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NMR STUDIES OF ORIENTED MOLECULES
Steven Williams Sinton
Abstract

The properties of liquid crystalline mesophases have been of
continuing interest in physics and chemistry since the discovery of these
novel compounds. Recently, nuclear magnetic resonance (NMR) spectroscopy
has been extensively used to probe the microscopic nature of liquid
crystal samples. The NMR spectra contain information which is sensitive
to internal molecular parameters and reflect the anisotropic potential
in which the molecules reorient. Fast diffusion and rotational motion
remove the effects of couplings between molecules.

In this work, deuterium and proton magnetic resonance are used in
experiments on a number of compounds which either form liquid crystal
mesophases themselves or are dissolved in a liquid crystal solvent. The
nature of the information availabie from the spectra and limitations
imposed by assumptions necessary in their analyses are discussed. The
new technique of proton multiple quantum NMR is employed as a means to
simplify complicated spectra without the need for selective isotopic
substitution. In a multiple quantum experiment, the change of the total
magnetic quantum number, M, associated with observed spectral lines may
be any integer allowed by the number of coupled spins; e.g., AM = 0, +1,
«+«,¥N for N coupled spin-1/2 nuclei. This experiment also retains the
higher sensitivity ahd precision in structural information available from
proton NMR compared with other nuclei. The theory of non-selective
multiple quantum NMR is briefly reviewed. Experimental examples with

benzene dissolved in a liquid crystal are used to demonstrate several



outcomes of the theory. Possible complications in the analysis of spin
echo spectra when chemical shifts and heteronuclear couplings are present
in a strongly coupled spin system are discussed.

Experimental studies include proton and deuterium single quantum
(AM = +1) and proton multiple quantum spectra of several molecules which
contain the biphenyl moiety. The number of multiple quantum transitions
in the spectrum can be easily predicted from simple symmetry arguments
for para-substituted biphenyl. These predictions and the extraordinary
simplicity of parts of the multiple quantum spectrum allow unambiguous
line assignments and tests of simple models to be made in the analysis.

4—Cyano—4'—n—pentyl—dll—biphenyl (SCB—dll) is studied as a pure
compound in the nematic phase. Assignments of the proton decoupled
deuterium single quantum spectrum of the alkyl chain are made to obtain
the chain order barameters and dipolar couplings. These are found to be
in close agreement with previously reported results. The undecoupled
and deuterium decoupled proton multiple quantum NMR spectra are analyzed
for the aromatic core order tensor and structural parameters. A number
of models for the effective symmetry of the biphenyl group in SCB—d11
are tested against the experimental spectra. Most of the features are
reproduced by the simplest model and possible causes of additional struc-
ture in the spectra are discussed. The dihedral angle, defined by the
planes containing the rings of the biphenyl group, is found to be 30 + 2°
for SCB—dll. Experiments are also described for 4,4'—d2—biphenyl, 4,4"-
dibromo-biphenyl, and unsubstituted biphenyl. Complete descriptions are
given of the NMR spectrometer and computer programs used to obtain and

analyze these spectra.
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Chapter 1

Fundamentals

1.1 Introductory Remarks

It is usual to begin a discussion of experiments which employ a
spectroscopic technique with a description of the basic interactions
involved and their relation to quantities of interest. In this work,
the spectroscopy of nuclear magnetic resonance (NMR) is used to study
anisotropic molecular ordering, structure and internal motion in liquid
crystals. The two major areas to be considered are the use of NMR (1)
as a tool to probe the chemical nature of the compounds and (2) in the
ongoing investigation of basic spectroscopic physics. For this work,
the first part is found in the sensitivity of nuclear magnetic resonance
to the interaction between the individual dipole moments of nuclei. This
phenbmenon is in turn important in elucidating internuclear distances and
ordering in condensed matter, particularly liquid crystals. The second
area, that of understanding a new spectroscopic process, is found in the
development of a technique known as multiple quantum NMR spectroscopy.
The usefulness of this technique in our work lies in the tremendous aid
in spectral assignment possible from a multiple quantum experiment.

Several aspects of theory and experiment for multiple quantum NMR
spectroscopy and its application to liquid crystals and solutions of
small molecules dissolved in liquid crystals are described in the fol-
lowing chapters. The next few sections of this chapter present the basic
interactions important in liquid crystal NMR and a brief description of
the properties of multiple quantum transitions with reference to the

energy level diagram. Chapter 2 gives a detailed description of the



information available in the NMR spectrum of an ordered medium such as a
liquid crystal. The limitations of this approach are also discussed.
Chapter 3 describes the basic multiple quantum experiment. A review of
density matrix formalism is held offuntil then. The rotational proper-
ties of the multiple quantum density matrix are explored with experimen-
tal examples of benzene partially ordered in a liquid crystal solution.
Chapter 4 presents a specific example of multiple quantum NMR of biphenyl
groups which demonstrates some of the principles developed in earlier
chapters. Finally, a complete description of one of the two 180 MHz
Fourier transform spectrometers used for all experiments is found in
Chapter 5. The Appendices contain the details of computer programs used

for calculations and data preparation and complete listings of each.

1.2 The Nuclear Spin Hamiltonian

Usually, the strongest nuclear spin interaction present for a sample
in a high magnetic field is the Zeeman interaction. Classically, the

energy of this interaction (for a single spin) is
E = _ﬁ.ﬁ (1.1)

where E is the magnetic moment of the nucleus and ﬁ is the large static
field. The moment arises from the intrinsic angular momentum of the
electrically charged nucleus; hence the term spin. Quantum mechanically,
this energy is related to the angular momentum operator T through

Equation (1.2).

¥ = yhi, (1.2)

where h is Plank's constant divided by 2w.



It is well known that ?2 and one of the components of ? may have
simultaneous eigenvalues for the wavefunction of the spin [1]. The total
angular momentum is hI(I+ 1) where I is the eigenvalue of fz. By con-
vention, Iz is the component of T taken to commute with fz. The eigen-
values of Iz are the (2I+1) values wh where m = I, I-1,...-I+1,-I.

Taking the magnetic field to be i = (O,O,HO) gives
E = -YhHOm- (1.3)

The constant Yy is known as the gyromagnetic ratio and its value is
tabulated for every nucleus of interest in NMR. It is not the purpose

of this work to measure y and so the important interactions are perturba-
tions of the Zeeman energy given in Equation (1.3).

Before proceeding with a discussion of these interactions, it is
worthwhile to point out some of the important consequences of Equation
(1.3). The quantization of the z axis component of angular momentum in
the static field, described by the operator IZ and having discrete values
mh, means that the energies are bounded by the (2I+4 1) values of m. The
result is that the density matrix approach is particularly useful in the
description of pulsed NMR experiments.

Although the measurement of the energy level diagram for single
nuclei when Iz 1 provides information from quadrupole perturbations to
Equation (1.3), it is often more useful to consider a collection of
nuclei. For our purposes, a collection of interacting protons is
relevant. For N such spin ! nuclei, the total z component of angular
momentum is described by the quantum number M = z m, . Here the sum runs

i
over all nuclei which together are sufficient to describe the energy

level diagram of the system. There are N+ 1 possible unique values of M



from M = +N/2 to M = -N/2 differing by 1. There are a total of ZN states
for the entire N spin ) system. The energy differences among states for
a particular value of M (termed a Zeeman manifold) are determined by the

perturbative Hamiltonians described below.

1.2.1 The Zeeman Hamiltonian
The Zeeman interaction has already been given for a single spin in
Equation (1.3). For an N spin system, setting h = 1 and measuring

energies in frequency units, the general Zeeman Hamiltonian is written

i, = - § Yilzs (1.4)
- o Z Izi’
i
= -NOIZ’
where W is the éngular Larmor frequency (mo = 27r\)0)° At magnetic field

strengths of about 42 kG, v, is approximately 185 MHz for protons.

0

1.2.2 Radio Frequency Hamiltonian

The interaction of nuclear spins with an externally applied radio
frequency magnetic field is quite similar to the Zeeman term above.
Assuming this field to be oscillating along the x axis of the laboratory

frame, the r.f. Hamiltonian becomes

Hrf = —Hl(t)cos(wt-+¢(t)) ; YiIxi' (1.5)

Ix = g Ixi is the operator for the x component of the spin angular
momentum. Hl(t) is the time dependent field amplitude oscillating at
frequency w with phase ¢(t). The usual approach at this point is to
transform to an interaction frame known as the rotating frame [2]. This

is accomplished by the following equation:



H = e H e (1.6)

where the exponential operator is defined by [2,3]

-iwtI 2 3 '
z _ . _ (wt) 2 d(wt) 3
e 1 ithz + > Iz - 6 Iz + .. . (1.7)

The transformation of Equation (1.6) effectively removes the time de-
pendence of the frequency part of the cosine term in Equation (1.5).
The result is given in Equation (1.8) (dropping terms oscillating at

higher frequencies [4]).

H?f = —wl(t)[Ixcos¢(t) + Iysin¢(t)]- (1.8)

In this equation wl(t) = YHl(t) is the r.f. field amplitude in angular
frequency units.‘ The occurrence of the operators Ix and Iy in Equation
(1.8) comes about from the definition of the exponential operator and
commutation properties of the angular momentum operators [3,5].

If we also transform observable quantities, such as the Zeeman in-
teraction to this rotating frame, the spin system will appear to evolve
as though it were observed from a frame rotating about the z axis at
angular velocity w (hence the name). When the transformation is applied

to the Zeeman Hamiltonian Equation (1.4) the result is
HZ = —(wo-w) IZ = —AwIz. (1.9)

The factor Aw is called the offset. Throughout this work, the rotating
frame transformation will be assumed and the superscript R dropped.

The remaining interactions described below all take the form of
spatial and spin tensor products [6]. The spatial tensors involving

just one spin are the chemical shift and quadrupolar tensors. The scalar



(or spin-spin) and dipolar (or direct) tensors involve the interaction
of spins with magnetic fields generated by their neighbors. All are
second rank tensors which may be described in a cartesian or spherical
basis [7,8]. Under different conditions, each of these tensor inter-
actions can be reduced in rank or removed by "averaging'. As an example,
the anisotropic chemical shift interaction, the dipolar interaction and
the quadrupolar interaction are all unobservable in non-viscous liquid
samples. This comes about from rapid, isotropic motion of the spins
attached to tumbling molecules. By rapid it is meant that the motion
is fast on the time scale of the interactions and by isotropic it is
meant that the average over all possible orientations for the spatial
part of the temnsor is zero.

Besides the use of an isotropic liquid, there exists a number of
ways for selectively averaginé the interactions below. Since the
Hamiltonian for each consists of a product of spatial and spin terms,
this averaging may be done in either coordinate or spin space. These
selective techniques are fully described elsewhere [6] and are only in-
directly relevant to an understanding of this work. The isotropic and,
for liquid crystals, anisotropic averaging of spatial quantities pro-
vided by nature are very important in our experiments and will be
described briefly here and in more detail in latter chapters.

In the equations of the next few sections, the second rank inter-
action tensors are written in a cartesian coordinate system basis with
axes X, Y, Z. Thus, they may be expressed as 3x 3 matrices and the
Hamiltonians become scalar products of these with spin operator vectors

s . T e
x,Ly,lz) and § = (S

such as 1= (1 x’by’sz)' The X, Y, Z system is fixed
in space. If we take the Z axis to be along the main field direction,

then the subscripts on tensor elements below refer to components observed



in the laboratory frame. To describe the interaction tensors in some
other coordinate system, such as one fixed in the molecules, requires
transformations of the spatial part of the Hamiltonian as covered in
Chapter 2 and detailed elsewhere [7,8].

There will always exist some coordinate system in which a spatial
interaction tensor is diagonal. 1In general, this principle axis system
(PAS) will not be the same for different interactions. Often, one writes
each of the Hamiltonians below in a PAS and then the tensor elements are
the principle components of the interaction. In this case, the trans-
formation required to relate the Hamiltonian to an NMR spectrum is from the
PAS to lab frame. Depending on the nature of the sample, the PAS compo-
nents of the tensor may be found from lab frame measurements. For a
sample consisting of a single crystal, rotation plots of the frequencies
measured from the spectrum reveal the principle components [14,15]. If
the sample is a polycrystalline solid, then a '"powder pattern'" line shape
will result. An example is the well known asymmetric chemical shift
powder pattern observed for many samples [14]. In the following chapters,
whenever the Hamiltonian refers to a particular coordinate system, that
system will be identified. We will always state the nature of any co-
ordinate transformations performed.

In considering the perturbations to HZ below, reference is made to
the secular part of the Hamiltonian. This refers to the usual truncation
of some parts of the total Hamiltonian to those terms which commute with
I . This approximation is valid for all cases in this work as non-com-
muting parts of the quadrupolar, dipolar, spin-spin, and chemical shift

interactions are all small compared to the Zeeman term (the "high field

approximation').



1.2.3 The Quadrupolar Hamiltonian
When a nucleus with spin I21 is present at a site with non-zero
electric field gradients, the total energy depends on its orientation.

This is expressed by the quadrupolar Hamiltonian in Equation (1.10).

<3

B o=-—=20 1.

5>
Q- &y “ AT (1.10)

Q is called the quadrupole moment of the nucleus and is related to the
quadrupole term of a multipole expansion for the chargé distribution of

the nucleus. The tensor V is the field gradient tensor with elements

2 =~
VaB = é%g%-for a,8 =X, Y, Z. That } is traceless and symmetric can be

seen from Laplace's equation $2v = 0, and the symmetry of the partial

derivatives, VaB = VBa' For a collection of spins, it can be shown [9]

that Equation (1.10) becomes

'S

e Xz i 3 > (2
By = z 6T, (21,-1) aZB Vasl2TaiTpi t lgiTas) ~ Sqp(ty) 1. (-11a)

Truncating Equation (1.11la) to the secular terms gives

_ eQ 1.2 .2 i i g2 2
H, g“li(nfl) [V (31,5 - I1) + gy = Vyy) (T - Tpp1. 2.11D)
B =J - —2d9 Ch (312, - T.(1. +1)] + n(12, - 1)} (1.11c)

Q ~ ¢ 4T, (1-D) zi T Titi M%7 tye/ 7 e

In Equation (1.11) the quantity Qi is the quadrupole moment of nucleus 1i.

In Equation (1.1llc) the gradient eq = VZz and the asymmetry parameter
Vs Veoy)
VZZ

is axially symmetric (or nearly so) and n is taken to be zero. That the

n = have been introduced. Usually, the electric field gradient

quadrupolar Hamiltonian vanishes for nuclei with spin I = ’;5 can be seen



from a consideration of the expectation value of the spin part of H

Q’

i.e.,
2
<31z - I(I+1)> = 0.

1.2.4 The Dipolar Hamiltonian
The energy of the interaction of spins with the local field caused

by the dipole moments of neighboring nuclei is given classically by [10],

Y 3G T ) (o)

P U o

ED = + z l3 k _ lks k ik (1'12)
i<k ] Ty Tik

which results in the quantum mechanical Hamiltonian (in frequency units)

Hy =+ I -gik-'§ . (1.13)

.

ik
In Equation (1.13) the dipolar interaction tensor, gl , is traceless

- ->
and symmetric and Ii’ Sk are the spin angular momentum operators for spins
YiYe

i and k. The elements of glk are - (3e eq - dpq) where ep, e

rik
>
(p,q = X,Y,2) are direction cosines for the internuclear vector Topr If

the two spins i and k are of the same species (Yi==yk) then, truncating

HD to the secular terms (terms which commute with HZ) and noting that glk
is axially symmetric [11] makes Equation (1.13) become (with the Z axis
along the main field)
> >
Hy =+ ) DZZ(3I RINES JES 4 (1.14a)
i<k
k 1
-t 1§k Dy Tps o™ 7 Tag Tyt Lyl (1.140)

where



2
ik ¥4y (3cos 8,y ,m1) 15
27 = 3 . (1.15)
ik

In Equation (1.15) the angle eikZ is between the internuclear vector

>
rik and the laboratory z axis. For Equation (1.14) we have introduced

the well known raising and lowering (or "ladder') operators:

Ly = Tg + i1, (1.16a)
Iy = Ta - i1, (1.16b)
i=/-1.

For liquid crystal samples we will see that the angular part of Equation
(1.15), averaged over all molecular orientational possibilities, becomes
what is known as the ordering tensor [12]. The D;; of Equation (1.15)

is in a space fixed axis system. For liquid crystals, transformation to
a molecular axis system will be required. For an isotropic liquid (or a

2 . . . ]
gas), <3cos 9i - 1> vanishes and dipolar interactions are not observed.

kZ
We note here that there exists effectively two definitions of the coupling
teasor gik in the literature. These definitions differ only in the use

of Pz(cose) or 2P2(cos6) for the angular portion of Equation (1.15) where
Pz(cose) is the second legendre polynomial. We will consistently use

the larger of the two forms of gik and attempt to make note of any
conversions required to relate couplings to literature values.

When the spins i and k are different nuclear species, then the

secular part of Equation (1.13) becomes

ik
Hy = ) Dzz I,iSqk- (.17)
i<k

10



1.2.5 The Indirect Spin~Spin Hamiltonian

The interaction of Equation (1.12) is the "through space" or direct
energy of spins in the magnetic field of neighbors. 1In addition, there
is a "through bonds' or indirect interaction in which a nucleus feels
the presence of its neighbors via the interactions each has with the

electrons making up their common chemical bonds. This is given by

>
H o= ) I.-J.5. (1.18)

Although the form of HJ is similar to HD given in Equation (1.13),
several differences exist. Whereas glk is traceless, gik is not, and

the isotropic average,

giso - % (g™ = g, (1.19)

is the quantity measured as the ''scalar'" coupling in high resolution NMR
ik

of liquid samples. Also, 4 may have an antisymmetric component, but

this cannot be measured in NMR [13]. The total indirect spin-spin

Hamiltonian, for like spins i and k, may be written

= ik 1 ik ik

H; = igk WopToilae + 7 Ogg + g Ty T + 15103 (1.202)
= > T 1 ik ik -

H, = igk (3,1, +5 U + I GBI 1, - I,010)) (1.20b)

where Equation (1.19) has been used. Equation (1.20b) is sometimes

rewritten in the forms

Y

> aniso >
H = ) (3, 1,-1 +357°°@1, 1, -1, - 1)} (1.20c¢)

11
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- 1
Hy= L OG0Tty Myl + 1T0)
1<k
aniso 1
L ¢ % SRR ¢ 0 SN S0 D) (1.204)

aniso
The quantity Jik

it multiplies spin operators in the same form as the dipolar Hamiltonian,

ik

77 Because

above is usually much smaller than D

Janiso is sometimes referred to as the pseudo-dipolar coupling. For

ik
ik
Z

aniso cannot be measured independently of D 7 by NMR,

liquid crystals Jik

but may be estimated from theory or from a model for the Dég values.

1.2.6 The Chemical Shift Hamiltonian

The chemical shift interaction in nuclear magnetic resonance arises
from the screening affect the electrons surrounding a nucleus have on
the external magpetic field it experiences. Methods exist for calculating
or estimating its value theoretically but will not be required in this
work. The chemical shift Hamiltonian is presented here partly for con-
sistency, but also because an important consideration for multiple
quantum NMR as a high resolution technique has its origin in the "inter-
ference" of the chemical shift and dipolar Hamiltonians.

The chemical shift takes the form of a product of the second rank
tensor g, the first rank spin operator vector T, and ﬁ (once again taking

Z to be along the main field),

.
H = g v;I-g-H (1.21)

i
= Z YiUZZIzHO (secular term),

where o;z is the ZZ component of the tensor gl for spin i. Often, the
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i

GZZI

product YiHO is included in ci As with the

77 so that Hcs = z

, i
spin-spin coupling, gl is not traceless and G;Z

zi®

may contain an aniso-

tropic component:

iso aniso
He™ § Y391 Holpg * g Y% Holzi»
where
iso 1 i, _
oi =3 Tr(g ) = oi.

1.2.7 Summary of the Spin Hamiltonian

Collecting all the interactions written above into the total spin

Hamiltonian, we have

H = Hz + HCS + Hrf + HQ + HD + HJ (1.22)

In the rotating frame and under the high field approximation:

(1.23a)

i
H=-MI +) 0,1

i

w1 (8) [eos (4 (£))T, + sin(9(e))T,]

e Qi 2 2 2
__eqQ - -
+ Z T or oy (31,5~ LT+ D1 + (T, - 1))}
1 1 1
ik 1
t L Dy M1 =7 (LT + 1Ty0)]
i<k
ik 1, ik , ik
= + .
* izk W2zl Tae * % VUxx * Iy Tas T + 1T

Equation (1.23a) is sometimes written

H = -bwI_ + ; cizlzi - 0y () [cos (4 ()T + sin(6(e)I ] (1.235)



eqQ 2 _ 2 _ 2
+ g T, 01,0 {31, - T,(I,+1)] + (I, Iyi)}

ik I
+ ) D311, -I,1I)
i<k YA A zizk ik
ik > = 1 ik ik > >
+ I+ = -I.-
igk 7 L4 + 5 Ui 93y BT, T, - 110 T

It is often assumed that the asymmetry parameter for the quadrupolar
Hamiltonian is small, i.e., that this tensor is axially symmetric. For
alkyl deuterons, the case of interest here, n is about .01 and this is
a good assumption. If we also assume that the anisotropic parts of the
chemical shift and spin-spin couplings are negligible, Equation (1.23b)

becomes

H= -l + g oI . - wl(t)[cos(¢(t))IX4-sin(¢(t))Iy] (1.23¢)

1

+-_f)

ik
- L (I;+) + ) D, (31 T, -1.-T

2
+}:_._egg__(31 .
i AIi(ZIi—l) zi i<k

+ v J.,.1.-1
, ik™i Tk’
i<k
where the definitions of the isotropic chemical shift and scalar coupling
have been used. Often, the ZZ subscript on the dipolar term is dropped

and the coupling is denoted simply as Di This will be adopted hereto-

Kk’
fore except when the distinction of a particular component of the dipolar
tensor is required.

All the NMR measurements analyzed in this work were taken with
liquid crystal samples in a nematic mesophase. As we shall see, a liquid

. . . . .
crystal is like a polycrystalline sample of rigid molecules in some

respects but quite different in others. For one, the relation between

14
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known or desired quantities of the molecules and the NMR spectrum is
complicated by the need to average over a number of inter and intra-
molecular motions. Generally, the "ordering tensor'" elements or
"motional constants" are introduced to describe the average orientation
of molecules with respect to some laboratory axis system. The elements
of such an order tensor are actually the results of various transforma-
tions required to give the lab frame components of Equation (1.23c). We
shall show how the symmetry properties of a uniaxial nematic liquid
crystal reduce the number of elements required in the order tensor.

Molecular symmetry will also become important in this consideration.

1.3 The Energy Level Diagram for Liquid Crystals

In Equation (1.23) we have written out the Hamiltonian for a collec-
tion of N spins.. In a non-dilute solid sample, N will be very large and,
in general, none of the individual allowed transitions will be resolved.
The usual approaches in this case include isotopic dilution or selective
averaging to remove the largest contributions to line broademing. With
liquid crystals (and molecules dissolved in a liquid crystal solution)
nature does a good deal of averaging of the quadrupole and dipole terms
to yield a spectrum wifh structure.

Liquid crystalline mesophases are generally characterized by some
degree of long range order [16-18]. There are several types of meso-
phases which occur for thermotropic liquid crystals. Two of these are
shown schematically in Figure 1.1. For the nematic mesophase, the long
range order consists of an angular correlation of the long axes of the
molecules. The preferred direction of these long axes is described by a
unit vector called the "director'. Smectic phases have a similar align-

ment of the director but in addition order into layers as shown in
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a) Nematic

-
\
\

\ﬂ//l'/

b) Smectic A '
| ]' 1’ | " l[ | ”1’ ,“I
f
|
1l I

Pictorial representation of the two common thermotropic liquid
crystal phases. Liquid crystal molecules are viewed as rod-like particles
whose long axes are preferentially aligned with respect to the crystal
director, i. In a), a nematic phase is depicted in which there is only
this angular correlation of moclecular long axes. In b), a smectic A
phase is shown. In addition to an angular correlation, one translational
degree‘of freedom for the center of mass of each molecule is correlated

with the ensemble. Molecules then become ordered in planes as shown.



17

Figure 1.1. There is rotational symmetry about the director in the
nematic phase which means that it is uniaxial. All of the NMR spectra
taken in this work are in the nematic or isotropic phase and so further
discussion will be directed to these phases.

When there are no external constraints on a nematic liquid crystal,
the long axes of individual molecules and the director are not always
colinear but fluctuate in relative orientation. The long range order
extends over domains of many molecules ( 106). This order only consists
of angular correlations with complete freedom of translational diffusion
for the molecules (at least on the NMR time scale). When the nematic
crystal is placed in a sufficiently high magnetic field, the director
becomes aligned along the field direction. This is a result of the
anisotropy of the magnetic susceptibility. The free energy for this

interaction is [18]

F = —Ang(Bcosza— 1)/6, (1.24)
where
AX = X” - Xl

is the susceptibility anisotropy. The angle o is between the director
-
and HO. For nematics studied in this work (and indeed most thermotropics),
Ay is positive which means the minimum free energy contribution occurs
>
with the director along HO. For liquid crystals, this contribution is
significant when compared to the thermal energy and so the director be-
R >
comes aligned along HO.

When a small molecule is dissolved in a nematic solution it experi-

ences the local potential of the liquid crystal matrix. If the molecule
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is not completely symmetric itself, then clearly it will also seek a
minimum free energy situation in which it orients with respect to the
director. Unlike an isotropically tumbling molecule, interactions such
as the quadrupolar and dipolar Hamiltonians will be present. Because the
molecule is free to diffuse, intermolecular interactions are averaged
away and the NMR spectrum displays only the intramolecular couplings.
Even for a molecule which is highly symmetric, for example, a molecule
with tetrahedral symmetry, dipolar and quadrupolar couplings have been
observed in the NMR spectrum [19,20]}. The exact mechanism for the
ordering in this case is a matter of debate in the literature [21-23].
A generalized picture of the nuclear spin energy level diagram is
shown in Figure 1.2. For the liquid crystal case the number of inter-
acting spins, N, refers to those of each molecule in the ensemble. The
major splittings‘shown are from the Zeeman interaction. Each set of
states with a common total magnetic quantum number, M, is termed a
Zeeman manifold. Without the perturbations of HQ’ HD, HJ, and Hcs’ the
states of one Zeeman manifold are degenerate. If the N nuclei are all
spin % (e.g., protons) then the total number of states is ZN and each
manifold contains N!/(N/2-M)!(N/24M)! states. The extreme energy states
correspond to the situations in which all spins are aligned with or
against the external field. There are a total of N+ 1 manifolds and,

if N is odd, the M= 0 manifold does not exist.

1.4 Multiple Quantum Transitions in NMR

The '"golden rule" of time-dependent perturbation theory states the
probability per unit time that a perturbation V induces a transition from

state s to state k is given by [24]
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Figure 1.2

Energy level diagram for the spin Hamiltonian of a general system
of N coupled spins each with spin quantum number *». The total magnetic
quantum number, M, is the sum of the Zeeman Hamiltonian quantum numbers
i;§ for each spin, and the large splittings are from the interaction
energy of this Hamiltonian. Smaller splittings within each group of
states with the same value of M arise from other spin interaction terms
in the total Hamiltonian. A transition from state i to j represents a
change in M of AM = N-3. TIf N is odd, the group of states for M = 0

doesn't exist.
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W = %|<k|V|s>|2 pf(ES(O)) (1.25)

where Pg is the density of states for the final (unperturbed) states.
Referring to Figure 1.2 justifies the usual use of a delta function for
Pe in NMR [25]}.

In NMR, we apply a perturbation to a sample at equilibrium by ir-
radiating it with the escillating magnetic field of the probe coil. Thus
the perturbation takes the form of the r.f. Hamiltonian (Eq. (1.8)). The
transition element is then [<k]IX|s>[2 for the r.f. field along the x
axis. The matrix elements can be evaluated in the usually spin product
basis set (a's and B's) to yield the familiar selection rule that the
change in the total magnetic quantum number is one (AM==f1) for allowed
transitions. The intensity of these transitions is proportional to
|<k| 1, |s> |2

Equation (1.25) is from a first order treatment of perturbation
theory. It was realized some years ago that higher order effects would
cause multiple quantum (AM=> 0) transitions [26-28]. These non-linear
effects were first demonstrated in the continuous wave observation of
double quantum transitions in ethanol [29]. The technique has been used
in the elucidation of spectral assignment of liquids [27].

The development of multiple quantum c.w. NMR was hampered by the
technical difficulties associated with creating and observing this non-
linear phenomenon. In addition, the strong r.f. fields required perturb
the spin system in a manner that must be theoretically accounted for.

The advent of pulsed Fourier transform techniques allowed the development
of multiple quantum NMR without these problems. Theoretically, rather

than dealing with photon absorption and emission processes, the FT

20



multiple quantum experiment can be described in terms of coherences and
formulated with the density matrix. This approach will be covered in
Chapter 3. The basics of the development of MQNMR is a rich subject and
has been dealt with in an excellent review by Bodenhausen [30].

Referring to Figure 1.2, some cof the terminology which will be used
throughout this work can be defined. A multiple quantum "order" refers
to all those transitions for which M changes by some integer. Thus, the
zero quantum, one quantum, two quantum, ..., N quantum orders refer to
transition; for which M =0, +1, +2, ..., 4N, respectively. Usually,
the term single quantum will be used to mean the '"normal' NMR spectrum
although occasionally the one quantum order of a ﬁultiple quantum experi-
ment may be meant. The only major differences between the two for this
work will be in how the spectrum was obtained and thus the relative in-
tensities of the‘single quantum lines.

Finally, a few words about the number of transitions expected for

each order and the information content of the higher orders. The number

of states in each Zeeman manifold is

N!
N = (1.26)
N N
(_21\1 _ M) G-MIG+M!

where the common symbol for the binomial coefficient has been used.
Thus, except for the zero quantum order and assuming no molecular sym-

metry, the number of p quantum transitions is given by

T (N) ( : )
) ,p=1,2, ..., N (1.27)
k=0 k k+p

This is equivalent to the following expression [31].

21



2N
# p quantum transitions = ( ) , P#0 (1.28a)
N-p,

Also, for the zero quantum transition,

Number zero quantum transitions =-% [(i?) —2N]. (1.28b)

Using Sterling's approximation and an expansion for &n(l+x), for large

N Equation (1.28a) can be approximated as

,p=1,2, ...,N. (1.29)

Thus we see that the number of transitions expected from a set of coupled
spins with no symmetry has a Gaussian distribution with order.

The extreme states shown in Figure 1.2 have a special property.
The bilinearity Jf spin operators in the dipolar, quadrupolar and spin-
spin Hamiltonians given in Section 1.2 means that these states will only
experience the sum of these interactions for all spins. For example,
for N protons the extremes states correspond to all spins in either the

oo or the B state. The dipolar Hamiltonian matrix elements are

<a(l)...a(N)|H.D|a(l)...a(N)> = <B(l)...B(N)|HD|B(1)...B(N)> = ) Doy

i<k

The chemical shift and Zeeman Hamiltonians are linear in spin operators
and so a flip of all spins corresponds to a change in sign of the matrix

elements. These matrix elements are

<a(l)...a(N)|HZ+-HCS]a(l)...a(N)>

-<8(1)...8(N)1HZ+ HCSIB(I)...B(N)>

N

1
(NAw - g 0.).

2
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As a consequence, the N quantum transition contains information only on

the Zeeman offset Aw and the sum of chemical shifts:

N
AEE+_ N = By~ Ey=Nw- Z o, - (1.30)
2772 2 2 *

Equation (1.30) makes the important statement that complete removal of
the dipolar interaction is effective in the observation of the N quantum
transition. Thus the N quantum spectrum is similar to that obtained
from the multiple pulse selective averaging technique known as WAHUHA
[32] without reducing the chemical shift interaction.

To obtain information on the dipolar and spin-spin couplings, one
has to consider the transitions of order less than N. In an anisotropi-
cally ordered sample, there are N(N-1)/2 dipolar couplings, N(N-1)/2
spin-spin couplings and N chemical shifts. Assuming that all lines are
resolved, the (N-1) quantum spectrum gives N frequencies and N(N-1) are
obtained from the (N-1) order. Thus, these orders generally contain
enough tramnsitions to solve for all dipolar and spin-spin couplings and
chemical shifts, These and other counting arguments are presented in
more detail elsewhere [33].

Of course, all the above arguments apply to a general spin system
with no symmetry. Usually, molecules of interest will belong to a point
group with more than one irreducible representation [34]. Each Zeeman
manifold is factored into states of different irreducible representationms.
As we shall show, ultimately the multiple quantum coherences produced
and detected in the experiments obey the symmetry selection rules for
normal single quantum NMR. The well known result from group theory is

that allowed transitions are those involving only states within the same
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irreducible representation [35]. This is a result of the totally sym-
metric nature of the magnetic dipole transition operators of NMR [36].

The symmetry selection rule is written as

<i|V|j> = 0 unless

(1)

T X F(V)

L@, W

where the usual symbols representing the irreducible representations of

i>, V and |j> are used. Taking Ix’ which is of the A representation,
as the transition operator for NMR, the symmetry selection rule is given
by the statement above.

The effect of molecular symmetry is two sided. On the one hand,
the selection rule stated above reduces the number of transitions in each
order and hence ghe available information. However, the number of unique
couplings required to solve for is also reduced by symmetry. There is
no general way to predict how many orders will have to be used for a
specific molecule without considering symmetry. For each case, the per-
mutational point group relevant to the spins will have to be considered.
The results of the group theory for the cases of interest in this work
are presented in the following chapters. It is interesting to note that
there are counting schemes which make use of the behavior of some states
under point group symmetry elements to predict the number of lines
exﬁected in the higher order spectra [37].

We have seen that the number of transitions corresponding to the p
quantum order decreases as p increases (p = IAMI). This comes about
because the higher order transitions probe the Zeeman manifolds with the
fewest number of states. The spread of energy shifts caused by perturba-

tions to H, is roughly the same for each manifold and so the higher order

Z
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spectra contain splittings similar to the single quantum in magnitude.
The result is more resolved spectra the higher the order observed. For
the experiments of this work, the nature of the quantitative information
relevant to molecular structure that is available in the high quantum
orders is identical to the single quantum spectrum. However, from
Equation (1.28) it is readily seen that the single quantum spectrum may
contain a tremendous amount of redundancy of this information for large
spin systems. The multiple quantum experiment has the effect of sampling
the single quantum spectral information and presenting the data in an
accessible manner (i.e., in the form of resolved transitions). As we
shall demonstrate in Chapters 3 and 4, the high quantum spectra, together
with a consideration of molecular symmetry, will elucidate the dependence

of transition frequencies on the molecular parameters of interest.

s
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Chapter 2

NMR Using Liquid Crystals

In this chapter, we present some details of the theory for NMR
experiments with liquid crystals. The results here also pertain to
solutes partially ordered in a liquid crystal solution. All the liquid
crystal samples studied are thermotropic nematogens with positive magne-
tic susceptibilities. Thus, the director is taken to be parallel to
the static field direction and the laboratory z axis.

Alkyl and aromatic quadrupole moments for deuterium are ~160-180 kHz
and deuterium spectra from isotopically labeled nematogens are typically
about 50 kHz wide. The scaling, as we show below, is due to the imper-
fect ordering of molecules in the matrix. The typical strength of the
dipolar interaction for protons is 100 Hz to 10 kHz yielding a spectral
width of ~10-100 kHz. Chemical shift values and s;alar couplings are
usually about the same size as their isotropic values. Indeed, they are
quite often fixed at the latter during spectral amnalysis.

For asymmetric molecules as solutes in a nematic sample, proton
linewidths are typically a few hertz wide. This means, with a small
number of coupled spins or high enough molecular symmetry, most transi-
tions will be resolved in the single quantum spectrum and an analysis
may be possible. As an example, consider the highly symmetric six spin
system for the proton spectrum of benzene dissolved in a nematogen. This
is shown in Figure 2.1. The top trace is the benzene spectrum taken
with a single pulse Fourier transform experiment under conditions of
moderate field homogeneity. The center trace was produced by applying a

two dimensional spin echo sequence [38]. Use of the spin echo technique
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Figure 2.1

Proton NMR spectra of benzene dissolved in a nematic liquid crystal.
The top trace was obtained from a single pulse FT NMR experiment under
conditions of moderate field homogeneity (~.5 ppm). The middle trace
demonstrates the enhanced resolution obtainable when a two-dimensional
spin echo pulse sequence is used. A theoretical stick spectrum is shown

at the bottom.



has removed line broadening due to magnetic field inhomogeneity. Also
shown in the figure is a theoretical stick spectrum fitting the experi-
mental frequencies. Because there are no chemical shift differences,
the spectrum appears symmetric about its center. With complete resolu-
tion of all lines as shown in the center trace, éll dipolar and scalar
couplings can be determined. Perhaps the most complicated spectrum
studied to date by single quantum NMR is that from the 10 spin spectrum
of partially oriented ortho toluene [46].

As we shall see in Chapter 4, the proton spectrum of a pure liquid
crystal is generally not as well resolved as benzene. Without isotopic
substitution the number of protons per molecule is large and, with the
higher degree of ordering, individual transition linewidths are greater
than for solutes. The result is a large number of overlapping lines in
the spectrum. Without a sufficient number of fully resolved peaks, the
proton spectrum is usually intractable and no analysis may be possible.

Deuterium NMR of labeled liquid crystals has been somewhat success-
ful in yielding quantitative information on ordering [39-44]. For
example, methylene deuterons on an alkoxy or alkyl chain segment of a
liquid crystal will give a resolved doublet [43]. Linewidths may be
approximately 0.1 to 1 kHz, but splittings are 10 to 100 kHz. If the
chain were allowed only to exist in an all trans configuration, all the
methylene resonances would be related simply and contain the same infor-
mation about ordering. Usually, one can assign individual resonances to
specific segments [43] and it is possible to learn about conformational
statistics. Dipolar splittings can be observed in a spectrum but are
usually small due to the small deuterium dipole moment. Proton spectra

are much richer in structure [39] than their deuterium analogs. In
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addition, higher sensitivity and greater precision of structural informa-
tion make proton NMR of liquid crystals attractive. Alkyl chain solutes
partially oriented in a nematic liquid crystal have been studied by
multiple quantum NMR [45].

Before going on to discuss the method of obtaining structure and
ordering information from liquid crystal spectra, we pause now to review
rotations of cartesian and spherical tensors. The results of the next
section are relevant to the definition of an order tensor for a nematic
sample and also apply to the spin tensor portion of the interaction

Hamiltonians described in Chapter 1.

2.1 Coordinate Transformations for Tensors

The mathematical details of coordinate transformations for tensors
are covered in a number of texts [7,8]. We give here only a brief summary
of the results necessary for our purposes. The eqpations below will be
useful for coordinate transformations of both the order tensor and the

irreducible temnsor representations of the spin Hamiltonians.

2.1.1 Cartesian Basis
In Chapter 1 we have given the interaction tensors in cartesian co-

ordinates. To perform a rotation of tensor A,

XX Xy Xz

A=A A _ A , (2.1)

to éR, we apply the transformation matrix R,

R _ R, 2.2)
=1

Q-
A
a»
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If é is real, as in the case of the interaction Hamiltonians of Chapter
1, 5 = 5 . The usual convention is to break the transformation up into
rotations about cartesian axes with Euler angles @ = a, B, v [8]. The
rotations are as follows. Rotate by angle o about the z axis to the
intermediate frame x', y', z'. Rotate about y' by angle B to the frame
x'", y", 2". Finally, rotate about z'" by angle y to the transformed axis

b4 s

system x'"", y'"', z'"'. The complete rotation matrix is given by Equation

(2.3).
cosacosBcosy-sinasiny sinacosBcosy+cosasiny -sinfcosy
R = [ -cosacosBsiny-sinacosy -sinacosBsiny+cosacosy -sinfBsiny (2.3)
cosasinB sinasinR cosfB

2.1.2 Spherical Basis

In the previous section, we have written the second rank tensor A in
cartesian coordinates for Equation (2.1). An alternate approach, and one
convenient when considering several rotations of tensors, is to express é
in a spherical basis. One can then make use of the properties of ir-
reducible spherical tensors to simplify calculations. Irreducible tensor
methods and rotational properties of tensor operators are subjects
covered in several texts, for example those by Rose [8] and Silver [7].
Only the results necessary for our analysis will be reviewed here.

Each of the interaction Hamiltonians of Chapter 1 can be written in

the form of a scalar product of tensors:

z
H=X-A-Y = A, XY ‘ (2.4)

i 13 i3 1]

- >
where X and Y are first rank tensors (vectors) and A is second rank.



To use a spherical basis instead of the cartesian basis of Equation (2.4),
we make use of the scalar product of two irreducible tensors with compo-
nents Ak and Tk,
q q
AT = T T At (2.5)
~ ok q -q
In Equation (2.5), the integer k20 is the rank and each tensor has
(2k+1) elements specified by q = -k, ~k+1, ..., +k. In general, the
Hamiltonian can be written as contributions from zero, first, and second

rank tensors so that Equation (2.4) becomes

2 k
H= ] J (DTaAT (2.6)
k=0 q=-k 171
We must now relate the irreducible tensors of Equation (2.5) to the
cartesian components in Equation (2.4). 1In terms of the cartesian

components (Tx’Ty’Tz)’ we can write the elements of the first rank ir-

reducible spherical tensor as

TO = Tz (2.7a)
™ = 3D (T +iT) (2.7b)
+1 x- "y’ :
and similarly
1
AO = Az (2.8a)
al = 3d//2a +1a) (2.8b)
+1 x- "y )

To find the elements of a second rank irreducible tensor, we make

use of the product rule for two commuting tensors of rank k' and k'":
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Tk’lJ - {Ik s 1 X Ik )J}

\J : 1"

] Ck'k",q',q-qNT5, T 1 (2.8)
' q q-q'

q

where the C coefficients are the Clebsch-Gordon coefficients. 1In

Equation (2.8), we have introduced the superscripts i and j to indicate
the tensors involve different parts of the system. For example, in the

dipolar Hamiltonian, i and j refer to a particular nuclear pair.

Multiplying the first rank tensors of Equation (2.7b) gives the

result [47]:

10t - j? i A R i (2.9)
49 - 4 e -
i
SO
S
oot - :%5 (ryptetad + arptrlod 4+ ity
el i

A 2,i3 . .
Similarly, for the tensor A™’ 3 in terms of the cartesian components
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of Equation (2.1) we find, from the product of first rank tensors (see

Equation (2.8)),

0,ij _ -1 iy, _ _ 1 1] ij ij

Ay "5 Tr(A ™) 3 (Axx + Ayy + Azz) (2.10)
A]"ij --1 [Aij - Aij + i(Aij - Aij)]

+1 2 ZX X2z zy vz

1,1ij 1 ij ij

A = - == |A - A

0 7= (A ]

1,y _ _ 1 i3 _ 13 _ ., ,13 _ 1]

A—l 2 [Azx sz + (Azy Ayz) 1

a2:i3 oL pai3 a3, g 413 4 a1dyy
2 Txx vy xy yX

+2
2,i3 _ _ 1 (,1i] ij . & ij

A+1 =-3 [sz + Azx + 1(Ayz + Azy)]
2,i3 _ 1 ij ij

A, 7 [3a,, - Tr(A™)]

e e S e R T b )
-1 2 "Txz zX yz zy
2,ij _ 1 (,ij ij P ij

A__2 5 [Axx Ayy l(Axy + Ayx)]'

As an example particularly useful for our purposes, consider the
dipolar Hamiltonians for like spins i and j. From Chapter 1, the ele-

ments of the dipolar tensor 21] are

ij > > 3 '
D = (8 -3e - s Pb,q = X,V¥,Z. 2.11
0q +Y1YJ( pq” 3%, eq)/r1j P>q = X,¥,2 ( )

The dipolar Hamiltonian may be considered as a scalar product of two
second rank tensors. The elements in Equation (2.11) make up one tensor
and, combining the spin operators, -fi and —fj’ we have the other. Re-

calling that DiJ is traceless and symmetric, we get for the components
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of the two tensors,

=0 (2.12)

1]
>

4077 = 75 D

Ai‘iij =% (Dii + iDyig)

A;Eij -5 @ - 03 +20d)

' ='§§'[21313 URSESHEE Wi (2.13)
Tiiij = 71._2_ [141-11?) + 13111]

Tfiij - i%? [Ifllg + Iélfl]

2,ij _ (1 ]
T+2 =Inin

2,ij _ i
T o™ =145

In Equation (2.13) the first rank spin operators

i

I0 = Izi (2.14a)
i 1 )
I+1 = -75 (Ixi + lIyi) (2.14b)
i _ 1 _
I_1 = + /5'(Ixi ini) (2.14¢)

have been introduced. From Equation (2.11), the spatial elements can be

related to the spherical harmonics Yi by
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. Y.h
a2s13 ,/gEJ_ [4m 42 (2.15)
q 3 5 q )
Tr
1]

If Equations (2.12) and (2.13) are combined according to Equation (2.6),
we obtain the full dipolar Hamiltonian. Finally, we note that the sec-
ular truncation of HD is equivalent to keeping those terms in the pro-
ducts AZTE corresponding to q = 0. This is a result of the commutation
relations of the angular momentum operators and irreducible tensor opera-

tors [47]:

_ 1
[1,. TI(:] = TI;_*_l [(k+ q)(qu+1)]€, (2.16a)
k., .k
[Iz, Tq] = qTq. (2.16b)

Now that we can write Hamiltonians in terms of irreducible tensor
operators, we turn to the question of rotations. The coordinate trans-

formation of an irreducible spherical tensor is given by
kR ka k _k
T = RT = T ,D Q 2.17
(T)" =R I TgPrq® (2.17)

where the Dz,q(Q) are elements of the Wigner rotation matrix and Q =
(a,B,y) is the set of Euler angles for the rotation. Properties of the
Wigner rotation matrix, together with a description of how to calculate

the elements Dk (?) can be found in the texts by Silver and Rose.

g'q

2.2 Order Parameters

We can now proceed to discuss the situation of an ensemble of aniso-
tropically ordered molecules such as found in a liquid crystal. If only
rigid molecules are considered, the Hamiltonian will contain an average

over the orientation probability distribution of the ensemble. If a
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number of conformations are possible for each molecule, then the
Hamiltonian will also have to reflect an average over these, each
weighted by a éonformational probability. The probability distribution
for orientations is then a function of the conformational states of the
molecules. Roughly speaking, this takes into account the possibility
that each conformation may orient differently. Approximations, based

on arguments for the relative time scales for reorientation of the entire
molecule and conformational changes, are often introduced to reduce the
number of parameters required to describe the ordering of the ensemble.
For the time being we will ignore such time scale arguments and assume a
conformationally dependent probability distribution for ordering. Later,
after introducing the Saupe order tensor, the question of separation of
averaging for reorientation and conformational change will be re-examined.
The problems with time scale arguments will be addressed and the approach

for choosing a molecular axis system will be discussed.

2.2.1 Coordinate Transformations for Liquid Crystal Interactions

In Equation (2.6) we give the Hamiltonian as a scalar product of ir-
reducible tensors. This equation is valid for a rigid molecule (or a
non-rigid molecule in a single conformation) where the tensors 2 R
describing the spin portion of H, and ék, describing the spatial part,
are related to some space fixed axis system. More rigorously, for an
ensemble of non-rigid molecules, we must include the contribution from

each conformatien as expressed below.

2 k
H= ) ] DO F a5k (2.18)
k=0 s=-k S n S0
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In Equation (2.18), the subscript n specifies a particular conformation
with probability of occurring Fn' We have used the superscript L to
indicate that we measure the spectrum in the lab frame. For the most
general case, four coordinate systems and three transformations have to
be considered to relate the microscopic molecular properties tc lab frame
tensor components. The axis systems and rotations are shown schematically

below.

PAS e M Q' D Q" L
2 —_P—% — (X" yu Z")
(X,Y,2) (x,y,2) (x',y',z") a 27

where the rotations involved are:
(1 Qn: Rotate from Principle Axis System (PAS) to a molecule
fixed system (M).
(2) Q;: Rotate from M to the director axis system (D).

(3) Q": Rotate from D to the lab frame (L).’

Rotations (1) and (2) with Euler angles (an, Bn, Yn) and (a;, BA, Y;),
respectively, have to be done for all allowed conformations. The results
are collected with the appropriate weights Fn and the final rotation,
Q", performed.

Starting with the interaction Hamiltonian in the principle axis
system, the rotations for the spatial portion of Hvare:

a) from PAS to M

k
kM k\PAS _k
= A D (R), 2.19
<n p=Z_k (A), D, (@) (2.19a)

b) from M to D

k.D kM _k '
(ap,= I () 0. @), (2.19b)
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¢) from D to L

k
S = ]
=k

k .. k.D
D__(@" ) F (A . (2.19¢)
n
. k . . -

The spin operators, Ts’ are invariant to these rotations with spa-
tial Euler angles. Combining Equations (2.19) and (2.18) we have for the
interaction Hamiltonian

H=7 -DSTT 0 am T F X () dX (2 )aPAS, (2.20)
Ks s . TS nqp nqr n° pq n pn
where the superscript L on the spin operators has been dropped for
brevity. Equation (2.20) is valid for a single orientation of the mole-
cule fixed axis system relative to the director frame. Actually, there
is a distribution of orientations described by the function P(Qé). This
function is usually expanded in terms of the generalized spherical

harmonics [48]

oy 2kt k k .,
R = ) uzv C,,(@ D (@) (2.21)

In Equation (2.21), we have explicitly indicated the dependence on con-
formation by the symbol n. The Cﬁv(n) are independent of Qé (but not of
the conformation) and are known as the generalized order parameters or

"motional constants' [49]. The average of the rotation matrix relating

molecular and director frames is then

/k 'Ys = ' k ] \ 7
\qu(Qn) J P(Qn) qu(Qn)dQn. {(2.22)

Making use of the relation for conjugates of the Dk(Q),

k _ m-n, k *
De @ = DTS __@), (2.23)



and the orthogonality of the Wigner rotation matrices, we have

k r-q.k
= (=1 ) 24)
<qu(Qn)> (-1) c (n). (2.24)

We finally get for the general (averaged) interaction Hamiltonian

Z C kPAS

DS ] 0¥ @m () D NCRICwN (2.25)
S r

npq

We can begin to make reductions in the complexity of Equation (2.25).
First, the interactions most important to the study of liquid crystal NMR
are of rank two (e.g., dipolar and quadrupolar). Also, the usual high

field approximation allows us to neglect terms for s # 0. The result is

" 2
H—TZDO(Q)ZF(D C_ oy @
nq
x (] Do, @) (40)A%). (2.26)

1%

Thus we see that there are 25 (complex) order parameters (for
q=-2, -1,0,1, 2and r = -2, -1, 0, 1, 2) required to describe the
ordering for every allowed conformation. Henceforth, we will replace the
final summation over p in Equation (2.26) with the tensor components in
the molecule fixed axis system, (Ai)M, and leave off the superscript M.
This seems reasonable for the dipolar interaction where we can choose a
molecule fixed axis system according to symmetry to reduce the number of
order parameters. The dipolar interaction in its PAS is given by

13 . (r ,)-3 and, applying the rotation of Equation (2.19a), we arrive

Daa ij

at 213 given in Chapter 1 and Equation (2.11).
If we now consider the symmetry of a uniaxial nematic liquid crystal

we can reduce the number of order parameters required. The uniaxial
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nature of the phase means that P(2') (and the spectrum) are invariant

to rotations about z' of the director frame by angle y'. Thus, r=0 and
we only have five order parameters for each conformation. The first
rotation matrix of Equation (2.26) then reduces to Dgo (0, B", 0) where
B" is the angle between the director frame z' axis and the magnetic
field. Nematic mesogens order nearly perfectly so that B" = 0. This
may be a poor approximation if used for smectic phases with large tilt

angles [48]. With these uniaxial properties, Equation (2.26) becomes

q .2 2
rzl F 2 (-1)% ¢ o) (A . (2.27)

2.2.2 The Saupe Order Tensor

An alternate description of order for a uniaxial 1liquid crystal is
offered by Saupe [50}. 1In the high field approximation an NMR
experiment measures the component of the Hamiltonian parallel to the
main field. Considering just a single conformation in an ensemble of
rigid molecules for now, the transformation of a second rank interaction

tensor from lab frame to molecule fixed axis system is given by

VA
ALAB = x§ SaBAaB’ (2.28)
aB

ALAB is the lab frame component of A parallel to the field (z" direction).
In Equation (2.28) the elements of a traceless, symmetric tensor § have

been introduced,

1
Seg =3 3 Le~8,5% (2.29)

N

where la, 28 are the direction cosines between the molecule fixed axes

a,B and the fleld direction. 1In Equation (2.29), the angle brackets imply

an average over an orientational distribution function similar to that in

40



41

the last section. Equation (2.28) may be rewritten

iso 2 z
= L — A (
ALAB A + 3 S SaB 48’ {(2.30)
af
where
A% =Ly =L +a +a ) (2.31)
"3 ~ 3 VYxx Tyy zz :

is the isotropic average of the tensor. Re-introducing the dependence
. n .
on conformation n, the elements of S may be related to the motional

constants of the last section by

n - 2 ' _1 2 v
Szz <DOO(Qn)> =3 <3cos Bn 1> (2.32a)
(st -s") = (3;5 % (@ +0% @h>
XX ¥y 2 200"n =20""n
Y3 i 2a :
=5 <sin Bnc052an> (2.32b)
1 *
o)
n - _ 3. 2 " _ 2 '
Sey = "1 <D_5p(@)) =Dy (a))>
3 2., '
=5 <sin aninZan> (2.32¢)
i)
n _ 3 2 ' 2 '
sz - (8) <D10(Qn) D—lO(Qn)>
=-%? <sin8;c058;cosa;> (2.324)
st = -1(3);5 <2, (@') +D2 (2')>
yz 8 -10""n 10" n
/5 [ ] L} |
=5 <sin8ncoansinan> (2.32e)

As an example of the use of Sn, the contribution to the lab frame

~

dipolar coupling between spins i and j from the nth conformation can be

written:



Y.Y.h
pt, = - —=1  (s" (3cos“s -1
ij 2,3
4 (rij)n
+(Sn -5 )Y(cos9 -cos 8 )

+ 457 (cos®.. cos8,. ) + 4S° (cosB.. cose., )
Xy ijx ijy'n X2z ijx ijz'n

n
+ ASyz(cose cosei. ) 1, (2.33)

ijy jz'n

where cosei, s P = X,y.2 are the projections onto the molecule fixed axes
of a unit vector pointing from nucleus i to j and rij is the internuclear
distance.

