
corn-info packet). Then A may try to close the ring with G. A will set NS(A) = G, TR(A) = (A ,  B ,  G), 
and will send a set-pred token to G along the new route. 

One final extension to the close-ring operation concerns the behavior of stations which might be 
left out of the ring after a close-ring, but still act as relays for some other station. For example, 
figure 24, shows a network changing its topology, and the corresponding reconfigurations of the ring. 
Initially, the ring is as shown in (a). Then B looses its connection to E ,  but gains connection to G. 
Next time A tries to pass the token to E through relay station B ,  the forwarding fails, and therefore 
B sends a conn-info packet back to A. 

Suppose A closes the ring with G, along the route (A ,  B ,  G). This means that stations E and F 
have been left out of the ring. However, they are still in the token route from G to D .  Eventually, 
they will realize that they are no longer part of the ring when their inr ing- t imer expires. However, a 
better solution is the following. 
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Figure 24: Relay nodes joining during close-ring. 

When a station X relays two tokens p and p' in a row, such that the source and destination of 
p and p' are the same, say S and D ,  and in the meantime X has not received a token for itself, X 
assumes that it has been kicked out of the ring. X then piggy-bags a message in p', saying that it 
wants to join the ring. If a token with the same message comes back to X ,  then X can conclude that it 
has indeed been kicked out of the ring. X then joins the ring between S and D by sending a message 
to S along the backward route. We illustrate this in the example of figure 24(b), where nodes F and 
E have been kicked out when A close the ring with G. F and E will eventually join, resulting in the 
ring (c) in the figure. 

7.1.5 Other details 

To be made more precise: 
- when do you accept tokens: relay nodes always, others as before 
- when do you reset timers: inring/idle reset whenever you forward the token (no matter whether 

- redefinition of MTRT 
- must not relay tokens not in my ring 

you are relay or not) 

7.2 Properties of the generalized protocol 

In this section we argue that the generalized WTBP has the same self-stabilization property as the 
basic protocol. We also show that the generalized WTBP can form a ring under any topology (provided 
every station is connected to at least one other station). Finally, we show that joining, leaving and 
close-ring operations preserve the following property: if the ring has n stations, then the total hop 
count of token routes is at most 2n. 

7.2.1 Stability 

Let us modify the definition of a well-formed ring R as follows. Apart from the fact that for each 
station z E R, we want NS(PS(z)) = x, we also require all relay stations to be part of the ring, that is, 
if there are z,y E R such that y E TR(z), then there exists z E R such that y = NS(z). 

The stability proof goes through 3 stages, as before: 
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1. Multiple equivalent tokens get eliminated (same as before). 

2. Every station is eventually part of a well-formed ring that does not change (modified, see below). 

3. Every ring eventually has a single token (same as before). 

Stage 2 is modified as follows. First, we define the following time constant: 

A %f max{MAX-NO-TOKENRECEIVED, 4MTRT) 

Then, the following lemma is added: 

Lemma 7.1 Suppose at t ime T there is  a relay node not part of a ring. This  node will eventually 
either jo in  the ring or be kicked out of the ring, by t ime  T + A. 

Proof: Suppose a relay X is not part of the ring. Either X will then be relaying a token infinitely 
often or not. If not, its inring timer will expire by time T + MAXNO-TOKENRECEIVED and X will kick 
itself out. If yes, X will be relaying a token p going from the same source to the same destination 
over and over (there is a finite number of nodes). Eventually, X will realize it has been kicked out of 
the ring and join again. It takes at most 3MTRT for p to first reach X ,  return to X and return again 
piggy-bagged. It takes another MTRT at most for X to join. rn 

Lemma 6.6 is modified as follows: 

Lemma 7.2 Suppose there are no multiple equivalent tokens in the ring. Then  if a station performs 
a jo in  operation: i t  jo ins  a ring R whose owner is  also i n  R. Furthermore, no  station i n  such a ring 
is  ever kicked out. Eventually R becomes well-formed. 

Proof The proof is the same as in lemma 6.6. Relay stations are not kicked out, because they also 
transmit a token every MTRT at most. By this and lemma 7.1 it follows that all relays are eventually 
part of the ring, therefore, the ring is eventually well-formed. w 

Lemma 6.7 is modified as follows: 

Lemma 7.3 Suppose there is  a ring which remains non-well-formed f o r  more than A t ime. Then,  
some station goes to state “Idle” during this t ime.  

Proof Let R be a non-well-formed ring during the interval [T,T’], where T‘ > T + A. From the 
definition of well-formed rings, either (a) there is some station y E R such that (.y.PS).NS # y,  or (b) 
there is some relay station which is not part of R. Consider first case (b). By lemma 7.1, the relay 
station will either kick itself out by T’ or join the ring. 

Consider now case (a). Let z = y.PS. Either z passes a token to y during the interval [T, T’], or 
y’s inring-timer expires by time T’, y goes into state “Idle”, and we’re done. Let t’ be the last time 
z passed a token to y in the interval [T, T’]. Now, at time t’, z.NS = y (since x sends the token to its 
NS), but at time T’, z.NS # y. The NS of a station changes only when a station tries to close the ring 
(this cannot happen because of the assumption for no packet loss), or when the station’s inring-timer 
expires and the station moves to “Idle”. Therefore, LC must go to “Idle” during the interval [t’, T‘]. 

Lemma 6.8 can then be proved based on lemmas 7.2 and 7.3. 
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7.2.2 Connectivity 

Lemma 7.4 The  generalized protocol can form a ring over any network topology, as long as any 
station is  connected to at least one other station. 

Proof the proof is by induction on the number of stations. The lemma is true for one station: we 
assume that the station forms its own ring. Let the lemma be true for n stations. Let the n + 1 station 
be z ,  and let z be connected to (at least) x. Let y = NS(x) and let (x = yk,pk-l, . . . ,yo = y) be the 
token route from x to y,  k 2 1. Eventually, x will send a s o l i c i t s u c c e s s o r ( 2  = yk,pk-l, ...,yo = y)  
token. Since z is connected to z, it receives this token and replies. (Possibly other stations reply as 
well: eventually, at, least one of them will succeed in being received by x ,  and let that station be z . )  
Now z can certainly join the ring with token route (2 ,  x = yk, yk-1, ,..,yo = y) ,  or shorter. H 

7.2.3 Hop-count of token routes 

Let (x = y k ,  yk-1, ,..,yo = y )  be the token route from x to y. The hop-count of this route is defined 
to be k .  Let x1,22, ..., x, be the stations in a ring R, and let ki be the hop-count of the token route 
from xi to NSzi. The total hop-count of R is the sum ki.  For example, the total hop-count of 
the rings (a) and (b) of figure 21 is G and 7, respectively. 

A contour of length m is a sequence of stations, 51,  x2, ..., x,, such that: 

1. for all 1 5 i < m, xi # xi+l, 

2. for all 1 5 i < j 5 m, if xi = x~j  then for all i < k < j < I 5 m, xk # 21. 

