UC Irvine

SSOE Research Symposium Dean's Awards

Title

Rogue: UCI's First All-Wheel-Drive Off-Road Vehicle

Permalink

https://escholarship.org/uc/item/22c8g738

Authors

Diaz, Alan Evenich, Yavin Luu, Natalie <u>et al.</u>

Publication Date

2023-03-15

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

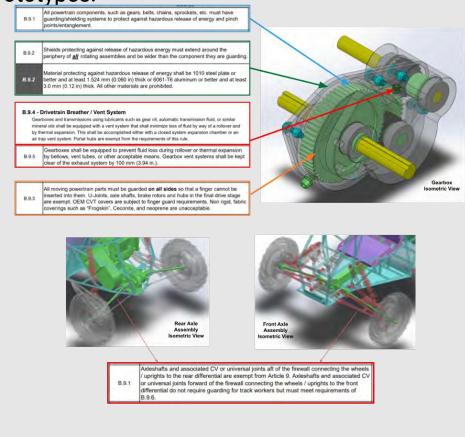
Peer reviewed

Rogue: UCI's First All-Wheel-Drive Off-Road Vehicle

<u>Advisors:</u> John Michael McCarthy, Quoc "QV" Viet Dang, Robert "Smitty" Smith, Phil Chipman, Ron Kessler

Project Leads: Alan Diaz, Yavin Evenich, Natalie Luu, Wil Deomampo, Kamal Elamri, Bevan Chiu, Nathan Martinez, Cindy Tan, Blaise Baker

Overview


Rogue is Anteater Baja Racing's first All Wheel Drive (AWD) All-Terrain Vehicle (ATV). Our objective is to design, manufacture, and race a reliable vehicle to complete every event at the 2023 Baja SAE Oregon competition scheduled for May 31 - June 3rd, 2023.

The Baja SAE competition features student teams from over 100 universities directly competing in several performance event categories: Acceleration, Maneuverability, Hill Climb, Suspension, and Endurance.

BAJA SAE Rules Verification

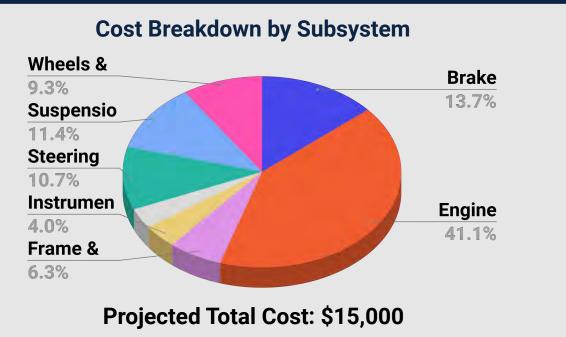
Every year Baja SAE provides a set of rules and technical requirements teams must follow to standardize the pool of competitors and ensure the safety of all competing vehicles. A rigorous technical inspection is done during the first day of competition.

Anteater Baja Racing is continuously verifying all rules for each subsystem to meet SAE requirements through CAD models and physical prototypes.

System Requirements

Requirements	Design Target	Performance Estimates	
Weight (w/ 155 Ib driver)	412-721 lbs	640 lbs	
Weight % Bias Front/Rear	40-50 / 60-50	45-55	
Wheelbase	Max: 60 in	57 in	
Overall Width (Outside Edge of Wheels)	Max: 60 in	59 in	
Overall Height (Ground to Top of Roll Cage)	50-65 in	64 in	
Ground Clearance	Min: 12 in	12 in	
Tire Size	Min: 20in	22 in	
Front Suspension Travel	9-10 in	10 in	
Rear Suspension Travel	9-10 in	10 in	
Steering Wheel Rotations Lock-to-Lock	216-290 deg	270 deg	
Turning Radius	Max: 12 ft	7.9 ft	
Steering Effort	8 - 10 ft*lbs	8.8 ft*lbs	
Top Speed	25-35 mph	35 mph	
Torque Output ea. Wheel	100 - 120 ft*lbs	107.9 ft*lbs	
Acceleration Time (100ft, 150ft)	150ft: 5 to 6.6s	6.1 s (accel: 7.7 m/s^2)	

