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NMR STUDIES OF ORIENTED MOLECULES

Steven Williams Sinton

Abstract

The properties of liquid crystalline mesophases have been of

continuing interest in physics and chemistry since the discovery of these

novel compounds. Recently, nuclear magnetic resonance (NMR) spectroscopy

has been extensively used to probe the microscopic nature of liquid

crystal samples. The NMR spectra contain information which is sensitive

to internal molecular parameters and reflect the anisotropic potential

in which the molecules reorient. Fast diffusion and rotational motion

remove the effects of couplings between molecules.

In this work, deuterium and proton magnetic resonance are used in

experiments on a number of compounds which either form liquid crystal

mesophases themselves or are dissolved in a liquid crystal solvent. The

nature of the information available from the spectra and limitations

imposed by assumptions necessary in their analyses are discussed. The

new technique of proton multiple quantum NMR is employed as a means to

simplify complicated spectra without the need for selective isotopic

substitution. In a multiple quantum experiment, the change of the total

magnetic quantum number, M, associated with observed spectral lines may

be any integer allowed by the number of coupled spins; e.g., 6M = 0, ~l,

..• ,~N for N coupled spin-l/2 nuclei. This experiment also retains the

higher sensitivity and precision in structural information available from

proton NMR compared with other nuclei. The theory of non-selective

multiple quantum NMR is briefly reviewed. Experimental examples with

benzene dissolved in a liquid crystal are used to demonstrate several
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outcomes of the theory. Possible complications in the analysis of spin

echo spectra when chemical shifts and heteronuclear couplings are present

in a strongly coupled spin system are discussed.

Experimental studies include proton and deuterium single quantum

(~M : ±l) and proton multiple quantum spectra of several molecules which

contain the biphenyl moiety. The number of multiple quantum transitions

in the spectrum can be easily predicted from simple symmetry arguments

for para-substituted biphenyl. These predictions and the extraordinary

simplicity of parts of the multiple quantum spectrum allow unambiguous

line assignments and tests of simple models to be made in the analysis.

4-Cyano-4'-n-pentyl-d
ll

-biphenyl (5CB-d
ll

) is studied as a pure

compound in the nematic phase. Assignments of the proton decoupled

deuterium single quantum spectrum of the alkyl chain are made to obtain
.

the chain order parameters and dipolar couplings. These are found to be

in close agreement with previously reported results. The undecoupled

and deuterium decoupled proton multiple quantum NMR spectra are analyzed

for the aromatic core order tensor and structural parameters. A number

of models for the effective symmetry of the biphenyl group in 5CB-dll

are tested against the experimental spectra. Most of the features are

reproduced by the simplest model and possible causes of additional struc-

ture in the spectra are discussed. The dihedral angle, defined by the

planes containing the rings of the biphenyl group, is found to be 30 ~ ZO

for 5CB-dll " Experiments are also described for 4,4'-dZ-biphenyl, 4,4'=

dibromo-biphenyl, and unsubstituted biphenyl. Complete descriptions are

given of the NMR spectrometer and computer programs used to obtain and

analyze these spectra.
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Chapter 1

Fundamentals

1.1 Introductory Remarks

It is usual to begin a discussion of experiments which employ a

spectroscopic technique with a description of the basic interactions

involved and their relation to quantities of interest. In this work,

the spectroscopy of nuclear magnetic resonance (NMR) is used to study

anisotropic molecular ordering, structure and internal motion in liquid

crystals. The two major areas to be considered are the use of NMR (1)

as a tool to probe the chemical nature of the compounds and (2) in the

ongoing investigation of basic spectroscopic physics. For this work,

the first part is found in the sensitivity of nuclear magnetic resonance

to the interaction between the individual dipole moments of nuclei. This

phenomenon is in turn important in elucidating internuclear distances and

ordering in condensed matter, particularly liquid crystals. The second

area, that of understanding a new spectroscopic process, is found in the

development of a technique known as multiple quantum NMR spectroscopy.

The usefulness of this technique in our work lies in the tremendous aid

in spectral assignment possible from a multiple quantum experiment.

Several aspects of theory and experiment for multiple quantum NMR

spectroscopy and its application to liquid crystals and solutions of

small molecules dissolved in liquid crystals are described in the fol­

lowing chapters. The next few sections of this chapter present the basic

interactions important in liquid crystal NMR and a brief description of

the properties of multiple quantum transitions with reference to the

energy level diagram. Chapter 2 gives a detailed description of the

1



information available in the NMR spectrum of an ordered medium such as a

liquid crystal. The limitations of this approach are also discussed.

Chapter 3 describes the basic multiple quantum experiment. A review of

density matrix formalism is held offuntil then. The rotational proper-

ties of the multiple quantum density matrix are explored with experimen-

tal examples of benzene partially ordered in a liquid crystal solution.

Chapter 4 presents a specific example of multiple quantum NMR of biphenyl

groups which demonstrates some of the principles developed in earlier

chapters. Finally, a complete description of one of the two 180 MHz

Fourier transform spectrometers used for all experiments is found in

Chapter 5. The Appendices contain the details of computer programs used

for calculations and data preparation and complete listings of each.

1.2 The Nuclear. Spin Hamiltonian

Usually, the strongest nuclear spin interaction present for a sample

in a high magnetic field is the Zeeman interaction. Classically, the

energy of this interaction (for a single spin) is

2

++
E = -~'H (l.l)

+ +
where ~ is the magnetic moment of the nucleus and H is the large static

field. The moment arises from the intrinsic angular momentum of the

electrically charged nucleus; hence the term spin. Quantum mechanically,

+
this energy is related to the angular momentum operator I through

Equation (1.2).

+
yh I,

where n is Plank's constant divided by 2n.

(1.2)



~ +
It is well known that I and one of the components of I may have

simultaneous eigenvalues for the wavefunction of the spin [1]. The total

+2
angular momentum is hl(l+l) where I is the eigenvalue of I. By con-

+ +2
vention, I is the component of I taken to commute with I. The eigen­z

values of I are the (21+1) values rob where m = I, 1-1, ..• -1+1,-1.
z

+
Taking the magnetic field to be H = (O,O,HO) gives

3

(1.3)

The constant y is known as the gyromagnetic ratio and its value is

tabulated for every nucleus of interest in NMR. It is not the purpose

of this work to measure y and so the important interactions are perturba-

tions of the Zeeman energy given in Equation (1.3).

Before proceeding with a discussion of these interactions, it is

worthwhile to point out some of the important consequences of Equation

(1.3). The quantization of the z axis component of angular momentum in

the static field, described by the operator I and having discrete values
z

mh, means that the energies are bounded by the (21+1) values of m. The

result is that the density matrix approach is particularly useful in the

description of pulsed NMR experiments.

Although the measurement of the energy level diagram for single

nuclei when I~ 1 provides information from quadrupole perturbations to

Equation (1.3), it is often more useful to consider a collection of

nuclei. For our purposes, a collection of interacting protons is

relevant. For N such spin ~ nuclei, the total z component of angular

momentum is described by the quantum number M = Lm.. Here the sum runs. ~
~

over all nuclei which together are sufficient to describe the energy

level diagram of the system. There are N+l possible unique values of M



from U = +N/2 to M = -N/2 differing by 1.
NThere are a total of 2 states

4

for the entire N spin ~ system. The energy differences among states for

a particular value of M (termed a Zeeman manifold) are determined by the

perturbative Hamiltonians described below.

1.2.1 The Zeeman Hamiltonian

The Zeeman interaction has already been given for a single spin in

Equation (1.3). For an N spin system, setting h = 1 and measuring

energies in frequency units, the general Zeeman Hamiltonian is written

HZ = -Ha L YiIzi' (1. 4)
i

-wa L I zi'i

= -waIz '

where wa is the angular Larmor frequency (w a = 2~va). At magnetic field

strengths of about 42 kG, va is approximately 185 MHz for protons.

1.2.2 Radio Frequency Hamiltonian

The interaction of nuclear spins with an externally applied radio

frequency magnetic field is quite similar to the Zeeman term above.

Assuming this field to be oscillating along the x axis of the laboratory

frame, the r.f. Hamiltonian becomes

-Hl(t)coS(wt+4>(t» L yiI .•
i Xl

I = L I . is the operator for the x component of the spin angular
x i Xl

momentum. Hl(t) is the time dependent field amplitude oscillating at

frequency w with phase ~(t). The usual approach at this point is to

(1. 5)

transform to an interaction frame known as the rotating frame [2]. This

is accomplished by the following equation:



where the exponential operator is defined by [2,3]

(1. 6)

5

e
-iwtI

z = 1 - iwtI
z

2
+ (wt) I 2

2 z
i(wt)3 I 3

6 z + ... . (1. 7)

The transformation of Equation (1.6) effectively removes the time de-

pendence of the frequency part of the cosine term in Equation (1.5).

The result is given in Equation (1.8) (dropping terms oscillating at

higher frequencies [4]).

= -Wl(t)[I cos~(t) + I sin~(t)].
x y

(1. 8)

In this equation wl(t) = yHl(t) is the r.f. field amplitude in angular

frequency units. The occurrence of the operators I and I in Equationx y

(1.8) comes about from the definition of the exponential operator and

commutation properties of the angular momentum operators [3,5].

If we also transform observable quantities, such as the Zeeman in-

teraction to this rotating frame, the spin system will appear to evolve

as though it were observed from a frame rotating about the z axis at

angular velocity w (hence the name). When the transformation is applied

to the Zeeman Hamiltonian Equation (1.4) the result is

(1. 9)

The factor ~w is called the offset. Throughout this work, the rotating

frame transformation will be assumed and the superscript R dropped.

The remaining interactions described below all take the form of

spatial and spin tensor products [6]. The spatial tensors involving

just one spin are the chemical shift and quadrupolar tensors. The scalar



(or spin-spin) and dipolar (or direct) tensors involve the interaction

of spins with magnetic fields generated by their neighbors. All are

second rank tensors which may be described in a cartesian or spherical

basis [7,8]. Under different conditions, each of these tensor inter-

actions can be reduced in rank or removed by "averaging". As an example,

the anisotropic chemical shift interaction, the dipolar interaction and

the quadrupolar interaction are all unobservable in non-viscous liquid

samples. This comes about from rapid, isotropic motion of the spins

attached to tumbling molecules. By rapid it is meant that the motion

is fast on the time scale of the interactions and by isotropic it is

meant that the average over all possible orientations for the spatial

part of the tensor is zero.

Besides the use of an isotropic liquid, there exists a number of

ways for selectively averaging the interactions below. Since the

Hamiltonian for each consists of a product of spatial and spin terms,

this averaging may be done in either coordinate or spin space. These

selective techniques are fully described elsewhere [6] and are only in-

directly relevant to an understanding of this work. The isotropic and,

for liquid crystals, anisotropic averaging of spatial quantities pro-

vided by nature are very important in our experiments and will be

described briefly here and in more detail in latter chapters.

In the equations of the next few sections, the second rank inter-

action tensors are written in a cartesian coordinate system basis with

axes X, Y, Z. Thus, they may be expressed as 3x 3 matrices and the

Hamiltonians become scalar products of these with spin operator vectors

such as i = (I ,r ,r ) and S = (s s S). The X, Y, Z system is fixedx y z x' y' z

in space. If we take the Z axis to be along the main field direction,

then the subscripts on tensor elements below refer to components observed

6



in the laboratory frame. To describe the interaction tensors in some

other coordinate system, such as one fixed in the molecules, requires

transformations of the spatial part of the Hamiltonian as covered in

Chapter 2 and detailed elsewhere [7,8].

There will always exist some coordinate system in which a spatial

interaction tensor is diagonal. In general, this principle axis system

(PAS) will not be the same for different interactions. Often, one writes

each of the Hamiltonians below in a PAS and then the tensor elements are

the principle components of the interaction. In this case, the trans-

formation required to relate the Hamiltonian to an NMR spectrum is from the

PAS to lab frame. Depending on the nature of the sample, the PAS compo-

nents of the tensor may be found from lab frame measurements. For a

sample consisting of a single crystal, rotation plots of the frequencies
.

measured from the spectrum reveal the principle components [14,15]. If

the sample is a polycrystalline solid, then a "powder pattern" line shape

will result. An example is the well known asymmetric chemical shift

powder pattern observed for many samples [14]. In the following chapters,

whenever the Hamiltonian refers to a particular coordinate system, that

system will be identified. We will always state the nature of any co-

ordinate transformations performed.

In considering the perturbations to HZ below, reference is made to

the secular part of the Hamiltonian. This refers to the usual truncation

of some parts of the total Hamiltonian to those terms which commute with

I. This approximation is valid for all cases in this work as non-com­
z

muting parts of the quadrupolar, dipolar, spin-spin, and chemical shift

interactions are all small compared to the Zeeman term (the "high field

approximation") .

7



1.2.3 The Quadrupolar Hamiltonian

When a nucleus with spin I ~ 1 is present at a site with non-zero

electric field gradients, the total energy depends on its orientation.

This is expressed by the quadrupolar Hamiltonian in Equation (1.10).

8

= eQ -+ -+
HQ 61(21-1) 1'~'1 (l.10)

Q is called the quadrupole moment of the nucleus and is related to the

quadrupole term of a multipole expansion for the charge distribution of

is the field gradient tensor with elementsthe nucleus. The tensor V
a2v ~

= aaaS for a,S = X, Y, Z. That ~ is traceless and symmetric can be

seen from Laplace's equation V2
V = 0, and the symmetry of the partial

derivatives, VaS = V
Sa

' For a collection of spins, it can be shown [9]

that Equation (1.10) becomes

eQi XfZ i 3L 61 (21 1) L V S[-2(1 ,IS ,+IS ·1 .)
iii- as a a1. 1. 1. a1.

-+ 2
<S S(1.) ].a 1.

(l.lla)

Truncating Equation (l.lla) to the secular terms gives

(l.llb)

(l.lle)

iIn Equation (1.11) the quantity Q is the quadrupole moment of nucleus i.

In Equation (l.llc) the gradient eq VZZ and the asymmetry parameter

(VXX-Vyy )
n = V have been introduced. Usually, the electric field gradient

ZZ
is axially symmetric (or nearly so) and n is taken to be zero. That the

quadrupolar Hamiltonian vanishes for nuclei with spin I = ~ can be seen



from a consideration of the expectation value of the spin part of H
Q

,

i. e. ,

<31
2

- 1(1+1» = O.z

1.2.4 The Dipolar Hamiltonian

The energy of the interaction of spins with the local field caused

by the dipole moments of neighboring nuclei is given classically by [10],

9

(1.12)

which results in the quantum mechanical Hamiltonian (in frequency units)

+ (1.13)

In Equation (1.13) the dipolar interaction tensor, gik, is traceless

and symmetric

i and k. The

+ +
and Ii' Sk are the spin angular momentum operators for spins

ik YiYk
elements of Q are - --3-- (3e e - 0 ) where e , e

~ r p q pq p q
ik

+
(p,q = X,Y,Z) are direction cosines for the internuclear vector r ik . If

the two spins i and k are of the same species (y i = Yk ) then, truncating

ik
~ to the secular terms (terms which commute with HZ) and noting that R
is axially symmetric [11] makes Equation (1.13) become (with the Z axis

along the main field)

~ = +

+

where

(1.14a)

(1.14b)



= - (1.15 )

10

In Equation (1.15) the angle 8ikZ is between the internuclear vector

+
r ik and the laboratory z axis. For Equation (1.14) we have introduced

the well known raising and lowering (or "ladder") operators:

I+k
= I

Xk
+ iIyk (1.l6a)

I_k I - iIyk (1.l6b)xk

i = 1=1.

For liquid crystal samples we will see that the angular part of Equation

(1.15), averaged over all molecular orientational possibilities, becomes

what is known as"the ordering tensor [12]. ik
The DZZ of Equation (1.15)

is in a space fixed axis system. For liquid crystals, transformation to

a molecular axis system will be required. For an isotropic liquid (or a

gas), <3cos
2

SikZ - 1> vanishes and dipolar interactions are not observed.

We note here that there exists effectively two definitions of the coupling

teasor D
ik

in the literature. These definitions differ only in the use
""

of PZ(cosS) or 2P2 (cosS) for the angular portion of Equation (1.15) where

PZ(cosS) is the second legendre polynomial. We will consistently use

ik
the larger of the two forms of D and attempt to make note of any

""
conversions required to relate couplings to literature values.

When the spins i and k are different nuclear species, then the

secular part of Equation (1.13) becomes

I
i<k

D
ik

I SZZ zi sk' (1.17)



1.2.5 The Indirect Spin-Spin Hamiltonian

The interaction of Equation (1.12) is the "through space" or direct

energy of spins in the magnetic field of neighbors. In addition, there

is a "through bonds" or indirect interaction in which a nucleus feels

the presence of its neighbors via the interactions each has with the

electrons making up their common chemical bonds. This is given by

11

(1.18)

Although the form of H
J

is similar

ikseveral differences exist. Whereas R
the isotropic average,

to Hn given in Equation (1.13),

is traceless, Jik is not, and

(1.19)

is the quantity measured as the "scalar" coupling in high resolution NMR

of liquid samples.
ik

Also, J may have an antisymmetric component, but

this cannot be measured in NMR [13]. The total indirect spin-spin

Hamiltonian, for like spins i and k, may be written

L ik +1. (Jik ik
+ I .1 k)}HJ

= UZZIziIzk + JyyHI . I k
i<k 2 XX XJ. X yJ. Y

L -+ -+ +1. (Jik ik -+ -+
HJ {JikIi·Ik + Jyy) (31 .1 k - Ii·Ik)}

i<k 2 XX ZJ. Z

(1. 20a)

(1. 20b)

where Equation (1.19) has been used. Equation (1.20b) is sometimes

rewritten in the forms

\' -+ -+ aniso -+ -+
L {J·kr.·Ik+J· k (31.1 k-r.·Ik)}

i <k 1 1 J. ZJ. Z 1
(1. 20c)



aniso ikThe quantity J ik above is usually much smaller than DZZ . Because

it multiplies spin operators in the same form as the dipolar Hamiltonian,

Janiso is sometimes referred to as the pseudo-dipolar coupling. For
ik

aniso ikliquid crystals J ik cannot be measured independently of DZZ by NMR,

but may be estimated from theory or from a model for the D~~ values.

1.2.6 The Chemical Shift Hamiltonian

The chemical shift interaction in nuclear magnetic resonance arises

from the screening affect the electrons surrounding a nucleus have on

the external mag~etic field it experiences. Methods exist for calculating

or estimating its value theoretically but will not be required in this

work. The chemical shift Hamiltonian is presented here partly for con-

sistency, but also because an important consideration for multiple

quantum NMR as a high resolution technique has its origin in the "inter-

ference" of the chemical shift and dipolar Hamiltonians.

The chemical shift takes the form of a product of the second rank

-+ -+
tensor ~, the first rank spin operator vector I. and H (once again taking

z to be along the main field),

L -+ -+
(1. 21)H = y I·Q.·Hcs i i -

L i (secular term),y iaZZ1zHO
i

i iwhere a
ZZ

is the ZZ component of the tensor g for spin i. Often, the

12



i
product YiHO is included in aZZ so that H

cs
ispin-spin coupling, a is not traceless and

:::::

tropic component:

= ~ a~zIZi. As with the

i . iaZZ may conta1n an an so-

13

H
cs

where

1.2.7 Summary of the Spin Hamiltonian

a , •
1

Collecting all the interactions written above into the total spin

Hamiltonian, we have

In the rotating frame and under the high field approximation:

- wl(t)[cos(~(t))I + sin(~(t))I ]
x y

+ L nik
[I .1 k

1
(1+i1_k + 1_i1+k )]

i<k ZZ Zl. Z -4

L
ik +1:- (Jik + 'k

+ UZZlzilzk J~)(1+iI_k + I_iI+k )}·
i<k 4 XX

Equation (1.23a) is sometimes written

(1. 22)

(1.23a)

+ L azizI . - wl(t)[cos(~(t))I + sin(~(t))I ]
i Zl. X Y

(1. 23b)



i
\' eqQ {[ 2 2 2

+ l. 41 (21 1) 31. - 1. (1. + 1)] + n (I . - I .)}
i i i- Z].].]. x]. y].

It is often assumed that the asymmetry parameter for the quadrupolar

Hamiltonian is small, i.e., that this tensor is axially symmetric. For

alkyl deuterons, the case of interest here, n is about .01 and this is

a good assumption. If we also assume that the anisotropic parts of the

chemical shift and spin-spin couplings are negligible, Equation (1.23b)

becomes

14

H = -flwI + L cr.I . - wl(t)[cos(4>(t))I +sin(<j>(t))I ]
Z i]. ZJ. X Y

(1. 23c)

where the definitions of the isotropic chemical shift and scalar coupling

have been used. Often, the ZZ subscript on the dipolar term is dropped

and the coupling is denoted simply as D
ik

. This will be adopted hereto-

fore except when the distinction of a particular component of the dipolar

tensor is required.

All the NMR measurements analyzed in this work were taken with

liquid crystal samples in a nematic mesophase. As we shall see, a liquid

crystal is like a polycrystalline sample of rigid molecules in some

respects but quite different in others. For one, the relation between



known or desired quantities of the molecules and the NMR spectrum is

complicated by the need to average over a number of inter and intra­

molecular motions. Generally, the "ordering tensor" elements or

"motional constants" are introduced to describe the average orientation

of molecules with respect to some laboratory axis system. The elements

of such an order tensor are actually the results of various transforma­

tions required to give the lab frame components of Equation (1.23c). We

shall show how the symmetry properties of a uniaxial nematic liquid

crystal reduce the number of elements required in the order tensor.

Molecular symmetry will also become important in this consideration.

1.3 The Energy Level Diagram for Liquid Crystals

In Equation (1.23) we have written out the Hamiltonian for a collec­

tion of N spins •. In a non-dilute solid sample, N will be very large and,

in general, none of the individual allowed transitions will. be resolved.

The usual approaches in this case include isotopic dilution or selective

averaging to remove the largest contributions to line broadening. With

liquid crystals (and molecules dissolved in a liquid crystal solution)

nature does a good deal of averaging of the quadrupole and dipole terms

to yield a spectrum with structure.

Liquid crystalline mesophases are generally characterized by some

degree of long range order [16-18]. There are several types of meso­

phases which occur for thermotropic liquid crystals. Two of these are

shown schematically in Figure 1.1. For the nematic mesophase, the long

range order consists of an angular correlation of the long axes of the

molecules. The preferred direction of these long axes is described by a

unit vector called the "director". Smectic phases have a similar align­

ment of the director but in addition order into layers as shown in

15
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XBL 818-1765

Figure 1.1

Pictorial representation of the two common thermotropic liquid

crystal phases. Liquid crystal molecules are viewed as rod-like particles

whose long axes are preferentially aligned with respect to the crystal

director, n. In a), a nematic phase is depicted in which there is only

this angular correlation of molecular long axes. In b), a smectic A

phase is shown. In addition to an angular correlation, one translational

degree of freedom for the center of mass of each molecule is correlated

with the ensemble. Molecules then become ordered in planes as shown.
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Figure 1.1. There is rotational symmetry about the director in the

nematic phase which means that it is uniaxial. All of the NMR spectra

taken in this work are in the nematic or isotropic phase and so further

discussion will be directed to these phases.

When there are no external constraints on a nematic liquid crystal,

the long axes of individual molecules and the director are not always

colinear but fluctuate in relative orientation. The long range order

6
extends over domains of many molecules ( 10). This order only consists

of angular correlations with complete freedom of translational diffusion

for the molecules (at least on the NMR time scale). When the nematic

crystal is placed in a sufficiently high magnetic field, the director

becomes aligned along the field direction. This is a result of the

anisotropy of the magnetic susceptibility. The free energy for this

interaction is (18]

17

where

F (1. 24)

is the susceptibility anisotropy. The angle a is between the director

-+
and R

O
. For nematics studied in this work (and indeed most thermotropics),

~x is positive which means the minimum free energy contribution occurs

-+
with the director along R

O
. For liquid crystals, this contribution is

significant when compared to the thermal energy and so the director be-

-+
comes aligned along R

O
.

When a small molecule is dissolved in a nematic solution it experi-

ences the local potential of the liquid crystal matrix. If the molecule



is not completely symmetric itself, then clearly it will also seek a

minimum free energy situation in which it orients with respect to the

director. Unlike an isotropically tumbling molecule, interactions such

as the quadrupolar and dipolar Hamiltonians will be present. Because the

molecule is free to diffuse, intermolecular interactions are averaged

away and the NMR spectrum displays only the intramolecular couplings.

Even for a molecule which is highly symmetric, for example, a molecule

with tetrahedral symmetry, dipolar and quadrupolar couplings have been

observed in the NMR spectrum [19,20]. The exact mechanism for the

ordering in this case is a matter of debate in the literature [21-23].

A generalized picture of the nuclear spin energy level diagram is

shown in Figure 1.2. For the liquid crystal case the number of inter­

acting spins, N, refers to those of each molecule in the ensemble. The

major splittings shown are from the Zeeman interaction. Each set of

states with a common total magnetic quantum number, M, is termed a

Zeeman manifold. Without the perturbations of HQ, ~, H
J

, and Hcs ' the

states of one Zeeman manifold are degenerate. If the N nuclei are all

spin ~ (e.g., protons) then the total number of states is 2
N

and each

manifold contains N!/(N/2-M)!(N/2+M)! states. The extreme energy states

correspond to the situations in which all spins are aligned with or

against the external field. There are a total of N+ I manifolds and,

if N is odd, the M= 0 manifold does not exist.

1.4 Multiple Quantum Transitions in NMR

The "golden rule" of time-dependent perturbation theory states the

probability per unit time that a perturbation V induces a transition from

state s to state k is given by [24]

18



M =_N
2
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N=-+12

a

N"2-----------

XBL 7710-10022

Figure 1.2

Energy level diagram for the spin Hamiltonian of a general system

of N coupled spins each with spin quantum number~. The total magnetic

quantum number, M, is the sum of the Zeeman Hamiltonian quantum numbers

+ ~ for each spin, and the large splittings are from the interaction

energy of this Hamiltonian. Smaller splittings within each group of

states with the same value of M arise from other spin interaction terms

in the total Hamiltonian. A transition from state i to j represents a

change in M of ~M = N-3. If N is odd, the group of states for M = 0

doesn't exist.



(1.25)

20

where Pf is the density of states for the final (unperturbed) states.

Referring to Figure 1.2 justifies the usual use of a delta function for

P
f

in NMR [25].

In NMR, we apply a perturbation to a sample at equilibrium by ir-

radiating it with the oscillating magnetic field of the probe coil. Thus

the perturbation takes the form of the r.f. Hamiltonian (Eq. (1.8)). The

2
transition element is then l<klI Is>1 for the r.f. field along the x

x

axis. The matrix elements can be evaluated in the usually spin product

basis set (a's and B'5) to yield the familiar selection rule that the

change in the total magnetic quantum number is one (~M=+l) for allowed

transitions. The intensity of these transitions is proportional to

Equation (1.25) is from a first order treatment of perturbation

theory. It was realized some years ago that higher order effects would

cause multiple quantum (~M~ 0) transitions [26-28]. These non-linear

effects were first demonstrated in the continuous wave observation of

double quantum transitions in ethanol [29]. The technique has been used

in the elucidation of spectral assignment of liquids [27].

The development of multiple quantum c.w. NMR was hampered by the

technical difficulties associated with creating and observing this non-

linear phenomenon. In addition, the strong r.f. fields required perturb

the spin system in a manner that must be theoretically accounted for.

The advent of pulsed Fourier transform techniques allowed the development

of multiple quantum NMR without these problems. Theoretically, rather

than dealing with photon absorption and emission processes, the FT



multiple quantum experiment can be described in terms of coherences and

formulated with the density matrix. This approach will be covered in

Chapter 3. The basics of the development of MQNMR is a rich subject and

has been dealt with in an excellent review by Bodenhausen [30].

Referring to Figure 1.2, some of the terminology which will be used

throughout this work can be defined. A multiple quantum "order" refers

to all those transitions for which M changes by some integer. Thus, the

zero quantum, one quantum, two quantum, ••• , N quantum orders refer to

transitions for which M = 0, ~l, ~2, •.. , ~N, respectively. Usually,

the term single quantum will be used to mean the "normal" NMR spectrum

although occasionally the one quantum order of a multiple quantum experi-

ment may be meant. The only major differences between the two for this

work will be in how the spectrum was obtained and thus the relative in-

tensities of the single quantum lines.

Finally, a few words about the number of transitions expected for

each order and the information content of the higher orders. The number

of states in each Zeeman manifold is

21

N!
N N(2- M)! (2+ M) !

(1. 26)

where the common symbol for the binomial coefficient has been used.

Thus, except for the zero quantum order and assuming no molecular sym-

metry, the number of p quantum transitions is given by

N-p (N) (N)
k~O k k+p ,p = 1, 2, •.• , N

This is equivalent to the following expression [31].

(1.27)



II p quantmn transitions = ( 2N) , p 1: 0
N-pi

Also, for the zero quantum transition,

Number zero quantum transitions = ; [(~N) -2
NJ.

(1. 28a)

(1. 28b)
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Using Sterling's approximation and an expansion for in (1 + x), for large

N Equation (1.28a) can be approximated as

2
-p IN

e , p 1,2, ..• ,N. (1.29)

Thus we see that the number of transitions expected from a set of coupled

spins with no symmetry has a Gaussian distribution with order.

The extreme states shown in Figure 1.2 have a special property.

The bilinearity of spin operators in the dipolar, quadrupolar and spin-

spin Hamiltonians given in Section 1.2 means that these states will only

experience the smn of these interactions for all spins. For example,

for N protons the extremes states correspond to all spins in either the

a or the B state. The dipolar Hamiltonian matrix elements are

<a (1) ••• a (N) 'I1J Ia (1) ••• a (N) > <S(1) .•• S(N) 'I1JIS(1) .•• S(N»

The chemical shift and Zeeman Hamiltonians are linear in spin operators

and so a flip of all spins corresponds to a change in sign of the matrix

elements. These matrix elements are

<a(l) ••• a(N)IHZ+H la(l) ..• a(N»cs

-<B(l) •.. B(N) IH
Z

+ H I B(1) ••• B(N»cs

1 N
2

(Nt.w - L0.).
. 1
1



As a consequence, the N quantum transition contains information only on

the Zeeman offset ~w and the sum of chemical shifts:

23

N
E_N = N~w - L0i·

i2

(1.30)

Equation (1.30) makes the important statement that complete removal of

the dipolar interaction is effective in the observation of the N quantum

transition. Thus the N quantum spectrum is similar to that obtained

from the multiple pulse selective averaging technique known as WAHUHA

[32] without reducing the chemical shift interaction.

To obtain information on the dipolar and spin-spin couplings, one

has to consider the transitions of order less than N. In an anisotropi-

cally ordered sample, there are N(N-l)/2 dipolar couplings, N(N-l)/2

spin-spin coupliftgs and N chemical shifts. Assuming that all lines are

resolved, the (N-l) quantum spectrum gives N frequencies and N(N-l) are

obtained from the (N-l) order. Thus, these orders generally contain

enough transitions to solve for all dipolar and spin-spin couplings and

chemical shifts. These and other counting arguments are presented in

more detail elsewhere [33].

Of course, all the above arguments apply to a general spin system

with no symmetry. Usually, molecules of interest will belong to a point

group with more than one irreducible representation [34]. Each Zeeman

manifold is factored into states of different irreducible representations.

As we shall show, ultimately the multiple quantum coherences produced

and detected in the experiments obey the symmetry selection rules for

normal single quantum NMR. The well known result from group theory is

that allowed transitions are those involving only states within the same



irreducible representation [35]. This is a result of the totally sym-

metric nature of the magnetic dipole transition operators of NMR [36].

The symmetry selection rule is written as

<ilvlj> = 0 unless

where the usual symbols representing the irreducible representations of
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Ii>, V and Ij> are used. Taking I , which is of the A representation,
x

as the transition operator for NMR, the symmetry selection rule is given

by the statement above.