For example, 1,2,3,4,3,5,3,6 is a contour, but 1,2,3,4,3,4 is not.4 

Lemma 7.5 The length of a contour visiting n different stations is  at most  2n 

Proof: We can prove it by induction on the nesting of the contour. 
Let Co = x1, ..., x, be the initial contour. If all stations in the contour are distinct, then m = n 5 

2n. Assume there is at least one station which appears twice in Co. Choose such a station x, = x ~ j ,  
1 5 i < j 5 m, such that all stations xi+l, ..., xj-1 are distinct (there will be at least one such station, 
by condition 1 of the definition of contour). Now, form a new sequence CI = x1, ...,xi, xj+l, ..., 2,. It 
is easy to check that this will still be a contour. Since all stations xi+l, ..., xj-1 are distinct and no 
longer appear after x j  in Co, C1 visits nl = n - ( j  - i - 1) stations (i.e., j - i - 1 less stations than 
Co). The length of C1 is ml = m - (nl + 1). Cl is smaller that Co in the nesting order, thus, by the 
induction hypothesis, ml 5 2nl * m 5 3n1 + 1 ($ m 5 3n - 3 ( j  - i )  + 4 + m 5 3n - 3 + 4 (since 
j - i 2 I). Since n 2 1, we get that m 5 2n. 

The following lemma says that eliminating some stations from a contour results in a contour. 

Lemma 7.6 If the sequence p = g1, x, ~ 7 2 ,  y, 03 is a contour, where x # y, then the sequence pt  = 
o~ ,z ,  y; 03 is also a. contour. 

Proof: Assume that p’ is not a contour. Since x # y, this must be because there exist z and 711, such 
that pt = CY, z ,  /3,7u, y, z ,  6, w, E .  But then, p wouldn’t be a contour either. 

We next show that the concatenation of token routes in a well-formed ring defines a contour, 
which is preserved by join, close-route and close-ring operations. Therefore, by lemma 7.5, the total 
hop-count in a ring of n stations is at most 2n. 

41ntuitively, a contour can be mapped to the depth-first traversal of a tree, where each time a new stat,ion appears 
in the sequence, it becomes the child of the current station, and each time an old station reappears in the sequence, the 
stack is popped up to that station. In such a search, once a station is popped from the stack, it is not visited anymore. 
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Lemma 7.7 T h e  contour property i s  preserved by jo in ,  close-route and close-ring operations. 

Proof Consider a ring R of n stations, 51, ..., x,, such that NS(xi) = zi+l (addition modulo n) 
and TR(zi) = (zi,y/"1, ..., yk,,  zi+l), where Ici 2 0, i = 1, ..., n. We will show that the sequence p = 

21, y1 , ..., ykl , z 2 ,  y1, ..., yzn is a contour. This is true for n = 1, where the sequence is 1c1, the self-ring 
of station z1. 

Consider the join operation. Let z = xn+l be a station joining between zi and zi+l and let 
01 = 51, ..., zi and 02 = zi+l, ..., yzn. That is, z listens and responds to the sol ici t- successor  of xi, 
becomes NS(zi) and NS(z) = zi+l. The new sequence will be p' = 01, z ,  O, 02, where o is a suffix of 
yYf , ..., y i t .  Now, by lemma 7.6, the sequence 01, o,o2 is a contour. Moreover, z appears only once in 
p'. Therefore, 01, z ,  O, 02 = p' is also a contour. 

Consider now the cIose-route and close-ring operations. These operations only result in some 
stations being removed from p, thus, by lemma 7.6, the resulting sequence, say p", is also a c ~ n t o u r . ~  

i 

1 1 2 

8 Support for Data Forwarding 

Our protocol supports bounded-time medium access. For most applications this is not enough: since 
they also require bounded-time data delivery. Medium-access is equivalent to packet delivery in 
protocols such as Ethernet or FDDI, since the station that captures the medium is also able to 
broadcast its data to every other node in the network in at most the maximum propagation time 
along the network. 

In our case, the destination nodes are not generally all within range of the transmitting node (the 
one that holds the token). Therefore, to reach nodes out-of-range, some routing scheme must be used 
on top of the MAC protocol. We leave the possibilities for this routing scheme open in this paper. On 
the other hand, we want our protocol to provide bounded-time data delivery. To achieve this under 
any reasonable routing scheme, the following modification can be made to the MAC protocol: 

0 Each station A has two FIFO queues, Q, and Qo, where the data packets coming from the 
higher layer (the routing layer) are stored. Qo stores the data packets originated in A,  whereas 
QT stores the packets originated in some other node, and routed through A.  

0 When A receives the token, it does the following: 

- It transmits all packets from Q T ,  without considering the token-holding timer. 
- After having emptied Q T ,  it sets its token-holding timer to THT,,, and proceeds in trans- 

mitting packets from Qo, until the token-holding timer expires. 

If the above algorithm is executed by each station in a network of n stations, and if the routing scheme 
used is acyclic 6,  then the following can be shown: 

The delivery time for a data packet arriving at some station, when the queue Qo of this 
station is empty, is at most 

n(n - l)THT,,, 

In other words, each station is guaranteed to deliver data to its destinations at a minimum rate of 

n(n-1) ' and with bounded delivery time for each packet. 
'-4lthough p" might contain some stations which are not part of the ring, these stations will eventually join, by 

'That is, a data packet originated at some station S follows a path S = i l l ,  A2, ..., A,, = D,  to the destination D such 
lemma 7.2. 

that A, # A, for i # j .  
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A Application Domain: Vehicle Communication 

One of the trends in transportation studies is the application of inter-vehicles communication between 
a vehicle and some infrastructures. The following are two examples of such applications: 

0 Platoon Control ~ In coordinated vehicles manuvers such as platooning, communication capa- 
bilities lead to the design of better algorithms, and may play a fundamental role in stability. 
Here, periodic communication among coordinating vehicles is used to avoid shockwaves in the 
traffic flow due to slow propagation of a perturbation in the leading vehicle trajectory. 

0 Collision Warnings at crossroads - Collision Warning Sytems can be designed relying on vehicle 
positioning devices (such as GPS) and communication capabilities. E.g., when approaching a 
crossroads a vehicle could broadcast a packet containing its position and speed. By receiving 
informations from the others, a vehicle can assess if its trajectory leads to a potential collision 
with others, and notify the driver of this eventuality. 

The first example requires a periodic communication with bounds on the maximum delay a vehicle 
experiences before it can send a packet. The communication is point to point in the sense that a 
vehicle addresses its transmission to another vehicle, even if the radio transmission is intrinsecally 
broadcasted. Depending on the implementation of the control algorithm, vehicles may or may not 
have to be fully connected (i.e. each vehicle being in the transmission range of each other). Even if 
they generally are fully connected, due to the mobility it may happen that a vehicle is temporary out 
of range of another. 