Department of Mechanical and Aerospace Engineering



Rogue: UCI's First All-Wheel-Drive Off-Road Vehicle

Advisors: John Michael McCarthy, Quoc "QV" Viet Dang, Robert "Smitty" Smith, Phil Chipman, Ron Kessler

Project Leads: Alan Diaz, Yavin Evenich, Natalie Luu, Wil Deomampo, Kamal Elamri, Bevan Chiu, Nathan Martinez, Cindy Tan, Blaise Baker

Cost Analysis

Manufacturing Methods

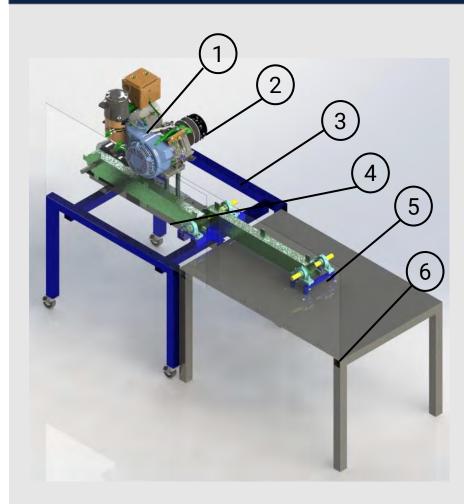

Angle Grinding

Machine Turning

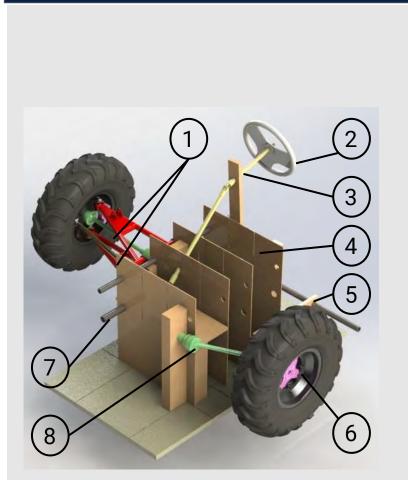
Tube Bending

Welding

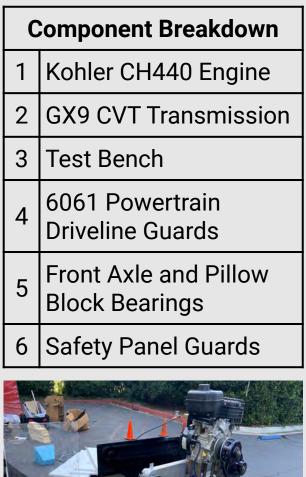
Zotfunder



Riveting



Powertrain Subsystem Prototype



Suspension & Steering Subsystem Prototype

Department of Mechanical and Aerospace Engineering

Prototype Goals

- 1. Verify no interference between any cross-subsystem components exists in the Powertrain and Suspension/ Steering Prototype.
- 2. Visually verify successful torque transfer from Kohler CH440 to front axle
- 3. Measure torque input/output at each Powertrain interface.
- 4. Visually verify suspension and steering travel throughout entire travel.
- 5. Measure suspension and steering travel at extremes.

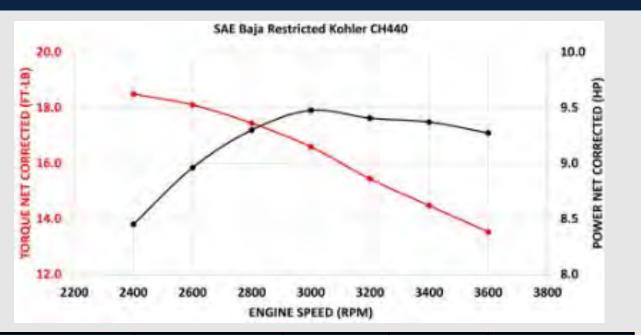
	4130 Upper/Lower Control Arm
2	13" Al Steering Wheel
3	Steering Shaft
1	Wooden Supporting Panels
5	Wooden Trailing Arm
	Wheel Assembly
7	Relative Chassis Geometry
3	Front CV Axles

Prototype Results

Powertrain Prototype

- Successful visual torque transfer test with live engine
 - Utilized previously SAE mandated Briggs and Stratton Engine. Pending modifications to run with CH440

Suspension & Steering Prototype


- > Found binding & interference while steering near max levels of droop and compression
- > Pending rear suspension travel with trailing arm and rear CV axles.