From the form of Equation (2.32) it is clear that the number of order
parameters actually affecting the spectrum will be determined by molecular
symmetry and the choice of molecular axes. The number of order parameters
required for different molecular point groups is given elsewhere [51].

For example, the rigid molecule benzene, with D6 symmetry for the proton
spins and the z axis chosen along the six-fold axis, requires only Szz.
We find it convenient to use Equation (2.33) when actually calculating
coupling constants in Chapter 4.

Now, using the probability for the occurrence of conformation n, Fn’

the lab frame measurement can be written as
iso.n 2 sz n .n
AI.AB = Z Fn[(A ) +.§ SaBAaB] (2.34)
n af

2.3 The Influence of Internal Motions on Molecular Ordering

In the last section we have demonstrated that, for molecules with no

symmetry experiencing the ordering potential of a uniaxial liquid crystal,
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the NMR spectrum will be sensitive to five independent order parameters
for each conformation, weighted by conformational probabilities. Only a
few assumptions have been made in arriving at this result. First, the
correlation times for all types of molecular motion, including intra-
molecular vibration and rotation as well as reorientation, are assumed
to be short compared to the inverse of the largest contribution to the
interaction tensor involved. This is certainly a good approximation for
NMR of liquid crystals. Reorientational correlation times for liquid
crystals are usually shorter than a nanosecond. In contrast, quadru-
polar and dipolar interactions for common nuclei observed in NMR are
typically 10 to 106 sec_l. Thus, the Hamiltonian reflects an average
over intramolecular and reorientational motions.

The second assumption implicit in Equation (2.27) and (2.34) in-
volves the manner in which the conformational average is treated. The
use of a summation over conformational states implies that molecules
exist for some time in well defined configurations which rapidly inter-
convert. This may be reasonable when the potential barriers involved
are high and only states at the minima are appreciably populated. If
this is not the case then, in principle, the summation over conforma-
tions may be replaced with an integration over a continuous motion or an
ensemble average of quantum mechanical states. The summation is also
usable, though perhaps not physically meaningful, when a continuum of
conformational possibilities are related through molecular symmetry.
This point will be diécussed when considering oriented biphenyl groups
in Chapter 4.

The most general approach in spectral analysis makes use of Equation

(2.27) or (2.34) which contain only the approximations already mentioned.
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The motional averaging in Equation (2.34) may be rewritten as

x§z
ALAB = B <SaBAdB>int,mole’ (2.35)

where the complete averaging includes both internal motion (int) and
motion which reorients the entire molecule (mole). In an attempt to
reduce the number of parameters in a model used to analyze a spectrum,
further approximations to Equation (2.35) are often made. A separation
of the averaging of g and A is sometimes assumed based on arguments for
the relative time scales for reorienting and internal motions [18]. Two
extremes may be considered. The time for which a molecule is correlated
with a particular orientation Q' relative to the director is denoted

T The conformational states are characterized by a correlation time

mole’

Tine In the first extreme conformational changes occur faster than a

molecule can reorient (Ti << T ). A single order tensor should then

nt mole

describe the average orientation for all conformations:

Z
Aap = )z “Sup”mole Aug” int (2.36)

The distribution function, P(Q'), is then independent of conformation.
This implies that the intermolecular potential determining orientations
only depends on Q' [52]. 1In the other relative time scale extreme
(Tmole << Tint)’ when a molecule changes its conformational state, it is
highly probable that it will completely reorient before undergoing another
change of conformation. For this case, each conformation must be de-
scribed by a separate order tensor gn as in Equation (2.34). The inter-
mediate situvation, for which Tint ~ T oole? corresponds to replacing the

discrete summations of Equation (2.27) and (2.34) with a treatment for

continuous internal motion.
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In an approach similar to the assumption T << T the average

nt mole’

of Equation (2.35) is separated by assuming a non-rigid molecule is
composed of rigid subunits with relative rotations making up the con-
formational changes [54]. Each rigid subunit i is described by its own
order tensor, g(i). If the relative timescales allow a separation of
internal and reorientational averaging, then the g(i) will be related to
a single 2 for the entire molecule. Otherwise, the g(i) will be
independent.

There seems to be no body of well founded experimental evidence to

support the simplifying assumption T, << T For large amplitude

int mole”’
motions resulting in geometrically dissimilar configurations it is
reasonable that the orientation distribution function P(Q') will be at
least weakly dependent on internal coordinates. Indeed, there are many
examples in the literature in which the spectrum of non-rigid molecules
cannot be adequately explained by assuming a single order tensor inde-
pendent of conformation ([52-55] and references therein). 1In some cases
it has been found that observed quadrupolar and dipolar splittings in
the spectra of pure liquid crystals can only be explained by assuming a
conformationally dependent § [54]. Although it would seem that P(Q')
should be only weakly dependent on ground state vibrational modes of
molecules, even this assumption may not be appropriate when analyzing a
high resolution spectrum of oriented solute molecules. Emsley, et al.
[52] and Burnell, et al. [53] have suggested that the anisotropic
couplings observed from tetrahedral molecules dissolved in nematic

phases may be explained by a correlation between molecular orientation

and asymmetric vibrational modes.
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Thus it would appear that one must always use the more complicated
averaging procedure in Equation (1.35) to relate A to ALAB' This will
present difficulties unless an adequate model exists to give the con-
formational probabilities. If, instead, these are to be determined from
an experiment, then drastic simplifications or assumptions may have to
be used concerning molecular structure. It has been suggested that a
possible approach is to carefully choose the molecule fixed axis system
to effectively "decouple" internal motions and reorientation [55]. In
some cases this amounts to finding the principle axis system for s-
Choosing the molecule axis system in this manner may be difficult if the
conformations are not related by symmetry. The case of biphenyl discussed

in Chapter 4 demonstrates this approach.
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Chapter 3

Multiple Quantum NMR

3.1 1Introduction

This chapter covers the basic theory of multiple quantum NMR. Most
of the theoretical development of this technique is found elsewhere [31,
38,56-66,69]. No attempt is made to give a complete description of all
aspects of multiple quantum spectroscopy. However, details given here
are sufficient to understand all multiple quantum spectra presented in
this and the next chapter. The radio frequency pulses used are suffi-
ciently broadband to excite all allowed transitions of the spin systems
studies. Aside from specific creation and detection of even quantum
(MM = 0, +2, +4...) or odd quantum (AM = +1, +3, +5,...) transitions- a
result of the bilinear spin coupling Hamiltonians - all pulse sequences
used are non-selective. Selective sequences, which produce enhanced
signals for specific multiple quantum orders, are the subject of separate
work [64,66,69,33].

As an example of multiple quantum NMR, we again consider benzene
partially ordered in a nematic liquid crystalline solution. A non-
selective proton multiple quantum spectrum of benzene in Eastman Kodak
liquid crystal #15320 is shown in Figure 3.1. All orders, from zero
quantum transitions to the six quantum, are present. Each order is
composed of a group of lines separated from neighboring orders and ex~-
tending from zero quantum on the left to six quantum on the right. The
method of separating transitions by order (time proportional phase incre-

mentation) is given below.



Partially Oriented Benzene
Non-selective Multiple Quantum Spectrum

.
l 1 L |
0 1AW 2AW 3AwW 4A W 5Aw sAW

XBL 818-1766

Figure 3.1

Non-selective proton multiple quantum spectrum of benzene oriented
in the nematic phase of a liquid crystal solution. Only one half of the
total spectrum, which is symmetric about its center, is shown. Multiple
quantum transitions are separated according to AM by the time propor-
tional phase incrementation technique. The central two and four quantum
lines (at 2Aw and 4Aw, respectively) have been truncated in height. The
spectral width shown is 50 kHz.
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The width of each order in Figure 3.1 is equivalent to the single
quantum bandwidth and the one quantum region of that figure may be
compared (except for intensities) with Figure 2.1. The expected reduc-
tion of transition density with higher orders is seen in Figure 3.1.
For example, there is only a single pair of five quantum lines. The
origins of these and other transitions are understood from the spin
energy level diagram shown in Figure 3.2. The permutation symmetry of
benzene proton spin functions is isomorphous with the D6 point group
leading to eight irreducible representations. (Benzene also has an
inversion center making the full point group D6h’ Inversion symmetry
only becomes important in the zero quantum spectrum.) The five quantum
pair comes from the (A1 3 -+ (Al)_2 and (Al)2 > (Al)_3 transitions. An
analysis of this spectrum becomes completely trivial if we assume the
benzene ring has a perfectly hexagonal shape. The dipolar coupling

constants are then geometrically related by

Dortho =37 Dmeta =8 Dpara

The coupling Dortho is uniquely determined by the five quantum splitting
which can be shown to be independent of scalar couplings. Assuming
anisotropic indirect spin-spin couplings to be negligible, the relation

is then

1

1 _ Five Quantum Splitting
2

ortho) 3.7649

(D

If we assume the scalar couplings are equivalent to their isotropic
values, then all couplings are completely determined except for the

relative signs of Dij and Jij' An attempt to fit the spectrum with
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Figure 3.2
Benzene spin energy level dlagram. The total magnetic quantum

number for the six proton spins, M, is shown on the left hand edge.

States are classified according to the eight irreducible representations

of the D6 point group. Multiple quantum transitions are only allowed

between states in the same representation.
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Dortho > 0 was unsuccessful and so it is concluded that dipolar couplings
are negative. If we choose a molecule fixed axis system with the z axis

along the six-fold symmetry axis, and x, y axes in the ring plane, then

by Equation (2.33)

D <« 1 zz
ortho 2 r3
ortho
The proportionality is entirely determined by nuclear properties (Yproton)
-]
and the choice of units. If the usual value of T ortho = 2.482 A for

benzene is assumed, then the five quantum spectrum gives us the (averaged)

order parameter Szz'

3.2 Theory

This section will cover the basic theory for non-selective multiple
quantum NMR experiments. A brief review of the density matrix is first
given and the most general multiple quantum pulse éequence described.
The rotational properties of the multiple quantum propagator with even
and odd quantum intensity dependence on pulse sequence parameters are
~ discussed. Methods for separating orders based on properties of the
‘multiple quantum propagator under radio frequency phase shifts are also

reviewed. Experimental examples with benzene in a nematic liquid crystal

demonstrate several outcomes of the theory,

3.2.1 The Density Matrix

It was mentioned in Chapter 1 that the finite number of states and
bound energies of a coupled nuclear spin system make the density matrix
approach [3,68] particularly useful in pulsed NMR theory. We review here

the density matrix formalism as it applies in later calculations.
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The wavefunctions {¢} which are solutions to the quantum mechanical
Schrddinger equation may be expanded in a complete (orthonormal) basis

{9} as

lo> = L Cqloys (3.1)

-f-
<l =l = g Cirosl-

In general, the expansion coefficients, {C}, are complex numbers (i.e.,
they may be written with a magnitude and phase). If we have an ensemble

of systems all in the same state wk, then the expectation value of some

observable quantity is

<0> = <¢k]0[¢k> (3.2)

— *
- z Z Cikckj <¢il0l¢j>"

i]

where 0 is a quantum mechanical operator. For a collection of states,
each occurring with a probability Pys the ensemble averaged expectation

value 1is

<0> = Z Py <1pk|0|1pk>, (3.3)
k

[]
L !

*
§ § PiCixCiy <0410004>>

*
=1 I cic, <¢ l0le.>;
15 1 1
where the bars denote the ensemble average. The coefficients CICj are

the elements of an ensemble averaged '"density matrix" given in the

following equation:
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(g)ji = c;cj. (3.4)

All of the theory in this chapter assumes an ensemble averaged density

matrix and so the bar is left off p. Equation (3.3) may be rewritten as

<0>

g g oyy <¢;l0le> (3.5)

jiij

[}
v 1

1o, 0, = Tr(99),
i

where the definition of the trace of a matrix has been used. The '"density

matrix operator" is written

. (3.6)

6 =) el ><vy
k

When the energy of a system is determined by a Hamiltonian H, the

density matrix evolves in time according to its 'equation of motion"

h 2 o() = -i[H,0(t)]. (3.7a)

For our calculations, energies are expressed in frequency units and h is

set to one in what follows. The general solution to Equation (3.7a) is
p(t) = e 0y oM, (3.7b)

for a time-independent Hamiltonian. When the Hamiltonian is time-
dependent, a time—~ordered integration over the duration t in the expon-
ential will be required. This treatment is implicit in the rotating
frame form of the radio frequency Hamiltonian, Equation (1.8). Evolution
of a density matrix operator in the presence of a time-dependent

Hamiltonian is handled mathematically with average hamiltonian theory [6].



54

For a system in thermal equilibrium with its surroundings, p is
. . - = 12
diagonal. In this case, the coefficients lCil correspond to the prob-
ability of finding the ensemble in state ¢i, i.e., they are populatiomns.

In order for p to have non-zero off-diagonal elements, the coefficients
C* C
ik kj

there exists a definite phase relation among states of the ensemble.

must survive the ensemble average of Equation (3.3). This implies

Thus, off-diagonal elements of g represent a coherent superposition of
the states {$}. The off-diagonal elements are termed coherences.
The probabilities in Equation (3.6) are given by a statistical
distribution of energies at equilibrium
eXP(—Ei/kT)
p, = > (3.8)

X exp(—Ei/kT)
i

where k is Boltzmann's constant and T the temperature. Thus, the thermal

equilibrium density matrix operator is given by

_ __exp(-H/kT)
Paq = Tr(exp(<H/KT)) (3.9)

with the exponential defined by

exp(-H/KT) = 1 - ﬁ%-+-%-%§l%%l e (3.10)
KT

In the high field approximation in which the Zeeman interaction is the
largest contribution to H, the equilibrium density matrix operator is

expanded

p=1-BI_ + ..., (3.11)

on
=4

and the constant 8 is defined as



B = (YHO/kT)/Tr(exp(-H/kT)).

Since the unit operator in Equation (3.11) commutes with all operators in

H, it is often neglected to yield the reduced density matrix

p = -B1
eq z

which has been truncated to the first term. In a high field and at most
temperatures encountered in NMR, B is small and higher order terms are

negligible (the high temperature approximation).

3.2.2 The Basic Multiple Quantum Experiment

The most general pulse sequence used for generating and observing
multiple quantum coherence in proton NMR is shown in Figure 3.3. The
basic three pulse sequence in Figure 3.3a consists of pulses with rela-
tive radio frequency phases¢i_and rotation angles ei(ei=<»ltpi). The
NMR signal S(r;tl,tz) as a function of the time pérameters T, tl, and t,
is detected during t2. Using phase sensitive detection (see Chapter 5),
two contributions are separated into two spectrometer “channels' cor-
responding to detection of oscillating field components along the rota-
ting frame x and y axes. These are related to the expectation values
<Ix> and <Iy>. The choices of wvalues for parameters T, tl’ t2’ ei, ¢i
are determined by the spin system under investigation and which transi-
tions are desired. The affect of each is discussed below.

Figure 3.3b shows a pulse sequence which is actually used in the
theory below. The experiment is more symmetric from the standpoint of
density matrix evolution if we imagine we observe a signal proportional

to <Iz>. This is effected by placing a fourth pulse, P4(94’ ¢4), to

transfer magnetization back along the z axis. The experiments themselves
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Multiple Quantum
Pulse Sequence

P 6.d) P, (6,,) P3lb33)

1t Sir; fl ,fz)
|
a) i
Po | <1x>,<1y>
I
T - t ts
| P (8),¢) P (G5,5) P3(83,¢3) Pa (84 ,¢4)
b) <1,>
Bi = UJlfpi
c) U v
'<IZ:>
T t ! t5 =(t-7
M XBL8IB-4148

The simplest pulse sequence used for generating and detecting mul-
tiple quantum coherences in NMR. a) The first two pulses (P1 and P2)
1° These '"invisible"
by the action of a third pulse

create coherences which evolve freely for time t

coherences are then detected during t2

(P3, the "mixing" pulse). The two dimensional signal, S(r;tl,tz), is a

function of the parameter r. b) A fourth pulse, P is included in the

4
theory and <Iz> calculated from the density matrix. c¢) A generalization
of the sequence in b) in which the preparation propagator is U(t) and the
detection propagator is V(t'). In the experiment of a), only one point

in t2 at t' is collected for each value of tl.
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do not contain this last pulse because of the requirement for observation
of magnetization oscillating transverse to the main field.

Figure 3.3c illustrates a conceptualization of multiple quantum
experiments which is used below. The signal written in terms of para-
meters in Figure 3.3a is familiar in the general field of two-~dimensional

Fourier transform spectroscopy [56]. We instead use parameters of Figure

3.3c in expressions for the signal S(T;tl,T') in equations below (t'= t2)'
As we show below, this allows a convenient mathematical treatment of
density matrix evolution.

The sequence of Figure 3.3c may be viewed as consisting of three
parts. The multiple quantum coherences are generated during a "prepara-
tion" period labeled U. 1In terms of parameters in Figure 3.3, the
propagator for this period is given by

+i0,8-0, _ .. +ie T
U=e¢e e e .. (3.12)

A

In Equation (3.12), T is the spin angular momentum operator and ﬁl, f,
are unit vectors in the rotating frame x, v plane, defined by the relative
r.f. phases ¢l’ ¢2. The Hamiltonian is given by H. Multiple quantum
coherences are then allowed to evolve freely during the "evolution"

period of duration t No NMR signal is detected from these coherences

1°

during t This is because evolution of a coherent superposition of

1°
states involved in a multiple quantum transition does not correspond to
magnetic dipole radiation. Because of this, it is necessary to transfer
multiple quantum coherences back into single quantum coherences which we
can detect. This is accomplished during the "detection" period labeled

V in Figure 3.3c. The propagator for this period, of duration T', may

be written
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V=e e T o (3.13)

in analogy with Equation (3.12). 1In Figure 3.3c the parameter ty has
been set equal to t'. It has been shown that t, = t' = T produces the
maximum signal [66,67].

The signal is collected after the detection period and is a function
of T, tl’ and t2: S(T;tl,tz). The two-dimensional Fourier transform
could then be applied to produce a two-dimensional spectrum S(r;wl,wz).

A single quantum spectrum results from a slice in the wz direction and
the multiple quantum spectrum is found from a projection along wy - For
experiments in this work it is sufficient to collect just the single

L}
point at t, = r'(t2==0). This point represents the integral over the w,

2
spectrum. Although some signal will be lost in wy due to phase dif-
ferences among lines in Wy s the technical convenience of single point
detection must be compared to the effort required ‘to compute the full
2-D spectrum. For constant values of T, tl, and t2='r', application of
the pulse sequence then yields a single data point. The entire sequence
is then repeated with a new value of tl, the evolution time. Proceeding
in this manner, a multiple quantum "free induction decay'" is mapped out.
Fourier transformation of the result as a function of tl produces a
multiple quantum spectrum such as Figure 3.1.

If we use Equation (3.7b) and (3.5), we can write the signal in

terms of density matrix evolution as

S(tit,,1'") = <Iz> = Tr(Izp)

1

-iHt. ., 1Ht

= Tr[IzVe = UpoUT e 1VT], (3.14a)



59

-iHt iHt

Tr[Vfle e UpOU+e 1, (3.14b)

]

Y (Uo vh, 1w em ) (3.14c)
3k 0" “jk z “kj ’ )

with wkj the transition frequency (2n(vk-vj)). Fourier transformation

with respect to t gives
S(t3u,t") = T W U), (VIV), 6w-u ) (3.15a)
i ik 0" “jk z 'kj kj :
= ' fw -
jzk @) 1 Q")) 8w =wy ) (3.15b)

In the equations above, Po is the density matrix just prior to the first
pulse. Often, but not always, we start the experiment with the equili-
brium density matrix, - BIZ, and, setting ~B8 equal to one for now,
Po = 2" The matrix g is the preparation matrix %nd g is the detection
matrix. When t' = t and 0g = Iz, then g(r') = g(—r).
3.2.3 Properties of the Preparation Matrix

We now consider the form of P for specific values of ei and ¢i.
For now we will assume that all chemical shifts are equal and so we can
set o, = 0. In addition, quadrupolar and scalar couplings are excluded
from the Hamiltonian below but may be treated in a straightforward manner.

From the results of Chapters 1 and 2, the spin Hamiltonian may be written

> >
H = -fl + .Z D, , (31,,T,5- 14150, (3.16a)
i<j
or, in terms of spherical tensor components.
H=-dw ) Té’k + 7 Ag’ij Tg’lj (3.16b)
k 1<j
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where, from Equation (2.13-2.15),

2,ij _ = Yi'j

A0 = -/6 r3 Pz(coseijz) (3.17a)
1j

2,13 _ (gy7% [t o 0 RS

T, (6)7 [I,,1), + 21319 + 17 Ty ] (3.17b)

1,j _ i _ i _, 1
T, I = Ll = f 55 1y (3.17¢)

All of the experimental pulse sequences can be written so that the

first two pulses are at opposite phase, i.e., ¢ = ¢i; ¢ = ¢2 = ¢ 4+ m,

and rotate Iz by the same angle 61 = 92 = 8. The propagator U may then

be written

=}

I g + A . . +
U(e)¢,T) = e—leI.n e iHt elOI (3,18a)

With ¢ the phase shift relative to the rotating frame y axis,

ief-ﬁ 1¢Iz 1er —1¢IZ
e = e e e ,
then,
i¢Iz -i¢Iz
U(e,¢,1) = e u(e,t) e , (3.18b)
~10T ... 16
u(e,t) = e Y e e .

Likewise, for the detection propagator (63= 645 8' and ¢3= o3 ¢4= ¢+ ),

i¢I -1¢I
VO',6,t') = e 2 V(',T') e z (3.1%a)

-18'T .. 18I
ve',t') = e Ve e Y, (3.19b)



As an example of the affect of phase, we consider what happens when the
first two pulses are at some phase relative to the final pulses. This
causes an order-dependent phase shift of the preparation matrix relative
to detection. From Equation (3.18), (3.19) and (3.14) we find

+ 1‘ \J 1 ' 1
}L (U(B,6, LU (0,0,7)) 5 (V (8",0,T)T V(8',0,7")) S(w=w,.)

= T wWE,nIUNe,m) (0,0,

ik
-10,-M, )¢

X e S{w-w, .,) (3.20)

kj

Equation (3.20) states that a shift in the phase of the radio frequency
preparation pulses results in AM = Mj--Mk times the phase shift for a
multiple quantum line in the spectrum. This will have implications for
the separation of orders and phase Fourier transformation techniques as
discussed below, but for now we take ¢ = 0. We now look at specific
cases for the parameters of Figure 3.3.

To calculate the affect of pulse angle 6, we make use of transforma-

tion properties for spin operators. Again, we write the preparation

propagator
Uo.c) = e-ier e—iHT eiGIy
- e—iH'T
where
-i8T ieT

H' =e JHe 7. (3.21)
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The effect of the rotation implied in Equation (3.21) can be calculated
by a transformation with Euler angles (a,8,vy) = (0,6,0). From Equation
(2.17) and a definition of the Wigner rotation matrix, the rotated

. ¥ I3 =
Hamiltonian H' is (H Hz + HD)

Aw l

1
H' = -Awcos8T,. + — sin G[T ]
V2 —l

0

2

+ § a4 {% (3cos e—l)Tg’lJ

L A
i<j
1 > o
+ cg) 31n26[T2 13 _ 12,13

l
+ (%) sin 9[T2 1J+T?"13]} (3.22a)

. k . , ,
or, replacing the Tq spin operators with spin angular momentum operators,

v - Bw
H Awcos8Iy - = sind[I, +1 ]
j > >
+ D, . {+ (3 0-1) 3L -1, -1
1§J j{ (3cos°8-1) ( 55 Lty

3 j iy _ 3 3
+ ( ) smze[(1+110 + IOI+1) (I It I )]

=) k| i3
+ ( ) sin 9[I+lI+1 + I__lI_l]}. (3.22b)

The affect of the preparation matrix P may then be found by considering

the expansion [3]

2

P(1) = py + 1tlog,H'] - % [[py H'1,H'] + ... (3.23)

o
In what follows, we introduce definitions for the preparation

matrix using different initial density matrix operators DO==IZ, Ix’ Iy:
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P? = Ue,0) I ui e, 1) (3.24a)
x _ + A

Py = Ue,t) I U (8,1) (3.24b)
Pg = U(e,t) I, ute, 1) (3.24c)

We now consider specific cases for P.

Case 1l 6 =

For this case, the preparation sequence is-% y,r,-% ¥ (¥ means a

pulse with phase 180° relative to y). Equation (3.22a) becomes

H_ =H = ) A 1] 1 21y ( ) [T2 13412 lJ]} (3.25)
XX 0
l<J
- 1 - i
H igj D, (+5 (BT,T . 1 1 ) + 5 (14_1 1 I}
- -1 3 '
By = "2 8, 7 @) ) Dij(I+iI+j + I—iI—j)'

In Equation (3.25), subscripts on H have been introduced which refer to
rotation of the bilinear dipolar Hamiltonian, i.e., Hxx means sz rotated
by a 90° y pulse.

Since Hxx only contains T2 operators with q = 0, +2, it is a zero
quantum and two quantum operator. This is a direct consequence of the
bilinear nature of sz. Linear operators, such as those contained in the
chemical shift Hamiltonian, cannot create multiple quantum coherences by
themselves. If the commutators in Equation (3.23) are evaluated, using

Equation (3.25) and setting fg = Iz’ it is easily seen that P_ will only

N|= N

contain operators connecting states separated by AM = 0 or AM~ even.

Thus, this preparation sequence creates only even quantum coherences.



The expansion (3.23) can be used to determine the dependence of each

order on T when this time is short [33,67]. Zero quantum operators do
. 2 .

not appear until the 1~ term. Other even n quantum operators first
(n~-1) . .

appear in the Tt term. In most experiments, the higher quantum

transitions are desired requiring the expansion to contain significant

contributions from high order terms. This implies longer values of t

for which the expansion will not converge fast. The explicit short

time Tt power dependence approach is then replaced by the choice of a

preparation time such that VT ™ 1 where Vo is a measure of the "size"

of HD in Hertz. Experimental methods exist [69] for choosing values of

t which are best for creating transitions of a certain order.

Case 2 6 = —; Aw = 03 o9 = I.

For this case, the propagator U will contain the same rotated
Hamiltonian as before (Eq. 3.25). The preparation propagator now becomes
—inxT iH 1

e I e XX .
y

P’ =

T

2
Again, using the expansion of Equation (3.23) this propagator can be shown

to contain only odd quantum operators. The operator Iy may be written

. 1 . .
as a combination of T+l operators. Recalling the commutation relations

in Equation (2.16b) we see that Pz will contain products such as

1,i1,§ .1,i1,j.1,k
Th T 7 T Ty Ty

nature. The first term in Equation (3.23) with odd n quantum coherence

s, .+ €tc, 2 and so is entirely odd quantum in

is the t" term. The initial density matrix Po = Iy may be prepared by
proceeding the multiple quantum pulse sequence with an x phase pulse.

With ¢ = 0, the first y pulse then does nothing and may be omitted. An

odd quantum preparation sequence is then-% X,T, %-y.
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T = . =
Case 3 6 = L Aw 0; o Iz
Tz’ij.

Now the added terms in H' are the first order operators 1

. Once again, considering the commutators in Equation (3.23) we see that-

N

P~ will contain all orders of multiple quantum operators, both even and

|4

odd. The 1 power dependence of these is somewhat different than the
previous cases. For example, the first term with three quantum operators
. 2 . .

is the t  term. For very short preparation times, the three quantum
transitions will appear faster than if the odd quantum sequence of case

2 is used.

LS

2 pulse as the first pulse then the sequence may be

If we use a

written

L rTs -1 r . T3
2}"1" 4}’ 4}"4}7’ ’ 4}’-
In this case, the preparation matrix is .
=L g T =1 (pZ x
g = T U(A,T)[Iz+-IX] U (4,1) =5 (33 + gl). (3.26)
4 4

Both terms above contain even and odd quantﬁm operators.

So far we have comnsidered just the preparation portion of Figure
3.3c. As we said before, multiple quantum coherences evolving during ty
are unobservable and we have to reconvert them to single quantum signal.
The properties of the detection matrix in Equation (3.15) are essentially
the same as the results above when T' = 1. Equation (3.15) states that
g will have to contain operators for the coherences of interest if they
are to be observed. For example, if the detection sequence of Figure
(3.3b) is %-y,t,-% ¥ then only even quantum transitions can be observed.

The signal ultimately depends on the product of g and Q and so we can



selectively prepare and detect either even quantum, odd quantum or both
coherences in the experiment. This principle is demonstrated experi-
mentally below.

In summary, we have shown that multiple quantum coherences can be
prepared and detected by a number of simple sequences which are only
selective in the sense that the rotated Hamiltonian (Eq. (3.22a)) and
initial density matrix pg can be chosen to contain TE terms where q is
even, odd, or a mixture of both. The specific cases of P and g considered

above are summarized here.

P:, Q: pure even quantum (3.27a)
2 2

y y

Pﬂ, QTr pure odd quantum (3.27b)
2 2

P:’x, Qi’x both even and odd quantum (3.27¢)
4 4

We have only considered the case when the resonance offset Aw is zero.
The affect of the offset term in a Hamiltonian can be included straight-

forwardly. Now the preparation matrix is given by

-iol +i(-AwI +H )t i8I -i01 -i(-AwI +H )r 16T
P =e y e z 2z e y po e ¥ e z zz e y
-iH' T
P=e X exp(—iAmTcoseIz)exp(—iAstinGIx)exp(Amrcosesiner)
+iH' T

"

Po exp(—Achosesiner)exp(iAwTsinGIx)exp(iAwrcoseIz) e XX
(3.28)
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For a general rotation angle of 8, Equation (3.28) would be difficult to
evaluate. From Equation (3.22a) it is obvious that an offset will result
in the occurrence of both even and odd quantum coherences in P. For the

trivial case of 6 =-§, Equation (3.28) becomes (with Po = Iz)

N

pZ (Aw) = cosAwtr P~ - sinAwrt Pi . (3.29)

Ul r
2 2

Nl =

A similar expression obtains if bO = Iy and for q;’y(Aw). If there are
no chemical shift differences, the spectrometer 2 may be set so that
Aw = 0. This condition cannot be met for all chemically shifted nuclei
in a general spin system and so chemical shift differences will tend to
mix even and odd coherences in the preparation. When chemical shifts

are small compared to dipolar couplings, this affect will not be too

severe.

3.2.4 The Effect of Static Field Inhomogeneities/TPPI

From a consideration of the energy level diagram for N coupled spin
% nuclei in Figure 1.2 and the form of the rotating frame Zeeman Hamil-
tonian, it can be seen that the affect of a resonance offset Aw is
multiplicative in multiple quantum evolution. The n quantum coherences
will evolve with an offset of nAw where Aw is the single quantum offset.
The static field that a sample experiences is not perfectly homogeneous
and there will be a distribution of Aw's over the sample volume. The
result is a familiar broadening of resonances in the spectrum whenever
the distribution of field offsets is wider than the natural linewidth -
a gituation which is often the case in proton liquid crystal spectroscopy.

The n quantum coherence will be broadened by n times the single quantum

inhomogeneity. Unless removed, this broadening would prohibit the
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observation of high order multiple quantum spectra.

Spin echoes of the Hahn type [70] are used to circumvent this prob-
lem. Placing a 7 pulse in the center of t1 will reverse evolution under
linear terms in the Hamiltonian. Bilinear terms such as the dipolar
Hamiltonian remain unaffected by this pulse. All evolution from terms
with AwIZ is refocussed at the end of the evolution period, thus removing
the field broadening. Each multiple quantum coherence then evolves with
just the dipolar frequencies and all orders will overlap. In order to
separate contributions to the spectrum from different orders, the method
of time proportional phase incrementation (TPPI) [59,60,65] is used.

The TPPI experiment is shown in Figure 3.4b. The first two pulses
are at some relative phase ¢ and ¢ + ™ with respect to the third and
fourth. This phase is incremented each time tl is incremented by Atl, S0
that A = (Aw)(Atl) where here Aw is just a parameter. From Equation
(3.20) we see that each multiple quantum line is phase shifted by
exp (-iAMg) = exp(—iAMAmtl). The result is that the n quantum coherences
appear to evolve with an effective offset of nAw. To ensure that all
orders are contained in the frequency spectrum without fold back, the
phase increment is set so that A¢ S-%. This phase shift is usually a
fraction of w/2 so that the usual spectrometer quadfature phases are not

adequate. A delay line phase shifter under digital control of the pulse

programmer is used and is fully described in Chapter 5.

3.2.5 Phase Fourier Transform Averaging

Similar to TPPI, the method of phase Fourier transform (PFT) averaging
may be used to separate multiple quantum orders [56,63]. Considering
Equation (3.20) as a Fourier series in phase indicates that coherences

can be separated in phase space according to AM¢. Coaddition of different
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Figure 3.4
The time proportional phase incrementation pulse sequence. In a),
the usual three pulse multiple quantum sequence is repeated with 90°
pulses (vltp = %). b) TPPI pulse sequence. A spin echo pulse (180°)
is placed in the middle of tl to remove inhomogeneous broadening in the
evolution of multiple quantum coherences. The first two pulses are
phase shifted by an angle ¢ which is a linear function of the evolution
time: ¢ = Awtl. c) As in Figure 3.3c, the density matrix evolution is
more symmetric if we imagine that there is an additionmal final pulse and

we detect <Iz>.
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spectra with properly chosen preparation phases will allow the cancel-
lation of contributions to the total spectrum from all but a few orders.
As an example, the even quantum orders may be selected over odd quantum
by adding two spectra taken with preparation phases ¢ and ¢ + 7. The
odd quantum signal changes sign whereas the even quantum shows a phase
shift of zero and constructively adds. Extensions to other orders is

straightforward.

3.2.6 Intensities

As we have seen, preparation and detection matrix elements, which
determine the extent to which coherences appear in the multiple quantum
signal, are a function of the times T and ty. Choosing ty = T' = 1 has
proved adequate for our analysis. From Equation (3.15) it can be shown
that the phases of different multiple quantum lines will not be the same.
This causes loss of intensity in those orders where lines overlap but is
not a problem in resolved higher order spectra. In principle, all lines
will have the same phase if a time reversal sequence [72] is used during
detection so that g(r') = g(-T). In practice, this is not necessary and
magnitude spectra are usually calculated to avoid having to phase correct
individual lines.

As discussed previously, for very short preparation times, not all
coherences are created due to a strong power dependence on 1. This is
demonstrated experimentally in Figure 3.5. For the shortest preparation
times, only the one quantum transitions are observed. As soon as t be-
comes on the order of .1 msec, all orders are observed to some intensity.
As T is further increased, individual lines are seen to oscillate as

expected from the forms of F and Q. We mentioned earlier that the sizes

of couplings in HD may be used as an estimate of an appropriate value of
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Benzene Ensembie Averaging
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Experimental demonstration of "ensemble" averaging used in multiple

quantum NMR spectroscopy.

ten magnitude spectra shown at the top.

seconds above each trace.
lowest orders are observed.
oscillate in magnitude.
the bottom.

The preparation time, T,

is varied for the
This time is given in milli-

For very short preparation times, only the
For longer values of t, individual lines

The average of these ten spectra is shown at



T for a general spin system. Actually, transitions for all orders are
observed in a fraction of this time for benzene. This is a result of
molecular symmetry and the precise nature of g for benzene dipolar
couplings [66]. It is possible to map out the T dependence of P experi-
mentally for any order [73,69]. For small spin systems, this allows

one to choose values of T which produce greater average intensity in a
particular order than an arbitrary choice of t might.

To remove an intensity dependence on T in the final spectrum,
several magnitude spectra from experiments with different preparation
times may be averaged together. This is referred to as "ensemble"
averaging and is shown for benzene in Figure 3.5. If a sufficient number
of t values over a wide range are used then the average should approach
some asymptotic intensity distribution. In a "'statistical' limit one
would assume that each transition occurs with equal probability in the
averaged spectrum. As we have seen in Equation (1.29), for large spin
systems, the number of transitions per order is in a Gaussian distribu-
tion. We then expect the statistical limit integrated intensity per
order to fall off exponentially with n2 for n = IAMI. This is shown in
Figure 3.6 and is qualitatively correct for the benzene experiment.

Such a distribution implies that high order mﬁltiple quantum spectra

will be difficult to observe for large spin systems by non-selective
techniques. When the spin system is an undiluted liquid crystal, a
practical limit of about ten coupled protoms is tractable by non-selective
means. Dilute samples, of course, present further complicationms.

It turns out that the statistical limit underestimates the intensity
that will be found in some isolated high order transitions [66,67].

Figure 3.7 shows theoretical statistical and exact T average stick spectra
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Figure 3.6

Integrated intensity per order for benzene ensemble averaged

multiple quantum experiment. The solid curve is one half of a Gaussian

distribution normalized for N = 6. The experimental points indicate

that this distribution is qualitatively correct for a large spin system.
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) ) Theoretical n-quantum spectra
a. All transitions weighted equally g P

b. Exact average (2000 values
of 1)
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Figure 3.7

Theoretical n-quantum spectra for oriented benzene. a) In this

"statistical" limit case, all transitions are assumed equally probable
and so of equal intensity. b) The average of 2000 spectra calculated
from exact values of preparation time, t. The intensities here are the

result of detailed calculation of density matrix evolution.
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for benzene. The statistical spectrum was produced by weighting each
allowed transition equally. Some degenerate transitions add to produce
the largest lines. The exact T average spectrum of Figure 3.7b results
from a computer calculation by Murdoch, et al. [66,67] from Equation
(3.15) using experimentally obtained benzene couplings. In this spec-
trum, the high order transitions are, on the average, more intense than
one quantum transitions. The six quantum line is the most intense single
transition. This exact average fits the experimental spectrum of Figure
3.1 more accurately in its intensity pattern than the statistical limit
theory of Figure 3.7a.

For computational purposes, it is convenient to remove the time
dependence of preparation and detection matrices in Equation (3.15).
With t' = 1, integrating over T, the result for the intensity magnitude
of a single transition j—+k, assuming an even quantum preparation matrix,

.

may be written [66],
terms involving

<]S [> = Z Z B2 + | overlapping (3.30)
jk' T % 8

transitions

The time independent elements Ba are defined by

8

= X = (A‘Lx a) (3.31a)

af aj ap ak ~ ~ =~ jk
with
A=5"exp(-13 1) 8 (3.31b)
1.

X=8 I § (3.31c)
2 =~ X /A

(3.314)

gae]
[}
2
A=
R



In the equations above, g is the Hamiltonian matrix and A, S are
the eigenvalue and eigenvector matrices, respectively. For the high
quantum orders where transitions are resolved (all orders for benzene),
the second term in Equation (3.30) may be dropped and the "ultimate' T
averaged intensity is readily obtained. Equation (3.30) is easily
modified to handle odd, or a mixture of even and odd, coherences.
Programs have been written by Murdoch [67] which are capable of simula-
ting the exact or ultimate T averaged spectrum for molecules of up to
eight protons. Theory spectra showing calculated intensities in this
and the next chapter were obtained using these programs.

In addition to symmetry selection rules restricting allowed transi-
tions to the irreducible representations of the molecular point group,
there are further symmetry affects forbidding some zero quantum transi-
tions. When the permutation group contains the inversion element (center
of symmetry), some states will exhibit either gerade (even) or ungerade
(odd) behavior undei inversion. When the Hamiltonian is purely bilinear
(chemical shifts and offset terms equal to zero) and the number of spins
is even, states in the M = 0 Zeeman manifold may not be connected in zero
quantum coherences by the preparation matrix in a multiple quantum experi-
ment [66]. Similar to the inversion symmetry element, M = 0 states will
be even or odd under the operator which flips all spins. If H is purely
bilinear, this operator anticommutes with Pi/Z if the preparation se-
quence is %-¢, T, %—;. The result is that only states of opposite
parity under the spin-flip operator are connected in zero quantum co-
herences. When the preparation sequence involves other than %-pulses,
so that P may be written as a combination of Pg and Pg as in Equation
(3.26), then the spin-flip operator no longef anticommutes with coherence

preparation and no inversion selection rules for zerc quantum transitions

are imposed.
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Figure 3.8 shows an expanded trace of the zero quantum region of
Figure 3.1. Ninety degree pulses were used in preparation and detection
and so they may be written as Pi/z and Qi/z, respectively. The stick
spectrum underneath the experimental trace contains line positions of
all theoretical zerc quantum resonances disregarding spin inversion
symmetry. Markers beneath this stick spectrum show lines which should
not appear by the spin inversion selection rule stated above. Although
not all allowed transitions are resolved, most are observed to some
intensity while the forbidden transitions are indeed missing.

Zero quantum transitions are unaffected by field inhomogeneity [63].
If the multiple quantum experiment is performed in strong field gradients
and with no 7 pulses, then only zero quantum resonances will be narrow
enough to be observed. This provides a convenient method for zero
quantum selection. Selecting zero quantum transitions in this manner
and using the sequence g—¢, T, %-5, tl’ %'¢, T; sample, the spectrum of
Figure 3.9 is obtained. The use of %-pulses has resulted in the appear-

ance of almost all zero quantum lines. Although exact intensities are

not shown in Figure 3.9, the missing Bl transitions are normally only

weakly allowed [71].

3.3 Even/0dd Quantum Experiments: Benzene

What follows are experimental examples demonstrating several out-
comes of the theory in Section 3.2. Most of these experiments include
m pulses at T/2 in the preparation and at (t2=‘r')/2 in detection periods
to eliminate the effects of field inhomogeneities and to ensure the on-
resonance condition. Linewidths are only a few hertz because of an
additional echo 7 pulse in the evolution period. Transitions are separ-

ated according to order AM by using the TPPI technique. The TPPI phase
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Benzene Zero Quantum Spectrum

Preparation: Pf/z

Detection Q?}/z

WU ~
[l

m
N
P —

B, Ay

XBL 818-1770

Figure 3.8

Benzene zero quantum spectrum. This is an expanded trace of the
Zero quantum region of Figure 3.1. The preparation and detection
pulses are all 7/2 pulses. In this case, spin inversion anti-commutes
with P and Q and only transitions between states of opposite parity
are allowed. Transitions forbidden by inversion symmetry and their

representations are indicated beneath the theoretical stick spectrum.



Benzene Zero Quantum Spectrum

Preparation: P:Q

Detection. Qi&

il

XBL 818-1769

Figure 3.9

Benzene zero quantum spectrum. This spectrum was obtained using
the sequence /24, T, T/kd, tys w/4¢, t. Spin inversion selection rules
do not forbid any M = O transitions with this sequence. Missing transi-
tions are of B1 symmetry which are only weakly allowed. Only zero quantum

transitions are observed in a field which was purposely made inhomogeneous.
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shift used was 29.5°. This places the six quantum spectrum just below
the Nyquist frequency. All spectra were taken from a single sample of
~30% (by mole) benzene in Eastman liquid crystal #15320. The solution
was nematic at room temperature. Sample environment in the probe was
temperature regulated to within +0,1°C (see Chapter 5 for a description
of the probe). Generally, 8K words in the Fourier transform are suffi-
cient to resolve most peaks,although, at the sampling rates used, the
multiple quantum interferogram does not completely decay. Only one half
of the frequency spectrum, which displays reflection symmetry about the
DC component, is shown in each of the figures. The two halves of each
spectrum were co-added in a manner which enhances the symmetry about the
center of each order and improves signal-to-noise slightly. All spectra
are magnitude plots. By Equation (3.20), the TPPI phase, ¢(tl), can be
removed from P and g. The equations below are written with ¢(t1) =0

as though the preparation phase is coincident with' the rotating frame y

axis as in Figure 3.4a. This causes no loss of generality in the analysis.

3.3.1 Pure Even Quantum Spectrum

Figure 3.10 shows a benzene spectrum containing only the even quantum
orders. The sequence of Figure 3.4b was used with the addition of =
pulses midway in the preparation and detection periods. The signal
S(T;tl,tz) was polarized into one channel of the spectrometer quadruature
(phase sensitive) detector. Observation in the other channel corresponds

to the detection matrix QZ and a signal « tc

2

<I>W) = ) @3, @), Sw-w, ) = 0. (3.32)
ni jk T K l KJ KJ

2 2



Partially Oriented Benzene
Even Quantum Spectrum

pmss
-

AW AW sAw

XBL 818-1768

Figure 3.10

Benzene even quantum experiment. The pulse sequence used prepares
only even quantum coherences. This is demonstrated by a complete lack
of one, three, or five quantum lines. Orders are separated by the TPPI

technique. The signal was polarized to one channel of the phase

sensitive detector.
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= N

The odd quantum detection Qi does not connect states prepared by P

2

~|

which is even quantum.

3.3.2 Pure 0dd Quantum Spectrum

The benzene spectrum shown in Figure 3.11 demonstrates that, in
analogy to a pure even quantum experiment, it is possible to detect only
odd quantum orders. This is accomplished with the sequence (omitting

pulses for clarity)-% o, T,'% (¢4~%), tl’ %-y, tz; sample, where ¢ is

the TPPI phase. As usual, t, = t' = 1t in this experiment. The prepara-

2

tion and detection matrices are then PZ and Qi for observation of signal
. 2 .2 :
« <Iy>. As with the pure even quantum experiment, the signal can be

entirely polarized in one spectrometer channel. The signal oc<Ix> is

then (with the TPPI ¢(t1) = 0)

= y z _
<I>@W) = jZk AR CONCICEINY (3.33)
2 2 .

and will be zero in analogy with the arguments for Equation (3.32).

3.3.3 Breaking Even/Odd Symmetry

It is quite often the case that both even and odd high order mul-
tiple quantum spectra are desired for spectral amalysis. It then becomes
necessary to remove the even or odd quantum nature of preparation and
detection matrices to avoid repeating the experiment to get all orders.
This may be accomplished in a number of ways.

A resonance offset is one approach which, from Equation (3.29),
mixes even and odd quantum preparation (and detection) operators. Using
i

;, t,, 3 Y tz = 13 sample, the complex signal

1
L

INTE |

T
the sequence 3 vy, T,

T

becomes (dropping the subscript on P and Q terms)

N



Partially Oriented Benzene
Odd Quantum Spectrum

lAw AW SAwW

XBL B818-1767

Figure 3.11

Benzene odd quantum experiment. The pulse sequence used prepared
only odd quantum coherences. There is no intensity from zero, two,
four, or six quantum transitions. The signal was polarized to one

channel of the spectrometer detector and TPPI was used to separate orders.
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<IX>(w) = <Ix>(w) + i <Iy>(w)

2 z .z . 2 y .y , z .y y .z
@ 4+ -
g? {[cos AwTijij sin AmTijij cosAw151nAwr(ijij + ijij)]
. 2 z .y , 2 Yy 2 R z .z v .y
+ - : + -
i[cos Awerkaj sin AwTijij cosAw131nAmr(ijij ijij)]}

(3.34)

The zy and yz cross terms have been included in Equation (3.34) for
completeness but do not contribute to the signal. Thus, both channels
contain signal from even and odd quantum coherences. For any arbitrary
value of Awt, the signal energy, m]<I+>12, will not necessarily be the
same as pure even or odd quantum experiments yield but, when "ensemble"
averaged over T this energy partitions equally among even and odd orders,
with the total the same as either of the pure coherence experiments.
This method of removing even quantum selection was used to produce the
spectrum of Figure 3.1.

Making use of Equation (3.26)we can also produce a spectrum with all

orders by setting the second pulse in a standard preparation sequence to

I

4
. T T -
which keep Aw = 0) 74 T, 7 ¢, t1/2, T, t

a 5 pulse. The TPPI sequence is then (again, leaving out the 7 pulses

l/2, %—y, T; sample. Now
detection of signal from all coherences is possible. Once again, the T
dependence of intemnsities is different than the pure even or odd quantum
experiments. An average of experiments for a sufficient range of values
for t will exhibit the total signal distributed among all orders.

We can combine two of the experiments above to both create all orders
and simultaneously selectively polarize the signal into the quadrature
channels. This is accomplished with the TPPI sequence-% ¢, T, %-$, t1/2,

T, t1/2, g-y, T3 sample, with Aw = 0. (In practice, 7 pulses are once

again inserted in preparation and detection to ensure that Aw = 0). Now,
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the two components of the complex signal become (with ¢(tl) = 0 as usual)

1 z X z
T = — o ) ) (
T = jzk (p1 + pl)jk(ql)kjs(b Oy) (3.35a)
4 &4 2
1 z X ¥y
<I > = — PT + PT), L0 (w - . .
. /ijZk <% %)Jk(Q%)“J @=w,) (3.35b)

The preparation sequence, as before, produces all orders of coherence.
If all chemical shifts are equal, the detection matrices for <IX> and
<Iy> are solely even and odd quantum, respectively. Thus, the even
quantum coherences will only be detectable in one channel and the odd
quantum in the other, if the spectrometer reference phase is properly
adjusted. In a spectrum averaged over values of T, the intensity will
once again be evenly distributed among even and odd channels,with the
total the same as a pure even or odd quantum experiment.

Figure 3.12 shows the spectra that are obtaired when the two channels
of the above experiment are separately Fourier transformed. The spec-
trometer reference delay was carefully adjusted so that the two components
of signal in Equation (3.35) correspond to the quadrature detection chan-
nels. The transform of one channel gives a spectrum with only even orders
while the spectrum from the other channel exhibits only odd. This experi-
ment combined even/odd selectivity with phase Fourier transform tech-
niques. Two multiple quantum free induction decays with preparation
sequences %-¢, T, %-$ and‘% 6, r,-% ¢ were acquired. The channels con-
taining even orders were added and those containing odd were subtracted.
In this way, small amounts of bleed-through signals were removed. The
multiple quantum sampling rate (Atl) has been increased by about a factor

of two without interference between orders.



Benzene Non - selective Muitiple Quantum
with
Phase Sensitive Separation of Coherences

a) Odd Quantum
Sy o« <Iy>
| | L
tAw 3aw Saw

Even Quantum

b)

S, X <I,>

1 | | .
o 28w 4Aw 6w

XBL 818-1771

Figure 3.12

Benzene non-selective multiple quantum NMR spectra. This experiment
combines the theoretical results leading to the spectra of Figures 3.10
and 3.11. All orders of coherence are prepared but odd orders are de-
tected out of phase by 90° with respect to even orders. Fourier trans-
formation of the y channel signal, Sy’ leads to the odd quantum spectrum

of a) while the even quantum orders are obtained from Sx in b).
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3.4 The Effect of Chemical Shifts

Up till now, we have ignored the chemical shift Hamiltonian in our
analysis of the multiple quantum density matrix. This proves adequate
when considering molecules such as benzene in which all chemical shifts
are equal. In this case, we can take the chemical shifts as zero by
redefining the rotating frame frequency w. Most molecules of interest
will not have chemically equivalent spins and so for the density analysis
matrix to be useful we must consider the effect of Hcs'

When coupled nuclei are chemically inequivalent, two effects will
arise in a multiple quantum experiment. First, the preparation and de-
tection matrices are different from the examples we have considered in
the previous sections. The pure even or odd quantum preparation matrix
is a consequence of the bilinear Hamiltonian HJ4-HD when offset and
chemical shift terms are absent. Hcs can be included in a straight-
forward manner in the expressions for g and g [33]. The result is that
even and odd coherences appear in the same preparation matrix. Thus
chemical shifts remove selectivity of even or odd quantum orders in a
manner similar to a resonance offset (the latter, however, is under con-
trol of the experimenter). As previously mentioned, if chemical shifts
are small compared to the couplings then a preparétion matrix may still
contain predominantly even or odd quantum coherences.