In the second example, we can assume a single bursty transmission when the vehicle is at the 
proper distance from the crossroad. The proper distance is chosen such that the interested vehicles 
are intrinsically fully-connected but still distant enough from the crossroad to allow the driver to safely 
react to the possible warning. As there is no precedent coordination among the vehicles approaching, 
vehicles don’t know each other and they have to broadcast their transmission. 

So,to support an ad-hoc network in the previous applications, a MAC protocol must satisfy the 
following requirements: 

0 provide Quality of Service for periodic traffic. Here by quality of service we mean that it has to 
be possible to specify on design time the amount of data a node is allowed to transmit when he 
gains the right to access the media, and the maximum delay between one access and the next, 
one. Still, the network must be able to provide bursty access when needed. 

0 efficiently support both point to point and broadcast transmissions 

0 be able to deal with (possibly temporary) non full connectivity situation 

Recently IEEE has standardized the 802.11 wireless medium access control protocol. This protocol 
is mostly based on a well known medium access scheme called CSMA/CA. This protocol may be well 
suited for implementation of wirless TCP/IP networks, but we believe it .not to be so efficient for the 
ad-hoc applications we are interested in. 

In the following section we will give a brief introduction on the CSMA scheme that will allow to 
underline the reasons of the supposed inefficiency. 
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B CSMA based schemes 

One of the protocols that is the base of many MAC schemes is the SO called Carrier Sense  Multiple 
Access, that we will explainin assuming (for the moment) a full connectivity situation. Here the idea is 
that whenever a station has something to transmit, it first senses the channel to check if a transmission 
is ongoing. If this is the case, the station waits for some time (tipically by means of a random backoff) 
and then tries again. When the station senses a free channel, it starts its transmission. 

Even if the channel is checked, it may happen than two station start a transmission at approx- 
imately the same time. In this case, due to the characteristics of the media, in a wired scenario is 
possibile to immediately sense the collision, and interrupt the transmission. Unfortunately most of 
the time in a wireless scenario, if all stations transmit with approximately the same power, a station 
listening to the channel while tranmitting could hear only its own transmission, whose power would 
locally overwhelm the others. 

To avoid collision lasting for a long time, a variant of the algorithm called CSMA/CA can be used. 
Here when a station A has something to transmit and the channel is sensed as emtpy, the station sends 
an RTS packet to the destination of the transmission, let’s say B. Any station other than B,  hearing the 
RTS packet will became silent. B will reply with a CTS packet. In these steps, a collision may occur 
between two or more stations sending the RTS packet. The sender will not perceive such collision, but 
the receiver will never hear the RTS and so it will not sent the CTS back. Not hearing the CTS, the sender 
will backoff and will start the protocol again. If the sender receives a CTS back, then it can start its 
data transmission safely. The protocol ensures that collision can occur only between RTS packets, and 
so will be limited in time. In case of high utilization of the channel adding RTS/CTS can improve the 
throughput reducing the time the channel is wasted due to collisions. When the utilization is not so 
high, the performance of and CSMA/CA can be worse than the simple CSMA, due to the overhead of sending 
RTS/CTS before each transmission. In the IEEE 802-11 standard, the RTS/CTS can be enabled or disabled, 
allowing to adapt the protocol to the traffic conditions. 

The CSMA scheme can be affected by the lack of full connectivity. In fact, in such situation sensing 
the channel as free doesn’t really mean that no station is transmitting. Suppose we have three stations 
A, B and c, with B connected to both A and B, but A and c non connected to each other. 

if A is transmitting to B, not sensing it c can decide to start its own transmission to B, resulting in 
a collision. This situation is known as “the hidden terminal” problem. 

If sensing a channel as free doesn’t necessarily mean that none is transmitting, sensing it busy 
doesn’t necessarily mean that a transmission couldn’t be succesfully done. Let’s assume there is one 
more station D, which is connected to A and c. Now, if A is transmitting to B, D will sense the channel 
as busy. Nevertheless, D could transmit data to c which would receive it correctly. This situation is 
know as “the exposed terminal” problem. 

The CSMA/CA scheme instead works pretty well with a few additions. In this case, the collision 
may happen in any way between RTS and CTS, but is very unlikely to happen between data and some 
other packet. Here the idea is that when station A sends the RTS, all the stations hearing it will became 
silent. Possibly there may be a station which is not in the transmission range of A, but is in the 
transmission range of B. Not hearing the RTS, such station may send packets while A is sending its data 
to B. To avoid this, the protocol requires that station hearing a CTS packet will became silent too. So, 
after a sequence of RTS/CTS has been produced, all the station in range of A or B have become silent. 
There are particular situations in which this scheme doesn’t work, but they are very limited and so 
the number of collisions on data remains very low. 

We can now examine the CSMA/CA scheme with respect to the requisites we have identified for 
our ad-hoc network. 
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QOS for periodic traffic .- The CSMA/CA scheme doesn’t provide any bound on the medium alloca- 
tion delay. The scheduling among nodes which are willing to transmit is purely statistical and 
depends on the implementation of the random backoff algorithm. Control algorithms require 
guarantees of support for periodic traffic which can not be provided in this case. 

efficiently support both point-to-point and broadcast transmission - As we mentioned, the CA 
part of the CSMA/CA scheme can not be applied in broadcast situations, where an RTS could be 
received by an undefined number of stations. Without collision avoidance, the CSMA scheme 
becomes much more inefficient. This means that. even if the network designer may be able to 
associate a probability distribution to the delay in the medium allocation based on the study of 
the behavior of the scheme, this distribution would be totaly different (and much worst) in case 
of broadcast transmissions. 

be able to deal with loss of connectivity - CSMA/CA is able to deal with loss of connectivity, but CSMA 
alone is not. This means that, if the application is known to produce (even temporary ) lacks of 
full connectivity, the RTS/CTS scheme must be always enabled, even in low traffic conditions. As 
RTS/CTS introduces an overhead, this may affect the performance of the system. 

Comparison with the IEEE 802.4 Token Bus Protocol 

The Token Bus MAC protocol 

In a wired scenario, one of the protocols that provides QOS (in the sense previously assigned to this 
term) is the Token Bus Protocol. A standardization of this protocol was defined by IEEE in the 
802.4[2] specification. In a token bus network a set of stations is connected to a common bus, and 
at any given time a single station is allowed to transmit. The station is said to “have the token”. 
When the station has no more data to send or when its time slot expires, it sends a special packet 
(called “token”) to a logical successor, which in turn will be able to transmit. The token is passed 
from station to station in a virtual ring. By knowing the number of station in the ring its possible to 
compute the time each station is allowed to keep the token so that the period of the channel access is 
bounded. 

A station can transmit in a point-to-point or broadcast fashion without introducing any difference 
in the performance of the protocol. 

So, apparently, two of our requirements seem to be satisfied by the token bus architecture. Unfor- 
tunately, the 802.4 specification relies on some assumption that are no longer valid in our case, such 
as full connectivity, and the ability to detect collisions at the source. 