The effect of molecular symmetry is two sided. On the one hand,

the selection rule stated above reduces the number of transitions in each

order and hence the available information. However, the number of unique

couplings required to solve for is also reduced by symmetry. There is

no general way to predict how many orders will have to be used for a

specific molecule without considering symmetry. For each case, the per-

mutational point group relevant to the spins will have to be considered.

The results of the group theory for the cases of interest in this work

are presented in the following chapters. It is interesting to note that

there are counting schemes which make use of the behavior of some states

under point g~oup symmetry elements to predict the number of lines

expected in the higher order spectra [37].

We have seen that the number of transitions corresponding to the p

quantum order decreases as p increases (p = I~MI). This comes about

because the higher order transitions probe the Zeeman manifolds with the

fewest number of states. The spread of energy shifts caused by perturba-

tions to HZ is roughly the same for each manifold and so the higher order



spectra contain sp1ittings similar to the single quantum in magnitude.

The result is more resolved spectra the higher the order observed. For

the experiments of this work, the nature of the quantitative information

relevant to molecular structure that is available in the high quantum

orders is identical to the single quantum spectrum. However, from

Equation (1.28) it is readily seen that the single quantum spectrum may

contain a tremendous amount of redundancy of this information for large

spin systems. The multiple quantum experiment has the effect of sampling

the single quantum spectral information and presenting the data in an

accessible manner (i.e., in the form of resolved transitions). As we

shall demonstrate in Chapters 3 and 4, the high quantum spectra, together

with a consideration of molecular symmetry, will elucidate the dependence

of transition frequencies on the molecular parameters of interest.
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Chapter 2

NMR Using Liquid Crystals

In this chapter, we present some details of the theory for NMR

experiments with liquid crystals. The results here also pertain to

solutes partially ordered in a liquid crystal solution. All the liquid

crystal samples studied are thermotropic nematogens with positive magne­

tic susceptibilities. Thus, the director is taken to be parallel to

the static field direction and the laboratory z axis.

Alkyl and aromatic quadrupole moments for deuterium are -160-180 kHz

and deuterium spectra from isotopically labeled nematogens are typically

about 50 kHz wide. The scaling, as we show below, is due to the imper­

fect ordering of molecules in the matrix. The typical strength of the

dipolar interaction for protons is 100 Hz to 10 kHz yielding a spectral

width of -10-100 kHz. Chemical shift values and scalar couplings are

usually about the same size as their isotropic values. Indeed, they are

quite often fixed at the latter during spectral analysis.

For asymmetric molecules as solutes in a nematic sample, proton

linewidths are typically a few hertz wide. This means, with a small

number of coupled spins or high enough molecular symmetry, most transi­

tions will be resolved in the single quantum spectrum and an analysis

may be possible. As an example, consider the highly symmetric six spin

system for the proton spectrum of benzene dissolved in a nematogen. This

is shown in Figure 2.1. The top trace is the benzene spectrum taken

with a single pulse Fourier transform experiment under conditions of

moderate field homogeneity. The center trace was produced by applying a

two dimensional spin echo sequence [38]. Use of the spin echo technique
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Figure 2.1

Proton IDtR spectra of benzene dissolved in a nematic liquid crystal.

The top trace was obtained from a single pulse IT IDtR experiment under

conditions of moderate field homogeneity (-.5 ppm). The middle trace

demonstrates the enhanced resolution obtainable when a two-dimensional

spin echo pulse sequence is used. A theoretical stick spectrum is shown

at the bottom.
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has removed line broadening due to magnetic field inhomogeneity. Also

shown in the figure is a theoretical stick spectrum fitting the experi­

mental frequencies. Because there are no chemical shift differences,

the spectrum appears symmetric about its center. With complete resolu­

tion of all lines as shown in the center trace, all dipolar and scalar

couplings can be determined. Perhaps the most complicated spectrum

studied to date by single quantum NMR is that from the 10 spin spectrum

of partially oriented ortho toluene [46].

As we shall see in Chapter 4, the proton spectrum of a pure liquid

crystal is generally not as well resolved as benzene. Without isotopic

substitution the number of protons per molecule is large and, with the

higher degree of ordering, individual transition linewidths are greater

than for solutes. The result is a large number of overlapping lines in

the spectrum. Without a sufficient number of fully resolved peaks, the

proton spectrum is usually intractable and no analysis may be possible.

Deuterium NMR of labeled liquid crystals has been somewhat success­

ful in yielding quantitative information on ordering [39-44]. For

example, methylene deuterons on an alkoxy or alkyl chain segment of a

liquid crystal will give a resolved doublet [43]. Linewidths may be

approximately 0.1 to I kHz, but splittings are 10 to 100 kHz. If the

chain were allowed only to exist in an all trans configuration, all the

methylene resonances would be related simply and contain the same infor­

mation about ordering. Usually, one can assign individual resonances to

specific segments [43] and it is possible to learn about conformational

statistics. Dipolar splittings can be observed in a spectrum but are

usually small due to the small deuterium dipole moment. Proton spectra

are much richer in structure [39] than their deuterium analogs. In
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addition, higher sensitivity and greater precision of structural informa-

tion make proton NMR of liquid crystals attractive. Alkyl chain solutes

partially oriented in a nematic liquid crystal have been studied by

multiple quantum NMR [45].

Before going on to discuss the method of obtaining structure and

ordering information from liquid crystal spectra, we pause now to review

rotations of cartesian and spherical tensors. The results of the next

section are relevant to the definition of an order tensor for a nematic

sample and also apply to the spin tensor portion of the interaction

Hamiltonians described in Chapter 1.

2.1 Coordinate Transformations for Tensors

The mathematical details of coordinate transformations for tensors

are covered in a number of texts [7,8]. We give here only a brief summary

of the results necessary for our purposes. The equations below will be

useful for coordinate transformations of both the order tensor and the

irreducible tensor representations of the spin Hamiltonians.

2.1.1 Cartesian Basis

In Chapter 1 we have given the interaction tensors in cartesian co-

ordinates. To perform a rotation of tensor A,

29

A A A
xx xy xz

A = A A A
"'" yx yy yz

A A Azx zy zz

(2.1)

to ~R, we apply the transformation matrix ~,

(2.2)
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If A is real, as in the case of the interaction Hamiltonians of Chapter
;:::;

1, ~t = ~-l. The usual convention is to break the transformation up into

rotations about cartesian axes with Euler angles Q = a, S, y [8]. The

rotations are as follows. Rotate by angle a about the z axis to the

intermediate frame x', y', z'. Rotate about y' by angle 13 to the frame

x", y", z". Finally, rotate about z" by angle y to the transformed axis

system

(2.3).

x'" , y"', z"'. The complete rotation matrix is given by Equation

R

(

cosacosScosy-sinasiny

-cosacosSsiny-sinacosy

cosasin6

sinacosScosy+cosasiny

-sinacosSsiny+Cosacosy

sinasinS

_sinSCOSY )

-sinSsiny

cosS

(2.3)

2.1.2 Spherical Basis

In the previous section, we have written the second rank tensor A in

cartesian coordinates for Equation (2.1). An alternate approach, and one

convenient when considering several rotations of tensors, is to express A
;:::;

in a spherical basis. One can then make use of the properties of ir-

reducible spherical tensors to simplify calculations. Irreducible tensor

methods and rotational properties of tensor operators are subjects

covered in several texts, for example those by Rose [8] and Silver [7].

Only the results necessary for our analysis will be reviewed here.

Each of the interaction Hamiltonians of Chapter I can be written in

the form of a scalar product of tensors:

-+ -+
H = X·A·Y

~
A..X.Y

j1.J 1.
(2.4)

-+ -+
where X and Yare first rank tensors (vectors) and A is second rank.

~



To use a spherical basis instead of the cartesian basis of Equation (2.4),

we make use of the scalar product of two irreducible tensors with compo­

nents Ak and T
k

q q'
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k

L
q=-k

(2.5)

In Equation (2.5), the integer k ~ 0 is the rank and each tensor has

(2k+ 1) elements specified by q = -k, -k+ 1, ... , +k. In general, the

Hamiltonian can be written as contributions from zero, first, and second

rank tensors so that Equation (2.4) becomes

H
2 k
L L

k=O q=-k
(2.6)

We must now relate the irreducible tensors of Equation (2.5) to the

cartesian components in Equation (2.4). In terms of the cartesian
.

components (T ,T ,T ), we can write the elements of the first rank ir­
x y z

reducible spherical tensor as

T1
= T

0 z

1 +(l/I2)(T + iT ),T+1
=

x- y

and similarly

Al A
0 z

1 +(l/I2)(A + iA )A+1
=

x- y

(2.7a)

(2. 7b)

(2.8a)

(2.8b)

To find the elements of a second rank irreducible tensor, we make

use of the product rule for two commuting tensors of rank k' and kIf:



Tk, ij = {Tk' ,i X Tk " ,j }
q ~ ~

L C(k 'k"k q' q_q') Tk ' ,i
k" .

= T ,J (2.8)
q' " q' q-q'

where the C coefficients are the Clebsch-Gordon coefficients. In

Equation (2.8), we have introduced the superscripts i and j to indicate

the tensors involve different parts of the system. For example, in the

dipolar Hamiltonian, i and j refer to a particular nuclear pair.

Multiplying the first rank tensors of Equation (2.7b) gives the

result [47]:

TO,ij 1 [Tl,iTl,j Tl,iTl,j + Tl , iTl ,j] (2.9)=-

° /3 +1 -1 ° ° -1 +1

Tl,ij 1 [Tl,iTl,j Tl,iTl,j]=-
+1 /3 +1 ° ° +1

rl,ij = ...!.. [Tl , irl ,j rl,irl,j]

° 12 +1 -1 -1 +1

rl,ij 1 [rl,iTl,j Tl,irl,j]=-
-1 fi -1 ° ° -1

T2 ,ij = rl,irl,j
+2 +1 +1

r 2 ,ij 1 [r1 ,ir i,j + r 1 , i r 1 ,j]=-+1 fi +1 ° ° +1

r 2 ,ij 1 [r1 ,ir l,j + 2rl ,ir l,j + rl,irl,j]=-

° 16 +1 -1 o 0 -1 +1

r 2 ,ij 1 [rl , irl ,j + rl,irl,j,=-
-1 /2 -1 0 o -1 J

r 2 ,ij r l ,irl,j .
-2 -1 -1

Similarly, for the tensor A2,ij in terms of the cartesian components
~
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of Equation (2.1) we find, from the product of first rank tensors (see

Equation (2.8»),

33

AO,ij = -1 Tr(Aij) 1 (A
ij

+ A
ij

+ Aij )=

° /3 ~ 3 xx yy zz

Al,ij 1 [Aij _ Aij
+ i(Aij _ Aij ) ]=

+1 2 zx xz zy yz

A1 ,ij 1 [A
ij _ Aij ]=

° /f xy yx

A1 ,ij 1 [Aij _ A
ij

i(A
ij _ Ai j )]= -2" --1 zx xz zy yz

A2 ,ij 1 [Aij _ A
ij

+ i(Aij
+ Aij ) ]= -

+2 2 xx yy xy yx

A2 ,ij 1
[A

ij
+ A

ij
+ i(A

ij
+ Aij )]= -2"+1 xz zx yz zy

A2 ,ij = +l [Aij
+ A

ij - i(Aij + Aij )]
-1 2 xz zx yz zy

A2 ,ij 1 [Aij _ A
ij i(Aij + Aij )].= - --2 2 xx yy xy yx

As an example particularly useful for our purposes, consider the

(2.10)

dipolar Hamiltonians for like spins i and j. From Chapter 1, the ele­

ments of the dipolar tensor D
ij

are
~

+ + 3
= +y i Y • (IS - 3e • e ) / r •j' p, q = x, y , z •

J pq P q 1

The dipolar Hamiltonian may be considered as a scalar product of two

(2.11)

second rank tensors. The elements in Equation (2.11) make up one tensor

+ +
and, combining the spin operators, Ii and I j , we have the other. Re-

calling that Dij is traceless and symmetric, we get for the components
~
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of the two tensors,

AO,ij A1 ,ij 0
0 0,~1

AZ,ij = .l- Oij
0 /6 zz

AZ,ij = + (Oij + ioij )
+1 xz yz

AZ,ij 1 (Oij Oij + ZiDij )= - -+Z Z xx yy- xy

TZ,ij = .1.... [ZIiIj + i j + i j
0 16 0 0 1+11_1 1_11+1 ]

TZ,ij 1 i j + i j
+1 = 12 [1+110 101+1 ]

TZ,ij = .1.... [Ii I j + IiIj ]
-1 12 -1 0 o -1

TZ,ij i j
= 1+11+1+Z

TZ,ij = Ii I j
-Z -1 -1

In Equation (Z.13) the first rank spin operators

Ii I zi0

i 1 iIyi )1+1 = - - (I +12 xi

Ii 1 - iI )= + 12 (Ixi-1 yi

(Z.lZ)

(Z.13)

(Z.14a)

(Z.14b)

(Z.14c)

have been introduced. From Equation (Z.ll), the spatial elements can be

related to the spherical harmonics y~ by
m



A2, ij
q

= -
y.y.h

16 1. J
3

r ..
1.J
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(2.15)

If Equations (2.12) and (2.13) are combined according to Equation (2.6),

we obtain the full dipolar Hamiltonian. Finally, we note that the sec-

ular truncation of ~ is equivalent to keeping those terms in the pro­

ducts A
2
T2

corresponding to q = O. This is a result of the commutation
q -q

relations of the angular momentum operators and irreducible tensor opera-

tors [47]:

(2.l6a)

k
= qT •

q
(2.l6b)

Now that we can write Hamiltonians in terms of irreducible tensor

operators, we turn to the question of rotations. .The coordinate trans-

formation of an irreducible spherical tensor is given by

= RT~t = L
~ q~ q'

(2.17)

k
where the D , eQ) are elements of the Wigner rotation matrix and Q =

q q

(a,S,y) is the set of Euler angles for the rotation. Properties of the

Wigner rotation matrix, together with a description of how to calculate

k
the elements D

4
'q(Q) can be found in the texts by Silver and Rose.

2.2 Order Parameters

We can now proceed to discuss the situation of an ensemble of aniso-

tropically ordered molecules such as found in a liquid crystal. If only

rigid molecules are considered, the Hamiltonian will contain an average

over the orientation probability distribution of the ensemble. If a



number of conformations are possible for each molecule, then the

Hamiltonian will also have to reflect an average over these, each

weighted by a conformational probability. The probability distribution

for orientations is then a function of the conformational states of the

molecules. Roughly speaking, this takes into account the possibility

that each conformation may orient differently. Approximations, based

on arguments for the relative time scales for reorientation of the entire

molecule and conformational cha~ges, are often introduced to reduce the

number of parameters required to describe the ordering of the ensemble.

For the time being we will ignore such time scale arguments and assume a

conformationally dependent probability distribution for ordering. Later,

after introducing the Saupe order tensor, the question of separation of

averaging for reorientation and conformational change will be re-examined.

The problems with time scale arguments will be addressed and the approach

for choosing a molecular axis system will be discu~sed.

2.2.1 Coordinate Transformations for Liquid Crystal Interactions

In Equation (2.6) we give the Hamiltonian as a scalar product of ir-

reducible tensors. This equation is valid for a rigid molecule (or a

knon-rigid molecule in a single conformation) where the tensors T ,
"'"

describing the spin portion of H, and Ak , describing the spatial part,
"'"

are related to some space fixed axis system. More rigorously, for an

ensemble of non-rigid molecules, we must include the contribution from

each conformati~n a3 expre3sed below.

36

2 k
H = ~ ~

k=O s=-k
(2.18 )



37

In Equation (2.18), the subscript n specifies a particular conformation

with probability of occurring F. We have used the superscript L to
n

indicate that we measure the spectrum in the lab frame. For the most

general case, four coordinate systems and three transformations have to

be considered to relate the microscopic molecular properties to lab frame

tensor components. The axis systems and rotations are shown schematically

below.

[

PAS

(X,Y,Z)

M

(x,y,z)

D Jn"
(x' y' z') ----+

" n

L
(x",y",z")

where the rotations involved are:

(1) n : Rotate from Principle Axis System (PAS) to a moleculen fixed system (M).
,

(2) n : Rotate from M to the director axis system (D) .
n

(3) n": Rotate from D to the lab frame (L). .

Rotations (1) and (2) with Euler angles (a , S , y ) and (a', S' y')n n n n n' n'

respectively, have to be done for all allowed conformations. The results

are collected with the appropriate weights F and the final rotation,
n

n", performed.

Starting with the interaction Hamiltonian in the principle axis

system, the rotations for the spatial portion of Hare:

a) from PAS to M

(Ak)M ~
k

(Ak) PAS Dk (n ),Iq n p=-k p n pq n

b) from M to D

(Ak)D ~
k

(Ak)M Dk (n')Ir n q=-k q n qr n'

(2.19a)

(2.19b)
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c) from D to L

k

I
r=-k

(2.19c)

The spin operators, T
k

are invariant to these rotations with spa­
s'

tial Euler angles. Combining Equations(2.l9) and (2.18) we have for the

interaction Hamiltonian

H = I
ks

I
nqp

(2.20)

where the superscript L on the spin operators has been dropped for

brevity. Equation (2.20) is valid for a single orientation of the mole-

cule fixed axis system relative to the director frame. Actually, there

is a distribution of orientations described by the function p(Q'). This
n

function is usually expanded in terms of the generalized spherical

harmonics [48]

P (Q')
n

(2.21)

formation by the symbol n.

In Equation (2.21), we have explicitly indicated the dependence on con­

The Ck (n) are independent of Q' (but not of
~v n

the conformation) and are known as the generalized order parameters or

"motional constants" [49]. The average of the rotation matrix relating

molecular and director frames is then

<D
k

(Q'»
qr n = f P(Qn') Dk (Q')dQ'.qr n n

(2.22)

Making use of the relation for conjugates of the nk(Q) ,

(2.23)



and the orthogonality of the Wigner rotation matrices, we have
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<D
k fQ'» =qr' n (2.24)

We finally get for the general (averaged) interaction Hamiltonian

H = L
ks

(2.25 )

We can begin to make reductions in the complexity of Equation (2.25).

First, the interactions most important to the study of liquid crystal NMR

are of rank two (e.g., dipolar and quadrupolar). Also, the usual high

field approximation allows us to neglect terms for s ~ O. The result is

H T
0
2 LD

r
2

0
(Q") '\ F (-1) l-q C2 (n)

L n -q-r
r nq

(2.26)

Thus we see that there are 25 (complex) order parameters (for

q = -2, -1, 0, 1, 2 and r = -2, -1, 0, 1, 2) required to describe the

ordering for every allowed conformation. Henceforth, we will replace the

final summation over p in Equation (2.26) with the tensor components in

the molecule fixed axis system, (A2)M, and leave off the superscript M.
q

This seems reasonable for the dipolar interaction where we can choose a

molecule fixed axis system according to symmetry to reduce the number of

order parameters. The dipolar interaction in its PAS is given by

ij -3D ~ (r
i

.) and, applying the rotation of Equation (2.19a), we arrive
aa J

at nij given in Chapter 1 and Equation (2.11).
"'=

If we now consider the symmetry of a uniaxial nematic liquid crystal

we can reduce the number of order parameters required. The uniaxial



nature of the phase means that pen') (and the spectrum) are invariant

to rotations about z' of the director frame by angle y'. Thus, r = a and

we only have five order parameters for each conformation. The first

2
rotation matrix of Equation (2.26) then reduces to DOO (0, 8", 0) where

8" is the angle between the director frame z' axis and the magnetic

field. Nematic mesogens order nearly perfectly so that 8" = O. This

may be a poor approximation if used for smectic phases with large tilt

angles [48]. With these uniaxial properties, Equation (2.26) becomes
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H = T~ L
n

2.2.2 The Saupe Order Tensor

F
n

(2.27)

An alternate description of order for a uniaxial liquid crystal is

offered by Saupe [50]. In the high field approximation an NMR

experiment measures the component of the Hamiltonian parallel to the

main field. Considering just a single conformation in an ensemble of

rigid molecules for now, the transformation of a second rank interaction

tensor from lab frame to molecule fixed axis system is given by

(2.28)

~ is the lab frame component of ~ parallel to the field (z" direction).

In Equation (2.28) the elements of a traceless, symmetric tensor Shave
~

been introduced,

I
S,..a = - <3R. R. - <5 >

'-"I-> 2 a S as
(2.29)

where R.
a

, R.
S

are the direction cosines between the molecule fixed axes

a,S and the field direction. In Equation (2.29), the angle brackets imply

an average over an orientational distribution function similar to that in



the last section. Equation (2.28) may be rewritten
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. ,_21Z
"" Al.SO _

, 3
as

where

(2.30 )

Aiso ::: 1.. Tr (A) = 1
3

(A + A + A )
3 ~ xx yy zz (2.31 )

is the isotropic average of the tensor. Re-introducing the dependence

non conformation n, the elements of S may be related to the motional
~

constants of the last section by

2 1 2= <000 (n~» = "2 <3cos S~ - 1>

= 13 <sin2S'cos2a'>
2 n n

~

= -i(~) <D:20(n~) - D~o(n~»

= 13 <sin2S'sin2a'>
2 n n

13
= -- <sin8'cos8'cosa'>2 n n n

13
= -- <sinS'cosB'sina'>2 n n n

(2.32a)

(2.32b)

(2.32c)

(2.32d)

(2.32e)

n
As an example of the use of S , the contribution to the lab frame

~

thdipolar coupling between spins i and j from the n conformation can be

written:



n
D •.
~J

= __-::-y_i_Y....j h__
2 3

4rr (r
i

.)
J n

n 2
{S (3cos e.. - 1)

zz ~J z n
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(Sn n)(2 2)+ -S cos 8i . -cos 8 ..
xx YY JX ~JY n

n n+ 45 (cosS .. COsS i .) + 48 (cosS .. cosS .. )
xy ~]X JY n xz ~JX ~JZ n

n+ 4S (cos8 i . cos8 .. ) },yz ]y ~JZ n (2.33)

where cos8 .. , p = x,y,z are the projections onto the molecule fL~ed axes
~JP

of a unit vector pointing from nucleus i to j and r ij is the internuclear

distance.

From the form of Equation (2.32) it is clear that the number of order

parameters actually affecting the spectrum will be determined by molecular

symmetry and the choice of molecular axes. The number of order parameters

required for different molecular point groups is g~ven elsewhere [51].

For example, the rigid molecule benzene, with D6 symmetry for the proton

spins and the z axis chosen along the six-fold axis, requires only S .zz

We find it convenient to use Equation (2.33) when actually calculating

coupling constants in Chapter 4.

Now, using the probability for the occurrence of conformation n. F ,
n

the lab frame measurement can be written as

(2.34 )

2.3 The Influence of Internal Motions on Molecular Ordering

In the last section we have demonstrated that, for molecules with no

symmetry experiencing the ordering potential of a uniaxial liquid crystal,



the NMR spectrum will be sensitive to five independent order parameters

for each conformation, weighted by conformational probabilities. Only a

few assumptions have been made in arriving at this result. First, the

correlation times for all types of molecular motion, including intra-

molecular vibration and rotation as well as reorientation, are assumed

to be short compared to the inverse of the largest contribution to the

interaction tensor involved. This is certainly a good approximation for

NMR of liquid crystals. Reorientational correlation times for liquid

crystals are usually shorter than a nanosecond. In contrast, quadru-

polar and dipolar interactions for common nuclei observed in NMR are
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6 -1typically 10 to 10 sec Thus, the Hamiltonian reflects an average

over intramolecular and reorientational motions.

The second assumption implicit in Equation (2.27) and (2.34) in-

volves the manner in which the conformational average is treated. The

use of a summation over conformational states impl~es that molecules

exist for some time in well defined configurations which rapidly inter-

convert. This may be reasonable when the potential barriers involved

are high and only states at the minima are appreciably populated. If

this is not the case then, in principle, the summation over conforma-

tions may be replaced with an integration over a continuous motion or an

ensemble average of quantum mechanical states. The summation is also

usable, though perhaps not physically meaningful, when a continuum of

conformational possibilities are related through molecular symmetry.

This point will be discussed when considering oriented biphenyl groups

in Chapter 4.

The most general approach in spectral analysis makes use of Equation

(2.27) or (2.34) which contain only the approximations already mentioned.



The motional averaging in Equation (2.34) may be rewritten as
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<5 A >as as int,mole' (2.35)

where the complete averaging includes both internal motion (int) and

motion which reorients the entire molecule (mole). In an attempt to

reduce the number of parameters in a model used to analyze a spectrum,

further approximations to Equation (2.35) are often made. A separation

of the averaging of 5 and A is sometimes assumed based on arguments for
::::::: :::::::

the relative time scales for reorienting and internal motions [18]. Two

extremes may be considered. The time for which a molecule is correlated

with a particular orientation Q' relative to the director is denoted

T 1. The conformational states are characterized by a correlation timemo e

T. • In the first extreme conformational changes occur faster than al.nt

molecule can reorient (T. «T ). A single o~der tensor should then
l.nt mole

describe the average orientation for all conformations:

<5 > <A >as mole as int
(2.36 )

The distribution function, P(Q'), is then independent of conformation.

This implies that the intermolecular potential determining orientations

only depends on n' [52]. In the other relative time scale extreme

(T «T) when a molecule changes its conformational state, it ismole int '

highly probable that it will completely reorient before undergoing another

change of conformation. For this case, each conformation must be de-

n
scribed by a separate order tensor ~ as in Equation (2.34). The inter-

mediate situation, for which T. - T l' corresponds to replacing thel.nt me e

discrete summations of Equation (2.27) and (2.34) with a treatment for

continuous internal motion.



In an approach similar to the assumption Tint « Tmole ' the average

of Equation (2.35) is separated by assuming a non-rigid molecule is

composed of rigid subunits with relative rotations making up the con-

formational changes [54]. Each rigid subunit i is described by its own

order tensor, SCi). If the relative timescales allow a separation of
~

internal and reorientational averaging, then the SCi) will be related to
~

a single S for the entire molecule. Otherwise, the SCi) will be
~ ~

independent.

There seems to be no body of well founded experimental evidence to

support the simplifying assumption Tint «Tmole . For large amplitude

motions resulting in geometrically dissimilar configurations it is

reasonable that the orientation distribution function pen') will be at

least weakly dependent on internal coordinates. Indeed, there are many

examples in the literature in which the spectrum of non-rigid molecules

cannot be adequately explained by assuming a single order tensor inde-

pendent of conformation ([52-55] and references therein). In some cases

it has been found that observed quadrupolar and dipolar splittings in

the spectra of pure liquid crystals can only be explained by assuming a

conformationally dependent S [54]. Although it would seem that pen')
~

should be only weakly dependent on ground state vibrational modes of

molecules, even this assumption may not be appropriate when analyzing a

high resolution spectrum of oriented solute molecules. Emsley, et ale

[52] and Burnell, et ale [53] have suggested that the anisotropic

couplings observed from tetrahedral molecules dissolved in nematic

phases may be explained by a correlation between molecular orientation

and asymmetric vibrational modes.
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Thus it would appear that one must always use the more complicated

averaging procedure in Equation (1.35) to relate ~ to~. This will

present difficulties unless an adequate model exists to give the con­

formational probabilities. If, instead, these are to be determined from

an experiment, then drastic simplifications or assumptions may have to

be used concerning molecular structure. It has been suggested that a

possible approach is to carefully choose the molecule fixed axis system

to effectively "decouple" internal motions and reorientation [55]. In

some cases this amounts to finding the principle axis system for ~.

Choosing the molecule axis system in this manner may be difficult if the

conformations are not related by symmetry. The case of biphenyl discussed

in Chapter 4 demonstrates this approach.
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Chapter 3

Multiple Quantum NMR

3.1 Introduction

This chapter covers the basic theory of multiple quantum NMR. Most

of the theoretical development of this technique is found elsewhere [31,

38,56-66,69]. No attempt is made to give a complete description of all

aspects of multiple quantum spectroscopy. However, details given here

are sufficient to understand all multiple quantum spectra presented in

this and the next chapter. The radio frequency pulses used are suffi­

ciently broadband to excite all allowed transitions of the spin systems

studies. Aside from specific creation and detection of even quantum

(~M = 0, ~2, ~ ••• ) or odd quantum (~M = ~l, ~3, ~5, ... ) transitions- a

result of the bilinear spin coupling Hamiltonians - all pulse sequences

used are non-selective. Selective sequences, which produce enhanced

signals for specific multiple quantum orders, are the subject of separate

work [64,66,69,33].

As an example of multiple quantum NMR, we again consider benzene

partially ordered in a nematic liquid crystalline solution. A non­

selective proton multiple quantum spectrum of benzene in Eastman Kodak

liquid crystal #15320 is shown in Figure 3.1. All orders, from zero

quantum transitions to the six quantum, are present. Each order is

composed of a group of lines separated from neighboring orders and ex­

tending from zero quantum on the left to six quantum on the right. The

method of separating transitions by order (time proportional phase incre­

mentation) is given below.
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Partially Oriented Benzene
Non-selective Multiple Quantum Spectrum
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o

Figure 3.1

I~W 2~W 3~W 4~W 5~W 6~W

XBL 818-1766

Non-selective proton multiple quantum spectrum of benzene oriented

in the nematic phase of a liquid crystal solution. Only one half of the

total spectrum, which is symmetric about its center, is shown. Multiple

quantum transitions are separated according to Mt by the time propor­

tional phase incrementation technique. The central two and four quantum

lines (at 2~w and 4~w, respectively) have been truncated in height. The

spectral width shown is 50 kHz.



The width of each order in Figure 3.1 is equivalent to the single

quantum bandwidth and the one quantum region of that figure may be

compared (except for intensities) with Figure 2.1. The expected reduc-

tion of transition density with higher orders is seen in Figure 3.1.

For example, there is only a single pair of five quantum lines. The

origins of these and other transitions are understood from the spin

energy level diagram shown in Figure 3.2. The permutation symmetry of

benzene proton spin functions is isomorphous with the D6 point group

leading to eight irreducible representations. (Benzene also has an

inversion center making the full point group D
6h

. Inversion symmetry

only becomes important in the zero quantum spectrum.) The five quantum

analysis of this spectrum becomes completely trivial if we assume the

benzene ring has a perfectly hexagonal shape. The dipolar coupling

constants are then geometrically related by

D =3/3D =8D
ortho meta para

The coupling D h is uniquely determined by the five quantum splittingort 0

which can be shown to be independent of scalar couplings. Assuming

anisotropic indirect spin-spin couplings to be negligible, the relation

is then

49

1
2 (Dortho)

= Five Quantum Splitting
3.7649

If we assume the scalar couplings are equivalent to their isotropic

values, then all couplings are completely determined except for the

relative signs of Dij and J
ij

. An attempt to fit the spectrum with
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XBL 816-10412

Figure 3.2

Benzene spin energy level diagram. The total magnetic quantum

number for the six proton spins~ ~f~ is shown on the left hand edge.

States are classified according to the eight irreducible representations

of the D6 point group. Multiple quantum transitions are only allowed

between states in the same representation.



D h > 0 was unsuccessful and so it is concluded that dipolar couplings
ort 0

are negative. If we choose a molecule fixed axis system with the z axis

along the six-fold symmetry axis, and x, y axes in the ring plane, then

by Equation (2.33)
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s
zz

D
ortho

10::----
2 3

rortho

The proportionality is entirely determined by nuclear properties (Yproton)

and the choice of units.
o

If the usual value of r h = 2.482 A forort 0

benzene is assumed, then the five quantum spectrum gives us the (averaged)

order parameter S
zz

3.2 Theory

This section will cover the basic theory for non-selective multiple

quantum NMR experiments. A brief review of the density matrix is first

given and the most general multiple quantum pulse sequence described.

The rotational properties of the multiple quantum propagator with even

and odd quantum intensity dependence on pulse sequence parameters are

discussed. Methods for separating orders based on properties of the

multiple quantum propagator under radio frequency phase shifts are also

reviewed. Experimental examples with benzene in a nematic liquid crystal

demonstrate several outcomes of the theory.