As a second effect, the chemical shifts will cause multiple quantum
coherences to evolve with relative frequency offsets during tl. In
principle, this evolution could remain unperturbed by r.f. pulses and
chemical shifts measured in the final spectrum. A problem arises when
TPPI 1is used to retain homogeneously broadened lines while removing in-

homogeneous broadening with the formation of a spin echo. A w pulse



centered in the evolution period (Fig. 3.4c) is used to create the echo
by refocusing linear terms in the Hamlitonian which commute with HJ and
HD. This pulse will also cause a transfer of coherence between multiple
quantum transitions which produces additional lines in the final spectrum.
The problem here is very similar to the measurement of relaxation para-
meters in strongly coupled isotropic systems [74]. The origin of addi-
tional lines and an estimation of their affect on spectral analysis is

the subject of the remainder of this section.

Before going on to a determination of the signal when HCs is present,
we first review a simple AB spin-!s system as an example [77]. Normally,
when chemical shifts are absent, the composite two-spin states may be
classified as three triplets and one singlet under spin exchange. There
are four allowed transitions among the triplet states all of which are

degenerate when H = H. and D the dipolar coupling, is zero. When the

J AB’
Hamiltonian instead contains HD and JAB = (0, two degenerate transitions
produce one line at +(3/4)D and the other two appear at -(3/4)D. When a
chemical shift is introduced, the M = O triplet and singlet states are
mixed in the actual eigenstates. This partially removes the transition
degeneracy to produce new lines in the spectrum. Whenever the coupling
(J or D) is small compared to the shift difference § = %(OA-OB) the
Hamiltonian terms HJ and HD can be truncated to that portion which com-
mutes with Hcs and the spectrum is termed first order [79]. Figure 3.13
shows theoretical AB spectra when the total Hamiltonian is Hcs + HJ or
Hcs + HD and for varying ratios of the bilinear coupling to chemical
shift difference. The left hand stick spectrum in part b represents the
familiar isotropic first order spectrum im which J << 25§. 1In an aniso-

tropically ordered sample such as a liquid crystal, the dipolar coupling

D is usually much larger than 26. This situation is depicted on the
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Figure 3.13

Theoretical stick spectra for an AB two

spin-1/2 system. The case

of an isotropic sample i3 shown at the left (DAB=0). The anisotropic

case is on the right where, for convenience,

TAB’ 0. Individual spectra

in parts a through e are for varying ratios of the relevant coupling to

§ = 1/2(0A—0B). The usual (first order) isotropic case is shown in b.

The usual anisotropic spectrum is shown in d.
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right hand side of part e. For purely structural analysis, we may wish
to ignore or remove the chemical shift and reduce the number of para-
meters required to fit the spectrum. When chemical shifts differences

are small compared to D,,'s, we will see below that a single 7 pulse

ij
removes HCS from single quantum and multiple quantum coherence evolution,
to first order. Small additional lines appear in single quantum or
multiple quantum spin echo spectra due to coherence transfers caused by
the m pulse. It is our aim in this section to describe this phenomenon
and estimate the magnitude of line shifts and intensities for simple
spin systems. Analogies may then be drawn for more complicated systems.
We approach this problem by considering a simple two dimensional FT
NMR experiment shown in Figure 3.14. This sequence is familiar in two
dimensional spin echo spectroscopy [75] and is equivalent to that used
to obtain the middle spectrum of Figure 2.1. The time domain is separa-
ted into two sections: tl is the usual evolution period after the
density matrix is prepared by the first 7/2 pulse and t2 here corresponds
to t2' in Figure 3.3c. We wish to calculate the effect of the w pulse

at t1/2 when chemical shifts are present. The general two dimensional

signal is then given by (assuming a y 7/2 pulse and x T pulse)

]

Sx(tl,tz) Tr{Ixexp(—1H3t2)exp(-iH2t1/2)H

X exp(-iHltI/Z)Ixexp(iHltl/Z)

H+exp(iH2tl/2)exp(iH3t2)}, (3.36)

»

where the propagator for a m x pulse is given by [75]

=
]

exp(+iwa) (3.37a)

N N
(21) Jif (Ix)k' (3.37b)
k=1
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Figure 3.14

Pulse sequence used for two dimensional spin echo spectroscopy.
The evolution period, tl’ contains a m pulse in its center. Hamiltonians
in the three periods are denoted H,, HZ’ and H3. In a strongly coupled
system of chemically inequivalent spins, the 7 pulse will cause addi-

tional lines to appear in the Wy spectrum from coherence transfers.



Equation (3.37b) is obtained from an expansion of the exponent in Equation
(3.37a) and using Ix = Z(IX)k where (Ix)k is an operator for a single
nucleus [75]. We have assumed that the m pulse non-selectively excites
all N nuclei.

For our purposes it is sufficient to consider only the case when all
three Hamiltonians are equal: H, = H2 = H, = H. When H contains only

1 3

the Zeeman offset and bilinear terms,

H= -AwIz + HD + HJ (3.38)

we may evaluate Equation (3.36) easily by inserting the identity operator

n = 1 (3.39)

appropriately. The result is
Sx(tl’tZ) « Tr{IXexp(—iH3t2)exp(—;§tl/2)
x exp(-iHRt /2)1 exp(iHRt /2)
1 X 1
x exp(thl/Z)exp(iHBtz)} (3.40)
where
1.

® =z mm' - +hoT + Hy + H (3.41)

Bilinear terms in H are unaffected by the 7™ pulse. Because all terms in
H are mutually commuting, we find that the offset term is removed from
the evolution, as expected in light of the discussion on TPPI.

The difficulties alluded to above arise when a chemical shift

Hamiltonian is present and the total Hamiltonian is
H= -Awl + g, 1 + + H.. 3.42
g P Loyt H (3.42)

i
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H does not commute with HD or H
cs J

when not all oi are equal.

When the

sample is isotropic and J couplings small compared to relative chemical

shift differences (a first order spectrum), HJ can be truncated to that

part which commutes with HCS and a 7 pulse will again remove chemical

shift evolution from t,. Molecules may sometimes contain large J

1

couplings and when anisotropically ordered in a liquid crystal, D

couplings are usually as large as or greater than chemical shift dif-

ferences. The chemical shift Hamiltonian may be written as two terms

H = ) [(cxi—aj)(Iz “Iz,) + (oi+oj)(IZ +1 )]

cs 2 (N-1) 145 i 3 i

1
Z [6ij(Iz -‘Iz.) M Ty (Iz +Iz )]

H —
cs  (N-1) 145 1 ; iz 3
where
(Sij E-é‘(Oi—O'j) .
_1
Tij =3 (ciﬁ-aj),

As an example, the commutator of Hcs and HD is evaluated as

84Dy (T T =T 4T,

I e

[HCS,HD] = - igj

3

(3.34a)

(3.43b)

(3.44a)

(3.44b)

(3.45)

As an approach to evaluating Equation (3.40) when chemical shifts

are present, one may expand the exponentials containing H with the well-

known Zassenhaus formula [3]

exp(A+B) = exp(A)exp(B)exp([A,B]/2)exp([B,[A,B]]1/3) + [A,[A,B]1/6)...

(3.46)

and use perturbation or average hamiltonian theory. However, products
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such as §..D 2 D D2 sy+e«., €tc. occur and the expansion will

s I ) ¢ - PP ] s 6..
ij ij ij ij ij "ij

not converge unless t1/2 is small. Multiple m pulses in t, may be used

1

to scale or remove higher order terms in the average hamiltonian. {59]
As another approach, Equation (3.40) may be evaluated directly in a basis
set which diagonalizes the Hamiltonian. Evaluating the matrix elements

directly yields [75]

sx(tl’tz) « igil zijkl exp(lwijtz) exP[l(wij-mkl)tl/z] (3.47)

where

N +
Zijkz - (Ix)ij(Ix)u(H)jk(H )Q.i’ (3.48)

and

The matrix elements of Il are easily evaluated. In the simple

product basis set, from Equation (3.37b)

N
(I =168 , (3.49)
m m(ZN-nﬁ-l)

where the usual definition of the Kronecker delta is used:

1 form = 2N-n+1

[-23
I

0 otherwise.

In the eigenstate basis set, II is given by

s} s = () s (3.50)

@N-m+ 1)
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where § is the eigenvector matrix. Now, S is block diagonalized by total

Zeeman quantum number so that AMkZ z Mk-Ml = 0 for the element SkZ' We
may then find the change in M for I in this basis set as follows. The

total Zeeman quantum number for state i is given by
M=k, -3 (3.51)

where ki is the number of spins "up" (i.e., number of o's). Thus, from

Equation (3.50) and AMmi =AM = 0,
(27-m+1)j
AM,, =M, - M
i3 1 N oa
= k. - k
1 2N—m4-l
but
k = N-k ,
2"-n+1 n

so, finally

aM = 2k - N = 2M = -2 (3.52)

for (H)ij in system basis set. Equation (3.52) will prove useful when
considering a TPPI multiple quantum experiment. It may be shown [75]
that the intensity coefficients for the signal, Equation (3.48), obey

the following index permutation properties.

= = * = *
Zijkl—zklij Z!iji zjizk‘ (3.53)

Before going on to the multiple quantum case, we first consider an

AB spin system as a simple example which illustrates the effect of the =



pulse in the two frequency domains. Two dimensional Fourier transforma-
tion of Equation (3.47) gives (neglecting relaxation effects)

Swi,w)) = ) 2. . 8wy ~w, )6, ~w, . ) (3.54)

1’72 11ks ijke 2 ij 1 Tijke

in which wijkl = (mij-wkl)/2° The Wy spectrum will contain the usually
allowed single quantum spectrum with intensities different from those
obtained from a single pulse experiment., The spectrum projected along
the wy axis will show new lines whose intensity depends on the extent to
which simple product states are mixed by both the couplings and chemical
shifts. A. Kumar, et al. have evaluated the intensities and frequencies
for an AB system with JAB’ DAB and 6AB all non-zero [76]. The results
are presented for convenience in Table 3.1. The quantities used in that

table are defined as follows.

1
S =48 = = ( _.c\
"AB T T 2 YA B’
T =71 = l-(o +0.)
AB- 2 A B

D =D,,,J =1

AB
b
C = [(J-%—D)2+452]
. 1
cos28 = 28/C,sin26 = (J -3 D)/C.
It should be noted that DAB here i3 defined as twice the quantity used

by Kumar, et al.
The intensities in Table 3.1 will vary depending on the ratio of
couplings and of each coupling to the chemical shift difference, §. For
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Table 3.1

Frequencies and Intensities for the 2D Spin Echo Spectrum
of an AB System

w

w

(relatiie to 1) (relatiie to 0) Intensity
1. %-(J+D) - %-D -% (J+D) -~ %-D (1+sin268)sin286
2. 3 (D) - 3D 2 (3+D) cos>26
3. Z(3HD) +30D 2 (D) +5C  -(1-sin20)sin2e
4, %-(J+D) +-% C -% (J+D) c05226
5. -2 (D) +2C -2 (D) +2D (1+sin26)sin26
6. -3 (J#D) + 3 C - 2 (D) cos 228
7. -3 @) -3 -2 (D) -1 D -(1-sin26)sin26
8. -2 (4D) -2 ¢C - 2 (D) cos228

a =-% (GA + cB).
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much larger than both J and 6. Figure 3.15 shows the w, spectra calcu-

1
lated from Table 3.1 for two extreme cases. The isotropic, first order
case is characterized by D = 0 and J << 2§ and is shown in Figure 3.15a.
The chemical shift is removed to first order and the major lines repre-
sent the symmetrical J splitting centered about wy = 0. Figure 3.15b
gives the expected spectrum for the case when D >> 2§ and, for conven-
ience, J has been taken as zero. Again, the chemical shift is removed
to first order and the major lines appear where they would be expected
in W, had § been rigorously zero. Thes; lines are shifted from their
position when 8 = 0 by approximately g%— . The additional lines resulting
from coherence transfers induced by the w pulse are found at f-% D and
are of low intensity when D >> 2§. The small lines at f<% D are from
transitions thch become allowed when the chemical shift mixes the triplet
and singlet two-spin wavefunctions. They also appear in w, centered
about T =-% (oAi'oB).

We now turn to the TPPI experiment of Figure 3.4c. We wish to deter-
mine the nature of any new lines which may result from a 7 pulse when
the spin system has non-equivalent nuclei. For the experiments in this
work, only the single point at t; =0 (t'=7) 1is collected for each of ty
and only a one dimensional transform is calculated. The signal may be
written in a manner similar to Equation (3.47) and the transform with

respect to t., calculated to give

1

S(Tjw,,t') = ) Z §(w, =w, ., ,) (3.55)
1 13k ijke 1 ijk&
where
Z, e = OO QM @) (3.56)
1jke 1j ke Y et
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Figure 3.15
Spin echo spectra of an AB spin-1/2 system in the wl direction

from the two dimensional sequence of Figure 3.14. The chemical shift

is removed to first order by the echo so that line positions are approxi-
mately those shown. a) The result for a first order isotropic system.
b) A strongly coupled anisotropic system. T,, has been set to zero

AB
for convenience.



As we have seen in previous sections, the preparation and detection
matrices may contain all orders of coherence in a non-selective experi-
ment, hence Aﬁij’ AMkl = +N,+N-1,...,-N+1,~-N. We may use Equation (3.52)
to show that a m x pulse will only transfer coherence between pairs of

states separated by the same AM. For Z

ijke’
oMo = 4n, n=0NNI1,.0....
AMy = M,
MMy, o= 2M, = M,

hence

My = 20

Thus, the 7™ pulse will not cause a transfer of coherence between multiple
quantum orders. The intensity coefficient, Zijkl"is impossible to cal-
culate without an exact knowledge of the system Hamiltonian. Even with
model coupling constants and chemical shifts, Zijkl may be difficult to
estimate in a large spin system. A program has been written by J.
Murdoch [67] capable of simulating the exact T averaged intensities for

a general system of up to eight spins when a m pulse is present during
the evolution period. Model calculations using this program on AB, AB2
and more complicated spin systems [78] indicate that relative intensities
follow a pattern similar to the single quantum experiment described in
this section. Additional lines caused by the m pulse are generally small
when ZSij << Bij' Those transitions arising from states only weakly
mixed by the chemical shift are, as expected, only weakly pumped by

non-selective two pulse preparation. Absolute intensities, averaged over
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T, relative to an identical spin system but with chemical shifts zero,

are somewhat different.

3.5 Conclusion

In this chapter we have outlined the theory of the simplest, non-
selective multiple quantum experiments including the time proportional
phase incrementation technique for retaining homogeneous linewidths
with complete separation of orders. We have indicated the nature of
increased resolution in the higher orders and have also argued the
limitations due to a Gaussian distribution of integrated intemsities.
A brief presentation of the inherent even quantum transition nature
arising from a bilinear spin pumping operator in multiple quantum pre-
paration and detection has also been given. Several methods for
observing even, odd or all transitions are demonstrated with experi-
mental examples in benzene. Finally, the extent of distortions in the

spectrum caused by a 7 pulse in the evolution period of a TPPI sequence

when chemical shift differences are present has been discussed. Selective

preparation and detection for enhanced signal intensities in high

quantum spectra have not been discussed.
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Chapter 4

Experimental Studies of Molecules with Internal Motion: Biphenyl

4.1 Introduction

We have stated several times so far that the aim of acquiring NMR
spectra of oriented molecules in a liquid crystal phase is to learn
something about molecular structure, conformational statistics, and
anisotropic ordering. In Chapter 1 we saw that part of this information
comes from couplings in the dipolar Hamiltonian. The object is then to
determine Dij's from frequency measurements taken from the spectrum. If
the molecule is rigid (or vibrational effects can be accounted for) and
contains a small number of coupled spins or sufficiently high symmetry,
this task may be simple. Analytical expressions may exist relating
transition frequencies to parameters of interest and line assignments
may possibly be made unambiguously. We have seen,'however, that as the
number of spins is increased, or when the molecule exhibits less simpli-
fying symmetry elements, the single quantum spectrum rapidly becomes
intractable. Each transition frequency is a complicated linear combina-
tion of parameters of the Hamiltonian and transition density becomes so
high that individual lines are no longer resolved. Even if sufficient
independent and resolved lines exist to determine the problem, the sheer
number of possible initial line assignmments which each produce an
acceptable fit, may make an analysis difficult.

The approach of multiple quantum NMR then appears to offer a signif-
icant advantage by producing high order subspectra which contain con-
siderably fewer transitions then the single quantum spectrum. Often,

these transition frequencies are simply related to dipolar couplings
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making the whole process of analysis more straightforward. When there
are few well resolved tramsitions, only a few line assignment possi-
bilities will need to be considered.

Once couplings are uniquely determined from either a single quantum
or multiple quantum spectrum, it remains to interpret these in terms of
one or several possible molecular models. For dipolar couplings, the
model must include both the geometric parameters and order parameters.

If it is assumed that the molecule is completely rigid, then a classical
model of geometry will allow us to interpret the results in terms of
bond angles and lengths. Vibrations and perhaps other motions will
always be present, however, and strictly speaking, must be included in
our model. We will, in general, distinguish between two types of motion,
although this does not imply they should always be treated independently.
The first includes small amplitude vibrations which are usually treated
as harmonic and cause slight corrections to each D&j' Harmonic vibra-
tions are handled through a normal mode analysis which has been developed
for the case of anisotropically ordered molecules by Lucas [87]. The
theoretical and computational approaches have been reviewed by Sykora,
et al. [88].

The second type of internal motion which we identify is so-called
"large amplitude" vibrations or torsions. Examples have already been
cited and Emsley and Lindon devote an entire chapter to the subject [18].
Included in this are free rotor-like motions of a subunit of a large
molecule, a molecule which jumps or tunnels between conformations, and
pseudo-rotation such as that occurring in many cyclic compounds. This
chapter reports results for a simple case of large amplitude internal

motion which occurs in the biphenyl moiety. The phenyl rings are able to



rotate about the axis which contains the C-C inter-ring linkage. The
angle between two planes, each of which is defined by the carbon atoms
of one ring, is referred to as the dihedral angle and is denoted as ¢.
If the potential contains a minimum, the angle at that minimum is de-~-
fined as ¢m. Biphenyl was chosen because it represents a very simple
type of motion in a potential which is periodic and one dimensional.
Molecules studied in this work which contain the biphenyl unit are shown
in Figure 4.1. The biphenyls para-substituted (4, 4' locations) with
halogen or deuterium atoms were studied as solutes dissolved in a liquid
crystal. The cyano and alkyl chain substituted biphenyl, 4-cyano-4'-n-

pentyl-d. . -biphenyl (SCB-dll) is a pure liquid crystal which was studied

11
in its nematic phase. We also present the single quantum deuterium

spectrum of the alkyl chain of this molecule in the following sections.

4.1.1 Background: Structural Studies of Biphenyls

The biphenyl unit is quite prevalent in orgaﬂ&c molecules and
naturally serves as a choice for theoretical and experimental studies.
Theoretical work has centered on the use of molecular orbital calculations
to model the internal geometry and potential as a function of dihedral
angle [80-84]. Early experiments were conducted on X-ray analysis of
solid biphenyl [86] and electron diffraction measurements in the gas
phase [85]. Unsubstituted biphenyl is believed to be planar in the solid
and to occur with a dihedral angle of about 42° in the gas phase.
Theoretical calculations confirm these measurements and attempt to model
the potential to rotation of the rings by the inclusion of several con-
tributions. These contributions are either of two types: conjugation
and non-bonded interactions. Conjugation includes all electronic effects

which tend to bring the ring planes together and reduce ¢. Non-bonded
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R=R’=cCl, Br, D, H
- ’_ 3
R' CsD“, R - CN

XBL 8110-6661

Figure 4.1

Molecules studied by single and multiple quantum NMR. The
symmetrically substituted biphenyls (4,4'-dichloro-,4,4'-dibromo-,
and 4,4'-d2-biphenyl) and unsubstituted biphenyl were studied as
salutes in liquid crystal solutions. The alkyl cyanobiphenyl,

5CB-d is a pure liquid crystal studied in the nematic phase.

11’
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interactions include steric hindrance, bond deformation, and intermolec-
ular interactions which may raise the total potential at either ¢ = O

or ¢ = 90°, The combination of these two general types of interactions
make up the total potential which determines the preferred dihedral
angle ¢m. Thus, it is reasonable that biphenyl should be planar in the
solid where intermolecular interactions dominate, and at some angle <90°
when they are absent, as in the gas phase. The theoretical form of the
potential varies depending on whether bond deformations,which are a
function of ¢ are allowed [81-83].

Although the value of ¢ at the potential minimum arrived at by
several authors closely agree, relative heights of the barrier to rota-
tion at ¢ = 0 and ¢ = 90° vary depending on the calculation approach.
Dewar, et al. [83] and Fischer-Hjalmars [81] calculate a slightly lower
barrier for ¢ at 90° while Casalone, et al. [82], who include bond
deformation in their model, find that the barrier is lower at ¢ = 0°.
The magnitude of both barriers, at ¢ = 0° and 90°, generally falls
between 2 and 5 kcal/mole.

Since these early investigations, biphenyl has been studied in a
number of varied forms and conditions. Recent studies include Penning
ionization from pure biphenyl adsorbed onto a clean metal surface [89]
and a wealth of magnetic resonance results [95-99] on substituted bi-
phenyls. A brief review of the current magnetic resonance results for

halogenated biphenyls in liquid crystals is given in the next section.

4.1.2 Substituted Biphenyls in Liquid Crystals
The literature contains many examples of molecules dissolved in
liquid crystals which exhibit a simple 4-fold periodic potential charac-

terized by a single "dihedral' angle. Examples include studies of the
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bipyridyls and bithiophenes [90-94] and substituted biphenyls [95-99].
The bipyridyl [93] and bipyrimidine [94] studies are quite similar to the
biphenyl problem. For 2,2'-bithiophene, one can imagine an internal
rotational barrier sufficiently large to cause slow interconversion

between true cis and trans isomers. In the models used to analyze the

spectra, an attempt is made to deduce population ratios for these two
isomers [91,92]. The problem is somewhat underdetermined unless enough
assumptions are made to determine the ratio.

There have been a number of studies published on biphenyl solutes
in liquid crystals. These all involve some substitution; pure (C12H10)
biphenyl spectra have not been published. Substitution patterns are
almost invariably symmetric with respect to the C2 operation along the
para axis linking the two phenyl rings. This choice of symmetry is con-
venient because, as we shall show, only three of the possible five
independent order parameters are necessary in the analysis. Further
symmetry reduces this number to two.

In all of the biphenyl studies, a value for the dihedral angle is
found. This result varies depending on the nature of the substitutions
and method of analysis. For highly substituted molecules; there are not
enough couplings to simultaneously determine all order parameters, bond
lengths and angles, and all terms in the inter-ring potential. Thus, it
is desirable to 1limit the number of substituents, an approach which, of
course, increases the number of single quantum transitions. The least
substituted molecules studied have two para-substituents such as in the
case of 4,4"-dichlorobiphenyl [96]. This pattern of substitution does
not reduce the sensitivity in the spectrum to the dihedral angle since a

coupling involving nuclei in the 4,4' (para) positions will not depend on



é. Perhaps the most extensive study of the internal rotational degree
of freedom has been carried out by Field, et al. [97,98]. This group
has studied the dihedral angle obtained from NMR measurements in liquid
crystals as a function of substituents which are ortho to the inter-ring
linkage. Although many assumptions are made, a clear correlation is
demonstrated between ¢ and the wvan der Waals radii of these substituents
suggesting that the major contribution in the non-bonded interaction
portion of the potential is from steric hindrance.

The primary example of a biphenyl group studied in this work is that
found in SCB—d11 (see Fig. 4.1), which is a pure nematic liquid crystal.
The cyanobiphenyls have received considerable attention in a variety of

studies which are briefly reviewed below.

4.1.3 Alkylcyanobiphenyls

The homologous series of 4-cyano-4'-n-alkyl-biphenyls have been
studied by a number of spectroscopic techniques including X-ray [100],
deuterium [101-102] and proton [103,104] NMR, infrared [105] and, more
recently, dielectric relaxation [106,107]. This series contains alkyl
chains ranging from butyl to octyl and exhibits many of the non-chiral,
thermotropic mesophases among its members. The shorter length molecules
(e.g., 5CB) exhibit only a nematic phase between crystalline and iso-
tropic, while longer chain members of the series can be induced to form
smectic phases. For practical applications, the alkyl cyanobiphenyls
have a remarkable stability and high dielectric anisotropy making some
of them ideal for electric field display devices.

In large part due to the cyano group, each molecule has a large
dipole moment. The X-ray studies [100] have indicated an antiparallel

head-to~tail arrangement in the nematic and isotropic phases of
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pentylcyanobiphenyl (5CB) and heptylcyanobiphenyl (7CB). In this ar-
rangement, molecular dipole moments alternate in direction between
molecules over a large domain, thus giving the most energetically
favorable situation. It has been suggested from the results for 5CB
that local end-to-end structure between opposing molecules occurs with
a spacing of 1.4 times the molecular length [100].

Deuterium NMR studies of 5CB, 7CB and 8CB have focussed on the
ordering of the deuterated alkyl chain. Results indicate a variety of
conformational possibilities exist for the chain. In this Chapter,

the deuterium spectrum of the chain of 5CB-d.., will be compared with

11
previous studies. The proton single quantum spectrum of the unsubsti-
tuted nematic liquid crystal might be expected to be completely unre-
solved because of the large number of spins and higﬁ degree of ordering.
As a result, proton spectra have only been analyzed for 5CB [103,104]
when one section of the molecule is substituted with deuterium. An
analysis of the single quantum, deuterium decoupled proton spectrum of

4-cyano-4'-pentyl-d. . -2',3',5',6'-d,-biphenyl [103] yielded a partial
4

11
estimate of ;he order tensor elements for the aromatic core and the
structure of the cyano substituted ring. A multiple quantum NMR study
by Sinton and Pines [104] has yielded a preliminary analysis of the
biphenyl group structure. The experimental results of the latter work

and a more thorough analysis of the spectrum will be presented in this

chapter.

To gain an appreciation of the complexity present in the proton spin

system of SCB-dll, consider Figure 4.2. This figure shows the single
quantum proton spectrum of the liquid crystal in the nematic phase and

under conditions of moderate field homogeneity. With the degree of
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CsD, #,CN
Single Quantum NMR spectrum

5 KHz

XBL 806-10472

Figure 4.2

Single quantum proton spectrum of 5CB—dll. Double quantum deuterium
decoupling was used to remove couplings to the alkyl deuterons. The

separately measured inhomogeneous proton H,0 line width was ~.05 ppm.

2
Temperature of the sample was regulated at 26.0°C. The total width

shown is 50 kHz.
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resolution in this spectrum, very little useful structure exists.
Although a higher resolution experiment, such as a two dimensional spin
echo experiment, should yield some improvement, the spectrum would
remain difficult to analyze. Because of slow molecular fluctuations

and the high degree of ordering in the room temperature nematic phase,
each transition is fairly broad (>200 Hz). Symmetry considerations alone
predict over 3000 allowed single quantum transitions in a band width of
~50 kHz. (Of course, the actual number of observable transitions will

be less due to degeneracies and to low intensity for some.) The single
quantum spectrum obviously contains many overlapping transitions.

The proton multiple quantum spectrum of the same liquid crystal is
shown in Figure 4.3. The reduction in transition demsity with increasing
multiple quantum order, as for benzene in Chapter 3, is apparent. All
orders are present with sufficient signal-to-noise to allow an analysis.
Each order is contained in a width about that of the single quantum spec-
trum of Figure 4.2 for a total width shown of 500 kHz. Before going on
to detail an analysis of this spectrum, in the next section we will
describe the symmetry properties of a biphenyl group and indicate how

the high order multiple quantum transitions reflect this symmetry.

4.2 Biphenyl Symmetry Models

In determining the point group of para-substituted biphenyl, four
basic models must be considered. 1) Free rotation of the rings where
the potential as a function of ¢ is a constant. 2) Only one static con-
formation with angle ¢ between the rings is allowed, or the molecule
interconverts between conformations with angles +¢. This model may be
considered for the cases when the two rings are either equivalent (iden-

tical substituents and geometries) or inequivalent. 3) The rings are
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C50"¢ZCN
Multipie Quantum NMR Spectrum

AM=0 OM= Am=2 AM=3 AM=4 AM=8 AM=6, AM=7 AM=8

XBL 808-10941

Figure 4.3

Proton multiple quantum NMR spectrum of 5CB-d The

multiple quantum subspectra are separated accordin;lto the order
of the transitiofls. The change in magnetic quantum number, AM,
is indicated beneath the subspectra. Only one half of the sym-
metric zero and eight quantum regions are shown. The full width

shown in 500 kHz. No deuterium decoupling irradiation was used.
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entirely equivalent and the molecule interconverts between the four
equally probable conformations at dihedral angles +¢ andm +¢ (see Fig.
4.4). 4) The rings are inequivalent but the four conformations of case
3) are present. Each of these models may be modified in the manner in
which dipolar couplings are averaged over internal motions. Harmonic
vibrational corrections may be added by a normal mode analysis and
couplings may also be averaged over the torsional motion about ¢.

The first model - that of free rotation - is generally ruled out by
experimental results. The permutation group of the proton spins for a
single conformation of a para-substituted biphenyl with equivalent rings
is isomorphous with DZ. Free rotation effectively increases the sym-

metry to D The resulting reduction in allowed transitions is not

2h”
commensurate with experimental results [94]. This appears reasonable
since a finite barrier is predicted by theory. This barrier, however, is
not expected to be large enough as ¢ goes through-90° to prevent inter-
conversion to the other two symmetry related conformations. All four
conformations are depicted in Figure 4.4. If the biphenyl group changes
between these four conformations fast compared to the inverse of the
couplings which are a function of ¢ - a reasonable assumption again con-
sidering the magnitude of the barriers - then this motion will effective-
ly create two new reflection planes. In all examples found in the liter-
ature to date, only models which include an average of all four symmetry
related conformations of Figure 4.4 adequately fit the oriented NMR data.
Thus, we will focus on models 3) and 4) above. The difference between
these concerns whether the phenyl rings are equivalent or not. If they
are, implying that the para-substituents are either the same or do not

perturb ring structure or motion differently, then there must exist a
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Equivalent Conformations of Biphenyl

A

(@) —--—= —-4+ ¢ (b)

\*~ w

l .
| !
[~ \/
XBL8IIO-6677

Figure 4.4

Four equivalent conformations of biphenyl for dihedral angles
+$ and m + ¢. The molecule is assumed to change between these
conformations at a rate which is fast compared to the inverse of
couplings which are a function of ¢. This motion creates two
effective mirror planes perpendicular to the page and containing the
dotted lines.
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symmetry element which exchanges them. Otherwise there will be fewer
irreducible representations in the molecular point group.

These two possible symmetries are shown in Figure 4.5 along with
the numbering of protons which will be adopted for the rest of this
chapter and coordinate systems chosen for calculating the Dij's. The
higher symmetry case, in which para-substituents are the same (X) and
the rings are equivalent, is shown on the left. When the rings are in-
equivalent as in the case of different substituents (X,Y), the right

hand side of Figure 4.5 is applicable.

4.2.1 Equivalent Rings: D4 Point Group

When determining the point group applicable to a spin Hamiltonian,
it is the permutation symmetry of nuclear spins which defines the group
symmetry elements [34]. The permutation symmetry group of a symmetrically
para-substituted biphenyl (exchanging between the four conformations of
Figure 4.4) is isomorphous with the D4 point groué. The character table
for this group, along with a definition of the symmetry elements is given
in Table 4.1. Each ring has an effective C2 axis of its own (flip ring
about molecular long axis without flipping other ring) due to equal con-
formational probabilities. These are denoted Cg and Cg in Table 4.1.
In addition, both rings may simultaneously flip - a C2 operation for the
whole molecule, CéB. For the space coordinates, there are two C2 axes
perpendicular to the axis containing the inter-ring linkage. These
operations combined with the ring C2 elements result in spin symmetry
elements denoted as R. This element means effectively '"exchange the
rings". Two elements in one class, Rg and Rg, refer to operation by C?
or CB before the exchange, respectively. The other class (RgB, R) is

2

simply an exchange of rings.
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Biphenyl Symmetry

D4 D,
Coord. System | Coord. System 2
X
4 |
Ring A . Ring A
3 2
X
7 6
Ring B x Ring B
8 5

Ring 8 ﬁ(#/z Ring B Ring A
X

Ring A +4/2
L

XBL 817-10851

Figure 4.5

Two possible symmetries for a para-substituted biphenyl. On the
left, the para-substituents are equivalent (X) and the effective average
permutation symmetry for the numbered protons is D4. With different

substituents (X and Y), the point group is D Coordinate system #1 for

2°
D4 lies between the rings with x and y axes bisecting the inter-ring
angles. Coordinate system #2 for D2 lies in ring B with the x axis in
the ring plane for all ¢. The projections defining the direction of

positive ¢ are seen looking down the z axis onto the xy plane.



Table 4.1
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D, Point Group Character Table for Symmetry Elements of Symmetrically

4 Para-substituted Biphenyl
2 _ 2 2 [ 1"
a) E C4 C2--C4 C2 2C2
A B B AB A B
b) E (B3, R3) c; ®,R5D) (C5,C3)
c) (12345678) (56784321) (43218765) (56781234) (43215678)
(87651234) (87654321) (12348765)
A1 1 1 1 1 1
A2 1 1 1 -1 -1
Bl 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0
a)

point group.

b)

(see text).

c)

D4 symmetry elements for space variables for an object of this
D, permutation elements for symmetric para-substituted biphenyl

Permutation elements according to numbering of Figure 4.5.



The resulting energy level diagram for D4 symmetry is shown in
Figure 4.6. From this, the predicted number of transitions for each
multiple quantum order is given in Table 4.2. These predictions take
into account the double degeneracy of the E symmetry transitions but not
of other possible degeneracies for the lower orders. It has been shown
that the number of symmetry allowed transitions in the high order spectra
may be predicted without a complete reduction of the entire Hamiltonian
[33]. Since the Hamiltonian matrix only has nonzero elements Hi for

k

AMi =0 (i.e., it is block diagonal by Zeeman quantum number), we only

k
have to consider blocks for the highest value of M when predicting the
high order transitions. 1In particular, the N-1 transitions only connect
totally symmetric (Al) states. A familiar property of this representa-
tion is that the "symmetrized" basis states (linear combinations of
product states) are invariant to all group symmetry operations. We can
write down the A1 symmetrized states for the M = f(g-l) manifold easily
by noting that they must be linear combinations of those simple product
states which convert into one another under group operations. The
M= t(g-l) simple product states are those for which all but one of the
spins are in a single orientation (a or 8 for spins-1/2). By identifying
the number of these states which are not related by any of the symmetry
operations, we can determine dimensions of the Al’ M= i(g-l) manifolds.
Returning to the specific example of a D4 symmetry biphenyl group,
we see that there are only two proton sites, those ortho and meta to
the substituents, which cannot be exchanged by any of the operations in
the character table (Table 4.1). We immediately predict that there will
be only four symmetry allowed transitions in t

consisting of two doublets. If we ignore chemical shifts (they are
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Symmetrically Para-substituted Biphenyl

D4 Point Group Energy Level Diagram

M A, A, B, B, E
-4 1
-3 2 2 2X2
-2 7 1 3 5 2X6
-1 10 4 4 10 2X 14
0 15 5 7 11 2X16
1 10 4 4 10 2X 14
2 7 1 3 5 2X6
3 2 2 2X2
4 1
XBL 8110-7191
Figure 4.6

Spin energy level diagram for a symmetrically para-substituted
biphenyl (D4 symmetry). The six irreducible representations are
given at the top. The E representation is doubly degenerate.
Values for the total magnetic quantum number, M, are shown along
the left hand side. Numbers inside the table are dimensions of

Zeeman submatrices occurring in each representation.
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Table 4.2

Predicted Number of Transitions in the Multiple Quantum Spectrum of a
Symmetrically Para-substituted Biphenyl

n-Quantum Order # Transitionsa Symmetry
8 1 Al
7 4 Al ( 2 doublets)
6 14 Al ( 7 doublets)
4 A1 (triplet)
4 B2 (triplet)
2 x4 E (triplet)
21 total unique
transitions
5 68 A1 (34 doublets)
20 BZ {10 doublets)
2 x 24 " E (12 doublets)
92 total unique
transitions
4 286 total
3 628 total
2 1142 total
1 1580 total

2 For 8, 7, 6, 5 quantum a breakdown by symmetry is given and

only the number of unique transitions given in totals (ignoring acci-
dental degeneracies). The double degeneracy of the E representation
is not counted in any of the totals.
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removed by a TPPL m pulse) then each doublet will appear centered about
7Aw in a non-selective spectrum of all orders. We may also write down
the M = +3 A1 symmetrized states. They are schematically represented in
Figure 4.7. One consists of a combination of simple product states with
the unique spin ortho to substituents and the other contains the meta
unique spin. -

One can proceed in this manner for the N-2 quantum spectrum by
identifying unique combinations of two 'labeled" spins. Now representa-
tions other than A1 must be considered. Counting schemes have been pro-
posed [33] which unify this approach and are applicable to a variety of
cases when molecules exhibit internal motion. For the lower order
spectra, Hamiltonian submatrix dimensions are large and this approach

becomes difficult. However, a rigorous group theory application will

allow transition number predictions to be made.

4.2.2 Inequivalent Rings: D2 Point Group

The character table defining symmetry elements for the case when
the biphenyl rings are inequivalent (right side of Fig. 4.5) is given in
Table 4.3. The permutation elements are similar to the D4 case except
for the lack of a ring exchange (R) operation. The resulting energy
level diagram is shown in Figure 4.8. Numbers of transitions may be
predicted in the manner of the last section with the results given in
Table 4.4. There are now four unique proton sites and twice as many
high order transitions compared with the DA symmetry model.

From this analysis, the symmetry of the molecule should be evident
from the seven and six quantum spectra. If we see more than two doublets

in the seven quantum spectrum, we know immediately that the rings cannot

be equivalent. If more than four doublets should appear then some
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Symmetrically Para-substituted Biphenyl
M= t+ 3 Symmetrized A, States

o@bodbodibe

odbodbeodbe

Figure 4.7

Schematic representation of symmetrized M = +3 A1 states for a
biphenyl having D4 symmetry. The proton spim labeled with a dot is
in a quantum state (a or B) opposite to that of the other seven
spins. Each symmetrized state a) and b) is a linear combination of
simple product states for the proton spins. These two symmetrized
states make up a 2 x 2 matrix which must be diagonalized to yield
true eigenstates of the Hamiltonian.



Table 4.3

D, Point Group Character Table for Symmetry Elements of

2 Asymmetrically Para-Substituted Biphenyl
YA Y X
a) E C2 C2 C2
AB A B
b) E C2 02 02
c) (12345678) (43218765) (43215678) (12348765)
A1 1 1 1 1
Bl 1 1 -1 -1
32 1 -1 1 -1
B3 1 -1 -1 1

a) D, symmetry elements for space variables of an object
of this point group.

b) D, permutation elements for asymmetrically para-
substituted biphenyl.

c) Permutation elements according to numbering of
Figure 4.5.
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Asymmetrically Para-substituted Biphenyl

02 Point Group Energy Level Diagram

M Aq By B, By
4 1

-3 4 2 2

-2 12 4 6 6

~1 20 8 14 14
0 26 12 16 16
1 20 8 14 14
2 12 4 6 6
3 4 2 2
4 1

XBL 8110-7192

Figure 4.8

Spin energy level diagram for an asymmetrically para-sub-
stituted biphenyl (D2 symmetry). The four irreducible represen-
tations are shown along the top and values of the total magnetic
quantum number are given on the left hand side. Numbers within
the table are submatrix dimensions for each representation and

different values of M.
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Table 4.4

Predicted Number of Transitions in the Multiple Quantum Spectrum of an
Asymmetrically Para-substituted Biphenyl

n Quantum Order # Transitions® Symmetry
8 1 Al
7 8 A1 ( 4 doublets)
6 24 A1 (12 doublets)
24 A1 ( 6 triplets)
4 32 (triplet)
B3 (triplet)
41 total unique
transitions
5 136 A1 (68 doublets)
24 B2 (12 doublets)
24 B3 (12 doublets)
184 total unique
transitions
4 556 total
3 1256 total
2 2256 total
1 3160 total

2 For 8, 7, 6, 5 quantum, a breakdown by symmetry is shown
and only the number of unique transitions given in totals
(ignoring accidental degeneracies).
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assumption, e.g., about the phase or purity of the liquid crystal, must
be invalid. Without exact knowledge of the couplings, we cannot pre-
dict where all of the additional lines from a symmetry lower than D4
should appear. However, if the rings are only slightly different, then
E symmetry lines of the D4 point group are expected to split into two
closely spaced lines. Roughly speaking, this is a reflection of the
doubly degenerate E representation of the D4 point group "splitting'" into
the B, and B, representations of D2. In a similar sense, the A1 repre-—

2 3

sentation of D2 can be viewed as a combination of the states in Al and

B2 of D4. The states of A2 and B1 in the D4 group condense to form Bl

of D2. Unlike the E representation however, this situation cannot neces-
sarily be expected to produce a simple splitting of D4 lines. Thus, if
the distortions breaking the symmetry are only slight, we can expect a

number of overlapping, unresolved transitions due to near degeneracies

and perhaps a few additional resolved lines.

4.2,3 Order Parameters

We determine the number of order parameters necessary to describe a
spectrum by considering effects of molecular symmetry on the definitions
in Equation (2.32). We find it convenient to use Equation (2.33) for
the dipolar couplings requiring the Saupe cartesian order parameters.
We demonstrated in Chapter 2 that, in general, we require five order
parameters for each allowed conformation of molecules oriented in a uni-
axial phase. The C2 operation about the long axis of the biphenyl group
implies that the orientational distribution function describing a trans-
formation from a molecule fixed axis system to director frame must also
have 02 symmetry about this axis. We chose the z molecular axis to be

along this C, axis for both D, and D4 cases and find that sz and Sy

2 2 z

must be zero.
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At this point the two symmetry cases differ. The additional ring
exchange symmetry of the D4 model implies that there should only be two
independent order parameters. Thus, we should be able to easily find the
molecular fixed axis system in which the order tensor is diagonal. Such
an axis set is conveniently chosen with its origin along the C-C inter-
ring bridge as depicted on the left hand side of Figure 4.5. The x axis
then bisects the dihedral angle for all values of ¢. The y axis is then
perpendicular to the effective reflection plane containing z and caused
by the rapid interconversion between conformations. We will refer to
this set of axes as coordinate system #1 here and in the Appendix. The
independent order parameters are then the diagonal elements Szz and
(Sxx-S y). Because these are insensitive to the conformational state of
the molecule, a single order tensor suffices to calculate Dij's and an
average over the four conformations implies averaging just the geometric
quantities according to Equation (2.36). .

The less symmetric D, case requires one independent off-diagonal

2
element in S. We define the molecular fixed axis system for this case
to have its origin in one of the rings (see Fig. 4.5). The x axis lies
in the plane of this ring and the y axis is perpendicular to it. The
non-zero order parameters in this axis system - coordinate system #2 are

then S , (S _ -S ) and S . We see from Equation (2.32c) that the
zz xx vy Xy

Sxy for different conformations are related by a sign. Thus,

g = g™ o gt _ _g™ ¢ (4.1)
xy xy xy xy

Averaged dipolar couplings can then be calculated for this case from
three independent numbers and a relative sign in the order temnsor and
again we find that biphenyl does not present complications in the

analysis due to its internal motion as described in Chapter 2.



4.2.4 Parameters

Assuming J couplings do not change when a molecule is dissolved in
liquid crystals, we may use values obtained from isotropic measurements
when analyzing a spectrum from an oriented phase. This is common prac-
tice reported in the literature and, with the small values of Jij
compared to Dij’ seems justified in most cases. Since the spectra are
usually obtained by the TPPI technique, we also assume that the chemical
shifts are removed and set them to zero. We will have to consider the
extent to which lines are shifted by this technique in the manner des-
cribed in Chapter 3. Fortunately, computer programs have been written
in this laboratory [67] which allow modeling of spectra when chemical
shifts are non-zero and so estimates to be made of line shift magnitudes.

If we assume the biphenyl has D4 symmetry, then there are seven
unique dipolar couplings to determine from the spectrum. Four of these
are intra-ring couplings which are the same for bath rings. The remain-
ing three are sensitive to the dihedral angle and inter-ring distances.

Assuming nothing about the structures of the molecule, then there are

seven molecular parameters which must be determined from these couplings:
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F12 T T34 T Tse T Y78’

T14 = Tsg>

T23 = Te72

T260°

¢,

S,, (S - syy) (4.2)
where r is the distance between protons two and six when ¢ = 0.
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To determine something about the potential, some of the quantities
in Equation (4.2) will have to be fixed. In an analysis of a single
quantum spectrum of 4,4'-dichlorobiphenyl, Niederberger, et al. [96]

fixed r The four intra-ring couplings then determine ring structure

14°
and order parameters. The remaining three couplings were used to find
60’ ¢ and one piece of information about the potential. This analysis
initially assumed an average only over the four static conformations of
Figure 4.4. A more sophisticated average over vibrational or torsional
motions requires further structural and order parameter assumptions. The
inclusion of an average over the torsional motion in which ¢ changes
cause only a slight improvement in the overall fit for the case of
4,4'-dichlorobiphenyl [96].

When the para-substituents on a biphenyl unit are not the same, the
D, symmetry means there are 12 unique dipolar couplings. The 11 molec-

2

ular parameters to determine from these are

0

#r

r

12 56°

#r

r

14 58°

#r

r

23 67’

T260°
$,

Szz’ (Sxx-Syy), Sxy' (4.3)

All of these, plus something about the potential, may be determined from
experimental couplings. Further reasonable assumptions may be made to

simplify the complexity of the problem.
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Clearly we cannot simultaneously vary all of these parameters to
obtain a fit without some sort of iterative approach. The details of
the least squares approach used in this work are found in the Appendix.
We can, however, vary only one parameter while all others are fixed to
get some idea of the sensitivity splittings in the spectrum have to
this parameter. This can be done in a systematic manner to determine
which lines will direct convergence and to help identify possible line
assignment difficulties. Program BIPH4PARA (see appendix) was written
to accomplish this for the six and seven quantum A1 symmetry transitions
from input parameters of Equation (4.2) and (4.3). When D4 symmetry is
assumed, a standard set of geometric parameters, based on a phenyl
skeleton identical to that of benzene and with Y60 = 1.818 Z, is used.
This corresponds to a C~C inter-ring bridge length of 1.50 2,

o -]
= 1.082 A, r.. = 1.400 A, and a C-C-H angle of 120°. This standard

TcH cc

.

set of parameters is given in Table 4.5,
Figure 4.9 shows the variation of six quantum A1 symmetry transition
frequencies with dihedral angle ¢. Only one half of the symmetrical
spectrum which would appear at 6Aw in a non-selective multiple quantum
experiment is shown. The order parameters found for SCB-d11 from an
analysis of the spectrum in Figure 4.2 and assuming D4 symmetry [104]
were used. This analysis yielded a value for the dihedral angle (see
below) which is labeled in Figure 4.9. Two features to note in this
figure are the high sensitivity of some transitions to ¢ in the region
of best fit and that some transitions pass through near degeneracy for
some values of ¢. Figure 4.10 shows a similar dependence on ¢ for two

members of the four seven—-quantum transitions.



Table 4.5

Standard Geometry for D4 Symmetry Biphenyl

r12 = r34 = r56 = r78 = 2,482 A
rl4 = r23 = r58 = r67 = 4,299 A
= 1.818 A

260
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XBL 8111-12391
Figure 4.9

Variation of six quantum A1 symmetry transition frequencies

for a symmetrically substituted biphenyl with dihedral angle ¢.

One half of the symmetric spectrum calculated from D4 dipolar couplings
for each of 45 values of ¢ from O to 88° is shown. The frequency scale

shown 1s relative to the center of the six quantum spectrum.

Structure
and order parameters used in the calculation are those in Table 4.5 and
S = 0.568,(5. -3 ) = 0.057.
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XBL 8111-12392
Figure 4.10

Variation of seven quantum transition intensities with ¢ from
0 to 88° for a symmetrically para—-substituted biphenyl.

Only one

half of the symmetric spectrum for each value of ¢ is shown.
Structure and order parameters are the same as for Figure 4.9.
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With the long axis of the molecule chosen as the z axis, one would
expect Szz to be the dominant order parameter and transitions to exhibit
a linear dependence on this parameter when all others are held constant.
This is found for six quantum lines as shown in Figure 4.11. Here SZz
is varied from -0.5 to +0.95. The transition frequency dependence on
(Sxx - S_) over the same range with Szz held constant is shown in
Figure 4.12., The dependence is weaker as expected. However, all lines
but one vary in a positive sense with a pair of transitions crossing at
(Sxx - Syy) = +0.15. Clearly, this order parameter may not be neglected
in any model calculation. Similar trends for the seven quantum lines
are found.

We can also look at the sensitivity of a spectrum to changes in inter-
nuclear distances. Single couplings should be strongly affected due to
the (rij)-3 dependence. However, the high order transition frequencies
are actually the results of linear combinations of couplings and so will
be less sensitive to changes in particular distances. As examples, the
seven quantum D4 transitions are shown as functions of Ti25 Trepo and

r,, in Figures 4.13, 4.14, and 4.15, respectively. All other parameters

14
are fixed as these distances vary. Strong dependences are shown on r,
and T560 but not on Ti4° This last distance affects intra-ring geometry
significantly but inter-ring parameters only slightly.

The program is also capable of producing A1 representation transi-
tion frequencies for a D2 biphenyl symmetry. The six and seven quantum
transitions as a function of ¢ are shown in Figure 4.16 and 4.17
respectively. For these plots, the ring B geometry was fixed to the

benzene parameters of Table 4.5. For the other ring (A), r,, was set to

[+ o
4.100 A and Ty4 to 4.299 A. The order parameters were chosen to be
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XBL 8111-12386

Figure 4.11

Variation of six quantum.A1 symmetry transition frequencies
with the order parameter Szz and assuming D4 symmetry for an eight
spin-1/2 substituted biphenyl. Szz ranges from -0.5 to 1.0. Other
parameters are the same as for Figure 4.9 and with ¢ = 32°. Only

one half a spectrum symmetric about the center of the order for
each value of Szz is shown.
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Figure 4.12

Variation of six quantum A1 symmetry transition frequencies

) which ranges from -0.5 to 1.0.
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Other parameters are the same as Figure 4.11 with S

XX

with the order parameter (S

= 0.6. Only
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XBL 8111-12393

metrically para-substituted biphenyl with internuclear distance
12° The range of T, is 2.0 to 3.0 A in steps of 0.025 A
parameters are the same as Figure 4.9 with S
0.057 and ¢ = 32°

of T, is showm

Variation of seven quantum transition frequencies of a sym-
r

Other
= 0.568, (Sxx— S )
Only one half of the spectrum at each value
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XBL 8111-12394
Figure 4.14

Variation of seven quantum transition frequencies with r

260
for a D4 symmetry para-substituted biphenyl. The distance r
- ] . ]

260
ranges from 1.5 to 2.0 A in steps of 0.025 A. Other parameters
are the same as Figure 4.13 with T, = 2.482 A,
the spectrum at each value of r

Only one half of
260 is shown.
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XBL 8111-12395

Figure 4,15

Variation of seven quantum transition frequencies with inter-

nuclear distance T4t This parameter ranges from 4.0 to 5.0 A in
steps of 0.025 R.v Other parameters are the same as for the pre-
o

o
vious two figures with r = 1.818 A and r,, = 2.482 A, D4 sym-

260 12
metry for the biphenyl is assumed. Only one half of each spectrum

is showm.
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Figure 4.16

Variation of six quantum A1 symmetry transition frequencies of

an asymmetrically para-substituted biphenyl with dihedral angle ¢
from 0 to 90°.

The same structural parameters for the D4 symmetry

calculations of the preceding figures were used with a slight dis-
-]
tortion of Tyg = 4.100 A which changes the symmetry to D2. The
order parameters were set at S = 0.6, (§ -85 ) =10.03, and
zz XX vy
Sxy = 0.03. Only one half of each spectrum is shown.
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Figure 4.17

Variation of seven quantum transition frequencies for an
asymmetrically substituted biphenyl (D2 point group) with dihedral
angle ¢.

Other parameters are the same as in Figure 4.16.

Only
one half of the spectrum at each value of ¢ is shown.
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S =0.6, (S -S )=20.03and S__ = 0.03 and, as before, r =
zz XX vy Xy 260

1.818 Z. The overall picture is similar to that for the D4 case except
now several sets of transitions collapse to near degeneracy in the six
quantum spectrum (see Fig. 4.16). This occurs close to a value of ¢
obtained for SCB—dll [104] (see below).