This considerations lead us to the design of a new specification for the token bus protocol specifically 
targeted to wireless networks. To achieve this result, some of the assumptions of the standard were 
relaxed, finding new solutions for the parts of the algorithm that resulted to be affected. 

First of all, our specification never assumes full-connectivity among nodes. As previously ex- 
plained, this fact leads to the impossibility to use carrier sensing as a reliable tool to avoid collisions. 
It will be shown that another implication is that contention among nodes willing to join a ring can’t 
be resolved by any node due to different views preceived by different nodes. 

Our protocol never assumes the possibility of receiving an invalid packet. This coincides with the 
following assumption: 
whenever a packet is sent by a station, the physical interface of another station may: 

0 not receive the packet at all; 

0 receive the packet, check its integrity, and discard it due to a CRC error; 
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0 receive the packet, verify its integrity and pass it to the MAC layer 

There are two reasons for this difference with the 802.4 definition, which explicitly distinguish 
among correct reception/noise reception/null reception. 

First of all, completely loosing packets, which is assumed to be very unlikely in the 802.4 scenario, 
becomes much more probable in a non fully-connected situation. Also, while in the first case hearing 
noise is very likeley to mean collision, in a wireless scenario it may simply happen due to external 
electromagnetic interference. In this case, the packet may be so corrupted that the phyisical layer 
can’t even distinguish it from channel noise. 

So, both noise and silence partially loose their strong symptomatology. 
Another reason for not distinguishing between invalid packets and silence is purely a simplification 

of the interface between the MAC and the physical interface. In fact, as most of the off-theeshelf 
radios perform CRC checking in hardware passing to the upper layers only valid packets, dealing at 
this level simplifies the implementation of the protocol over different radios, providing a more portable 
solution. 

C.2 Comparison with IEEE 802.4 

C.2.1 Joining a Ring 

In the 802.4 standard, a node in the ring outputs a so l i c i t succes so r (A ,B)  packet where A is the 
address of the sender and B is the address of its successor. As all the node not yet in the ring hear that 
packet, to reduce the contention only those node whose address lies in the range (A, B) are entitled to 
participate in the following phases of the join protocol. Note that this condition implies that the ring 
grows remaining ordered with respect to the MAC addresses of its nodes. 

A node entitled to join replies with a s e t s u c c e s s o r  packet and then start listening to the channel. 
If this was the only node willing to join, A will clearly hear the set- successor and will reply with the 
token. Hearing the token, the new node will know that it has been admitted in the ring. 

If more than one node sent the set- successor ,  then A hears only noise, which is (correctly) inter- 
preted as a collision of set- successor packets. In this case A replies with a resolve-contention packet. 
Hearing such packet, each contender waits from 0 to 3 slots of time, depending on the first two bits 
of its MAC address. While waiting, the contender listen to the channel; if a s e t s u c c e s s o r  from other 
stations is heard, the node loose the contention. If nothing is heard, then the contender sends again 
its set-succesor packet. 

Again, it may happen that two or more station having the same first pair of bits in the MAC 
address collide while sending the s e t s u c c e s s o r .  In this case, A will send again a resolve-contention 
packet and the condenders will use the next pair of bits from their MAC address to try resolving the 
contention. Assuming that two station can’t have the same MAC address, the procedure will lead to 
a single node joining the ring in a fixed amount of time. 

Let’s now examine the previous procedure in a wireless scenario where full-connectivity is not 

First of all, reducing the number of contending stations according to the range specified by the 
address of the so l i c i t - succes so r  sender and the address of its successor isn’t a reasonable solution. 
In fact, a station who is ready to join a ring may be in range only of a few stations whose addresses 
are not correct in the sense of the previously explained scheme. 

For what concerns contention resolution, the 802.4 protocol assumes that a node abandon it when 
hearing other contenders sending their s e t s u c c e s s o r  packets. This scheme fails when full-connectivity 

ensured. 
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is relaxed, because two contenders can be in range of the so l ic i t - successor  sender but not in range 
of each other. 

It‘s therefore evident that the only node entitled to resolve the contention is the so l ic i t - successor  
sender. Unfortunately there is no deterministic way for such node to resolve the contention in a fixed 
amount of time. If there are node willing to join, the 802.4 protocol ensures that exactly one node 
joins the ring. Due to the previously explained limitation there are two possible choice while designing 
the protocol: 

0 keeping the joining subprotocol bounded in time, accepting the sideeffect that possibly no node 
will join the ring even if there are node who are willing to; 

0 relaxing the time bound and using a non deterministic iterative algorithm that terminates when 
one node joins the ring. 

The first solution was choosen in the WTBP design, considering prioritary the QOS provided to 
the node inside the ring with respect to those not yet in it. 

Our join algorithm works as follow: 
a node A in the ring sends the sol ici t -successor(A,B) packet, where B is the address of A ’ s  successor. 
Any node who is willing to join and hears this packet, check its connectivity to B by examining a 
connectivity cache that was built by listening to the channel (the node is connected to A because it 
heard its transmission). Those node who are connected to B pick a random delay within a response 
window and then send a s e t s u c c e s s o r  packet to A .  After sending the so l ic i t - successor  packet, A 
listen to the channel for the whole response window. During this time A will hopefully hear a valid 
set- successor  packet (possibly preceeded and/or 

followed by some colliding packets). If after the response window at least one valid set- successor  
was heard, one of the sending stations is picked as new successor for A and the token is sent to it. If 
no valid set-successor is heard, A continues with the normal token ring protocol, passing the token 
to its successor. 

C.2.2 Claiming the Token 

In the 802.4 protocol, whenever a station sense an empty channel for a certain amount of time, the 
token is assumed to be lost and the station contends in the creation of a new token. 

Again, in our case, contention among all the stations claiming the token is not possible, because 
they may not be in range one of each other. Therefore, in addition to resolve the contention, the focus 
was shifted on implementing a sophisticated algorithm for multiple tokens detection and deletion. 
Other than for multiple tokens (tokens generated by different stations in the ring), this algorithm is 
applied also to eliminate duplicate tokens, i.e. copies of the same exact token. 

Duplicate tokens can be generated in the following situation: after a station A sends the token to 
its successor B, it listen to the channel for an implicit acknowledgment of the token reception. The 
acknowledgment consist of hearing the successor sending some valid packet. Due to the conditions 
of the wirless media, even without any other node transmitting, the implicit acknowledgment can be 
lost (e.g. due to electromagnetic interference). In this case, A will assume that the token was never 
received by B and will try to send the same token again, so generating a duplicate token situation. 

To discover and delete multiple or duplicate tokens our protocol assume that the token contains a 
sequence number (GenSeq) and the address of the generator of the token ( RA) ,  which is called “owner 
of the token”. Moreover, each station remembers the GenSeq and RA values of the last token it sent 
out. 
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When the owner of the token sends the token, it first increment its GenSeq number. Therefore, this 
number represent the number of rotation of the token in the ring. 