3.2.1 The Density Matrix

It was mentioned in Chapter 1 that the finite number of states and

bound energies of a coupled nuclear spin system make the density matrix

approach 13,68] particularly useful in pulsed NMR theory. We review here

the density matrix formalism as it applies in later calculations.



The wavefunctions {~} which are solutions to the quantum mechanical

Schrodinger equation may be expanded in a complete (orthonormal) basis

{q,} as
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(3.1)

<~ Ik

In general, the expansion coefficients, {e}, are complex numbers (i.e.,

they may be written with a magnitude and phase). If we have an ensemble

of systems all in the same state ~k' then the expectation value of some

observable quantity is

(3.2)

where 0 is a quantum mechanical operator. For a collection of states,

each occurring with a probability Pk' the ensemble averaged expectation

value is

(3.3)

where the bars denote the ensemble average. are

the elements of an ensemble averaged "density matrix" given in the

following equation:



(£)'i
- J

-*­
C.C ••
~ J

(3.4)
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All of the theory in this chapter assumes an ensemble averaged density

matrix and so the bar is left off g. Equation (3.3) may be rewritten as

<0> = LL P
J
'
i

<4>. 1014>. >
j i ~ ]

(3.5)

L L p .• 0 ..
j i J ~ ~J

Tr(2g) ,

where the definition of the trace of a matrix has been used. The "density

matrix operator" is written

(3.6)

~Yhen the energy of a system is determined by a Hamiltonian H, the

density matrix evolves in time according to its "e,.quation of motion"

ah - p(t) = -i[H,p(t)].at (3.7a)

For our calculations, energies are expressed in frequency units and h is

set to one in what follows. The general solution to Equation (3.7a) is

() -iHt (0) iHtp t = e p e ,

for a time-independent Hamiltonian. When the Hamiltonian is time-

(3. 7b)

dependent, a time-ordered integration over the duration t in the expon-

ential will be required. This treatment is implicit in the rotating

frame form of the radio frequency Hamiltonian, Equation (1.8). Evolution

of a density matrix operator in the presence of a time-dependent

Hamiltonian is handled mathematically with average hamiltonian theory [6].



For a system in thermal

diagonal. In this case, the

equilibrium with its surroundings, p is
~

coefficients Ie. 12
correspond to the prob­

~
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ability of finding the ensemble in state ~., i.e., they are populations.
~

In order for &to have non-zero off-diagonal elements, the coefficients

*CikC
kj

must survive the ensemble average of Equation (3.3). This implies

there exists a definite phase relation among states of the ensemble.

Thus, off-diagonal elements of &represent a coherent superposition of

the states {~}. The off-diagonal elements are termed coherences.

The probabilities in Equation (3.6) are given by a statistical

distribution of energies at equilibrium

i

exp(-E./kT)
~

I exp(-E./kT)
~

(3.8)

where k is Boltzmann's constant and T the temperature. Thus, the thermal

equilibrium density matrix operator is given by

= exp(-H/kT)
Tr(exp(-H/kT»

with the exponential defined by

(3.9)

exp(-H/kT) 1 _ J!... + 1. (H)(H)
kT 2 (kT)2

(3.10)

In the high field approximation in which the Zeeman interaction is the

largest contribution to H, the equilibrium density matrix operator is

expanded

1 - 81 +... ,z

and the constant 8 is defined as

(3.11)



6 (yHO/kT)/Tr(exp(-H/kT)).

Since the unit operator in Equation (3.11) commutes with all operators in

H, it is often neglected to yield the reduced density matrix

-61
z

which has been truncated to the first term. In a high field and at most

temperatures encountered in ID1R, 6 is small and higher order terms are

negligible (the high temperature approximation).

3.2.Z The Basic Multiple Quantum Experiment

The most general pulse sequence used for generating and observing

multiple quantum coherence in proton NMR is shown in Figure 3.3. The

basic three pulse sequence in Figure 3.3a consists of pulses with rela-
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tive radio frequency phases~. and rotation
~

NMR signal S(T;tl,tZ) as a function of the

angles e. (8 . = WI t ) .
~ ~ Pi.

time parameters T, t l ,

The

is detected during t Z• Using phase sensitive detection (see Chapter 5),

two contributions are separated into two spectrometer "channels" cor-

responding to detection of oscillating field components along the rota-

ting frame x and y axes. These are related to the expectation values

<Ix> and <Iy>' The choices of values for parameters T, t l , t z, 8i , ~i

are determined by the spin system under investigation and which transi-

tions are desired. The affect of each is discussed below.

Figure 3.3b shows a pulse sequence which is actually used in the

theory below. The experiment is more symmetric from the standpoint of

density matrix evolution if we imagine we observe a signal proportional

to <I
z

>. This is effected by placing a fourth pulse, P4(84 , ~4)' to

transfer magnetization back along the z axis. The experiments themselves



Multiple Quantum
Pulse Sequence

PI (8"ep,) P2 (82,<P2) P3 (83 ,<P3)
I S{T;f"f2 )

poJ I I
I

0) I
I <Ix>' <Iy>
I

• • • • • •
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b)

c)

1'"

P3 (83 ,4>3) P4 (84 ,<p4)

I I<IZ>

v

• :.===.~---------
Figure 3.3 XBL818-4148

The simplest pulse sequence used for generating and detecting mul­

tiple quantum coherences in NMR. a) The first two pulses (PI and PZ)

create coherences which evolve freely fo1:' time tlo These "invisible"

coherences are then detected during t z by the action of a third pulse

(P3 , the "mixing" pulse). The two dimensional signal, S(T;tl,tZ)' is a

function of the parameter T. b) A fourth pulse, P4 , is included in the

theory and <I > calculated from the density matrix. c) A generalizationz
of the sequence in b) in which the preparation propagator is U(T) and the

detection propagator is VeT'). In the experiment of a), only one point

in t z at T' is collected for each value of t l •



do not contain this last pulse because of the requirement for observation

of magnetization oscillating transverse to the main field.

Figure 3.3c illustrates a conceptualization of multiple quantum

experiments which is used below. The signal written in terms of para-

meters in Figure 3.3a is familiar in the general field of two-dimensional

Fourier transform spectroscopy [56]. We instead use parameters of Figure

3.3c in expressions for the signal S(T;tl,T') in equations below (T' = t
2
).

As we show below, this allows a convenient mathematical treatment of

density matrix evolution.

The sequence of Figure 3.3c may be viewed as consisting of three

parts. The multiple quantum coherences are generated during a "prepara-

tion" period labeled U. In terms of parameters in Figure 3.3, the

propagator for this period is given by
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(3.12)

-+-
In Equation (3.12), I is the spin angular momentum operator and n

l
, n2

are unit vectors in the rotating frame x, y plane, defined by the relative

r.f. phases ~l' ~2' The Hamiltonian is given by H. Multiple quantum

coherences are then allowed to evolve freely during the "evolution"

period of duration t
l

. No NMR signal is detected from these coherences

during t
l

• This is because evolution of a coherent superposition of

states involved in a multiple quantum transition does not correspond to

magnetic dipole radiation. Because of this, it is necessary to transfer

multiple quantum coherences back into single quantum coherences which we

can detect. This is accomplished during the "detection" period labeled

V in Figure 3.3c. The propagator for this period, of duration T', may

be written
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0,13)

in analogy with Equation (3.12). In Figure 3.3c the parameter t z has

been set equal to T I
• It has been shown that t 2 = T I = T produces the

maximum signal [66,67].

The signal is collected after the detection period and is a function

of T, t
l

, and t Z: S(T;tl,tZ). The two-dimensional Fourier transform

could then be applied to produce a two-dimensional spectrum S(T;w
l

,w
2
),

A single quantum spectrum results from a slice in the Wz direction and

the multiple quantum spectrum is found from a projection along wI' For

experiments in this work it is sufficient to collect just the single
I

point at t
2

= T I (t
2

= 0). This point represents the integral over the w
2

spectrum. Although some signal will be lost in wI due to phase dif-

ferences among lines in wz' the technical convenience of single point

detection must be compared to the effort required 'to compute the full

2-D spectrum. For constant values of T, t
l

, and t
2

= TI, application of

the pulse sequence then yields a single data point. The entire sequence

is then repeated with a new value of t
l

, the evolution time. Proceeding

in this manner, a multiple quantum "free induction decay" is mapped out.

Fourier transformation of the result as a function of t
l

produces a

multiple quantum spectrum such as Figure 3.1.

If we use Equation (3.7b) and (3.5), we can write the signal in

terms of density matrix evolution as

S(T·t T I
) ~ <I >, l' z Tr(I p)

z

-iHt iHt1 tIt= Tr[IzVe UPOU e V], o ,14a)
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O.l4b)

(3.l4c)

with wkj the transition frequency (Zrr (v
k

- v j»' Fourier transformation

with respect to t
l

gives

= L (P(T».k(g(T'»k'o(w-wk ,)
jk ~ J - J J

(3.lSa)

(3.lSb)

In the equations above, Po is the density matrix just prior to the first

pulse. Often, but not always, we start the experiment with the equili-

brium density matrix, - 81 , and, setting -8 equal to one for now,
z

matrix.

The matrix P is the preparation matrix and g is the detection
~ ~ ~

When T' = T and p = I , then neT') = P(-T).o Z ~ ~

3.2.3 Properties of the Preparation Matrix

We now consider the form of P for specific values of e. and ~ ..
~ 1. 1.

For now we will assume that all chemical shifts are equal and so we can

set a. = O. In addition, quadrupolar and scalar couplings are excluded
1.

from the Hamiltonian below but may be treated in a straightforward manner.

From the results of Chapters I and 2, the spin Hamiltonian may be written

+ (3.16a)

or, in terms of spherical tensor components.

H = -6w I T1,k +
k 0 I

i<j
(3 .16b)



where, from Equation (2.13-2.15),
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A2,ij
o I6

YiYj
- 6 3 P2 (cos8 .. )

1J Zr
ij

(3.17a)

(3.17b)

+...!.... I
- 12 ~i

(3.17c)

All of the experimental pulse sequences can be written so that the

first two pulses are at opposite phase, i.e., ~ = ~i; ~ = ~2 = ~ + IT,

and rotate I
z

by the same angle 81 = 82 = 8. The propagator U may then

be written

U(8,~,T)

+ + A

-i8I'n -iHT ieI'n
= e e e (3.18a)

With ~ the phase shift relative to the rotating frame y axis,

then,

+
i8I·ft

e
i~Iz

= e e
i81 -i~I

Y e z

i~I -i~I

U(8,~,T)
z U(8,T) Z

= e e

-i81 -iHT i81
U(8,T) = e y e e y

(3.18b)

Likewise, for the detection propagator (8
3

= 8
4
=8' and ~3 = <P; <P 4 = cj> + 71"),

icj>I -i~Iz z
V(8',cj>,T') = e V(8',T') e (3.19a)

-i8'I
YV(8',T') = e -fliT

e e
i8'I

Y (3.19b)



As an example of the affect of phase, we consider what happens when the

first two pulses are at some phase relative to the final pulses. This

causes an order-dependent phase shift of the preparation matrix relative

to detection. From Equation (3.18), (3.19) and (3.14) we find

\' t t
L (U(8,4>,T)I U (8,4>,T)).k (V (8',4>,T')I V(8',4>,T'))k.<S(W-W

k
o)

jk Z J Z J J
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= L (U (8 , T) I Ut (8 , T) ) . k (Vt (8 ' , T ' ) I V(8 ' , T ' ) ) k .
jk Z J Z J

-i(Mj-~)<p
x e <S (w - w

kj
) (3.20)

Equation (3.20) states that a shift in the phase of the radio frequency

preparation pulses results in ~M = M
j
-~ times the phase shift for a

multiple quantum line in the spectrum. This will have implications for

the separation of orders and phase Fourier transformation techniques as

discussed below, but for now we take 4> = O. We now look at specific

cases for the parameters of Figure 3.3.

To calculate the affect of pulse angle 8, we make use of transforma-

tion properties for spin operators. Again, we write the preparation

propagator

where

-i8Iy -iHT
= e e e

-iH'T= e

ieI
y

-i8r i81
H' = e Y HeY (3.21)



The effect of the rotation implied in Equation (3.21) can be calculated

by a transformation with Euler angles (a,B,y) = (0,8,0). From Equation

(2.17) and a definition of the Wigner rotation matrix, the rotated

Hamiltonian H' is (H = Hz + ~)
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+ I
i<j

(3.22a)

or, replacing the T
k

spin operators with spin angular momentum operators,
q

H' -t.wcos8IO - t.2w sin8 [1+1 + I_I]

I 1 2 i·-+-+
+ Dij {-Z (3cos 8-1) (31 I J - 1. . I

j
)

i<j °° 1.

+ (1) sin28 [(I~lI~ + ij (Ii I j + IiIj )]
2 101+1) -

-1 ° ° -1

+ (3) 2 i j + i j (3.22b)
2 sin 8[1+11+1 I_I I_I]}·

The affect of the preparation matrix P may then be found by considering
;::::

the expansion [3]

peT) (3.23)

In what follows, we introduce definitions for the preparation

matrix using different initial density matrix operators Po = I , I , I :z x y



pZ U(8,T) t
- I U (8,T)8 Z

y

U(8,T) +p-- - I U' (8,T)
8 x

pY U(8,T) t
- I U (8,T)8 Y

We now consider specific cases for ~.
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(3.24a)

(3.24b)

(3.24c)

Case 1

F hi h i "11" 11" - (-or t sease, t e preparat on sequence 1S 2 Y,T, 2 Y Y means a

pulse with phase 1800 relative to Y). Equation (3.22a) becomes

H - H'xx L
i<j

(3.25)

H =xx L D
iJ

" {+ ; (31 .1 "
i<j Zl ZJ

H
xx

- 1:. H + (1)
2 zz 4

In Equation (3.25), subscripts on H have been introduced which refer to

rotation of the bilinear dipolar Hamiltonian, i.e.,

by a 90 0 Y pulse.

H means H rotated
xx zz

2Since H only contains T operators with q = 0, +_2, it is a zero
xx q

quantum and two quantum operator. This is a direct consequence of the

bilinear nature of Hzz Linear operators, such as those contained in the

chemical shift Hamiltonian, cannot create multiple quantum coherences by

themselves. If the commutators in Equation (3.23) are evaluated, using

Equation (3.25) and setting Po = I , it is easily seen that pZ will only
Z rr

2contain operators connecting states separated by ~ = 0 or~M even.

Thus, this preparation sequence creates only even quantum coherences.



Case 2

The expansion (3.23) can be used to determine the dependence of each

order on T when this time is short [33,67]. Zero quantum operators do

2
not appear until the T term. Other even n quantum operators first

(n-l)
appear in the T term. In most experiments, the higher quantum

transitions are desired requiring the expansion to contain significant

contributions from high order terms. This implies longer values of T

for which the expansion will not converge fast. The explicit short

time T power dependence approach is then replaced by the choice of a

preparation time such that \lnT ~ 1 where v
n

is a measure of the "size"

of ~ in Hertz. Experimental methods exist [69] for choosing values of

T which are best for creating transitions of a certain order.

IT
8 = 2; ~w = 0; Po = I y .

For this case, the propagator U will contain the same rotated

Hamiltonian as before (Eq. 3.25). The preparation propagator now becomes
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= ePy
IT

2

-iH T
xx

I
Y

e
iH T

xx

Again, using the expansion of EquationO.2~ this propagator can be shown

to contain only odd quantum operators. The operator I may be written
y

1as a combination of T+
l

operators. Recalling the commutation relations

in Equation (2.l6b) we see that Py will contain products such as
IT

Tl,iTl,j Tl,iTl,jTl,k etc. 2 and so is entirely odd quantum in
+1 a ' -1 +1 +1 '

nature. The first term in Equation (3.23) with odd n quantum coherence

is the Tn term. The initial density matrix Po = I y may be prepared by

proceeding the multiple quantum pulse sequence with an x phase pulse.

With ~ = 0, the first y pulse then does nothing and may be omitted. An

IT IT
odd quantum preparation sequence is then 2 X,T, 2 y.



Case 3
'IT

8 - . ~w = 0·, Po = I- 4' z

65

2 ..
Now the added terms in H' are the first order operators T+i1J

Once again, considering the commutators in Equation (3.23) we see that

pZ will contain all orders of multiple quantum operators, both even and
'IT

4
odd. The T power dependence of these is somewhat different than the

previous cases.

. h 21S t e T term.

For example, the first term with three quantum operators

For very short preparation times, the three quantum

transitions will appear faster than if the odd quantum sequence of case

2 is used.

'IT
If we use a 2 pulse as the first pulse then the sequence may be

written

'IT 'IT_ 'IT 'IT 'IT_
2 y,T, "4 y = 4" y, 4" y,T, 4" y.

In this case, the preparation matrix is

I 'IT t'IT
P = - U(- T)(I + I ] U (-4,T)
~ 12 4' z x

(3.26)

Both terms above contain even and odd quantum operators.

So far we have considered just the preparation portion of Figure

3.3c. As we said before, multiple quantum coherences evolving during t l

are unobservable and we have to reconvert them to single quantum signal.

The properties of the detection matrix in Equation (3.15) are essentially

the same as the results above when T' = T. Equation (3.15) states that

2 will have to contain operators for the coherences of interest if they

are to be observed. For example, if the detection sequence of Figure

'IT 'IT
(3.3b) is 2 Y,T, 2 y then only even quantum transitions can be observed.

The signal ultimately depends on the product of ~ and ~ and so we can



selectively prepare and detect either even quantum, odd quantum or both

coherences in the experiment. This principle is demonstrated experi-

mentally below.

In summary, we have shown that multiple quantum coherences can be

prepared and detected by a number of simple sequences which are only

selective in the sense that the rotated Hamiltonian (Eq. (3.22a» and

initial density matrix Po can be chosen to contain T~ terms where q is

even, odd, or a mixture of both. The specific cases of Rand g considered- -
above are summarized here.
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pz zQ pure even quantum
'IT' 'IT

2 2

py QY pure odd quantum
'IT' 'IT

2 2

p~,x, Q~'x both even and odd quantum

4 4

(3.27a)

(3. 27b)

(3.27c)

We have only considered the case when the resonance offset ~w is zero.

The affect of the offset term in a Hamiltonian can be included straight-

forwardly. Now the preparation matrix is given by

p = e
iel

y
Po e

-i81 +i(-~wI + H h
y e z zz e

-ieI -i(-~wl + H )T
Y e Z zz e

iel
Y

x Po exp(-~wLcosesineI )exp(i~wLsineI )exp(i~wLcoseI ) ey x Z

P = e
-iH' T

xx
exp(-i~wTcoseI )exp(-i~wTsineI )exp(~wTcosesineI )

Z x y

+iH' L
xx

(3.28 )



For a general rotation angle of e, Equation (3.28) would be difficult to

evaluate. From Equation (3.22a) it is obvious that an offset will result

in the occurrence of both even and odd quantum coherences in~. For the
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~

trivial case of a = 2' Equation (3.28) becomes (with Po = I )
z

(3.29)

2 2 2

A similar expression obtains if Po = I
y

and for

no chemical shift differences, the spectrometer

QZ,y(~w).
~

2 may be

If there are

set so that

~w = O. This condition cannot be met for all chemically shifted nuclei

in a general spin system and so chemical shift differences will tend to

mix even and odd coherences in the preparation. When chemical shifts

are small compared to dipolar couplings, this affect will not be too

severe.

3.2.4 The Effect of Static Field Inhomogeneities/TPPI

From a consideration of the energy level diagram for N coupled spin

~ nuclei in Figure 1.2 and the form of the rotating frame Zeeman Hamil-

tonian, it can be seen that the affect of a resonance offset ~w is

multiplicative in multiple quantum evolution. The n quantum coherences

will evolve with an offset of ~w where ~w is the single quantum offset.

The static field" that a sample experiences is not perfectly homogeneous

and there will be a distribution of ~w's over the sample volume. The

result is a familiar broadening of resonances in the spectrum whenever

the distribution of field offsets is wider than the natural linewidth -

a situation which is often the case in proton liquid crystal spectroscopy.

The n quantum coherence will be broadened by n times the single quantum

inhomogeneity. Unless removed, this broadening would prohibit the



that ~$

observation of high order multiple quantum spectra.

Spin echoes of the Hahn type [70] are used to circumvent this prob-

lem. Placing a n pulse in the center of t
l

will reverse evolution under

linear terms in the Hamiltonian. Bilinear terms such as the dipolar

Hamiltonian remain unaffected by this pulse. All evolution from terms

with ~wI is refocussed at the end of the evolution period, thus removing
z

the field broadening. Each multiple quantum coherence then evolves with

just the dipolar frequencies and all orders will overlap. In order to

separate contributions to the spectrum from different orders, the method

of time proportional phase incrementation (TPPI) [59,60,65J is used.

The TPPI experiment is shown in Figure 3.4b. The first two pulses

are at some relative phase $ and $ + n with respect to the third and

fourth. This phase is incremented each time t l is incremented by ~tl' so

(~w)(~tl) where here ~w is just a parameter. From Equation

(3.20) we see that each multiple quantum line is phase shifted by

exp(-i~M$) = exp(-i~MAwtl). The result is that the n quantum coherences

appear to evolve with an effective offset of n~w. To ensure that all

orders are contained in the frequency spectrum without fold back, the

phase increment is set so that ~$ ~ ;. This phase shift is usually a

fraction of nl2 so that the usual spectrometer quadrature phases are not

adequate. A delay line phase shifter under digital control of the pulse

programmer is used and is fully described in Chapter 5.

3.2.5 Phase Fourier Transform Averaging

Similar to TPPI, the method of phase Fourier transform (PFT) averaging

may be used to separate multiple quantum orders [56,63J. Considering

Equation (3.20) as a Fourier series in phase indicates that coherences

can be separated in phase space according to ~M$. Coaddition of different

68
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<I z>
XBL 8010-12245

The time proportional phase incrementation pulse sequence. In a),

the usual three pulse multiple quantum sequence is repeated with 90°

pulses (vltp = ~). b) TPPI pulse sequence. A spin echo pulse (180°)

is placed in the middle of t
l

to remove inhomogeneous broadening in the

evolution of multiple quantum coherences. The first two pulses are

phase shifted by an angle ~ which is a linear function of the evolution

time: ~ = ~wtl' c) As in Figure 3.3c, the density matrix evolution is

more symmetric if we imagine that there is an additional final pulse and

we detect <I >.
z



spectra with properly chosen preparation phases will allow the cancel­

lation of contributions to the total spectrum from all but a few orders.

As an example, the even quantum orders may be selected over odd quantum

by adding two spectra taken with preparation phases~ and ~ + IT. The

odd quantum signal changes sign whereas the even quantum shows a phase

shift of zero and constructively adds. Extensions to other orders is

straightforward.

3.Z.6 Intensities

As we have seen, preparation and detection matrix elements, which

determine the extent to which coherences appear in the multiple quantum

signal, are a function of the times T and t Z' Choosing t z = T' T has

proved adequate for our analysis. From Equation (3.15) it can be shown

that the phases of different multiple quantum lines will not be the same.

This causes loss of intensity in those orders where lines overlap but is

not a problem in resolved higher order spectra. In principle, all lines

will have the same phase if a time reversal sequence [7Z] is used during

detection so that £(T') = £(-T). In practice, this is not necessary and

magnitude spectra are usually calculated to avoid having to phase correct

individua1 1ines.

As discussed previously, for very short preparation times, not all

coherences are created due to a strong power dependence on T. This is

demonstrated experimentally in Figure 3.5. For the shortest preparation

times, only the one quantum transitions are observed. As soon as T be­

comes on the order of .1 msec, all orders are observed to some intensity.

As T is further increased, individual lines are seen to oscillate as

expected from the forms of g and~. We mentioned earlier that the sizes

of couplings in "n may be used as an estimate" of an appropriate value of
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Figure 3.5

XBL 818-1772

Experimental demonstration of "ensemble" averaging used in 'multiple

quantum NMR spectroscopy. The preparation time, T, is varied for the

ten magnitude spectra shown at the top. This time is given in milli­

seconds above each trace. For very short preparation times, only the

lowest orders are observed. For longer values of T, individual lines

oscillate in magnitude. The average of these ten spectra is shown at

the bottom.



T for a general spin system. Actually, transitions for all orders are

observed in a fraction of this time for benzene. This is a result of

molecular symmetry and the precise nature of P for benzene dipolar
~

couplings [66]. It is possible to map out the T dependence of ~ experi-

mentally for any order [73,69]. For small spin systems, this allows

one to choose values of T which produce greater average intensity in a

particular order than an arbitrary choice of T might.

To remove an intensity dependence on T in the final spectrum,

several magnitude spectra from experiments with different preparation

times may be averaged together. This is referred to as "ensemble"

averaging and is shown for benzene in Figure 3.5. If a sufficient number

of T values over a wide range are used then the average should approach

some asymptotic intensity distribution. In a "statistical" limit one

would assume that each transition occurs with equal probability in the

averaged spectrum. As we have seen in Equation Ci.29), for large spin

systems, the number of transitions per order is in a Gaussian distribu-

tiona We then expect the statistical limit integrated intensity per
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d f 11 ff . 11 . h 2 for er to a 0 exponent1a y W1t n or n = I~MI· This is shown in

Figure 3.6 and is qualitatively correct for the benzene experiment.

Such a distribution implies that high order multiple quantum spectra

will be difficult to observe for large spin systems by non-selective

techniques. When the spin system is an undiluted liquid crystal, a

practical limit of about ten coupled protons is tractable by non-selective

means. Dilute samples, of course, present further complications.

It turns out that the statistical limit underestimates the intensity

that will be found in some isolated high order transitions 166,67].

Figure 3.7 shows theoretical statistical and exact T average stick spectra
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experi menta I
•

c:
H

a 2 345

n (number of quanta)

6

Figure 3.6

XBL 781-6894

Integrated intensity per order for benzene ensemble averaged

multiple quantum experiment. The solid curve is one half of a Gaussian

distribution normalized for N = 6. The experimental points indicate

that this distribution is qualitatively correct for a large spin system.



a All transitions weighted equally

1.111
iill l

b. Exact average (2000 va lues

of r)

Oriented Benzene

Theoretical n-quantum spectra
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Figure 3.7

n=5 n=6

XBL 8010-12692

Theoretical n-quantum spectra for oriented benzene. a) In this

"statistical" limit case, all transitions are assumed equally probable

and so of equal intensity. b) The average of 2000 spectra calculated

from exact values of preparation time, T. The intensities here are the

result of detailed calculation of density matrix evolution.



for benzene. The statistical spectrum was produced by weighting each

allowed transition equally. Some degenerate transitions add to produce

the largest lines. The exact T average spectrum of Figure 3.7b results

from a computer calculation by Murdoch, ~ ale [66,67] from Equation

(3.15) using experimentally obtained benzene couplings. In this spec-

trum, the high order transitions are, on the average, more intense than

one quantum transitions. The six quantum line is the most intense single

transition. This exact average fits the experimental spectrum of Figure

3.1 more accurately in its intensity pattern than the statistical limit

theory of Figure 3.7a.

For computational purposes, it is convenient to remove the time

dependence of preparation and detection matrices in Equation (3.15).

With T' = T, integrating over T, the result for the intensity magnitude

of a single transition j + k, assuming an even quantum preparation matrix,

may be written [66],
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[

terms inVOlVing]

+ overlapping

transitions

(3.30)

The time independent elements BaS are defined by

A .X QA kaJ a.., a
(3.3la)

with

st 1T
A = exp(-i - I ) S

::::::: ::::::: 2 :::::::y :::::::

X = st I S
::::::: ::::::: ~~

H = st A S
::::::: ::::::: ~ ~

(3.3lb)

(3.3lc)

(3.31d)



In the equations above, H is the Hamiltonian matrix and A, S are
~ ~ ~

the eigenvalue and eigenvector matrices, respectively. For the high

quantum orders where transitions are resolved (all orders for benzene),

the second term in Equation (3.30) may be dropped and the "ultimate" T

averaged intensity is readily obtained. Equation (3.30) is easily

modified to handle odd, or a mixture of even and odd, coherences.

Programs have been written by Murdoch [67] which are capable of simula-

ting t3e exact or ultimate T averaged spectrum for molecules of up to

eight protons. Theory spectra showing calculated intensities in this

and the next chapter were obtained using these programs.

In addition to symmetry selection rules restricting allowed transi-

tions to the irreducible representations of the molecular point group,

there are further symmetry affects forbidding some zero quantum transi-

tions. When the permutation group contains the inversion element (center

of symmetry), some states will exhibit either gerade (even) or ungerade

(odd) behavior under inversion. When the Hamiltonian is purely bilinear

(chemical shifts and offset terms equal to zero) and the number of spins

is even, states in the M = 0 Zeeman manifold may not be connected in zero

quantum coherences by the preparation matrix in a multiple quantum experi-

ment [66]. Similar to the inversion symmetry element, M = 0 states will

be even or odd under the operator which flips all spins. If H is purely

bilinear, this operator anticommutes with P:/ 2 if the preparation se-
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'IT 'IT -
quence is 2 ~, T, 2 ~. The result is that only states of opposite

parity under the spin-flip operator are connected in zero quantum co-

herences.
'IT

When the preparation sequence involves other than 2 pulses,

so that P may be written as a combination of P: and P~ as in Equation

(3.26), then the spin-flip operator no longer anticommutes with coherence

preparation and no inversion selection rules for zero quantum transitions

are imposed.
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Figure 3.8 shows an expanded trace of the zero quantum region of

Figure 3.1. Ninety degree pulses were used in preparation and detection

~ ~and so they may be written as P~/2 and Q~/2' respectively. The stick

spectrum underneath the experimental trace contains line positions of

all theoretical zero quantum resonances disregarding spin inversion

symmetry. Markers beneath this stick spectrum show lines which should

not appear by the spin inversion selection rule stated above. Although

not all allowed transitions are resolved, most are observed to some

intensity while the forbidden transitions are indeed missing.

Zero quantum transitions are unaffected by field inhomogeneity [63].

If the multiple quantum experiment is performed in strong field gradients

and with no ~ pulses, then only zero quantum resonances will be narrow

enough to be observed. This provides a convenient method for zero

quantum selection. Selecting zero quantum transitions in this manner

has resulted in the appear-

.; sample, the spectrum of

Figure 3.9 is obtained.

~

and using the sequence 2 ~ - ~

~, ., 4~' t l , 4 ~,

~

The use of 4 pulses

ance of almost all zero quantum lines. Although exact intensities are

not shown in Figure 3.9, the missing B
I

transitions are normally only

weakly allowed I71].

3.3 Even/Odd Quantum Experiments: Benzene

What follows are experimental examples demonstrating several out-

comes of the theory in Section 3.2. Most of these experiments include

~ pulses at ./2 in the preparation and at (t
2

=.')/2 in detection periods

to eliminate the effects of field inhomogeneities and to ensure the on-

resonance condition. Linewidths are only a few hertz because of an

additional echo ~ pulse in the evolution period. Transitions are separ-

ated according to order ~M by using the TPPI technique. The TPPI phase
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Preparation:

Detection:

XBL BIB-1770

Figure 3.8

Benzene zero quantum spectrum. This is an expanded trace of the

zero quantum region of Figure 3.1. The preparation and detection

pulses are all ~/2 pulses. In this case, spin inversion anti-commutes

with P and Q and only transitions between states of opposite parity

are allowed. Transitions forbidden by inversion sYmmetry and their

representations are indicated beneath the theoretical stick spectrum.
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Preparation:

Detection

_lilllJ_WU~1-----:....-.IJ'-----J.--
XBL 818-1769

Figure 3.9

Benzene zero quantum spectrum. This spectrum was obtained using

the sequence ~/2~, T, ~/4$, t
l

, ~/4~, T. Spin inversion selection rules

do not forbid any M ~ 0 transitions with this sequence. Missing transi­

tions are of B
l

symmetry which are only weakly allowed. Only zero quantum

transitions are observed in a field which was purposely made inhomogeneous.



shift used was 29.5°. This places the six quantum spectrum just below

the Nyquist frequency. All spectra were taken from a single sample of

~30% (by mole) benzene in Eastman liquid crystal #15320. The solution

was nematic at room temperature. Sample environment in the probe was

temperature regulated to within ~.loC (see Chapter 5 for a description

of the probe). Generally, 8K words in the Fourier transform are suffi-

cient to resolve most peaks, although, at the sampling rates used, the

multiple quantum interferogram does not completely decay. Only one half

of the frequency spectrum, which displays reflection symmetry about the

DC component, is shown in each of the figures. The two halves of each

spectrum were co-added in a manner which enhances the symmetry about the

center of each order and improves signal-to-noise slightly. All spectra

are magnitude plots. By Equation (3.20), the TPP1 phase, ~(tl)' can be

removed from ~ and g. The equations below are written with ~(tl) = 0

as though the preparation phase is coincident witn the rotating frame y

axis as in Figure 3.4a. This causes no loss of generality in the analysis.