Next, we investigate the behavior of six and seven quantum transi-
tions as molecular symmetry moves from D2 through D4 and back to D2. If
one ring is distorted relative to the other and this distortion is changed
so that the rings eventually become equivalent, we should see the number
of transitions change. This is shown for one half of the six and seven
quantum spectra in Figure 4.18 and 4.19, respectively. The distortion

chosen was in r for ring A. This distance ranges from 4.275 to 4.325 A

23
in steps of 0.001 A for the plots of Figures 4.18 and 4.19. The order

tensor for coordinate system #2 was calculated so that it becomes diagonal

if transformed to coordinate system #1 (¢ = 32°). * Thus, when Ty =
4.300 Z, it is equal to T4 Tg70 and Tcgs SO the symmetry is DA' As
seen in Figures 4.18 and 4.19, line frequencies do not vary much but
transitions unique to D2 symmetry simply disappear on either side of the
D4 region. Because there are effectively only two independent order
parameters used, this particular distortion only mildly perturbs the
couplings from a D4 symmetry. Ultimate T averages (see Chapt. 3) confirm
that lines unique to D2 symmetry in Figures 4.18 and 4.19 are of very
low intensity relative to those in the D4 symmetry region.

As a final example, we consider a case when there are three truly
independent order parameters. For this calculation, the rings had equi-

o
A,

= 4.500 A, Ty3 = Ty =

o]

valently distorted geometries with Ti4 = Tsg

-]
4.000 A, ¢ = 32° and with the rest of the parameters as in Table 4.5.
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Figure 4.18

Variation of six quantum A1 symmetry transition frequencies
with integnuclear distance THae This parameter ranges from 4.275
to 4.325 A in steps of 0.001 z. When Ty = 4,300 A the effective
symmetry is DA' On either side of this point the effective sym-
metry is D2 as evidenced by the increased number of transitions.
Ultimate T averaged intensities for those lines unique to the D2
symmetry cases are small relative to other lines for this particu-

lar symmetry-changing distortion.
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Figure 4.19

Variation of seven quantum transition frequencies with inter-

23

nuclear distances r,,. The range of this parameter is from 4.275
o o
to 4.325 A in steps of 0.001 A, Other parameters are the same as

in Figure 4.18., There are four pairs of transitions when the

| effective symmetry is D2 and only two pairs when the symmetry is

D4. Only one half of the spectrum at each value of Tyq is showm.
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Figure 4.20 shows the six quantum transition frequencies as a function
of Sxy which ranges from -0.20 to +0.20 in steps of 0.0l. The variation
of Sxy was designed so that a D4 symmetry became effective where labeled
in the figure. Now transition frequencies do indeed change significantly
and some lines merge to a degenerate frequency at the point where D4
symmetry is effective.

We could proceed in this manner to determine the many different
parameter dependences high order transitions exhibit. We have already
seen some general trends and discussed symmetry changes above. Small
symmetry breaking distortions cause some additional lines of low inten-
sity and splittings from near degeneracy at the expected D4 Symmetry
frequencies. This approach of single parameter variation is limited,
however, and an iterative technique which simultaneously varies several

parameters is required to fit a spectrum.

4.3 Results: 4—Cyano-4'-n—pentyl—dll—biphenyl

The procedure of Gray and Mosley [108] with a slight modification
reported elsewhere [104] was used to synthesize SCB—dll. Transition
temperatures were measured with a polarizing microscope and found to be
TC—N = 23°C and TN—I = 31°C. Isotopic purity was estimated at 98%. A
sample of about 400 mg was sealed under vacuum in a 6 mm o.d. glass tube.
A double tuned NMR probe was used for double resonance experiments while
a single tuned probe was used when heteronuclear decoupling was absent.
Probe circuits are described in Chapter 5.

The single quantum proton spectrum has already been presented in
Figure 4.2. Deuterium double quantum decoupling [109] removed deuterium-—
proton dipolar couplings. With its lack of resolution, no analysis of

the spectrum was attempted. Deuterium single quantum and proton multiple

quantum spectra are presented below,
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Figure 4.20

Variation of six quantum A1 symmetry transitions of para-

substituted biphenyl with order parameter Sxy ranging from -0.2 to

+0.2. Other parameters are set at their values for D4 symmetry at

the point labeled in Figure 4.18. The off-diagonal order parameter

causes an effective D2 symmetry for the biphenyl couplings except

at the one point labeled for Sxy = 0,02. At this point, the order

tensor is diagenalized by transforming from coordinate system #2

to #1 (see Fig. 4.5).



4.3.1 Deuterated Chain Spectrum

A single quantum, proton decoupled deuterium spectrum of 5CB—dll
in the nematic phase at 25.1°C is shown in Figure 4.21. The total
width shown in 75 kHz. Five major doublets with line widths between
300 and 700 Hz are observed. Each doublet is symmetrically centered
about the resonance offset. This doublet structure is expected from
anisotropically ordered spin-l nuclei and arises from the quadrupole
coupling of each chain segment, scaled by the order tensor [39].

Smaller splittings of some of the lines are from dipolar couplings
between deuterons on the same carbon.

An expanded trace of the right hand half of Figure 4.21 is shown in
Figure 4.22. Each member of a quadrupolar doublet is numbered for
identification below. We wish to assign peaks in this spectrum to
specific chain segments. The quadrupolar doublet splitting for a single

segment may be written as [102]

3 4 2 1. ot 2 2

i_3 3 Ly .n -
Avq T2 qCD{Szz<(2 lazi 2) + 2 (gazi zbzi)>
(4.4)
i
1 2 2 n 2 2 2 2
= - - - - + - .
+ 2 (Sxx Syy)<(lcxi Jz'c:yi) + 3 (laxi layi 2byi bxi)>}

This equation implicitly assumes that a single order tensor, independent
of the conformational state of the molecule, describes the spectral
transitions. Here qéD and ni are the characteristic quadrupolar coupling
constant and asymmetry parameter defined in Chapter 1 for a C-D bond in
segment 1 of the chain. The zabi are direction cosines between a C-D
bond fixed axis system (abc) and the molecular fixed axis system in

which the order tensor is diagomal. For C-D bonds, n is generally small

(~0.01) and qéD is about 168 kHz for most CD2 and CD3 groups. Neglecting
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5CB-d"
Nematic Phase Deuterium Spectrum
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-375 0 . 375
kHZ X8L 8111-12405
Figure 4.21

Deuterium NMR spectrum of 5CB-d in the nematic phase at

25.1°C. Each pair of lines centeredlin 0 Hz results from the
quadrupolar interaction tensor for the deuterons on one of the
chain carbons. Smaller splittings of each line arise from dipolar
interactions between spins on the same carbon. Couplings to the
aromatic portion of the molecule have been removed by high power

proton decoupling.
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Figure 4.22

Expanded trace of the upper half of Figure 4.21 for the deuterium

NMR spectrum of 5CB-d in the nematic phase. Quadrupolar satellite

11
lines are numbered for reference in the text.



terms with n and assuming that (Sxxn-syy) is small, we define an effec-
tive order parameter for each segment and the doublet splitting from

segment i is given simply as

i 3 i
Ave = 2 Y%epSe (4.5)
where
i 3 2 1
SCD - Szz<2 lazi ~.§> ‘ (4.6)

Some peaks in Figure 4.22 may be assigned easily. The CD3 group
should give the most intense signal and, because of its position in the
chain, experience the greatest amount of motion from the many conforma-
tional possibilities of the chain. Hence the largest peak with the
smallest Avq, peak #5, is assigned to the methyl group. Likewise, the

peak with the largest splitting and, thus, greatest order parameter by

Equation (4.5), is assigned to the CD2 group attaéhed to the phenyl ring.

This is #1 in Figure 4.22. Other assignments are more tentative, but
it is expected that segment order parameters and so Avi will vary mono-
tonically with segment position. From recent T1 measurements, Emsley,
et al. [110] have proposed that this is indeed true except for peaks #2
and #3 which they assign to methylenes 3 and 2, respectively, counting
out from the ring. The cause of this unexpected behavior is quadrupolar
splittings has not been explained.

We can determine the dipolar couplings within several segments from
the additional structure of some lines of Figure 4.22. Luz, et al. [43,
44] have worked out the transition frequencies and intensities expected

i A VR M - Y.
nt deiiterons. iney e

from isclated groups of two and t

shown that the relative signs of dipolar (D) and quadrupolar couplings

and the magnitude of D may be determined from CD2 and CD3 resonances.
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The theory predicts that each component of a quadrupolar doublet from a
CD2 group will be split into a triplet of intensities 2:3:1 and frequen-
1

E-D, - 3 D relative to vq, the quadrupole frequency relative

cies é-D, - 2

2
to the Zeeman offset (Avq = 2vq).

Figure 4.23 shows an expanded trace of line #1 of Figure 4.22. 1If
we assume the triplet frequencies are not shifted significantly by homo-
geneous broadening, then the experimental spectrum gives a value for 2D.
In previous studies of deuterated nematogen alkyl chains in which a
methylene triplet was resolved it was found that a fit to experiment
could only be made when quadrupolar and dipolar couplings were assumed to be
of opposite sign [44]. Taking qéD as positive, a value of -281 Hz is

obtained for the CD, dipolar coupling of the first segment in SCB—dll.

2
This agrees favorably with values obtained by Boden, et al. [102] for
8CB deuterated in the alkyl chain. The trace of part B in Figure 4.23
shows the theory stick spectrum broadened by a Gaussian function to match
the linewidth of experiment. This confirms that the major transition
frequencies of the triplet shift very little with broadening. The homo-
geneous linewidth is a result of small random fluctuations in the direc-
tor and small couplings to deuterons on adjacent segments. In a similar
manner, the dipolar coupling for the methylene of line #2 in Figure 4.22
is determined to be approximately -201 Hz.

The theory for an isolated methyl group predicts that each member
of the quadrupolar doublet will be further split into a septet of inten-
sities 3:8:3:1:7:3:2 and frequencies 3D, 1D, %-D, --% p, -1D, -2D, - %—D
relative to vq. Again, a fit to experiment is obtained when the coup-

lings are of opposite sign. An expanded trace of the methyl resonance of

Figure 4.22 is shown in Figure 4.24 along with theoretical stick and
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C 1.5 kHz ,
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A
C ~ 20 -0~
1
Yy
XBL 8110-7072
Figure 4.23
Part A shows an expanded trace of peak #1 of Figure 4.22 which is

assigned to the first methylene unit of the alkyl chain in 5CB-d B

11°
and C are a theoretical fit to the experiment with the deuterium dipolar
coupling reported in the text. C shows the stick spectrum for two
equivalent deuterons while B shows the theoretical spectrum broadened

with a Gaussian function to match the experiment in A.
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1.0 kHz

|

! XBL 8110-7071

Figure 4.24

Expanded trace of peak #5 in Figure 4.22. A is the experimental
line which is assigned to the chain methyl group deutercns of SCB—dll.
B and C are a theoretical fit using the dipolar coupling reported in
the text. C 1is the stick spectrum predicted for three equivalent
deuterons and B has been broadened by a Gaussian function to match the

linewidth of A.
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Gaussian broadened spectra. The major peaks in the stick spectrum are
separated by 2D and, again assuming homogeneous broadening shifts these
only slightly, a value for the methyl dipolar coupling of -128 Hz is
determined.

We now estimate the order parameters for each segment from Equation
(4.5). For those lines of Figure 4.21 with unresolved dipolar struc-
ture, Avi was estimated from peak positions alone. Where some resolved
dipolar structure exists, Avi was calculated from the position of vi
in the multiplet structure. The results are given in Table 4.6 along
with a comparison with results obtained at a higher temperature by Emsley,
et al. [101] for the same liquid crystal. The ratio of order parameters
is nearly independent of segment number for these two sets of data.

This would seem to indicate that the assumption of a single, conforma-
tionally independent order parameter for each chain segment is qualita-
tively correct. However, an extensive temperature dependence study of
deuterium spectra from similar liquid crystals by Boden, et al. [102]
indicated that, for the models chosen, individual methylene order para-
meters could not be simply related to a single molecular order tensor.
Furthermore, the temperature dependence of the ratios Avi/AvE could not
be explained by assuming different conformations order equivalently and
that the order tensor may be averaged independent of conformation.

As a final point, we note that a crude estimate of Szz is possible

from the order parameter for the first chain segment. From Equation

(4.6), we have

s, | = 2|si_pl<3? - 17 4.7)

zZ C-D i



Chain Segment Order Parameters from the
Deuterium NMR Spectrum of 5CB-d

Line #2 av P
1 55.0
2 40.8
3 38.3
4 27.7
5 20.0

Table 4.6

11
c
Isp]
X d e .
This work Ref [101] Ratio
0.218 0.185 0.848
0.162 0.134 0.829
0.152 0.125 0.823
0.110 0.090 0.820
0.080 0.065 0.818

? See Figure 4.22.

b Quadrupolar splitting in kHz. Calculated relative
to dipolar structure peaks when resolved.

¢ Only the magnitude of the order parameter can be

determined.

d Spectrum taken at 25.1°C.

© Spectrum taken at 31°C.
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We assume the order tensor is diagonal in a frame whose z axis coincides
with that of Figure 4.5. With a value of 109.5° for the C-C-D bond

1
angle from the phenyl ring to methylene deuteron, and SCD from Table

4.6, we find |S__| = 0.66.
ZZ

4.3.2 Proton Multiple Quantum Spectrum

Figure 4.3 shows the proton multiple quantum spectrum of SCB—dll in
the nematic phase at a regulated temperature of 26.0°C. A non-selective
TPPI pulse sequence was used with the signal intensity distributed
among all orders due to a resonance offset and field inhomogeneity
during the preparation and detection periods. The TPPI phase increment
used was 22.5° and Atl was 1.0 pusec. No deuterium decoupling irradiation
was applied. A total of six multiple quantum interferograms were col-
lected for values of T ranging from 0.4 to 1.4 msec and varying by 0.2
msec. Each had 16384 data points in both phase sensitive channels. For
each 1, the channels were separately Fourier trans%ormed (32 K points),
and the magnitude spectra averaged together. The spectra from different
values of T were then averaged together to give the result shown in Figure
4.3, With this choice of parameters, the frequency resolution is 30.5
Hz/point. Linewidths are not the same for all lines with values ranging

from about 150 to 210 Hz.

4.3.3 Analysis of the Proton Multiple Quantum Spectrum Assuming DA Point
Group Symmetry

In a preliminary analysis [104], a set of couplings were derived
from this spectrum assuming D4 symmetry for the biphenyl group and using
only selected five, six, and seven quantum lines. A total of 24 unique
line assignments were made among these orders and an iterative fit per-

formed by the least squares program MQITER described in the Appendix.



The final RMS error of the fit was 26.4 Hz. The resulting seven dipolar
couplings are reported in Table 4.7. It should be noted that the defini-
tion of the dipolar coupling used in this thesis differs by a factor of
two from that used in Table 1 of Sinton, et al. [104]. Also, the
numbering in Table 4.7 is consistent with Figure 4.5. The theoretical
line positions obtained for the six and seven quantum spectra are shown
in Figure 4.25 along with expanded traces of these regions from Figure
4.3.

As a first attempt to analyze these couplings in terms of order
parameters and structure, it was assumed that each ring has perfect hexa-
gonal structure defined by the parameters of Table 4.5 [104]. Using co-
ordinate system #1 of Figure 4.5, we see from Equation (B.4a) in the

Appendix that D 2 is given simply as

1
b = _¢Lhy Szz

12 2r’ 3 .
12

and we obtain a value of 0.568 + 0.001 for Szz' The only two remaining
parameters to determine are (Sxx—-syy) and 6. 1In the original analysis
[104], each of these was varied while holding the other comstant to find
a local minimum at (Sxx-Syy) = 0.057 + 0.002 and ¢ = 32 + 1°, The
reported errors were estimated from the shape of the RMS deviation curve
for the computed couplings close to this minimum and may not be entirely
realistic. The order parameters agree well with those reported by Emsley,

et al. [103] for 5CB-d,., considering the difference in temperature at

15
which their values were obtained.

We can use a least squares treatment to fit calculated to experimen-

tal couplings when several of the parameters of Equation (4.2) are
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Table 4.7

Experimental Coupling Constants for 4~Cyano-4'-n-pentyl-
p =

dll—biphenyl Assuming D4 Biphenyl Symmetry
Proton Dipolar Couplingsa Proton Scalar Couplingsb
(Hz) (Hz)
D12 -8956 + 3 le 8.0
D13 9% + 4 J13 0.0
D14 760 + 6 Jl4 2.0
D15 =294 + 4 JlS 0.0
D16 - =729 + 4 Jl6 " 0.0
D23 780 + 5 J23 2.0
D26 -3481 + 5 J26 0.0

8 Errors have been estimated from RMS fit of the
iteration and procedure given in Appendix A.

Assumed values.
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Figure 4.25

Six and seven quantum regions of the proton multiple
quantum spectrum of SCB--d1l (see Fig. 4.3). Each trace
shows a total width of 62.5 kHz. The frequency markers
below each experimental frace show the best fit calcu-
lated spectrum assuming a D4 symmetry for the biphenyl
group and resulting in the couplings of Table 4.7. The
central line in the center of the seven quantum spectrum
is a result of pulse imperfections and lack of decoupling

in the experiment.
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allowed to vary independently. Program BIPH5PARA was written for this
purpose and is described fully in the Appendix. Iterations in which all
seven parameters of Equation (4.2) were varied independently failed to
converge to a final fit. Several couplings depend strongly on a number
of these parameters and so may cause an early divergence unless the
initial parameters are fairly close to a minimum RMS deviation from
experimental couplings. We have seen in Figure 4.15 that six quantum

o

transitions vary little with T4 and so this distance was fixed at 4.299 A.
BIPHSPARA was used to fit the remaining parameters with a final RMS de-
viation for the calculated couplings of 10.1 Hz, somewhat lower than the
original two parameter fit [104]. The results are listed in Table 4.8.
The most striking aspect of this fit is the large increase of TH60
and decrease in ¢ from the values for the benzene ring geometry fit re-
ported using Table 4.5. Allowing 560 to increase would be expected to
cause ¢ to decrease as the steric hindrance between protons ortho to the
ring bridge is lessened. The distance To60 has been determined in the
solid and gas phases by X-ray and electron diffraction measurements [80,
85-86]. Typically, a value of about 1.8 ; was found with a spread of

about 107%Z. The value in Table 4.8 is then somewhat larger than might be
expected.

In considering the possible causes for this unusually large ring
separation, we might suspect the lack of vibrational averaging of calcu-
lated couplings. The parameters of Table 4.8 were derived from a model
which does not include an average of couplings over small amplitude vibra-
tional excursions of the nuclei. Thus, the distances reported are not
necessarily their equilibrium values. In their analysis of the proton

spectrum of 5CB—d15 (alkyl chain and adjacent ring deuterated), Emsley
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Table 4.8

Biphenyl Structure and Order Parameters for SCB—dll
Determined with Assumption of D4 Symmetry?

Internuclear Distances

(K) Order Parameters®
r 2,47 + 0.02 S 0.565 + 0.010
12 - zZz -
b
rl4 4,299 (Sxx—Syy) 0.071 + 0.007
Tyq 4,27 + 0.03
T560 1.98 + 0.03

Dihedral Angle (degrees)

$ 30.4 + 0,2
m —

2 Errors estimated by methods described in
Appendix A.

b Fixed at assumed value.

€ For coordinate system #1 of Figure 4.5.



and co-workers found that the inclusion of vibrational averaging signi-
ficantly affected their results [103]. To model the vibrations of the
liquid crystal rings, this group used the normal mode analysis of 4,4'-
bipyridyl as an approximation. Only three independent numbers could be
determined from this spectrum and so it was not possible to derive values
for all the parameters required to describe the ring structure. Infra-

red spectra of 5CB-d.. have been reported [105], but no normal mode

11
analysis has been carried out. Thus, no vibrational averaging has been
included in any analysis reported here.

In addition to averaging the couplings over small amplitude vibra-
tions, the effect of a continuous torsional motion of the rings about ¢
might be required. Rigorously, this would require a solution to the

quantum mechanical Schrodinger equation. The potential for the motion

can be approximated as an expansion in a Fourier series by [112]

.

o v
V() = ] —25 (1-cos2ke) (4.8)

k=1
Obviously, there are not enough couplings to determine all of the para-
meters of Equation (4.3) and more than a few of the coefficients of
Equation (4.8). Assumptions about the structure or reasonable values
for the first few coefficients in V(¢$) and neglect of higher order terms
is required. The Schrodinger equation could then be written in a form
having solutions in terms of Mathieu functions [112]. In a much simpler
approach used for 4,4"'-bipyridyl [93] and 4,4'-dichlorobiphenyl [96], the
probability distribution function for ¢ was assumed to be a Boltzmann
distribution. In both studies, only small changes in the averaged

couplings were found. The magnitude of the corrections for SCB—dll
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estimated from these results would be below the level of precision in the
couplings determined from the available resolution in the spectrum. In
the studies cited above, it was assumed that the order tensor is inde-
pendent of ¢ and so may be removed from the averaging of couplings as
discussed in Chapter 2. This assumption might affect the final value
obtained for 2 and so be invalid for 5CB~d11. Without a knowledge of a
possible dependence on ¢ for é: not averaging the couplings over the in-
ternal rotation can not be eliminated as a possible source of error in
any final fit.

Figure 4.25 shows the resulting theoretical lime frequencies for
the six and seven quantum transitions. We also calculated the magnitude
of exact 1 averaged signal intensities for the five, six, and seven
quantum spectra. The computer program mentioned in Chapter 3 and written
by J. Murdoch was used with the couplings of Table 4.7. The results are
shown in Figures 4.26, 4.27 and 4.28. The fits of intensity patterns to
the experimental spectra are fairly close but differences do exist.
These differences are most likely due to the exclusion of chemical shifts
and heteronuclear couplings with the chain deuterons from the calculation.
As we saw in Chapter 3, when chemical shifts are present in a strongly
coupled spin system, the 7 pulse used for a 2D spin echo experiment will
change the intensity coefficient for each line in the spectrum relative
to 1its free evolution intensity coefficient. The extent of the change is
determined by the relative sizes of the linear chemical shift Hamiltonian,
which is partially refocussed by the action of the 7 pulse, and the
bilinear coupling Hamiltonian, which is unaffected by it. In the absence
of deuterium Larmor frequency r.f. pulses, the Hamiltonian for proton-

deuteron couplings causes a density matrix evolution for the proton spins
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Five Quantum Spectrum
D4 Symmetry Model

a)

b)

c)

I | 'nllll hllh’ |l

XBL 8111-12404

Figure 4.26

Five quantum spectral fit assuming D4 symmetry for the

biphenyl group in 5CB-d In a) the experimental spectrum

for the five quantum re;ion of Figure 4.3 1s shown on an
expanded scale. Total frequency width shown is 62.5 kHz.

b) and c) show the theoretical spectra calculated from the best
fit couplings of Table 4.7 with intensities from exact dynamical
calculations of the density matrix using values of the prepara-

tion time from the experiment. In b) the spectrum has been
broadened to match the linewidth of the experimental transitions.
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Six Quantum Spectrum
D4 Symmetry Model

a)

b)

c)

| ¥ .L[l ll.l A |

XBL 8111-12400

Figure 4.27

Six quantum spectral fit assuming D4 symmetry for the biphenyl
11° a) Expanded trace from Figure 4.3. Total width
shown 1is 44189 Hz. b) and c¢) show the theoretical fit with inten-

group in 5CB-d

sities calculated from exact dynamics of the density matrix using
values for the preparation time from the experiment. The
broadened linewidth in b) matches that of the experimental lines
in a). 4
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Seven Quantum Spectrum
D4 Symmetry Model

a)

b)
I il N I
c)
XBL 8111-12401
Figure 4.28

Seven quantum spectral fit assuming D4 symmetry for the biphenyl

group in 5CB-d a) Expanded trace of experimental seven quantum

11°
region with a total width of 31982 Hz. The central line is due to
pulse imperfections in the experiment. The intensities of b) and c)
are from exact dynamical density matrix calculations. The

broadening in b) matches the linewidths of the outer transitions in a).
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similar to their chemical shift Hamiltonian. The evolution from these
heteronuclear couplings is not entirely refocussed by a single proton =«
pulse and will cause intensity distortions in the same manner as the
chemical shifts. Thus, because no deuterium decoupling was used in this
experiment and with the presence of proton chemical shifts, intensities
calculated from just proton homonuclear couplings are not expected to
match the experimental spectrum exactly. However, these homonuclear
couplings certainly dominate the spin Hamiltonian for 5CB—dll and so a
qualitative fit is found in Figures 4.26, 4.27, and 4.28. The extent to
which couplings are precisely determined in the theoretical model also

affects the quality of the intensity fit.

4.3.4 Additional Structure in the Proton Multiple Quantum Spectrum of
5CB-d

11

It has been noted that some of the splittings in the high order pro-
ton spectra of SCB-d11 cannot be explained on the basis of this simple
D4 symmetry approach [104]. For example, close inspection of the seven
quantum spectrum in Figure 4.25b indicates that the inner pair of lines
is split into two pairs. Also, only one of the lines in a closely
spaced doublet of the six quantum spectrum fits the theoretical transi-
tions. These lines were not assigned in the simulation and so are not
reflected in the RMS error reported above.

There are several possible sources of this added structure to con-
sider. For example, we demonstrated in Chapter 3 that the presence of
chemical shifts in a two-dimensional spin echo experiment will cause
additional lines to appear in the wy spectrum. In a similar manner,
heteronuclear couplings may cause splittings of transitions or new lines
to appear when a 7 pulse is used. Finally, since the pentyl and cyano

groups are certainly not equivalent, a D2 symmetry model may be required

to explain the high order spectra of SCB-dll.
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4.3.4.1 Estimation of the Effect of Chemical Shifts

We can confidently ignore chemical shifts as the cause of a closely
spaced pair of lines in the seven quantum spectrum. To see how this is
so, we consider a much simpler spin system for convenience in computation.
If the permutation group for the couplings of a three spin system has C2
symmetry, then the inclusion of a chemical shift difference between the
two spins exchanged by the C2 operation and the third spin does not
change this permutation group [79]. Such a spin system is classified as

AB For a three spin-1/2 AB2 system, the eigenstates are classified as

9°
either symmetric or antisymmetric under exchange of the B spins. The
dimensions of the Zeeman manifolds of the symmetric states for M = -3/2,
-1/2, 1/2, 3/2 are 1, 2, 2, 1, respectively. There are only two anti-
symmefric states, one each for M = -1/2 and 1/2. The six symmetric
states form a system similar to the M = +4 and M = +3 manifolds of the

D4 symmetrized energy level diagram of Figure 4.6. Like an AB2 system,
inclusion of the chemical shift Hamiltonian for a para-substituted bi-
phenyl does not change the symmetry from D4 or DZ' The D4 point group

M = +3 spin functions, schematically represented in Figure 4.7, are
symmetric under exchange of the labeled ortho or para sites, similar

to the AB2 system states described above. For an AB2 oriented system,

we predict two transitions in the two quantum spectrum obtained without
an evolution period m pulse. This is analogous to the seven quantum
predictions for the D4 point group eight spin system given in Table 4.2,
Thus, along with the results of Section 3.4, we can use a simple AB2
system to model the behavior of a seven quantum spin echo spectrum of a
D4 symmetry biphenyl. Analytical expressions for the oriented AB2 energy

levels can be obtained from the solution for the single quantum spectrum

givey by Emsley, et al. [111].



Figure 4.29 shows theoretical two quantum spectra for an AB, system

2

in which the chemical shift difference, § is small compared to the di-

AB’
polar couplings. The intensities are an average for 2000 values of T
from 0.05 to 100 msec. Figure 4.29a shows the four line spectrum expec-
ted when no spin echo 7 pulse is used during the evolution period.

Figure 4.29b shows the resulting two quantum spectrum when a 7 pulse is
used to refocus the chemical shift and inhomogeneous evolution. The
equations of Section 3.4 and the computer program described there were
used to calculate both the frequencies and intensities for Figure 4.29.
The chemical shift is removed by the 7w pulse and small new lines appear
centered between transitions on either side of the two quantum resonance
offset (0 Hz in Fig. 4.29). The largest transitions, at frequencies
shifted only slightly from those predicted wheﬁ GAB = 0, are not split by
the action of the 7 pulse (see Fig. 4.29b).

A similar situation is found in the seven quantum spectrum of SCB—dll.
Computer calculations using the couplings of Table 4.7 and a reasonable
range of values for the chemical shift difference between ortho and meta
protons confirm this behavior. Additional lines from coherence transfers
caused by the m pulse are indeed centered at the average of the transition
frequencies on either side of 74&w. The exact T averaged relative inten-
sities of these additional lines is small and they cannot be observed in
the seven quantum spectrum of Figure 4.25b. This trend is also found in
the lower order spectra. We conclude that a non-zero chemical shift dif-
ference is not the cause of lines that cannot be explained by a D4 sym~
metry model in the six and seven quantum spectra. The calculations also
support the neglect of a chemical shift parameter in the analysis of

transition frequencies in the TPPI echo spectrum. A single 7 pulse should
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A82 Two GQuantum Spectra
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Figure 4,29

Calculated two quantum spectra for an anisotropically ordered AB2
spin-1/2 system. Each spectrum is an average for 2000 values of the
multiple quantum preparation time t. a) Predicted spectrum when the
chemical shift difference is not refocused by the application of a =
pulse. b) When a 7 pulse is used, the frequency shifts relative to O
caused by the chemical shift are removed and new lines with low inten-
sities are predicted centered about the average of the major lines.
Parameters used in the calculation are (in Hz) DAB = 1000, DBB = 250,

Jyp = 10, 8, = 100, and §; = 0.

AB A
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be adequate to remove the chemical shift evolution unless the shift dif-

ferences for ring protons in SCB—dll are inordinately large.

4.3.4.2 The Effects of Heteronuclear Couplings

Heteronuclear couplings between the ring and chain spins may also
complicate the spectrum when a single 7 pulse is used during multiple
quantum evolution. For certain special symmetries, a m pulse can be
shown to decouple a single deuteron from several strongly coupled pro-
tons in the Wy spectrum of a two-dimensional experiment with an oriented
sample [110]. A partial decoupling of the chain deuteroms will occur
for the proton TPPI experiment of SCB-dll but remaining heteronuclear
dipolar structure could possibly exist on the proton transition line-
shapes. The 7 pulse may reduce this structure to the point that it
cannot be resolved in the fairly wide lines of Figure 4.3. An estimate
of the exact line shape is difficult without a knowledge of the couplings
involved. Using standard bond lengths and angles'we can estimate the
largest possible static dipolar coupling between a deuteron on the first
chain methylene and a proton ortho to the chain-ring bond to be on the
order of a few kilohertz. The actual coupling will be greatly reduced by
Szz < 1.0 and internal molecular motions. In fact, the power require-
ments for deuterium double quantum decoupling of the single quantum pro-
ton spectrum imply that this coupling is on the order of a few hundred
hertz (see below). The seven quantum transitions of SCB-d11 at 26°C
occur at about 4 and 10 kHz relative to the center of the order and are
sensitive to sums of a number of the proton-proton couplings. Thus, the
magnitude of the heteronuclear coupling partially refocused by the =

pulse is much smaller than the characteristic evolution frequencies in

this order and a lack of deuterium decoupling in the experiment may not
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be responsible for the added structure not explained by a simple D4
symmetry model. However, these crude estimates do not allow us to unequi-
vocally adopt this conclusion. Heteronuclear couplings can be scaled
even further by the use of multiple m pulses during tl [59] or elimina-
ted completely by a number of decoupling schemes. An attempt to decouple
the chain deuterons from the proton multiple quantum spectrum of SCB—dll

by using deuterium double quantum transitions is described below.

4.3.4.3 D2 Symmetry Model

Finally, the effects of inequivalently distorted rings and a non-
zero, off-diagonal element in the order tensor, which cause an effective
D2 symmetry for the protons in SCB-dll, were considered. Several sets
of initial parameters were used for iterations in which the twelve unique
dipolar couplings were allowed to vary independently. The final RMS
error reported above for the D4 symmetry iteration (26.4 Hz) is already
below the digital resolution in the spectrum of Figure 4.3, Several
attempts using initial D2 couplings produced final fits somewhat better
than this. However, the limited precision from the spectrum makes it
difficult to judge which of these represents a better model for the bi-
phenyl group in SCB-dll than the one discussed above. We saw earlier
that if the distortions from D4 symmetry are not too severe, in addition
to some new transitions, there will be many near degeneracies which would
not be resolved in the linewidths of a spectrum such as that of Figure
4.3. Thus the amount of new information in the high order spectra
available to distinguish D2 from D4 couplings may not be sufficient.

The number of parameters to obtain from nearly the same amount of infor-

mation has increased significantly.



Many different sets of initial couplings modeled by assuming slight
distortions in the rings and a finite value for Sxy were used in attempts
to fit the five, six, and seven quantum spectra of SCB—dll. These D2
symmetry iterations exhibit general trends in the final parameters de-
rived. The T4 Tozo r58, and Ty parameters usually change signifi-
cantly from those found in the D4 symmetry fit. As an example, the best
fit couplings for an iteration using the same 24 line assignments as the
D4 calculation described above, but allowing the 12 sets of couplings
which are unique for D2 symmetry to vary independently, are given in
Table 4.9. The final RMS error of the fit from this iteration is 13.5 Hz.
All the couplings have changed significantly from the D4 couplings in
Table 4.7. In particular, the couplings with the largest errors, Dl4’
D23, D67’ D58’ are considerably different. Theoretical stick spectra
for the five, six, and seven quantum regions, along with the experimental
traces, are shown in Figures 4.30, 4.31, and 4.32.

Least squares iterations using program BIPHS5PARA and varying all

eleven of the D, molecular parameters of Equation (4.3) independently

2

failed to converge to a final fit. We then assumed the value of one of
these parameters. Two cases are considered here, with the results given
in Table 4.10. The final RMS deviations of calculated from experimental
couplings was 6 Hz for both cases. In case A, Tygo WaS fixed at the
value found for biphenyl from X-ray studies, i.e., Theo 1.818 Z. All
the parameters have changed significantly from those found with a D4
model. The largest errors among the rij's occur for those pairs of
nuclei whose dipolar couplings are poorly determined (cf. Table 4.9).
The distortions from a benzene geometry for the phenyl rings implied by

these results are quite severe and do not seem realistic. Typical
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Experimental Coupling Constants for 5CB-d
D2 Symmetry

Proton Dipolar Couplingsa

Table 4.9

Assuming

Proton Scalar Couplingsb

(Hz)
Dy, -8920 + 6 le 8.0
D13 144 + 8 J13 0.0
D1y 926 + 9 J14 2.0
D15 -299 + 4 Jqis 0.0
D16 -817 + 6 Ii6 0.0
D23 581 + 14 J23 2.0
D25 =719 + 5 Jos 0.0
D26 -3441 + 4 Jog 0.0
Dse -9000 + 4 Iee 8.0
D 139 + 4 J57 0.0
Deg 635 + 9 Jsg 2.0
Dg5 915 + 10 J67 2.0

estimated by method given in Appendix.

Assumed values.

2 From iteration of 5, 6, 7 quantum lines.
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Five Quantum Spectrum
02 Symmetry Model

| L NN

XBL 8111-12407

Figure 4.30

Five quantum spectrum of 5CB-d,. plotted with a total width of

11
62.5 kHz. Beneath the experimental trace is shown a stick spectrum
calculated from the best fit couplings of Table 4.9, assuming a D2
symmetry for the biphenyl group. Line heights for the theory are

based on frequency degeneracies only.
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Six Quantum Spectrum

D2 Symmetry Model

AL TE R I

XBL 8111-12408

Figure 4.31

Six quantum spectrum of SCB—dll plotted with a total width of
44189 Hz. Beneath the experimental trace is shown a stick spectrum

calculated from the best fit couplings of Table 4.9 assuming a D2

symmetry for the biphenyl group. All theoretical lines are of unit
height.
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Seven Quantum Spectrum

02 Symmetry Model

XBL 8111-12409

Figure 4,32

Seven quantum spectrum of SCB-—dll plotted with a total width of
31982 Hz. Beneath the experimental trace is shown a stick spectrum
calculated from the best fit couplings of Table 4.9 assuming a D2
symmetry for the biphenyl group. The theoretical lines are all given
unit height. The central line in the experimental spectrum is a
result of pulse imperfections and the use of a m pulse without

deuterium decoupling during multiple quantum evolution.
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Table 4.10

178

Best Fit Structures and Order Parameters for

5CB-d

Determined from Couplings of Table 4,92

11
CASE A CASE B
o
Internuclear Distances (A)
o 2.32 + 0.05 2.453 + 0.003
rl4 3.88 + 0.09 4.11 + 0.03
r23 4.54 + 0.09 4,81 + 0.03
r56 2.32 + 0.04 2.456 + 0.003
Tog 4.41 + 0.17 4.67 + 0.10
Teq 3.90 + 0.13 4.14 + 0.06
c
To60 1.818 1.93 + 0.04
Order Parameters
S 0.48 + 0.03 0.565°
zz -
(S -S )0.02 + 0.02 0.03 + 0.02
XX yy - -
S 0.007+0.007 0.008 + 0.008
Xy - I
Dihedral Angle (degrees)
¢m 28.9 + 0.5 28.9 + 0.5
a Errors estimated by methods in
Appendix A.
b For coordinate system #2 of Figure
4.5,

Fixed at assumed value.



distortions in internuclear distances found from NMR studies of solutes
in liquid crystals are on the order of a few percent. The largest distor-
tion from the benzene values in Table 4.10 for case A occurs for T4 and
is nearly 10 percent.

The value of Szz for case A in Table 4.10, using coordinate system
#2, has changed significantly from that obtained using the D4 symmetry
model given in Table 4.8. Since the z axes of the two axis systems for
D2 and D4 symmetries are parallel, these are expected to be the same.
Thus, for case B, Szz was fixed at the value obtain for the D4 model
while the other parameters were varied to obtain the best fit values
given in Table 4.10. Several of thevrij values are reasonably close to
those obtained using the D4 model and have smaller error limits than for
case A. However, the distortions implied by Qalues for T14° T23° Tsgo
and Teq still seem unreasonable. The remaining parameters are found to
be essentially the same as for case A. Whether tlre results in Table
4.10 for case A or case B more accurately fits the actual parameters
for SCB—d11 cannot be determined from our analysis.

We have computed exact Tt averaged theoretical intensities from the
D2 symmetry couplings of Table 4.9. The results for the six and seven
quantum spectra are shown in Figures 4.33 and 4.34, respectively. The
intensity patterns do not seem to reproduce the general features of the
experimental spectra as well as the D4 model in;ensities of Figures
4,27 and 4.28,

The closeness of the fit for lines shown in Figures 4.30, 4.31, and
4.32, and the RMS error for the spectral simulation reported above may
be somewhat misleading. Only transitions which are predicted from a D4

model were used in the initial assignment. Additional lines in the

experimental six and seven quantum spectra, which are assumed here to be
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Six Quantum Transition Intensities
Exact v Average

a)
A\ A A
b)
1 ey | | | i |
XBL 8111-12403
Figure 4.33

Theoretical six quantum spectra calculated from the D2 symmetry
couplings of Table 4.9. The intensities here are the result of an
exact calculation of the multiple quantum signal averaged from the
same values of the preparation time T as those used in the experiment

producing the spectrum of 5CB-d,., in Figure 4.3. Both a) and b) are

11
plotted with the same width as Figure 4.31 and the broadening in a)

is designed to match the experimental linewidth in that figure.
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Seven Quantum Transition Intensities
Exact t Average

a)
L Joo L
b)
| 1 1 1
XBL 8111-12402
Figure 4.34

Theoretical seven quantum spectra calculated from the D2 symmetry
couplings of Table 4.9. As for Figure 4.33 the intensities are the
result of an exact calculations using the same values of t as for the
experimental spectrum in Figure 4.3. Both a) and b) are plotted with
the same width as Figure 4.32 and the broadening in a) is designed to
match the experimental linewidth in that figure.



the result of symmetry lowering distortions, do not fit the theory spec-
trum as well as other transitions. When the two previously unassigned
transitions of the six and seven quantum regions are included in the
iteration, a final fit is obtained but with a significantly larger RMS
error of about 60 Hz. The largest contributions to this error come from
assignments for these additional lines. Whep the resulting couplings
are interpreted for order parameters and structural quantities, distor-
tions similar to those of Table 4.10 are found but with larger error
limits.

In addition to real structural distortions as an explanation for an
effective D2 symmetry in the biphenyl group of 5CB—d11, we investigated
the possibility that the rings move inequivalently. This seems to be
not entirely unreasonable as one ring has attached to‘it the light,

unrestricting cyano group while the other moves relative to the bulky

alkyl chain which presents steric hindrance due to the adjacent methylene

group. A fit to the spectrum was obtained starting with the ring para-
meters from the D4 symmetry analysis (Table 4.8) and varying all 12 D2
couplings. The iteration was then repeated, allowing only the ring A
(see Fig. 4.5) and inter-ring couplings to vary. Both models achieved
adequate fits to the experimental five, six, and seven quantum spectra
with the final RMS errors (~20 Hz) within the digital resolution of the
Fourier transformed spectrum. When the resulting couplings were inter-
preted in terms of a model in which the rings are equivalently distorted
but move inequivalently, only moderately close fits for the calculated
couplings could be obtained. A fairly close fit (RMS = 18 Hz) was

12 independent experimental couplings but then

only when ring distortions were re-introduced. The resulting values for

the internuclear distances resembled those of Table 4.10.
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Several such models were tried, all with similar results. Adequate
final fits for calculated couplings could only be obtained when inequi-
valent ring distortions were allowed. These results do not entirely
preclude the possibility that the effective D2 symmetry is due primarily
to inequivalent ring motions as only the product of the order tensor
with molecular parameters is obtained from the dipolar couplings. In
addition, the probability distribution for the chain conformations will
certainly affect the way the whole molecule orders and the proton spec-
trum from the biphenyl group is indirectly affected in a complicated
manner that can not be entirely determined from the available spectral
information in Figure 4.3. As a final note we point out that, in their
analysis of the proton spectrum of 5CB—d15, Emsley and co-workers also
found exceptional distortions in Ty and Tya [103]. Due to the limited
number of couplings which could be obtained from their spectrum,

independent values for both parameters could not be found.

4,3.5 Deuterium Decoupling Experiments

There are many possible schemes available for decoupling of the
proton spectrum of Figure 4.3. The choice is directed primarily by the
same considerations as a normal single quantum spectrum. Double quantum
deuterium decoupling was chosen because the r.f. power requirements are
significantly less than for decopuling via single quantum transitions
[109]. It was found that only a few kHz of deuterium r.f. field was re-
quired to decouple the single quantum spectrum with the result shown in
Figure 4.2, This seems reasonable based on estimates for the largest
heteronuclear coupling between ring protons and the first chain methylene

deuterons. The deuterium r.f. field, Wy required to decouple a deuteron
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with quadrupolar splitting w, from a heteronucleus via double quantum

Q

transitions is given by [109]

1
N L
(w wD)

1 Q

W

where wy is the dipolar coupling expressed in angular frequency units.
The decoupling requirements cited above are then consistent with an
vy of a few hundred hertz.

The multiple quantum spectrum was decoupled by applying deuterium
irradiation at the center of the quadrupolar spectrum of Figure 4.21.
The result is shown in Figure 4.35. There is a significant loss in
signal~to-noise for this spectrum compared with Figure 4.3 which may be
a result of two factors. First, the long deuterium pulse required to
obtain each point in the multiple quantum signal may cause significant
temperature gradients in the sample. This was reflected in the spec-
trum by a larger linewidth for transitions furthef from the centers of
each order. This effect was partially circumvented by the use of
smaller samples and longer delays between shots, as described in Chapter
5. The second cause for a lower signal-to-noise was the finite iso-
lation of the spectrometer receiver from the high power deuterium trans-
mitter. Even with good isolation of the probe circuits and the use of
a narrow band filter before the receivgr, several millivolts of deuterium
r.f. at the recelver was difficult to avoid. This partially saturated
the broadband preamp of the receiver causing the observed loss in
signal-to-noise. This effect was most critical in the higher order
regions of the spectrum where the integrated signal intensity is lower
as we saw in Chapter 3. These problems complicated obtaining a spectrum

with adequate signal-to~noise in the high quantum regions in a reasonable
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CSD”¢2CN
Decoupled Proton Muitiple Quantum NMR Spectrum

0 lAw 28w 3aw 4Aw Saw 6ow Taw 8aAw

XBL 8111-12406

Figure 4.35

Deuterium decoupled proton multiple quantum spectrum of SCB—dll
at 28.9°C. The spectrum is an average of six spectra obtained for
six different values of T from 0.2 to 1.2 msec with- the same non—
selective pulse sequence used to obtain the spectrum of Figure 4.3.
Lines in the five, six, and seven quantum regions were used to obtain

the couplings of Table 4.11. The total width shown is 500 kHz.



amount of overall acquisition time. Instrumental instabilities during
decoupling experiments may also increase the two-dimensional "tl noise"
present as a result of fluctuations in the prepared density matrix [69].
The spectrum of Figure 4.35 is the result of an average from six
values of T ranging from 0.2 to 1.2 msec in increments of 0.2 msec.
Most of the experimental parameters were the same as for the undecoupled
spectrum of Figure 4.3 except that the temperature was regulated at a
slightly higher value of 28.9°C. The length of the multiple quantum tl
signal was 16 K points in both phase sensitive channels for each T and
32 K complex Fourier transforms were calculated. Figure 4.35 shows the

resulting averaged magnitude spectrum. Linewidths are somewhat narrower

than in the undecoupled spectrum with a typical value being 120 Hz.

4.3.5.1 D, Symmetry Model Analysis of Decoupled Multiple Quantum Spectrum

4

The poor signal-to-noise of the higher order spectral regions of
Figure 4.35 makes an analysis more difficult than'for an undecoupled
spectrum. Nonetheless, a total of 13 lines were assigned in the five,
six, and seven quantum regions for an iterative fit assuming D4 symmetry
couplings. The results are given in Table 4.11. The final RMS error of
the fit for these lines was 21.2 Hz. The small number of lines which
could be assigned in these orders leads to large error limits on the
couplings in Table 4.11. As with the undecoupled spectrum, chemical
shifts have been ignored in the analysis of this spin echo spectrum.

The computed exact T averaged line intensities for the six quantum
transitions are shown along with an expanded trace of the six quantum
region in Figure 4.36. Obviously, the fit 13 only marginally adequate.
Broadening due to temperature gradients may be the cause of the lines
with the greatest predicted intensity appearing with in fact the lowest

intensity in the experimental spectrum.
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CSD”¢2CN 6 Quantum 2H Decoupled
Proton NMR Spectrum

a)

b)

l l lllll l'J#L | l

XB8L 8111-12399

Figure 4.36

a) Expanded trace of the six quantum region of Figure 4.35.
Total width shown is 44189 Hz. The central line is truncated in
height. b) Theoretical spectrum calculated from the couplings
of Table 4.11. Intensities are from an exact calculation using

the same values of T as in the experiment.
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Experimental Coupling Constants from the Deuterium

Decoupled Proton Multiple Quantum Spectrum of SCB—dl

Proton Dipolar Couplingsa

Assuming D4 Symmetry

1

Proton Scalar Couplingsb

(Hz)
D, -7818 + 7 1, 8.0
D, 88 + 8 Jig 0.0
D, 577 + 20 A 2.0
Dy s ~226 + 10 Jis 0.0
D16 ~653 + 6 Jl6 0.0
D, 4 719 + 12 Jpy 2.0
D26 -3057 + 11 J26 0.0

a Errors have been estimated from the RMS error of the

iteration and the procedure given in Appendix A.

Assumed values.



Despite the large error limits for the couplings of Table 4.11, a
least squares analysis in terms of the parameters of Equation (4.2) for
D4 symmetry converged to a close fit. The final RMS deviation of calcu-
lated to observed dipolar couplings was only 3 Hz. The results are
reported in Table 4.12. As with the D4 model fit for the undecoupled
spectrum of Figure 4.3, ry, was held constant at the value 4.299 Z for
this calculation. Although the value of 560 is more in line with the
value for biphenyl (1.818 Z) than the analysis of the undecoupled spec-
trum, ring distortion implied by L and Tyq is quite severe. In addi-

tion, the value of ¢m has increased. It is not expected that a tempera-

ture increase of only 3° alone should cause such a change in ¢m. Perhaps

the inclusion of vibrational or torsional averaging in the model would

bring the two results more in line.

4.3.5.2 D2 Symmetry Model Analysis for Decoupled Spectrum

Attempts to derive twelve unique D2 Symmetry Hipolar couplings from
just the 13 lines assigned in the higher order regions failed. The
problem is only barely determined and so convergence may depend strongly
on the closeness of the initially guessed couplings. If the iteration
is started with the D4 couplings of Table 4.11 then the RMS fit is
already below the resolution in the Fourier transform spectrum, and so
further improvement is unlikely. A more complete analysis may be pos-
sible when transition assignments in orders below the five quantum are
included. For example, the decoupled spectrum shows a number of nearly
resolved lines in the three and four quantum regions (see Fig. 4.35)

which could be used. Such an analysis was not attempted in this work.
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Table 4.12
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Biphenyl Structure and Order Parameters for 5CB-d
Determined from Couplings of Table 4.11 and Assuming

D4 Symmetryd

o
Internuclear Distances (A)

c
Order Parameters

r1 2.36 + 0.03 s, 0.43 +
4.299° (S -5 ) 0.06 +

T14 ’ xx yy T -~

Tys 4.00 + 0.10

T260 1.82 + 0.05

Dihedral Angle

¢ 31.6 + 0.2°
m -—

0.01

0.02

3 Errors estimated by methods of Appendix A.
Fixed at assumed value.

€ For coordinate system #1 of Figure 4.5.



4.3.6 Conclusions on Results for SCB-dll

As an example of the use of multiple quantum NMR, the spectra of

5CB—d11

of the spectrum clearly show a greater simplicity than the single quantum

spectrum. Line assignments can be made unambiguously when these orders

are compared with spectra simulated from physically reasonable parameters.

The symmetry characteristics of the biphenyl group are very simply re~
lated to the number of transitions which occur in the six and seven

quantum spectra.

On the other hand, 5CB-d as an example demonstrates some of the

11
limitations in the analysis of NMR spectra of oriented molecules. These
limitations are present in both single quantum and multiple quantum NMR
and are a result of the complexity of relationships between molecular
structure and transition frequencies and not on the particular technique
used to obtain the spectrum. For SCB-dll, the limewidths ultimately
limit the level of precision available for couplings. Deuterium de-
coupling seems to reduce linewidths by at most only a factor of about
two from the spin echo linewidths. This limit on the precision of
couplings prevents an analysis refined beyond those presented in this
work.

Of all the models which were used to explain the undecoupled five,
six and seven quantum spectra of SCB—dll, the one which approximates
the biphenyl proton symmetry as a D4 point group system seems the most
reasonable. The order parameters derived from the proton spectrum are
in line with estimates from the single quantum deuterium spectrum of

the alkyl chain and those obtained for SCB-—d15 [103]. The best fit

molecular parameters of Table 4.8 for this model agree closely with

demonstrate the utility of the approach. The higher order regions
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-ray and electron diffraction data for the internuclear distances of
biphenyl, considering that no vibrational corrections have been applied.
Theoretical transition frequencies calculated from this model fit most
of the lines resolved in the higher orders with the RMS deviation well
within the resolution of the Fourier transform. The calculated exact t
averaged transition intensities yield a qualitative fit to the experi-
ment as shown in Figures 4.26, 4.27, and 4.28.

In contrast to this D4 symmetry model, several models assuming an
effective D2 permutation symmetry for the biphenyl spins in SCB—dll
yield molecular parameters which reflect large distortions in the phenyl
rings. Because the transitions which are predicted by the D4 model
already fit the simulated spectrum within the available resolution,
further slight improvements from the use of D2 symmetry models do not
allow an unequivocal choice for the best model. We have also seen that
very slight symmetry breaking distortions perturb ‘the spectrum in a
manner resulting in a paucity of additional information with which we
must determine the increased number of parameters of the lower symmetry
model. Transitions in the high order spectra which are not predicted
by a D4 symmetry model are not as closeiy fit by the D2 symmetry models
considered here as other transitioms.

We have tried to model the high order spectra of SCB—dll by consider-
ing cases where there are real structural differences between the rings
or the rings experience inequivalent mobilities while undergoing inter-
nal motions. The data do not allow us to exclude the latter possibility,
but seem to require real structural deformations of the rings to achieve
the closest fits. In addition, we have considered the effects of proton

chemical shifts and heteronuclear couplings on the multiple quantum spin
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echo spectrum. We have presented arguments which demonstrate that
chemical shifts are not responsible for the additional structure in the
six and seven quantum regions. However, we are unable to do the same
with absolute certainty for heteronuclear couplings between ring protons
and chain deuterons. Deuterium decoupling experiments were not entirely
conclusive in resolving this issue because of the lower signal-to-noise
of the high order decoupled spectra.

Finally, we comment on the reliability of results from the various
models used. At first, it may seem disturbing that several models
achieved close fits with the spectrum but yielded internuclear distances
which differ by amounts greater than their error limits. This, in part,
reflects the fact that the errors are propagated directly from the degree
of fit only for those lines assigned in the spectrum. Resolved lines in
lower order spectra may also be assigned and perhaps would change the
overall fit obtained. Particular care must be taKen to consider those
experimental lines which are poorly matched by the theory, such as in
the six and seven quantum spectra of 5CB—dll. In addition, systematic
errors caused by the neglect of vibrational and torsional averaging of
calculated couplings is not included in the error limits reported in
this chapter. Inclusion of these contributions to the errors would tend
to bring the results of the various models into closer agreement.