When a station receives the token, it first check if the token’s GenSeq value is less than its own 
GenSeq. If this is not the case, then the token is older than some token that passed through this station, 
and so it’s deleted. If the two GenSeq values are the same, and the RA values are the same, then the 
token is indistinguishable by the previous one received, and so it’s considered to be a duplicate. If 
the two GenSeq are the same but the RA is different, the ring is in a multiple tokens situation, possibly 
generated due to a claim token operation. In this case, the station deletes the token if this has a RA 
less then the one of the previous token sent, so establishing a priority in the tokens according to the 
MAC address of the generating stations. 

C.2.3 Passing the Token 

In the 802.4 protocol, after sending the token a station enter in a state where it waits for reactions 
from the station it transmitted to. The station waits one slot-time, which accounts for the time delay 
between sending the token frame and the arrival back at the sender of the corresponding response. 

During this delay, one of the following branches is taken: 

0 If a valid frame is heard that started during the response window, the station assumes the token 
pass was successful. 

0 If nothing is heard, the station assumes that the token pass was unsuccessful and tries to pass 
the token again (or passes to another strategy if this was already the second trial). 

0 if noise or an invalid frame is heard, the station continues to listen for additional transmissions. 

As previously explained, in our specification either valid frames are received by the MAC layer or 
nothing is heard. Due to the bigger probability of noise and packet corruption, the window for the 
implicit acknowledgment may be bigger than in the wired case. 

Suppose station A sends the token to its successor, station B. Even with a bigger window, A may 
miss A’s transmissions, e.g. due to some noise corrupting A’s reception (note that it may be the case 
that only A’s reception is compromised, while the transmission is correctly received by the destination). 
In this case A will send its token again, again waiting for an implicit acknowledgment. As B already 
sent the token, it will not forward this second copy of it to avoid duplicate tokens to circulate in the 
ring. Unfortunately, simply ignoring the second copy of the token wouldn’t work, because A would 
assume a second failure of B and would try to close the ring with B’s successor. So, in this situation, 
B will generate an explicit acknowledgment for A.  

Of course: this acknowledgment can get lost too, in which case B will be left out of the ring, and 
will join it again in the next s o l i c i t - s u c c e s s o r  turn. 

D Detailed Description of the Protocol 

In this section we give a detailed description of the protocol which maps directly to the implementation. 
We have used a hybrid automaton model extended with C++ code to specify our protocol. We have 
used the tool Teja which takes as input a hybrid automaton model, performs simulations and generates 
C++ code for various platforms as the implementation of the model. We first explain the model and 
then describe the WTBP in detail. 
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D.l A Hybrid Automaton Model 

In a simple description, an hybrid automaton is a paradigm used to modelize systems alternating 
phases of continuous behavior. Within a phase, the system evolution is regulated by a flow describing 
continuous evolution of the state in time. The flow is a set of differential equations describing how 
continuous variables, representing the continuous state, change in time. When this evolution produces 
certain conditions, or due to external events, the system moves to a different phase, where a different set 
of equation is regulating its flow. By representing each phase with a state of a finite state machine and 
by drawing transitions from a state and all the possible subsequent phases, a graphical representation 
of the system is obtained. This states will be called discrete states to distinguish them by the set of 
continuous variables. 

In addition to continuous variables and discrete states, the status of the system includes discrete 
variables. Discrete variables are not modified during the continuous evolution of the system, when 
the finite state machine is sitting in a given state. However, when a transition is taken to move from 
a phase to another, an action associated with the transition can modify the value of both discrete and 
continuous variables. From a teorethical point of view, actions are executed in no time7 

In a more precise definition an hybrid automaton is a finite state machine, characterized by the 
tuple { S,  C, 0, I ,  T }  where: 

0 S is the set of discrete states, corresponding to the states of a traditional automaton. A discrete 
state has a flow associated describing how continuous variable have to evolve in its corresponding 
phase 

0 C is the set of the continuous states. A continuous state ci is a variable representing a real 
number whose evolution is determined by the flow applied in the current discrete state. 

0 0 is the output of an automaton. It’s composed by a tuple {V, L ,  F } ,  where: 

- V is the set of (discrete ) variables. In Teja’s model a variable can be of any C/C++ 
standard or user-defined type 

- L is the set of links. Links are reference to other automaton instances. 

- F is the set of functions. Functions provide an abstract interface to the internal state of 
an automaton, but they can also be used to factorize code shared by actions of different 
transitions. 

0 I is the set of the input variables. An input variable of an automaton Ai is simply an alias for 
a discrete variable of a different automaton Aj. 

0 T is the set of transitions, where ta ,b  E T is a transition going from the discrete state a to the 
discrete state b. Each transition has a guard. The guard may be a boolean condition or the 
comparison of a continuous variable with a given value. Whenever a boolean guard evaluates 
to t r ue ,  or the continuous variable passes the comparison value, the transition is said to be 
enabled.’ 

Transitions can produce output events. An output event is an event issued by the automaton, 
directed to one or more automata. The event carries a state which can be set in the issuing 

7When running a simulation based on hybrid automatons, actions execution doesn’t consume simulation time. How- 
ever, when the hybrid system paradigm is applied to realtime control, actions are implemented in terms of code that 
requires a certain time to be executed. 

Teja’s guards can be more complex and are always evaluated into a time delay before the transition can be enabled, 
but for the sake of presenting our model the give description is precise enough. 
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transition, and is characterized by an event label. An output event generated by an automaton 
is propagated to other automata according to a dependency list. Each automaton has a different 
(possibly empty) dependency list for each event label, including all the automata who should be 
interested in the event. How receiving automata reacts to the propagated events depend on the 
current discrete state they are in and the type of transition exiting from that state. 

The action of a transition can also produce an Alert. There is a similarity between alerts and 
events, in the sense that they’re both mechanism that can be used to communicate informations 
across automata. However, alerts are generated by one automaton running in a process and 
addressed to an automaton running in a (possibily) different process. Output events are multicast 
(generated by an automaton and propagated to many) and synchronous (actions of transitions 
triggered due to the event reception are executed immediately after the action of the triggering 
transition, and in simulation no time passes), while alerts are point-to-point (automaton to 
automaton) and asynchronous, because there is no common clock shared by different processes. 

There are three type of transitions: 

- proaction: if enabled, the transition can be taken at any time, without the need of any 
event/alert 

- reaction: A reaction is characterized by an event label which identifies the event type the 
reaction is interested in. To be taken, the transition need to be enabled and an alert from 
an automaton running in a (possibly) different process must be sent to the this automaton. 
The alert must have the same label characterizing the reaction. 

- response A response is characterized by an event label which identifies the event type the 
reaction is interested in. To be taken, the transition need to be enabled and an event with 
the same label must be generated by an automaton Aj running in the same process as the 
automaton Ai containing the response. Aj must have Ai in its list of dependents for the 
specified event label. 