Rogue: UCI's First All-Wheel-Drive Off-Road Vehicle Powertrain Subteam

Advisors: John Michael McCarthy, Quoc "QV" Viet Dang, Robert "Smitty" Smith, Phil Chipman, Ron Kessler Subteam Members: Wil Deomampo, Nathan Kim, Luis Perez, Abraham Robles, Jonny Holt, Adrian Prado Falcon, Blaise Baker

Table 1: Engine Performance Curve

Engine Speed (RPM)	Engine Torque (ft-lb)	Gearbox Ratio	CVT Ratio	Vehicle Gear Ratio
2400	18.5	7.2	4.33	31.2
2600	18.1	7.2	3.89	28
2800	17.4	7.2	3.44	24.8
3000	16.6	7.2	3.00	21.6
3200	15.4	7.2	2.56	18.4
3400	14.5	7.2	2.00	14.4
3600	13.5	7.2	0.89	6.4

Table 2: Powertrain Requirements

Requirement	Design Target	Performance Estimates	
Weight (w/ 155 lb driver)	412-721 lbs (186.88 - 327.04 kg)	640 lbs (274.4 kg)	
Top Speed	23 mph (37.0 kph)	32 mph @ 3600 RPM (52.5 kph)	
Acceleration Time (150ft)	150ft: 5 to 6.6s	6.1 s 25.3 ft/s² (7.7 m/s²)	
Torque on Shaft (Rear/Front)	400 ft-lb at peak (542 N-m)	577.2-86.4 ft-lb (783-117 N-m)	
Hill Climb Performance (30 deg)	100 ft without stopping	Torque: 200 ft-lb (271 N-m)	
4x4 Type (Chain, Shaft, etc.)	AWD Belt-Pulley System		

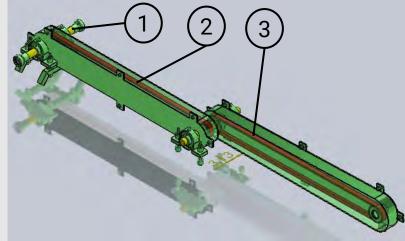
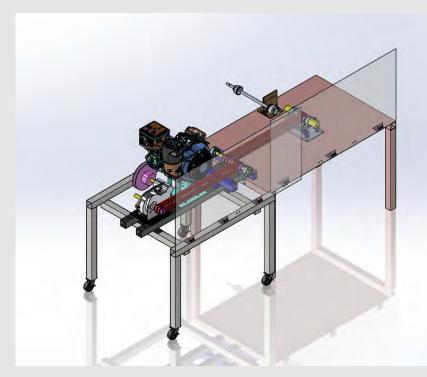
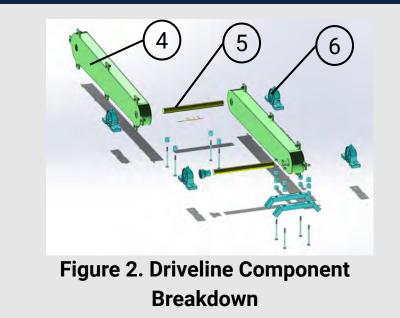


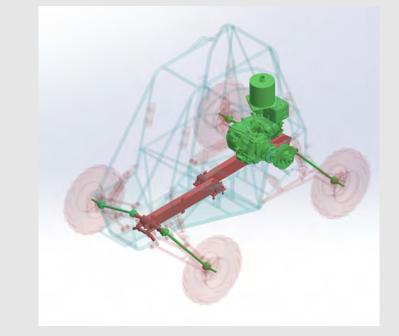
Figure 1. Driveline CAD

1	1" Front Shafts	3	65" Rear Cogged V-Belt	5	1" Intermediate shaft
2	63" Front Cogged V-Belt	4	2x Belt Guards	6	4x 1" Pillow Blocks