The best results in terms of reasonable values for bond angles and
distances appears to be found in the D4 symmetry model. For the value
of the dihedral angle derived, almost all models closely agree. This
is understandable considering the strong dependence an ¢ for the six and
seven quantum transitions in the neighborhood where the best fit values
are found, From our results, we can confidently give a value of 30 + 2°

to the dihedral angle of the biphenyl group of SCB-dll.
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4.4 Experimental Examples of Biphenyl Solutes
Of the other molecules shown in Figure 4.1 we will briefly present
the results for 4,4'-dibromobiphenyl, 4,4'—d2—biphenyl and pure biphenyl

dissolved in liquid crystal nematic phases.

4.4.1 4,4'—d2-biphenyl and 4,4'-dibromobiphenyl

The single quantum echo spectra of 4,4'—d2—biphenyl dissolved in
Eastman Kodak L.C. #15320 and 4,4'-dibromobiphenyl in 4-ethoxybenzyl-
idene-4"'-n-butylaniline (EBBA) are shown in Figures 4.37 and 4.38,
respectively. Linewidths are narrower in both cases than for SCB—dll
as a result of more reorientational freedom for the solutes. As a
result, there should be adequate resolution in a well averaged single
quantum spectrum to allow an analysis without resorting to a multiple
quantum experiment, although the latter would of course, allow unambig-
uous line assignments to be made in higher orders. Deuterium decoupling
for 4,4'—d2-biphenyl could be easily achieved by frequency modulated
irradiation or double quantum decoupling. The deuterium spectrum should
yield an independent measure of one of the order parameters for compar-
ison with the results of the proton spectrum. A TPPI multiple quantum
spectrum of 4,4'-d2—biphenyl is shown in Figure 4.39 and demonstrates
the expected loss of signal-to-noise for a solute compared to a pure

liquid crystal.

4,4.2 Unsubstituted Biphenyl

An analysis of the NMR spectrum of unsubstituted biphenyl dissolved
in a liquid crystal has not been published before. Additional couplings
to the para hydrogens, which are absent when these positions are sub-
stituted, are insensitive to the dihedral angle and the potential deter-

mining it. They will, however, add many more parameters from which the
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Oriented 4,4'-d,-Biphenyl
Single Quantum Echo Spectrum

—

XBL 8111-12425

Figure 4.37

Single quantum proton spin echo spectrum of 4,4'—d2-biphenyl dissolved
in the nematic phase of a liquid crystal at 30°C. The total width

shown 1s 16.67 kHz. No deuterium decoupling irradiation was used.
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Oriented 4,4'-Dibromobiphenyl
Single Quantum Echo Spectrum

XBL 8111-12427

Figure 4.38

Single quantum proton spin echo spectrum of 4,4'—Br2—bipheny1
dissolved in the nematic phase of a liquid crystal at 65°C. The total
width shown is 31.5 kHz. The central portion of the spectrum has been
truncated in height.
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Oriented 4.4'-d2-8iphenyl
Proton Multiple Quantum NMR Spectrum

XBL 8111-12424

Figure 4.39

Proton multiple quantum TPPI spectrum of 4,4'—d2-bipheny1 at 30°C.
An even quantum pulse sequence was used with preparation and detection
times of 6 msec. Total width shown is 125 kHz. Most of the intensity

is found in the zero and two quantum regions. No deuterium decoupling

irradiation was used.
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order tensor and ring structure may be obtained. Also, the resulting
structure would be determined in the absence of perturbing affects of
substituents.

The single quantum spectrum is tremendously complex even though
some resolved structure exists. An even quantum TPPI echo spectrum is
shown in Figure 4.40. There is little intensity in the highest orders
as would be expected on the basis of the approximate statistical
arguments for the intensity distribution given in Chapter 3. Extensive
averaging would be required to produce sufficient signal-to-noise in,
say, the six and eight quantum regions to allow an analysis. Alternately,
this molecule is a reasonable candidate for the selective excitation

techniques briefly mentioned at the start of Chapter 3.

4.5 Conclusion

Clearly, we have achieved some of our goals in this chapter. We
have given examples with various substituted biphenyl molecules which
illucidate the strengths and limitations of non-selective multiple

quantum NMR. The case of 5CB-d shows how both deuterium single

11
quantum and proton multiple quantum spectroscopy can be used in liquid
cr&stals and compares the nature of information obtained from quadru-
polar and dipolar interactions. Proton spectra are particularly desirable
because of the higher precision for structural information and greater
sensitivity available as a result of the larger gyromagnetic ratio. We
have seen that a very simple model is capable of simulating most of the
features of the high order spectra of SCB—dll. Transition frequencies

in these spectra are only indirectly sensitive to the true order para-

meters for the entire molecule with its myriad of conformational



possibilities. Additional couplings to the alkyl chain, perhaps with
a 13C spin-1/2, would prove useful by adding features in the spectrum
sensitive to the chain motions. Techniques which are extensions of
the basic, non-selective multiple quantum experiments described here,
such as heteronuclear multiple quantum NMR [113], could be used to

increase the amount and variety of information available to determine

molecular parameters.
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Oriented Biphenyl
Even Quantum NMR Spectrum

XBL 8111-12426

Figure 4.40

Proton even quantum TPPI spectrum of unsubstituted biphenyl dissolved
in the nematic phase of a liquid crystal at 44°C. A total of four shots
were averaged and the preparation time used was 4.0 msec. Total width
plotted is 100 kHz. The single ten quantum transition is visible at the
right hand side of the spectrum.



Chapter 5

Spectrometer

The experimental work described here was performed on two high field
NMR spectrometers which are largely equivalent in their design and oper-
ation. Both are home-built, 180 MHz, pulsed Fourier Transform spectro-
meters capable of a variety of experiments in solids and liquids using
1 13 2
H, C and "H resonance. Because most of the work was done on one of

the two and this spectrometer has been modified during the course of

experiments, a thorough description of its design follows.

5.1 Magnet

The magnet is a persistent superconducting solenoid made by Bruker
Instruments and operating at a field of approximately 42.5 kG. The room
temperature bore of its dewar has a diameter of 3.5 inches. The Larmor

frequencies for the nuclei commonly observed at this field are:

1H 185.04 MHz
13, 46.52 MHz
2y 28.40 MHz

In addition to the main solenoid there are three superconducting,
linear gradient coils for shimming the field homogeneity. One is along
the main field axis and the other two are orthogonal and in the trans-
verse plane. These are normally left in a persistent mode during experi-
ments. Within the bore there is a set of home-built, room temperature
coils producing ten linear and higher order gradients. Using these coils

and the superconducting coils field homogeneities less than 1 PPM over a
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1 cm3 region are easily obtained. The resulting field is extremely stable

so that no field/frequency lock is necessary.

5.2 Low Power R.F. Section

A schematic diagram of the radio frequency electronics is shown in
Figure 5.1. This figure shows the arrangement on the low frequency side
for 130 resonance; removal of the doubler and changing the X synthesizer
setting converts this channel to 2H resonance. All frequencies are
supplied by two synthesizers: a Hewlett-Packard Model 3320A for the
low frequency side (set at 3.26 MHz for 13C and 8.40 MHz for 2H), and a
PTS Model 160 for the proton side. The rear panel output of the PTS
synthesizer internal reference (10 MHz) is used to lock the HP synthe-
sizer, generate the intermediate frequency (i.f.), and drive the pulse
programmer clock.

Frequency generation for each channel is detailed more in Figure
5.2. The output of the HP synthesizer (front panel setting plus 20 MHz)
is used directly for 2H or doubled for 13C. Switching and phase control
for routing to the low frequency transmitter is done at this frequency.
A local oscillator (2.0.7) frequency is generated by combination of this
r.f. with the i.f. frequency. This 2.0. is used in the low frequency
receiver when 13C or 2H observation is required. The 30 MHz i.f.
frequency for both channels is generated by tripling the 10 MHz refer-
ence of the PTS synthesizer. Besides being used in the low frequency
2.0. generation, this i.f. is routed to the phase sensitive detectors
and the r.f. generation for the high frequency (proton) channel.

Unlike the low frequency channel, pulse and phase control for the

proton channel is done at the i.f. frequency. The front panel output of

the PTS synthesizer at 155 MHz is used directly as the 2.0. frequency for
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Figure 5.1

Block diagram of 180 MHz pulsed FT NMR spectrometer.
frequency channels are shown. The proton frequency generation is based

on a 155 MHz £.0. synthesizer output.
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The X frequency generation, shown

here for carbon, is based on the r.f. output of the X synthesizer.

channels make use of the 30 MHz i.f. reference which is also used in

the phase sensitive detector.

See text for a complete description.

Two nuclear
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Figure 5.2

Block diagram of 180 MHz NMR spectrometer AF Multiplier. The X
channel r.f. is used directly in quadrature pulse generation and is
mixed with the 30 MHz i.f. to produce the receiver 2.0. frequency.
This 1i.f. is produced by clipping the 10 MHz reference with shorting
crossed diodes and filtering for the third harmonic. The generation
of the proton r.f. pulses from f£.0. signal and i.f. pulses is also

shown.



the proton channel. The 30 MHz pulse output is mixed up to the nuclear
frequency by combination with this £.0. frequency. This is then amplified
and routed to the high power transmitters and probe. The 155 MHz £.0.

is also directed to the proton receiver where it is combined with the
nuclear signal.

The pulse and phase generation (quadrature detection) for the low
frequency channel is detailed in Figure 5.3. Switching is done at the
r.f. used for sample irradiation. Two orthogonal phases are generated
as the r.f. is passed through a hybrid. One phase is selected and a
pulse is generated by a TTL controlled r.f. switch. A variable attenu-
ator with 1 db increments is used to trim the pulse amplitude. For
improved isolation, another r.f. switch in series is used before final
amplification and transmission to the probe. The design of the r.f.
switches used here and in the proton quadrature is shown in Figure 5.4.
A TTL trigger is received and used to drive two Summit 571 r.f. gates in
series. This circuit generally provides 30 to 40 db of isolation.

Although the experiments in this work require only one phase at the
low frequency for decoupling, four quadrature phases (X, X, Y, and Y) are
generally required at the proton frequency. In addition, techniques
such as time proportional phase incrementation (TPPI) require finer
control of some of the phases and an ability to rapidly and reproducibly
change between them under TTL control from the pulse programmer. A
schematic diagram of the proton quadrature generation is shown in Figure
5.5.

The 30 MHz i.f. signal is first split to two lines. One line is
passed through a delay line phase shifter (Daico Model 100D0898) under

TTL control of the pulse programmer. This 1Is then further split and
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I?’C ,ZH Pulse and Phase Generation
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Figure 5.3

Block diagram of X channel quadrature pulse generation for 180 MHz
NMR spectrometer. Switching is done directly at the nuclear frequency

to avoid possible leak through of an %.0. frequency. The attenuator

is settable in 1 db steps.
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Figure 5.4

Dual r.f. switch for 180 MHz NMR spectrometer. TTL control pulses
are input at the BNC connections and received by a quad OR buffer. The
high and low outputs of the N8T09 driversare used to bias a diode
bridge which opens the r.f. gates. Twe gates in series are used to
produce >80 db of isolation when the switch is "off".
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Figure 5.5

Block diagram of proton quadrature pulse generation for 180 MHz
NMR spectrometer. With no delay chosen for the 8 bit phase shifter,
the four lines are mutually orthogonal (X, X, Y, Y). For arbitrary
delay, the first two lines are still 180° relative to one another
(¢, ¢) but at some other phase relative to the second two lines. The
adjustment attenuators are continuously variable from 0 to 20 db and

the phase delay adjusters vary from 0° to 90°.
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passed through phase delay adjusters (Merrimac Model PSS-2-30) and vari-
able attenuators (Merrimac Model ARS-1, 0-20 db). The result is two r.f.
lines 180° in phase with respect to one another but at an arbitrary phase
relative to the second line of the initial power splitter. This second
line is passed through a hybrid to give two more lines (Y and Y) with a
180° relative phase. Only amplitude control of the Y line is required
for complete fine tuning of the four lines. After switching (dual r.f.
switch, Figure 5.4) the outputs are recombined, amplified, and adjusted
by a final attenuator with 1 db increments before conversion to the
nuclear frequency and final transmission.

The 8 bit phase shifter is schematically represented in Figure 5.6.
This unit consists of a series of delay lines which are switched in and
out of line by TTL controlled gates. The total phase shift produced is
the sum of the delays chosen. The precision of this phase shifter is
27/256 and the accuracy of phase shifts checked with a vector impedance
meter is within +2° for an arbitrary phase shift. The VSWR of the unit
is dependent on the phase setting and this results in an amplitude vari-
ation on the order of a few percent. This generally is not a problem if
there is saturation of some amplification element down path of the phase
shifter. Because of narrow band filtering in the r.f. circuitry, a
phase shift is not effective until about 2 usec after a change has been
made in the 8 bit control word. This control word is generated by a
digital controller shown in Figure 5.7. The 8 bit word sent to the Daico
phase shifter is chosen from a number of sources input to a set of
parallel multiplexers. The data sources include a front panel setting,
a single latched byte from a computer interface or a FIFO output loaded
from the computer, and a wrap around adding'circuit used for phase incre-

menting as in the TPPI experiments.



Digitally Controlled RF Phase Shifter
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Figure 5.6

Schematic diagram of r.f. phase shifter. Phase shifts which are
a multiple of 2m/256 are caused by switching the various delay lines
in the path of the 1i.f. signal. The eight bit TTL control word is
supplied by the circuit shown in Figure 5.7.
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Figure 5.7

Circuit diagram for control logic supplying the eight bit word
for the r.f. pulse shifter shown in Figure 5.6.



All mixers used in the low power r.f. section are high level,
double balanced Anzac Model MD-143, Mini-Circuits ZAD-2, ZAD-1-1 or
Hewlett Packard Model 10514A. All power dividers and combiners are
-either Anzac Model DV-50, Mini-Circuits ZSC-2-1, Anzac Model DS-312
(Four-Way), or Merrimac PD-20-50. Hybrids are Merrimac Model QH-1-30,
Anzac Model JH-126, Anzac Model JH-125, or Mini-Circuits ZSC0O-2. Low
power amplifiers are Anzac Model AM102 (~10 db) and Anzac Model AMI1O05
(~20 db). All voltages (+5V, +12V, +24V) are supplied by regulated
power supplies and are further regulated by i.c. circuits at each

component box.

5.3 High Power R.F. Section

Once the switching and r.f. generation has been accomplished, pulses
are routed to the power preamp for amplification, secondary switching for

isolation, and filtering before transmitting to the probe. This is shown

.

in Figure 5.8. The 24, 25 and 53 db amplifiers are, respectively,
Radiation Devices Models BBA-1-PB, BBA-1-PBM, and BBA-1-PM. The buffer
amplifier for the proton channel is a 5 watt power amp from RF Power
Labs Model M305-5.

A variety of power transmitters are available. For decoupling or
pulses, the proton frequency is delivered as is to a cavity tuned Class
C [114] transmitter with a 4CX250-B tetrode tube (2,5 kV plate, 130 V
bias, and 500 V screen). Alternately, the buffer amplifier is bypassed
and an Amplifier Research Model 100L Class A amplifier is used. Both
arrangements are capable of producing 100 to 200 watts depending on

input amplitude, tuning parameters, input attenuation, etc.

N
13

Similarly, several transmitters are available for C and “H. Two

Class C Millen type transmitters employing RCA 3E829 tubes are used,
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Figure 5.8

Block diagram showing final amplification, switching, and filtering
before r.f. pulses are sent to high power transmitters. The output of
this section is designed to provide enough power to drive and saturate
the Class C transmitters described in the text. For use with the Class
A transmitter for protons, the final buffer amplifier is removed and

the output trimmed to ~1 V.
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one tuned for l3C and one for 2H. Typically, 200 watts can be produced.
In addition for higher power applicatioms, a Drake Model L-7 driven by a
ENI 350L will provide on the order of a kilowatt.

With a single coil probe design, care must be taken to protect the
receiver preamplifier from the high power pulses. The circuit generally
used is shown in Figure 5.9. Crossed diode pairs are used to block
transmitter noise at levels <0.6 V. A quarter wave line at the obser-
vation wavelength with crossed diodes to ground protects the receiver.
Occasionally, an additional quarter wave line and diodes are used for
further protection. Typically, there is less than 1 V (peak to peak)
of a distorted wave form leaking to the preamp during a pulse. A band
pass filter is used between the probe and quarter wave line to improve

rejection of the decoupling frequency when present.

5.4 Probes

Several home built probes were used in this work. Each probe used
was chosen for particular characteristics which optimize signal-to-
noise, high power decoupling and minimum sample heating.

The general resonance circuits used are shown in Figure 5.10. For
experimgnts requiring only observation of the proton frequency with no
decoupling, a simple, tunable resonance circuit was used. The tuning
capacitor is a home-~built unit consisting of an inner cylindrical con-
ductor and an outer bell separated by a teflon dielectric. Matching
capacitance of several silver mica or ceramic capacitors are placed in
parallel. The sample coil is made from 18 or 20 gauge copper wire
wrapped to form a solenoid of 5-7 turns with a diameter of 6 mm and
about 1 cm long. With 200 watts of r.f. power and a probe Q ~ 100,

rotating fields of 10-20 G can be generated.



Probe/Receiver Circuit
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Probe and receiver connection to high power transmitter.
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Trans-

mission diode pairs (IN 914) are used to block transmitter noise and

protect the receiver preamp from high power pulses.

a quarter of the wavelength being observed.

The A/4 line is
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(@) SINGLE-TUNED PROBE

'H Transmitter,
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(b) DOUBLE-TUNED PROBE
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Figgre 5.10

Probe circuits for NMR spectroscopy.

a) Single tuned circuit. Tuning is done with the variable cap
in series with the sample coil. The second capacitor 1s adjusted to
achieve impedance matching with the transmitter and receiver.

b) Double tuned circuit. Both low and high frequencies tune

with the same coil. The proton wavelength is XH,



For double resonance experiments, an additional tuned circuit at
the decoupler frequency is present. The double resonance probe must be
capable of producing large r.f. fields at both frequencies, while detec-
ting the microvolt-sized nuclear signal during decoupling. This implies
good isolation between the two circuits. In addition, sample heating
due to resistive losses in the coil are a problem when working with an
ordered sample such as a liquid crystal.

Some of the double resonance experiments were performed on a two-
coil probe. 1In this design, the deuterium resonance circuit is similar
to the proton (Fig. 5.10a) except for capacitative values and a coil of
saddle Helmholtz geometry. The saddle-shaped deuterium Helmholtz coil
is mounted orthogonal to the proton solenoid and outside of the latter.
This arrangement provides good isolation (30-40 db) and the distance of
the decoupler coil from the sample avoids thermal contact. Dielectric
losses in the sample itself can still be a problem. Typically, 20 G of
rotating field can be achieved for 2H decoupling, the main limitation
being arcing at some point in the probe. This was found to be adequate
for some of the experiments in this work.

When more decoupling field is required, a double-tuned, single coil
arrangement (Fig. 5.10b) is necessary {115]. Most of the elements in
this probe are similar to the single resonance circuit. High and low
impedance points for the proton frequency are present on either side of
the sample coil and are effected with the use of quarter wave lines:
one grounded and one open. The use of a single solenoid coil for both
high and low frequency improves decoupling by allowing for greater 2H
fields (40-50 G) and equivalent r.f. homogeneity over the sample for

both channels. It was found, however, that sample heating during
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decoupling was more problematic than with the Helmholtz coil due to the
closer proximity of the coil to the sample. This was avoided by using
a smaller sample with teflon spacers to hold it along the axis of the
solenoid. The resulting reduction of the filling factor lowered the
signal-to-noise somewhat. Although it has been claimed [116] that the
efficiency, defined as the fraction of transmitter power that is
delivered to the sample coil, will be significantly less for the high

frequency side of a double-tuned probe of this design compared with a

signal resonance circuit, it was found that, in general, 90° pulse times

were nearly equivalent for the probes used in this work.

Because the anisotropic ordering of a thermotropic liquid crystal
is dependent on temperature, careful control of the temperature of the
sample environment is required. The probes used in this work are
equipped with an evacuated glass dewar which surrounds the immediate
region of the sample coil. Radio frequency power 'is passed into this
region by leads through the KEL-F or teflon support on which tuning
elements are mounted. The temperature is measured by a single copper-—
constantin thermocouple junction ~1 cm from the sample coil. The tem-
perature is read by a Noric digital thermometer. Rough temperature
regulation is achieved by passing air or N2 through the sample region
via an evacuated transfer line which is also the support rod for the
probe. For temperatures above the ambient gas temperature, the gas is
first heated by passing it through an element with up to 100 watts of
regulated power. Colder temperatures are achieved by first bubbling

house N2 through liquid NZ’ or passing alr through a copper tube im-

mersed in ice water. The temperature read by the digital thermometer

is sampled periodically and compared against a preset value. If the

temperature drops below this value, a small auxiliary heater (~30 watts)
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in the probe transfer line is turned on. This heater is disabled during
a pulse sequence and data acquisition to avoid noise pick-up. With this
arrangement, the temperature sample of the environment can be regulated

to +0.1°C over a range from -120° to +150°C.

5.5 Receiver Section

A high sensitivity NMR spectrometer must be able to detect the
microvolt-level nuclear signals typically present and be designed so
that the noise figure of the preamplifier determines receiver noise
contributions. In addition, quadrature phase sensitive detection is
employed to provide maximum signal-to-noise and for those experiments

where the signal is not linearly polarized.

5.5.1 Preamplifier and IF Gain

The preamplifier sectionsof both the high and low frequency channels
operate in a similar manner. For carbon and deuterium detection, the
preamplifier (Miteg Model AU-IB-005M) provides about 35 db gain of the
nuclear signal. After filtering, this is mixed with the 2.0. using a
Hewlett-Packard model 10514A mixer to produce the 30 MHz receiver i.f.
signal. The major difference in the proton receiver is the use of a
preamplifier with ~50 db of gain and a Mini Circuits Model ZAD-1-1 mixer.
Typically full receiver recovery follows 20 psec after an r.f. pulse at
the observation frequency.

Either receiver i.f. is routed to an i.f, strip amplifier (RHG Model
EVT3010) with a band pass of 10 MHz, This'unit provides 20 db of fixed
plus 50 db of variable gain. This amplifier is nominally linear but

must be calibrated when relaxation measurements are taken.



220

5.5.2 Phase Sensitive Detector/Audio Filters

Phase sensitive detection of the receiver i.f. signal is accomp-
lished as follows (see Fig. 5.11). The 30 MHz spectrometer reference
is first passed through a variable delay line and then split by a
quadrature hybrid. Both channels are passed through mixers along with
the i.f. strip output which has been divided with no phase difference.
The audio output is filtered by variable low pass filters (see Fig. 5.12)
and sent to the digitizers. The relative phase of the spectrometer

and signal is adjusted by the reference delay line.

5.6 Digitizers

The +1 V phase detected signal channels are sent to the High Speed
Acquisition system for digitizing and memory storage (see Fig. 5.13).
The signals are first gained to +10 V by a small audio amplifier (AM1014).
On a "START" pulse the signal is sampled by a Datel Model SHM-2 sample-
and-hold and converted to 10 bits of data by a Datel Model ADC-Gl0B4C
analog-to-digital converter. Total conversion time is 1 usec. There is
an equivalent circuit for each phase channel. The START pulse is gen-
erated and the data read by an interface attached to the spectrometer
computer (Data General Nova 820). Successive data points (complex) are
placed directly into the computer's memory as they are converted via the
DMA. The interface can acquire up to 2048 complex data points with a
dwell time of >3 usec. This provides adequate spectral breadth for all
experiments in this work. The acquisition interface was built by
Spectrometer Data Systems and has been modified to allow data collection
from a single trigger pulse for an entire FID or from trigger pulses for
each point in a FID. All data collection is synchronous with the pulse

programmer clock.



Phase Sensitive Detector
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Figure 5.11

Phase sensitive detector. Heterodyne detection method is employed.

The i.f. signal is divided with no phase difference and the reference is

split into 0° and 90° lines. These are mixed to give two audio channels.

HSA means High Speed Acquisition.
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Audio filter circuits and miscellaneous circuitry for offset

adjustment, IF gain control voltage and IF strip overvoltage detection.

Each channel of the Phase Sensitive Detector output is passed through

identical filters and offset op-amps.

affects filter roll-off characteristics.

The 6 and 12 db selection



High Speed 10 Bit ADC Circuit
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Data Acquisition circuit for 185 MHz NMR Spectrometer.

Each channel of phase detected signal is converted to 10 bits of

data. Conversion time is 1 usec.
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5.7 Pulse Programmer

The nature of the pulsed NMR experiments described in this work
require a programmable unit to generate pulse gating and delays for the
sequences used. The pulse programmer employed in this spectrometer is
microprocessor based and contains its own memory and home-written soft-
ware. This software (micro-code) allows pulse programs of up to 64
simple steps to be entered and executed. Each step can be an operation
such as variable definition and incrementing, comparison of variables
and branching, etc. Based on the pulse program instructions, the micro-
processor outputs a sequence of timing words to either a RAM or FIFO
memory. These timing words are clocked out by gating hardware which is
based on the 10 MHz reference output of the proton synthesizer. Thus
pulses and delays are settable in 0.1 usec units and quite complicated
sequences can be programmed. The microprocessor communicates with the
spectrometer computer via the EIA interface of the system console. The
design and operation of this pulse programmer are described in more

detail elsewhere [ 45].

5.8 Computer

A dedicated minicomputer is used to direct the operations of the
spectrometer. Data acquisition, data manipulation and peripheral control

are all handled by specialized hardware and software.

5.8.1 Hardware

The spectrometer minicomputer is a Data General Nova 820 with a 16
bit word length and 32 K words of core memory. Mass storage is on a
Data General 6045 hard disk subsystem with 10 Mbyte capacity. Data back
up and storage is aided by a Data General 6030 single density floppy

drive with 315 kbytes of storage capacity. Besides CPU, TTY, I/0,
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Disk I/0 and memory boards, several interfaces handling data display and
x~y plotting, data acquisition and miscellaneous peripheral control

reside in the main frame.

5.8.2 Software

To handle the many different operations of the spectrometer which
are under computer control, a large program was written [117] mostly in
FORTRAN with some subroutines in assembly language. This program
comprises an independent, stand-alone operating system. Computer memory
is partitioned by the software into well defined regions as shown in
Figure 5.14. Most of the memory is devoted to data, allowing rapid
acquisition and manipulation of digitized signals. The entire program
cannot fit into the remaining memory and so is divided into a series of
overlays which are swapped to memory from disk as needed.

This operating system consists of 60 commands which direct data
acquisition and display, Fourier transformation, ﬁhase correction, and a
variety of other operations. Commands are given simple names and accept
parameters when executed. Commands may either be executed individually
from the console or as a sequence from a previously defined string
stored on disk (known as a MACRO). MACRO command strings except variables
which are passed to the commands at execution time and MACRO's may be
nested in almost any way desired. This arrangement allows unattended
direction of a complicated experiment which is defined beforehand. Data
is stored in a large archive on the hard disk system and later moved
to floppy disk for long term storage.

In addition to the spectrometer operating program, several routines
were written for specialized data manipulations. Among these is a series
of programs which facilitate the calculation of a large, floating-point

disk Fourier transform. These are described in Appendix C. This was
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Software partitioning of 32768 words of Nova 820 memory for
spectrometer operating system. Most of the memory is devoted to
data with programs swapped into the overlay segment as needed.

The hatched region is used for communications with the pulse

programmer.



required in the work on liquid crystals because the computer word size
(16 bit) and core memory size (32 K) limits the length of a Fourier
transform thaﬁ can be calculated by the spectrometer software to 8192
complex points. The disk based programs allow a spectrum of up to

64 K words (complex) to be calculated with no overflow.

5.9 Conclusion

In this chapter one of the two NMR spectrometers used in all experi-
ments reported in this work has been described. The basic circuitry of
the spectrometer consists of a low power r.f. section in which pulses
are generated with well defined phases relative to the spectrometer
reference. All pulse and delay timing is chdreographed by a sophisti-
cated, microprocessor-based pulse programmer. Pulses are amplified,
converted to the nuclear frequency of interest, and transmitted to the
sample probe. Two designs of tuned resonance circuits are used in the
probes: a single coil for each resonance used or a single coil, double
tuned probe. Each design offers some advantages over the other; the
choice of probe was dictated by the considerations of signal-to-noise,
sample heating and decoupling power requirements.

The dedicated minicomputer system with specialized software used
with the spectrometer is also described in this chapter. This arrange-
ment offers a great deal of flexibility in the types of experiments that
can be performed. The ability to construct chains of simple commands
as MACRO strings allows for automation of experiments once initial para-
meters are set. The High Speed Acquisition system employed is suffi-

ciently fast for solid state experiments and adaptable to high resolution

for liquid crystal and liquid samples. Magnetic field homogeneity is
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obtained with a set of room temperature shim coils in addition to

superconducting gradient coils. Finally, a low noise figure pre-

amplifier followed by variable gain i.f. stage and phase sensitive
detection yield the best arrangement from the standpoint of

signal-to-noise.
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APPENDIX A

Spectral Simulation and Iteration Programs

This appendix describes the simulation and iteration programs
(MQITSET and MQITER) used to fit the multiple quantum spectra discussed
in Chapters 3 and 4. Both programs and their subroutines are written
in FORTRAN IV and execute on a DEC VAX/VMS 11/780 computer. All the
file 1/0 statements are specific for that computer but may be modified
to run on virtually any medium or large scale computer. The VAX system
has 1.5 Mbytes of virtual memory and so program MQITER dimensions large
arrays which allow it to handle up to 10 coupled spins.

In the following sections, the theory of linear least squares para-
meter adjustment is briefly reviewed and its application to NMR spectral
fitting discussed. 1In Section A.2.3, a description of program flow for

MQITER is given. Finally an example, partially oriented benzene, is

presented to demonstrate the basic operation of MQITER.

A.1 MQITSET

MQITSET is a program used to collect data required for the execu-
tion of MQITER. The latter program is non-interactive and acquires all
of its necessary data from file MQITER.DAT. MQITSET asks a series of
questions and, based on the responses, collects coupling constants and
creates the data file. In this manner, several data files can be
created while the actual simulations and iterations are done in the

background without interaction from a terminal.
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A.2 MQITER

MQITER is the basic simulation and iteration program used for spec-
tral fitting. For spectral simulation, input consists of the dipolar
and scalar couplings. From these couplings the homonuclear, spin-1/2
Hamiltonian matrix is set up in a single product basis set. Chemical
shifts and rotating frame offset are assumed to be zero. This is then
subjected to a diagonalization routine employing the Jacobi rotation
technique. Finally, the transition frequencies expected in the multiple
quantum spectrum are calculated. This is done by first classifying
eigenstate vectors by symmetry representation and then choosing all
possible transitions within each representation.

Once an initial simulation has been done, experimental frequencies
can be assigned to those calculated. The calculated frequencies are
identified by a number given them in the simulation. With these as
input, the program is run again and a linear least squares variation
is used to refine the couplings and produce a new spectrum with a minimum
RMS deviation from the experimental lines. The method of least squares
variation is essentially the same as that used by Castellano and
Bothner-By in their program LAOCN3 (see Ref. [118,119] and references
therein). The next section will discuss the theory of these iterative
calculations.

A.2.1 Least Squares Spectral Analysis

If a set of experimental measurements have been made, {mi}’ cor-
responding to a set of theoretical quantities, {Mk} and it is necessary
to find the parameters, {pq}, which determine the Mk's from known

quantities, i.e.,

M = fk(pl,.--,pq), (A.1)



then the method of least squares is appropriate. 1In this method, it is

desired to minimize the quantity

L 2
) (aM)°, (A.2)
-1

where AMk =m - Mk' In matrix notation we require

% (AmTAm) = O, (A.3)

; ~
for all the parameters j =1, ..., q. In order to obtain a solution for
Equation (A.3), M is expanded in a Taylor series about some initial

)

parameters B
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In Equation (A.4) it has been assumed that only small changes in para-
meters are to be considered and so terms with higher derivatives of M
are insignificant. If we use as the vector of residuals the difference

between the measured quantities and the zero order term of Equation (A.4),

AM = m-g(o), (A.5)

~

then the minimization problem becomes,

=2 (Wap- a1 (uap - a) = o, (4.6)
3

which may be rewritten as

Yuap = viay. (A.7)
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If M is a linear function of the parameters, then Equation (A.7) is the
solution which gives the form of the function in Equation (A.l). This
is what has been assumed in going from Equation (A.6) to Equation (A.7),
i.e., that ¥ is not a function of the parameters. For the case of spec-
tral fitting in NMR where the measured quantities are transition
frequencies, their dependence on coupling constants is, in general, not
linear [118]. Thus, the parameters will have to be varied to approach
the situation stated by Equation (A.7). The usual procedure is to solve

the ''mormal equatiomns,"

-1 T

R<ﬁ

) Am, (A.8)

Ap = (

i<
R

to give corrections to the parameters which are used to calculate a new
i

g( ). It can be shown that, as long as the changes to the parameters

are kept small so that the "linearization" approximation is valid, this

(£)

method may converge to some set of final parameter’s p representing a

local minimum of residuals [120].

The question of uniqueness of the solution E(f) must then be taken

up. It is possible that the convergence will be to a local minimum on
the surface of parameter space which is one among several or even an
infinite locus of solutions, Where the convergence ends up will be
determined by the "closeness'" of the initial parameters (i.e., the mag-
nitude of the initial RMS error) and the assignments of the measured
quantities, {mi}. The Castellano/Bothner-By method requires a reasonably
good choice of initial parameters and line assignments [119]. Generally,
when the number of lines assigned does not greatly exceed the number of

gence at all. Several different line assignments may be tried to isolate
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those which do converge. For single quantum NMR spectra of a molecule
with a large number of interacting nuclei, the number of different line
assignments poésible which fit within some range of the initial simula-
tion becomes too great to allow a full least squares iteration of each.
With the increased resolution and spectral simplicity inherent in high
quantum spectra, the number of reasonable line assignments is greatly
reduced. 1In a similar sense a variety of initial parameters may be
used to probe the space of possible solutions. The advantages of using
multiple quantum spectra in choosing initial parameters arise when a
choice can be made between several different coupling constant models

which predict different multiple quantum spectra.

For either a multiple quantum or a single quantum case, the uniqueness

of a solution may depend on molecular symmetry. For example, it has been
shown that two and three spin systems analyzed from line frequencies
alone yield several or even an infinite number of solutions [121].

Unique solutions only become possible when intensity information is in-
cluded. For a general spin system without symmetry, the direct and in-
direct couplings and the chemical shifts may all be determined uniquely
except for the relative sign of the couplings with respect to shifts and
for a permutation of the nuclei [122]. The ambiguity in numbering of
nuclei is removed with the addition of molecular symmetry which also
reduces the number of parameters required to solve for. In addition, when
some of the parameters are assumed, the number of possible solutions is
reduced. Thus, the uniqueness of a solution derived from the Castellano/
Borthner-By method depends on how well the initial model fits an experi-

ment and how many parameters in the model may be kept stationary.
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Returning to Equation (A.8), it may now be seen what is required
in the program MQITER. The measured quantities from a multiple quantum

spectrum are the line frequencies,

-£9, (4.9)

>

iES
1

{rn

the parameters are the direct and indirect coupling constants (chemical

shifts are assumed to be equal) and the derivative matrix is

oF,

1
(g)ij = apj . (A.10)

Equation (A.9) is evaluated by considering the eigenstates of the
Hamiltonian for the initial parameters and the line assignments made
from the spectrum. The derivatives of Equation (A.10) are found by

differentiating the Hamiltonian in the simple product basis set:

3F, [axn axm] '
- - (A.1la)
] ap. ap.
pj pJ pJ
3l
ERE e
j j
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=5—-HS+S ﬁﬁ
Py j
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i
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Py 3T FF %Py
A 3H 38, 98
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In reaching Equation (A.11b), the orthonormality of the eigenvectors has
been used. The left hand derivative matrix in Equation (A.11lb) is dia-
gonal and so we need only consider the diagonal elements of the right

hand matrices. Those elements cancel in the last two terms and so

g . 3
35.] |82 35, 8 (A.12)
3/ b Y om '

Equation (A.12) states that the derivatives for Y in the normal equations
can be found by differentiating the Hamiltonian and then applying the
same transformation used to diagonalize it to yield the eigenstate deriv-
atives. The differentiation of the Hamiltonian in the simple product
basis is trivial since Hik = Zcipj and the eigenvectors required by
Equation (A.12) are found at each cycle of the iteration.

Once the derivatives in Equation (A.12) are calculated, the normal
equations may be solved according to Equation (A.é) to yield corrections
to the parameters. The initial parameters are adjusted by these amounts
and the next cycle of the iteration is started. 1In each cycle, the RMS
deviation of the calculated lines and assigned frequencies is computed
(Eq. (A.3)). 1If this RMS deviation does not change by more than one
percent on going from one cycle to the next, then the definition of con-
vergence has been reached and the final parameters used in a spectral
simylation. Figure A.1 shows the overall procedure used in multiple

quantum spectral fitting.

A.2.2 Error Analysis
The errors present in the digital resolution of a multiple quantum
spectrum can be propagated to parameter errors by the usual techniques.

It can be shown [118] that for the case where the standard deviations of
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Figure A.1l

Flow diagram for least squares iterative program used to fit

and simulate multiple quantum NMR spectra.



each frequency measurement are the same, the variance-covariance matrix
for the parameters derived from Equation (A.8) 1is given by the coeffi-

cients of the normal equations:

V) (A.13)

Diagonal elements of gp give individual errors in each parameter (012)

and off-diagonal elements give the covariances defined by

Cppe = <y -0 )o<(p - 00> (a.14)

where the angle brackets define an expectation value. In general, the
parameters used for iteration are not independent and so the covariances
are expected to be significant. As in the original program LAOCN3, the
matrix in Equation (A.13) is diagonalized to give parameter errors for
linear combinations of parameters forming a principle axis system in
"error space''. This may be of use in identifying khose linearly inde-
pendent combinations of parameters which define the system better. In
addition, this locates the maximum and minimum errors possible for the
parameters. In Equation (A.13) the variance 02, assumed equal for all

lines used in the fitting, may be assumed from the final fit as [118]

02 = (Abz'fr AM)/ (k- q) (A.15)

where k is the number of assigned lines and q is the number of parameters.
The propagation of errors from the refined parameters determined
from MQITER to quantities such as bond angles and distances must also be
considered. If the derivatives defining the relationship of the desired
quantities, 3> with respect to the wvariables X are known, then the

propagation of errors is expressed as
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o
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2y

D is the matrix of derivatives, By./axk, and C , C_ are the variance-
= i =y’ =x

covariance matrices. Such a propagation of parameter errors will become

important in the discussion of the program BIPH5PARA (Appendix B).

A.2.3 Program Description/MQITER

The listing for the iteration program MQITER is given in Appendix D.
What follows is a brief description of the programs operations and sub-
routines. Table A.TI gives a listing of the subroutines used and Table
A.IT a listing of the major matrices required. This listing is of a
version designed to handle up to ten spins. Not all multiple quantum
spectra may need to be calculated since line assignments may only be
taken from the highest quantum transitions. If this is the case, the
program allows for the exclusion of those parts of the Hamiltonian not
necessary. The Hamiltonian is first set up in the, simple product basis
set in block diagonal form [118]. If a complete zero quantum or one
quantum spectrum is desired then every submatrix must be set up in this
basis set and then diagonalized. If this is the case, then the largest
spin system possible with the array dimensions given in Table A.II is
eight spins-%. MQITER is capable of calculating higher multiple quantum
orders for greater than eight spins. As an example, if the five quantum
is desired, none of the transitions involve the submatrix with M = 0 and
its diagonalization may be omitted. This eliminates the need to dia-
gonalize a 70 x 70 matrix and so computational time is decreased consider-
ably. Some multiple quantum transitions for orders lower than five may
still be found but those spectra will be incomplete. Variable MAXMAT
holds the dimension of the largest Zeeman submatrix which is allowed.

In this manner, part of the total multiple quantum spectrum can be
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Table A.I

Subroutines and Functions Used by MQITER

Subroutine or Function Called
Name From Purpose
1) LINORD MQITER Orders line assignments
2) CNTOUT MQITER Outputs coupling constants
3) HAMILS MQITER Sets up Hamiltonian
4) CONDIT MQITER Sets up equations of condition
5) ERRIT MQITER Calculates RMS error
6) NORMAL MOITER Sets up normal equations
7) MINV MOITER Inverts a matrix
8) CORREC MQITER Corrects initial parameters
9) GENSYM MQITER Rearranges symmetric matrix
10) EIG2 MQITER Diagonalizes a real symmetric
HAMIL5 matrix
11) EOUT MQITER Outputs energies
HAMILS
12) MQ2DIFF MQITER Calculates allowed MQ spectra
13) NUMSRT HAMILS Calculates SP states
14) UNTRANS HAMILS Performs a unitary transforma-
USWAP tion
15) READMS MQITER File I/0
HAMILS
SYMSET
USWAP
16) WRITMS USWAP File I/0
17) USWAP HAMILS Rearranges Eigenvectors
18) SYMSET MQ2DIFF Calculates symmetry representa-
tions
19) FRQOUT MQ2DIFF Outputs frequencies
20) MAT All routines Array index functions

21) MATVEC All routines Array index functions
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Table A.II

Major Arrays Used in MQITER

] Array Name Size Purpose
D (28) Dipolar coupling constants
cJ (28) Scalar coupling constants
LST (2,1024) SP states and quantum numbers
NO (11) Binomial coefficients
NSP (11) Sum of binomial coefficients
NSM (11) Sum of allowed sub-matrix
dimensions
EN (256) Energies
IPARAM (28,15) Parameters
DLMB (256,28) Derivatives ;f eigenvalues
MQIT (2,10) Multiple quantum orders
LASS (230) Experimental line assignments
EXPER (230) Experimental frequencies
DC (230,28) Matrix of derivatives
B (230)
v (784)
Miscellaneous work matrices
BV (28)
WORK (4900)
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calculated for nine and ten protons. The lowest orders for which all
allowed transitions may be found are zero quantum for eight protons or
less, seven quantum for nine protons and eight quantum when the molecule
contains ten protons.

The program starts by copening three files; two are scratch files
which will contain eigenvector matrices and one is the data file
MQITER.DAT produced by MQITSET. The initial data is read in and certain
array elements are determined. Variable N is the number of spins, LOWORD
the lowest order tramsitions for which a complete spectrum is desired
and ITER is the iteration control variable. Next, the couplings are
read in (either from a previous data file with the same name as CASE or
from MQITER.DAT) and output by subroutine CNTOUT. If this is an iterative
calculation, the line assignments are also read in. Subroutine LINORD
arranges them by order and line number for later calculation. Next, the
parameters to be varied are read. A total of 28 parameter sets are
allowed. With most molecules of interest, symmetry dictates that some
parameters must be kept equal during the iteration [118]. As an example,
for benzene, all the ortho couplings are equal and this forms one para-
meter set. A total of 15 parameters are allowed per parameter set. The
method of specifying which dipolar or scalar coupling is meant by each
parameter is described in the output of program MQITSET.

The iteration loop takes up the next eleven statements. Subroutine
HAMILS, described below, is called to set up and diagonalize the Hamil~
tonian matrix and find the derivative of this matrix with respect to
each of the parameters. If ITER is zero, then the program just skips to
the part which simulates the multiple quantum spectrum, Otherwise, sub-
routine CONDIT is used to calculate the equations of condition. ERRIT

finds the current RMS error and returns variable NEXIT which determines



if convergence has been reached. Subroutine NORMAL sets up the normal
equations according to Equation (A.8). MINV, a routine similar to a
subroutine from an IBM subroutine package [123], inverts the normal

- equations coefficient matrix. Finally, CORREC applies the computed
corrections to the parameters. ITER is then incremented for the next
cycle.

Once convergence has been reached or too many cycles have occurred,
flow proceeds to the error analysis section. The matrix of coefficients
to the normal equations is first output. The inverse of this matrix is
proportional to the parameter variance-covariance matrix according to
Equation (A.13). Then, as described in Section A.2.2, this matrix is
diagonalized by EIG2 (described below) and the eigenvectors, the standard
errors of these '"eigen parameters" and their probable errors are output.
Finally, subroutine MQ2DIFF (see below) is used to simulate the multiple
quantum spectrum from the refined parameter values.

Subroutine HAMIL5 is used to set up the Hamiltonian in a simple
product basis set. The operation of this routine is based in large part
on the methods developed by J. Murdoch [67 ]. The ZN simple product
states are actually the integers from zero to ZN-l in which each bit
represents one nucleus. The numbering of these 'muclei" follows that of
the dipolar and scalar couplings used. A zero for a particular bit rep-
resents one of the two spin-!s states (a or B) and a one means the other
state. Thus, checking the value of a particular bit determines the spin
state of that nucleus. For example, with four spins, a simple product

state aBaf 1s represented by the integer 5 (0101 binary). Using these

"anaeratine"
operating

"gpin states" the Hamiltonian is found in this basis set by

on the states to determine which couplings contribute to each matrix
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element. Both the on-diagonal and off-diagonal elements are calculated
in this manner. Only the submatrices for each total magnetic quantum
number are calculated, all other elements being zero. HAMILS uses a
definition of dipolar couplings twice that of Reference {18].

After each submatrix of the Hamiltonian in the simple product basis
set is calculated, it must be diagonalized to give eigenstates and eigen-
vectors. If this is the first cycle in an iteration, or if no iteration
is desired, this is done immediately by EIG2. For an intermediate stage

in the iteration, the Hamiltonian is first subjected to the transformation

.f.

By = £-1) B(n) Em-1)- (A.17)

In Equation (A.17), the subscripts indicate the cycle number. If the
parameters have not changed much on going from cycle (n-1) to cycle (n),
then using the method of Equation (A.17) will produce matrix g;n) which
should be approximately diagonal. Subjecting this'transformed matrix

to the Jacobi method should require fewer rotations to reach a completely
diagonal form. In addition, using Equation (A.1l7) at every cycle will
help preserve the order of the eigenstates.

The subroutine EIG2 produces a diagonal matrix from a real symmetric
one by the Jacobi rotation technique [124]. 1In this approach, the
largest off-diagonal element is chosen as a pivotal element about which
an orthogonal rotation is done. The angle of rotation is chosen so that
this largest off-diagonal element is made to vanish. Orthogonal trans-
formations of this type are repeated until no off-diagonal element is
larger than a threshold. The unit matrix is also rotated by the same
angle for each transformation. It can be shown that the product of the
orthogonal matrices for each rotation is the required eigenvector matrix

[118]. '
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As mentioned above, it is necessary to keep the eigenstates in the
same order as in the initial diagonmalization. This is important to main-
tain the fit to experiment because the eigenstates will no longer be in
the proper order for line assignments and will cause an erroneous diver-
gence [125]}. Such a situation is partly avoided in MQITER. Subroutine
HAMILS5 calls USWAP which calculates the sum of squared deviations

according to

2

( ). (A.18)

ki) 0y T Gy

(n)

If none of the eigenvectors have changed position then the minimum ele-
ments of matrix é will be along its diagonal. If one of the off-diagonal
elements in a particular row is the minimum value of that row, then the
eigenstates and eigenvectors are swapped accordingly. This procedure
should maintain the line assignments and avoid divergence due to the
method of diagonalization. This rearrangement of the eigenvalue sequence
is particularly common when the dimension of the submatrix is large and
it contains several degenerate states.

Subroutine MQ2DIFF is used to calculate the multiple quantum spec-
trum from final parameters. As with the other parts of the program,
MQ2DIFF will calculate incomplete multiple quantum spectra when not all
submatrices of the Hamiltonian have been diagonalized. Since there is
no offset term in the Hamiltonian computed by HAMIL5, transition fre-
quencies for each order are calculated relative to the centers of the
orders. HAMIL5 also assumes that all chemical shifts are zero and so
each order is symmetric about its center. MQ2DIFF only outputs one half
of the symmetric spectrum. After the presentation of the spectrum with

identifying line numbers and transition states, the frequencies of ome
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half of each order are presented as a descending list of positive
numbers. MQ2DIFF attempts to identify degenerate transitions in this
list. The eigenstates may also be scanned for degeneracies to help
locate doubly degenerate symmetry representations.

Subroutine SYMSET is called by MQ2DIFF to classify eigenstates by
their symmetry relations. The calculation is based on the group theory

result stated in the following equationms.
If [<r. |a,|T >l2 #0
i1 ?
then Fi =T,. (A.19)

In Equation (A.19), the T symbols refer to the irreducible symmetry re-
presentations of states i and j. For NMR single quantum transitions,
neglecting symmetry breaking relaxation effects, the magnetic dipole
transition operators are totally symmetric (i.e., él representation)
[36]. Equation (A.19) states that to find states of the same irreduci-

ble symmetry representation, the transition element
2
<i >
<] _|3>]

must be found and compared to zero. Instead of Ix’ a more convenient
operator to use in SYMSET based on the form of the simple product states
is I_. SYMSET loops through all eigenstates and calculates the appro-
priate matrix element from the expansion of these in terms of simple
product states with the eigenvectors from HAMILS as coefficients. The
resulting matrix elements are compared to a threshold level and if found
greater than this level the corresponding states are labelled as belong-
ing to the same irreducible representation. In this manner, all states

are classified by representation. An alternative to the approach of



calculating each matrix element individually is to set up the transition
operator in the simple product basis and then transform it using the
eigenvector matrix.

When not all submatrices have been included in the calculations of
HAMIL5, matrix elements of I_ alone are not sufficient to determime all
the symmetry relations among eigenstates. The missing submatrix is
"bridged" by computing matrix elements of IE where n-1 is the number of
submatrices missing. This allows symmetry representations for states
below the missing Zeeman manifold to be connected to those above.
However, calculations show [126] that matrix elements of IT for states
within the same representation may vanish and so this method may omit
allowed transitions. The best possible calculation, without expressing
the point group of the molecule in the Hamiltonian {127] is to use the
single quantum operator I .

Once the representations have been determined’, MQ2DIFF outputs all

the symmetry allowed transitions for the multiple quantum orders of inter-

est. This presentation carries none of the information concerning inten-
sities as they are dependent on experimental parameters as described in
the previous chapters. Also output by the program are the eigenstates
organized by the symmetry representations found by SYMSET. In this

list, states labelled as representation #1 are those for which no non-
zero matrix elements were located. States of representation #2 are the
totally symmetric (Al) states. The extreme Zeeman states are always
found in this representation. The relationship of the other represen-
tations to the actual point group irreducible representations must be

made by examination of the dimensions of each Zeeman manifold.
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A.2.4 Program Example: Benzene

As an example of the operation of MQITER, consider the case of
benzene oriented in a liquid crystal as in previous chapters. The high
order transitions produce very simple spectra and the line splitting of
the sole five quantum pair is sufficient to determine the entire spectrum
when hexagonal ring geometry and scalar couplings are assumed. Because
of this, it is not necessary to use MQITER to iterate to a solution for
the benzene spectrum. However, it is a well understood and characterized
spectrum and so a convenient example to choose. This particular example
is for the fit of one calculated spectrum to that of another and so the
parameter errors are extremely small. The use of MQITER with actual
experimental lines assignments also produces a very good fit with the
parameter errors found to be well within the bounds expected on the basis
of the digital resolution of the Fourier transform spectrum.

An initial run is necessary to give line numbers for assignment to
the "experimental' spectrum. In the second rum, the line assignments
come from another simulation with a different set of couplings which
represents this "experimental" spectrum. As seen in the RMS error calcu-
lation, the initial fit is already fairly close. Both D's and J's were
varied in the iteration, the parameter sets corresponding to ortho, meta,
and para couplings. During the cycles, states are swapped by the method
described in the previous section. Note that only degenerate states are
affected by this swapping implying that, even without this check, con-
vergence would be obtained because the RMS error would still decrease.
The final parameter errors reported are indeed very small. After the
refined parameters are output, the variance -covariance matrix and the

eigenvectors from its diagonalization are given. This eigenvector matrix
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is not completely diagonal indicating strong mixing of the parameters.
This is to be expected for the dipolar coupling parameters due to their
dependence mentioned above, but in addition, each eigenvector shows
significant mixing of dipolar and scalar couplings. Even though no
anisotropic (or "pseudo-dipolar') contribution from Jij is included in
the Hamiltonian, this eigenvector matrix shows that the Dij's and Jij's
are not linearly independent.

After the simulation is performed and the frequencies output, a
listing of degeneracies found among the eigenstates is given. Following
this, the symmetry classifications of eigenstates is shown. The cor-
respondence between these classes and the point group representations is:
representation #1, A2 state; representation {2, A1 states; representation
a,b . , a,b
5’ states; representation #h Bl states; representation #5, El

states; representation #6, 32 states.