Each transition has an associated action. The action is a sequence of statements that can modify 
the automaton in different ways. Among the possible actions there are: 

- reset continuous or discrete variables and links; 

- creating new components; 

- creating/destroying connections to processes; 

- sending Alerts to connected processes; 

- modify event propagation; 

- running generic C/C++ code 

D.2 Hierarchical specification 

The MAC protocol here proposed can be seen at an high-level view, by distinguishing a certain number 
of macro-states of the system. Example of this states are the “join state”, where the stations tries 
to enter in a ring, or the “have-token state”, where the station has received the token and uses it. 
Each macro-state can be exploded in a hybrid automaton describing the details of the behavior of 
the system in this particular state. This hierarchical view is very convenient because it simplyfies 
designing a clean, understandable and maintainable specification. To implement this hierarchical 
design methodology, appropriate design conventions were adopted. 

Every automaton corresponding to a macro state has a state called start. 
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Figure 25: Hierarchical design for hybrid automata 

Let Ai be the autonlaton corresponding to the ith macro state, and T a , b  be the set of transition 
going from state a to state b. Let also s ta t e t (A i )  be the state of the automaton Ai at time t .  The 
following applies: 

0 At any given time during the continuous evolution of the system it exist one and only one i s.t. 
s ta t e t (A i )  = start 

0 Whenever an automaton Ai takes a transition from a state to the s tar t  state, this transition 
is synchronized with a corresponding transition that takes another automaton out of its start  
state. 

This scheme allows to implement a complex automaton in terms of many simple automata. Also, 
the state the corresponding macro-automaton is in corresponds to the only automaton not being in 
its s tar t  state. 

A possible way of implementing this scheme is the following: the system is composed by the macro- 
automaton and each of the low level automata. Whenever the low-level automaton Ai corresponding 
to the macro state i takes a transition entering in the s tar t  state, such transition outputs an event 
directed to the high-level automaton. This event triggers a transition from the macro state i to a 
macro state j ,  which in turns generate an output event directed to the low-level automaton Aj. This 
event takes the automaton Aj out of its start state. Fig 25 shows an example of the three-automata 
synchronization scheme. In this figure and in the following ones, these conventions were adopted: 

0 for responses, the input event label is shown on the transition arc 

0 if an output event is generated by a transition, its label is shown on the transition arc prefixed 
by a "/" (slash) sign. 
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0 Offline 

Figure 26: Wireless Token Bus high level FSM 

Observing the figure you may have noticed that instead of just taking a single transition, the 
macro-automaton takes a two-transitions step to move from state S1 to state S2. The reason for this 
is related to Teja’s model. In fact, Teja’s model doesn’t allow a response to generate an output event, 
so in the real implementation the transition in the high level automaton is splitted into two transitions 
with an intermediate state. The first transition is the response triggered by the event generated by the 
first low-level automaton entering in the start state, while the second transition is the one outputting 
the event to take the second low-level automaton out of its start state. The intermediate state is 
called transient, because it’s a temporary state where the automaton is not supposed to spend any 
time (at least in simulation). 

D.3 High-level automaton 

In this section a description of the macro-automaton showing the high-level view of the WTBP will 
be provided. The reader will notice that the automata shown here are different than the ones shown 
in section 5. In fact, the two specifications are equivalent, and we have used the latter in the main 
text to make the description and the proof easier to follow. 

The (high level) macro-automaton is shown in Fig 26 on page 44 . Events used to synchronize the 
low level automata with the macro automaton are shown on the transitions. 
A description of each state follows: 

0 Offline - The station is not active. 

The station will leave this state when turned on, after a short initialization period, going to the 
Offring state. 
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0 Offr ing - The station is active, but it’s not part of any ring. In this phase the station will listen 
to the channel to gain a knowledge about the topology of the network. In particular, the station 
will possibly build an internal representation of its connectivity to any ring. This knowledge can 
be used later t,o take decisions about what ring to join and in what position. 

The station can leave this state due to two different events. 

The first event is a s o l i c i t s u c c e s s o r  packet broadcasted by another node being in a ring. In 
this case, and if it is interested in joining the ring of the sender of the packet, this node will 
move to the Enter state, where the protocol to join a ring is carried on. 

The second event is an indication from an upper layer in the protocol stack to create a new ring. 
In this case the station will move to the Claim-token state. 

0 Enter - Periodically some node in a ring may broadcast a so l i c i t - successor  packet. The role 
of this packet is to open the possiblity for stand-alone nodes to join the ring. If a node in the 
Offr ing state is interested in joining a ring, it will enter in the Enter  state. 

The sub-protocol active in this state may fail, in which case the station will go back to the 
Offr ing state, or succeed, in which case the station will move to the Have-Token state. 

0 I n r i n g  - The station is inside a ring, and it currently doesn’t have the token. In this state the 
station basically waits for a packet to move to a different state. Actually, the station will listen 
to the channel updating its knowledge about its current connectivity on the basis of the packets 
heard. 

From this state, t,he station can go to many other states. 

If a token is received, the station goes to the Have-Token state. 

Due to an indication coming from the upper layers of the protocol, or having noticed that it has 
been thrown out of the ring, the station can move to the Offr ing state. 

If for a time Toffring this token’s ring is heard but never received, this node assumes that it has 
been left out of the ring and it moves to the Offr ing state. 

If for a time Tnotoken this token’s ring is not heard, then this node assumes that the token has 
been lost and moves to the Claim-Token state, where it will generate a new token. 

If for some reasons the successor of a node A decides to leave the ring gracefully, A may be asked 
to attempt to close the ring with one of the nodes following A’s successor. In this case A will 
receive a set- successor packet and will move to the CloseRing state. 

0 Have-Token - In this state the station has the token and so it’s entitled to transmit data packet 
for a certain amount of time (Token Holding Time). If the station has no data to transmit and 
there is enough time to complete such subprotocol, a so l i c i t - successor  packet will be broadcast 
and the subprotocol will be carried on. 

When the station has completed sending data or soliciting a successor, or if the token holding 
time has expired, it moves to the Pass-Token state. 

0 Pass-Token ~- The station is passing the token to its successor. After sending the token, the 
stlation waits for an implicit aknowledgement from the successor. The implicit acknowledgement 
consists of hearing the successor sending the token to the next station. If the acknowledgement 
is not heard, the station sends the token again. If again the token is not heard, the station 
assumes that its successor is unreachable and moves to the CloseRing state. Note that even 
if the successor has received the token, the implicit acknowledgement can be missed by its 
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predecessor due to a garbling of the transmission. This garbling may happen even if there are no 
other stations transmitting, due to some external electromagnetic disturbance. This situation 
would result in the generation of multiple tokens in the ring. To reduce this probability, the 
station rnay decide to wait some more time and listen to the channel, hoping to hear an implicit 
acknowledgement from any of its successor’s successor. 

If the token passing succeed, the station moves to the I n r i n g  state. 