3.3.1 Pure Even Quantum Spectrum

Figure 3.10 shows a benzene spectrum containing only the even quantum

orders. The sequence of Figure 3.4b was used with the addition of IT

pulses midway in the preparation and detection periods. The signal

S(T;t
l
,t

2
) was polarized into one channel of the spectrometer quadruature

(phase sensitive) detector. Observation in the other channel corresponds

to the detection matrix QY and a signal ~ to
IT

2
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<I >(w)
+ = I

jk
C3.32)
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a

Figure 3.10

2~W 4~W

X8L 818-1768

Benzene even quantum experiment. The pulse sequence used prepares

only even quantum coherences. This is demonstrated by a complete lack

of one, three, or five quantum lines. Orders are separated by the TPPI

technique. The signal was polarized to one channel of the phase

sensitive detector.



which is even quantum.

The odd quantum detection QY does not connect states prepared by p
Z

7T 7T

2 2

3.3.2 Pure Odd Quantum Spectrum

The benzene spectrum shown in Figure 3.11 demonstrates that, in

analogy to a pure even quantum experiment, it is possible to detect only

odd quantum orders. This is accomplished with the sequence (omitting

7T 7T 7T 7T
pulses for clarity) 2 <1>, T, 2 (<1>+2), t l , 2 y, t z; sample, where <I> is

the TPPI phase. As usual, t z = T' = T in this experiment. The prepara­

tion and detection matrices are then pY and QY for observation of signal
7T 7T- -

~ <I >. As with the pure even quantumZexperi$ent, the signal can be
Y
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entirely polarized in one spectrometer channel.

then (with the TPPI <I>(t l ) = 0)

The signal ~<I > is
x

<I > (w)
x

(3.33 )

and will be zero in analogy with the arguments for Equation (3.3Z).

3.3.3 Breaking Even/Odd Symmetry

It is quite often the case that both even and odd high order mul-

tiple quantum spectra are desired for spectral analysis. It then becomes

necessary to remove the even or odd quantum nature of preparation and

detection matrices to avoid repeating the experiment to get all orders.

This may be accomplished in a number of ways.

A resonance offset is one approach which, from Equation (3.29),

mixes even and odd quantum preparation (and detection) operators. Using

7T 7T- 7T
the sequence ...? y, T, ~ y, t" ~ y, t z = T; sample, the complex signal... ... ...

7T
becomes (dropping the subscript 2 on P and Q terms)
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Figure 3.11

ItlW 3tlW 5tlW

X6L 618-1767

Benzene odd quantum experiment. The pulse sequence used prepared

only odd quantum coherences. There is no intensity from zero, two,

four, or six quantum transitions. The signal was polarized to one

channel of the spectrometer detector and TPPI was used to separate orders.



<I >(w) = <I >(w) + i <I >(w)
x x y

+ i[COS2~WTP;kQ~j - sin2~wTP~kQ~j + cos~wTsin~wT(p;kQ~j - P~kQ~j)]}

(3.34)

The zy and yz cross terms have been included in Equation (3.34) for

completeness but do not contribute to the signal. Thus, both channels

contain signal from even and odd quantum coherences. For any arbitrary

value of ~WT, the signal energy, ~1<I+>12, will not necessarily be the

same as pure even or odd quantum experiments yield but, when "ensemble"

averaged over T this energy partitions equally among even and odd orders,

with the total the same as either of the pure coherence experiments.

This method of removing even quantum selection was used to produce the

spectrum of Figure 3.1.

Making use of Equation (3.26)we can also produce a spectrum with all

orders by setting the second pulse in a standard preparation sequence to

'II"
a 4 pulse. The TPPI sequence is then (again, leaving out the'll" pulses

'II" '11"- 'II"
which keep ~w = 0) 2~' T, 4 ~, t 1/2, '11", t 1 /2, 4 y, T; sample. Now

detection of signal from all coherences is possible. Once again, the T

dependence of intensities is different than the pure even or odd quantum

experiments. An average of experiments for a sufficient range of values

for T will exhibit the total signal distributed among all orders.

We can combine two of the experiments above to both create all orders

and simultaneously selectively polarize the signal into the quadrature
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channels. 'II" 'II" -
This is accomplished with the TPPI sequence 2~' T, 4 ~, t1/2.

'II"
'11", t1/2, 2 y, T; sample, with ~w = O. (In practice, 'II" pulses are once

again inserted in preparation and detection to ensure that ~w = 0). Now,



the two components of the complex signal become (with ~(tl) = 0 as usual)
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<I >
x

<I >
y

(3.35a)

C3.35b)

The preparation sequence, as before, produces all orders of coherence.

If all chemical shifts are equal, the detection matrices for <I > and
x

<I > are solely even and odd quantum, respectively. Thus, the even
y

quantum coherences will only be detectable in one channel and the odd

quantum in the other, if the spectrometer reference phase is properly

adjusted. In a spectrum averaged over values of T, the intensity will

once again be evenly distributed among even and odd channels, with the

total the same as a pure even or odd quantum experiment.

Figure 3.12 shows the spectra that are obtained when the two channels

of the above experiment are separately Fourier transformed. The spec-

trometer reference delay was carefully adjusted so that the two components

of signal in Equation (3.35) correspond to the quadrature detection chan-

nels. The transform of one channel gives a spectrum with only even orders

while the spectrum from the other channel exhibits only odd. This experi-

ment combined even/odd selectivity with phase Fourier transform tech-

niques. Two multiple quantum free induction decays with preparation

IT IT- IT- IT
sequences 2~' T, 4 ~ and 2 ~, T, 4 ~ were acquired. The channels con-

taining even orders were added and those containing odd were subtracted.

In this way, small amounts of bleed-through signals were removed. The

multiple quantum sampling rate (~tl) has been increased by about a factor

of two without interference between orders.
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b)

I~W

I I

Even Quantum

Figure 3.12

o

,11.1

2~W

I I .1 I L

L
6~W

XBl B18-1771

Benzene non-selective multiple quantum NMR spectra. This experiment

combines the theoretical results leading to the spectra of Figures 3.10

and 3.11. All orders of coherence are prepared but odd orders are de­

tected out of phase by 90° with respect to even orders. Fourier trans­

formation of the y channel signal, S , leads to the odd quantum spectrum
y

of a) while the even quantum orders are obtained from S in b).x



3.4 The Effect of Chemical Shifts

Up till now, we have ignored the chemical shift Hamiltonian in our

analysis of the multiple quantum density matrix. This proves adequate

when considering molecules such as benzene in which all chemical shifts

are equal. In this case, we can take the chemical shifts as zero by

redefining the rotating frame frequency w. Most molecules of interest

will not have chemically equivalent spins and so for the density analysis

matrix to be useful we must consider the effect of H
cs

When coupled nuclei are chemically inequivalent, two effects will

arise in a multiple quantum experiment. First, the preparation and de-

tection matrices are different from the examples we have considered in

the previous sections. The pure even or odd quantum preparation matrix

is a consequence of the bilinear Hamiltonian HJ+~ when offset and

chemical shift terms are absent. H can be included in a straight­
cs

forward manner in the expressions for P and Q [33f. The result is that
~ -

even and odd coherences appear in the same preparation matrix. Thus

chemical shifts remove selectivity of even or odd quantum orders in a

manner similar to a resonance offset (the latter, however, is under con-

trol of the experimenter). As previously mentioned, if chemical shifts

are small compared to the couplings then a preparation matrix may still

contain predominantly even or odd quantum coherences.

As a second effect, the chemical shifts will cause multiple quantum

coherences to evolve with relative frequency offsets during t
l

. In

principle, this evolution could remain unperturbed by r.f. pulses and

chemical shifts measured in the final spectrum. A problem arises when

TPPI is used to retain homogeneously broadened lines while removing in-

homogeneous broadening with the formation of a spin echo. A TI pulse
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centered in the evolution period (Fig. 3.4c) is used to create the echo

by refocusing linear terms in the Hamlitonian which commute with H
J

and

~. This pulse will also cause a transfer of coherence between multiple

quantum transitions which produces additional lines in the final spectrum.

The problem here is very similar to the measurement of relaxation para-

meters in strongly coupled isotropic systems [74]. The origin of addi-

tional lines and an estimation of their affect on spectral analysis is

the subject of the remainder of this section.

Before going on to a determination of the signal when H is present,
cs

we first review a simple AB spin-~ system as an example [77]. Normally,

when chemical shifts are absent, the composite two-spin states may be

classified as three triplets and one singlet under spin exchange. There

are four allowed transitions among the triplet states all of which are

degenerate when H = H
J

and DAB' the dipolar coupling, is zero. ~fuen the

Hamiltonian instead contains ~ and JAB = 0, two ~generate transitions

produce one line at +(3/4)D and the other two appear at -(3/4)D. When a

chemical shift is introduced, the M = 0 triplet and singlet states are

mixed in the actual eigenstates. This partially removes the transition

degeneracy to produce new lines in the spectrum. Whenever the coupling

(J or D) is small compared to the shift difference 0 = ~(OA -oB) the

Hamiltonian terms H
J

and ~ can be truncated to that portion which com­

mutes with H and the spectrum is termed first order [79]. Figure 3.13cs

shows theoretical AB spectra when the total Hamiltonian is H + H
J

orcs

H + EL and for varying ratios of the bilinear coupling to chemicalcs -~

shift difference. The left hand stick spectrum in part b represents the

familiar isotropic first order spectrum in which J «20. In an aniso-

tropically ordered sample such as a liquid crystal, the dipolar coupling

D is usually much larger than 20. This situation is depicted on the
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Figure 3.13

XBL8110-6660

Theoretical stick spectra for an AB two spin-1/2 system. The case

of an isotropic sample is shown at the left (DAB =t 0). The anisotropic

case is on the right where, for convenience, TAB - O. Individual spectra

in parts a through e are for varying ratios of the relevant coupling to

cS =t 1/2(OA - 0B)' The usual (first order) isotropic case is shown in b.

The usual anisotropic spectrum is shown in d.



right hand side of part e. For purely structural analysis, we may wish

to ignore or remove the chemical shift and reduce the number of para-

meters required to fit the spectrum. ~Vhen chemical shifts differences

are small compared to Dij's, we will see below that a single rr pulse

removes H fro~ single quantum and multiple quantum coherence evolution,cs

to first order. Small additional lines appear in single quantum or

multiple quantum spin echo spectra due to coherence transfers caused by

the rr pulse. It is our aim in this section to describe this phenomenon

and estimate the magnitude of line shifts and intensities for simple

spin systems. Analogies may then be drawn for more complicated systems.

We approach this problem by considering a simple two dimensional FT

NMR experiment shown in Figure 3.14. This sequence is familiar in two

dimensional spin echo spectroscopy [75] and is equivalent to that used

to obtain the middle spectrum of Figure 2.1. The time domain is separa-

ted into two sections: t l is the usual evolution period after the

density matrix is prepared by the first rr/2 pulse and t 2 here corresponds

to t 2 ' in Figure 3.3c. We wish to calculate the effect of the rr pulse

at t
l
/2 when chemical shifts are present. The general two dimensional

signal is then given by (assuming a y rr/2 pulse and x rr pulse)

90

where the propagator for a rr x pulse is given by [75]

IT = exp(+irrI )
x

N
(2i)N IT (I )k'

k=l x

(3.36)

(3.37a)

(3.37b)
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Figure 3.14

I
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I

'Jf 3
I
I
I
I

~I'C t2 ..
XBL 811 0- 6662

Pulse sequence used for two dimensional spin echo spectroscopy.

The evolution period, t
l

, contains a ~ pulse in its center. Hamiltonians

in the three periods are denoted HI' HZ' and H3 . In a strongly coupled

system of chemically inequivalent spins, the IT pulse will cause addi­

tional lines to appear in the wI spectrum from coherence transfers.



Equation (3.37b) is obtained from an expansion of the exponent in Equation

(3.37a) and using I = L(I )k where (I )k is an operator for a singlex x x

nucleus [75]. We have assumed that the IT pulse non-selectively excites

all N nuclei.

For our purposes it is sufficient to consider only the case when all

three Hamiltonians are equal: HI = HZ = H
3

= H. Hhen H contains only

the Zeeman offset and bilinear terms,
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H (3.38)

we may evaluate Equation (3.36) easily by inserting the identity operator

(3.39 )

appropriately. The result is

Sx(tl,tZ) ~ Tr{Ixexp(-iH3tZ)exp(-~Htl/Z)

x eXP(-iHRtl/Z)Ixexp(iHRtl/Z)

(3.40)

where

(3.41)

Bilinear terms in H are unaffected by the IT pulse. Because all terms in

H are mutually commuting, we find that the offset term is removed from

the evolution, as expected in light of the discussion on TPPI.

The difficulties alluded to above arise when a chemical shift

F~miltonian is present and the total F4miltcnian is

H = -~wI
z

(3.42)



H
cs

does not commute with ~ or H
J

when not all a
i

are equal. Y~en the

sample is isotropic and J couplings small compared to relative chemical

shift differences (a first order spectrum), H
J

can be truncated to that

part which commutes with H and a ~ pulse will again remove chemical
cs

shift evolution from t
l

. Molecules may sometimes contain large J

couplings and when anisotropically ordered in a liquid crystal, D

couplings are usually as large as or greater than chemical shift dif-

ferences. The chemical shift Hamiltonian may be written as two terms
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H 1 L [ (a . - a. )(1 - I ) + (a. + a. ) (I + I ) ]=
2 (N-l)cs i<j 1 J Z. Z. 1 J Z. Z.

1 J 1 J

H
1 L [0 .. (1 -I ) + T • j (I + I )]=

(N-l)cs i<j 1J Z. Z. 1. Z. Z.
1 J 1. J

(3.34a)

(3.43b)

where

0 ..
1

(a. - a.)- 21.J 1. J

1
(a

i
+a

j
).T •• - 21.J

As an example, the commutator of Hand BL is evaluated ascs -1)

(3.44a)

(3.44b)

= - 4
1 L 0 .. D.. (1+. I j - I iI+.).

i<j 1.J 1.J 1 - - J
(3.45 )

As an approach to evaluating Equation (3.40) when chemical shifts

are present, one may expand the exponentials containing H with the well-

known Zassenhaus formula [3]

exp (A + B) = exp (A)exp (B)exp ([A,B] /2)exp ([B, [A,B]] /3) + [A, [A, B]] /6) .••

(3.46)

and use perturbation or average hamiltonian theory. However, products



2 2
such as O.. D.. , O.. D.. , D.. O. _"", etc. occur and the expansion will

1J 1J 1J 1J 1J 1J

not converge unless t l /2 is small. ~lultiple IT pulses in t
l

may be used

to scale or remove higher order terms in the average hamiltonian. [59]

As another approach, Equation (3.40) may be evaluated directly in a basis

set which diagonalizes the Hamiltonian. Evaluating the matrix elements

directly yields [75]
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(3.47)

where

and

(3.48)

= H ...11 H..•
JJ

The matrix elements of IT are easily evaluated. In the simple

product basis set, from Equation (3.37b)

(IT)
mn

= .No1 N '
m(2 -n + 1)

(3.49)

where the usual definition of the Kronecker delta is used:

is N = 1 for m = 2
N
-n + 1

m(2~ -n + 1)

= 0 otherwise.

In the eigenstate basis set, IT is given by

(SITtS)
ij

= L st IT S
im TIm nj

mn
(3.50)



where S is the eigenvector matrix. Now, S is block diagona1ized by total
~ ~
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Zeeman quantum number so that tI~£ :: ~ - M£ a for the element Sk~' We

may then find the change in M for IT in this basis set as follows. The

total Zeeman quantum number for state i is given by

N
2

(3.51 )

where k. is the number of spins "up" (Le., number of a's). Thus, from
1

Equation (3.50) and tiM . =
m1 tiM N

(2 -m+ l)j
= 0,

but

k.
1 k N

2 -m+ 1

so, finally

k N = N- kn'
2 -n+ 1

= 2k - N = 2M. = -2M
i 1 j

(3.52)

for (TI)ij in system basis set. Equation (3.52) will prove useful when

considering a TPPI multiple quantum experiment. It may be shown [75]

that the intensity coefficients for the signal, Equation (3.48), obey

the following index permutation properties.

(3.53)

Before going on to the multiple quantum case, we first consider an

AB spin system as a simple example which illustrates the effect of the IT



pulse in the two frequency domains. Two dimensional Fourier transforma-

tion of Equation (3.47) gives (neglecting relaxation effects)
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(3.54 )

in which wijkQ, = (wij - wkQ,)/2. The w2 spectrum will contain the usually

allowed single quantum spectrum with intensities different from those

obtained from a single pulse experiment. The spectrum projected along

the wI axis will show new lines whose intensity depends on the extent to

which simple product states are mixed by both the couplings and chemical

shifts. A. Kumar, et al. have evaluated the intensities and frequencies

for an AB system with JAB' DAB and 0AB all non-zero [76]. The results

are presented for convenience in Table 3.1. The quantities used in that

table are defined as follows.

D = DAB,J = J AB

[(J - 1:. D)2
~

C = + 40 2 ]
2

20/C,sinZ8 1
cosZ8 = = (J - 2" D)/C.

It should be noted that DAB here is defined as twice the quantity used

by Kumar, et al.

The intensities in Table 3.1 will vary depending on the ratio of

couplings and of each coupling to the chemical shift difference, 8. For

the case we are interested in - liquid crystal systems - D is usually



Table 3.1

Frequencies and Intensities for the 2D Spin Echo Spectrum
of an AB System

Wz wI
(relative a (relative to 0)to T) Intensity

1. ; (J+D) 1 t (J+D)
1 (1+sin28)sin28--D --D2 2

2. t (J+D)
1 1 (J+D) 2

--D 2 cos 28
Z

3. t (J+D) +.!.D ; (J+D)
1 -(1-sin28)sin28+-c

2 2

4. ; (J+D) +.!.c ; (J+D)
2

2 cos 28

5. 1 +.!.c 1 (J+D) 1 (1+sin28)sin28- - (J+D) -2 +-D2 2 2

1 +.!c 1 2
6. - - (J+D) - - (J+D) cos 282 2 2

7. 1 1 1 1 -(1-sin28)sin28- - (J+D) --c - - (J+D) - - D2 2 2 2

8.
1 1 1 (J+D)

2
- - (J+D) - - c -2 cos 282 Z
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are of low intensity when D » 20.

much larger than both J and o. Figure 3.15 shows the wI spectra calcu-

lated from Table 3.1 for two extreme cases. The isotropic, first order

case is characterized by D = 0 and J « 28 and is shown in Figure 3.l5a.

The chemical shift is removed to first order and the major lines repre-

sent the symmetrical J splitting centered about wI = O. Figure 3.15b

gives the expected spectrum for the case when D » 28 and, for conven-

ience, J has been taken as zero. Again, the chemical shift is removed

to first order and the major lines appear where they would be expected

in w
2

had 8 been rigorously zero. These lines are shifted from their

. 20
2

position when 0 = 0 by approx1mately -n- The additional lines resulting

1
from coherence transfers induced by the IT pulse are found at ~ 2 D and

I
The small lines at ~ 4 D are from

transitions which become allowed when the chemical shift mixes the triplet

and singlet two-spin wavefunctions. They also appear in w
2

centered

I
about T = 2 (crA+cr

B
)·

We now turn to the TPPI experiment of Figure 3.4c. We wish to deter-

mine the nature of any new lines which may result from a IT pulse when

the spin system has non-equivalent nuclei. For the experiments in this
,

work, only the single point at t
2

= 0 (T' = T) is collected for each of t l

and only a one dimensional transform is calculated. The signal may be

written in a manner similar to Equation (3.47) and the transform with

respect to t l calculated to give
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S (T ; W, , T ') 0::
.1.

where

(3.55 )

(3.56)
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(b)
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Figure 3.15

XBL8110-6663

Spin echo spectra of an AB spin-1/2 system in the wI direction

from the two dimensional sequence of Figure 3.14. The chemical shift

is removed to first order by the echo so that line positions are approxi­

mately those shown. a) The result for a first order isotropic system.

b) A strongly coupled anisotropic system. TAB has been set to zero

for convenience.



As we have seen in previous sections, the preparation and detection

matrices may contain all orders of coherence in a non-selective experi-

ment, hence ~Mij' ~~ = +N,+N-I, .•• ,-N+l.-N. We may use Equation (3.52)

to show that a IT x pulse will only transfer coherence between pairs of

states separated by the same ~M. For Zijkt'

~Mij = i"n, n = N,N-I, ••....

~Mjk = ZM. ,
J

~MQ,i ZMt = -ZM. ,
].

hence

Thus, the IT pulse will not cause a transfer of coherence between multiple

quantum orders. The intensity coefficient, ZijkQ," is impossible to cal­

culate without an exact knowledge of the system Hamiltonian. Even with

model coupling constants and chemical shifts, ZijkQ, may be difficult to

estimate in a large spin system. A program has been written by J.

Murdoch [67] capable of simulating the exact T averaged intensities for

a general system of up to eight spins when a IT pulse is present during

the evolution period. MOdel calculations using this program on AB, ABZ

and more complicated spin systems [78J indicate that relative intensities

follow a pattern similar to the single quantum experiment described in

this section. Additional lines caused by the IT pulse are generally small

when ZOij «Dij . Those transitions arising from states only weakly

mixed by the chemical shift are, as expected, only weakly pumped by the

non-selective two pulse preparation. Absolute intensities, averaged over
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T, relative to an id2rrtical spin system but with chemical shifts zero,

are somewhat different.

3.5 Conclusion

In this chapter ,ve have outlined the theory of the simplest, non­

selective multiple quantum experiments including the time proportional

phase incrementation technique for retaining homogeneous linewidths

with complete separation of orders. We have indicated the nature of

increased resolution in the higher orders and have also argued the

limitations due to a Gaussian distribution of integrated intensities.

A brief presentation of the inherent even quantum transition nature

arising from a bilinear spin pumping operator in multiple quantum pre­

paration and detection has also been given. Several methods for

observing even, odd or all transitions are demonstrated with experi­

mental examples in benzene. Finally, the extent of distortions in the

spectrum caused by a IT pulse in the evolution period of a TPPI sequence

when chemical shift differences are present has been discussed. Selective

preparation and detection for enhanced signal intensities in high

quantum spectra have not been discussed.
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Chapter 4

Experimental Studies of Molecules with Internal Motion: Biphenyl

4.1 Introduction

We have stated several times so far that the aim of acquiring NMR

spectra of oriented molecules in a liquid crystal phase is to learn

something about molecular structure, conformational statistics, and

anisotropic ordering. In Chapter 1 we saw that part of this information

comes from couplings in the dipolar Hamiltonian. The object is then to

determine D.. 's from frequency measurements taken from the spectrum. If
~J

the molecule is rigid (or vibrational effects can be accounted for) and

contains a small number of coupled spins or sufficiently high symmetry,

this task may be simple. Analytical expressions may exist relating

transition frequencies to parameters of interest and line assignments

may possibly be made unambiguously. We have seen, however, that as the

number of spins is increased, or when the molecule exhibits less simpli-

fying symmetry elements, the single quantum spectrum rapidly becomes

intractable. Each transition frequency is a complicated linear combina-

tion of parameters of the Hamiltonian and transition density becomes so

high that individual lines are no longer resolved. Even if sufficient

independent and resolved lines exist to determine the problem, the sheer

number of possible initial line assignments which each produce an

acceptable fit, may make an analysis difficult.

The approach of multiple quantum NMR then appears to offer a signif-

icant advantage by producing high order subspectra which contain con-

siderably fewer transitions then the single quantum spectrum. Often,

these transition frequencies are simply related to dipolar couplings
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making the whole process of analysis more straightforward. When there

are few well resolved transitions, only a few line assignment possi-

bilities will need to be considered.

Once couplings are uniquely determined from either a single quantum

or multiple quantum spectrum, it remains to interpret these in terms of

one or several possible molecular models. For dipolar couplings, the

model must include both the geometric parameters and order parameters.

If it is assumed that the molecule is completely rigid, then a classical

model of geometry will allow us to interpret the results in terms of

bond angles and lengths. Vibrations and perhaps other motions will

always be present, however, and strictly speaking, must be included in

our model. We will, in general, distinguish between two types of motion,

although this does not imply they should always be treated independently.

The first includes small amplitude vibrations which are usually treated

as harmonic and cause slight corrections to each rr... Harmonic vibra­
1J

tions are handled through a normal mode analysis which has been developed

for the case of anisotropically ordered molecules by Lucas [87]. The

theoretical and computational approaches have been reviewed by Sykora,

et al. [88].

The second type of internal motion which we identify is so-called

"large amplitude" vibrations or torsions. Examples have already been

cited and Emsley and Lindon devote an entire chapter to the subject [18].

Included in this are free rotor-like motions of a subunit of a large

molecule, a molecule which jumps or tunnels between conformations, and

pseudo-rotation such as that occurring in many cyclic compounds. This

chapter reports results for a simple case of large amplitude internal

motion which occurs in the biphenyl moiety. The phenyl rings are able to
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rotate about the axis which contains the C-C inter-ring linkage. The

angle between two planes, each of which is defined by the carbon atoms

of one ring, is referred to as the dihedral angle and is denoted as ~.

If the potential contains a minimum, the angle at that minimum is de-

fined as ~. Biphenyl was chosen because it represents a very simple
m

type of motion in a potential which is periodic and one dimensional.

Molecules studied in this work which contain the biphenyl unit are shown

in Figure 4.1. The biphenyls para-substituted (4, 4' locations) with

halogen or deuterium atoms were studied as solutes dissolved in a liquid

crystal. The cyano and alkyl chain substituted biphenyl, 4-cyano-4'-n-

pentyl-dll-biphenyl (SCB-dll ) is a pure liquid crystal which was studied

in its nematic phase. We also present the single quantum deuterium

spectrum of the alkyl chain of this molecule in the following sections.

4.1.1 Background: Structural Studies of Biphenyls

The biphenyl unit is quite prevalent in organic molecules and

naturally serves as a choice for theoretical and experimental studies.

Theoretical work has centered on the use of molecular orbital calculations

to model the internal geometry and potential as a function of dihedral

angle [80-84]. Early experiments were conducted on X-ray analysis of

solid biphenyl [86] and electron diffraction measurements in the gas

phase [85]. Unsubstituted biphenyl is believed to be planar in the solid

and to occur with a dihedral angle of about 42° in the gas phase.

Theoretical calculations confirm these measurements and attempt to model

the potential to rotation of the rings by the inclusion of several con-

tributions. These contributions are either of two types: conjugation

and non-bonded interactions. Conjugation includes all electronic effects

which tend to bring the ring planes together and reduce~. Non-bonded
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Molecules studied by single and multiple quantum NMR. The

symmetrically substituted biphenyls (4,4'-dichloro-,4,4'-dibromo-,

and 4,4'-dZ-biphenyl) and unsubstituted biphenyl were studied as

salutes in liquid crystal solutions. The alkyl cyanobiphenyl,

5CB-d1l , is a pure liquid crystal studied in the nematic phase.



interactions include steric hindrance, bond deformation, and intermolec-

ular interactions which may raise the total potential at either ~ = 0

or ~ = 90°. The combination of these two general types of interactions

make up the total potential which determines the preferred dihedral

angle ~. Thus, it is reasonable that biphenyl should be planar in the
m

solid where intermolecular interactions dominate, and at some angle ~90°

when they are absent, as in the gas phase. The theoretical form of the

potential varies depending on whether bond deformations,which are a

function of ~ are allowed [81-83].

Although the value of ~ at the potential minimum arrived at by

several authors closely agree, relative heights of the barrier to rota-

tion at ~ = 0 and ~ = 90° vary depending on the calculation approach.

Dewar, et al. [83] and Fischer-Hjalmars [81] calculate a slightly lower

barrier for ~ at 90° while Casalone, et al. [82], who include bond

deformation in their model, find that the barrier 1S lower at ~ = 0°.

The magnitude of both barriers, at ~ = 0° and 90°, generally falls

between 2 and 5 kcal/mole.

Since these early investigations, biphenyl has been studied in a

number of varied forms and conditions. Recent studies include Penning

ionization from pure biphenyl adsorbed onto a clean metal surface [89]

and a wealth of magnetic resonance results [95-99] on substituted bi-

phenyls. A brief review of the current magnetic resonance results for

halogenated biphenyls in liquid crystals is given in the next section.

4.1.2 Substituted Biphenyls in Liquid Crystals

The literature contains many examples of molecules dissolved in

liquid crystals which exhibit a simple 4-fold periodic potential charac-

terized by a single "dihedral" angle. Examples include studies of the
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bipyridyls and bithiophenes [90-94] and substituted biphenyls [95-99].

The bipyridyl [93] and bip~rimidine [94] studies are quite similar to the

biphenyl problem. For Z,Z'-bithiophene, one can imagine an internal

rotational barrier sufficiently large to cause slow interconversion

between true cis and trans isomers. In the models used to analyze the

spectra, an attempt is made to deduce population ratios for these two

isomers [9l,9Z]. The problem is somewhat underdetermined unless enough

assumptions are made to determine the ratio.

There have been a number of studies published on biphenyl solutes

in liquid crystals. These all involve some substitution; pure (ClZHlO )

biphenyl spectra have not been published. Substitution patterns are

almost invariably symmetric with respect to the Cz operation along the

para axis linking the two phenyl rings. This choice of symmetry is con­

venient because, as we shall show, only three of the possible five

independent order parameters are necessary in the analysis. Further

symmetry reduces this number to two.

In all of the biphenyl studies, a value for the dihedral angle is

found. This result varies depending on the nature of the substitutions

and method of analysis. For highly substituted molecules, there are not

enough couplings to simultaneously determine all order parameters, bond

lengths and angles, and all terms in the inter-ring potential. Thus, it

is desirable to limit the number of substituents, an approach which, of

course, increases the number of single quantum transitions. The least

substituted molecules studied have two para-substituents such as in the

case of 4,4'-dichlorobiphenyl [96]. This pattern of substitution does

not reduce the sensitivity in the spectrum to the dihedral angle since a

coupling involving nuclei in the 4,4' (para) positions will not depend on
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~. Perhaps the most extensive study of the internal rotational degree

of freedom has been carried out by Field, et al. [97,98]. This group

has studied the dihedral angle obtained from NMR measurements in liquid

crystals as a function of substituents which are ortho to the inter-ring

linkage. Although many assumptions are made, a clear correlation is

demonstrated between ~ and the van der Waals radii of these substituents

suggesting that the major contribution in the non-bonded interaction

portion of the potential is from steric hindrance.

The primary example of a biphenyl group studied in this work is that

found in SCB-d
ll

(see Fig. 4.1), which is a pure nematic liquid crystal.

The cyanobiphenyls have received considerable attention in a variety of

studies which are briefly reviewed below.

4.1.3 Alkylcyanobiphenyls

The homologous series of 4-cyano-4'-n-alkyl-biphenyls have been

studied by a number of spectroscopic techniques including X-ray [100],

deuterium [101-102] and proton [103,104] NMR, infrared [105] and, more

recently, dielectric relaxation [106,107]. This series contains alkyl

chains ranging from butyl to octyl and exhibits many of the non-chiral,

thermotropic mesophases among its members. The shorter length molecules

(e.g., SCB) exhibit only a nematic phase between crystalline and iso­

tropic, while longer chain members of the series can be induced to form

smectic phases. For practical applications, the alkyl cyanobiphenyls

have a remarkable stability and high dielectric anisotropy making some

of them ideal for electric field display devices.