#3, E
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A.2.5 Computer Output for Benzene Example



TMPMCB
D( 1
Ji1
D( 1
J( 1
L1
J(1
L’
Ji 1
Lf 1
Jo 1
L/ 2
Jr 2
P 2
J’'
Dr 2
J' 2
L’ 2z
Jr 2
D 3
J° 3
i 3
Ji 3
L’ 2
Jt 3
D' 4.
Ji 4
C( 4
J' s
Ll =
J{ 5
TOTal

L (AR am (min L (" N¢] NN

‘NN

2. mm 1.0% ] I

[¢ 0 )

™M (»

»

Wy

cr

7C61

CASE

-1388.
6.

-258

[
o
@]
=
]

-250

-1€2.

-250
1

=138

[
-]

1309.
LAeve

benzitl

8000
eeee

1900

2008

.seer
.5000

.1¢c00
.eror

eoee

.enp00

.ezer

poee

L1600

.e2ye

.5009
5000

19e¢

-8002

.0000
L@ean

1900

0000

44X
5000

o000

150@

0000

8141

FRLIQ EINTIRED

berzere iteration example

32

4-NCV-1¢B1 16:42:18 29
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TMPMOB . LOG

B T

1
-

4-NOV-1981 16:42:18.28

LINI ASSIGN™INTS FOR TER 2 QUANTUM SFICTRUM

LINE #

TMPMCB.ICGI1

LINE £SSIGNMENTS FOR THE

TINF »

TMPMCB

2

4

6
2t
2€
2¢
32
€
37
<
€4
72
7%

TCGs1

IXPERIMENTAL FREQUENCY

1565.e000
4104 .9E00
2332.2100
2283 . 7408
2253 .7400
£55 7400
555.7408
1629.13090
1€629.130¢
8go.71e8
~544 .7400
2423 .0278
695 .8420
1321.5000
3310.6221

4-NOV-1981 16:42:18 28
2 QUANTOM SPECTROM

EXPERIMENTAI FREQUINCY

J261.%801
1827 .1409
4794 .£999
1303.0229
2143 .0999
1383 .0500
2143.9999
~B6€.0700
1733 .1000
-39.€66¢@
2008 .10080
1314.6200
1314.€228

4

-NOV-1581 16:42:18.2¢

LINE ASSIGN™INTS FOR THE 4 QUANTU™ SPICTRUN.

IINY »

EXPIRIMENTAL FPRRQUINCY

1
2
4

TMPMCB TCG51

LINY ASSIGNMENTS FOR THE

IINT «

~1868.8121
4104 .9€00
2332.2120

4-NOV-1981 16:42:18.2¢

£ QUANTUM SPICTRUM
IXPIRIMENTAL FRIQUINCY

1

2371.8798

Page 5

Fage €

Fage 7
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TMPMCE ICG31
PROGRAM MQITER - START OF ITERATIVE CAICULATIONS.

ITIRATION #
SWAPPIT STATIS: g,
SYAPPID STATIES 17 .,
ITERATION # 2
SYAPPEL STATIS: S,
SWAPPED STATES - 12 ,
SWAPPEL STATIS &g .
ITERATION # 3
SYAPPED STATIS - 17 .
SWAPFRT STATIS 1)

SWAPPID STATES: 54
S¥APPED STATES 5 ,
ITEPATION #

PARAVFTIR

D12
raz
L3¢
D4S
IZ€e
L1€

PAPAMETER

iz
D2a
D3*
L4€
D15
D26

PAFL¥ETER

D14
D2t
L36

PARAMETEIR

Jiz2
Ja3z
J34
J4c<
J<6
J1€

PAPAMETIR

J12
J2e
J3c
J4€
Jis
J26

PARAVETIR

Jis
J2s
J36

SET

SET

seT

°<IT

]

1

4

1

R M S ERROR

R M S IRROR

R » 5 IRROR

P M S ERRCR

4 NCY-1681 16 42:18 2¢

5
12

€
17
€2

12

-

49
50

74.303

.11

. €07

3
(1]
~

Fage &
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TMPMQB.LOGS1

REFINEL TARAMITIRS

D(
J(

L) - ]
—~—~

<y
—~—~

g
- -

1
1

B

X
. .

[ R ]

>

then

2"
2

AN mo (min > ad; tAin > [ Y7 ] mm 2.3 ] » o

mm

0o

-1259 .9948€
9.9978

~242.82%1
5.003%

-157.5022
1.00€6%2

-242 5¢51
5.003%

-1229.9948
9.9978

-1229.9948
9.9978

-242 5¢51
5.083¢%

187 £222
1.0¢65

-242.5€%1
£ 0€3f

-1259.9948
9.997¢2

-242.57%1
5.003%

-157.%022
1 ee6r

-1229.9948
9.9978

242 &r%1
5 o03:

-12£9.9948
9 9978

4 -NOV-1¢81 16:42:18.28

253



TMPMCE ICGr1 ‘ 4 NOV-1¢81 16 42:18.28 Fage 12
MATRIX C¥ COFYYFICIENTS FOR THI NORMAL EQUATICNS
(PEFCRI IITAGONALIZATION) .
1) ? 1513F-022 -0 1194}F-02 -¢ 1SO7E-8z ¢ 15161-92 8.1304E-02 ¢ 2I8E5i-02
2: -0 1194F-92 ©.3664E-82 -0 .2C05E-63 -0 .15742~03 -0.4772E-0¢ -0.2322E-9¥2
3) -2 19073-02 -9 290%i-83 @ 9-33I-42 -C .5C43E-92 -¢.151€1-¥2 € .1€724-03
4 ? 1916E-082 —-0.1974F-83 -A 8¢43E-0Z 0.3VE9E-02 -0.14171-02 -¥.26131-02
£ ? 1324F 23 - 4772E-03 -¢ 1S1PE-02 -¢ 1417E-02 «¢.2791k-¢% ¥ .159sk-02
€ 0 23851-03 -9 23281-92 ¢ 1E72E-92 -9 2€13I-92 ¢.1599YE-¥2 ¥ .6%22:k-92
EIGENVALIUES OF NORMAL EQUATIONS MATRIX .
2Z€1 @6l 237 698 191 241 745.€59 521.49% 192.31%
TMPMCE 1CG31 4-NOV-1581 16:42:18 .28 Fage 12
IRROR VICTCRS ANT STANDARL DEVIATICNS CY¥ EIGENBASIS PARAMITIRS . .
@ 5301 @ 4817 $.2337 9.4942 0.3315 0.2619
STANTARL ERROR = ¢ 029
-9 2395 @ 7284 -@.0781 -9 5P4€ 2.3856 -0 .8057
STANDARD ERROR = 9.091
2 23G4 © . 2478 C(€.S412 -9.0462 -€.2167 -09.8748,
STANDARD IRPOR = o 202
® 7121 -9.0044 -0.0531 0.3654 0.3623 8.15Z7
STANDART ERROR = o 208
9 163€ -3 3371 ©.121 -9 1782 Q2.7418 -0.4872
STANDARD ERROR = 0.000
g 2392 -2.33%% ©2.1320 -0.3812 £.2612 ¢.2099
STANDARD IRROR = # 21
TMPMCB 1CG51 4-NOY-1681 16-42:18 28 Fage 14

PROBABIY JFRRORS C? EIGINBASIS PARAMEITIR SI78 . .

0.000
¢.e0¢
e o0l
0.000
¢.o0¢
2.001

QAR UANT-
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TMPMCB 1CGi1

REFINEL FNIRGIFS . .

IN/

ENY

EN/
EN-
N
N
NS
N
En-
INY

B
N/
EN

N’

Tv
E*
N

I’
EN:
EX
!‘ll
IN'
EN

D RAUN AN
- - - -

"N ™
- —

-
()

<

.

-

WOMAIMADS AN
-

SN CAACACA R AL

» o
N -a
-

42
44)
4F
4€
LA
&€
46
LAl
&1
*z
23)

L

[}

NN

[ I T T O T T Y IO B (R 1]

L T T O T IO TN T N TS | ST}

[ I

WouNH NN N

-2348 6201

-1126 1265
23 .256°
-1336 461°%
-565 8827
-565.€£827
-1126 128¢

-782 8083
1756 . 3574
-16 4116
1817 7760
-6760 .48L8¢
-616 334%
671 6273
1017 .7761
176 S272
-678 4EE¢
748 .7367
176 9272
-616 3342
748 7367
-893 379¢

-649 €532
912 .©€626
-14 SE49

-521 4824¢

1121 .285¢

2446 2722

1127 629¢

1127 6301
~21 747~

-57¢ 3831

-576.3&32

1121 2233
503 00790
583 .087¢

1974 1277
497 877¢

-548 .6663

1178 4£3%
497 8772

~-548.666%

-7£2.8083
1786 3877
-393.3¢201
-16 4116
176 9273
~676.4891
748 7369
1017 .7768
176 .9273
-616 334~
-670 .469¢
748 .736S

4 -NOV-1581 16 42:18.2¢

ee
-5
&72)

£E

s
€e)
61"
€z:
€2)

64’

[ O B ) wou o

1017 .7764
671 .6282
-616 3344

23 .256S
-1336 4516
-1126 12190

-565.8826
-1126 1201
-56% . 8828

-2348 .6201

Fage 1%
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TMPMCB ICGi1 4-NCV-1581 16:42:18.28 Page 17

1 QUANTUM SPEICTRUM CALCUILATICN
TINY # FRIQUENCY ‘8Z) TRANSITION STATIS SIMM

- - - - - e @ e mam e A - oo RO - <D o - - -

IOWIR QUANTUM # = 3 ; UPPIR QUANTUM # = 2
2 2371.8779 3-> 1 2
LCWER QUINTOM & = 2 ; UPPIR QUANTOM # = 1

ie 2143 .89€° 11-, 2 3
12 589 .7€60 13-> 2 3
14 2143.£967 18 > 2 3
1t 1383 .2477 16-. 2 3
12 1383.0476 16-> 2 3
1€ 509 .78672 2¢ > 2 3
22 -EPE.0ES2 e-; & 2
23 1733.10086 e-> 3 2
24 -35.6€E¢ 1e > <
43 29060.1188 le-. 4 4
ce ~104.5061 12-> < 5
€1 -124.62€2 17> £ £
€2 1314.€1594 1g-> ¢ 5
6& 1314.619¢ 21 > £ 5
LCWEP QU2NTO¥ # = 1 ; UPPER QUANTU™ # = ¢
9E 1665 772S 24-, € 2
100 261.3243 26-> & 2
12 3225.9E76 28-2 & z
118 ~-043,3948 24~. S 2
120 ~2277 .E416 26-> ¢ 2
122 699.914¢ € > ¥ 3
13€ 529.3742 24-. 1l¢ 2
140 -205.8724 26 > 19 2
142 24€2.6B3E 28 > 1¢ 2
1e2 199.883¢ 29-» 11 3
“Z24 129.8241 3o-> 11 3
1€€ -15€8,18292 2o 1 3
17 -1%£g.1592 3-> 11 3
16S -£14.7699 35-> 11 3
172 -£14.769° 26-> 11 3
1e1 1761.7743 27-, 12 5
12E 1791.7749 34-> 12 ]
192 1278,.3687 2e-> 1z £
193 121.022% 38-> 12 5
1€* 1078 .3660 41-> 12 s
1€ 121.92223 42-> 12 &
203 1743.9€42 29-> 12 3
204 1743.9646 39-> 13 ]
< € 4%2.9%14 22-> 13 3
227 45.9513 33-, 12 3
20¢ 1116.3416 35-> 13 S
217 1119.3414 36-> 13 3
217 -1312.280°% 23-> 14 4
21§ -666.5923 25=> 14 4
231 1302.4802 37 > 14 4
2€3 $58.782€ 29-, 1€ 3
264 S29.7029 Iv-> 16 3
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TMPMCB 1CG31

286
ri-i4
2€9
270
ol |
o€
312
213
a1s
218
394

-747.3104
-747.3104
326.879€
326.0797
372.%48€8
372.5486
~346.8597
-1297.4083¢2
-340.9595%
-1297.4032
1771.86%4

4 -NOV-1681 16 42:18.28

32->
33->
35=>
368->
27->
34~>
38=>
39->
41->
42->
42->

1€
1€
1€
16
1e
1e
1€
1€
18
1e
22

Fage 1&

COMOALOBMULG LWL
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TMPMQB LOG31

IRIQ

(82"

4-NOV-1681 16:42:18.28
TEGENERACY

3229
24€2
2371
227
2143
2088
1761
1771
1743
1723
1S5
15€8
1214
1312
1203
13¢2
1287
1119
1778
SZ9
529
£43
eee6
747
€£9
EES
S14
£¢g9
Ees
372
240
3z€
2€1
121
129
104
4L
29

TOTAL # UNIQUE FREQ =

eees
gese
-l d
g41¢
8965
1188
7743
8es4
9642
128€
7708
15892
6194
2882
A477
4802
4030
3416
3657
722€
3742
394F
2€s52
3104
5148
5923
769@
7E6"
2724
S4E€
2e97
798
3243
g22¢
8539
6261
9814
éaes

3€

HANNRA S NANSRMN 2 N NIRRT N RN e N R R e e

Page 1S
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TMPMQB LCG51 4-NCY-1081 16:42:18.28 Fage 28

2 QUANTGM SPECTROM CALCUIATION . .
TINE: # FREQUENCY (BZ) TRANSITION STATES SIMM

TOWER QUANTOM # = 3 ; UPPIR QUANTOM # = 1

1 1565.€119 8-> 1 2
2 4124.977% 8-> 1 2
3 2332.2¢08% 18-, 1 2
LOJER QUANTUM # = 2 ; UPPEIR QUANTUM # = ¢
22 2253.7%02 29-> 2 3
23 2283.7567 2e-, 2 3
2t 585.7374 32=> 2 3
2€ £gE. 7373 23-> £ 3
28 1629.127€ 35=> 2 3
29 1629.1274 36-> 2 3
37 £€9.70%7 24-> 3 2
39 =544 .7409 26-, & 2
41 2423.01%4 2e-> 3 2
€€ €98 E3ET 23-> 4 4
se 1321.52€% 25-, 4 4
7e 33108.59891 37-> 4 4
av 1687.168z2 27-> £ S
e? 1e87.1€8¢ 34-> £ 5
€1 S73.75¢7 3&€-> £ 5
92 17.2164 3g-> £ £
94 g7%.7%99 41-> £ S
1 17.2162 42-> £ 5

LCVER QUANTUOM # = 1 ; UPPER QUANTUM # = -1

12€ -9.e901 43-> & 2
137 2539.1660 44-> €& 2
138 7€6.239€67 46-> £ J
181 -2539.1€%¢ 43-> 9 2
172 8.0002 44-> 9 2
184 -1772.768¢ 46-> § 2
16€ =766.39€7 43-> 10 2
187 1772.7693 44> 1¢ 2
1€8 2.0ged 46-> 1¢ 2
leg ~840.92488 47-, 11 3
1€€ 9.0003 o-> 11 3
126 -84¢.8487 £1-> 11 3
196 -1634.1100 £2-> 11 3
13 0.0004 £5-> 11 3
18¢ -1634.1104 t7-> 11 3
221 -g.0004 48-> 12 5
262 1419.2257 48-> 12 5
z € -2.9@42 £3-> 12 £
207 1419.22%7 S4-> 12 ]
217 793.2618 47-> 13 3
Z1¢ 1634.1113 g€e-> 13 3
2189 783.2618 51-> 12 3
22¢ 0.000° 82-> 13 3
23 1634.111¢ £8-> 13 ]
z28 8.9081 87-> 12 3
228 0.0009 £6-> 14 4



TMPMCE LCGi1

260
<63
264
26¢%
€€
270
2¢1
292
z9€
ackd
24€

TMPMQB LCGS1

¥

4
3
2
2
2
2
1
1
1
1
1
1
1

TOTAL # UNIQUI FRIQ =

R¥Q

1¢4
210
£29
423
322
283
772
GE"?
624
€z8
ges
419
321
973
EE9
g4¢
763
7€6
65%
L 14,
544

17

2

4-NCV-1¢81 16 42:18.2¢

9.0001 47>
840.2496 £9->
§.0001 51->
~793.2612 £2->
842.8492 £5->
-763.261¢€ €7=-)
-1419.2258 48-)
.0002 49->
-1419.22%7 53>
0.0902 54>
-2.0822 4%->
4-NOV-1981 16:42:16.2%
(RZ? CEGENIRACY
t*iard.] 1
5991 1
1660 1
2154 1
2088 1
7582 2
769+ 1 .
1682 2
1100 2
1276 2
2119 1
2287 2
£26r 1
7597 2
7857 1
e4ge 4
261¢ 2
3c687 1
2382 1
7374 2
7492 1
2164 2
gge1 1z

23

1€
1¢
1€
16
1€
le
1g
1€
1e
1€

XA

£L

Fage 21

Page 22

QOO NPALNGW LI
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TMPMCE ICGF1 4-NCT7-1681 16 42:18.28 Fage 23

¥}

QUANTOM SPECTRUM CALCUIATICN . . .
LINY} » TREQUENCY "HZ) TRANSITION STATES SIMM

LOWER QUANTUM # = 3 § UPPER QUANTUM # = ¢

2 3261.582¢ 4> 1 2
4 1827.13€1 26-> 1 2
6 4754.8926 28-> 1 2
LOWER QUANTOM # = 2 ; UPPER QUANTUM # = -1
2% 1303.0477 47-> 2 3
28 2143.8972 sg-> 2 3
25 1303.7479 €1 > 2 3
e 509 .786% £2-> 2 3
23 2143.2970 85-> 2 3
as £25.7861 E0-> 2 3
3e -806.06%2 43-> 3 2
G 1733.100¢ 44> 3 2
3 25.668¢ 46=> 2 2
€4 2008.119€ s€-> 4 4
71 -104.5064 46-> E 5
72 1314.619€ 49 > ¢ 5
7€ -104.60€2 £3-, S 5
77 1314.6166 E4-> & <
TMPMCE 1CG;1 4 NOV-1681 16 42:1E.2¢ Fage 24
FRIQ /BZ) DIGINERACY
4754 892€ 1
3261 =82€ 1
2143 8972 2
2eee 119€ 1
1827 1361 1
1723 1788 1
1314 e19€ 2
1303 8477 2
E¢E cee2 1
=9 786% 2
124 6064 2
a9 eser 1

TOTAT # ONIQUX FRIQ = 12



TMPMCB 1CGi1 4-NOY-1c581 16:42:18 28 Fage 2¢%
4 QUANTOM SPECTRUM CAICUIATICN
LINE # FRIQUENCY (BZ) TRANSITION STATES STMM
LOVER QUANTOM™ # = 3 ; UPPER QUANTUM # = -1
1 156%.211¢6 43-> 1 2
2 4104 .97890 44-> 1 2
4 2332.208% 46-> 1 2
LOWIP CUANTOM # = 2 ; UPPIR QUANTUM # = -Z
1€ -0.080°% €@-> 2 3
20 0.0004 62-> 2 3
22 g.9¢oe e-> 2 2
28 -@.9801 £9-, 4 4
x? 0.0001 61-> £ 5
ol ) -2.e021 €3 > E& 5
TMPMCB LCG31 4 NOV-1681 16:42:18 .2¢ Fege 2€
TRIQ (BHZ' TIGINERACY
4104 97€0 1
2322 27%g* 1
1265 811 1
o eser 6 .
TCTAL # UNIQUE YRIQ = 4
TMPMQBE LCGi1 4-NOV-1681 18:42:18.2€ Page 27
5 QUANTUM SPECTRUM CALCUIATICN . . .
LINE » PRIQUINCY ‘HZ) TRANSITION STATES STMM
LOVER QUANTOM # = 3 ; UPPER QUANTUM # = -2
1 2371.877¢ ga-> 1 2
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TMPMCB ICG;i1 4-NOV-1981 16:42:18.28 Fage 2%
@ QUANTUM SPECTRUM CAICUIATICN . . .

LINY & FREQUENCY "EZ) TRANSITION STATES STMM

QUANTU™ » 2

QUANTOF & 1
1€ 25%39.16%8 g9-> 8 2
17 766.3967 18-> 8 2
3¢ -1772.769¢ 1v-> s 2
5€ ~1€34.118% 13-, 11 3
] -£40.64808 16-> 11 3
62 ~042.94EF 19 > 11 3
€2 -1634.1102 28-, 11 3
71 1416.2258 18-> 12 s
74 1419.22%% 21> 12 5
ki 1624.118€ 15-> 12 3
7€ 793.2617 16-> 12 3
£1 763.2617 19-> 13 3
12 -7€3.261% 2e-> 1€ 3

QUANTUM [
122 62%.6802 2%-> 23 4
124 2€14.7€12 3?7-, 23 4
11 -1434.4487 26-> 24 2
142 1833.3097 28-> z4 2
16§ 19£9.872€6 7=, 2% 4
178 2067 .7563 2E > 26 2
2:1 -713.408¢ IE-> 27 &
2¢2 -16€9.9518 39-» 27 5
274 -713.4084 41-> 27 5
s -16€9.9%£2” 42-> 7 &
220 9.0004 2g-, 29 3
222 -1698.0126 32-> 29 3
723 -1686€.9212¢ 33-> 8 3
z2% -624.6227 38-> 2y 3
22¢ -624.6228 36-> 26 3
224 -1668.72133 I2-> 2¢ 3
238 -166€.0133 23~ 28 3
237 ~524.6231 35-> 280 3
3¢ -624.6232 36-> 3¢ 3
258 1073.39¢1 38=-> 22 3
25§ 1973.3901 38-> 32 3
21 -5%6.5433 x9-> 2E L]
lo4 -9%6.543% 42-> 328 L]
2p68 956.5435 41-> 28 5

QUANTUM & -1
211 2538.1¢60 44-> 43 2
213 7668 .3967 46-) 43 2
226 -1772.7683 46-) 44 4
3es 040.8498% 29-, 47 3
-1 -783.2613 52-> 47 3
*6E 842.8492 €8 > 47 3
a7e -763.2617 57-> 47 3
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TMPMQB LOG31

371
g
283
8e
2e9
194
403

QUANTUM

*

-2

TMPMQB .LOG31

TOTAL » UNIQUE FRIQ =

(B2

4 NOV-1681 16:42:18.22

1419.2261 49->
1419.2261 Se->
-1419.2262 3>
-840.849% 51->
-1634.1188 £2->
-1634.111z2 £7->
1634.1108 8->

4-NOV-1581 16:42:18.28
TEGENIRACY

7£63
7€12
165¢€
2726
7698
8128
gt18
1108
3097
4467
2255
3901
£433
e4ge
2617
3967
4086
68862
6227
ceo4

20

= NN IR N S e N R B e

48
48
43
Lo
Lo
te
g2

Page 3¢

Page 31

KQOuLKkuvoowm
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TMPMCE ICG31
ENERGY DEGENERACY CALCULATION. . .

IN¢
N
IN.
IN'
IN!
EN
EN(
IN(
EN’
EN(
EN(
EN:
EN(
IN(
EN'
IN{
IN:
EN
IN’
IN
EN
IN?
EN:
EN
N
IN
EN
ENY
iN
IN
EN’
IN'
EN
IN

IN( 2

EN
IN
EN!
N
IN'
IN'
EN
IN/
IN:
EN
EN/
EN(
EN
IN’
EN(
IN:
IN’
INC
IN
EN/
IN'
EN
IN
IN/
EN
INC
EN(
N
EN

-

C e

O MIDU GNP
- ~—

-2348 6201
-1126.120%
23.2569
-1336.491F%
-565.8827
-565.8827
-1126.12¢9
782 8083
1756 .3574
-16.4116
1917 .7769
-67€.48868
-616.334°%
€71.6273
1017.7761
176.9272
-€70 .48€9
748.736%7
176.9272
-€16.3342
748 .7367
-2g2.3799
-€4€ .6532
012.9626
-14 9649
-521.484¢
1121.2855
244€.2722
1127 .€29¢
1127.6301
-21.747¢
-57¢.3831
-57¢.3632
1121.28%83
S0 o079
£63.0070
1974 .1077
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APPENDIX B

Programs to Calculate Biphenyl Dipolar Couplings

The proton dipole-dipole couplings of a biphenyl group with either
D2 or D4 symmetry are calculated with programs BIPH4PARA or BIPHS5PARA.
Program BIPH4PARA calculates couplings for any particular set of molec-
ular parameters. This program will also increment one of the para-
meters to produce a series of couplings. Program BIPHS5PARA computes a
least-squares fit of the calculated couplings to a set of experimental
couplings which are given as part of the input. Both programs calculate
the Al symmetry lines allowed in the six and seven quantum transitions.
BIPH4APARA writes these line frequencies to a disk file which is later
used to produce variation plots like these shown in Chapter 4.

The following sections outline the coupling constant calculation

°

and give a brief description of each program.

B.1 Dipolar Couplings for Biphenyl

The form of the coupling constant equations is essentially the same
when either D2 or D4 symmetry is assumed. The more general case is the
one with less symmetry: the D2 point group. This is the symmetry
assumed in the equations below. The D4 couplings are derived by first
transforming the order tensor from coordinate system #1 (see Fig. 4.5)
and then proceeding with the equations for D2 symmetry. This trans-

formation may be written as

@) _ g7 4@ (B.1)

Qdn
Qo
Q=

1) (2) refer to the order tensors in molecular coordinate

where § and S

system #1 and #2 respectively. The transformation matrix R is given in
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Equation (2.3). For the transformation required, angle o = +¢/2 and
B =y =0. The non-zero order parameters in coordinate system #2 in

terms of coordinate system #1, are then

(s 2 -5y = (507 - 58y cos?o/2- sins/2) (B.2a)
s(2) - s (8.2¢)
zz 2z

The equations for the coupling constants are given below. Since co-
ordinate system #2 is used throughout, the superscript 2 is dropped.
These equations all contain the average couplings for conformations, with
+¢. The numbering is according to Figure (4.5). 'The following defini-
tions are used in the coupling constant equations. The internuclear
distances when the dihedral angle ¢ is zero are denote as Y560’ F150°

L L ' :
r160, and r250. The angles o,B,Y,Y ,8, and §' are given by the

following trigonometric relatioms.

T, -t
sina = 67 23 (B.3a)

2960

r_,~T
sinB = —%%——li (B.3b)
150

r -
14 67 (B.3¢c)

ST 2T560

T_o-T
¢« _ 58 723
siny' = T (B.3d)

250

r,,-T
siné = —%é——gi (B.3e)
12

r -r
siné' = —%§——91 (B. 3£)
Tse
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Finally, with the constant related to nuclear properties,

K = —Yih/4ﬂ2, the coupling constants are given below. For Ring A:

_ K 2 _ 2, .2 , 2
D12 =3 [Szz(3cos §=-1) + (Sxx Syy)(cos ¢-sin“¢) sin”§
T
12
. . 2
+ ASXycos¢51n¢51n §] (B.4a)
D,, = K [(s -S )(cosz¢-sin2¢) + 48 cosdsing] (B.4b)
14 3 XX ¥y Xy :
r
14
r 3
14
D =D =t (B.4c)
23 14 (r23)
D, =X [S (3cos®8,., 1) + (S-S )
13 3 zz 13z XX yy
r
13
. 2 2 , 2
x sin 613z(cos ¢—-sin"¢) (B.4d)
+ 48 sin26 cos¢sing]
Xy 13z :
For Ring B:
- K 2o0_ _ .20,
D56 =3 [Szz(3cos §'-1) + (Sxx Syy)31n §'] (B.5a)
r
56
D, = —— [(S_-S_) -5 ] (B.5b)
58 r3 XX vy zz
58
. 3
58
D =] — (B.SC)
67 58 (r67)
D = K [s (3c0828 -1)+(s -8 )sin29 1 (B.5d)
57 re, 2z 572 XX | yy 57z )
where
r12c056
co88i3, = 1.
13
L}
coao } r56cosd
57z r

57



For inter-ring couplings, the full equation for Dij in terms of
internuclear distances, order parameters and direction cosines (Eq. 2.3)
must be used as they do not reduce simply as with the intra-rirmgcouplings.
The cosines of the angles eija defining internuclear vectors in the
molecular axis frame are calculated from the trigonometric relations in
Equation (B.3) and the rij values. These are then used in Equation (2.3)
to obtain inter-ring couplings. These inter-ring couplings are for an
average of the conformations with dihedral angles +¢. To calculate the
four-conformation average (+¢, -¢, m+é, m-¢) the following equations are

used.

D. 4D
_ -5 -7 -_15 18
D)5 =Djg = D45 = Dyg =3 (B.6a)

D. 4D
= _8% _-® =71 =16 17
Dy = D17 = D4e = D47 2 (B.6b)

D. +D
- _ =  _= __26"27
Dyg = D7 = D36 = Dyy 2. (B.6c)

D._+D
5 -5 b -p. 2578
Dys = Dyg = D35 = Dyg 2 (B.6d)

B.2 Program BIPH4PARA

Program BIPH4PARA calculates biphenyl dipolar couplings from

Equation (B.4-6). For D4 symmetry, the input parameters are Tios Tygo

. N ) oY)
(distance r,g at $ =0), S , (S -Syy ), and angle ¢.

T23° T260 22z XX

Since the second ring (Ring B) is equivalent to the first, its geometric
parameters are set equal to those above. For D2 symmetry, the added
parameters required as input are r67, r58, and r56. The order parameters
required for coordinate system #2 are S(z), (S(z)— S(z)), and S(z). The
zz XX vy Xy
calculation of couplings is done in coordinate system two regardless of

which symmetry is assumed and, for D4, the order tensor is first trans-

formed according to Equation (B.2).
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After calculating the Dij's, BIPH4PARA sets up the Hamiltonian
(assuming no offset and chemical shift terms) in the simple product basis
set for the submatrices with magnetic quantum numbers M = +4, +3, and +2.
These submatrices are then diagonalized. The totally symmetric (Al)
eigenstates are identified as follows. The coefficients of each eigen-
vector from the diagonalization are summed. It can be shown that this
sum will vanish unless the state is of A1 symmetry [ 34 ]. Al symmetry
states found in this manner are labelled and printed out. From this
symmetry determination, the A1 symmetry transitions expected in the six
and seven quantum regions are calculated.

BIPH4PARA will perform the coupling constant and frequency calcu-
lations for a series of parameters by incrementing one of them over a
given range. Two files are created containing the six and seven quantum
A1 spectra calculated for each set of couplings. These may later be
plotted by another program. This is the method used to produce the

variation plots shown in Chapter 4.

B.3 Program BIPH5PARA

This program performs the same coupling constant and Al subspectra
calculations as BIPH4PARA. Instead of varying just one parameter, any
or all parameters for either symmetry case can be varied in a least
squares fit of the calculated couplings to experimental ones given as
input. The intermediate couplings are not printed and the A1 subspectra
simulation is only done at the completion of the iterative process.

The least squares iterative procedure used to fit the couplings is
essentially the same as that for program MQITER and most if the discus-
sion given in Appendix A applies to BIPH5PARA as well. The method of

calculation for the derivatives of the D,,'s with respect to order

i3
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parameters and geometric quantities is noteworthy. Rather than giving

the derivatives from Equation (B.4-6) explicitly, they are estimated as

a change in the Dij's with a one percent change in the parameter:

aD, , AD, .
11~ 1]
Bpk Apk

where

ADij = Dij - Dij

Ap 0.01(pk)

k

(B.7)

(B.8)

In Equation (B.8) Di' is the coupling constant calculated with parameter

L . . .
Py and Dij is the constant with Py + lAka. This is the method of

estimating derivatives adopted in the more general program SHAPE written

by Diehl and Bosiger [128].
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APPENDIX C

Disk Based Fourier Transform Programs

The core memory capacity of the Data General Nova 820 computer used
for operating the spectrometer described in Chapter 5 allows the calcu-
lation of a Fourier transform of up to 8192 points (complex). For the
typical linewidths and spectral range required in a non~selective multiple
quantum experiment on a large spin system, this is not of adequate length.
As an example, considering the spectra presented in Chapter 4, the trans-
form size required (32k) already equals the memory available, leaving no
room for the executable program. As a solution, a set of programs were
written to allow the calculation of the transform in pieces performing
phase shifts and transpositions on the intermediate result. This
appendix describes the algorithm used, discusses the possible errors

induced by the calculation, and presents a descriﬂtion of the programs.

C.1 Disk Based FFT Algorithm

(The description presented here follows closely that given in Ref. [129].)
The discrete Fourier transform of a time series d(j) may be written
N,-1
1 Tk
D(k) = § d(@) W (c.1)
j=0

where d(j) is N, points long, D(k), the transform, is N2 points long, and

1
w* = expl (127/N) 3k]

k = 0,1, ...,Nz—l. (C.2)

We assume
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N. =N, =N=C.,C, =C.,C (C.3)

where C . is the amount of core storage available to hold a fraction of

0

d(j). We then write d(j) in composite indices

(1) = dWy»3p)

i=1dg* 315

jO =0, 1, .,Co—l
j1 =0, 1, ...,Cl—l (C.4)
Likewise, D(k) may be indexed,
D(k) = D(kZ’kO)
k = k2 + kOC2
ko =0, 1, ,Co—l
k2 =0, 1, ...,Cz-l (c.5)

Rewriting Equation (C.1l) with these indices gives
Co—l Cl-l

D(ky,kg) = ] L d(Ggip) W
JO=O J1=0

(k,+k.C.) (G,+i,C,)
2 072°*+0"-"10 (C.6)

Expanding the exponential factor and noting that WN = 1, Equation (C.6)

reduces to

C.-1 C.-1
0 1 (GaH,C )k, +i.k.C
. 01 2 °002
D(ky,ky) = ) L d(ig,dy) W 0 : .7
2°70 . 0’1
30=0 j1=0

For the case where C2 = C, and using the notation
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WO = exp(iZﬂ/CO), (C.8a)
Wl = exp(iZw/Cl), (C.8b)
W = exp(i2n/N), (C.8c)
Equation (C.7) becomes
ot Tt . Jokp 31k kg
D(kz,ko) = _Z . Z d(JO,Jl) W Wy Wy
J=O Jl_o
Coil Jokof. d0*2 clfl 31k,
= W W W d(i>34) (C.9a)
. -0 P | 0’71
3o™ j;=0
c.-1
0 ko
D(k,,ky) = Z W, B(igk,), (C.9b)
JO—O
with
J.okz
B(Jo,kz) =W A(kz) (C.9¢c)
“t ik,
Alky) = ] W T T dUg.dp) (C.9d)
Jl—o

Equation (C.9) shows that if we first do(%)ﬂl-point Fourier transforms

of d(jo,jl), phase shift each section of the result according to Equation

(C.9¢), and finally do a C,-point Fourier transform, we will obtain the

0
desired frequency spectrum.
If Equation (C.9) is written in matrix form, we can readily see

what is required of computer calculations. First, the program must

Fourier transform the columns of the input matrix d:

A=Hd (C.10)

~



Next, the matrix A is phase shifted according to Equation (C.9c) and the
transpose of this matrix is Fourier transformed to complete the calcu-

lations:

D = gogT. (C.11)

=

T L .
Matrix D 1is written to the output file to facilitate later calculations

and display.

C.2 Errors

For the acquisition system employed in the spectrometer, data is
represented and stored as fixed point (integer) numbers in the range
+32767 (only 10 bits are actually digitized). It has been shown [130]
that an upper bound to the ratio of the RMS error to that of the root
mean squared value of the result for the Cooley~Tukey FFT algorithm is

RMS (error) o (M3)/2,-B 4 4

RMS (result) = RMS(initial timefunction) (.12)

In Equation (C.12), the number of points in the transform is N = ZM and

B is the number of bits for single precision integer arithmetic (B = 15
for a 16 bit-word computer operating in twos complement mode). For an
8 K, complex FFT on a Nova 820, the numerator on the right side of
Equation (1.12) evaluated to 2.34 x 10_3. This is generally sufficiently
small to be ignored. The ratio of Equation (C.12) increases as VYN and,
even for the transform size required in the multiple quantum experiments,
it 1s not considered to contribute to errors in the analysis.

The factors contributing to Equation (C.12) are i) the propagation
of errors present in the input time series, ii) errors induced by the
mathematical requirements of the FFT algorithm and iii) the necessity to

scale the transform calculation occasionally intermediate to the final
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result. This last contribution also arises because the RMS value of the
intermediate result in the FFT algorithm increases from one cycle to the
next [130]. This tendency for the RMS magnitude of the spectrum to in-
crease during the FFT calculation effects the programming approach
significantly. If the entire calculation were to be performed on
integers, provisions would have to be made to detect overflow during
both transforms and the phase shifting of Equation (C.9¢). With trans-
form lengths above 16 K, the typical methods of bit shifting to scale
the calculations during overflow is no.longer adequate. The highest
intensity lines become small with the many divisions by two and, for the
usual cases where the full dynamic range available from the acquisition
is desired, low intensity lines are completely lost.

The solution to this problem and one that removes the contribution
to Equation (C.12) from scaling is to perform all computations in
floating point arithmetic. 1In addition, using floating point numbers
removes errors associated with multiplication and addition. Errors in
intensity and frequency determinations from the final spectrum are then
almost completely a result of errors propagated from the experimental

time series.

C.3 Programs
Besides the programs DSKFFT, DSKFT1l, and DSKFT2 which do the actual

trangsformation, several other programs are necessary to produce tau—

averaged spectra such as those presented in Chapter 4. CONVERT takes

the original integer data and converts it to floating point representation.

DSKSCL, DSKMAG, DSKBASE and DSKBADD are used to scale, take magnitudes,

baseline correct and co-add the data and calculated spectra. Finally,
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RETSPC is designed to re-convert the floating point spectrum to integers
by truncation.

These programs were written specifically for the Data General
commercial operating system RDOS but could be modified to rum on almost
any mini- or micro-computer. A memory size of 32 K words and a moderate
amount of disk storage are required. Calculations of a 32 K Fourier
transform on the NOVA system described in Chapter 5 requires about
one-half hour. The operation of all the disk programs is described in
more detail elsewhere [117]. Because these programs are quite lengthy,
a listing (~80 pages) is not given here. Copies may be obtained from

the author upon request.
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APPENDIX D

COMPUTER PROGRAM LISTINGS



QOO NON
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MQITSIET
SITS UP DATA TFOR MQITIR
COTPOT FILE IS MOQITER.TAT

integer mqit(1Q),iparam{1%5,,f1cntl
integer title(72),case(4@),mqo(10)
real 4(45),cj(45

logicsl yans

data mqit 10*-1 /, iparar / 15%0 /, title / 72%8 /
data d / 45%0.8/, cj / 45%¢.9 -
data c-se / 4¢%0 /

iu €
maxparp=1%
maxlinr=23¢@

this sectior opers up appropriate file and sets up
iritiel data

speniunit=01 ,pame="m3iter.dat’,type="nev’)

type 1 1
accept 122, case
write(1,103' case

flcrtl=0
type 104 .
it yars{iu!') flcrtl=l

daets initialization section

iype 1085

-ccept 1#6, title

write(1,1£7) title

type 108

~ccept *, n

if'r ge 1 .ard p le. 1¢) go t0o 3

type 47

g0 to 2

lovord=¢

if'r eq 9) lovord=?

if‘r .eq 18 loword=g

rml=p=1

rcp=p*nm1/2

type 2 1. n,lovord

accept *, lovord

1t ¢t .eq 9 .ard. lovord .lt. ?7) lovords?
iffp eq 1€ .end. loworda .1t. €) loword=E

iter-¢

type 202

if yers(iu)) iter=}

write{1,*) r,lovord,iter,flcntl



coOO60

o060

lve

180

160

2¢e

12¢

170
19¢

19t

the pext section handles input of the coupling corstarts

if flcotl .eq. 1 go to 290

type 2¢¢

k=1

d0 100 {=1,nm}
ipi=i+1

do 18@ j-ipl,n
type 2¥68, 1,
accept * d(k:
type 2¢€, i,
.ccept *, cJ(k‘
k=k+1

continue

do 1560 i:1,ncp
vrite/1,®) 4(1)
do 1€9 i{:1,ncp
vrite(1,®) ¢j(1°

if iter = 1 ther enter the lipe assignment
date

if'iter eq @) go to 5€2

rvlire-1

rord=¢

type 321

-ccept *. ni

type 3: 4

if° cet yans(iu}) nwline=g
if nwlire .ne. 1 go to 189
type 323

accept *, ncrd

type 3 ¢

accept * (mqit(i), i=1,rord)
if:flcntl .eq. 8 go to 189
vrite(1.®) ni,nord,nwline .
.f pwlire .eq. ) go to 19%
write 1.*) (mqit. 1), i=1,10
type 37

do 19¢ 1 -1,rord

type 378, mqit(t

do 1?¢ 3=1,.,mexlir

type 309

accept *, lpum,frq
write(1.%) lpum,frq

if’lrum eq. @) go to 198
continpue

cortirue

datda ipput for parameter sets

type 4@3
accept ®. nes
write(1.¥) pos
type 495
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29¢

344

350
JES
Sl

5g@

428

45,

(e 2 7]

el

102
13
104

1cE
1v€
107
18
2¢1l

203
2 &
2¢6
20¢

[+ 5 N 7 AN o

do 300 1=1,p0S$

do 29¢ j=1,maxparp
iparam! §)=@

type 406, |

do 3%¢ j=1.msxparp

type 328

accept *, 1ip

ir(ip 1t. $8) go to 344
type 497

&0 to 340

i2fip .eq. ¢! go to 3&&
iparam{ j'=ip

continve

write(1.408) (iparam(Jj), j=1,maxparp)
cortirue

type 499

idbirr=9

if’/yars(iu)) idvirr=l

type 562

accept *.pmqo

write(3,*) idbirr,omqo

if nmgc .le. @' go to 425
type 5¢3

accept *,{(mqo{i), i=1,nmqo)
write(1.®' (mqo(i , i=1,mmqo)
type £¢£

thr-o

if yans(iu'® thr=-1.8

it thr eq. -1.9. go to 45¢
type 506

accept *, thr

write(1,*®) tkrr
closelurit=01)

formét statments

format( ,1x, Program MQITSIT’, ./

.17,°D~te collectios for program MQITER.’//, ,
1x ‘What is the case pame (data file pame) for this rum?”)
format: 4Mal’

formet 1x,4021)

format(1x, Has this case been hardled before witn’,/,

1x “the same data file? °,$!

formaet 1v, ’Enter & case title (up to 72 char):”)
format/72al)

format{1x,72al?

formst(/,1x, ‘How many spinms ip this case? °,$)

format’ ,1x,°For °,12,° spims, the lowest order for”,.,
ix.’vhich a complete frequency calculatiom is possible’,/,
1x ‘is the °,12,° quentum spectrum. Other orders’,/,
1x.°may bde calculted but will be missing some allowed ,/,
1x . “tragsitions.’,/,

1z ‘Enter the lowest order for wkich a complete frequency,’./,
1x “calculatior is desired “,$)

format(1x,’Is this an iterative run? °,$)
formet(/.12,’Enter the coupling constants (in EBz) . . .",//)
format!( 108.'3('.12.'-'.12.') = '-5)
format(12x,°J(",12,°,°,12,°) = *,$)
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cCoOon

3x 1
383

3u4

SLE

307

3cB
39
493

405

- L7 I R [

DO AN -

e

format(/1x,’Eov many iterative cycles are to de alloved? °,$)

format( 1x,’line assigomeat input. ,,

ix ‘Nov many orders contaip line assigmments? “,$)
format(1x,’Is this a pev set of lipe asSigoments’,/,

1x.°for this case? “,$!
format(1r,’Enter these orders: “.$%)

format( 1x,°After the promrt, enter the lipe pumbders fror’,/,
1x “the simulation and the experimental frequencies’,/,

ix “assigped to them (enter each pair with a CR). A zero’,/,
1z ‘for a lire numbder terminates ipput. A total of 230°,/,
1x.‘lipes are allowed.’//)
format(/° lirne assignments for the °,i12,° quaptum spectrum:’/)
format(” >> °,%)
format(/1x, ’Perameter set input.’,/,

1x. Eow mary parameter sets are there? °,$)

formati{/1x, After the prompt, enter each of the parameters’,.,
1x “in a set Eich entery should be a twvo digit numder’,/,
1x,’correspording to the nuclei i and 3 coupled.’,/,

1x (A zero means nucleus ten and the lover number pucleus’,,,
1x “is the first digit in the pair.)’,/,

1x. Positive pumders refer to I°’s ard negative numbders’,/,
ix “refer to J°°s°,//"

formzt(1x, Peremeter set # “,12,/)

format{ ° Say what?’ )

forms 11514}
format/1r,°Do you wish tc include a search fcr doutly”,

* degererate’, ,  eigerstates ip freq calculatior? °,$%)
formét{lv, Fowv mecy orders do you wvant calcualted?’,/,
1x “'-1 rears all orders) ,$)

formatilx, “Inter the orders you vant in the order’,/,

1x “they are tc be calculated: “,5)
format{1x,”ls the default value (1.de-4) of the thresnold’,/,
1x. “for allowed frequencies to de used? “,$)
fcrmat/1x, ‘Erter the threshold to be used (positive numbder)

$

end of program

stcp
erd
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PROGRAM MQITER
VAX VMS VERSION.

THEIS PFOGRAM SIMULATES THE MULTIFLE QUANTUM NME SFECTRUM FCR UF
10 10 COUPLID SPINS 1/2. TEX PRCGRAM CAN EITEBER SIMPLY SIMUIATE
THY SPECTRUM FROM GIVEN COUPLING CONSTANTS OR ITERATE CN A SET
CF¥ INITIAL PARAMETIRS TO PIT AN IXPIRIVMINTAL SERCTROM.

JOR UP TO EIGET SPINS THI ENTIEE SPECTRUM (ALL MQ ORCEBS) CANMN

EY CAICUIATED FOR NINK SFINS TEE SIVEN QUANTUM SPECTRUM ANL
ABOVF ARE COMPLETE. TFCR TEN SPINS THY LOWEST CCMPLITE SFEICTROV
IS TEX RIGHT OQUANTUM SPECTEUM. IOWER ORDERS THAN THEISE ARE
FOSSIBIE, BUT NOT ALL EIGENSTATES ANI FREQUIENCIES ARE CAICULATEL

I? ITER=6 JUST THF SIMULATION IS DONE.

IF ITER GT € TEX PROGRAM IS ITERATING CN INPUT PARAMETERS.

A TOTAI CF¥ NI ITERATIONS WILL PI PREFORMID IF CCNVIBGINCE

IS NOT REACHED FIRST. CONVERGENCE IS REACEED wHiN THEK REIATIV:
TIRCINT CHANGE IN TEX R M.S. IRRC(R CF THE FIT ERXTeEEIN TH1IOKY
ANT IIPIgI;!NTAL SPECTRA FCR SUCCESSIVE ITIRATICNS IS LISS TEAN
CNE PERCENT.

TIYENSION SIGMA(28°,PROBIR:(28)
INTRGER L(28° M(25),TITLE(?2) ,FJLCNTL,CASE(42)
INTYIGER IMQO(11),FLINC(7®

COMON / CPILE / ISC,FLIND IFP
CCv¥MON  CSTATE  N,1ST’2,1024),N8(11),NSM(11),
NSP(11 ,MAIFAT,NST

CCMMCN D(45).CJ(4%),EN(2%6',ITER.NCS,IFARAM(2E,15),
TLvB(256.28 ,MQIT(2,18',LASS(22¢ ,IXFER(23¢7,
IC'23¢.29),B(230 ,V(784),BV (28}, :0RK(4S5¢€U)
EQUIVALENCE (SIGMA,BV),(PRCBIR,D

CPEN SCRATCE DATA FILIS

ISC=3

CPEN UNIT=03,TYPE="SCRATCE  ,ACCESS="LIRECT", INITIALSIZI=1,
IXTINDSI1ZE=1 . RECORDS IZE=1,EECORDTYPE="FIXED",
ASSOCIATYVARIARIZ=IFP)

CPIN UNIT=84,TYPE="SCRATCH “,ACCESS="DIRECT . INITIALSIZL=1,
EX"INTSIZE=1 .RECORIS12I=1,RECCFDTIPh="FIXEL",
ASSOCIATEVARIABII=IFP2)

FILZD IN CASY. TITLI.

CPIN(UNIT=61 ,NAME="MQITIR.IAT ,TYPE="0ID")
FZAD 1,401' CASE

WRITI/E,402) CASE

REAL(1,721) TITLX

RITE(G,7862° TITLZ

FEAT IN CONTRCL VARIABLIS ANL PRRFORM INITIAL CALCULATIONS.
FZAD(1,®* N,LOWORD,ITER,FLONTI

IR1=10¢00.08

NPARPS =15

NMl=N-1

NPlsN+1



31

15

CALCULATE BINOMIAL COXFFICIENTS, AND NSP
N@‘1)=1

NSP(1)=1

Lo 20 J=1,N

JP1=J+]

JD N+1-J

N@ JP1 =(NO(J'®=JD /J

NST(JP1'=NSP(J +NE(JP1)

TETERMINY MAXMAT, NSM, NST. NFILI, FIIND
NT-NP1-LOVORL

1¥ (MOD(N,2) - MOD(LOWORI,z)) .EC. 9. NT=NT+1
NT NT/2

FAYMAT=1

I0 12 J=1,NT

MATMAT=MAXO(NOJ ,MAIMAT
MATMAT=MATO(NA'J+LOVORL ! ,MAXMAT)
NST=2

NFPILE=0

NSMI1'=1

k=1

IG 13 J=2.N

IF NC(J: .GT MAXMAT: GC TC 13
K=%+1

NSM(E -NSM(K-1 +N®&'J
NST=NST+NE(J"
FIIND(X-1)=Na(JT)®=Na(J)
NPILI=NFILE+1

CCFTINDE

NSM(K+1)=NSM(E)+1

NCPaN®NM1/2

REAL IN COUPLING CONSTANTS

IT FLCNTI) 4.5,4

“PEN/UNIT=02 NAME=CASE,TYPE="CLL")
REATL’2 *) (D’K), K-1,NCP®

FEAD!{2,* (CJ(K), X=1,NCP}

GC TC 1¢

FZAD(1,*) (p(J), J=1,NCP)
FEAD:1,* (CJ(J>. J=1,NCP)

IC 6 J=1 NCP

I(3Y=D(J) 4.0

CJ J =CJ(J /4.0

CPIN'UNIT=22 NAME=CASE,TTPE="NEV")
wRITF(2,*) (D(K), K=1,NCP)
~-RITE(2,%) (CJ(X , KE=1,NCP

CAIL CNTCUT(D,CJ,N}

FICNTI=®

I? ITIR XQ. 2" GO T0 ¢Z
BYIAT IN IXPPRIMENTAL LINIS
FEAD 1,* NI, NORD,NVLINE
I0 31 I=1.1@

MQIT(1.1)=-1

#QIT(2.1 =0

IC 18 1=1,230

TASS(IV=0

IXPZR(I =0.8

NIXPIR-1
IF NVLINE .IQ. 8 GO 10 37
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AEADf1,®) (MOIT(1i,1), I=i,1€)
IC 35 I=1,NORD

FEAD(1,* [LNOM,FRQ

17 INOM .LE. 0: GO TO 3%
IASS(NEXPER)=LNUM
EX°ER(NIEXPER =FRQ

MQIT(2 1 =MQIT(2.1'+1
NEXIPER=NIXPIR+1

I? NIIPZR .GE. 231' GO TO 22
GC TC 27

CONTINUX

CALL LINORD(NORD

YRITI MQIT,LASS,BIPER TC DISK FIIR
sRITE(2,%* ((MQIT.I,K), I=1,2), K=1,10°

WRITR(2,%) (LASS ‘K, K=1,220)

WRITF(2,*) (EXPER(K), K-1,228)

GO TO 38
FEAD IN CLD LINEB ASSIGNMINTS

READ(2,.% ((MQIT(I.,K', I-1.2), K 1,18

fRAT(2,*) (LASS(K , X=1,237)
READ(2.*) (FXPIR/Y), K=1,220)
IC 39 JC-1,1¢@
NEYPER=NEXPER-MQIT(2,JC"
NEXPER-NEXPER-1

ARITE(6,724" NIIPIR

WRITZ LINE ASSIGNMENTS TC CUTFUT

IF NVLINE .NE @ GO TO 26%
NCRL=¢
Lo 36e I-1,1e

1F MQIT(1,I' .NEB. -1 NORD:=NORI-1

) €1
ro 3¢ JC=1 ,NCRD

WRITZ(6.739) MQIT!1,JC®
J=rQI7r2,JC)

I0 370 I=1,J

r=K-1

WRITE(€,748) IASS'K),EXIPIR(K)
CONTINUE

CCNTINUI

READ IN PARAMETIR SIT DATA
RELLI 1 .®' NOS

READ(1 *) ((IPARAM(I,J), J 1,NPARPS), I=1,NCS)

JRITE(6,741"

ENTER ITERATIVE LOOP.
CALIL EAMILS

IF ITIR 2XQ @) GO TO 58¢
1X128T SQUARES ROUTINES

CAII CONDIT

CAIL ERRIT(ZR1,NI NEXIT,NEXPER)

CATL NCRMAL(NEXPIR)

I? NIXIT .IQ. 0' GO TO 499
CALIL MINV(Y ,NCS,DET,L,M.
IFLIT ¥Q. 0 @) WRITI(E,729)
CALL CORREC

287
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a0 an

409

411
413

405
427

471

41€

417
449

ITIR=ITER+1

GO T0O 58
END OF ITERATION LOOP

COTEUT RIFINED PARAMETIRS
TO 487 I=1,NOS
+RITI(G,728) I

IC 4¢%5 J=1 ,NPARPS
K=IPARAM(I,.J'
KCUT=IABS(K)

I¥ K} 411,407,413
+RITE(6,737' KODT
GC TO 40°%
wRITE(6,738) XOUT
CONTINUZ

CCNTINDZ
sRITE(6,730)

CALL CNTOUT(D,CJ N®

ERRCR ANALYSIS.