A special case is handled in this state. When the station has just created a new ring and therefore 
is alone in it, the token doesn’t really need to be passed. To keep the model simple and avoid 
generating a special set of states to cope with this situation, the station simulates sending the 
token to itself (there is no real transmission involved). 

CloseRing - The station have to try closing the ring. This may be due to two different cases. 

In the first case, the station was unable to send the token to its current successor (i.e. no implicit 
acknowledgment was received). Here the station will set its successor to the next station and will 
move to the Pass-Token state again. To accomplish this operation, the station has to know the 
address of the successor’s successor. This knowledge comes from the connectivity information 
which are collected while the token is rotating in the ring (see I n r i n g  state). Due to a bad 
connectivity, the station could be unable to close the ring without leaving ‘(too many” nodes 
out. If this is the case, the station may decide do kick itself out of the ring, passing the task of 
closing the ring to its predecessor. This leads to the second case of closing the ring: the station 
receives a set-successor packet coming from its successor because this last one is leaving the 
ring. In this case the packet contains an indication of the number of times the set-successor has 
been sent backward, so that the receiving station knows who in its image of the ring it should 
try to close the ring with. 

Claim-Token -- The station enters in this state either because it was in a ring and the token was 
lost, or because a new ring containing only this node has just been created (see Pass-Token state 
for further information about this special case). 

D.4 Low-level automata 

In this section the detailed description of the protocol will be given by showing each of the low-level 
automata representing a macro-automaton. For automata figures, The same graphical convention 
previously adopted for indicating input and output events will be kept. Moreover, some transition 
will be have a slanted label associated to it. This doesn’t correspond to any event, but it’s just used 
to refer to the transition within the document. 

D.4.1 Offring Automaton 

When a station is initially turned on, after an initialization phase it moves to the o f f r i n g  macro-state, 
triggering the transition that moves this low-level automaton to the o f f r i n g  state. Two events may 
happen taking the low-level automaton back to the start state: 

A s o l i c i t s u c c e s s o r  frame broadcasted by a node in a ring may be received. In this case the 
automaton goes to the start state generating a s o l i c i t s u c c e s s o r  output event. This event will 
start the chain of transitions taking th  macro-automaton from the o f f r i n g  to the e n t e r  state 
and the corresponding low-level automaton from the start to the demand-in state. 
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/solicit-successor 

Figure 27: Low-level automaton for macro state Offr ing 

0 an indication from an upper layer is given to the MAC to create a new ring all alone. This 
event will start the chain of transitions taking th macro-automaton from the o f f r i n g  to the 
claim-token state and the corresponding low-level automaton from the start to the claim-token 
state. 

D.4.2 Inring Automaton 

While a node is inside a ring waiting to receive the token the macro-automaton is in the i n r i n g  state. 
The corresponding low-level automaton is usually in the i n r i n g  state. Here follows the description of 
each state: 

0 i n r i n g  - In this state the automaton waits for any frame coming from t-he ring, or for a timeout. 
The outgoing transitions are: 

- got-frame - triggered by the reception of a frame from this ring 

- no-token - if no token is heard by this station for at most MAX-IDLE-TIME, then the token is 
assumed to be lost and this transition is triggered. This transition output a no-token event 
taking t,he macro-automaton to the claim-token state. 

- exit-ring - if no token is received by this station for at most MAXJO-TOKENRECEIVED, the sta- 
tion assumes it has been left out of the ring. As MAX-IDLE-TIME is less than MAXJO-TOKENRECEIVED, 
if the timer associated to the latter expires it means that the one associated to the first 
didn’t, i.e. the token hasn’t been received, but it has been heard circulating in the ring. 
This transition outputs the e x i t l i n g  event taking the macro-automaton to the o f f r i n g  
state. 

0 got-frame - the automaton enters this state when a frame from the ring is heard. If the frame 
is addressed to this station, the automaton moves to the for-us state, otherwise it moves back 
to the i n r i n g  state. 

0 for-us - the frame heard is addressed to this station, and it must be processed differently 
according to its type. The outgoing transitions from this state are: 

- valid-token - the frame is a token and it’s coming from this station’s predecessor. In this 
case a t o k e n l e c e i v e d  event is output that takes the macro-automaton to the have-token 
state. 
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Figure 28: Low-level automaton for macro state I n r i n g  

- set-successor  the frame is a s e t s u c c e s s o r ,  i.e. this station is asked to change its successor. 
The transition outputs a s e t - s u c c e s s o r  event taking the macro-automaton to the c l o s e r i n g  
state. 

- set-predecessor - The frame is a valid s e t - p r e d e c e s s o r ,  i.e. it’s a se t - p redecesso r  and it 
has a GenSeq value equal to, or one more than the station’s GenSeq. The transition outputs 
a t o k e n r e c e i v e d  event that takes the macro-automaton to the have-token state. 

- data-frame - the frame is a data packet, and it’s enqueued to the upper layer. 

- ignore - the packet is none of the above and so it’s ignored 
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Figure 29: Low-level automaton for macro state Enter 

D.4.3 Enter Automaton 

When a node out of a ring and willing to join has received a s o l i c i t s u c c e s s o r  packet, its macro- 
automaton moves to the en t e r  state, and the e n t e r  low-level automaton moves to the demand-in state. 
A description of states and outogoing transitions from each state follows. 

demand-in -- after receiving the s o l i c i t s u c c e s s o r ,  the station replies with a set- successor  to 
notify its desire to join. However, to reduce the probability of collisions, nodes contending in 
joining are de-synchronized by delaying the set- successor  by a random amount of time between 
0 and MAX-CONTENTION-TIME. this is the state where the node waits for the random delay, unless 
some other condition applies or event happens (see outgoing transitions). Outgoing transitions 
are: 

- successor-nonreachable ~ before starting to wait, the connectivity to the successor men- 
tioned in the so l i c i t - succes so r  packet is checked. If this node appears not to be connected 
to the successor, then this transition is taken to the f a i l  state. 

- send-set-successor - the random delay has expired and the station is free to send its 
set- successor  packet, moving to the demand-delay state. 

- newframe - while waiting for the random delay, a frame from the same ring of the node who 
sent the s o l i c i t s u c c e s s o r  is heard. This condition leads to the abortion of the attempt 
to enter, because it’s synlptom of activity in the ring. 

demand-delay - in this state the station waits for the expiration of the time window dedicated to 
the entering process (MAXINTERING-TIME). Outgoing transitions are: 

- got-token - if a token from the node who sent the so l ic i t - successor  arrives before the 
timer expires, the station has successfully joined the ring. The transition goes to the 
success  state. 

- wrong-frame ~ if a frame from the ring other than the token arrives, the joining has failed. 

49 



- timer-expired ~ If the automaton has spent MAXINTERING-TIME in the demand-delay state, 
the joining has failed. 

0 f a i l e d  ~ this is a transient state with a single transition that outputs the e n t e r f a i l e d  event 
taking the macro-automaton to the o f f r i n g  state. 