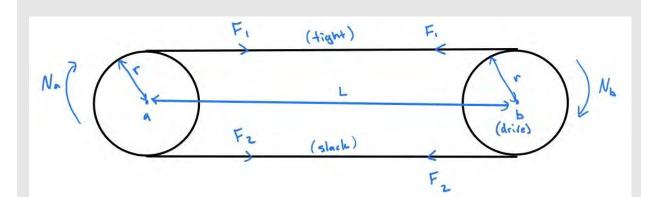

Figure 4. Powertrain Prototype **Isometric View**

With Rubber Grommet	Front CV Run 1	Front CV Run 2	Front CV Run 3
Idle	108 RPM	113 RPM	113 RPM
Full Throttle	416 RPM	434 RPM	435 RPM
w/o Rubber Grommet	Front CV Run 1	Front CV Run 2	Front CV Run 3
Idle	120 RPM	135 RPM	120 RPM
Full Throttle	440 RPM	437 RPM	431 RPM



Department of Mechanical and Aerospace Engineering

Driveline Breakdown



Powertrain CAD Design

Figure 3. Isometric View of Powertrain Components Integrated into Rogue

Belt Analysis FBD

Figure 6. Driveline Belt FBD

Single Belt At Max Motor Torque 18.5 Hp

 $577.2 \text{ ft} \cdot \text{lb} = 0.104 \text{ ft} (1465.57F_2 - F_2)$

 $577.2 \text{ ft} \cdot \text{lb} = 0.104 \text{ ft} (1464.57 \text{F}_2)$

 $577.2 \text{ ft} \cdot \text{lb} = 152.56 \text{F}_2$

 $F_2 = 3.78 \, lb$

 $F_1 = 1465.57F_2$

 $F_1 = 5544.88 \text{ lb}$

Estimated Force Belt Can Sustain = 13,678 lbf (60,842 N)

Figure 5. Manufactured **Powertrain Prototype**

Table 3: Collected Data on Grommets

Rogue: UCI's First All-Wheel-Drive Off-Road Vehicle Suspension & Steering Subteam

Advisors: John Michael McCarthy, Quoc "QV" Viet Dang, Robert "Smitty" Smith, Phil Chipman, Ron Kessler Subteam Members: Bevan Chiu, Kamal Elamri, Jamshid Atashbar, David Bazan, Yu-Lun Wang

Estimated Performance Requirements

Description	Requirement	Reason	
Chassis Ground Clearance	> 11 in	Tallest obstacles is about 10"	
Suspension Travel	> 9 in	Common ATV Travel is > 9in	
Outer to Outer Width	< 64"	SAE Rule B.1.6	
Toe Angles	Inward throughout wheel travel and less than 2 degrees of change throughout wheel travel	Provides more stability when landing in the air.	
Camber Angles	0 deg at full droop and a range of -2deg/2deg throughout wheel travel	Don't want to introduce more stress	

Table 1: Front Suspension

Table 2: Rear Suspension

Description	Requirement	
Chassis Ground Clearance	> 11 in	Talle
Suspension Travel	> 9 in	See ta
Toe Angles	-2/2 degrees of change throughout wheel travel	Pr stabil
Camber Angles	0 deg at full droop and a range of -2deg/2deg throughout wheel travel	D introd

Table 3: Steering

Description	Requirement	
Turning Radius	< 8 ft	SAE
Steering Effort	< 10 ft-lbs	Teste
Steering Ratio	> 7:1	
Max Wheel Turning Angle	27	Limit angle t