COTPUT CCEFF OF NCRMAL EQUATICNS
D--TRANS = DC *#{-1’

IC 471 I=1,7%4

WCRK/1'=¥(1)

CALL MINV(VOPRK ,NOS,DET,L.M

1F LET 3Q. @.°7) WRITR(E.,729)
WRITF(E,7%1)

TO 409 NS=1,NOS

IL ¥=/NS-1)®NCS

IBIGH=IICW+NOS

ILO4=IL0W+1

IF NOS-14) 416.416€,.417
WRITE(6,752) NS, {WORK(K), X=IICV¥ IBICGH)

G0 TO 408%

WRITE'6,723' NS, 94ORK({K:@ K=I1104 IHIGE)
CONTINUE

CALL GENSTYM(V,NOS

SIGMA(1 =¥(1"

IF NCS EQ. 1) GO TO 420

CALL EIG2(Y,40RK,SIGMA,B,NCS,0"
WRITI(6,7%4)

1F NOS-14) 516,518,517
RITF(6,7%5' (SICMA(K‘, X=1,NOS)
GC TO 42¢

WRITI(€,756) (SICrA(K), E=1,NCS)
INL=NEXPIR

FNTS=NOS

TEV=(ER1*IR1*INL) (FNL-INOS)

L0 425 J=1,NOS

FRNOBIR(J =2 . ¢

WRITH(G,734)

ICOLMN -0

IC 4%¢ NS=1,NCS

ER2*SQRT/DIV SIGMA(NS))
INDX=ICOLMN®NOS

IBIGE=INLI+NOS

ILC¥=INDI+1

+RITE(S,732 (4ORK(X , K=I1OVW,IHIGH)
WRITX(6,73%  IR2

10 445 J=1,N0S

PROBER(NS '=PROBER’NS +(4ORK(INDX+J )®iR2)®%2
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46¢

4.1
4¢2
701
7.2
724
728
729

73e
732
723

734
73%
736
737

73e
739

749
741
781
7€2

4

-

ICCIMN=ICOLMN+1

CONTINUY

L0 460 J=1,NOS

FRCBIR/J )=€.6745*SQRT(PROBIR(J))
rnxrr!e 733) (J,PROBIR(J), J=1,NCS)
WRITI!6,736°

CALL ECUT(N,MAXMAT BN ,N€)

CALCULATE ALLOWED MQ LINIS

EEAD{1.,* IDBIRR.NMQO
IF NMQO LE. €' GO T0 =%

READ(1,*) (IM»QO(I), I=1, nncc)
FEAD(1,* THR

CAIL MQ2IITFTHR,ITBIRR.NMCC,IMQC)
CICSI(DNIT=01)

CLOSE(UNIT=02

CI-SE/UNIT=03

STOP

FORMAT/4€41)

FORMAT/1B1,1eX,” CASE:’,5X 4041/}

FORMAT: 7241 :
FCEMAT(/1€X,72A1,//)

FORMAT(” TOTAI # OF FRIQ INTERID = ‘,1e, )
FORMAT: ', ° PARAMETIR SET # “,12, )

TCRMAT(/,
1! DIIIRHINANT OF MATRIX 10 BE INVERTID IS ZIRO 1o, )
FOx™AT/1H1,/,  REFINED PARAMETERS . VA

IcxmAT(EX, (PAI'14 NOS)>FE. 4!
FOCMAT(1P1, ,” PROBABLI FRECRS OF EIGENBASIS °,

1 PARAMFTIR SETS. . .,/

2(&Y .12 £X,F1€¢.3 "

1.

1'
1

1-
10

«

I

FORMAT(1P1, .'.!RROR YECTORS AND STANDARD LIVIATICNS

‘CF FIGENBASIS PAFAMETERS . . .7, /)
FCIMAT/1°X ,°STANDARD IRROR = ° FE 2)
FOFMAT!1B1, ,” REFINIED INERGIIES . )
FOSMAT(” J°,12
FQAMAT( D°, IZ
FORMAT(1E1, LINE ASSIGNNMENTS FCR THF “,I12,
GUANTUW™ srtcrxnn. /785X, ‘LINL #° 1ox.'leEnInEN1AL FREQUENCY”
/17,46 ‘1.7
FOEHAT’51.14.141.112 4)
FOSMAT(1P1,/,
FR GRAM™ rqxrln ~ START OF ITERATIVE CALCULATIONS.’,//)
FCRMAT(1H1, ° MATRIX OF COIFFICIENTS FOR TBE NOBMAL _EQUATICNS®
* BEFORE DIAGONALIZATION . . ‘//)
ECoMAT(2X,12,°) ‘.<nos>l<nxu(12. 126.8CS))>.4/)
IORMATIZ2X,12,°) °,1409.3,/ ,{NCS~14>1S§.3/)
FOnMAT: / zx.'tIGINVALUIs OF NCEMAL IQUATIONS MATRIX . . .°/)
FCPMAT(EY,<NCSDPCMIN(12,7/126/NCS 1)>.3/)
gognnr'ex.xcrn.s. ,<NOS~1¢ 19 .3
N
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SOBROUTINE LINCRD(NORD)

THIS SUBROUTINE ORDIRS THXY LINE ASSIGNMEINTS OF IXIPERIMINTAIL
IINES THAT ARR INPUT FROM TEXI TTY TOR AN ITERATIVE RUN.

COMMON L145%5),CJ(4%),IN(2%6),ITER,NOS,IPARAM(28,15),
IIMB(2%€,20),M0IT(2,10),1455(229),5IPER(230),
TC:227,.2%),8(230,V(784),BV(28) ,WORK (4500 )

INLEX=0

IO 1/@ 1I=1,NORD
NL=VQIT(Z,1)

IFINI EC. 1) GO TO 99
NLM1=NL-1

IC %7 J=1,N1M1

JV J-INDIX

JP1:J+1

I0 4% E=JP1 N1

KM X-INDEX
IF-LASS{JM® _LE. LASS(KM:) GO TO 45
IT=LESS(JIM)
TASS{J¥)=1ASS(X™*
LASS ‘KM -LT
EX=EXPFR'JM)
FXPER(JM =FXPER(XN)
§XPER({™ =EX
CCNTINUE

CCNTINUE
INDEX=INDEX+MQIT(2,I
CCNTINUE

RETURN
ENT
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SUBRCUTINE CNTOUT(AR1 ,AR2,N)

COTPOTS COUPLING CONSTANTS TO LPR.
TIMENSION AR1(1),AR2(1)

NM1-N-1

I=1

IC 30 I=1,NM1

IP1=1-~1

I0 3¢ J=IP1,N

I0UT=AR1(K) * 4.0

CJOUT=AR2(K) * 4.0

WRITI(6,731) I1,J,I00T,1,J,CJ00T
¥=K-1

FOPvAT(” D(°,12,7,°,12,°) = ", F12.4,/

cJ(,12,°,°,12,7) = “ ,F12.4,/7)

RETURN
INT
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SUBROUTINE HAMILS
VAX-¥MS5 VERSION.

iBIS PROGRAM SYTS UP AND CALLS FOR THE DIAGONALIZATION OF THE
FREE-INDUCTION BAMILTONIAN OF AN N SPIN 1,2 SYSTEM (N IESS THAN 11).
CNLY DIPOLAR AND SCALAR COUPLING CONSTANTS ARI_INCLULI] IN

THE HAMILTONIAN. THY SUBRCUTINI IS CAILED BY MQITIR.

ALSC CALCULATED IS THE MATRIX C¥ DERIVATIVIS OF TEI

EIGENVALUES WITE RESPECT TO THE PARAMETERS BEING ITERATED

OPCN  TRIS IS MATRIX ILMB. .

SUBROUTINYS CATLRD ARE NUMSRT, IIG2, UNTRAN, ANL MATID
ALSC CALIED ARY READMS AND WRITMS

TIMENSION H(248%),5(4920:,5T(490¢€)
INTEGEF NUMB(2,1024),IST(7¢),ISP(18),IFLIP(2),FLIND(7)

COMMON / CTILE / ISC,FLIND,IXP
COMMON CSTATE N,1ST(2,1024),N0(11) ,NSM(11),
NSP(11),MAIMAT,NST

COMMON D:!45),CJ(4%),EN(2%6),ITER NOS,IPARAM(28,1%),
ILMR 256,26 ,MQIT(2,16 ,IASS(270),EXPER(230),

IC:23¢ 2¢),B(23¢,V(784) ,BV(28),VORK (450¢0)
FQUIVAIENCE (WORK,ST),(H(1),DC(1,1)),(S(1),DC(1,12))

NPARPS=1F
NF1=N-1
NSTATE=2=®N
NCT=N®NM1/2

IF ITER .EQ. &) GO TO 31
I0 2% I=1,NOS
IIMP(1,1)=0.0

TO 24 J=1,NPARPS
K=ITARAM'I,J)

IF(X 10.15,10

ILMb/1,1 =DLMB(1,I)+1.¢
CCNTINUE .
IIMBINST,I)=DIVB(1,1)
CONTINUE

iCP=2

IO 35 I=1,NCP
rCP=ECP+D(1:1+CJ (1"
EN'1'=ECF

EN/NST'=ECP

rSTe=1

CALL NUMSRT(NUMB ,N,NSTATE)
IST(1,1)=NUMB(1,NSTATE)
15T(2,1'=NUMB{2,NSTATE"®
IST 1 ,NSTATE ) sNUMB(1,1)
IST(2 ,NSTATFE)=NUMB(2,1)
(KK-1

I ¢

MAIN LOOP

IC 1/9 Js=1,NM]
INL 0

IS~N JS



7¢

75

293

KK =0

IO 40 J=1 ,NSTATE

IF/NOMB(Z,J) .NR. IS) GO TC 42
KX KK+1

KEE=KKK~1

IF/EX LE. MAXMAT) IST(XX)=NUME(1,J)
IST(1,XKX)=NOUMB(1,J)
1ST(2,KKK}=]S

CONTINTE

IF/EX GT. MAXMAT) GO TO 1¢@
IT IF-1

pST=KK
¥¥ MST®MST
M-

IO E@ M=1,MST

I0 84 L=1,M

IM IM+1

IF'L .NI. M) GO T0 60

IIAGONAL ELEMENTS

¥ST-1

I0 ¢ X=1,N

1SP(K:=-1

IF(/IST(T) .AND MSK) .NE. 8) ISP(K)=1
MSK=MSK®?

CCNTINUE

P(IM'=p ¢ -

IF'IND .NE. @' GO 10 56

4. €N

IC S5 I=1,NM1

IP1-1-1

IC =& J=1IP1,N

KX KK+1

oiLM =E(LM)+(D{KE '+CIJ (KK )=*ISP(J!=ISP(I)
CCNTINUE

GC "0 O

T0 %2 1=1,NPARPS
E=1TARAM{IND,I)

IF{X %7.60,57

I1CP1=1ABS(K/10"

IF'ICP1 EQ. @) ICP1=10
1CP2=MOD(IABS(X),18)

IF/ ICP2 .EQ. 8) ICP2=1p

PILM =E(IM)+ISP(ICP1)®ISP(ICFZ)
GC TO f@ .

CFF DPIAGONAL ELEMENTS.

J¥ =1

JSP=0

E(LlM =g v

¥SE=1

L0 7% K=1.N

I1F’°1ST{(1l) .AND. MSK) - (IST(M) .ANL. MSK)) 7@,7%,7¢
SP-JSP-1

IFLIP Jd =K

Ju-2

vSK=MSK*2

IF JSP .NE. 2" GO TO E®

Ke=(2eN-IFLIP(1) :*(JFLIP(1:-1)s2 - 1FLIP(1)+IFLIP(2)
IF/INE NE. @) GO TO 7?7

«(L¥ = =D(K5‘+2.p®CJI (XS’

GC TC ee
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ee¢

o0

E7

I0 95 I=1,NPARPS
E=IPARAM IND,I'

IF(K IQ @) GO TC 8@
I1CP1=IABS(K.10)

IF(ICP1 .IQ. @) ICP1=1¢
ICP2=MCD(IABS (K),10)
IF(ICP2 Q. @) ICP2=19

6 (2*N-ICP1)*(ICP1-1)/2 = ICP1 + ICP2

IF(K€ NI. K%) GO T0 9%
IF(K) 83.88,85
B(LM'=B(1M1+2.9

GC TC 8%

B(Iv)=H(IM)-1 @
CONTINUE

CCNTINUX

IF(ITIR LR. 1 .AND. INTC .3Q. @) GO T0 87

IF{IND .NE. ' GO TO 91

CAIL READMS(IF,ISC,S,FLIND,IFP)

ROUGE TIAGONAIIZATION
CALL UNTRAN(B,S,MST,ST:

CALL ¥IG2(E,S,EN,MSTO,MST,ITER)
CALL 4RIT™MS(IF,I1SC,S,FLIND.IFP)

IF'ITER LlE. @) GC TO 98
IF ITFR .NE. 1) GC TO 9€8

CAIL WRITMS(IF.1SC+1,S,FLINL,IFP:

GO TC 97

CALL USAAP(ST,S5,EN,MST,MST2,1F)

GO TC 97

CAII UNTRAN(E,S,MST,ST®
IC g I=1,MST

IT-%ATII.1)
LL¥Bi/™STO+I,IND'=H(IT)
INL=INI+1

IF/IND IE. NOS) GO TO 4=
»STA=MSTe+MST

CCNTINUE

IF/ITIR NE. @) RETURN
*sRITE(6,402}

CALL ECUT(N,MAYMAT,EN, N2
RETORN

FORMAT’171,/,” ENRRGIES (HZ)
IND

-

.7
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SUBRCUTINE WUMSHT (NUMB,N,NN)

. TABULATES TEE NOUMBER OF ONIS IN THEE BINARY REPRESINTATION CF INTMGERS.

TIMENSION NUMB(2,NN)
IC 20 J=1,NN

JJ J-1

NOME(1.J =JJ

kX 1

LL-0

IC 12 K=1,N

IF((JJ AND. KK) NE. @) LI=LI+1
KK-2%KZ

CCNTINUE

NOMB(2,J ‘=11
CONTINUE

RITURN
END
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"SUBROUTINE FIG2(H,S,EN,MST¢,N,ITIR)

SUBPROGRAM BIGIN - VERSION ‘2

TEIS SUBROUTINE DIAGONALIZES AN N BY N SYMMETRIC MATRII B BY TULE
cACCBI MITBOD. TRE UPPER TRIANGULAR EIEMENTS OF B (E(1,J)? J .GE. I)
ARE ENTERED COLUMN-VISE IN A 1-D ARRAY. THBE SUBRCUTINE CUIPUTS 1EIL
FIGENVALUVES IN THR VECTOR IN. TBE TRANSFORMATION MATRIX IS

COTPOT IN VECTOR S (B = S®™R-L1AG®S~INV). DEPENLING ON TEE VAIUE OF
ITER, S IS EITRER SET IQUAL 70 THE UNIT MATRIX OR LIFT AS INPUT

WITY SUCCESIVY JACOBI ROTATIONS BEING MULTIPLIXL INTC IT.

"9E SUBPCUTINE IS ADAPTEI FROM SUBRCUTINE "RIGEN" IN TEE IBM
SYSTEv» /362 SCIENTIFIC SUBROUTINE PACKAGE.

LIYENSION H(1 ,S(1),EN(1"
CN=RN

RANGE=1 @X-6

IF(ITFR-1) 19,10,25

1J-7

I0 20 J=1,N

LO 20 I=1,N

1J=1J~1

s{1J)=0 ¢

IF I .EQ. J* sS(1J:=1.0

ANCRM=@ ¢

IC 3@ J=2.N

Jv1=J-1

I0 32 I=1,JM

IJ ~AT'T.J0

ANZRM=ANCR™ + B(IJI*E(1J:
ANCRM=SQRT(2.2*ANORM)
IF.ANOFM L7, RANGE) GO 70 12%
FNCRMX=ANCR™ ® RANGE / ON
INT - ¢

TER-=-ANOR™

ZHR=TER QN

IO 1¢2 M=2 N

FPlzm-]

T0 100 L=1,mM1

IM MATL M)

IF/ABS ‘H(Lm)) .IT. TER) GO TC 190

IND=1

Il MAT(L,I)

PM-MAT ‘M M

I1FF=FI/MMI-E(1IL)

IF/TIFF EQ. 2.8) DIFF=1.9F-30
AL O .S®=ATAN(2 .0*H (LM /DIFF
SINA=SIN‘AA)

COSA=CCS/AR)

SINA2=SINA®SINA
COSA2=CCSA®COSA

LC 70 K=1,N
I¥(K-1° 61,7¢,62
X1 MATK.1)

KM MAT k.M

GC TC €f

IF'K-H‘ 53.72’54



63

€5

7¢

EL:MAT L.K)
EM=MAT'E M)
GC IC €&

KL-MAT!L,X)
EM=MAT (M K)

BE COSA®H(K1) - SINA®E(EM)
G(XM =SINAPH(KL) + COSA®H(IH)

E(XL =lE
CCNTINUE

$5=2 AwSINA®COSA®H(LM)

BB CCSA2*E(LL) + SINA2®H(MM) - SS
B(MM =SINA2®*E(LL' + COSA2*H(MM) + SS

F(LL i=YE

B(I™ =—DIFF*SINA®COSA + B(IM)®(CCSA2 - SINA2)

I0 8¢ I=1,N

II (L=1)*N + I
IM-(M=1 '®N + ]

SS CCSA®S (IL) — SINA®S(IM)
S(I¥)=SINA®S(I1) + COSA®S(IM)

S{IL =SS
CCNTINDE

CONTINUE

IF'IKD 20 @) GO TO 122

INI-2
GC TO tv

IF TER .GT.

IC 12¢ I-1,N
IT MAT 1.1°
J=1+MST2
IN-OY=E(1T)
CONTINUE

KETURN
END

ANORNMI)

GO TO 49
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SUBROUTINIE UNTRAN(A,U,N,ST)

T1HIS SUBROUTINE CALCULATES THI UNITARY TRANSFORMATION
{O-ADJCINT)=A*(U) FOR THI SPICIAL CASE VHERE A IS RIAL SIMMi-
TRIC AND U-ADJOINT=U-TRANSFOSE.

RESULT RITURNIT IN A

N IS T°E DIMENSION OF A,U ANI NSQ=N®=2,

STCRAGE vODE OF MATRICES IS SINGLE SUBSCRIPT VECTOR WITH ONLY
UPPIR TRIANGLF EALY OF A STORIT.

ST IS & #ORK MATRIX.
TIMENSION ST(1',4(1),0(1"

NSQO=N®N
IC 1@ IST=1,NSQ
ST'IST =¢.@

FORM PRODUCT AU AND STORE IN ST
IC &2 ITX1=1.N

I0 5¢ IDX2=1,N
INZ-MATVLC(IDX1,IDX2,N}

IC %2 I=1,N

IF/I1CX1-1) 32,208,292
IN2=MAT(I,IDX1}

GC T0 «<¢

IN2=MATIIDX1,1)

IN1 MATVRC{I,ITX2.N)

ST IN3 =ST(IN3) + A(IN2)®U(IN1)
CCNTINUE

FOEM™ PFOIUCT U-TRANSPOSE®ST AND STOR: IN A
IC 1¢e IIX1=1,N .

IC 170 IDX2=IDX1.N

IN1=MA™(IDX1,1DX2

A(IN1)=0 @

[0 19 I-1,N

IN2=MATYRC(I,ILX2,N)

INZ=MATVEC(I,ITX1 ,N)

ACINI "=A IN1 “U(IN3)*ST(IN2)

CONTINDE

RETUBRN
END
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SUBROUTINE CONDIT
YAI/¥YMS VIRSION.

IRIS SUBROCUTINEY YORMS TBE FQUATICNS CF CONDITION FOR A LIEAST
SOUAPRES ITERATIVE FIT OF AN EXPERIMENTAL SPECTRUM TO THECRY.
CUANTITIES CALCUIATED IN THIS SUBPROGRAM ARE SUM(PARTIAL LERIV.
CF NU(I' W.R.T. PARAMETER F(J)) AND (NU(OBS) = NU(CAIC!)) WBIRE
1E: NU’S ARE FREQUENCIES (XITHER EXPERIMENTAL OR TEXORETICAL)
AND 1HF PARAMETIRS P ARE TRE INITIAI PARAMETIRS BEING ITIRATIL
UPON. T®F_SUM IS RETURNED (IN COMMON) IN ARRAY DC AND THE
RESITUALS™ ARE REITURNEL IN ARRAY B.

THIS SUBROUTINE IS MODELED AFTER TEAT FOUND IN THE
FRCGRAM LAOCCCN3.

INTEGER CRDIR,UXS,DML,IMU

COMMON / CSTATE / N,LST(2,1024),N@(11),NSM(11),
NSP(11),MAXMAT,NST

COYMON I74%),CJ(4%),EN(2%6 ,ITER,NOS ,IPARAM(2E,15),
IIMP/25€,28),MQIT(2,10),LA55(22¢2),EXPER(23@),
IC 238 .25\ ,B(23@' ,V(7684),.BV(28", YORK(4500)

NF1-N+1
.4 ]

IC 320 ICRD=1,N

NL MQIT(2,ICRD}
CRIER=~QIT(1,I0RD)

IF CRDER .EQ. =1) GO TO 40@.

10CP OVER ZEEMAN SUBMATRICIES

IINE-=¢

K21-1

IC 2'¢ I72=1,N

I¥ CRLIR .EQ. @ AND. IZ .FQ. 1) GO TC 2090
IF (12+0RDZR) .GT. NP1 GO TO 250

SUBMATRIX TIMENSIONS

IMT=N@Ql12Z)

LMY N@ I1Z+0RCER"

IF'T™I  IE. MAXMAT) GO TC 134
K21=K21+1

GO 70 20

IF'T“0 .GT. MAXMAT) GO TC 2¢2@
£22-=1

Lo 136 1-1,0FDER

IF'NC(IZ 1) .LE. MAXMAT) GC TC 136
X22-K22+1

CONTINUE

IC7P OVEH LOVER EIGENSTATES
1E5-¢

IF{IZ .NX. 1) LES=NSM(IZ-kz1)
NTIP=IML

I¥ 'ORDFR .EQ. @) NTOP=NTCP-1
[0 140 J=1 ,NTOP



135

1X5=LES+1

ICOP OVIP UPPIR XIGENSTATIS
OES=*NSM(1Z-K22+0RDER"

ND=1

I¥(ORDIR .NE. 8) GO TO 135
NO-J+1

CIS=0ES+J

IO 985 JST=NU,DMD

UES=UES+1

LINI NUMEER COUNTIER
IINYF=LINE+1

KEK=XX

I0 87 NC=1,NL
XYX=KKK+1

IZ LASS(XXK) .NE. LINE' GO TC 8¢
F(XXX '=EYPER(KKK' - (EN(URS)-EN(IRS))

IC 79 X=1,NOS

[C/KXX,X =DLMB(UDES,X) - DLMB(LES.K)

CCNTINDY

CCNTINUE
CONTINDE
CCNTINCE

EX=XE+NL
CCANTINUE

nETURN
IND
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SUBROUTINE IRRIT(ER1,NI,NEXIT,NL;
VAX 'TMS VIRSION.

FVALUATES B.M.S. IRROR FOR A VICTOR OF RESIDUALS FROM ONE
ITERATIVE CYCLY IN NMR_ITERATIVE PROGRAM. TEIS VIRSION IS MCDIFIIL
FRCM PROGRAM LAOCOON.

F IS TFI VECTOR OF RESIIUALS.

ITER 1S THE NUMBIR OF THF FRISIENT ITIRATIVE CYCILE.

ER1 IS THE RMS BRROR FROM THE LAST CYCLE.

NI IS THE TCTAL NUMBER OF ITIRATIONS ALLOWiD.

NEXIT IS A PARAMETER T0 BE USED IN DETERMINING VEETHER
FURTEER ITERATIVE CYCLES SHCULL BE ROUN.
IF NEXIT=@ RITORNEL NC FURTEIR ITERATIONS NECESSARY.
IF NEXIT=1, FUTHER CYCLES ARE REQUIRLED.

NL IS TEE NUMEER OF RESITUALS CONTAINEL IN B.

REAL MINERR

COM*CN D 45),CJ(45),EN(256 ,ITIR,NCS,IPARAM(28,1%),
I1vR/2%6 28) ,MQIT(2,12:,LA85(2*¢2),EXPER(232),
IC/22@.25),B(230),V(784),BV(28) ,WORK (4900 )

PINERR = 1.2F-8
rR2-0 ¢
FNL-NL

IC 4 £-1.NL
ER2~FR2+B(E'*B(K
ER2=SQRT/ER2/FNL:

IF(ER2 GE. MINERR) GO T0 &
sRITE(6,4M1) ER2

¢C TC ¢

WRITE(€,201) ITIR,ER2

IF(/ER1-FR2)/ER1-¢.01) &,8,1¢
NEXIT=¢

IR1=ER2

RETOURN

I1F ITER-NI) 118,.8,8
ER1=ER2

NEXIT=1

FETUEN

FCRMAT(5X, “ITERATION # °,12,3X,°R M S ERROR = ,FE.23)
FORMAT(/.” ITERATION CICIE TERMINATED -°,/,

EMS ERROR LESS THAN MINIMUM ALLOWEL!’,/,

gBHOR = *,116.4, )

ND



QOGO 00

20°
2¢6

21e

302

SUBROUTINE NORMAL(NL®
YAX ¥MS VIBSION.

TEIS SUBROUTINE SETS UP THE NORMAL IQUATIONS FPOR A LEAST

SQUARES ITERATIVE PROCEIDURE.

THE MATRIX PRODUCTS DC-TRANS*DC AND DC*i ARLI FOBMID WEERE DC IS THE
MATRIX OF DERIVATIVES OF FREQUENCIES WITH

RESPECT TO PARAMITERS AND E IS THE MATRIXI OF RESIILUALS

BETVEFN CALCULATED AND OBSERVED FRAQULNCILS.

COMMON D(45),CJ(45),EN(2% ,ITIR,NOS,IPARAM(28,15),
ILMB(256 28) .MQIT(2.108),LASS (222" ,5XPER(23¢),
IC(230.2¢),B(230),V(764),BV(28),vORK (4900 )

I0 21¢ NS1=1,NOS
IC 206 NS2=NS1,NOS

INIX1=>™MATYEC(NS2 ,NS1,NOS)
INCI2=MATVEC(NS1,NS2,N0OS)

VIINIX1 =0.0

IC 2@% 1i0=1,NL

Y(INCX1'=¥(INDX1 +DC(LEQ.NS1)*DC(LEQ,NS2)
V/INIXZ ' =V(INDX1"

BY NS1 =0.9
I0 21¢ LEO=1,NL
EV/NS1'=EV(NS1)+DC{LEQ,NS1)=B(LEQ)

SETURN
END
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SUBROUTINE CORREC
VAX/YMS VERSION.

TPIS SUBROUTINE APPLIES CORRECTIONS TO PARAMETIRS THAT
ARY BIING ITERATEL UPON. IT IS TESIGNED TO BE CALLIL JFRCM
THE MAIN PROGRAM MQITIR.

COMMCN / CSTATE / N,LST(2,1024),N0(11),NSM(11),
NSP(11),MAXMAT NST

COMMON D(45),CJ(45),EN(256 ,ITER,NOS,IPARAM(26,15),
TLMB(256 28),MOIT(2.10),LASS(22¢),EIPER(232),
IC(232,20),(236),7(784),BV(28),NORK (4908 )

NPARPS=1F
I0 310 NS=1,NCS

CORR=¢ ¢

IC 2@¢¢ NSB=1,NCS
INTX=MATVEC(NS,NSB,NOS"
CCPR=CCRR + V(INLI)®*BV(NSB'

IC 309 X=1,NPARPS

ZC IPARAM(NS .X)
ICP1=1ARS(XC 12)
IF(ICP1 .1Q. @) ICP1=1¢
1CP2=MCD/IABS (XC :,10:
IF'ICP2 1Q. @) ICP2=1¢
ICPC - 2%N=-ICP1)*(I1CP1~1}/2-1CP1+ICP2°
1¥/xC 376,310 ,30E
CJ'ICPC)=CJ(ICPC}+CORR
GO0 To 3@s

I'1CPC =I(ICPC)+CORR
CCNTINUF

CONTINUE

RITORN
IND



o QOO0

169

SUBROUTINI GENSYM(ARR,ITIM)

TH1S SUBROUTINT RE-ARRANGES & 1D VECTOR ARRAY
(RFAL) REPREISENTING A GINERAL REAL MATRIXI INTO THE STORAGE
~ODE WHERE ONIY TBE UPPIR TRIANGULAR HALF OF TBI ARRAY IS KIPT.
THIS REDUCLS STORAGE REQUIRIMENTS FOR REAL SYMMETRIC ARRAYS.
TIMENSION ARR(1)
MATCNT =1

T0 12€ ICOLMN=1,IDIM
INDX=(ICCIMN=1)*ITIM

10 1¢2 IROW=1,ICOLMN
ARR{MA™CNT )=ARR(INDX+IROV)
MATCNT=MATCNT+1

CONTINDE

EXTURN
IND
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SUBRCUTINE MINY(A N,I.I M)
INVERTS A MATRIIX

TIMENSION A(1),L(1),M(1)
REAL A.D.BIGA,HOID

I=1 @

NE -N

IC &/ K=1,N
NE NE+N
Lk X

V(x X ] ¢
EE-NX-X
BIGA-A'KK}
IC 2’ J=K.N
I1Z-N®(J=1)
£0 20 I=K,.N
1J-12+1

IF ABS/BIGA)-ABS(A(IJ))) 15,290,202
BIGA=A(LIJ)
1/K:=1

MIX =l
CONTINUE

J=1(K:

IF J-¥ 32£,3%,2%
KI-K-N

I0 3¢ I=1,N

KI KI-N
ECLTa-plKI)

oI KI-X+J

ART =a(JI"

£(J1 =FCLD

I=r.X
IF'1-K 4
JP-N®(]-1
{0 4@ J=1
JE NE+J
¢l JP+J
30LD=-a‘JK"
A(JE)=A(J])
AlJ1'=HOID

?.45.35

oN

IF'2IGL: 48,46 ,47
I=e ¢

FETURN

IC &8 I=1,N

IFII1-X' %0,55,50

IK NX<I

A(IK =A(IK)/(-BIGA)
CCNTINUF

IO €% I=1,N

1K NK+I
40LD=A"IK}
1J-1-%

I0 65 J=1,N

1J 1J+K

1¥'1-X 60,6%,60C
IF(J-Kk" €2,€65,62
J 1J-1-K

305
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A(1J:=HOIDP®A(X]) + A(1J)
CONTINUE

KJ=X-N
IC 7% J=1,N
EJ-KI+N

IF(J-K ' 70,7%,7¢
A(g2=a(x3} . Bica
CONTINUE

I=I*BIGA

A(xXX'=1 2/BIGA
CONTINUE

K=X

E=K-1

IF- X 150,150,185
I=L(X"'

1¥/1-K) 129,120,108
JQ N*({K-1)
JR=N®(1-1)

IC 119 J=1,N
JK-JQ~-J
FOLT=A(JK)

eI -JR+J

AJE ==AJD?

E(J] =ECLD

Jam(K!

IF J-K 100,100,125
KI-K-N

IC 12 I=1,N

X1 -XI-N
ECILC=AKI)
oI-KI-X+J

A(XI =-AJI)
A(J1:=EOID

GO 70 108

RETURN

INT
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subrovtine usvap sl,s2,en.idim mstd if)

Checks ¢ matrix (s2) ageinst a previocusly stored
ratrix or urit isc+l Check is for mipimum RMS
difference in elements of rovs with one another.

The sum of (si(j.k)~s2(i,k))**2 for all k from

1 to 1dim 1s calculated. This is stored as LJI(i).
The mipimum of this vector is thep foumd and

if that ripimum if not for J=i ther the correspording
columns cf s2 are interchanged. Also the elements
erimsti+)) and en(mst@+l) are svapped.

This routire is desigred to keep the order of eigerstates
-nd eigervectors the same for succesive cycles in the
iterative portior of mqiter. This will help convergence
in the case wnere the diagonalization of the Hamiltoniar
méy ircdvertertly swap eigenstétes.

dimersior ¢J1(70),s1(1),52(1),er(1)
integer f1lipd(7),stl1,st2
commor / cfile / isc,flind , ifp

read ir origiral matrix
ccll reedms(if,isc+1,s1,f11ind,1fp)

loop over columns by
a0 50¢ j-1,1dim
AI24 SREESRLIT.ET)

loop over columns bdy {

do 20 {-1.idim

dji'i =0 @

ioff=(i-1)"idim .

do0 10€ k 1,idim
dii'l =aji(i- + (s1(joff+k ~- s2(ioff+k))*=2

cortirue

fird minimum

sm:1l=dji(1)

kk¥r=1

do 300 kF=2 {dim

if 431 kk) .ge. sm&ll) =c to 38¢
193604 ¢

smell=dji(kk)

cortirue

i2'Xkk .eq. J) go to £¢2
swap eigenvectors

koff=!kkk=-1)%idim
do 40¢ k=1,idim
indxi= joff~k
indzx2=koff+k
temp=s2(irdxl)

s2 indxl =s2(indx2}
$2 irdry? =temg
cortinve

svap eigenvelues
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Sti=j+mst@
st2=kkk+mst@
temp=ep(stl}
er'stl =er{st2)
en’'st2)=temp

cutput swepped states
write(6,1f1) stl,st2

500 continue

returr

1¢l format/1¢x,” SWAPPED STATES: “,i4,” , ',i14)
ena
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subroutipe eout{n,maxmat.ep,n®)

This sudroutire outputs the contents of energy vector

en in f12.4 format. States iz each Zeeman mapifold

are seperated by & dlapk line. N is the numbder of spirps,
maxmat is the size of the largest Zeema: mapifold

cortéired in en and p@ is the array containing the

tiromial coefficients (dimensions of the Zeeman manifolds).

dimensior en(1),n6(1)

ppi=sp~1
rd 1

do 59 j=1,npl

e rcC(4' .gt. maxmat) go to 50@
rtorb+r@(3)=-1

write(6,401) (ierg,en(ieng , ieng=no,nt)
rd eb+r@(})

cortirue

return

termet! /{ax, "EN(".13,° = “,£12.4))
erd
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sudroutine mq2diff(thr,iddirr,nmqo,imgo)

Fultiple quartum frequency calculatipg routite.
VAX/TMS version.

version S.

This subroutine calculates allowed (dy symmetry)
lines in a multiple quantum spectrum.
cér be cflculated. Orders for which nmot all eigenvector
matrices have bdeer calculated will not de complete.

subrovtine symset is called to classify eigenstates

ty symmetry.

thr {is the mipimum alloved thresnold for alloved

trarsitiors.

1ddirr is the flag for degeneracy checking
idbdirr=] elgenstates scanned for degeneracies

idbirr=f eigenstates not scanped.

nmqo is the pumder of orders to calculatge.

Tqn is the vector cortairirg the orders to calculate
Elements of mgo define vhat order spectra are calculated in.
If reqgo==-1, all corders are calculated starting with 1

threugh r and then the zero quantum.

this version &#llows up to 10 spins.

divensior $2(4909¥ ,s1(3136',freq{1999)
irteger deg,idbl1(256),1isym(256) ,sym

integer ideger(1PeP).imgo(1),drl,.dmu,ues, flird(7)

lesgicel topkef,helf,lcs

commor cfile

isc,flird,ifp
commor / cstate / n,1st(2,1024),08(11),nsm(11),

psp(11 ,maxmat,nst

commor 4/45),cj(4%),er(256),1ter,nos,iparam{28,15),
d1md(256.26),.mqit(2,1@),l1as5(23@ ,exper(239),

dc!2%¢c 28),0(232 ,v(7684),5v(28) ,wvork (4500)

equivalerce (worx,s2),(1dd1(1),d1md(1,1)),

s1'1 .d1md(1,2°

ir tialize

if tar eq. -1) thr=1.fe-4
rfreq=

rstate-2%%g

rpl=n-1

rmi=r-1

do I L{i=1,25¢€

idnl 11 @

les= filse.

nalf= false.

if . 1ddirr .eq. # go to 1
k=1

itop=rml

do 6 1-1,itop

Step=pyv (1+1)

‘f jtop gt. maxmat) go to 6

a6 & 3-1,.3t0p
Xk kKk-1
;f1dp1(¥k)} re. # .or

eq.

Jtop) go to

Any alloved order

310
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11 10@.p*en(kk’®

jpi=}3+1

kkr kk

do 4 k=jpl,jtop

kkk=kkk-1

i2-16€.0%er(kkX)

1?:41 .eq. 12 1dp1(kkk =kk
continue

cortirue

continue

calcul ate symmetries
call symset(sl,s2.isym,nrep,thr)

i¢/modfr 2) .re @) half=.true.
if'emgn gt. £) go to 111

do 212 1-1,r

imqo(i =i

imgo(rpl =@

rmgo:'npl

MAIN IQ0P OVIR ORILEIRS TO CALCUIATE

¢o £7¢° nq=1,rmqcec

mq2 im0 'rq)

write'6,785  mqgo

Kk=1

lire=@

toph<f .false.

do 1+ i=1,12¢¢

freq()'=e.8

idegeri} =0

rlow=r/2 1

1f/'half) mlow=n+2

rt rpl mqe

it mod{r,2)-mod‘mqo,2 , .eq. £ nt=nt+l

rt et 2

de 13 j=1,rt

if re(3: .le. maxmat .ard. n€(j+mqo) .le, maxmat)
go to 13

write(6,722)

go to 133

continve

write(6.,7¢3:

write/€,723)

lo°p cver sets of zeemar submetrices.

kz1-1

do 202 1z2=1,r

rl w=mlov=1

12/r7lf mlows=mlow-1
rup mlow-mqo

if ral? mup=mlow-2%mqo

if'mge .eq. £ .a2rd. 1z .eq 1) go to ZUY
if! "tz-mq0) .gt ppl) go to 3¢

dimenciors ¢f lover and upper submatrices.

dml=ri*fi-)

311
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276

277

27¢

135

312

dmu- n@(iz+mqo -

ie éml .&t. dmu) tophafs.true.

i tophaf .ard. (.pot. lcs)) go to 3u@
12 4ml .le. maxmat) go to 134
kzi=k21+1

~0 to 200

if . ¢mu .gt. maxmat) go to 200
kz2=1

do 136 {=1,mqo

if. n0fiz+4) .le. maxmat'® go to 1326
kz2=kz2+1

cortiruce

if mqo .pe. 8 go to 27€
1P(bz1f’ go to 27%
srite(6,603) mlow

g0 to 27&

write(6,E04) mlow

g0 to 27€

if half' go to 277
vrite(6,501) mlow,mup

&0 to 27F

swrite(5,602) mlow,mup

locp over lower eigenstetes

les=9
12 1z ne. 1' les=nsm(iz-kzl)
atcp=dnl

if'mqo .eq @) rtop=rtop-l1
a2 102 j-1,ntop
les=les+1

loop over upper eigerstates

ues -nsm{iz=rz2+mqo’
ru:1
f'mqo re. ) go to 13%
nu j-1
ues=ues- j
do 95 jist=ru,dmu
ues-ues+}i
lire # counter
lire=lipe+l
1f idoirr .ne. ¥ .apd. 1dbl(les) .pe. ¥)go to 95
eigerstates cf same symmetry?
if'isym{les) re. isym{(ues:}) go to 8E
possible degenerete situation for zero quantum?
i£'idtirr .pe @ .ond.
1dbl(ues) eq 1les .ard mqo .eq. @)) go to ¥¢
yes, ovtput freq
freqikr)=en(ues)-en(les)
sym-isymfles)+1
vrite(6.501" line,freq(kk),ues,les,sym
kx -k¥x+1
iff'kk 1t. 1201) go to 95
wvrite(6,786"
<6 to 38y

END of loops over upper,lowver elgenstates and
:ver sets of submatrices.
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16¢
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17¢
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€66

742

74°%
74¢
741

cOn

contirue
continve

continue

calculate degeneracies

{top=kk=1

rtreg-’

iffitop le. 1) go to egre
vrite(6,70S!

dc 17¢ icnt=1,itop

if/{deger{icrt) .eq. =1) go to 17¢
11 1 Pez2=freq{icat)

dep=1

icpl=icrt+l1

if:1cpl .gt. Stop’ go to 165

do 16f jcrt=icpl.itop
ift’ideger{jcnt) .eq. =1) go to 160
12 1.Pe2*freq{ jcnt)

1f’1abs(:1) .ne. 1ads(i2)) go to 160
ideger ! jent)=-1

i1l eq. 12 deg=deg+l

cortipue

rfreq=rfreq+l

{degen/icntiz=aeg

cortinue

output frequercies. If there are ro chemical
shkifts. then orly the avsolute values output.

it lcs gpo tc 666

¢o 555 { 1,1¢0¢

freq({1 =abs(freq‘i))

21} frqrut(freq.ideger.itcp)
write(€.707) rfreq

-

INT mair locp over orders.

cortirue

cutprt results of degereracy search of eigenstates.

ifridvirr .eq. € go to 741
write(6,714)

do 748 {i=1,nst

iP/4dr1011)) 743,745,743
write(s,716) ii,er(11),1dv1{i1)
&0 toc 740

write(6.715: ii,en(14)

cortiruve

write(6.717"’

cutput syrmetry classifications

kx @

nreps=r -ep+1

do 77@ ji=1,rrep
write(s,718" )}

kkx=F

do 7€¢ 1i=1,rst

1f isym( {1 .re. kk) go to 764
write(6,71%) 1i,en(1})
104833 {L.TB

cortigue

write{€,71¢) kkk
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501
783

785
796
7
709

714
718
716

717

718
719
722
722
E01

8.2

EB3
E.4

314

xk kk+1
continue

FORMAT STATEMENTS

formatf4x,14,13x2,£12.4,17x,13,"->",13,13x,12)
format '6x, "LINE #°,18X, "PREQUENCTY’ ,4X, "(BZ)”

1,EX, TRANSITION STATES °,ZX,°SIMM’,/)

I

FORMAT(1R1,. ,18X,12,° QUANTUM SPECTRUM CALCUILATION . . .°,/)
FORMAT(” 10e@ FREQ EAVE BEIN CALCULATED!’)

FORMAT(/.,” TOTAL & UNIQUR FRIQ =",I5,/)

FOPMAT(1E1, ,7X, ‘YREQ (BZ)‘,11X, DEGENIRACY’,/,

11X .48 =" )

FORMAT(1E1,10X, "ENERCY DEGENERACY CALCULATION. . .°,/)
FORMAT(” EN(°,I3,°) = " 712.4)
FORMAT( EN(",I3,°) = ° T12.4

1,5X,°1S TEGENERATE WITE STATE #°,14)

JORMAT(1H1, ,10X,
1° SYMMETRY CLASSIFICATION OF EIGENSTATES. . .°/)
FORMAT(/ %X ,” STATIS OF REPRESENTATION #°,13)
FORMAT! ,18X,° TOTAL NUMBER OF STATIS = ,I3)
FORMAT 717X, ( INCOMPLETE SPECTRUM)’,/)
FORMAT(1Y,79( =" )
FCRMAT( ° IOWIR QUANTUM # = “,I12,° ; UPPER QUANTUM # = °
1.12/
FOPMAT(/° LOVER QUANTOM # = “,12,°/2°,
1° ; UPPER QUANTUM # = °,12,” 27/)
FORMAT(/’ QUANTUM # = ° 12/
FORMAT(/”° QUANTUM # = “,12,°/2°/)

return
end
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sutroutire symset(si,s2,isym,nrep,thres)

Tetermires symmetry relationships amorg eigerstates
stcred on disk. Matrix elements of I minus are
calculated and ron-zeroc results are taken to represent
tv>: states ir the same representation.

s1 and s2 are input matrices used for the eigenvector
matrices read from disk.

r is the numter of spirs

itrt i< the unit npumber read om for eigenvector matrices.

r@ is the vector of biromial coefficients.

npsm {s tke sum of dimensiops of alloved subdbmatrices.
nsp 1s the sum of dimensions of all submatrices.
raxmat 1s the largest allowed submatrix dimersiorn.
rst is the tot”]l numter of eigemstates.

lst is the two dimensional matrix of simple product
stetes ard the pumber of ope Spins ir each.

thres is the minimum elloved threshold for allowed
transiticns

(n exit, ISYM™ contairs the numders from 1 t0 NREP which
identify the representatiors foupd for the eigenstates.

} symmetry rumber of ore {1) ipdicates & totally
cymmetric state Al symmetry).

reithe- eigerstates or eigenvectors &re re:crranged.

dimersior s1(1),s2(1),1sym(1)

reel 1vi?7@),uvi?¢)

integer spl(7@),spu(70’',dml,dmu.dmp,ustete,utmp,usp
irteger uf,skip,ues,f1ird(7)

logical tophef

common / cfile / isc.flind.ifp
comror / cstate / r,1st(2,1¢24),r0(11),rsm(11),
nsp(11 ' ,maxmat,nst

ipitielize

do 7 i-1,pst
isym(y =@
ieymil =1
isymirst ‘=1
mmi-r-1
tophaf=._ felse
irep=1
£pl=n+?
skip=¢

1z5-@

do €@ i1=1,npl1
‘ieirr(1 - .le. mavmat) go to 8¢
L0 to 91
continve

g0 tc 893
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91

g2

83

b4

Ev
ES

1lv

11

izs=1=-1

40 92 j=i,npl

ie‘ne(j* .le mexmat) go to 93
skip=s¥rip+l

cortinve

®AIN LOOP

kz 1

thr=abs(thres’

if’ther 1t. 1 thr=1.0/thr
do 500¢ 12=2,rm}

file numbers

1f i12-k2

uf -17-1

Jump=¢

iftfiz .eq. izs) jump=skip
power of [ mipus operator.
imp=jump-1

dimensior of lower submatrix
aml-re(iz)

if dml .le. maxmat® go to S4
rzkz+1

¢o0 to 5ere

dimensior of upper submatrix

dmu-n¢liz+imp !

dimersior of operator matrix

dmp-n¢' npl-inp’

ip-tspfrpi-(imp+1) - .

joirters to begirrirg of simple product states.
lsp-esp’iz-1"

usp=nsp{iz=-1+imp

collect spir product states
do 5@ rk-1,dml

spl 'kk =1st(1,1sp+kk)

do 8% kk=1,.,dmu
spul{kk)=1st(1,usp+kk)

if‘dm1 st. dmu) tophaf=.true.

if’tophaf) go to 10

read l~ver submatrix imto s1; upper into s2
cell readms(17,1sc,81,f11nd,ifp)

call readms(uf,isc,$2,flired,ifp)

g0 to 11

re:d lcver submatrix irto s$2; upper into sl
call readms(1f,isc,52,flird,ifp)

call readms{vf,isc,sl,flina,ifp)

locp over lover eigenstates
l1es=rsm(iz=¥kz)

do 470 Frl=1.4m]

lecsrles+l

rove eigervector to lv

11 "kl -1 ®aml
if'tcphaf) gc to 2F
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do 50 aml
1v kk —51(I1~xt\
€0 to %2

do %1 kk 1,4ml
1v kk -s2(11+kk

quick check to see if this eigerstate is totally symm.

1f {sym(les' .pe. #) go to 3@
sum={ -

do 2¢ rk-=1,dml

sum=sum-lv(kk"'

itens= bs{1¢¢ . 2%sum)

it’iters .ce @) isym(les)=1

lo'p over upper eligenstates

ues nsmiiz=kz2)+dml
do 329 Fu=l,dmu
vesrues+1

mcve eigervector to uv

iu="ku-1"'®dmry

if tophaf' go to 3£
do 6C kk=1.,dru

uv ' kk)-s2(iu+kk)

go tr~ €62

do 61 kk=1.,dru

uv ‘kk)=s1(iu+kk)

cuick check to see if this eigenstate is totally symm.

it isym(ues) .ne @) go to 7% ’
sum=¢ @

do 7¢ kk 1.dmu

sur=sum+uvi{kk)

itens=abs(1900.2*sum)

it 'iters .re. @' isym(ues)=1

check for possidle previous symmetry calculatior
poth totally symm. (irep=1' oply possibility.

‘¢ {symiles! .ne £ .2pd. isym{ues) .re. @) go to lI¢€¢

vratriy elemert calculation section.
cun-9. .

loop over simple product States of lover eigerstate

do 2#¢# ml=1.,dml
lstzte=spliml)

loop over simple product States of upper eigemstate

do 1/#f mu=l1,dmu
nstaterspuimu)

lo~p over comporerts of [ ripus operator
I mirts to imp power)

do 1%¢ ruc=1,dmp
ch~se operatcer

317



1%¢

100
200

16«

I
4¢?

Seve

imin=1st’1,ip+nuc!
imiriustated> = @8 ?

if ‘ustate .and. imin) .ne. ) go to 15@

utmp = iminjustated
utrpsustate <+ imir

<lstateilutmpd = <lstate!iminiustate) =g ?

ifllstete .ne. utmp) go to 1%¢
sum=sum+lv{ml )®uv(mu)

g0 to 140

cortinue

cortirue
continue

i {les! (I minus *=imp luesd> |**2
itens=thr*(sum*sum)

if - {ters .eq. #' go to 308

ror- zero matrir element; check to see if one of
these eigerstates previously classified.

if isym(les' .eq. @ .and. isym(ues)

if'isymiles) .eq @) go to 16¢
1syrm‘ues I=isym(les)

g0 tc 208

tsym(les =isym(ues)

€0 to 200

nes representation.
irep=irep+1
isym/les ‘=irep
isym(ues =irep

cortircue
cortirue

cortinue
rrep={irep

returr
end

.eq. #) go to 175
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175

1ee

lek

601

[y

this subdbroutine outpu

subroutire frgout{freq,idegen,itop)
:

319

s frequencies from vector freq

-rd their associcted "statisticel” degeperacies from
‘deger Itop is the maximum pumber of frequercies 1ir
freq. TFrequencies wvith a degeneracy of -1 are
skipped Or completion, 1degen is set to -1

in all elemerts.
dimension freq(1',idegen(}
fird first freq

do 16€ {-1,itop

if idegerc(1' .eq. -1) go to 18¢
k=1

co to 1€2

cortinue

11 dore

returr

find pext maxrimum fregq

curr=freg(k)
do 1f% {-k,1top

if ideger(i' .eq. -1 .or. freq(i .le.

ge te 18F

k=i

gc to 182

cortirue

raximum fourd, output

write(6.601" freq(k),ideger(kx)
ideger{k ==} .
€0 to 17%8

format 4x,f12.4,15x,13"
end

curr)
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subroutine readms{irec,iu,inp,flind,ifp)

Feads ir data from file open on unit # iu.
File must dbe opered for Sequertial, direct access.
Fecord size should be 4 dytes.

Lata is read irto real array ipp wvith upformatted,
direct access reeds. Irec determipnes which section

of the file to read and flird is ar integer

array contajring the number of records ir each sectior.
Ifp is the &ssoclated vezriable for the file,

real ippi1)
integer flird (1)

determipe iritial record #

frit=1
1?2 irec eq. 1) go to 22
rt irec=1

do 1¢ i=1,rt

init=ipit+flina(i)

position file pointer to iritie]l reccrd
fird{icv’irit

read data

rt=flird/irec.

d4n 1lee § 1,rt
re.d(fu”init 4{npil)
init=irit+l
cortinue

reture
erc
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subroutire writms(irec.iu,out,flipd,.ifp)

srites data to file opened opn unit # {u.
¥ile must be opened for sequenticl, direct access.
Record Size should be 4 bdytes.

Paté {s vritten from real array out with unformatted,
direct access vrites Irec determipes the section

f the file to receive the data ard flird is ar integer
crrey cortainping the numbder of records in each section.

real out(1)
integer flipd (1)

aetermire initiel record #

init=1

if'irec eq. 1) go to 2¢
nt irec-1

do 10 i=1,nt
irit=irit+flirdf s

write date

rt flipd’'irec)

do 144 1-1.rt
writeffu’irit:! out(i}
init=iprit+l

ccrtirue

returr
enad
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JONCTICN maAT(]I,J!

TRIS IS A FUNCTION TO COMPDTI TEI INDEX FOR AN ARRAY LOCATICN
4EIN CNIY THE UPPEIR HALY TRIANGLE OF A TvWO DIMENSIONAL ARRAY

IS STORED. THE ARGUMINTS I AND J ARE THE NORMAL 2I INDEXES.

J MUST BE GT I POR THI COMPUTAION TO BE CORRECT.

YAT=J*(J-1) 2 + ]

EETURN
END

FUNCTION MATVEC(I,J,N)

TEIS 15 A YUNCTION TO COMFUTE THE INDEX FOR AN ARRAY LOCATION
WHEN A GENERAL 2T ARRAY 1S STCRID AS A SINGLE VECTCE.
ARGUMENTS I AND J ARE THE NCRMAI 2D INDEXES. N IS TERl DIFMEN-
SICN OF THF 2T ARRAY.