In large part due to the cyano group, each molecule has a large

dipole moment. The X-ray studies [100] have indicated an antiparallel

head-to-tail arrangement in the nematic and isotropic phases of
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pentylcyanobiphenyl (5CB) and heptylcyanobiphenyl (7CB). In this ar-

rangement, molecular dipole moments alternate in direction between

molecules over a large domain, thus giving the most energetically

favorable situation. It has been suggested from the results for 5CB

that local end-to-end structure between opposing molecules occurs with

a spacing of 1.4 times the molecular length [100].

Deuterium NMR studies of 5CB, 7CB and 8CB have focussed on the

ordering of the deuterated alkyl chain. Results indicate a variety of

conformational possibilities exist for the chain. In this Chapter,

the deuterium spectrum of the chain of 5CB-d
ll

will be compared with

previous studies. The proton single quantum spectrum of the unsubsti­

tuted nematic liquid crystal might be expected to be completely unre­

solved because of the large number of spins and high degree of ordering.

As a result, proton spectra have only been analyzed for 5CB [103,104]

when one section of the molecule is substituted w~th deuterium. An

analysis of the single quantum, deuterium decoupled proton spectrum of

4-cyano-4'-pentyl-d
ll

-2',3',5',6'-d
4
-biphenyl [103] yielded a partial

estimate of the order tensor elements for the aromatic core and the

structure of the cyano substituted ring. A multiple quantum NMR study

by Sinton and Pines [104] has yielded a preliminary analysis of the

biphenyl group structure. The experimental results of the latter work

and a more thorough analysis of the spectrum will be presented in this

chapter.

To gain an appreciation of the complexity present in the proton spin

system of 5CB-dll , consider Figure 4.2. This figure shows the single

quantum proton spectrum of the liquid crystal in the nematic phase and

under conditions of moderate field homogeneity. With the degree of
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Figure 4.2

Single quantum proton spectrum of 5CB-dll " Double quantum deuterium

decoupling was used to remove couplings to the alkyl deuterons. The

separately measured inhomogeneous proton H20 line width was -.05 ·ppm.

Temperature of the sample was regulated at 26.0°C. The total width

shown is 50 kHz.



resolution in this spectrum, very little useful structure exists.

Although a higher resolution experiment, such as a two dimensional spin

echo experiment, should yield some improvement, the spectrum would

remain difficult to analyze. Because of slow molecular fluctuations

and the high degree of ordering in the room temperature nematic phase,

each transition is fairly broad (~200 Hz). SYmmetry considerations alone

predict over 3000 allowed single quantum transitions in a band width of

~50 kHz. (Of course, the actual number of observable transitions will

be less due to degeneracies and to low intensity for some.) The single

quantum spectrum obviously contains many overlapping transitions.

The proton multiple quantum spectrum of the same liquid crystal is

shown in Figure 4.3. The reduction in transition density with increasing

multiple quantum order, as for benzene in Chapter 3, is apparent. All

orders are present with sufficient signal-to-noise to allow an analysis.

Each order is contained in a width about that of the single quantum spec­

trum of Figure 4.2 for a total width shown of 500 kHz. Before going on

to detail an analysis of this spectrum, in the next section we will

describe the symmetry properties of a biphenyl group and indicate how

the high order multiple quantum transitions reflect this symmetry.

4.2 Biphenyl Symmetry Models

In determining the point group of para-substituted biphenyl, four

basic models must be considered. 1) Free rotation of the rings where

the potential as a function of ~ is a constant. 2) Only one static con­

formation with angle ~ between the rings is allowed, or the molecule

interconverts between conformations with angles ±¢. This model may be

considered for the cases when the two rings are either equivalent (iden­

tical substituents and geometries) or inequivalent. 3) The rings are
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C5 DII 4>ZCN

Multiple Quantum NMR Spectrum

XBl B08-10941

Figure 4.3

Proton multiple quantum NMR spectrum of 5CB-d
ll

• The

multiple quantum subspectra are separated according to the order

of the transitions. The change in magnetic quantum number, AM,

is indicated beneath the subspectra. Only one half of the sym­

metric zero and eight quantum regions are shown. The full width

shown in 500 kHz. No deuterium decoupling irradiation was used.
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entirely equivalent and the molecule interconverts between the four

equally probable conformations at dihedral angles !~ and~ !~ (see Fig.

4.4). 4) The rings are inequivalent but the four conformations of case

3) are present. Each of these models may be modified in the manner in

which dipolar couplings are averaged over internal motions. Harmonic

vibrational corrections may be added by a normal mode analysis and

couplings may also be averaged over the torsional motion about ~.

The first model - that of free rotation - is generally ruled out by

experimental results. The permutation group of the proton spins for a

single conformation of a para-substituted biphenyl with equivalent rings

is isomorphous with D
Z

' Free rotation effectively increases the sym­

metry to D
Zh

' The resulting reduction in allowed transitions is not

commensurate with experimental results [94]. This appears reasonable

since a finite barrier is predicted by theory. This barrier, however, is

not expected to be large enough as ~ goes through-90° to prevent inter­

conversion to the other two symmetry related conformations. All four

conformations are depicted in Figure 4.4. If the biphenyl group changes

between these four conformations fast compared to the inverse of the

couplings which are a function of ~ -a reasonable assumption again con­

sidering the magnitude of the barriers - then this motion will effective­

ly create two new reflection planes. In all examples found in the liter­

ature to date, only models which include an average of all four symmetry

related conformations of Figure 4.4 adequately fit the oriented NMR data.

Thus, we will focus on models 3) and 4) above. The difference between

these concerns whether the phenyl rings are equivalent or not. If they

are, implying that the para-substituents are either the same or do not

perturb ring structure or motion differently, then there must exist a
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Equivalent Conformations of Biphenyl
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Figure 4.4

Four equivalent conformations of biphenyl for dihedral angles

~ and rr ~~. The molecule is assumed to change between these

conformations at a rate which is fast compared to the inverse of

couplings which are a function of~. This motion creates two

effective mirror planes perpendicular to the page and containing the

dotted lines.



symmetry element which exchanges them. Otherwise there will be fewer

irreducible representations in the molecular point group.

These two possible symmetries are shown in Figure 4.5 along with

the numbering of protons which will be adopted for the rest of this

chapter and coordinate systems chosen for calculating the D.. 'so The
1J

higher symmetry case, in which para-substituents are the same (X) and

the rings are equivalent, is shown on the left. When the rings are in-

equivalent as in the case of different substituents (X,Y), the right

hand side of Figure 4.5 is applicable.

4.2.1 Equivalent Rings: D
4

Point Group

When determining the point group applicable to a spin Hamiltonian,

it is the permutation symmetry of nuclear spins which defines the group

symmetry elements [34]. The permutation symmetry group of a symmetrically

para-substituted biphenyl (exchanging between the four conformations of

Figure 4.4) is isomorphous with the D
4

point group. The character table

for this group, along with a definition of the symmetry elements is given

in Table 4.1. Each ring has an effective C2 axis of its own (flip ring

about molecular long axis without flipping other ring) due to equal con­

formational probabilities. These are denoted C~ and C~ in Table 4.1.

In addition, both rings may simultaneously flip - a C2 operation for the

whole molecule, ~B. For the space coordinates, there are two C2 axes

perpendicular to the axis containing the inter-ring linkage. These

operations combined with the ring C2 elements result in spin symmetry

elements denoted as R. This element means effectively "exchange the

115
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2
and R

2
, refer to operation by C

2

or C~ before the exchange, respectively. The other class (R~B, R) is

simply an exchange of rings.
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Figure 4.5

Two possible symmetries for a para-substituted biphenyl. On the

left, the para-substituents are equivalent (X) and the effective average

permutation symmetry for the numbered protons is 04. With different

substituents (X and Y), the point group is OZ. Coordinate system #1 for

04 lies between the rings with x and y axes bisecting the inter-ring

angles. Coordinate system #Z for 0z lies in ring B with the x axis in

the ring plane for all~. The projections defining the direction of

positive ~ are seen looking down the z axis onto the xy plane.



Table 4.1

D4 Point Group Character Table for Symmetry Elements of Symmetrically
Para-substituted Biphenyl

2 ,
"a) E 2C4 C2 = C

4 2C2 2C2

b) E A B ~B (R,R~B) A B(R2 , R2)
2 (C2 , C2 )

c) (12345678) (56784321) (43218765 ) (56781234) (43215678)
(87651234) (87654321) (12348765)

Al 1 1 1 1 1

A2 1 1 1 -1 -1

B1 1 -1 1 1 -1

B2 1 -1 1 -1 1

E 2 0 -2 0 0

. a)D4 symmetry elements for space variables for an object of this
po~nt group.

b)
D4 permutation elements for symmetric para-substituted biphenyl

(see text).

c)Permutation elements according to numbering of Figure 4.5.
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The resulting energy level diagram for D
4

symmetry is shown in

Figure 4.6. From this, the predicted number of transitions for each

multiple quantum order is given in Table 4.2. These predictions take

into account the double degeneracy of the E symmetry transitions but not

of other possible degeneracies for the lower orders. It has been shown

that the number of symmetry allowed transitions in the high order spectra

may be predicted without a complete reduction of the entire Hamiltonian

[33]. Since the Hamiltonian matrix only has nonzero elements H
ik

for

LiM
ik

= 0 (Le., it is block diagonal by Zeeman quantum number), we only

have to consider blocks for the highest value of M when predicting the

high order transitions. In particular, the N-l transitions only connect

totally symmetric (~) states. A familiar property of this representa­

tion is that the "symmetrized" basis states (linear combinations of

product states) are invariant to all group symmetry operations. We can

N
write down the ~ symmetrized states for the M = ~(2-l) manifold easily

by noting that they must be linear combinations of those simple product

states which convert into one another under group operations. The

N
M = ~(2- 1) simple product states are those for which all but one of the

spins are in a single orientation (n or B for spins-liZ). By identifying

the number of these states which are not related by any of the symmetry

N
operations, we can determine dimensions of the ~, M = ~(2- 1) manifolds.

Returning to the specific example of a D
4

symmetry biphenyl group,

we see that there are only two proton sites, those ortho and meta to

the substituents, which cannot be exchanged by any of the operations in

the character table (Table 4.1). We immediately predict that there will

be only four symmet~J allowed transitions in the seven quantum spectrum,

consisting of two doublets. If we ignore chemical shifts (they are
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Symmetrically Para-substituted Biphenyl

D4 Point Group Energy Level Diagram
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Figure 4.6

Spin energy level diagram for a symmetrically para-substituted

biphenyl (D
4

symmetry). The six irreducible representations are

given at the top. The E representation is doubly degenerate.

Values for the total magnetic quantum number, M, are shown along

the left hand side. Numbers inside the table are dimensions of

Zeeman submatrices occurring in each representation.



Table 4.2

Predicted Number of Transitions in the Multiple Quantum Spectrum of a
Symmetrically Para-substituted Biphenyl

120

n-Quantum Order

8

7

6

5

4

3

2

1

/I Transitionsa

1

4

14

4

4

2 x 4

21 total unique
transitions

68

20

2 x 24

92 total unique
transitions

286 total

628 total

1142 total

1580 total

Symmetry

Al

Al ( 2 doublets)

Al ( 7 doublets)

Al (triplet)

B2 (triplet)

E (triplet)

~ (34 doublets)

D2 (10 douDle~s)

E (12 doublets)

a For 8, 7, 6, 5 quantum a breakdown by symmetry is given and
only the number of unique transitions given in totals (ignoring acci­
dental degeneracies). The double degeneracy of the E representation
is not counted in any of the totals.



removed by a TPPI IT pulse) then each doublet will appear centered about

7~w in a non-selective spectrum of all orders. We may also write down

the M = ~3 ~ symmetrized states. They are schematically represented in

Figure 4.7. One consists of a combination of simple product states with

the unique spin ortho to substituents and the other contains the meta

unique spin.

One can proceed in this manner for the N-2 quantum spectrum by

identifying unique combinations of two "labeled" spins. Now representa­

tions other than Al must be considered. Counting schemes have been pro­

posed [33] which unify this approach and are applicable to a variety of

cases when molecules exhibit internal motion. For the lower order

spectra, Hamiltonian submatrix dimensions are large and this approach

becomes difficult. However, a rigorous group theory application will

allow transition number predictions to be made.

4.2.2 Inequivalent Rings: 02 Point Group

The character table defining symmetry elements for the case when

the biphenyl rings are inequivalent (right side of Fig. 4.5) is given in

Table 4.3. The permutation elements are similar to the 04 case except

for the lack of a ring exchange (R) operation. The resulting energy

level diagram is shown in Figure 4.8. Numbers of transitions may be

predicted in the manner of the last section with the results given in

Table 4.4. There are now four unique proton sites and twice as many

high order transitions compared with the 04 symmetry model.

From this analysis, the symmetry of the molecule should be evident

from the seven and six quantum spectra. If we see more than two doublets

in the seven quantum spectrum, we know immediately that the rings cannot

be equivalent. If more than four doublets should appear then some
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Schematic representation of symmetrized M = ~3 ~ states for a

biphenyl having D
4

symmetry. The proton spin labeled with a dot is

in a quantum state (a or B) opposite to that of the other seven

spins. Each symmetrized state a) and b) is a linear combination of

simple product states for the proton spins. These two symmetrized

states make up a 2 x 2 matrix which must be diagonalized to yield

true eigenstates of the Hamiltonian.



Table 4.3

D
2

Point Group Character Table for Symmetry Elements of
Asymmetrically Para-Substituted Biphenyl

a) E C
Z c

y eX
2 2 2

b) E cAB cA cB
2 2 2

c) (12345678) (43218765 ) (43215678) (12348765)

Al 1 1 1 1

B1 1 1 -1 -1

B2 1 -1 1 -1

B
3

1 -1 -1 1

a) D2 symmetry elements for space variables of an object
of this point group.

b)
D2 permutation elements for asymmetrically para-

substituted biphenyl.

c) Permutation elements according to numbering of
Figure 4.5.
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Asymmetrically Para-substituted Biphenyl

D Point Group Energy Level Diagram
2

M
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Figure 4.8

Spin energy level diagram for an asymmetrically para-sub­

stituted biphenyl (DZ symmetry). The four irreducible represen­

tations are shown along the top and values of the total magnetic

quantum number are given on the left hand side. Numbers within

the table are submatrix dimensions for each representation and

different values of M.



Table 4.4

Predicted Number of Transitions in the Multiple Quantum Spectrum of an
Asymmetrically Para-substituted Biphenyl

n Quantum Order /I Transitionsa Synnnetry

8 1 Al

7 8 Al ( 4 doublets)

6 24 Al (12 doublets)

24 Al ( 6 triplets)

4 B2 (triplet)

4 B
3 (triplet)

41 total unique
transitions

5 136 Al (68 doublets)

24 B2 (12 doublets)

24 B3
(12 doublets)

184 total unique
transitions

4 556 total

3 1256 total

2 2256 total

1 3160 total

a For 8, 7, 6, 5 quantum, a breakdown by symmetry is shown
and only the number of unique transitions given in totals
(ignoring accidental degeneracies).
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axial phase.

assumption, e.g., about the phase or purity of the liquid crystal, must

be invalid. Without exact knowledge of the couplings, we cannot pre-

dict where all of the additional lines from a symmetry lower than D4

should appear. However, if the rings are only slightly different, then

E symmetry lines of the D4 point group are expected to split into two

closely spaced lines. Roughly speaking, this is a reflection of the

doubly degenerate E representation of the D4 point group "splitting" into

the BZ and B
3

representations of DZ' In a similar sense, the ~ repre­

sentation of D
2

can be viewed as a combination of the states in Al and

BZ of D
4

. The states of A
Z

and B
I

in the D
4

group condense to form B
I

of D
Z

' Unlike the E representation however, this situation cannot neces-

sarily be expected to produce a simple splitting of D
4

lines. Thus, if

the distortions breaking the symmetry are only slight, we can expect a

number of overlapping, unresolved transitions due to near degeneracies

and perhaps a few additional resolved lines.

4.Z.3 Order Parameters

We determine the number of order parameters necessary to describe a

spectrum by considering effects of molecular symmetry on the definitions

in Equation (Z.3Z). We find it convenient to use Equation (Z.33) for

the dipolar couplings requiring the Saupe cartesian order parameters.

We demonstrated in Chapter Z that, in general, we require five order

parameters for each allowed conformation of molecules oriented in a uni-

The C~ operation about the long axis of the biphenyl group
l.

implies that the orientational distribution function describing a trans-

formation from a molecule fixed axis system to director frame must also

have Cz symmetry about this axis. We chose the z molecular axis to be

along this Cz axis for both DZ and D4 cases and find that Sxz and Syz

must be zero.
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We see from Equation (2.32c) that the
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At this point the two symmetry cases differ. The additional ring

exchange symmetry of the 04 model implies that there should only be two

independent order parameters. Thus, we should be able to easily find the

molecular fixed axis system in which the order tensor is diagonal. Such

an axis set is conveniently chosen with its origin along the C-C inter-

ring bridge as depicted on the left hand side of Figure 4.5. The x axis

then bisects the dihedral angle for all values of~. The y axis is then

perpendicular to the effective reflection plane containing z and caused

by the rapid interconversion between conformations. We will refer to

this set of axes as coordinate system #1 here and in the Appendix. The

independent order parameters are then the diagonal elements 5 and
zz

(S -5 ). Because these are insensitive to the conformational state ofxx yy

the molecule, a single order tensor suffices to calculate 0ij'S and an

average over the four conformations implies averaging just the geometric

quantities according to Equation (2.36).

The less symmetric 02 case requires one independent off-diagonal

element in S. We define the molecular fixed axis system for this case
~

to have its origin in one of the rings (see Fig. 4.5). The x axis lies

in the plane of this ring and the y axis is perpendicular to it. The

non-zero order parameters in this axis system - coordinate system #2 are

then S , (8 - 8 ) and 8
zz xx yy xy

S for different conformations are related by a sign. Thus,
xy

rr-<p
-5 .

xy
(4.1)

Averaged dipolar couplings can then be calculated for this case from

three independent numbers and a relative sign in the order tensor and

again we find that biphenyl does not present complications in the

analysis due to its internal motion as described in Chapter 2.
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4.2.4 Parameters

Assuming J couplings do not change when a molecule is dissolved in

liquid crystals, we may use values obtained from isotropic measurements

when analyzing a spectrum from an oriented phase. This is common prac-

tice reported in the literature and, with the small values of J ..
1.J

compared to D.. , seems justified in most cases. Since the spectra are
1.J

usually obtained by the TPPI technique, we also assume that the chemical

shifts are removed and set them to zero. We will have to consider the

extent to which lines are shifted by this technique in the manner des-

cribed in Chapter 3. Fortunately, computer programs have been written

in this laboratory [67] which allow modeling of spectra when chemical

shifts are non-zero and so estimates to be made of line shift magnitudes.

If we assume the biphenyl has D4 symmetry, then there are seven

unique dipolar couplings to determine from the spectrum. Four of these

are intra-ring couplings which are the same for b~th rings. The remain-

ing three are sensitive to the dihedral angle and inter-ring distances.

Assuming nothing about the structures of the molecule, then there are

seven molecular parameters which must be determined from these couplings:

r 12 = r 34 = r
S6 = r

78
,

r 14 = r S8 '

r 23
.;. r 67 ,

r 260 •

<P.

5 (5 - S )zz' xx yy

where r
260

is the distance between protons two and six when <P = O.

(4.2)



To determine something about the potential, some of the quantities

in Equation (4.2) will have to be fixed. In an analysis of a single

quantum spectrum of 4,4'-dichlorobiphenyl, Niederberger, et al. [96]

fixed r
14

. The four intra-ring couplings then determine ring structure

and order parameters. The remaining three couplings were used to find

r
260

, ~ and one piece of information about the potential. This analysis

initially assumed an average only over the four static conformations of

Figure 4.4. A more sophisticated average over vibrational or torsional

motions requires further structural and order parameter assumptions. The

inclusion of an average over the torsional motion in which ~ changes

cause only a slight improvement in the overall fit for the case of

4,4'-dichlorobiphenyl [96].

When the para-substituents on a biphenyl unit are not the same, the

D
Z

symmetry means there are 12 unique dipolar couplings. The 11 molec-

ular parameters to determine from these are

129

r
12 :f r S6 '

r
14 :f r S8 '

r 23 :f r
67

,

r 260 ,

~,

8zz' (8 - S ) , 8 (4.3)
xx yy xy

All of these, plus something about the potentia~may be determined from

experimental couplings. Further reasonable assumptions may be made to

simplify the complexity of the problem.



Clearly we cannot simultaneously vary all of these parameters to

obtain a fit without some sort of iterative approach. The details of

the least squares approach used in this work are found in the Appendix.

We can, however, vary only one parameter while all others are fixed to

get some idea of the sensitivity splittings in the spectrum have to

this parameter. This can be done in a systematic manner to determine

which lines will direct convergence and to help identify possible line

assignment difficulties. Program BIPH4PARA (see appendix) was written

to accomplish this for the six and seven quantum ~ symmetry transitions

from input parameters of Equation (4.2) and (4.3). When D
4

symmetry is

assumed, a standard set of geometric parameters, based on a phenyl

°skeleton identical to that of benzene and with r
260

= 1.818 A, is used.

°This corresponds to a C-C inter-ring bridge length of 1.50 A,
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° °r
CH

= 1.082 A, r
CC

= 1.400 A, and a C-C-H angle of 120°. This standard

set of parameters is given in Table 4.5.

Figure 4.9 shows the variation of six quantum ~ symmetry transition

frequencies with dihedral angle~. Only one half of the symmetrical

spectrum which would appear at 66w in a non-selective multiple quantum

experiment is shown. The order parameters found for 5CB-dll from an

analysis of the spectrum in Figure 4.2 and assuming D4 sYmmetry [104]

were used. This analysis yielded a value for the dihedral angle (see

below) which is labeled in Figure 4.9. Two features to note in this

figure are the high sensitivity of some transitions to ~ in the region

of best fit and that some transitions pass through near degeneracy for

some values of~. Figure 4.10 shows a similar dependence on ~ for two

members of the four seven-qL~ntl~ transitions.



Table 4.5

Standard Geometry for D4 Symmetry Biphenyl

0

r 12
= r 34 = r 56 r 78

= 2.482 A

0

r 14 = r 23 = r 58 = r 67 = 4.299" A

0

r 260 = 1.818 A
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Figure 4.9

Variation of six quantum ~ symmetry transition frequencies

for a symmetrically substituted biphenyl with dihedral angle ~.

One half of the symmetric spectrum calculated from D4 dipolar couplings

for each of 45 values of ~ from a to 88° is shown. The frequency scale

shown is relative to the center of the six quantum spectrum. Structure

and order parameters used in the calculation are those in Table 4.5 and

S ,.. 0.568, (S - S ) '"' 0.057.zz xx yy
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Figure 4.10

Variation of seven quantum transition intensities with ~ from

o to 88° for a symmetrically para-substituted biphenyl. Only one

half of the symmetric spectrum for each value of ~ is shown.

Structure and order parameters are the same as for Figure 4.9.



With the long axis of the molecule chosen as the z axis, one would

expect S to be the dominant order parameter and transitions to exhibitzz

a linear dependence on this parameter when all others are held constant.
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This is found for six quantum lines as shown in Figure 4.11. Here Szz

is varied from -0.5 to +0.95. The transition frequency dependence on

(S - S ) over the same range with S held constant is shown inxx yy zz

Figure 4.12. The dependence is weaker as expected. However, all lines

but one vary in a positive sense with a pair of transitions crossing at

(S - S ) = +0.15. Clearly, this order parameter may not be neglectedxx yy

in any model calculation. Similar trends for the seven quantum lines

are found.

We can also look at the sensitivity of a spectrum to changes in inter-

nuclear distances. Single couplings should be strongly affected due to

-3
the (r .. ) dependence. However, the high order transition frequencies

~J

are actually the results of linear combinations or couplings and so will

be less sensitive to changes in particular distances. As examples, the

seven quantum D
4

transitions are shown as functions of r
12

, r
260

, and

r
14

in Figures 4.13, 4.14, and 4.15, respectively. All other parameters

are fixed as these distances vary. Strong dependences are shown on r
12

and r Z60 but not on r 14 • This last distance affects intra-ring geometry

significantly but inter-ring parameters only slightly.

The program is also capable of producing ~ representation transi­

tion frequencies for a D
Z

biphenyl symmetry. The six and seven quantum

transitions as a function of ~ are shown in Figure 4.16 and 4.17

respectively. For these plots, the ring B geometry was fixed to the

benzene parameters of Table 4.5. For the other ring (A), r
23

was set to
o o

4.100 A and r 14 to 4.299 A. The order parameters were chosen to be



eo
x xx x x x x x

" '0' " x x x

x xx x x x x x

x xx x x x x x

x xx x x x x x

x xx x x x x x

x xx x x x x x
x xx x x x x x

x JOe X X X X X

X '" X X X X X

X '" X X " " x

x • x x x x x

x x x x x x x

x x x x xx x

x x x x xx x

Szz x xx x xx x
x xx x XJC xx_x- x--•

_ax

x- x x
x _x '" x

x XJCx x JOe X

X xxx x XJC x

x xx x x xx x

x xx x x xx x

x xx x x xx x

" xx x x x x x

x xx x x x x x

-1 kHz 35

XBL BI11-123B6

Figure 4.11

Variation of six quantum.~ symmetry transition frequencies

with the order parameter S and assuming D4 symmetry for an eight
zz

spin-l/2 substituted biphenyl. S ranges from -0.5 to 1.0. Other
zz

parameters are the same as for Figure 4.9 and with ~ ~ 32°. Only

one half a spectrum symmetric about the center of the order for

each value of S is shown.
zz
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Figure 4.12

Variation of six quantum Al symmetry transition frequencies

with the order parameter (5 - 5 ) which ranges from -0.5 to 1. o.
xx yy

Other parameters are the same as Figure 4.11 with 5 = 0.6. Only
zz

one half of the spectrum for each value of (5 - 5 ) is shown.
xx yy
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Variation of seven quantum transition frequencies of a sym­

metrically para-substituted biphenyl with internuclear distance
° °r lZ ' The range of r lZ is Z.O to 3.0 Ain steps of 0.OZ5 A. Other

parameters are the same as Figure 4.9 with 8 = 0.568, (8 - 8 )
zz xx yy

= 0.057 and $ = 3Zo. Only one half of the spectrum at each value

of r 12 is shown.
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Figure 4.14

Variation of seven quantum transition frequencies with r 260
for a D4 symmetry para-:ubstituted bipheny1~ The distance r 260
ranges from 1.5 to 2.0 A in steps of 0.025 A. Other parameters

o

are the same as Figure 4.13 with r 12 ~ 2.482 A. Only one half of

the spectrum at each value of r 260 is shown.
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Figure 4.15

Variation of seven quantum transition frequencies with inter-
o

nuclear distance r 14 • This parameter ranges from 4.0 to 5.0 A in
o

steps of 0.025 A. Other parameters are the same as for the pre-
o 0

viaus two figures with r 260 = 1.818 A and r 12 = 2.482 A. D4 sym-

metry for the biphenyl is assumed. Only one half of each spectrum

is shown.
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Figure 4.16

and

D4 symmetry

slight dis­

The

,. 0.6. (S - S ")
xx yy

spectrum is shown.

set at Szz
half of each

were

4.100 A which changes the symmetry to DZ.

'"' 0.03,

Only one=- 0.03.Sxy

calculations of the preceding figures were used with a
°

Variation of six quantum ~ symmetry transition frequencies of

an asymmetrically para-substituted biphenyl with dihedral angle ~

from 0 to 90°. The same structural parameters for the

tortion of r Z3 a

order parameters
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Figure 4.17

Variation of seven quantum transition frequencies for an

asymmetrically substituted biphenyl (DZ point group) with dihedral

angle~. Other parameters are the same as in Figure 4.16. Only

one half of the spectrum at each value of ~ is shown.
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S 0.6, (8 - S ) = 0.03 and S = 0.03 and, as before, r
260

=
zz xx yy xy

o

1.818 A. The overall picture is similar to that for the D
4

case except

now several sets of transitions collapse to near degeneracy in the six

quantum spectrum (see Fig. 4.16). This occurs close to a value of ~

obtained for 5CB-d
ll

[104] (see below).

Next, we investigate the behavior of six and seven quantum transi-

tions as molecular symmetry moves from DZ through D
4

and back to D
Z

' If

one ring is distorted relative to the other and this distortion is changed

so that the rings eventually become equivalent, we should see the number

of transitions change. This is shown for one half of the six and seven

quantum spectra in Figure 4.18 and 4.19, respectively. The distortion
o

chosen was in r Z3 for ring A. This distance ranges from 4.Z75 to 4.3Z5 A
o

in steps of 0.001 A for the plots of Figures 4.18 and 4.19. The order

tensor for coordinate system #Z was calculated so that it becomes diagonal

if transformed to coordinate system #1 (~ = 3Z 0
) • • Thus, when r

Z3
=

o

4.300 A, it is equal to r
14

, r
67

, and r
58

, so the symmetry is D
4

. As

seen in Figures 4.18 and 4.19, line frequencies do not vary much but

transitions unique to DZ symmetry simply disappear on either side of the

D4 region. Because there are effectively only two independent order

parameters used, this particular distortion only mildly perturbs the

couplings from a D
4

symmetry. Ultimate T averages (see Chapt. 3) confirm

that lines unique to DZ symmetry in Figures 4.18 and 4.19 are of very

low intensity relative to those in the D
4

symmetry region.

As a final example, we consider a case when there are three truly

independent order parameters. For this calculation, the rings had equi-

142

o

valently distorted geometries with r
14

= r
S8

= 4.500 A. r Z3
o

=

4.000 A, ~ = 3Z o and with the rest of the parameters as in Table 4.5.
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Figure 4.18

Variation of six quantum ~ symmetry transition frequencies

with internuclear distance r zi. This parameter ranges from 4.Z75
0 0

to 4.3Z5 A in steps of 0.001 • When r Z3 '" 4.300 A the effective

symmetry is D4· On either side of this point the effective sym-

metry is DZ as evidenced by the increased number of transitions.

Ultimate T averaged intensities for those lines unique to the D
Z

symmetry cases are small relative to other lines for this particu-

lar symmetry-changing distortion.
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Figure 4.19

Variation of seven quantum transition frequencies with inter-

nuclear distances r 23 · The range of this parameter is from 4.275
0 0

to 4.325 A in steps of 0.001 A. Other parameters are the same as

in Figure 4.18. There are four pairs of transitions when the

effective 3ymmetry is D2 and only two pairs when the symmetry is

D4 · Only one half of the spectrum at each value of ... is shown.423



Figure 4.20 shows the six quantum transition frequencies as a function

of S which ranges from -0.20 to +0.20 in steps of 0.01. The variation
xy

of Sxy was designed so that a D4 symmetry became effective where labeled

in the figure. Now transition frequencies do indeed change significantly

and some lines merge to a degenerate frequency at the point where D
4

symmetry is effective.

We could proceed in this manner to determine the many different

parameter dependences high order transitions exhibit. We have already

seen some general trends and discussed symmetry changes above. Small

symmetry breaking distortions cause some additional lines of low inten-

sity and splittings from near degeneracy at the expected D
4

symmetry

frequencies. This approach of single parameter variation is limited,

however, and an iterative technique which simultaneously varies several

parameters is required to fit a spectrum.

4.3 Results: 4-Cyano-4'-n-pentyl-d
ll

-biphenyl

The procedure of Gray and Mosley [108] with a slight modification

reported elsewhere [104] was used to synthesize 5CB-d
ll

. Transition

temperatures were measured with a polarizing microscope and found to be

TC_
N

= 23°C and TN_1 = 31°C. Isotopic purity was estimated at 98%. A

sample of about 400 mg was sealed under vacuum in a 6 mm o.d. glass tube.

A double tuned NMR probe was used for double resonance experiments while

a single tuned probe was used when heteronuclear decoupling was absent.

Probe circuits are described in Chapter 5.