CAD Design

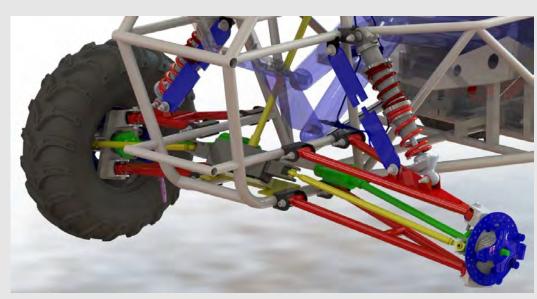
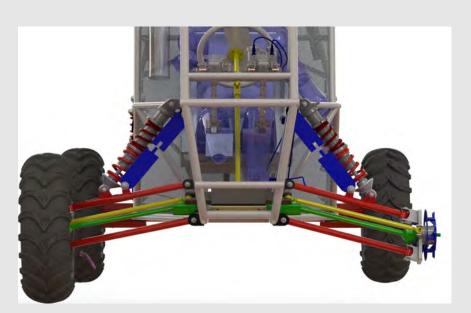



Figure 1: Isometric View Front Suspension and Steering

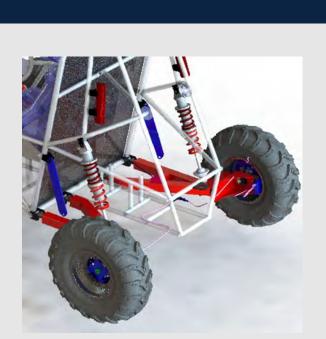


Figure 2: Front Suspension and Steering Front View

Department of Mechanical and Aerospace Engineering

Rules Verification

Reason

est obstacles is about 10"

table comparison

rovides more ility when landing in the air.

Don't want to duce more stress

Reason Event Turn 8 ft ed holding 10 lbs dumbbell ited by the max of inclination of the CV axle

Figure 3: Rear Suspension

SAE Rule B.1.6 -Width: 162 cm (64 in) at the widest point with the wheels pointing forward at static ride height.

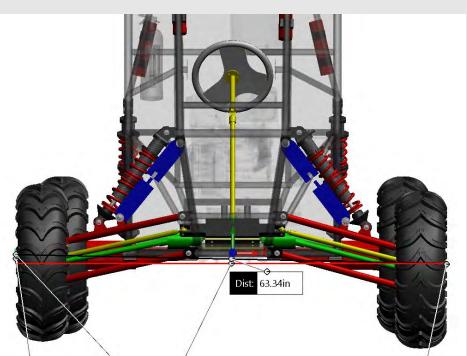


Figure 4: Outer to Outer Width Verification

Prototype

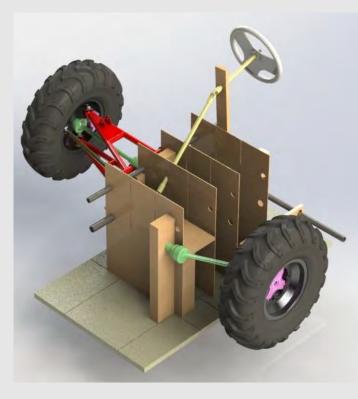


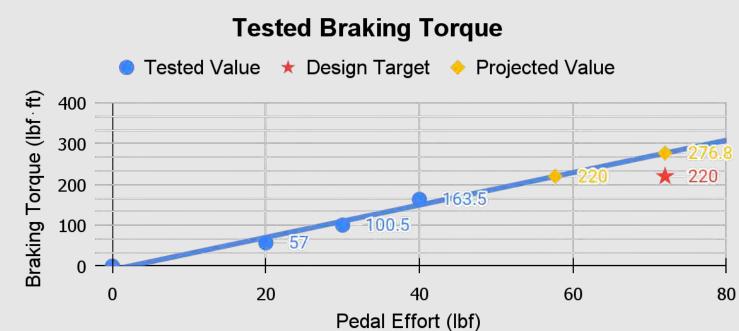
Figure 5: Front Suspension Prototype CAD

Figure 6: Rear Suspension **Physical Prototype**

Figure 7: Front Suspension Physical Prototype

Rogue: UCI's First All-Wheel-Drive Off-Road Vehicle Brakes & Human Interface Subteam

Advisors: John Michael McCarthy, Quoc "QV" Viet Dang, Robert "Smitty" Smith, Phil Chipman, Ron Kessler Subteam Members: Cindy Tan, Amber Ramirez, Lori Fung, Daniella Murillo, Kristen Chung