MATVEC=[J=1)®N + |

FETURN
END
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program biph4para

calculates coupling constants for a bdiphenyl
witkh asymrmetrically distorted rirgs.

Coodirate system #1; D4 symmetry:

The origin is 2t the center of tebh ¢-c inter ripg bridge.
The x-axis bisects the dihedral angle, the z-axis is alorng
the bdenzene para bonds to the substituents.

Cocrdirate system #2; D2 symmetry:

The z—axis passes through the biphenyl pars bdords,

the crigir is located in ring 2 (with protoms 5,6,7,&),
the x-axis lies ir the plare of this rinmz and the y-arxis
is normal to {t

This versicr (# 4) does pot ~symmetrize  the hamiltonian
tefore diagoralizatior ({.e. bphanam is called instead
¢f dbphhem).

this versior ircrements various parameters for differert passes
irput (in commor “geom”)

r12. ri14. r22, r26e, r67, r5e, rs6,
sz (sx--syy'=s2p, szy, delte

implicit double precision (a=h,0-2)

double precisics th{16),1xy(4),1yx(4),s(%)

~eal d'2F),cjl28',cs(€),en({25€),voff,freq (%), cide(28)

re-1 wimx,v2mz,wime,w2rr,zrx,vli(590)

integer isym(2%6),20(6; ‘

logical yans

commcr / geom / r12,1r14,r260,r67,r28,r5,522,52p,.517,delte

commor coup / d.cj,cs,vof?

commcr / cstate / m,lst{2,256)

data cjd4 / 2.¢,0.0,¢.2,4%2.0,2.5,5%2.0,2.0,6%¢.0,
2.2,0.0,0.5,0.5,9.0,2.0

data n® / 1,8,28,25,8,1 /

Zet input

do 1 j=1 2%6

€en’ j)=@. @

isym!'j =@

do 2 {i=1 €

tsfi1)=¢ ¢

r=c

woff=¢ @

type ®* * which coord system? (1 or 2)°
-ccept *®.,icoord

type ®* ° INPUT OF INITIAL PARAMETERS:”
type *,’ enter r12:

ccept *.r12

type * ° erter ris4: °

accept *,ris

type *.° enter r23:
eccept *,r2

type *.° enter r266:
cccept *,.r260

if 1coord .eq. 1: go to €266
type *.” enter r67: °

’

4
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6¢67

12

11
14

13

cccept ® rg7 ,
type *.  enter rs:
accept * r58

type ®* * ernter r&6: °
accept *,r5€

type *.’ enter szz:
crccept ® 22

type ®,  enter (sxx~syy)
accept ¥ ,.s2p

if{icoord .ec. 1 &0 to 6067
type *,’ erter sxy: °

accept ®,.s1Yy

type * ° epter delta: °

»

accept *,delta
type *.° vhich parameter do you wisn to vary?’
type * ° s27z = 1 ri2 = 7°
type * ° (sxx=-syy) = 2 r23 = &°
type *.° sxy = 3 r56 = ¢°
type * ° delta = & r269 = 10°
type *.° rie = 5 r56 = 11”7
type *.° ré? = 6°
»

-ccept ® . ipar

type *.° what 1is the incremert ir this parameter?’
eccept ¥.sipc

type ® ° how mery values?’

accept ¥®.rarg

type *.° are the d4 j°°s to be used in the simulation?’
if+yersfidum:) go to 11

do 12 i=1,28

¢} 1 =0.2 |

20 tc 13

do 14 1=1,2€

¢y 1 =cjd4(d .

rad=4 d¢@®dcter’i.édec’
2x -2 P4Pe*(245.217300%%2.¢)

wimx=¢ @
w2mz= ¢
wlmr=0 @
w2mn=0 .0
‘mr=] &

ivflag=0
~pen‘tvrit=1,pame="spifl.da’,type="nev’)
open{urit=2,reme="spif2.d2",type="nev")
rq €

write(1,602' nang,nq

rq 7

write’?,F@?) rarg.rq

main 1~0p cver order parameters
dec E¢0¢ rd=1,.nérp

corpute delta ir rads
rdel-delta®rad 160.842¢

it'iccerd .eq. 2 go toc 5070

c?srdirote system #1

s{1 =<22

s!2 =s2p=((dcos(rdel/2.040¢")®=2-(dsin(rdel/2.8d0¥))**2)
Asl

s(3'=sPp®(dcos(rdel, 2.0408 )%dasinirdel 2.8d¢8))
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6LER

201

B AR

s(4 -0 odpo
s(5i=¢ 2480
r€7=-r22
T&E=r14
r&6=ric

g0 to 6068

cocrdirate system #2
s(1)'=s22

s{2 =s2p

s(3 =3y

s(4)=@ 2400

s(& =0 .9400

compute trig furctions of delte
csdl=dcos(rdel)
spdl=dsir(rdel)

cutput iritié]l perameters

Trirt 201, r12,rls,r23,r26<,r87,r5,r5,(s(1;, 1=1,3),delta
format: “lprogram biph3 - ipitial parameters . . . /v

12 = “,el4 4/,  ria = ‘,el4.6/,” r23 = ‘,el4.6/,

r2eg = “,e14 6 ,° r67 = “,el4.6,,” r5&¢ = °,els.6/,

185 ‘,e14.6//,° s12 = ‘,el4.6/,° (sxx=-syy) = °“,ele.€E/,
sYy ‘,e14.6//,° DELTA = °,218.4///)

wn

compute reeded distances at delta=g

vl (r14 r23 /2.0409
rx2={r5c-r67)/2.¢d00
*xI=rf3-rle /2.0d08
rx4~/ri4 r67:/2.¢d420
rxS=(rSE€-r23).2.0400 .
rx5=( r67 -r23 /2.0499

compute trig furctions cf reeded angles

srd=rxi ri2
csd-dsqrt(1.Advu0-snd**2.9)
st =rx6/1r26¢

csa=dsqrt(l Adp@-spa®**2.¢)
spdp=rx2 r56

csdp=dsqrt (1 2déc-sndp™™2.8)

ry4-r2€@®csa
ryl=r12%csd+ry4
ry2=rf6®csdp+ry4
ry3=ryl+ry2-ry4

calculate irternuclear distances for delta=¢

r16¢=dsqrt{ry1%%2 g+rxc®*2 2)
r1%5¢=dsqre(ry2*=*2 pepx3*s2 @)
12°0=dsqrt(ry2%=2.9+rx5%*%2.0)

Srg=rx4&/riée
csg-ryl riée
sngp-rx5/r250@
CSgp=ry2/ra2f?
spb=rx3 rise
csd-ryr/r15@0

prirt 1#1, sra,srd,seg Srgr,.snd,spdp,r160,r1s¢,ralye
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formet( lprogram bighs - celeculation of 6,7 quactum’,
for para substituted dipheryl.’ ,///,

trig valves:’,//.’ sna = °.el4.6,/,  smdb = °, els.6,/,
spz = “,e14.6,/,  sngp = ‘.e14.6,/,° snd = ‘,el4.6,/,
srdp - ‘.,e14.8 © ,° ri6e = ‘,el4.6,., riS¢ = ',els.6,/,
250 = ‘,e14.6///

calcul:te 1xy°s end 1yx‘s

1xy/1)=rile=srd]l
1yx‘1 -ri4e®csal

1xy(2 =r23%spdl
1yx(2)=r23%csdl

1xy'3 -¢ 0400
1y7(3 =267

1xy/4)=0 0480
1yx(4 -rS@

calculste th’s

th'1)=(1yx(1)-1yx(3)) -2.0de0
th 2 = 1xy(1 ~-lxy{3))/2.0490

th 3)=(1yx(2:-1yx(3)./2.04¢0
th'4)=(1xy(2'+1xy7(3)).2.04¢20

th S'=(lyx(1'~-1yx(4))/2.0420
th’6i=(1ry(1i+1xyla))/2.24¢0

th ' 7)= 1yx(2)+1yx/3)},/2.04¢20 .
th £ =(1xy{2 =1xy(3) /2.8449

th/g:=(1yx(1i+1ys{4))/2.0d<D
th’18): (1xy{1)=-1xy(4))/2.0d00

th 113 -{1yx(1 +1yx(3) /2.0400
th'12)=(1xy(1:-11y(3))/2.84¢0

th/13)=(1yx(2)=-1yx(4)) /2.0490
th 14 (1xy(2 +1xy(4))/2.0402-

tr 15V =(1yx(2 '+1yx(4))/2.0840
th'16)=(1xy(2)-1xy(4)).2.0d00

calcuvlete internuclear distances for delta not=9
th(11 1**2.2 + th(12)*%2.0)

th(1)**2.2 + th(2)%*2.p)
th(13 *=2.9 « th(14)*=2.9)

r17=dsgrtiryle=2
“1€-dsqriiryl®=2
r25=dsqrt(ry2=s2.

[

P+

9 +
r2¢=dsqrt{ry2e®2.¢ + th(15)%%2.¢ + th(16)**2.9)
r2€=dsqri(ry4®=2 € + tr(3)**2.¢ + th(4)"*2.9)
ri®=dsqrtiry3®=2 { + th(2)*=2.0 ~ thi{g)*=2.0;
r27=dsart(ry4®2.0 + th(7)**2.¢ + th(&)*=2.2)
1i8=dsqri(ry3®®2.0 + th(g)**2 .0 + 1r(10)%%2.98)

113=dsqri(((r23+rie)/2.040c)%*2.2 + (ryl-ry4;®*2.¢)
r87-dsart(((re7+r50) 2.0a0¢)%*2.¢ + (ry2-rys)®=2.e)

sutput irterrulcear distances
prirt =, 117 = °,r17
prirt *,° r1€ = °,ri¢



print *.° r2f =
Frirt ®,” r2€ =
print *,” r2¢ =
print =, r15 =
print *,° p27 =
prirt ®,° ri€ =
prirt *,° r13 =
grirt *.° r57 =

calculate angles

327

betveen interpuclear vectors and

moleculer axis system.

rpd2=rad 2.0d0¢

angl2=rpd2-datan
th13:-=dccs(engld

(2.0400% (ryl-ry4)/(r23+ri4e;)

thi13x=csd1*dsir(argll)
th13y=sndl*dsin(angt3)

-ngE?=rpd2-deten
th57z=dcos{args?
thi?x=dsin(angs?
th&7y=. “de¢

th5€2=¢csdp
th56x=sndp
thE6y= " va¥c

thl2z=csd
th12x=csdl*snd
thi2y=sndl*srd

th:6z=ryl rif€
tk1€x=1k:1'/r16
th16y=th (2)/r16

th2€z=ry4 r2€
th26x=1th'3'/r26
th26y=th‘'41/r26

thlSz=ry2 rit
teiSx=th'5'/r1b
th1fy=th/8,/rit

th27z=ry4 r27?
th2?7zx=1tr 7 /127
th27y=th(8)/r27

thlfz=ry2 rilF
thifx=th:9 /ri18
thi8y=th/1@)/r18

thl?z=ryl ri?
thi?7x=th 11'/r17?
thi?7y=th 12)/r1?

th2%2=ry2 r2%
th25x=th 13V/r2%
th2%y=th 14)/r25

th2€82=ry2 r28
tk26x=th 15)/r28
th28y=th '16!/r28

§2.0dev'fry2-ry4)/(r67+r5&))



calculate couplirgs

d412=dk*coupi (thl2z,tk12x,th12y,5,r12)
d23=dk*coupi(2.64¢@,csdl,s0dl,s,r23;
d14=dx*coupi (@.94008,csdl,sndl ,s,ris4)
413=dxk®*coupi!th13z,t:13x,tr13y,5,r13)

d%6-dk*coupi (th5€z,th56x,t156y,5,r56)
d67-dx*coupi (0.0400,1.8400,0.0d00,5,r67)
d%55=dk®coupi (¢.94020,1.0400 ,2.240¢,s,r%8)
d%7 dk*coupi(th57z,th57x,th57y,5,r57)

dZ6*coup1(th26:.th26x.th26].s.r26)
a27=coup:{th27z,th2?7x,th2?y,s,r27)
ad2€=4Kk* 426 + 427)/2.0408

d1%-coupi(thlS5z,th15x, thl5y,s,r15)
dlc=coupi(thifz,thifx,th18y,s,ri€)
ad15=gk* 415 + d18)/2.8400

d42%=coupi(th2%2,th25x,th28y,s,r2f)
426 =coupi{th2Ez,th2Ax, th28y,s,r28)
ad25=dk® 425 + 42&'/2.0400

416 coupi(thi6z,th16x,thl6y,s,r16)
d17-coup:(thl?z,th1?x,thil?y,s,rl1?)
ad16=dx®* 416 + 417)/2.8dM0

rutoput result

Frirt * ° RING A°
prirt *,” 412 = °,d12
Frinot *,° 423 = °,d22 ’
Frirt *,° d14 = °.di4
prirt =, 41 = " ,413
prirt *,” RING B’
prirt =, 4% = °,456
print *,° 467 = °.d€7
Frirt =,° 45€ = °,d456
prirt ®,° 457 = °,45%7
ript »,°
Brint *.° 426 = ,ad26
Frirt ¥, 41f = C.ad15
prirt =, 425 = " ,ad?5
prirt = .~ d1€ = ‘,ad16

rearrarge couplirgs to orderirg used ir simulatiors.

41 =d12/4.0
402 =413/4.¢
d(3Y=dle 4.0
dla =2d15/4.8
d(£,=2816/4.¢
d(€)-pad16./4.¢2
4(?7 =ad15/4.9P
a(E1=423/4.2
4(9'=d13 4.2
d(19 =ad?t/4.9
d(11 =+426/4.¢
d(12)-2426/4 .2
a{13 - ad28/4.90
di14 =d12/4.¢
d(1%)=ad25/4.9

INTER RING COUPLINGS (AVERAGED OVER CCNFORMATICNS)®
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4(16'=ad26/4 .9
4(17 =ad26/4.9
4(1°)=ad2%/4 .0
e(19 =¢d15/4.0
4(20 .=ad16/4 .0
a(21)=ad16 4.0
4(22 =-~d415/4.0
d(23 =4%6/4.¢
2(24)-457 4.0
4(25 =d5€/4.0
4(26 =467/4.¢
a4(27)=4%7.4.0
d{26 =456/4.0

calculate s?ectrum)
d,c),®

call catprt

czll dph4ham{en,isym’

call peout(%,28,er,isym,rd)

~utput spectrum

prirt 103
format(“1
prirt 124

Al subspectra .

formet(” SIX QUANTUM LINES‘/)

Frirt 1¢F

format‘1x,17(° °), /.,18x,” M} = 4 to M} =27/)

k=1

11=re (1) p@(2:41

rl 11+p@‘2)-1

do £50 jc=11.,h1
if'tsym(ic) .re. 1)

freq(k '=abs(er(1'-en(jc !

r=k-1
cortirue

call desfrg(freq.k-1)

rfl=k-1
do ££6 1=1,nf1
vl‘i)=freq(i)

vimr-émetl(wl (i, wimx)
sirr=amiri(wi(i),wimp)

print 18€

formet{(//10x, iM| = 3 to (M = 37/)

k=1
11 r@f1)-1
r1 11-r@ 2°'-1

o to =%e

12 pe{1 -p@(2)+p/3)+pf(4)-1

r2 12+c@'%)-1

do E5& ’c1=11.h1
icl) .re

Liisym

do 555 ?c?-l?.hz
je2, .ope

ift'isym

1) go to

1) go to

freq/k ' =er{jcl)=er(jc2)
if 12ix(1m.2=ads(freq(k )

r=Kx-1
cortirue

call desfrq(freq.k-1)

re2=(k-1 /2
1p £f1 rf2
do %57 §i-=1,rf2

w1l nfl =freq(1l

simx-araxl(freq(i’,virx)
vimp amirl(freq({ ,wimrc’

REE
-~

555

.eq. @) go to 5535
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6.

5001

S50v?2

5vle

5¢l11

210X, iM|

(€ R VI

vrite(1,602
writel(1,6p4

vwrite(1,604
print 17

format( +* SEVEN QUANTOUM LINIS ,/,19(°_")//,
=4 to IM| = 3°/

k=1
11 ro(1)-1

{ %
(wvi{s), i=1,p3)
Y (smx, i=1,1p)

bl 11+n@(2'-1
do f%6¢ Qctll.hl

if'isym

) .re. 1) go to 360

freq(k -abs(en(ic -en(1))

v2mr=emaxi(freq

X',w2mx)

w2rp=aminrt (freq(k),w2mr)

k=v-1
conticue

call desfrq(freq,k-1)

op k-1
write/2,6€2
write(2,604

e

write(2,604) (smx, 1=1,5p)

end mein loop

gnr to

‘¢@n1,5002,5003, 5004, 5005 ,5006 ,5007, S0vE,

eery,t212,5211)

ipar

sz2z-szz-sinc

80 t¢ £gJ e

s2p-s2p+sirc

g0 to VP

if icccrd .eq 1) stop
sSIy=51y+sirc

go tc EoQve

delte=delta+sirc

&o to 5000

ri4-rié+sinc

20 tc F2e@

ré7-r€7+sirc
if icocrd .eq. 1 r23=r67

go to Ee.'@

rl2=r12+sirc

g9 1z 5ave

~23=r22-sinc

¢0 to 5eee

rfe=r5E+sinc
if'icccrd .eq. 1 rila=pfE

¢0 to Se0p

1280=r260+sircC

€0 tc £2. €

r5€ - r8€+sirc

P
) (freq(l), 1=1,np)
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if'icocrd .eq. 1 ri2=r%56
LT X% cortirue

write(1,602' ivflag
write(1.604) vimx.vimp,zmx
Writel(2,€02) 1wflag
write(2,604° w2mx,v2mn,zmx
closelunpit=1)
close{urit=2)

602 format(i6)

6.4 formct{el4.6)
end

double precision function coupi
1 (thz,thx,thy,s,r}

implicit doudle precisior (a=h,o~2)
dimension s(5

célcul<tes erisotropic couplings efter formules
of Emsley ard lirdor.

sz2-s!1
s2n=s(z
sxy:=s(2)
sx2=s5l4
sy =s{&

codpi=( sz2%(2 PAPO*thz*=2.0-1.94080) °
-s2p*{ thx**2 ,3-thy*=*2.0"}
+4.¢dcfe*( sxy*(thr»thy,

+5s312*(thx*thz)
-syz*(thy*thz) ' )
couapl=coupi / (re=3.2)

AR

returr
end
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subravtire dbphéham{en,isym’

this §is » version of hamil written for

the special symmetry of a rara-substituted
tipheryl with D4 symm.

Orly the Al symmetry eigenstates are labeled in
syrmetry vector isym.

sets up and diagonalizes free induction decay
hamiltopiar of N spirs 1 2 (N less thap 9).

commor / coup / 4(28 ,cj(281,cs(B),wot?
commor / cstate / n,1s5t(2,Z56)

dirensior h(406',5(724 ', en(1),numd(2,256),00(6)
dirersior 1st(7@) 1sp(o; 1£1ip(2,,ic51(4,12,4)
direns.or c(784).uork(7€4),1sym(13

data r® / 1.6,2¢,28,8,1 /

dat: iest / 1.8,2%0, 2,7,2%¢, 3.6,2%0, 4,5,2%¢, I2%9,
1,26,2%¢ 7,3*9, 2,11,17.2€, 14,23,2%p, 19,3%2, 2,5,1£,27,
€.1¢¥.21,24, 15.20,2%9, 3.4,22,25, 16,3*9, 6,13,2%0,

12 X»¢ 1,28,2%2, 22.3%¢, T,12,12,21, €,15,2%9, 1¢,3*¢,
Z2,11.,24,77, £,2,19,28, 9,14 ,2"¢, 4,7,25,25, 13,3*¢,

16 .22.2*7, i7.3*p, 1,8,2%0. 2,7,.2*V, 3,6,4%0,

e £.2%°, 32%¢ /

rarvat -2¢
rst 74
»m1i=p-1
rcr=t*rrl 2

a~ 18 i=1,nst .
isym'§ =v

isyri1-=1

isymiget =1

ce=¢. ¢

do0 32 i=1,r
acs~acs-csii"

ecp=/

ao 35 i=1,rct
ecp-ecprd{i‘+cifi)

en 1 =-r*yoff+ecp-acs
er rst =r®yoff+ecp+acs
rstA-1

céll rumsrti{numd,r,2%€"
1st’1.1)=rurd(1,28€)
1st'2,1 -numbi2,256)
1st'1,286)=purr’1.,1)
1s1/2,25€)=rurt(2,1)
kv 1

r
ao 12 is=1,rrl

is £=j§¢

1sp=2®ig p

vk ¢

87 40 3i=1,2%6

i nurt(Z. %) .ne is) go to 42
kk -kx-1

RRr=kgv+1
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79

‘st’kk =numb(1,]}
1st1,kk¥)=puedi{l, )
1s1/'2.kkk)=is
cortinue

rst=xk

im-¢

i? mst .gt. maxmat) go to 100
if=if+1

do €0 m=1.,mst

dc 27 1=1.,m

Im 1w+l

if-1 .re. m' go to 60
dizger-1 elermerts

rsk=1
d9 5¢ k=1,r
isp'x --1

2 73st(l) .ard. msk) .re. €) isplk)=1
rsk-msk®?

cortinue

vilr = woff*tsp

ry ¢

€2 28 f{=1,rml

ipl1=i-1

42 %% j={ipl,n

gk kk-1

1w =p(1m) 5 (d{xk)+cilxk))=isp())=®isp(i)
carntinve

dc &7 i=1,r

n{1~v-=nl1m’ - ¢cs’{)®isp(i)

g0 12 P2

c22-4di-gcnel elements

w1
leu 9

12 7% k=',r

‘¢ ‘igtfl) end. msk! - fist(m) .ard. msk)) 70 ,75,7¢

Jsp-3sp+l

iflip jv =k

w-2

TSK TSKE?

it i<p .re. 2 go to EP

zE 2%r~t214pf1) =(1211p/1:-1)/2-31211p(1)+4211(2)

rlle'==d '¥5)+2.2%c ¥ (k5)
contirve

idim=r "(ip+1 .

diagorelize

call eig2{(h,s.ec.mst,1dim, 0"
£1+4 21 states

call elsymm(s,isym,mst@,idim)
rsth mst@+idim

cortirue

Teturn
erd
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subroutire peocut(n ,mexmat,en,isym,p@)

this subdbroutine outputs the contents of erergy vector

en in £12.4 format. States in each Zeeman menifold

are separated by a dlark lipe. N is the number of spirs,
maimat 1s the size of the largest Zeemar manifola

conteired in en 2nd n® is the array containing the

tiromisl coefficients (dimersions of the Zeemar manifolds).

dimensior en{(1',00(1 ,isym(1)

npl=n+1
rb 1

do %A@ § 1,npl
it nsl3) .gt. mezmat) go to 58

rt=pb+r@’j)=1

print 401, (ieng.en(ieng',isym(ieng), ieng=no,nt)
nk=rh-rf j)

cortirue

reiurn

form-t//(ax,’EN(",13,°7 = “,P12.4,2x,11))
erd
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subroutire altsymm(s,isym,nen,dim}

locétes totally symmetric eigenvectors in S of
dimensior dim  Output isym contaips 1°s for these
¥irst element of

states unaffected for others.
isym tc use is nen+i.

integer isym(1),test dim
dimensior s(1'

loop over elgervectors
thr=1200 ¢

l1=nen

do 1¢0¢ jeig=1,dirm

11 fifeig=1)*dim

1=-1 1

if(isym(l) .re. €/ go to 1r&C
sum coefficients of eigenvector
sum -A.@

do FPU j¢=1,d8im
cum=stm+s(il+ jc)

test=¢ "sthr*sum
f'test re. @) isym(1'=1

contirue

“eturr
end
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subrovtine desfrq(freq,itop)

this subroutine cutputs frequencies from vector freq

ir deserdirg order.
It-p is the maximum number of frequencies in freq.

dimersion freq(1

i?'itop 1le. 8) returr
itp=itop 1

do 18% k=1,itp

ilow=k+1

40 1% kk=ilow,itop
rm-r=emév1(freq(x',freq(kk')
freq(kry)-amirl(freq(k),freq(kk))
freq(k =rmax

conticue

prirt €21, (freqk), k=1,itop)
format(4x,f12.4"

returr
erd
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SUBROUTINE CMTPRT(AR1,AR2,N)

CUTPUTS COUPIING CONSTANTIS

CIMENSION AR1(1),AR2(1)

NM1aN-1

K=1

PRINT 732

IO 3. I=1,NM1
IP1=1+1

Lo 30 J=IP1.N
IOUT=AR1(K) = 4.7
CJCUT=AR2(K) * 4 0

TO LPR.

PRINT 731, I1,J,DOUT,I.J,.CJOUT

K=K 1

FORMAT.” D(’,12,°,
1.7 J3¢%,12.°,°,12,°

FCRMAT /1E1)

FELURN

ENT

‘ 12,7
= ’,ri

) =
2.4,

‘,F12.4,/
//)
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Frogram biphSpara

calculates coupling constarts for & diphenyl
with asymmetrically distorted rirgs.

this version has error analysis vhere errors in parameters
are propagated from variance - covariarcce matrix of spectral
simuz1tion. this is input at bdegipning of program.

Coodirate system #1; T4 symmetry:

The origin is 2t the center of teh c-c inter ring bdridge.
The x-axis bdisects the dihedral angle, the z-aris is along
the benzene para bomds to the substituents

Co:rdirate system #2; I2 symmetry

"he z-axis passes through the birhenyl para tonds,

the origin is loceted in ring 2 (with protoms £,6,7,8).
the x-ax!s lies in the plare of this ring and the y-axis
is normal to it.

This version '# 4 does rot symretrize  the hemiltonian
tefore diagoralizatior (1.e. trh4bar is called irstead
2f bpkham'.,

“h-s versior performs a lirear least squared fit of calculated
couplings to experimentcl couplings. The ipitail inpput
gecmetry and order paramegers are varied in the iteration.

irput f‘ip commom geom’

rlZ. rl4, r23, r2€e, r67, rs8, rk6,
€2z, |{SXX—-syy =s2p. $Xy. delta .

implic:it doubdle precisior ‘a-h,0-2)

douhle precision dnew(12 ,dlast(12',dexp(12:,d4¢c(12,11)

double precision b 12),v(144),paral1l) dv(11,

do:ble precisiop af11,12 ,:cx(12,12),vcy(11,11),a5(11)

e 1 4f2€),c)(28 ,cs'B),en 256 ,voff,freq(Se!,cjd4(2€.

‘rieger 1sym/2%6 .n8#16),1(12),m(12),ipar(11,

logical yars

ch r=cter*4 dpeme’'12)/°C12 °,°C12 “,°D1a °,°T1: °,
‘rié °,°r2® °,°‘res °,°‘ra2c ’,
‘=6 °",°L57 °,°’D%e °,°'L67 °

comm2r / geom / sz3,$2p.sxYy.delta,rl4,r67,r12,r22,rs8,r260,r36

cormor / geomzZ / ri3,rt?7

common coup d,cj,cs,voff

ccmmor / cstzte / n,1st(2,25%8)

carmor / cit / epar,ipar,.dc,b,v,tv

dat'a cjda / 2.0,0.0,0.5,4%¢.0,2.2,5%0.0,2.0,8%¢.9,

2.2,0.8,2.%2,8.5,7.80,2.0 /
data ré@ 1,8,28,28,8,1
equiralepce ‘para,sis

ge" input

do 1 J=1.2%8
en J)i=0 #
isym:J =@

do 2 1=-1.8
cs 1'=90 @
r==

wvoff=@ €



€EQEE

685-

6086¢

12

type *.°

-ccept ®.icoord

type
type

ccep

®,° INPUT OF INITIAL FARAMEIERS - °

* ° enter ri2:
t * ri2

r8€-r12

type

* ’ enter ri4:

ccept ® ri4
r5e=rle

type

* ‘ enter r23:

.ccept *,r23
ré7=r23

1ype

® ‘ enter r268:

-ccept *,r26¢<
rcHoup=?

if icoord .eq.

ne- up-12

tyre

= ° enter r67:

accept ‘.. P87 -

tyre

® ° enter rf¢

accept *,r5%e

type

* ’ enter r%6:

ccept *.r56
type *,  epter szi:
accept ®.s22

type

» ° epter (sxx-syy®

zccept *,s2p -
sxy=0 2400

if icocrd .eq 1

tyre

s ’.enter SXy:

accvept *.sxy

*yre * ° enter
sccept *,delta

do 122 1-1,11
ip rld =7
% ° The parareters which car be varied are . .

tyre

if 1coord .eq 2 go to 6@6€
type *=,° s27
tyze *,° (sxx-syy)
type =,° delta
tyre *.° ris
g0 to 6069

type *.° s22
type * ° (sxx-syy!
tyre *.° -SXy
1ype ¥, ° delta
type ®.° ri4
type *,° ré7
type *

tyre

delta

Vhich coord.

.

’

'

’

'

anun
tR P D) e

LY

An» N -

system? (1 or 2)°

.

1 go to 6066

.

go to €PE"

12
r23
r260

ri2
r23
58
r260
rS6

7’
el
18’

7'
E'
9’
19’
11°

’ How many of these do you wish to
-ccept ' .ppar

% ° From the table abdove, vhich paraneters are to vary?’
accept '.(iparli ., i=1,ppar)
type * ° Inter tot-1 # of iterative cycles to ve alloved:’

accept *,pcyc
1e-an=r
® ° Do you wish to isclude error amalysis?’

type

2 4 yans(idnn,) ferans=1

type ®.° are the d4 j°°s to be used 1ip the simulatioa?’

if yansfidum ) go to 11
do 12 1=1,2€

c) &

f#0 t0 13

htve vary?’
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do 14 1-1,20
c) 1 =cida(t)

irput of experimental couplings

type *.  Enter experimental dipolar couplings
do 1% 1i=1,ncoup

devpli)=0.0408

type £61,dpame’}

format({10x,as, = “,$;:

accept *,dexp(i)

-utput isitial parameters

grint 2¢1, ri2,ri4,r23,r26e,r67,r58,r56,523,52p,sxy,delte
format(’lprogram biph%para - iritlal parameters . . ."//

r12 - ‘,el4.4/,° ria = ‘,el4.€ ,” r22 = ° el4.E ,

-2€% = ‘,e14 6/, r67 = “,e14.6/ ° ri8 = ",el4.6/,

1% = ‘,ele 6 ,” szz = “,el4.€/,” (sxx-syy) = °,el4.6 ,

sxy = *,el4.6//,” DELTA = ~,f10.4///

prirt 822, (dnamefi) ,dexp(i’, 1=1,nccup)

format’l¢x, ‘experimental couplings . . .", .,
“1%x,:4, = ",019.4)

erter iterative loop

iter-1

er1=1.0d04

calculate couplirgs
czll diphd(dlest,icoord’

- :f iter re 1 go to 9E99

333

noaon

gz9¢

729

21¢

call derd(d,dlast,icoord’
¢211 cntprt(d,c3,8’

rrirt 333

format(1rl)

lezst squares routines

célculéte derivatives

do 2%€&. np=1 npar

rap-ipar(np)

‘irc=@ @1d@e=dadbs.para(m:zp '
rara’rap)=para‘pap ~xirc

call viphd{dnev,icoord)
pa-2{pap)mpara’nep-rxipe

ca1l derividlast.drew,xirc.pp,rccug)
cortinue

czlculéte residuals

40 2262 k=1,rcoup
tik)rdexp(k)-dlast(k’

c211 ertt2(erl,ncyc,nerit,ncoup,iter
call rorr2(rcoup’

de:=0.0d400

call dminv(v,ppar .det,l,.m)

Fr'nt *,° IIT =
if det eq. 9.9490' print 729
fomat’1v, "DETIR®INANT OF MATMIX TO oK INVERIEL IS ZERO!!°/,
‘f rexit .eq @) go to 2e8¢

'

.det

correction of parameters
do 317 rs=1,ppar

corr=0 9400

do 216 nsd=1,ppar
‘pdxeratvecips.nsb,npar)
c-rep=gorr+v(indx)®ovvinsp)
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pe-elipar(ms))=para{iparias))+corr
318 cortinue

iter-={ter+l

g0 to 96898

erd of iterationm loep

7ulput final parameters

cutput internulcear distences
5¢er Frirt 334
234 format(//° FINAL PARAMETIRS: . )

print *,° r12 = °,ri2
Irirt * ° r13 = °,ri13
Frint *,° ri1s = “,ris
print *,° r23 = °,r23
[rinrt ®,° r260 = °,r2660
print ®*,” r5 = “,r56
frint * 7 r%7 = ° r87
priert *,° r88 = °,rS8
F-int =, ° r67 = °,ré7
Friet *.° szz = “.szz
Frint *,° (sxx-syy) = °,s2r
griot *.,° sxy - °,sxy
[riont ®, 7 deltas = °,delte

it lerar .eq B) go to 505¢
er=or zpelysis
type *,” Erter variarce - covariance matrix fror simulactior:’

io0 Sem2 j=1,ncoup
do 97¢2 i-j rcoup
"ept * vcx\j i .
ve: 1.y -vcx(J.i
cpe2 co:.tinue
Se ol fo mFtflix,'CX(7,12,7,7°,12 °) = °,%

do 900 rp=1,rpar
¢> 9@0¥ pc=1,ncoup
‘-p nc)=@ @4¢C¢
do 9000 i=1,rpar
rpi nqtvec(np i,npar
S < '-p rci=e{np,nc + v(npi)®dc(nc 1i:

¢n 9259 i=1,ppar

d> 904 m2=1,ppar
vey!t,m2 ! =0.¢4c9?
do 9¢v49 j=1,rcoup
ap ) =0.9d00
do 93 k=1l,pcoup
993¢ ap J =apl(J) + vcx(J.k)'a(m:.k)

G40 cy/'t.,m2 =vey'1,m2 -~ api) *a(i, )

7L 34 cortirue
Ses¢ cortinrue

.utput variance - covariance matrices
Frirt 333
Frint *,° variance - ccvariarce ratrix fror simulation’

print 14, (3, vex{j, k', k=1,nc0up), j-1,ncoup!
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tormat( 2x,i3,° @ ‘,{pcoup/2>el4.€,/10x,

1<ncoup/2+mcd (ncoup,2'>els.6/

print 233

Irint *,° variance - covariarce matrix for parameters’
print 809, (3.(vey(Jy,x), k=1,npar), j=1,npar)
torm:t!/22,13,° ‘., {ppar/2>el14.6,/1¢x,

1“rpar 2+mod(npar,2)>el4.6

célculate spectrum

call dord(d.dlast.icoord:
call cotprt(d,cy,2)

call bph4ham(en,isym

call peout(5,2€,ep,isym,r@

surput spectrum

priert 183

format(”“1 Al sutspect-a . . ."///)
Erint 104

fomat(” SIX QUANTUM LINES /)

Friert 102

fo-mat(1x,17(° 7)), /,10x,” M| = 4 to (M} =27 )
k=1

11 r2{1 -p@(2 +1

rl 11+p8/3)-1

do 250 je=11,h1

¢ isyrljc) re. 1, go to £%5€
freq(k‘*abs(en(l‘-enfjc))

k=k+1

cortirue

call desfrq(freq,k-1)

nfiz=k-1 .
Frint 12€
tormat! 10ox,
k=1

11 rv/1:+1

rl 11+n8(2)=1
12 n@'1 +00(2 +n@!Z)-ndl{4)+1
n2 12-r2(%)-1

do EBE5 ic1=11.51

i2 tsym{jc1l' .me. 1) go to 555

,

IMI =3 te M =37/)

1o =2% 3ic2=12,h2

it isymIch‘ .ne. 1) go to 552

freq(k =en{jcl'-enfjc2)

i1f 1rix{1@ @®=avs(freq(k'}) .eq &) go to 5£5
E-e-1

cortinue

call desfrq(freq,k-1"

Frint 187

to-met!{s//° SEVEN QUANTOM LINXS’ /,16(°_")//,
21¢X, '™} = 4 to M} = 37 )

-1

11 rd(y 1

1 11+p8/2)-1

do %88 jc=11,h1

if 1sym(te: .re. 1) go tc 26¢
freq ‘x'rabs{enf jc)-er(l))
k-wsl

co-tirue

call desfrq(freq,k-1)

end
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subroutine dord(d,d2,icoord)
double precistom 42(1)

real ‘{1\'

rearrange couplings to orderipg used ia simulatioss.

d(1)=42(1)/4.2
4(2)=42(2)/4.0
4(2 =d42(3)/4.0
44 =d2(4)/4.¢€
d(%)=a2(%)/4.0
a(6'=d2(%)/4.9
d4(7 =a2(4)/4.¢
a(e1=22(8) 4.8
4i9 =42(2'/4.9
d(1°e =42(8)1/4.2
d(11)=d2(7) /4.8
d{12-=42(71/4.0
413 =a2(6)/4.¢
d(14'=42/1) 4.8
4(15- =d42(81/4.0
4(16-=42(7)/4 .7
d{17'=d2(7) 4.9
4(18 =42 8 /4.0
4{19 =d2{(4)/4.¢
d{2¢'=d2(%)-4.0
4(21 =d2(5%-/4.90
alz2 =d2/4)/4.¢
d(23'-42(9). 4.8
d(24 =d2(18)/4.9
4/2% =d2/11)/4.2
d(2€1=242(12) 4.9
4(27 =d2(18)/4.8
d({za =d2(9)/4.¢

returr
end
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subroutine bdiphd(d,icoord)

calculates couplirg corstarts for a bdipkernyl
with esymmetrically distorted rings.

Cocdinite system #1; D4 symmetry:

The origip is at the center of teh c-c inter ripg bdridge.
The x—axis bisects the dihedral angle, the z-axis 1S alorg
the bderzere pera bdonds to the subdbstituents.

Coordirate system #2; D2 symmetry:

The 2--xis passes througn the Dipnenyl para oonds,

the orig'r is located ir ring 2 (with protons £,6,7,€),
the x-axis lies in the plane of this ring ard the y-axis
i rormal tc it.

implicit doudle preciston (a=h,0-3)

double precision th(16),lxy(4),1yx(4),s(5),4(12)

commor /geom $sz2,52p,%xy,.,delta,rl4,r67,r12,r23,r5€,r260,r56
commor / gecm2 / ri3,r&?

do 1 3=1.12

g{j =0.0d0D

red=4 d.@®dctapll.2de2:

dk -2 PAee™(245.917d00%*2.¢2)

compute delta ir rads
rdel-del te®*rad/160.6400

if'icoord .eq. 2 go to E€E¢

co-réinztie system #1

s{1 =¢-2

s(2)=s2p*((dcos(rdel 2.0d02))**2-(dsir(rdel/2.0duve))=**z)
s(2 =s”p*(dcos(rdel/2.04v0® *dsir(rdel/2.9dv0")

sle =0 Pape

s(E'=@ pdege

r67 722

r8C€ar)c

r5€:r12

go to 6069

cecrdirate system #2
s(1)=s22

s(2 =s2p

s(3 =sxy

sfla)=@ pdee
s(%'=0.0d09

compute trig functions of delte
csdl=dcos(rdel)
spal=dsizc(rdel)

corpute reeded distances at delta=o

rxl-‘ria-r23).2.0408
rx2-( rfE-r67'/2.0400
¥3=l{r*c-r14'/2.0d00
rx4¢ (ris-re7) 2.2400
*xt= rFE -r23'/2 .0469
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~x6=(r67 r23)/2.2422
compute trig furctiops of reeded angles

snd=rxl1/r12
csd=dsqrt(1.0420-spd®"2.@)
spa=rx€ r26e
csaz=dsqrt(l1.0400-sna®**2.p)
spdp=rx2/r%6
csdp=dsqrt(l.0dea-spdp*>2.2)

1y4=r260%csa
“yl=r17%csd+ry4
TY2-r5€%csdp+ry4
ry3=ryl+ry2-ry4

ceélculite interruclear distances for delta=¢@

r1€@=dsqrt (ry1*®2 p+rx2**2 0)
r1cP=dsqrt(ry3**2.0+rx3%*2.0)
r25¢=dsqrt(ry2®=2.9+rxs*%2 ¢)

sng=tI4 T160
csg=Tyl/riee
srep=rx&/r2f¢
csgp-ry2 ra2se
snh-rx3/rise
csb=ryX/rife

calculate 1xy°’s apd 1yx’s

1xy’1l =ri4®srdl
1ya(1} ri4=®csdl .

1xy/2?2 -~r23%spdl
1y7 (2 :=r22%csdl

1xy/3)=@ edoe
lyx:X r67

1xy(4 =@ odee
lyx(4)=p5&

calcvlate th’s

thf1)="'1yx(1)-1yx(3),/2.04 :¢
th’2)=/1xy(1)+1xy(3))/2.8d00

th 3 :=(lyx(2'~1yx(3) /2.0d¥0
th'4)={1ry(2)+1xy(3))/2.04 @

th'8)=(1yx(1)-1yx(4)).2.0d08
th 6°=i1xy(1'+1xy(4))/2.0dv80

th'7)=/17x(2)+1yx(3))/2.04¢¢
th'e)=(1xy(2)=-1xy(3))/2.0d¢20

th ©'=(1yx(1'+1yxi4))/2.0400
tr 1 =(1xy{1)-11y(4))/2.84¢0

th’11) (lyx(1)+1yx(3)).2.0dee
th 12'=(1xy(1 '-12y(3')/2.04v0



[z}

thf13)=(lyx(2)=-1yx(4 ;/2.0400
th - 14)=(1xy(2)+1xy(4))/2.8408

th(1%5)=(1yx(2)+1yx(4))/2.0400
th(16)=(1xy(2)=1xy(4))/2.8400

calculate internuclear distances for delta not=@

r17=dsqrt(ry1®®2.2 + th(11l *=2.9 + th(12)>=2.9)
ri6=dsqrt(ry1®*2.9 + th{(1)%%2.9 + th(2)**2.9)
r25=dsqrt(ry2®*2.0 + th{13 '*%2.9 + th(14)*%2.9)
r2=dsqrt(ry2®%2.2 + th(15:%%2.9 + th(16)®*2.0)
r26=dsqrt{rys®=2.0 + th(3)**2.c + th(4)*%2.8)
r1%=dsqrt(ry3®®2.0 + th(5)*®2.¢4 + th(6)*%2.0)
r27-dsqri{rys®*2.8 + th(7)®*2.2 + th(8)**2.¢)
ric=dsqrt{ry3®=2.0 + th(9)**2.9 + th(19)**2.98)

r13=dsqrt{((r23+r14)/2.2d¢¢)=22.2 + (ryl-ry4)ss2.¢)
r57=dsqrt(((r67+r5a)/2.0400)%*2.9 + (ry2-rys)*>2.8)

calcul-te apngles betwveen interpuclear vectors end
molecular axis system.

rpd2-rad/2.0400

th13z2=(ryl-ry4)/ri3
spl3=(rla+r23) (2.0408%r13)
t£13x=csd1®snl3
th13y=srdl1®splX

th57z= 'ry2-ry4) rs7
the”z= r67+r561/(2.8400*1r57)
the?y=: ?def

th5€r=¢csap
th&6x=srdp
th&6y=2 (40¢

thl2z-csd
thi2x=csdl®snd
th12y=sndl*srd

thi€z=ryl rie€
thi6x=th 1'/r16
th16y=th’'2}/rié

th262=ry4 r2€
th26x=th ' 3'/r26
th26y=th ‘4 )/r26

thiSz2-ry2 ri1b
th1&x-th ' £/r15
th1fy=th(6:/r12

th27z=ry4 r27
th27x=tk 7 /r27
th27y=th '8)/r27

th1Pz=ry3 rief
thi1éx=th(9'/r1e
thiRy=th '10)/r1@

thi?z=ryl ri?
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thi?x=th/11)/r17
th17y=th(12),rl7

th25z=1ry2/r25%
th2%x=th (13)/r2%
th25y=th(14),1r25

th20z1=ry2/r28
th28x=th (1%)/r28
th28y=th16) . r28

calculate couplings

d12=dx*ccupi(thi2z,th12x,thi2y,s,r12)
d423-dx*coupl (9.04008,csd1,5rdl ,5,r23)
d14-d4x*coupi(@.8d400,csdl,sndl,s,ris)
d13=dk*coupi (th13z,th13x,th13y,s,rl13)

456=dx*coupi(th8362,th56x,tb56y,s ,r56)
467 -ak*coupi (2.9400,1.0400,0.8d00,s,r67)
4%c=dk*ccupl (€.0d4¢2,1.8400 .0.2d4¢0C,s ,rEE)
d%7-¢x*coupi(thS57z,th57x,th57y,s,r57)

d26 coupi(th26z,th26x,th26y,s,126)
d27=coupi(th2?z,th27x,th2?y,s,r27)
2d2€-dk®* ‘'d26 + 427)/2.04¢0

d1%=ccupi(th15z,th15x,th15y,.s,r1d)
dls=coupi(thifz,thi8x,thiBy,s,r1g)
ad15-dk® 415 + 418)/2.04090

d27=ccupi(th2%z,th28x,th2%5y,s ,r2%)
d2f=coupi(th28z,th28x,th28y,s,r28)
ad25=dk* a25 + d2€)/2.04v0

.

d1€-ccupi(thi6z,thlbx,thi6y,s,r16)
417 -coupi(thi?z,thl1?x,thi?y,s,r1?)
ad16=4¥* 416 + d17)/2.0dv0

recrrerge couplings to ordering used in simulatiocs.

4(1'=412
d(2 =413
d(3:=d14
d(4)=adl1x
d(= =sdl6
d(6'=d23
d4(7)=ad2¢
d(: =ad2&
d(9 '=d%6
a(l1e'=a%7
d(11 =d5¢
a(12 =467

end

dcudle precisior functior coupi
(thlo‘hx'th’oscr:'

implicit double precisior {(a=h,o0-3)
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dimersior s(%®

calculates apisotropic couplings after formulas
cf Emsley ard Lindon.

szz=s{1)
s2prs{2’
sxy=s(3)
sxz=s(4)
syr—s(&}

coupi={ s22%(3.8400%thz®®2, 2~1.0400)
+42p*(thx**2.9~thy**2.9)
+4.0400%( sxy*(thx*thy)
+sx2*(thx®thz)
+sy21®(thy*thz) ) )
coupi=coupi / (re=3.g}

Jeturr
erd
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SUBBOUTINE DMIRVI(A,
INTIRTS A MATRIX

IMPLICIT DOUBLE PRECISION (A-H,0-1)
TIMINSION A(1),L(1),M(1)

I=1 gpee

NK
TLo
NK

-N
€9 K=1,N

‘NE+N

I(K)=K
M(L =X
KE=NL+-X
BIGA=A(KK)

To

12-

IO
1J

IF/TABS(BIGA -DAES(A(IJ})) 1%&,208,2¢

20 J=K,N
Ne (-1}
2¢ I=K,N
121

BIGA-A(IC)
L{x =1
MK . =g
CONTINUE

J=L(x.
17/J-X) 25,3%,25

k1
IC
. 9

K-N
3¢ I=1,N
KI+N

FOLD==A/KI"
o1 XI-K+J

AMEIV=A(ST)
A(JI =BOLD

I=MIK\

IF

P

Io
JK

J1=
BO!

I-K 4%5.4£,38
N=(I-1)

4¢ J=1,N

NE-J

Jeed

D=-A(JX)

AR =A (T
£(J1,=EOLT

IF BIGA 4E,46,4F

I=

erve

RETORN

DO

£ I=1,N

IP/1-Kk £@,2%. %50

1x

A(IX =A(1K)/(-BIGA)

NK«]

CONTINUE

DO

65 I=1,N

IK=NK+1
BOLD=A(1K)

1J
IC
1J

Ir:
IF:

KJ

I1-N

6% J=1i,N

1J+N

I-x 60'65 060
J-X 62,6%,82

‘1J=1+K
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A(1J =POLD®a(KJ) + A(IJ
CONTINUE

kJ k-N

I0 7% J=1,N

EJ KJ+N

1P J-x 78.,75,78
A(KJ:=A(KJ)/BIGA

CONTINUE

I=T*BIGA

A(XE =1.0700/BIGA
CONTINDE

K=N

K=K-1

IF’X) 1%2,158,185
I=L(K

IF'I-x 12¢2.129,108
JC N®(K=-1)

JP N®(1-1"

I0 11€¢ J=1.N
JK-JGQ+J

20LD=A JK)
JI-JR~J

A(..'K)"‘A (JI)

A(J1 =BOLD

J=m(K

IF/J-K' 109,100,125
KT X-p

I0 132 I-1,N
EI KI-N
E0LD=A KI-
JI RI-K+J
A(RIY==A"J1)
A(JI =BOLD
GC TC 172
HETURN

END
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subroutire deriv(dlast,drev,xinc,ipx,rcoup)

computes derivatives of biphenyl couplings v.r.t.
iteratior parameters Derivatives are estimated as
the ratio of the cherge in couplings with a 1 X change
ir a particular parameter.

dlast is the iritial (cycle # iter) couplings

dpnev i{s the couplirgs calculated at para = para + Iinc
ip~ is tte irdex ipn the matrix dc for this dependence
rcoup isS the rumber of couplinmgs (rcoup=7 for I¢ symm,
apd =12 for D2 symm)

‘mplicit doutle precisior (a~h,o0-2)
double precisior dlast(1),drew(l)

commer / cit / npar,ipar(11‘,dec(12,11),v(12),v(144),bv(11)

do 1006 k=1 ncou?
dc'k.ipx‘aldnev x -dlast(k')/xinc
centinue

returr
erd
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SUBROUTINE ERIT2(ER1 NI, NEXIIT,NL,ITER)
YAX VMS VERSION.

EVALUATIS R.M.S. ERROR FOR A VECTOR OF RESIDUALS TFROM ONE
ITERATIVF CYCLE.

THIS IS A DOUBLE PRECISION VERSION.

B IS THE VFCTOR OF RISIDUAILS.

ITER IS TFE NUMBIR OF THE PRESENT ITERATIVE CYICLE.

ER1 IS TEE RMS IRROR PRO™ TEX LAST CYCLE.

NI IS TRF¥ TOTAL NUMBER OF ITERATIONS ALIOWED.

NEYIT 1S A PARAMETER TO BE USEL IN DETERMINING WHEITHER
FORTFER ITERATIVE CYCLES SBOULD BE RUN.
IP NEXIT=# RETURNED NO PURTBER ITERATIONS NECLSSARY.
IF NEFXIT=1, FUTHER CYCLES AKE RIQUIRLD.

NI IS THI NOMBIR OF RISIDUALS CONTAINRIL IN B.

IMFLICIT POUDELE PRICISION (A-H,0-Z)
COUBLEI PRECISION MINERR

ComMmMCN cIT NPAR,IPAR(11),DC(212,11),B(12),V(144),B7(11)

“INERP = 1.0D-8
PR2=90 eDee
FNL-NL

I0 4 X-1.NL

ERZ2-FR2+B(X *B(X
ER2=PSORT(ER2/FNL

IF/ER2 .GE. MINERR) GO T0 5
PRINT 401, ER2

GC TC 8

PRINT 321, ITER,ER2

1¥/(EF1-IR2)/ER1-0.21D02  £,.8,12
NEXIT=¢
ER1-ER2
EXTURN

I¥ ITIR-NI) 119,6,8
FR1=ER?

NIXIT=1

RETURN

FCR™AT/SY, “ITERATION # °,12,3X,°R M S ERROR = *,F8.3)
FORMAT(/,° ITERATION CYCIE TERMINATED -°,/,

F»S ERRCR LESS TFAN MINIMO™ ALLOJED! ,/,

FRRCR “yDi16.4, )

IND
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SUBROUTINE NORM2{NL)
YAX/VMS VIRSION.

THIS SUBROUTINI SETS UP THI NORMAL EQUATIONS FOR A LEAST

SQUARES ITERATIVI PROCELDURE.

TEL MATRIX PRODUCTS DC-TRANS*IC ANL DC*B ARI FORMEID WHIRE DC IS TEE
¥ATRIX OF DEIRIVATIVES OF FPREQUINCIES VITH

RESPECT TO PARAMETERS AND B IS THE MATRIX OF RESIDUALS

FETVELN CALCULATET AND OBSBRVYED FREQUANCIIES.

IMPLICIT DOUBLE PRECISION (A-E,0-2)
COmM~ON CIT NPAR,IPAR(11),DC(12,11),2(12),V(144),BV(11)

NOS=NPAR
DO 21¢ NS1=1,NOS
DO 286 NS2=N51,NOS

INDI1=MATYEC(NS2,NS1,NOS)
INDI2=MATYEC(NS1,NS2,NOS"

V(INDX1) -2 eree

Lo 20f LEQ=1,NI

V(INPX1)=V(INDPX1 +DC(LEQ,NS1)*DC(LEQ,NS2)
V(INDX?)=V(INDX1)

¥ 'NS1 =..ele¢
IC 21¢ 1¥0=1.NL
BY NS1 =BV(NS1)+DC(LEQ.NS1 *B(1LQ)

FETURN
IND
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