The single quantum proton spectrum has already been presented in

Figure 4.2. Deuterium double quantum decoupling [109] removed deuterium-

proton dipolar couplings. With its lack of resolution, no analysis of

the spectrum was attempted. Deuterium single quantum and proton multiple

quantum spectra are presented below.
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Figure 4.20

to

of para­

from -0.2

transitionsVariation of six quantum Al symmetry

substituted biphenyl with order parameter S ranging
xy

+0.2. Other parameters are set at their values for D4 symmetry at

the point labeled in Figure 4.18. The off-diagonal order parameter

causes an effective DZ symmetry for the biphenyl couplings except

at the one point labeled for S - O.OZ. At this point, the order
xy

tensor is diagonalized by transforming from coordinate system #2

to #1 (see Fig. 4.5).



4.3.1 Deuterated Chain Spectrum

A single quantum, proton decoupled deuterium spectrum of 5CB-d
ll

in the nematic phase at 25.l o C is shown in Figure 4.21. The total

width shown in 75 kHz. Five major doublets with line widths between

300 and 700 Hz are observed. Each doublet is symmetrically centered

about the resonance offset. This doublet structure is expected from

anisotropically ordered spin-l nuclei and arises from the quadrupole

coupling of each chain segment, scaled by the order tensor [39].

Smaller splittings of some of the lines are from dipolar couplings

between deuterons on the same carbon.

An expanded trace of the right hand half of Figure 4.21 is shown in

Figure 4.22. Each member of a quadrupolar doublet is numbered for

identification below. We wish to assign peaks in this spectrum to

specific chain segments. The quadrupolar doublet splitting for a single

segment may be written as [102]
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This equation implicitly assumes that a single order tensor, independent

of the conformational state of the molecule, describes the spectral

i iHere qCD and n are the characteristic quadrupolar coupling

constant and asymmetry parameter defined in Chapter 1 for a C-D bond in

segment i of the chain. The i
abi

are direction cosines between a C-D

bond fixed axis system (abc) and the molecular fixed axis system in

which the order tensor is diagonal. For C-D bonds, n is generally small

i(-0.01) and qCD is about 168 kHz for most CDZ and CD3 groups. Neglecting
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Figure 4.21

Deuterium NMR spectrum of 5CB-d
11

in the nematic phase at

25.l o C. Each pair of lines centered on 0 Hz results from the

quadrupo1ar interaction tensor for the deuterons on one of the

chain carbons. Smaller sp1ittings of each line arise from dipolar

interactions between spins on the same carbon. Couplings to the

aromatic portion of the molecule have been removed by high power

proton decQup1ing.
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Figure 4.22

kHz
37.5

XBL BI11-12410

Expanded trace of the upper half of Figure 4.21 for the deuterium

NMR spectrum of 5CB-dll in the nematic phase. Quadrupolar satellite

lines are numbered for reference in the text.



terms with 11 and assuming that (S - S ) is small, we define an effec­
xx yy

tive order parameter for each segment and the doublet splitting from

segment i is given simply as

150

where

(4.5)

_ S <2.,Q,2
zz 2 azi

1
- ->

2
(4.6)

Some peaks in Figure 4.22 may be assigned easily. The CD
3

group

should give the most intense signal and, because of its position in the

chain, experience the greatest amount of motion from the many conforma-

tional possibilities of the chain. Hence the largest peak with the

smallest 6v , peak #5, is assigned to the methyl group. Likewise, the
q

peak with the largest splitting and, thus, greatest order parameter by

Equation (4.5), is assigned to the CD
2

group attached to the phenyl ring.

This is #1 in Figure 4.22. Other assignments are more tentative, but

it is expected that segment order parameters and so 6v i will vary mono-
q

tonically with segment position. From recent T
1

measurements, Emsley,

et a1. [110] have proposed that this is indeed true except for peaks #2

and #3 which they assign to methy1enes 3 and 2, respectively, counting

out from the ring. The cause of this unexpected behavior is quadrupolar

sp1ittings has not been explained.

We can determine the dipolar couplings within several segments from

the additional structure of some lines of Figure 4.22. Luz, et a1. [43,

44] have worked out the transition frequencies and intensities expected

from isolated groups of two and three equivalent deuterons. They have

shown that the relative signs of dipolar (D) and quadrupo1ar couplings

and the magnitude of D may be determined from CD
2

and CD
3

resonances.
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The theory predicts that each component of a quadrupolar doublet from a

CD2 group will be split into a triplet of intensities 2:3:1 and frequen-

. 3 D ID 3 D 1 . h d Ifc~es 2 ,- 2' 2 re at~ve to vq ' t e qua rupo e requency relative

to the Zeeman offset (6v = 2v ).
q q

Figure 4.23 shows an expanded trace of line #1 of Figure 4.22. If

we assume the triplet frequencies are not shifted significantly by homo-

geneous broadening, then the experimental spectrum gives a value for 2D.

In previous studies of deuterated nematogen alkyl chains in which a

methylene triplet was resolved it was found that a fit to experiment

could only be made when quadrupolar and dipolar couplings were assumed to be

of opposite sign [44]. Taking q~D as positive, a value of -281 Hz is

obtained for the CD2 dipolar coupling of the first segment in 5CB-d
ll

.

This agrees favorably with values obtained by Boden, et ale [102] for

8CB deuterated in the alkyl chain. The trace of part B in Figure 4.23

shows the theory stick spectrum broadened by a Gau~sian function to match

the 1inewidth of experiment. This confirms that the major transition

frequencies of the triplet shift very little with broadening. The homo-

geneous linewidth is a result of small random fluctuations in the direc-

tor and small couplings to deuterons on adjacent segments. In a similar

manner, the dipolar coupling for the methylene of line #2 in Figure 4.22

is determined to be approximately -201 Hz.

The theory for an isolated methyl group predicts that each member

of the quadrupolar doublet will be further split into a septet of inten-

1 1 5
sities 3:8:3:1:7:3:2 and frequencies 3D, lD, 2 D, - 2 D, -ID, -2D, - 2 D

relative to v. Again, a fit to experiment is obtained when the coup­
q

lings are of opposite sign. An expanded trace of the methyl resonance of

Figure 4.22 is shown in Figure 4.24 along with theoretical stick and
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Figure 4.23

v~
XBL 8110-7072

Part A shows an expanded trace of peak #1 of Figure 4.22 which is

assigned to the first methylene unit of the alkyl chain in 5CB-dll • B

and C are a theoretical fit to the experiment with the deuterium dipolar

coupling reported in the text. C shows the stick spectrum for two

equivalent deuterons while B shows the theoretical spectrum broadened

with a Gaussian function to match the experiment in A.



1.0 kHz

A

8

153

c
XBL 8110-7071

Figure 4.24

Expanded trace of peak #5 in Figure 4.22. A is the experimental

line which is assigned to the chain methyl group deuterons of 5CB-dll •

Band C are a theoretical fit using the dipolar coupling reported in

the text. C is the stick spectrum predicted for three equivalent

deuterons and B has been broadened by a Gaussian function to match the

linewidth of A.



Gaussian broadened spectra. The major peaks in the stick spectrum are

separated by 2D and, again assuming homogeneous broadening shifts these

only slightly, a value for the methyl dipolar coupling of -128 Hz is

determined.

We now estimate the order parameters for each segment from Equation

(4.5). For those lines of Figure 4.21 with unresolved dipolar struc­

ture, ~vi was estimated from peak positions alone. Where some resolved
q

dipolar structure exists, ~vi was calculated from the position of vi
q q

in the multiplet structure. The results are given in Table 4.6 along

with a comparison with results obtained at a higher temperature by Emsley,

et ala [101] for the same liquid crystal. The ratio of order parameters

is nearly independent of segment number for these two sets of data.

This would seem to indicate that the assumption of a single, conforma-

tionally independent order parameter for each chain segment is qualita-

tively correct. However, an extensive temperature dependence study of

deuterium spectra from similar liquid crystals by Boden, et ala [102]

indicated that, for the models chosen, individual methylene order para-

meters could not be simply related to a single molecular order tensor.

Furthermore, the temperature dependence of the ratios ~vi/~vk could not
q q

be explained by assuming different conformations order equivalently and

that the order tensor may be averaged independent of conformation.

As a final point, we note that a crude estimate of S is possiblezz

from the order parameter for the first chain segment. From Equation

(4.6), we have
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Table 4.6

Chain Segment Order Parameters from the
Deuterium NMR Spectrum of 5CB-d11

/SCD 1c

Line lIa lJ.v
b

This workd Ref (lOl]e Ratio
--q- --

I 55.0 0.218 0.185 0.848

2 40.8 0.162 0.134 0.829

3 38.3 0.152 0.125 0.823

4 27.7 0.110 0.090 0.820

5 20.0 0.080 0.065 0.818

a
See Figure 4.22.

b
Quadrupo1ar splitting in kHz. Calculated relative

to dipolar structure peaks when resolved.

c
Only the magnitude of the order parameter can be

determined.

d Spectrum taken at 25.1°C.

e Spectrum taken at 31°C.
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We assume the order tensor is diagonal in a frame whose z axis coincides

with that of Figure 4.5. With a value of 109.5° for the C-C-D bond

1
angle from the phenyl ring to methylene deuteron, and SCD from Table

4.6, we find Is I ~ 0.66.zz

4.3.2 Proton Multiple Quantum Spectrum

Figure 4.3 shows the proton multiple quantum spectrum of 5CB-d
ll

in

the nematic phase at a regulated temperature of 26.0°C. A non-selective

TPPI pulse sequence was used with the signal intensity distributed

among all orders due to a resonance offset and field inhomogeneity

during the preparation and detection periods. The TPPI phase increment

used was 22.5° and ~tl was 1.0 ~sec. No deuterium decoupling irradiation

was applied. A total of six multiple quantum interferograms were col-

lected for values of T ranging from 0.4 to 1.4 msec and varying by 0.2

msec. Each had 16384 data points in both phase sensitive channels. For

each T, the channels were separately Fourier transformed (32 K points),

and the magnitude spectra averaged together. The spectra from different

values of T were then averaged together to give the result shown in Figure

4.3. With this choice of parameters, the frequency resolution is 30.5

Hz/point. Linewidths are not the same for all lines with values ranging

from about 150 to 210 Hz.

4.3.3 Analysis of the Proton Multiple Quantum Spectrum Assuming D4 Point
Group Symmetry

In a preliminary analysis [104], a set of couplings were derived

from this spectrum assuming D
4

symmetry for the biphenyl group and using

only selected five, six, and seven quantum lines. A total of 24 unique

line assignments were made among these orders and an iterative fit per-

formed by the least squares program MQITER described in the Appendix.
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The final RMS error of the fit was 26.4 Hz. The resulting seven dipolar

couplings are reported in Table 4.7. It should be noted that the defini-

tion of the dipolar coupling used in this thesis differs by a factor of

two from that used in Table 1 of Sinton, et al. [104]. Also, the

numbering in Table 4.7 is consistent with Figure 4.5. The theoretical

line positions obtained for the six and seven quantum spectra are shown

in Figure 4.25 along with expanded traces of these regions from Figure

4.3.

As a first attempt to analyze these couplings in terms of order

parameters and structure, it was assumed that each ring has perfect hexa-

gonal structure defined by the parameters of Table 4.5 [104]. Using co-

ordinate system #1 of Figure 4.5, we see from Equation (B.4a) in the

Appendix that D12 is given simply as

2 S
D

12
= _(y h) zz

2Tr 3
r 12
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and we obtain a value of 0.568 + 0.001 for Szz The only two remaining

parameters to determine are (S - S ) and ¢. In the original analysisxx yy

[104], each of these was varied while holding the other constant to find

a local minimum at (S - S ) = 0.057 + 0.002 and <P = 32 + 1°. The
xx yy -

reported errors were estimated from the shape of the RMS deviation curve

for the computed couplings close to this minimum and may not be entirely

realistic. The order parameters agree well with those reported by Emsley,

et al. [103] for 5eB-d15 , considering the difference in temperature at

which their values were obtained.

We can use a least squares treatment to fit calculated to experimen-

tal couplings when several of the parameters of Equation (4.2) are



Table 4.7

Experimental Coupling Constants for 4-Cyano-4'-n-pentyl~

dll-biphenyl Assuming D4 Biphenyl Symmetry

Proton Dipolar Couplingsa Proton Scalar Couplingsb

(Hz) (Hz)

D
12 -8956 + 3 J 12 8.0

D13
94 + 4 J 13 0.0

D14 760 + 6 J 14
2.0

D
15

-294 + 4 J
15

0.0-

D16 -729 + 4 J 16
0.0

D23
780 + 5 J 23 2.0-

D26 -3481 + 5 J 26 0.0

a Errors have been estimated from RMS fit of the
iteration and procedure given in Appendix A.

b Assumed values.
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XBL 808-10943

Figure 4.25

Six and seven quantum regions of the proton multiple

quantum spectrum of 5CB-dll (see Fig. 4.3). Each trace

shows a total width of 62.5 kHz. The frequency markers

below each experimental trace show the best fit calcu­

lated spectrum assuming a D
4

symmetry for the biphenyl

group and resulting in the couplings of Table 4.7. The

central line in the center of the seven quantum spectrum

is a result of pulse imperfections and lack of decoupling

in the experiment.



allowed to vary independently. Program BIPH5PARA was written for this

purpose and is described fully in the Appendix. Iterations in which all

seven parameters of Equation (4.2) were varied independently failed to

converge to a final fit. Several couplings depend strongly on a number

of these parameters and so may cause an early divergence unless the

initial parameters are fairly close to a minimum RMS deviation from

experimental couplings. We have seen in Figure 4.15 that six quantum
o

transitions vary little with r 14 and so this distance was fixed at 4.299 A.

BIPHSPARA was used to fit the remaining parameters with a final R}1S de-

viation for the calculated couplings of 10.1 Hz, somewhat lower than the

original two parameter fit [104]. The results are listed in Table 4.8.

The most striking aspect of this fit is the large increase of r 260

and decrease in ~ from the values for the benzene ring geometry fit re-

ported using Table 4.5. Allowing r 260 to increase would be expected to

cause ~ to decrease as the steric hindrance between protons ortho to the

ring bridge is lessened. The distance r 260 has been determined in the

solid and gas phases by X-ray and electron diffraction measurements [80,
o

85-86]. Typically, a value of about 1.8 A was found with a spread of

about 10%. The value in Table 4.8 is then somewhat larger than might be

expected.

In considering the possible causes for this unusually large ring

separation, we might suspect the lack of vibrational averaging of calcu-

lated couplings. The parameters of Table 4.8 were derived from a model

which does not include an average of couplings over small amplitude vibra-

tional excursions of the nuclei. Thus, the distances reported are not

necessarily their equilibrium values. In their analysis of the proton

spectrum of 5eB-dlS (alkyl chain and adjacent ring deuterated), Emsley
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Table 4.8

Biphenyl Structure and Order Parameters for 5CB-d
llDetermined with Assumption of D

4
Symmetrya

161

Internuclear Distances
0

(A)

r 12 2.47 + 0.02-

r 14 4.299b

r 23
4.27 + 0.03-

r 260 1.98 + 0.03-

Dihedral Angle (degrees)

cOrder Parameters

S 0.565 + 0.010
zz

(S -S ) 0.071 + 0.007xx yy

cPm 30.4 + 0.2

a Errors estimated by methods described in
Appendix A.

b Fixed at assumed value.

c For coordinate system #1 of Figure 4.5.



and co-workers found that the inclusion of vibrational averaging signi-

ficantly affected their results [103]. To model the vibrations of the

liquid crystal rings, this group used the normal mode analysis of 4,4'~

bipyridyl as an approximation. Only three independent numbers could be

determined from this spectrum and so it was not possible to derive values

for all the parameters required to describe the ring structure. Infra-

red spectra of SCB-d
ll

have been reported [105], but no normal mode

analysis has been carried out. Thus, no vibrational averaging has been

included in any analysis reported here.

In addition to averaging the couplings over small amplitude vibra-

tions, the effect of a continuous torsional motion of the rings about ~

might be required. Rigorously, this would require a solution to the

quantum mechanical Schrodinger equation. The potential for the motion

can be approximated as an expansion in a Fourier series by [112]
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V(~) '" I
k=l

VZk
Z (1 - cosZk<jl) (4.8)

Obviously, there are not enough couplings to determine all of the para-

meters of Equation (4.3) and more than a few of the coefficients of

Equation (4.8). Assumptions about the structure or reasonable values

for the first few coefficients in V(~) and neglect of higher order terms

is required. The Schrodinger equation could then be written in a form

having solutions in terms of Mathieu functions [lIZ]. In a much simpler

approach used for 4,4'-bipyridyl [93] and 4,4'-dichlorobiphenyl [96], the

probability distribution function for ~ was assumed to be a Boltzmann

distribution. In both studies. only small changes in the averaged

couplings were found. The magnitude of the corrections for SCB-dll



estimated from these results would be below the level of precision in the

couplings determined from the available resolution in the spectrum. In

the studies cited above, it was assumed that the order tensor is inde-

pendent of ~ and so may be removed from the averaging of couplings as

discussed in Chapter 2. This assumption might affect the final value

obtained for g and so be invalid for SCB-dll . Without a knowledge of a

possible dependence on ~ for S, not averaging the couplings over the in­
~

ternal rotation can not be eliminated as a possible source of error in

any final fit.

Figure 4.2S shows the resulting theoretical line frequencies for

the six and seven quantum transitions. We also calculated the magnitude

of exact T averaged signal intensities for the five, six, and seven

quantum spectra. The computer program mentioned in Chapter 3 and written

by J. Murdoch was used with the couplings of Table 4.7. The results are

shown in Figures 4.26, 4.27 and 4.28. The fits of intensity patterns to

the experimental spectra are fairly close but differences do exist.

These differences are most likely due to the exclusion of chemical shifts

and heteronuclear couplings with the chain deuterons from the calculation.

As ·we saw in Chapter 3, when chemical shifts are present in a strongly

coupled spin system, the n pulse used for a 2D spin echo experiment will

change the intensity coefficient for each line in the spectrum relative

to its free evolution intensity coefficient. The extent of the change is

determined by the relative sizes of the linear chemical shift Hamiltonian.

which is partially refocussed by the action of the n pulse. and the

bilinear coupling Hamiltonian. which is unaffected by it. In the absence

of deuterium Larmor frequency r.f. pulses. the Hamiltonian for proton-

deuteron couplings causes a density matrix evolution for the proton spins

163



Five Quantum Spectrum
04 Symmetry Model

a}

b}
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c}

XBL 8111-12404

Figure 4.26

Five quantum spectral fit assuming D
4

symmetry for the

biphenyl group in 5CB-d
ll

• In a) the experimental spectrum

for the five quantum region ot Figure 4.3 is shown on an

expanded scale. Total frequency width shown is 62.5 kHz.

h) and c) show the theoretical spectra calculated from the best

fit couplings of Table 4.7 with intensities from exact dynamical

calculations of the density matrix using values of the prepara­

tion time from the experiment. In b) the spectrum has been
broadened to match the linewidth of the experimental transitions.



Six Quantum Spectrum
04 Symmetry Model

a)

b)
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c)

XBL 8111-12400

Figure 4.27

Six quantum spectral fit assuming D4 symmetry for

group in 5CB-dl1 • a) Expanded trace from Figure 4.3.

shown is 44189 Hz. b) and c) show the theoretical fit

the biphenyl

Total width

with inten-

sities calculated from exact dynamics of the density matrix using

values for the preparation time from the experiment. The

broadened linewidth in b) matches that of the experimental lines

in a).



Seven Quantum Spectrum
04 Symmetry Model

a)

b)

c)

XBL 8111-12401

Figure 4.28

Seven quantum spectral fit assuming D4 symmetry for the biphenyl

group in 5CB-dll • a) Expanded trace of experimental seven quantum

region with a total width of 31982 Hz. The central line is due to

pulse imperfections in the experiment. The intensities of b) and c)

are from exact dynamical density matrix calculations. The

broadening in b) matches the linewidths of the outer transitions in a).
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similar to their chemical shift Hamiltonian. The evolution from these

heteronuclear couplings is not entirely refocussed by a single proton n

pulse and will cause intensity distortions in the same manner as the

chemical shifts. Thus, because no deuterium decoupling was used in this

experiment and with the presence of proton chemical shifts, intensities

calculated from just proton homonuclear couplings are not expected to

match the experimental spectrum exactly. However, these homonuclear

couplings certainly dominate the spin Hamiltonian for 5CB-d
ll

and so a

qualitative fit is found in Figures 4.26, 4.27, and 4.28. The extent to

which couplings are precisely determined in the theoretical model also

affects the quality of the intensity fit.

4.3.4 Additional Structure in the Proton Multiple Quantum Spectrum of
5CB-dll

It has been noted that some of the splittings in the high order pro-

ton spectra of 5CB-d
ll

cannot be explained on the .basis of this simple

D4 symmetry approach [104]. For example, close inspection of the seven

quantum spectrum in Figure 4.25b indicates that the inner pair of lines

1s split into two pairs. Also, only one of the lines in a closely

spaced doublet of the six quantum spectrum fits the theoretical transi-

tions. These lines were not assigned in the simulation and so are not

reflected in the RMS error reported above.

There are several possible sources of this added structure to con-

sider. For example, we demonstrated in Chapter 3 that the presence of

chemical shifts in a two-dimensional spin echo experiment will cause

additional lines to appear in the w
l

spectrum. In a similar manner,

heteronuclear couplings may cause splittings of transitions or new lines

to appear when a n pulse is used. Finally, since the pentyl and cyano

groups are certainly not equivalent, a DZ symmetry model may be required

to explain the high order spectra of 5CB-d
ll

•
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4.3.4.1 Estimation of the Effect of Chemical Shifts

We can confidently ignore chemical shifts as the cause of a closely

spaced pair of lines in the seven quantum spectrum. To see how this is

so. we consider a much simpler spin system for convenience in computation.

If the permutation group for the couplings of a three spin system has Cz
symmetry. then the inclusion of a chemical shift difference between the

two spins exchanged by the Cz operation and the third spin does not

change this permutation group [79]. Such a spin system is classified as

ABz. For a three spin-l/Z AB2 system. the eigenstates are classified as

either symmetric or antisymmetric under exchange of the B spins. The

dimensions of the Zeeman manifolds of the symmetric states for M = -3/Z.

-1/2. 1/2. 3/2 are 1. 2. 2. 1. respectively. There are only two anti-

symmetric states. one each for M = -1/2 and l/Z. The six symmetric

states form a system similar to the M = ~4 and M = +3 manifolds of the

04 symmetrized energy level diagram of Figure 4.6: Like an AB2 system.

inclusion of the chemical shift Hamiltonian for a para-substituted bi-

phenyl does not change the symmetry from 04 or OZ' The 04 point group

M = +3 spin functions. schematically represented in Figure 4.7. are

symmetric under exchange of the labeled ortho or para sites. similar

to the ABZ system states described above. For an AB2 oriented system.

we predict two transitions in the two quantum spectrum obtained without

an evolution period n pulse. This is analogous to the seven quantum

predictions for the 04 point group eight spin system given in Table 4.2.

Thus. along with the results of Section 3.4. we can use a simple ABZ

system to model the behavior of a seven quantum spin echo spectrum of a

O~ symmetry biphenyl. Analytical expressions for the oriented AB~ energy
~ . 4

levels can be obtained from the solution for the single quantum spectrum

givey by Emsley. et al. [111].
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Figure 4.29 shows theoretical two quantum spectra for an AB
2

system

in which the chemical shift difference, 0AB' is small compared to the di­

polar couplings. The intensities are an average for 2000 values of T

from 0.05 to 100 msec. Figure 4.29a shows the four line spectrum expec­

ted when no spin echo IT pulse is used during the evolution period.

Figure 4.29b shows the resulting two quantum spectrum when a IT pulse is

used to refocus the chemical shift and inhomogeneous evolution. The

equations of Section 3.4 and the computer program described there were

used to calculate both the frequencies and intensities for Figure 4.29.

The chemical shift is removed by the IT pulse and small new lines appear

centered between transitions on either side of the two quantum resonance

offset (0 Hz in Fig. 4.29). The largest transitions, at frequencies

shifted only slightly from those predicted when 0AB = 0, are not split by

the action of the IT pulse (see Fig. 4.29b).

A similar situation is found in the seven q~ntum spectrum of 5CB-dll .

Computer calculations using the couplings of Table 4.7 and a reasonable

range of values for the chemical shift difference between ortho and meta

protons confirm this behavior. Additional lines from coherence transfers

caused by the IT pulse are indeed centered at the average of the transition

frequencies on either side of 7~w. The exact T averaged relative inten­

sities of these additional lines is small and they cannot be observed in

the seven quantum spectrum of Figure 4.25b. This trend is also found in

the lower order spectra. We conclude that a non-zero chemical shift dif­

ference is not the cause of lines that cannot be explained by a D4 s~

metry model in the six and seven quantum spectra. The calculations also

support the neglect of a chemical shift parameter in the analysis of

transition frequencies in the TPPI echo spectrum. A single IT pulse should
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AB2 Two Quantum Spectra

a)

b)

170

Figure 4.Z9

II
I
o

II

XBL 8111-12385

Calculated two quantum spectra for an anisotropically ordered AB
Z

spin-liZ system. Each spectrum is an average for ZOOO values of the

multiple quantum preparation time T. a) Predicted spectrum when the

chemical shift difference is not refocused by the application of a rr

pulse. b) When a rr pulse is used, the frequency shifts relative to 0

caused by the chemical shift are removed and new lines with low inten­

sities are predicted centered about the average of the major lines.

Parameters used in the calculation are (in Hz) DAB = 1000, DBB = 250,

JAB = 10, 0A = 100, and 0B = O.



be adequate to remove the chemical shift evolution unless the shift dif-

ferences for ring protons in SCB-dll are inordinately large.

4.3.4.2 The Effects of Heteronuclear Couplings

Heteronuclear couplings between the ring and chain spins may also

complicate the spectrum when a single ~ pulse is used during multiple

quantum evolution. For certain special sYmmetries, a ~ pulse can be

shown to decouple a single deuteron from several strongly coupled pro-

tons in the WI spectrum of a two-dimensional experiment with an oriented

sample [110]. A partial decoupling of the chain deuterons will occur

for the proton TPPI experiment of 5CB-d
ll

but remaining heteronuclear

dipolar structure could possibly exist on the proton transition line-

shapes. The ~ pulse may reduce this structure to the point that it

cannot be resolved in the fairly wide lines of Figure 4.3. An estimate

of the exact line shape is difficult without a knowledge of the couplings

involved. Using standard bond lengths and angles we can estimate the

largest possible static dipolar coupling between a deuteron on the first

chain methylene and a proton ortho to the chain-ring bond to be on the

order of a few kilohertz. The actual coupling will be greatly reduced by

S < 1.0 and internal molecular motions. In fact, the power require­zz

ments for deuterium double quantum decoupling of the single quantum pro-

ton spectrum imply that this coupling is on the order of a few hundred

hertz (see below). The seven quantum transitions of 5CB-dll at 26°C

occur at about 4 and 10 kHz relative to the center of the order and are

sensitive to sums of a number of the proton-proton couplings. Thus, the

magnitude of the heteronuclear coupling partially refocused by the ~

pulse is much smaller than the characte~istic evolution frequencies in

this order and a lack of deuterium decoupling in the experiment may not
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be responsible for the added structure not explained by a simple D
4

symmetry model. However, these crude estimates do not allow us to unequi­

vocally adopt this conclusion. Heteronuclear couplings can be scaled

even further by the use of multiple ~ pulses during t
l

[59J or elimina­

ted completely by a number of decoupling schemes. An attempt to decouple

the chain deuterons from the proton multiple quantum spectrum of 5CB-d
ll

by using deuterium double quantum transitions is described below.

4.3.4.3 DZ Symmetry Model

Finally, the effects of inequivalently distorted rings and a non­

zero, off-diagonal element in the order tensor, which cause an effective

D
Z

symmetry for the protons in 5CB-dll , were considered. Several sets

of initial parameters were used for iterations in which the twelve unique

dipolar couplings were allowed to vary independently. The final RMS

error reported above for the D4 symmetry iteration (26.4 Hz) is already

below the digital resolution in the spectrum of Figure 4.3. Several

attempts using initial DZ couplings produced final fits somewhat better

than this. However, the limited precision from the spectrum makes it

difficult to judge which of these represents a better model for the bi­

phenyl group in 5CB-d
ll

than the one discussed above. We saw earlier

that if the distortions from D4 symmetry are not too severe, in addition

to some new transitions, there will be many near degeneracies which would

not be resolved in the linewidths of a spectrum such as that of Figure

4.3. Thus the amount of new information in the high order spectra

available to distinguish DZ from D4 couplings may not be sufficient.

The number of parameters to obtain from nearly the same amount of infor­

mation has increased significantly.
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Many different sets of initial couplings modeled by assuming slight

distortions in the rings and a finite value for S were used in attempts
xy

to fit the five, six, and seven quantum spectra of SeB-d
ll

. These D
Z

symmetry iterations exhibit general trends in the final parameters de-

rived. Tne r 14 , r Z3 ' r S8 ' and r 67 parameters usually change signifi­

cantly from those found in the D4 symmetry fit. As an example, the best

fit couplings for an iteration using the same Z4 line assignments as the

D4 calculation described above, but allowing the 12 sets of couplings

which are unique for DZ symmetry to vary independently, are given in

Table 4.9. The final RMS error of the fit from this iteration is l3.S Hz.

All the couplings have changed significantly from the D4 couplings in

Table 4.7. In particular, the couplings with the largest errors, D14 ,

D23 , D67 , DS8 ' are considerably different. Theoretical stick spectra

for the five, six, and seven quantum regions, along with the experimental

traces, are shown in Figures 4.30, 4.31, and 4.3Z.·

Least squares iterations using program BIPHSPARA and varying all

eleven of the DZ molecular parameters of Equation (4.3) independently

failed to converge to a final fit. We then assumed the value of one of

these parameters. Two cases are considered here, with the results given

in Table 4.10. The final RMS deviations of calculated from experimental

couplings was 6 Hz for both cases. In case A, r 260 was fixed at the
o

value found for biphenyl from X-ray studies, i.e., r 260 = 1.818 A. All

the parameters have changed significantly from those found with a D4

model. The largest errors among the rij's occur for those pairs of

nuclei whose dipolar couplings are poorly determined (cf. Table 4.9).