Estimated Performance Requirements

Requirement	Design Target/Goal	Projected Results	
Pedal Effort to local all four wheels w/ 150 lb driver.	72 lbf	58 lbf	
Braking Torque (At 72 lb)	220 lbf*ft	277 lbf * ft	

Dynamic Brakes Prototypes

Figure 1: Dynamic Torque Testing Done with Vandal Engine

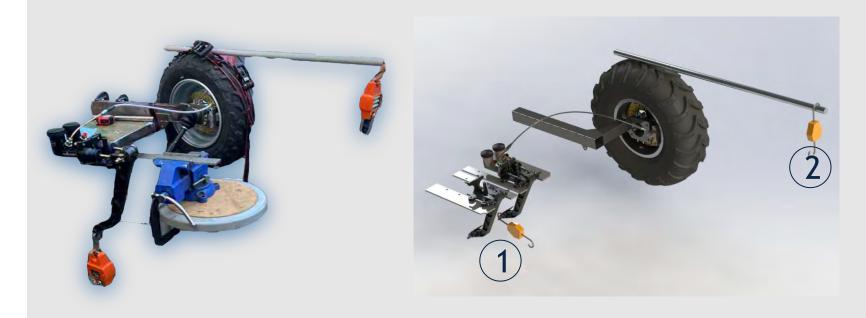


Figure 4 & 5: Static Torque Testing. Pedal force is applied at at Point 1, and braking torque is measured at Point 2

Human Interface Manufacturing

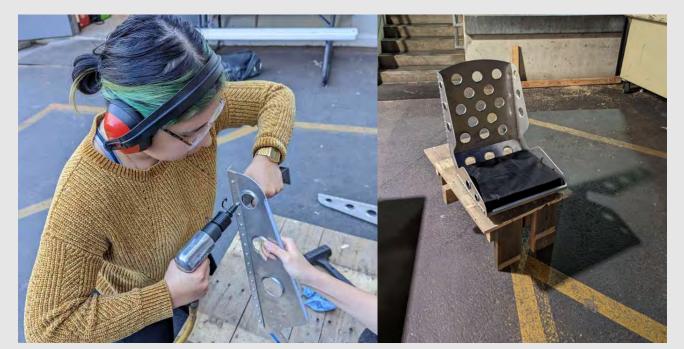


Figure 2: Seat Manufacturing

Human Interface Prototype

Figure 6: Steering Wheel Position

Static Brake Prototype

Department of Mechanical and Aerospace Engineering

Figure 3: Static Torque Test Values. Projected test values exceed design target.

Figure 7: PVC Chassis

Brakes CAD Drawings

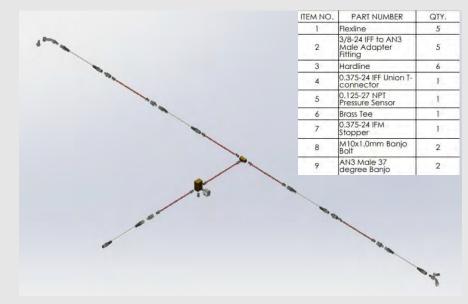


Figure 8: Flat Brake Line. Rogue consists of front and Rear independent brake lines.



Figure 9: Flexline to Hard line connection

Figure 10: **Pressure Sensor**

Figure 11: Brake Line Split

Figure 12: **Connection to Caliper**

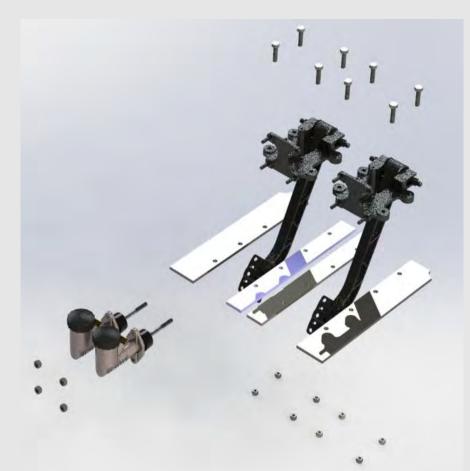
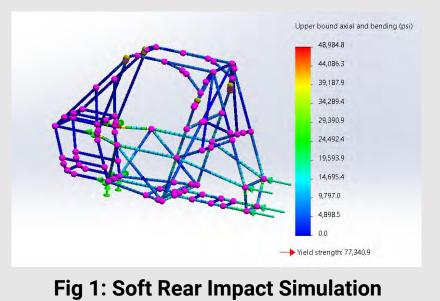