0 success - this is a transient state with a single transition that outputs the enter-ok event taking 
the macro-automaton to the have-token state. 
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/pass-ok 

pass-token 

noJrarneJrorn-ring 

discard-new-successor 

Figure 30: Low-level automaton for macro state Pass-Token 

D.4.4 Pass-Token Automaton 

This automaton att,empts to pass the token to the next station in the ring. A description of states 
and their outgoing transitions follows. 

0 pass- token -- the station is ready to pass the token. This transient state has a single outgoing 
transition: 

pass-token that sends the token to the successor. If the station has just joined or closed 
the ring, a s e t - p r e d e c e s s o r  token is sent, otherwise a normal token  is sent. 

0 check-pass - once the token has been sent, the station waits for at most TOKENPASS-TIME listening 
to the channel. Outgoing transitions from this state are: 

- f i -ame-fromring - if a frame is heard from the ring, the station assumes that either the 
token has reached the successor and this one has started some transmission (implicit ac- 
knowledgment), or some other node in the ring has the token (multiple tokens). In any 
case, the station doens’t try to send the token again. 

- no-frame-from-ring ~ If the timer expires without receiving any frame from the ring, than 
the transmission of the token has failed and a retransmission is attempted in this transition. 

0 check-pass1 - this state is equivalent to the previous one, except that if again no acknowledgment 
is heard, the successor is assumed to be unreachable and, a transition outputting the pass- f a i l e d  
event is taken. This event takes the macro-automaton to the c l o s e r i n g  state. 
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/close-ring-failed 

go-close-ring 

Figure 31: Low-level automaton for macro state CloseRing 

D.4.5 Close-Ring Automaton 

This automaton takes care of finding an appropriate node to close the ring with. The station can 
reach this macro-state due to the reception of a set-successor packet or due to the impossibility to 
pass the token to the successor. One of the two following conditions is possible: 

1. a “suggested successor” is available. This could be the NS field of a received s e t s u c c e s s o r  or 
the node immediately after the current successor if it was impossible to pass the token. In this 
case the station checks the connectivity to the suggested node, and outputs the closexing-ok 
event if the node is connected, the c l o s e l i n g f a i l e d  otherwise. The c lose r ing-ok  event takes 
the macro-automaton to the p a s s l i n g  state, while the c l o s e x i n g f  a i l e d  takes it to the of f r i n g  
state. 

2. a number of nodes to be skipped when searching a successor is available. This situation happens 
if the current successor volunteerly left the ring. As such node doens’t know the connectivity 
of its predecessor, instead of sending a set- successor  frame indicating its successor, it specifies 
the number of nodes to be skipped by the predecessor when searching a new successor. The first 
set-predecessor specifies one, but if the predecessor is unable to close the ring he will send the 
same packet with a value of two, and so on. 
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/claim-token-ok 

Figure 32: Low-level automaton for macro state Claim-Token 

D.4.6 Claim-Token Automaton 

This very simple automaton just generates a new token according to the current value of the station 
state (RA, GenSeq, Seq).  The station may enter in this state because the previous token was lost or 
because the station just formed a ring on its own. 

excluding the start  state, the only state of this automaton is claim-token.  It’s a transient state, 
and the only outgoing transition outputs an event that takes the macro-automaton to the have-token 
state. 
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Figure 33: Low-level automaton for macro state Have-Token 

D.4.7 Have- Token Automaton 

In this state the station may transmit data or solicit new nodes to join the ring. States and their 
outgoing transitions are: 

0 have- token ~ this transient state is reached when a token is received or claimed. Outgoing 
transitions are: 

token-deleted - if the token does not satisfy certain constraints, it's deleted and the 
token- de le ted  event is output taking the macro-automaton to the i n r i n g  state. Here follows 
the set of conditions that applies: 

1. the token GenSeq is less than the station GenSeq (the token is old), and the token RA is 
equal to this stations' TS (it was generated by this station); 

2. the token has the same value of GenSeq of the station or less (the token is old) and it's 
coming from this station's ring; 

has a ring address lower than this station's ring address; 
3. the token has the same value of GenSeq of the station or less (the token is old) and it 

If any of the previous condition was true, this transition is taken and the token is deleted. 
- refresh-token ~ if the token wasn't deleted and this station is the one who generated it (the 

token's RA matches this station's TS), then the token must be refreshed. Refreshing the 
token means increasing it's GenSeq number by one. 

- no-refred-token - if the token wasn't deleted but was not generated by this station, let's 
just move to the updatemem 

updatemem this transient state is just used to join the two previous transitions into the up- 
date-mem transition, where part of the state of the station (Seq and GenSeq) is updated according 
to the token content. 

data- to- send? - in this state the station check if there is any data packet to send. 
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- send-data - if there is at least one data packet to send, and there is enough time to do it, 
the packet is sent. As there is a maximum time the station is allowed to keep the token 
(MAX-TOKENHOLDING-TIME), the data transmission must fit in what remains of that time. 
This implies that data packet as seen by the MAC layer must fit in MAX-TOKENHOLDING-TIME 
minus the time required to reach the data- to- send? state from when the token is received 
and the time required to send the token once and obtain the implicit acknowledgement. 

- pick-ss-prob - once all data packets available have been sent or there is no more time to 
send them, the this transition picks a random value used in the s h o u l d - s o l i c i t  state. 

0 send-data ~ the MAC waits in this state for the time that it takes to the physical layer to send 
the data packet, and then it goes back to the data- to- send? state ’. 

0 shouldsolicit? - after data has been sent, the station may decide to let one other station join. 

- send-solicit-successor - if enough time remains for a solicit successor phase, and with prob- 
ability P-SOLICITSUCCESSOR, this transition is taken. The probabistic behavior is obtained 
by means of the number randomly extracted in the pick-ss-prob transition. This transition 
sends a s o l i c i t - s u c c e s s o r  packet and takes the automaton to the wait-ss-window state. 

- token-used - if no solicit successor phase is started, this transition is taken. The transition 
outputs a token-used event taking the macro-automaton to the i n r i n g  state. 

wait-ss-window - once a s o l i c i t s u c c e s s o r  packet is sent, the station waits in this state for at 
most SOLICITSUCCESSOR-TIME. 

- got-frame - if a frame is received, the automaton moves to the g o t f r a m e  state, where it 
recognizes the packet. 

- token-used - when SOLICITSUCCESSOR-TIME has passed, the automaton moves back to the 
start state with this transition. A token-used event is output taking the macro-automaton 
to the pass- token  state. 

0 got-frame - if the received frame is a d a t a  frame for this station, it’s passed to the upper layer; 
if it is a s e t - s u c c e s s o r  for this station, then it’s assumed to be sent by one of the node willing 
to join, and that node’s id is set as the new successor. Any other packet is ignored. In any case, 
the automaton comes back from this transient state to the wait-ss-window state. 
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