The distortions from a benzene geometry for the phenyl rings implied by

these results are quite severe and do not seem realistic. Typical
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Table 4.9

Experimental Coupling Constants for 5CB-d
ll

Assuming
D2 Symmetry

Proton Dipolar Couplingsa Proton Scalar Couplingsb

(Hz) (Hz)

D
12 -892.0 + 6 312

8.0-
D

13 144 + 8 313 0.0

D
14 926 + 9 314 2.0

DIS -299 + 4 315
0.0

D16 -817 + 6 316 0.0-
D

23 581 + 14 323
2.0

D25 -719 + 5 325 0.0

D
26

-3441 + 4 326 0.0

D56
-9000 + 4 356 8.0

D57 139 + 4 357 0.0

DS8 635 + 9 358
2.0-

D67 915 + 10 367 2.0

a From iteration of 5, 6, 7 quantum lines. Errors
estimated by method given in Appendix.

b Assumed values.
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Five Quantum Spectrum
02 Symmetry Model

X6L 6111-12407

Figure 4.30

Five quantum spectrum of 5CB-dll plotted with a total width of

62.5 kHz. Beneath the experimental trace is shown a stick spectrum

calculated from the best fit couplings of Table 4.9, assuming a D2
symmetry for the biphenyl group. Line heights for the theory are

based on frequency degeneracies only.
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Six Quantum Spectrum
02 Symmetry Model

XBL 8111-1240B

Figure 4.31

Six quantum spectrum of 5CB-dll plotted with a total width of

44189 Hz. Beneath the experimental trace is shown a stick spectrum

calculated from the best fit couplings of Table 4.9 assuming a D
Z

symmetry for the biphenyl group. All theoretical lines are of unit

height.
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Seven Quantum Spectrum
02 Symmetry Model

XBL 8111-12409

Figure 4.32

Seven quantum spectrum of 5CB-d
ll

plotted with a total width of

31982 Hz. Beneath the experimental trace is shown a stick spectrum

calculated from the best fit couplings of Table 4.9 assuming a D2
symmetry for the biphenyl group. The theoretical lines are all given

unit height. The central line in the experimental spectrum is a

result of pulse imperfections and the use of a n pulse without

deuterium decoupling during multiple quantum evolution.
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Table 4.10

Best Fit Structures and Order Parameters for
5CB-d1l Determined from Couplings of Table 4.9a

178

CASE A CASE B
o

Internuclear Distances (A)

r 12 2.32 + 0.05 2.453 + 0.003- -
r 14

3.88 + 0.09 4.11 + 0.03- -
r 23 4.54 + 0.09 4.81 + 0.03

r 56 2.32 + 0.04 2.456 + 0.003- -
r 58 4.41 + 0.17 4.67 + 0.10- -
r 67 3.90 + 0.13 4.14 + 0.06-
r 260 l.8l8c l.93 + 0.04

Order Parametersb

Szz 0.48 + 0.03

(5 -5 )0.02 + 0.02xx yy -

5 0.007+0.007
xy -

0.03 + 0.02

0.008 + 0.008

Dihedral Angle (degrees)

28.9 + 0.5 28.9 ± 0.5

a Errors estimated by methods in
Appendix A.

b For coordinate system #2 of Figure
4.5.

c Fixed at assumed value.



given in Table 4.10.

distortions in internuclear distances found from NMR studies of solutes

in liquid crystals are on the order of a few percent. The largest distor-

tion from the benzene values in Table 4.10 for case A occurs for r
14

and

is nearly 10 percent.

The value of S for case A in Table 4.10, using coordinate systemzz

#2, has changed significantly from that obtained using the D
4

symmetry

model given in Table 4.8. Since the z axes of the two axis systems for

02 and D4 symmetries are parallel, these are expected to be the same.

Thus, for case B, S was fixed at the value obtain for the D4 modelzz

while the other parameters were varied to obtain the best fit values

Several of the r .. values are reasonably close to
1J

those obtained using the 04 model and have smaller error limits than for

case A. However, the distortions implied by values for r 14 , r 23 , r S8 '

and r 67 still seem unreasonable. The remaining parameters are found to

be essentially the same as for case A. Whether t~e results in Table

4.10 for case A or case B more accurately fits the actual parameters

for SCB-dll cannot be determined from our analysis.

We have computed exact T averaged theoretical intensities from the

D2 symmetry couplings of Table 4.9. The results for the six and seven

quantum spectra are shown in Figures 4.33 and 4.34, respectively. The

intensity patterns do not seem to reproduce the general features of the

experimental spectra as well as the D4 model intensities of Figures

4.27 and 4.28.

The closeness of the fit for lines shown in Figures 4.30, 4.31, and

4.32, and the RMS error for the spectral simulation reported above may

be somewhat misleading. Only transitions which are predicted from a D4

model were used in the initial assignment. Additional lines in the

experimental six and seven quantum spectra, which are assumed here to be
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Six Quantum Transition Intensities
Exact T' Average

a)

180

b)

I

Figure 4.33

I 1 I I I I I

XBL 8111-12403

Theoretical six quantum spectra calculated from the DZ symmetry

couplings of Table 4.9. The intensities here are the result of an

exact calculation of the multiple quantum signal averaged from the

same values of the preparation time T as those used in the experiment

producing the spectrum of 5eB-dll in Figure 4.3. Both a) and b) are

plotted with the same width as Figure 4.31 and the broadening in a)

is designed to match the experimental linewidth in that figure.



Seven Quantum Transition Intensities
Exact T Average

a}

1\ \. ; II..

b)
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Figure 4.34

I I

XBL 8111-12402

Theoretical seven quantum spectra calculated from the D2 symmetry

couplings of Table 4.9. As for Figure 4.33 the intensities are the

result of an exact calculations using the same values of T as for the

experimental spectrum in Figure 4.3. Both a) and b) are plotted with

the same width as Figure 4.32 and the broadening in a) is designed to

match the experimental linewidth in that figure.



the result of symmetry lowering distortions, do not fit the theory spec­

trum as well as other transitions. When the two previously unassigned

transitions of the six and seven quantum regions are included in the

iteration, a final fit is obtained but with a significantly larger RMS

error of about 60 Hz. The largest contributions to this error come from

assignments for these additional lines. When the resulting couplings

are interpreted for order parameters and structural quantities, distor­

tions similar to those of Table 4.10 are found but with larger error

limits.

In addition to real structural distortions as an explanation for an

effective DZ symmetry in the biphenyl group of 5GB-d
ll

, we investigated

the possibility that the rings move inequivalently. This seems to be

not entirely unreasonable as one ring has attached to it the light,

unrestricting cyano group while the other moves relative to the bulky

alkyl chain which presents steric hindrance due fo the adjacent methylene

group. A fit to the spectrum was obtained starting with the ring para­

meters from the D
4

symmetry analysis (Table 4.8) and varying all lZ DZ

couplings. The iteration was then repeated, allowing only the ring A

(see Fig. 4.5) and inter-ring couplings to vary. Both models achieved

adequate fits to the experimental five, six, and seven quantum spectra

with the final RMS errors (-ZO Hz) within the digital resolution of the

Fourier transformed spectrum. When the resulting couplings were inter­

preted in terms of a model in which the rings are equivalently distorted

but move inequivalently, only moderately close fits for the calculated

couplings could be obtained. A fairly close fit (RMS = 18 Hz) was

obtained from the set of 12 independent eAperimental couplings but then

only when ring distortions were re-introduced. The resulting values for

the internuclear distances resembled those of Table 4.10.
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Several such models were tried, all with similar results. Adequate

final fits for calculated couplings could only be obtained when inequi­

valent ring distortions were allowed. These results do not entirely

preclude the possibility that the effective DZ symmetry is due primarily

to inequivalent ring motions as only the product of the order tensor

with molecular parameters is obtained from the dipolar couplings. In

addition, the probability distribution for the chain conformations will

certainly affect the way the whole molecule orders and the proton spec­

trum from the biphenyl group is indirectly affected in a complicated

manner that can not be entirely determined from the available spectral

information in Figure 4.3. As a final note we point out that, in their

analysis of the proton spectrum of 5CB-d
15

, Emsley and co-workers also

found exceptional distortions in r 14 and r Z3 [103]. Due to the limited

number of couplings which could be obtained from their spectrum,

independent values for both parameters could not be found.

4.3.5 Deuterium Decoupling Experiments

There are many possible schemes available for decoupling of the

proton spectrum of Figure 4.3. The choice is directed primarily by the

same considerations as a normal single quantum spectrum. Double quantum

deuterium decoupling was chosen because the r.f. power requirements are

significantly less than for decopuling via single quantum transitions

[109]. It was found that only a few kHz of deuterium r.f. field was re­

quired to decouple the single quantum spectrum with the result shown in

Figure 4.Z. This seems reasonable based on estimates for the largest

heteronuclear coupling between ring protons and the first chain methylene

deuterons. The deuterium r.f. field, WI' required to decouple a deuteron
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with quadrupolar splitting wQ from a heteronucleus via double quantum

transitions is given by [109]

184

W ~

1

where wn is the dipolar coupling expressed in angular frequency units.

The decoupling requirements cited above are then consistent with an

Vn of a few hundred hertz.

The multiple quantum spectrum was decoupled by applying deuterium

irradiation at the center of the quadrupolar spectrum of Figure 4.21.

The result is shown in Figure 4.35. There is a significant loss in

signal-to-noise for this spectrum compared with Figure 4.3 which may be

a result of two factors. First, the long deuterium pulse required to

obtain each point in the multiple quantum signal may cause significant

temperature gradients in the sample. This was reflected in the spec-

trum by a larger linewidth for transitions further from the centers of

each order. This effect was partially circumvented by the use of

smaller samples and longer delays between shots, as described in Chapter

5. The second cause for a lower signal-to-noise was the finite iso-

lation of the spectrometer receiver from the high power deuterium trans-

mittero Even with good isolation of the probe circuits and the use of

a narrow band filter before the receiver, several millivolts of deuterium

rof. at the receiver was difficult to avoid. This partially saturated

the broadband preamp of the receiver causing the observed loss in

signal-to-noise. This effect was most critical in the higher order

regions of the spectrum where the integrated signal intensity is lower

as we saw in Chapter 30 These problems complicated obtaining a spectrum

with adequate signal-to-noise in the high quantum regions in a reasonable



CSDIJf:2CN

Decoupled Proton Multiple Quantum NMR Spectrum

1--1_...........1_I_~I_~I~~I---:::~I----II
o I~w 2~w 3~w 4AW S~w 6tl.W 7~w 8~w

X8l 8111-12406

Figure 4.35

Deuterium decoupled proton multiple quantum spectrum of 5CB-dll
at 28.9°C. The spectrum is an average of six spectra obtained for

six different values of T from 0.2 to 1.2 msec with- the same non­

selective pulse sequence used to obtain the spectrum of Figure 4.3.

Lines in the five, six, and seven quantum regions were used to obtain

the couplings of Table 4.11. The total width shown is 500 kHz.
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amount of overall acquisition time. Instrumental instabilities during

decoupling experiments may also increase the two-dimensional "t
l

noise"

present as a result of fluctuations in the prepared density matrix [69].

The spectrum of Figure 4.35 is the result of an average from six

values of T ranging from 0.2 to 1.2 msec in increments of 0.2 msec.

MOst of the experimental parameters were the same as for the undecoupled

spectrum of Figure 4.3 except that the temperature was regulated at a

slightly higher value of 28.9°c. The length of the multiple qu&ntum t
l

signal was 16 K points in both phase sensitive channels for each T and

32 K complex Fourier transforms were calculated. Figure 4.35 shows the

resulting averaged magnitude spectrum. Linewidths are somewhat narrower

than in the undecoupled spectrum with a typical value being 120 Hz.

4.3.5.1 D
4

Symmetry Model Analysis of Decoupled Multiple Quantum Spectrum

The poor signal-to-noise of the higher order spectral regions of

Figure 4.35 makes an analysis more difficult than for an undecoupled

spectrum. Nonetheless, a total of 13 lines were assigned in the five,

six, and seven quantum regions for an iterative fit assuming D4 symmetry

couplings. The results are given in Table 4.11. The final RMS error of

the fit for these lines was 21.2 Hz. The small number of lines which

could be assigned in these orders leads to large error limits on the

couplings in Table 4.11. As with the undecoupled spectrum, chemical

shifts have been ignored in the analysis of this spin echo spectrum.

The computed exact L averaged line intensities for the six quantum

transitions are shown along with an expanded trace of the six quantum

region in Figure 4.36. Obviously, the fit is only marginally adequate.

Broadening due to temperature gradients may be the cause of the lines

with the greatest predicted intensity appearing with in fact the lowest

intensity in the experimental spectrum.
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2
CSDllep2CN 6 Quantum H Decoupled

Proton NMR Spectrum

a)

b)

XBL 8111-12399

Figure 4.36

a) Expanded trace of the six quantum region of Figure 4.35.

Total width shown is 44189 Hz. The central line is truncated in

height. b) Theoretical spectrum calculated from the couplings

of Table 4.11. Intensities are from an exact calculation using

the same values of T as in the experiment.
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Table 4.11

Experimental Coupling Constants from the Deuterium
Decoupled Proton Multiple Quantum Spectrum of 5CB-d

llAssuming D4 Symmetry

188

Proton Dipolar Couplingsa

(Hz)

-7818 + 7

88 + 8

577 + 20

-226 + 10

-653 + 6

719 + 12

-3057 + 11

Proton Scalar Couplings
b

(Hz)

8.0

0.0

2.0

0.0

0.0

2.0

0.0

a Errors have been estimated from the RMS error of the
iteration and the procedure given in Appendix A.

b Assumed values.



Despite the large error limits for the couplings of Table 4.11, a

least squares analysis in terms of the parameters of Equation (4.2) for

D4 symmetry converged to a close fit. The final RMS deviation of calcu­

lated to observed dipolar couplings was only 3 Hz. The results are

reported in Table 4.1Z. As with the D4 model fit for the undecoupled
o

spectrum of Figure 4.3, r l4 was held constant at the value 4.Z99 A for

this calculation. Although the value of r 260 is more in line with the
o

value for biphenyl (1.818 A) than the analysis of the undecoupled spec-

trum, ring distortion implied by r lZ and r 23 is quite severe. In addi-

tion, the value of ~ has increased. It is not expected that a tempera­
m

ture increase of only 30 alone should cause such a change in ~. Perhaps
m

the inclusion of vibrational or torsional averaging in the model would

bring the two results more in line.

4.3.5.Z DZ Symmetry Model Analysis for Decoupled Spectrum
.

Attempts to derive twelve unique DZ symmetry dipolar couplings from

just the 13 lines assigned in the higher order regions failed. The

problem is only barely determined and so convergence may depend strongly

on the closeness of the initially guessed couplings. If the iteration

is started with the D4 couplings of Table 4.11 then the RMS fit is

already below the resolution in the Fourier transform spectrum, and so

further improvement is unlikely. A more complete analysis may be pos-

sible when transition assignments in orders below the five quantum are

included. For example, the decoupled spectrum shows a number of nearly

resolved lines in the three and four quantum regions (see Fig. 4.35)

which could be used. Such an analysis was not attempted in this work.
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Table 4.12

Biphenyl Structure and Order Parameters for SCB-d
11Determined from Couplings of Table 4.11 and Assuming

D
4

Symmetrya

190

0

Internuclear Distances (A)

r 12 2.36 + 0.03

r 14 4.299b

r 23 4.00 + 0.10

r 260 1.82 + 0.05-

cOrder Parameters

S 0.43 + 0.01zz

(S -S ) 0.06 + 0.02xx yy

Dihedral Angle

~ 31.6 + 0.2 0

't'm

a Errors estimated by methods of Appendix A.

b Fixed at assumed value.

c For coordinate system #1 of Figure 4.5.



4.3.6 Conclusions on Results for 5CB-dll

As an example of the use of multiple quantum ~m, the spectra of

5CB-d
ll

demonstrate the utility of the approach. The higher order regions

of the spectrum clearly show a greater simplicity than the single quantum

spectrum. Line assignments can be made unambiguously when these orders

are compared with spectra simulated from physically reasonable parameters.

The symmetry characteristics of the biphenyl group are very simply re­

lated to the number of transitions which occur in the six and seven

quantum spectra.

On the other hand, 5CB-dll as an example demonstrates some of the

limitations in the analysis of NMR spectra of oriented molecules. These

limitations are present in both single quantum and multiple quantum NMR

and are a result of the complexity of relationships between molecular

structure and transition frequencies and not on the particular technique

used to obtain the spectrum. For 5CB-d
ll

, the linewidths ultimately

limit the level of precision available for couplings. Deuterium de­

coupling seems to reduce linewidths by at most only a factor of about

two from the spin echo linewidths. This limit on the precision of

couplings prevents an analysis refined beyond those presented in this

work.

Of all the models which were used to explain the undecoupled five,

six and seven quantum spectra of 5CB-dll , the one which approximates

the biphenyl proton symmetry as a D4 point group system seems the most

reasonable. The order parameters derived from the proton spectrum are

in line with estimates from the single quantum deuterium spectrum of

the alkyl chain and those obtained for 5CB-d15 [103]. The best fit

molecular parameters of Table 4.8 for this model agree closely with
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-ray and electron diffraction data for the internuclear distances of

biphenyl, considering that no vibrational corrections have been applied.

Theoretical transition frequencies calculated from this model fit most

of the lines resolved in the higher orders with the RMS deviation well

within the resolution of the Fourier transform. The calculated exact T

averaged transition intensities yield a qualitative fit to the experi­

ment as shown in Figures 4.26, 4.27, and 4.28.

In contrast to this D4 symmetry model, several models assuming an

effective D2 permutation symmetry for the biphenyl spins in SCB-dll

yield molecular parameters which reflect large distortions in the phenyl

rings. Because the transitions which are predicted by the D4 model

already fit the simulated spectrum within the available resolution,

further slight improvements from the use of D2 symmetry models do not

allow an unequivocal choice for the best model. We have also seen that

very slight symmetry breaking distortions perturb "the spectrum in a

manner resulting in a paucity of additional information with which we

must determine the increased number of parameters of the lower symmetry

model. Transitions in the high order spectra which are not predicted

by a D4 symmetry model are not as closely fit by the D2 symmetry models

considered here as other transitions.

We have tried to model the high order spectra of SCB-dll by consider­

ing cases where there are real structural differences between the rings

or the rings experience inequivalent mobilities while undergoing inter­

nal motions. The data do not allow us to exclude the latter possibility,

but seem to require real structural deformations of the rings to achieve

the closest fits. In addition, we have considered the effects of proton

chemical shifts and heteronuclear couplings on the multiple quantum spin
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echo spectrum. We have presented arguments which demonstrate that

chemical shifts are not responsible for the additional structure in the

six and seven quantum regions. However, we are unable to do the same

with absolute certainty for heteronuclear couplings between ring protons

and chain deuterons. Deuterium decoupling experiments were not entirely

conclusive in resolving this issue because of the lower signal-to-noise

of the high order decoupled spectra.

Finally, we comment on the reliability of results from the various

models used. At first, it may seem disturbing that several models

achieved close fits with the spectrum but yielded internuclear distances

which differ by amounts greater than their error limits. This, in part,

reflects the fact that the errors are propagated directly from the degree

of fit only for those lines assigned in the spectrum. Resolved lines in

lower order spectra may also be assigned and perhaps would change the

overall fit obtained. Particular care must be taken to consider those

experimental lines which are poorly matched by the theory, such as in

the six and seven quantum spectra of SCB-dll • In addition, systematic

errors caused by the neglect of vibrational and torsional averaging of

calculated couplings is not included in the error limits reported in

this chapter. Inclusion of these contributions to the errors would tend

to bring the results of the various models into closer agreement.

The best results in terms of reasonable values for bond angles and

distances appears to be found in the D4 symmetry model. For the value

of the dihedral angle derived, almost all models closely agree. This

is understandable considering the strong dependence Qn ~ for the six and

seven quantum transitions in the neighborhood where the best fit values

are found. From our results, we can confidently give a value of 30 + 2°

to the dihedral angle of the biphenyl group of SCB-d
ll

.
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4.4 Experimental Examples of Biphenyl Solutes

Of the other molecules shown in Figure 4.1 we will briefly present

the results for 4, 4 '-dibromobiphenyl, 4,4'-dZ-biphenyl and pure biphenyl

dissolved in liquid crystal nematic phases.

4.4.1 4,4'-d
Z
-biphenyl and 4,4'-dibromobiphenyl

The single quantum echo spectra of 4,4'-dZ-biphenyl dissolved in

Eastman Kodak L.C. #153Z0 and 4,4'-dibromobiphenyl in 4-ethoxybenzyl-

idene-4'-n-butylaniline (EBBA) are shown in Figures 4.37 and 4.38,

respectively. Linewidths are narrower in both cases than for 5CB-dll

as a result of more reorientational freedom for the solutes. As a

result, there should be adequate resolution in a well averaged single

quantum spectrum to allow an analysis without resorting to a multiple

quantum experiment, although the latter would of course, allow unambig-

uous line assignments to be made in higher orders. Deuterium decoupling
.

for 4,4'-d
Z
-biphenyl could be easily achieved by frequency modulated

irradiation or double quantum decoupling. The deuterium spectrum should

yield an independent measure of one of the order parameters for compar-

ison with the results of the proton spectrum. A TPPI multiple quantum

spectrum of 4,4'-dZ-biphenyl is shown in Figure 4.39 and demonstrates

the expected loss of signal-to-noise for a solute compared to a pure

liquid crystal.

4.4.2 Unsubstituted Biphenyl

An analysis of the NMR spectrum of unsubstituted biphenyl dissolved

in a liquid crystal has not been published before. Additional couplings

to the para hydrogens, which are absent when these positions are sub-

stituted, are insensitive to the dihedral angle and the potential deter-

mining it. They will, however, add many more parameters from which the
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Oriented 4,4'-d2 - Biphenyl

Single Quantum Echo Spectrum

XBL 8111-12425

Figure 4.37

Single quantum proton spin echo spectrum of 4,4'-dZ-biphenyl dissolved

in the nematic phase of a liquid crystal at 30°C. The total width

shown is 16.67 kHz. No deuteriumdecoupling irradiation was used.
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Oriented 4,4'-Dibromobiphenyl
Single Quantum Echo Spectrum

XBL 8111-12427

Figure 4.38

Single quantum proton spin echo spectrum of 4,4'-Br
Z
-biphenyl

dissolved in the nematic phase of a liquid crystal at 65°C. The total

width shown is 31.5 kHz. The central portion of the spectrum has been

truncated in height.
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Oriented 4,41-d
2

-Biphenyl

Proton Multiple Quantum NMR Spectrum

197

X8L 8111-12424

Figure 4.39

Proton multiple quantum TPPI spectrum of 4,4'-d2-biphenyl at 30°C.

An even quantum pulse sequence was used with preparation and detection

times of 6 msec. Total width shown is 125 kHz. Most of the intensity

is found in the zero and two quantum regions. No deuterium decoupling

irradiation was used.



order tensor and ring structure may be obtained. Also, the resulting

structure would be determined in the absence of perturbing affects of

substituents.

The single quantum spectrum is tremendously complex even though

some resolved structure exists. An even quantum TPPI echo spectrum is

shown in Figure 4.40. There is little intensity in the highest orders

as would be expected on the basis of the approximate statistical

arguments for the intensity distribution given in Chapter 3. Extensive

averaging would be required to produce sufficient signal-to-noise in,

say, the six and eight quantum regions to allow an analysis. Alternately,

this molecule is a reasonable candidate for the selective excitation

techniques briefly mentioned at the start of Chapter 3.

4.5 Conclusion

Clearly, we have achieved some of our goals in this chapter. We

have given examples with various substituted biphenyl molecules which

illucidate the strengths and limitations of non-selective multiple

quantum NMR. The case of 5CB-d
ll

shows how both deuterium single

quantum and proton multiple quantum spectroscopy can be used in liquid

crystals and compares the nature of information obtained from quadru­

polar and dipolar interactions. Proton spectra are particularly desirable

because of the higher precision for structural information and greater

sensitivity available as a result of the larger gyromagnetic ratio. We

have seen that a very simple model is capable of simulating most of the

features of the high order spectra of 5CB-d
ll

• Transition frequencies

in these spectra are only indirectly sensitive to the true order para­

meters for the entire molecule with its myriad of conformational
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possibilities. Additional couplings to the alkyl chain, perhaps with

a l3C spin-1/2, would prove useful by adding features in the spectrum

sensitive to the chain motions. Techniques which are extensions of

the basic, non-selective multiple quantum experiments described here,

such as heteronuclear multiple quantum NMR [113], could be used to

increase the amount and variety of information available to determine

molecular parameters.
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Oriented Biphenyl
Even Quantum NMR Spectrum

XBL 8111-12426

Figure 4.40

Proton even quantum TPPI spectrum of unsubstituted biphenyl dissolved

in the nematic phase of a liquid crystal at 44°C. A total of four shots

were averaged and the preparation time used was 4.0 msec. Total width

plotted is 100 kHz. The single ten quantum transition is visible at the

right hand side of the spectrum.

200



Chapter 5

Spectrometer

The experimental work described here was performed on two high field

NMR spectrometers which are largely equivalent in their design and oper-

ation. Both are home-built, 180 MHz, pulsed Fourier Transform spectro-

meters capable of a variety of experiments in solids and liquids using

1 13 2H, C and H resonance. Because most of the work was done on one of

the two and this spectrometer has been modified during the course of

experiments, a thorough description of its design follows.

5.1 Magnet

The magnet is a persistent superconducting solenoid made by Bruker

Instruments and operating at a field of approximately 42.5 kG. The room

temperature bore of its dewar has a diameter of 3~ inches. The Larmor

frequencies for the nuclei commonly observed at this field are:

lH 185.04 MHz

l3C 46.52 MHz

2H 28.40 MHz

In addition to the main solenoid there are three superconducting,

linear gradient coils for shimming the field homogeneity. One is along

the main field axis and the other two are orthogonal and in the trans-

verse plane. These are normally left in a persistent mode during experi-

ments. Within the bore there is a set of home-built, room temperature

coils producing ten linear and higher order gradients. Using these coils

and the superconducting coils field homogeneities less than 1 PPM over a
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1 cm3 region are easily obtained. The resulting field is extremely stable

so that no field/frequency lock is necessary.

5.2 Low Power R.F. Section

A schematic diagram of the radio frequency electronics is shown in

Figure 5.1. This figure shows the arrangement on the low frequency side

for l3C resonance; removal of the doubler and changing the X synthesizer

setting converts this channel to 2H resonance. All frequencies are

supplied by two synthesizers: a Hewlett-Packard Model 3320A for the

low frequency side (set at 3.26 MHz for l3C and 8.40 MHz for 2H), and a

PTS Model 160 for the proton side. The rear panel output of the PTS

synthesizer internal reference (10 MHz) is used to lock the HP synthe­

sizer, generate the intermediate frequency (i.f.), and drive the pulse

programmer clock.

Frequency generation for each channel is detailed more in Figure

5.2. The output of the HP synthesizer (front panel setting plus 20 MHz)

is used directly for 2H or doubled for 13C. Switching and phase control

for routing to the low frequency transmitter is done at this frequency.

A local oscillator (2.0.) frequency is generated by combination of this

r.f. with the i.f. frequency. This 2.0. is used in the low frequency

receiver when 13C or 2H observation is required. The 30 MHz i.f.

frequency for both channels is generated by tripling the 10 MHz refer­

ence of the PTS synthesizer. Besides being used in the low frequency

2.0. generation, this i.f. is routed to the phase sensitive detectors

and the r.f. generation for the high frequency (proton) channel.

Unlike the low frequency channel, pulse and phase control for the

proton channel is done at the i.f. frequency. The front panel output of

the PTS synthesizer at 155 !1Hz is used directly as the 2.0. frequency for
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Figure 5.1

Block diagram of 180 MHz pulsed FT 1~ spectrometer. Two nuclear

frequency channels are shown. The proton frequency generation is based

on a 155 MHz 1.0. synthesizer output. The X frequency generation, shown

here for carbon, is based on the r.f. output of the X synthesizer. Both

channels make use of the 30 MHz i.f. reference which is also used in

the phase sensitive detector. See text for a complete description.
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Block diagram of 180 MHz NMR spectrometer ~F Multiplier. The X

channel r.f. is used directly in quadrature pulse generation and is

mixed with the 30 MHz i.f. to produce the receiver i.o. frequency.

This i.f. is produced by clipping the 10 MHz reference with shorting

crossed diodes and filtering for the third harmonic. The generation

of the proton r.f. pulses from i.o. signal and i.f. pulses is also

shown.



the proton channel. The 30 MHz pulse output is mixed up to the nuclear

frequency by combination with this 2.0. frequency. This is then amplified

and routed to the high power transmitters and probe. The 155 MHz £.0.

is also directed to the proton receiver where it is combined with the

nuclear signal.

The pulse and phase generation (quadrature detection) for the low

frequency channel is detailed in Figure 5.3. Switching is done at the

r.f. used for sample irradiation. Two orthogonal phases are generated

as the r.f. is passed through a hybrid. One phase is selected and a

pulse is generated by a TTL controlled r.f. switch. A variable attenu­

ator with 1 db increments is used to trim the pulse amplitude. For

improved isolation, another r.f. switch in series is used before final

amplification and transmission to the probe. The design of the r.f.

switches used here and in the proton quadrature is shown in Figure 5.4.

A TTL trigger is received and used to drive two Summit 571 r.f. gates in

series. This circuit generally provides 30 to 40 db of isolation.

Although the experiments in this work require only one phase at the

low frequency for decoupling, four quadrature phases (X, X, Y, and Y) are

generally required at the proton frequency. In addition, techniques

such as time proportional phase incrementation (TPPI) require finer

control of some of the phases and an ability to rapidly and reproducibly

change between them under TTL control from the pulse programmer. A

schematic diagram of the proton quadrature generation is shown in Figure

5.5.

The 30 MHZ i.f. signal is first split to two lines. One line is

passed through a delay line phase shifter (Daico Model 100D0898) under

TTL control of the pulse programmer. This is then further split and
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13C ,2H Pulse and Phase Generation
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Block diagram of X channel quadrature pulse generation for 180 MHz

NMR spectrometer. Switching is done directly at the nuclear frequency

to avoid possible leak through of an ~.o. frequency. The attenuator

is settab1e in 1 db steps.



Dual RF Switch

207

Figure 5.4

Dual r.f. switch. for 180 MHz NMR spectrometer. TTL control pulses

are input at the BNC connections and received by a quad OR buffer. The

high and low outputs of the N8T09 drivers are used to bias a diode

bridge which opens the r.f. gates. Two gates in series are used to

produce ~80 db of isolation when the switch is "off".
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Block diagram of proton quadrature pulse generation for 180 MHz

NMR spectrometer. With no delay chosen for the 8 bit phase shifter,

the four lines are mutually orthogonal (X, X, Y, Y). For arbitrary

delay, the first two lines are still 1800 relative to one another

(~, ~) but at some other phase relative to the second two lines. The

adjustment attenuators are continuously variable from 0 to 20 db and

the phase delay adjusters vary from 0° to 90°.



passed through phase delay adjusters (Merrimac Model PSS-2-30) and vari­

able attenuators (Merrimac Model ARS-l, 0-20 db). The result is two r.f.

lines 180 0 in phase with respect to one another but at an arbitrary phase

relative to the second line of the initial power splitter. This second

line is passed through a hybrid to give two more lines (Y and Y) with a

180 0 relative phase. Only amplitude control of the Y line is required

for complete fine tuning of the four lines. After switching (dual r.f.

switch, Figure 5.4) the outputs are recombined, amplified, and adjusted

by a final attenuator with 1 db increments before conversion to the

nuclear frequency and final transmission.

The 8 bit phase shifter is schematically represented in Figure 5.6.

This unit consists of a series of delay lines which are switched in and

out of line by TTL controlled gates. The total phase shift produced is

the sum of the delays chosen. The precision of this phase shifter is

2rr/256 and the accuracy of phase shifts checked w~th a vector impedance

meter is within +2 0 for an arbitrary phase shift. The VSWR of the unit

is dependent on the phase setting and this results in an amplitude vari­

ation on the order of a few percent. This generally is not a problem if

there is saturation of some amplification element down path of the phase

shifter. Because of narrow band filtering in the r.f. circuitry, a

phase shift is not effective until about 2 ~sec after a change has been

made in the 8 bit control word. This control word is generated by a

digital controller shown in Figure 5.7. The 8 bit word sent to the Daico

phase shifter is chosen from a number of sources input to a set of

parallel multiplexers. The data sources include a front panel setting,

a single latched byte from a computer interface or a FIFO output loaded

from the computer, and a wrap around adding circuit used for phase incre­

menting as in the TPPI experiments.
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Digitally Controlled RF Phase Shifter

210

TTL

RF
IN

Figure 5.6

A
256

A
64

A
32

A
16

A
8

A
4

A
2

RF
OUT

XBL B14-9173

Schematic diagram of r.f. phase shifter. Phase shifts which are

a multiple of 2n/256 are caused by switching the various delay lines

in the path of the i.f. signal. The eight bit TTL control word is

supplied by the circuit shown in Figure 5.7.
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Circuit diagram for control logic supplying the eight bit word

for the r.f. pulse shifter shown in Figure 5.6.



All mixers used in the low power r.f. section are high level,

double balanced Anzac Model MD-143, Mini-Circuits ZAD-2, ZAD-l-l or

Hewlett Packard Model 105l4A. All power dividers and combiners are

~ither Anzac Model DV-50, Mini-Circuits ZSC-2-l, Anzac Model DS-3l2

(Four-Way), or Merrimac PD-20-50. Hybrids are Merrimac Model QH-1-30,

Anzac Model JH-126, Anzac Model JH-125, or ~lini-Circuits ZSCQ-2. Low

power amplifiers are Anzac Model AMl02 (~10 db) and Anzac Model MilOS

(~20 db). All voltages (+5V, ~12V, +24V) are supplied by regulated

power supplies and are further regulated by i.e. circuits at each

component box.