Figure 13: Pedal Box and Mounts. 6 inches of adjustability


Rogue: UCI's First All-Wheel-Drive Off-Road Vehicle Chassis Subteam

<u>Advisors:</u> John Michael McCarthy, Quoc "QV" Viet Dang, Robert "Smitty" Smith, Phil Chipman, Ron Kessler <u>Subteam Members:</u> Nathan Martinez, Noah Castillo, Andy Chen, Musab Al Kindy, Anthony Sardisco, Kassandra Vazquez

Estimated Performance Requirements

Table 1: Chassis Design Goals

Requirement	Relative Speed (mph)	Load Location	Peak Load (lbf)	How is Success Defined?
Hard Impact	20 - 35	Front	7240 - 12,952 (6 to 11 Gs)	Avoid Critical Injury to the Driver
	10 - 15	Side/Rear	3,736 - 5,563	Driver
	10 - 20	Front	3,736 - 7,240	Avoid critical injury to the driver AND
Soft Impact	5 - 10	Side/Rear	1,826 - 3,736	vehicle shall be fully functional and operable after collision
Rollover	14	Тор	Maximum: 1,300	Avoid critical injury to the driver AND vehicle shall be fully functional and operable after collision

Upper bound assial and bending (ps). 68,276.4 61,448.8 54,621.2 47,793.5 40,965.9 34,138.2 2,731.6 2,0482.9 13,055.3 6827.6

Fig 2: Soft Front Impact Simulation

CAD Design

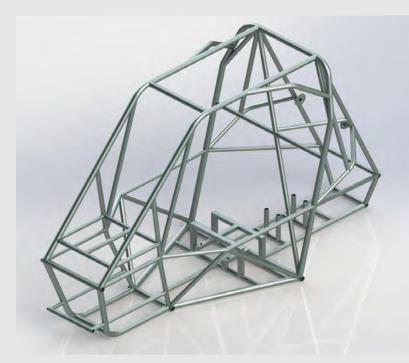


Fig 4: Chassis Front Isometric View

Fig 5: Chassis Rear Isometric View

Material: 1.25" OD x 0.065" primary and 1" OD x 0.065" secondary DOM 1020 steel tubing,

with: 77 340

Weight: 95 lbs

Feature removable rear lateral member for quick engine access

Department of Mechanical and Aerospace Engineering

Rules Verification

SE	CONDARY MEMBERS ON	ILY
Length Bend Angle	≤1016mm (40in)	>1016mm (40in)
≤ 30°	No Supports Required	1 Support Member Required*
> 30°	1 Support Member Required**	2 Support Members Required**
* Required within 50r	nm (2in) of the midpoint of t	he overall tube length
	ired within the tangents of t	

Table 2: Secondary Member Requirements

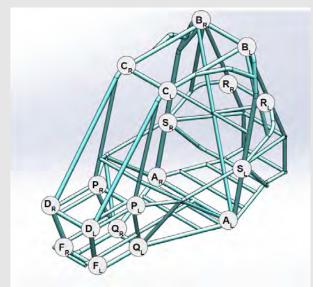


Figure 3: Named Point Locations

Primary Members				
Length Bend Angle	≤ 33in	≤ 40in	>40in	
Straight	No supports	No Support	1 Support Member	
0°<θ<30°	1 support member	1 support member	1 support member	

Table 3: Primary Member Requirements

Manufacturing



Figure 6: Laser Cut 3D Manufacturing Jig

Figure 7: Manufactured Rear Roll Hoop In 2D Jig