5.3 High Power R.F. Section

Once the switching and r.f. generation has been accomplished, pulses

are routed to the power preamp for amplification, secondary switching for

isolation, and filtering before transmitting to the probe. This is shown

in Figure 5.8. The 24, 25 and 53 db amplifiers are, respectively,

Radiation Devices Models BBA-l-PB, BBA-l-PBM, and BBA-l-PM. The buffer

amplifier for the proton channel is a 5 watt power amp from RF Power

Labs Model M305-5.

A variety of power transmitters are available. For decoupling or

pulses, the proton frequency is delivered as is to a cavity tuned Class

C [114] transmitter with a 4CX250-B tetrode tube (2.5 kV plate, 130 V

bias, and 500 V screen). Alternately, the buffer amplifier is bypassed

and an Amplifier Research Model 100L Class A amplifier is used. Both

arrangements are capable of producing 100 to 200 watts depending on

input amplitude, tuning parameters, input attenuation, etc.
1~ ~

L~ ,
Similarly, several transmitters are available for C and H. Two

Class C Millen type transmitters employing RCA 3E829 tubes are used,
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Figure 5.8

Block diagram showing final amplification, switching, and filtering

before r.f. pulses are sent to high power transmitters. The output of

this section is designed to provide enough power to drive and saturate

the Class C transmitters described in the text. For use with the Class

A transmitter for protons, the final buffer amplifier is removed and

the output trimmed to -1 v.



13 2
one tuned for C and one for H. Typically, 200 watts can be produced.

In addition for higher power applications, a Drake ~fodel L-7 driven by a

ENI 350L will provide on the order of a kilowatt.

With a single coil probe design, care must be taken to protect the

receiver preamplifier from the high power pulses. The circuit generally

used is shown in Figure 5.9. Crossed diode pairs are used to block

transmitter noise at levels ~0.6 V. A quarter wave line at the obser-

vation wavelength with crossed diodes to ground protects the receiver.

Occasionally, an additional quarter wave line and diodes are used for

further protection. Typically, there is less than 1 V (peak to peak)

of a distorted wave form leaking to the preamp during a pulse. A band

pass filter is used between the probe and quarter wave line to improve

rejection of the decoupling frequency when present.

5.4 Probes

Several home built probes were used in this work. Each probe used

was chosen for particular characteristics which optimize signal-to~

noise, high power decoupling and minimum sample heating.

The general resonance circuits used are shown in Figure 5.10. For

experiments requiring only observation of the proton frequency with no

decoupling, a simple, tunable resonance circuit was used. The tuning

capacitor is a home-built unit consisting of an inner cylindrical con-

ductor and an outer bell separated by a teflon dielectric. Matching

capacitance of several silver mica or ceramic capacitors are placed in

parallel. The sample coil is made from 18 or 20 gauge copper wire

wrapped to form a solenoid of 5-7 turns with a diameter of 6 rom and

about 1 cm long. With 200 watts of r.f. power and a probe Q - 100~

rotating fields of 10-20 G can be generated.
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Probe and receiver connection to high power transmitter. Trans­

mission diode pairs (IN 914) are used to block transmitter noise and

protect the receiver preamp from high power pulses. The A/4 line is

a quarter of the wavelength being observed.
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Probe circuits for NMR spectroscopy.

a) Single tuned circuit.
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the transmitter and receiver.

b) Double tuned circuit. Both low and high frequencies tune
Hwith the same coil. The proton wavelength is A •



For double resonance experiments, an additional tuned circuit at

the decoupler frequency is present. The double resonance probe must be

capable of producing large r.f. fields at both frequencies, while detec­

ting the microvolt-sized nuclear signal during decoupling. This implies

good isolation between the two circuits. In addition, sample heating

due to resistive losses in the coil are a problem when working with an

ordered sample such as a liquid crystal.

Some of the double resonance experiments were performed on a two­

coil probe. In this design, the deuterium resonance circuit is similar

to the proton (Fig. 5.l0a) except for capacitative values and a coil of

saddle Helmholtz geometry. The saddle-shaped deuterium Helmholtz coil

is mounted orthogonal to the proton solenoid and outside of the latter.

This arrangement provides good isolation (30-40 db) and the distance of

the decoupler coil from the sample avoids thermal contact. Dielectric

losses in the sample itself can still be a problem. Typically, 20 G of

rotating field can be achieved for 2H decoupling, the main limitation

being arcing at some point in the probe. This was found to be adequate

for some of the experiments in this work.

When more decoupling field is required, a double-tuned, single coil

arrangement (Fig. S.lOb) is necessary [115]. Most of the elements in

this probe are similar to the single resonance circuit. High and low

impedance points for the proton frequency are present on either side of

the sample coil and are effected with the use of quarter wave lines:

one grounded and one open. The use of a single solenoid coil for both

high and low frequency improves decoupling by allowing for greater 2H

fields (40-50 G) and equivalent r.f. homogeneity over the sample for

both channels. It was found, however, that sample heating during
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decoupling was more problematic than with the Helmholtz coil due to the

closer proximity of the coil to the sample. This was avoided by using

a smaller sample with teflon spacers to hold it along the axis of the

solenoid. The resulting reduction of the filling factor lowered the

signal-to-noise somewhat. Although it has been claimed [116] that the

efficiency, defined as the fraction of transmitter power that is

delivered to the sample coil, will be significantly less for the high

frequency side of a double-tuned probe of this design compared with a

signal resonance circuit, it was found that, in general, 90 0 pulse times

were nearly equivalent for the probes used in this work.

Because the anisotropic ordering of a thermotropic liquid crystal

is dependent on temperature, careful control of the temperature of the

sample environment is required. The probes used in this work are

equipped with an evacuated glass dewar which surrounds the immediate

region of the sample coil. Radio frequency power-is passed into this

region by leads through the KEL-F or teflon support on which tuning

elements are mounted. The temperature is measured by a single copper­

constantin thermocouple junction -1 em from the sample coil. The tem­

perature is read by a Noric digital thermometer. Rough temperature

regulation is achieved by passing air or NZ through the sample region

via an evacuated transfer line which is also the support rod for the

probe. For temperatures above the ambient gas temperature, the gas is

first heated by passing it through an element with up to 100 watts of

regulated power. Colder temperatures are achieved by first bubbling

house NZ through liquid NZ' or passing air through a copper tube im-

mersed in ice water. The temperature read by the digital thermometer

is sampled periodically and compared against a preset value. If the

temperature drops below this value, a small auxiliary heater (-30 watts)
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in the probe transfer line is turned on. This heater is disabled during

a pulse sequence and data acquisition to avoid noise pick-up. With this

arrangement, the temperature sample of the environment can be regulated

to +O.loC over a range from -120° to +150°C.

5.5 Receiver Section

A high sensitivity NMR spectrometer must be able to detect the

microvolt-level nuclear signals typically present and be designed so

that the noise figure of the preamplifier determines receiver noise

contributions. In addition, quadrature phase sensitive detection is

employed to provide maximum signal-to-noise and for those experiments

where the signal is not linearly polarized.

5.5.1 Preamplifier and IF Gain

The preamplifier sectionsof both the high and low frequency channels

operate in a similar manner. For carbon and deut~rium detection, the

preamplifier (Miteg Model AU-IB-005M) provides about 35 db gain of the

nuclear signal. After filtering, this is mixed with the t.O. using a

Hewlett-Packard model 105l4A mixer to produce the 30 MHz receiver i.f.

signal. The major difference in the proton receiver is the use of a

preamplifier with -50 db of gain and a Mini Circuits Model ZAD-l-l mixer.

Typically full receiver recovery follows 20 ~sec after an r.f. pulse at

the observation frequency.

Either receiver i.f. is routed to an i.f. strip amplifier (RHG Model

EVT30l0) with a band pass of 10 MHz. This unit provides 20 db of fixed

plus 50 db of variable gain. This amplifier is nominally linear but

must be calibrated when relaxation measurements are taken.
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5.5.2 Phase Sensitive Detector/Audio Filters

Phase sensitive detection of the receiver i.f. signal is accomp­

lished as follows (see Fig. 5.11). The 30 MHz spectrometer reference

is first passed through a variable delay line and then split by a

quadrature hybrid. Both channels are passed through mixers along with

the i.f. strip output which has been divided with no phase difference.

The audio output is filtered by variable low pass filters (see Fig. 5.12)

and sent to the digitizers. The relative phase of the spectrometer

and signal is adjusted by the reference delay line.

5.6 Digitizers

The +1 V phase detected signal channels are sent to the High Speed

Acquisition system for digitizing and memory storage (see Fig. 5.13).

The signals are first gained to ~10 V by a small audio amplifier (AMlOlA).

On a "START" pulse the signal is sampled by a Datel Model SHM-2 sample­

and-hold and converted to 10 bits of data by a Datel tfudel ADC-GIOB4C

analog-to-digital converter. Total conversion time is 1 ~sec. There is

an equivalent circuit for each phase channel. The START pulse is gen­

erated and the data read by an interface attached to the spectrometer

computer (Data General Nova 820). Successive data points (complex) are

placed directly into the computer's memory as they are converted via the

DMA. The interface can acquire up to 2048 complex data points with a

dwell time of ~3 ~sec. This provides adequate spectral breadth for all

experiments in this work. The acquisition interface was built by

Spectrometer Data Systems and has been modified to allow data collection

from a single trigger pulse for an entire FID or from trigger pulses for

each point in a FID. All data collection is synchronous with the pulse

programmer clock.
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Figure 5.11

Phase sensitive detector. Heterodyne detection method is employed.

The i.f. signal is divided with no phase difference and the reference is

split into 0° and 90° lines. These are mixed to give two audio channels.

HSA means High Speed Acquisition.
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Audio filter circuits and miscellaneous circuitry for offset

adjustment, IF gain control voltage and IF strip overvoltage detection.

Each channel of the Phase Sensitive Detector output is passed through

identical filters and offset op-amps. The 6 and 12 db selection

affects filter roll-off characteristics.
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Figure 5.13

Data Acquisition circuit for 185 MHz NMR Spectrometer.

Each channel of phase detected signal is converted to 10 bits of

data. Conversion time is 1 ~sec.
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5.7 Pulse Programmer

The nature of the pulsed NMR experiments described in this work

require a programmable unit to generate pulse gating and delays for the

sequences used. The pulse programmer employed in this spectrometer is

microprocessor based and contains its own memory and home-written soft­

ware. This software (micro-code) allows pulse programs of up to 64

simple steps to be entered and executed. Each step can be an operation

such as variable definition and incrementing, comparison of variables

and branching, etc. Based on the pulse program instructions, the micro­

processor outputs a sequence of timing words to either a RAM or FIFO

memory. These timing words are clocked out by gating hardware which is

based on the 10 MHz reference output of the proton synthesizer. Thus

pulses and delays are settable in 0.1 ~sec units and quite complicated

sequences can be programmed. The microprocessor communicates with the

spectrometer computer via the EIA interface of th~ system console. The

design and operation of this pulse programmer are described in more

detail elsewhere [45].

5.8 Computer

A dedicated minicomputer is used to direct the operations of the

spectrometer. Data acquisition, data manipulation and peripheral control

are all handled by specialized hardware and software.

5.8.1 Hardware

The spectrometer minicomputer is a Data General Nova 820 with a 16

bit word length and 32 K words of core memory. Mass storage is on a

Data General 6045 hard disk subsystem with 10 Mbyte capacity. Data back

up and storage is aided by a Data General 6030 single density floppy

drive with 315 kbytes of storage capacity. Besides CPU, TTY, I/O,
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Disk I/O and memory boards, several interfaces handling data display and

x-y plotting, data acquisition and miscellaneous peripheral control

reside in the main frame.

5.8.2 Software

To handle the many different operations of the spectrometer which

are under computer control, a large program was written [117] mostly in

FORTRAN with some subroutines in assembly language. This program

comprises an independent, stand-alone operating system. Computer memory

is partitioned by the software into well defined regions as shown in

Figure 5.14. Most of the memory is devoted to data, allowing rapid

acquisition and manipulation of digitized signals. The entire program

cannot fit into the remaining memory and so is divided into a series of

overlays which are swapped to memory from disk as needed.

This operating system consists of 60 commands which direct data

acquisition and display, Fourier transformation, phase correction, and a

variety of other operations. Commands are given simple names and accept

parameters when executed. Commands may either be executed individually

from the console or as a sequence from a previously defined string

stored on disk (known as a MACRO). MACRO command strings except variables

which are passed to the commands at execution time and MACRO's may be

nested in almost any way desired. This arrangement allows unattended

direction of a complicated experiment which is defined beforehand. Data

is stored in a large archive on the hard disk system and later moved

to floppy disk for long term storage.

In addition to the spectrometer operating program, several routines

were written for specialized data manipulations. Among these is a series

of programs which facilitate the calculation of a large, floating-point

disk Fourier transform. These are described in Appendix C. This was
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Software partitioning of 32768 words of Nova 820 memory for

spectrometer operating system. Most of the memorj is devoted to

data with programs swapped into the overlay segment as needed.

The hatched region is used for communications with the pulse

programmer.



required in the work on liquid crystals because the computer word size

(16 bit) and core memory size (32 K) limits the length of a Fourier

transform that can be calculated by the spectrometer software to 8192

complex points. The disk based programs allow a spectrum of up to

64 K words (complex) to be calculated with no overflow.

5.9 Conclusion

In this chapter one of the two NMR spectrometers used in all experi­

ments reported in this work has been described. The basic circuitry of

the spectrometer consists of a low power r.f. section in which pulses

are generated with well defined phases relative to the spectrometer

reference. All pulse and delay timing is choreographed by a sophisti­

cated, microprocessor-based pulse programmer. Pulses are amplified,

converted to the nuclear frequency of interest, and transmitted to the

sample probe. Two designs of tuned resonance circuits are used in the

probes: a single coil for each resonance used or a single coil, double

tuned probe. Each design offers some advantages over the other; the

choice of probe was dictated by the considerations of signal-to-noise,

sample heating and decoupling power requirements.

The dedicated minicomputer system with specialized software used

with the spectrometer is also described in this chapter. This arrange­

ment offers a great deal of flexibility in the types of experiments that

can be performed. The ability to construct chains of simple commands

as MACRO strings allows for automation of experiments once initial para­

meters are set. The High Speed Acquisition system employed is suffi­

ciently fast for solid state experiments and adaptable to high resolution

for liquid crystal and liquid samples. Magnetic field homogeneity is
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obtained with a set of room temperature shim coils in addition to

superconducting gradient coils. Finally, a low noise figure pre­

amplifier followed by variable gain i.f. stage and phase sensitive

detection yield the best arrangement from the standpoint of

signal-to-noise.
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APPENDIX A

Spectral Simulation and Iteration Programs

This appendix describes the simulation and iteration programs

(MQITSET and MQITER) used to fit the multiple quantum spectra discussed

in Chapters 3 and 4. Both programs and their subroutines are written

in FORTRAN IV and execute on a DEC VAX/VMS 11/780 computer. All the

file I/O statements are specific for that computer but may be modified

to run on virtually any medium or large scale computer. The VAX system

has 1.5 ~fuytes of virtual memory and so program MQITER dimensions large

arrays which allow it to handle up to 10 coupled spins.

In the following sections, the theory of linear least squares para­

meter adjustment is briefly reviewed and its application to NMR spectral

fitting discussed. In Section A.2.3, a description of program flow for

MQITER is given. Finally an example, partially oriented benzene, is

presented to demonstrate the basic operation of MQITER.

A.I MQITSET

MQITSET is a program used to collect data required for the execu­

tion of MQITER. The latter program is non-interactive and acquires all

of its necessary data from file MQlTER.DAT. MQITSET asks a series of

questions and, based on the responses, collects coupling constants and

creates the data file. In this manner, several data files can be

created while the actual simulations and iterations are done in the

background without interaction from a terminal.

229



A.2 MQITER

MQITER is the basic simulation and iteration program used for spec-

tral fitting. For spectral simulation, input consists of the dipolar

and scalar couplings. From these couplings the homonuclear, spin-1/2

Hamiltonian matrix is set up in a single product basis set. Chemical

shifts and rotating frame offset are assumed to be zero. This is then

subjected to a diagonalization routine employing the Jacobi rotation

technique. Finally, the transition frequencies expected in the multiple

quantum spectrum are calculated. This is done by first classifying

eigenstate vectors by symmetry representation and then choosing all

possible transitions within each representation.

Once an initial simulation has been done, experimental frequencies

can be assigned to those calculated. The calculated frequencies are

identified by a number given them in the simulation. With these as

input, the program is run again and a linear leas~ squares variation

is used to refine the couplings and produce a new spectrum with a minimum

RMS deviation from the experimental lines. The method of least squares

variation is essentially the same as that used by Castellano and

Bothner-By in their program LAOCN) (see Ref. [118,119] and references

therein). The next section will discuss the theory of these iterative

calculations.

A.2.l Least Squares Spectral Analysis

If a set of experimental measurements have been made, {m.}, cor­
1

responding to a set of theoretical quantities, {Mk} and it is necessary

to find the parameters, {Pq}' which determine the Mk's from known

quantities, i.e.,
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then the method of least squares is appropriate. In this method, it is

desired to minimize the quantity
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(A.2)

where ~Mk =~ - Mk· In matrix notation we require

(A.3)

for all the parameters j = 1, ... , q. In order to obtain a solution for

Equation (A.3), ~ is expanded in a Taylor series about some initial

(0)
parameters g

(A.4)

= ~(O) + VA
~ ~u,g.

In Equation (A.4) it has been assumed that only small changes in para-

meters are to be considered and so terms with higher derivatives of M
~

are insignificant. If we use as the vector of residuals the difference

between the measured quantities and the zero order term of Equation (A.4),

then the minimization problem becomes,

a T
(~~,g - ~~) ~~,g - l.\~) = 0,3p.

J

which may be rewritten as

(A.5)

(A.6)

(A. 7)



If M is a linear function of the parameters, then Equation (A.7) is the
:::::

solution which gives the form of the function in Equation (A.I). This

is what has been assumed in going from Equation (A.6) to Equation (A.?),

i.e., that Z is not a function of the parameters. For the case of spec~

tral fitting in NMR where the measured quantities are transition

frequencies, their dependence on coupling constants is, in general, not

linear [118]. Thus, the parameters will have to be varied to approach

the situation stated by Equation (A.7). The usual procedure is to solve

the "normal equations,"
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(A.8)

to give corrections to the parameters which are used to calculate a new

~(i). It can be shown that, as long as the changes to the parameters

are kept small so that the "linearization" approximation is valid, this

method may converge to some set of final parameters g(f) representing a

local minimum of residuals [120].

The question of uniqueness of the solution g(f) must then be taken

up. It is possible that the convergence will be to a local minimum on

the surface of parameter space which is one among several or even an

infinite locus of solutions. lihere the convergence ends up will be

determined by the "closeness" of the initial parameters (1. e., the mag-

nitude of the initial RMS error) and the assignments of the measured

quantities, {mil. The Castellano/Bothner-By method requires a reasonably

good choice of initial parameters and line assignments [119]. Generally,

when the number of lines assigned does not greatly exceed the number of

parameters varied, an improper line assignment w~ll result in no conver-

gence at all. Several different line assignments may be tried to isolate



those which do converge. For single quantum NMR spectra of a molecule

with a large number of interacting nuclei, the number of different line

assignments possible which fit within some range of the initial simula­

tion becomes too great to allow a full least squares iteration of each.

With the increased resolution and spectral simplicity inherent in high

quantum spectra, the number of reasonable line assignments is greatly

reduced. In a similar sense a variety of initial parameters may be

used to probe the space of possible solutions. The advantages of using

multiple quantum spectra in choosing initial parameters arise when a

choice can be made between several different coupling constant models

which predict different multiple quantum spectra.

For either a multiple quantum or a single quantum case, the uniqueness

of a solution may depend on molecular symmetry. For example, it has been

shown that two and three spin systems analyzed from line frequencies

alone yield several or even an infinite number of solutions [121].

Unique solutions only become possible when intensity information is in­

cluded. For a general spin system without synmetry, the direct and in­

direct couplings and the chemical shifts may all be determined uniquely

except for the relative sign of the couplings with respect to shifts and

for a permutation of the nuclei [122]. The ambiguity in numbering of

nuclei is removed with the addition of molecular symmetry which also

reduces the number of parameters required to solve for. In addition, when

some of the parameters are assumed, the number of possible solutions is

reduced. Thus, the uniqueness of a solution derived from the Castel1ano/

Borthner-By method depends on how well the initial model fits an experi­

ment and how many parameters in the model may be kept stationary.
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Returning to Equation (A.8), it may now be seen what is required

in the program MQITER. The measured quantities from a multiple quantum

spectrum are the line frequencies,
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(A.9)

the parameters are the direct and indirect coupling constants (chemical

shifts are assumed to be equal) and the derivative matrix is

(V) ..
~ ~J

3F.
~

= --
3p.

J

(A.lO)

Equation (A.9) is evaluated by considering the eigenstates of the

Hamiltonian for the initial parameters and the line assignments made

from the spectrum. The derivatives of Equation (A.lO) are found by

differentiating the Hamiltonian in the simple product basis set:

aF. [aA at.]1. n m
apj = apj - ap j

(A.lla)

(A.llb)



In reaching Equation (A.llb), the orthonormality of the eigenvectors has

been used. The left hand derivative matrix in Equation (A. lIb) is dia-

gonal and so we need only consider the diagonal elements of the right

hand matrices. Those elements cancel in the last two terms and so
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(A.12)

Equation (A.12) states that the derivatives for V in the normal equations
~

can be found by differentiating the Hamiltonian and then applying the

same transformation used to diagonalize it to yield the eigenstate deriv-

atives. The differentiation of the Hamiltonian in the simple product

basis is trivial since H
ik

= ~CiPj and the eigenvectors required by

Equation (A.12) are found at each cycle of the iteration.

Once the derivatives in Equation (A.12) are calculated, the normal

equations may be solved according to Equation (A.8) to yield corrections

to the parameters. The initial parameters are adjusted by these amounts

and the next cycle of the iteration is started. In each cycle, the RMS

deviation of the calculated lines and assigned frequencies is computed

(Eq. (A.3». If this RMS deviation does not change by more than one

percent on going from one cycle to the next, then the definition of con-

vergence has been reached and the final parameters used in a spectral

simulation. Figure A.l shows

quantum spectral fitting.

A.2.2 Error Analysis

the overall procedure used in multiple

The errors present in the digital resolution of a multiple quantum

spectrum can be propagated to parameter errors by the usual techniques.

It can be shown [118] that for the case where the standard deviations of
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each frequency measurement are the same, the variance-covariance matrix

for the parameters derived from Equation (A.8) is given by the coeffi-

cients of the normal equations:
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C
~p

(A.13)

2Diagonal elements of ~p give individual errors in each parameter (a
i

)

and off-diagonal elements give the covariances defined by

(A.14)

parameters.

where the angle brackets define an expectation value. In general, the

parameters used for iteration are not independent and so the covariances

are expected to be significant. As in the original program LAOCN3, the

matrix in Equation (A.13) is diagonalized to give parameter errors for

linear combinations of parameters forming a principle axis system in

"error space". This may be of use in identifying those linearly inde-

pendent combinations of parameters which define the system better. In

addition, this locates the maximum and minimum errors possible for the

In Equation (A.13) the variance 0
2

, assumed equal for all

lines used in the fitting, may be assumed from the final fit as [118]

2
a (~Mt ~M) / (k - q)

~ ~
(A. IS)

where k is the number of assigned lines and q is the number of parameters.

The propagation of errors from the refined parameters determined

from MQITER to quantities such as bond angles and distances must also be

considered. If the derivatives defining the relationship of the desired

quantities, ~, with respect to the variables ~ are known, then the

propagation of errors is expressed as



(A.16)
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~ is the matrix of derivatives, aYl../a~, and C , C are the variance-
K ~ ~

covariance matrices. Such a propagation of parameter errors will become

important in the discussion of the program BIPH5PARA (Appendix B).

A.2.3 Program Description/MQITER

The listing for the iteration program MQITER is given in Appendix D.

What follows is a brief description of the programs operations and sub-

routines. Table A.I gives a listing of the subroutines used and Table

A.II a listing of the major matrices required. This listing is of a

version designed to handle up to ten spins. Not all multiple quantum

spectra may need to be calculated since line assignments may only be

taken from the highest quantum transitions. If this is the case, the

program allows for the exclusion of those parts of the Hamiltonian not

necessary. The Hamiltonian is first set up in the. simple product basis

set in block diagonal form [118]. If a complete zero quantum or one

quantum spectrum is desired then every submatrix must be set up in this

basis set and then diagonalized. If this is the case, then the largest

spin system possible with the array dimensions given in Table A.II is

eight spins-~. MQITER is capable of calculating higher multiple quantum

orders for greater than eight spins. As an example, if the five quantum

is desired, none of the transitions involve the submatrix with M = 0 and

its diagonalization may be omitted. This eliminates the need to dia-

gonalize a 70 x 70 matrix and so computational time is decreased consider-

ably. Some multiple quantum transitions for orders lower than five may

still be found but those spectra will be incomplete. Variable MAXMAT

holds the dimension of the largest Zeeman submatrix which is allowed.

In this manner, part of the total multiple quantum spectrum can be



Table A.I

Subroutines and Functions Used by MQITER
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Subroutine or Function
Name

1) LINORD

2) CNTOUT

3) HAMIL5

4) CONDIT

5) ERRIT

6) NORMAL

7) MINV

8) CORREC

9) GENSYM

10) EIG2

11) EOUT

12) MQ2DIFF

13) NUMSRT

14) UNTRANS

15) READMS

16) WRITMS

17) USWAP

18) SYMSET

19) FRQOUT

20) MAT

21) MATVEC

Called
From

MQITER

MQITER

MQITER

MQITER

MQITER

MQITER

MQITER

MQITER

MQITER

MQITER
HAMIL5

MQITER
HAMIL5

MQITER

HAMIL5

HAMIL5
USWAP

MQITER
HAMIL5
SYMSET
USWAP

USWAP

HAMIL5

MQ2DIFF

MQ2DIFF

All routines

All routines

Purpose

Orders line assignments

Outputs coupling constants

Sets up Hamiltonian

Sets up equations of condition

Calculates RMS error

Sets up normal equations

Inverts a matrix

Corrects initial parameters

Rearranges symmetric matrix

Diagonalizes a real symmetric
matrix

.
Outputs energies

Calculates allowed MQ spectra

Calculates SP states

Performs a unitary transforma­
tion

File I/O

File I/O

Rearranges Eigenvectors

Calculates symmetry representa­
tions

Outputs frequencies

Array index functions

Array index functions



Table A. II

Major Arrays Used in MQITER
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Array Name Size

D (28)

CJ (28)

LST (2,1024)

NO (11)

NSP (11)

NSM (11)

EN (256)

IPARAM (28,15)

DLMB (256,28)

MQIT (2,10)

LASS (230)

EXPER (230)

DC (230,28)

B (230) ~
V (784)

BV (28) }

WORK (4900)

Purpose

Dipolar coupling constants

Scalar coupling constants

SP states and quantum numbers

Binomial coefficients

Sum of binomial coefficients

Sum of allowed sub-matrix
dimensions

Energies

Parameters

Derivatives of eigenvalues

Multiple quantum orders

Experimental line assignments

Experimental frequencies

Matrix of derivatives

Miscellaneous work matrices



calculated for nine and ten protons. The lowest orders for which all

allowed transitions may be found are zero quantum for eight protons or

less, seven quantum for nine protons and eight quantum when the molecule

contains ten protons.

The program starts by opening three files; two are scratch files

which will contain eigenvector matrices and one is the data file

MQITER.DAT produced by MQITSET. The initial data is read in and certain

array elements are determined. Variable N is the number of spins, LOWORD

the lowest order transitions for which a complete spectrum is desired

and ITER is the iteration control variable. Next, the couplings are

read in (either from a previous data file with the same name as CASE or

from MQITER.DAT) and output by subroutine CNTOUT. If this is an iterative

calculation, the line assignments are also read in. Subroutine LINORD

arranges them by order and line number for later calculation. Next, the

parameters to be varied are read. A total of 28 ~rameter sets are

allowed. With most molecules of interest, symmetry dictates that some

parameters must be kept equal during the iteration [118]. As an example,

for benzene, all the ortho couplings are equal and this forms one para­

meter set. A total of 15 parameters are allowed per parameter set. The

method of specifying which dipolar or scalar coupling is meant by each

parameter is described in the output of program MQITSET.

The iteration loop takes up the next eleven statements. Subroutine

HAMIL5, described below, is called to set up and diagonalize the Hamil­

tonian matrix and find the derivative of this matrix with respect to

each of the parameters. If ITER is zero, then the program just skips to

the part which simulates the multiple quantum spectrum. Otherwise, sub­

routine CONDIT is used to calculate the equations of condition. ERRIT

finds the current RMS error and returns variable NEXIT which determines
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if convergence has been reached. Subroutine NORMAL sets up the normal

equations according to Equation (A.8). MINV, a routine similar to a

subroutine from an IBM subroutine package [lZ3], inverts the normal

equations coefficient matrix. Finally, CORREC applies the computed

corrections to the parameters. ITER is then incremented for the next

cycle.

Once convergence has been reached or too many cycles have occurred,

flow proceeds to the error analysis section. The matrix of coefficients

to the normal equations is first output. The inverse of this matrix is

proportional to the parameter variance-covariance matrix according to

Equation (A.13). Then, as described in Section A.Z.Z, this matrix is

diagonalized by EIGZ (described below) and the eigenvectors, the standard

errors of these "eigen parameters" and their probable errors are output.

Finally, subroutine MQZDIFF (see below) is used to simulate the multiple

quantum spectrum from the refined parameter value&.

Subroutine HAMIL5 is used to set up the Hamiltonian in a simple

product basis set. The operation of this routine is based in large part

on the methods developed by J. Murdoch [67]. The ZN simple product

states are actually the integers from zero to ZN_l in which each bit

represents one nucleus. The numbering of these "nuclei" follows that of

the dipolar and scalar couplings used. A zero for a particular bit rep­

resents one of the two spin-!~ states (a or 8) and a one means the other

state. Thus, checking the value of a particular bit determines the spin

state of that nucleus. For example, with four spins, a simple product

state a8a8 is represented by the integer 5 (0101 binary). Using these

"spin states" the Hamiltonian is found in this basis set by "operating"

on the states to determine which couplings contribute to each matrix
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element. Both the on-diagonal and off-diagonal elements are calculated

in this manner. Only the submatrices for each total magnetic quantum

number are calculated, all other elements being zero. HAMIL5 uses a

definition of dipolar couplings twice that of Reference [18].

After each submatrix of the Hamiltonian in the simple product basis

set is calculated, it must be diagonalized to give eigenstates and eigen-

vectors. If this is the first cycle in an iteration, or if no iteration

is desired, this is done immediately by EIG2. For an intermediate stage

in the iteration, the Hamiltonian is first subjected to the transformation
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~~n) = ~~n-l) ~(n) ~(n-l)· (A.17)

In Equation (A.17), the subscripts indicate the cycle number. If the

parameters have not changed much on going from cycle (n-l) to cycle (n),
,

then using the method of Equation (A.17) will produce matrix ~(n) which

should be approximately diagonal. Subjecting this transformed matrix

to the Jacobi method should require fewer rotations to reach a completely

diagonal form. In addition, using Equation (A.17) at every cycle will

help preserve the order of the eigenstates.

The subroutine EIG2 produces a diagonal matrix from a real sYmmetric

one by the Jacobi rotation technique [124]. In this approach, the

largest off-diagonal element is chosen as a pivotal element about which

an orthogonal rotation is done. The angle of rotation is chosen so that

this largest off-diagonal element is made to vanish. Orthogonal trans-

formations of this type are repeated until no off-diagonal element is

larger than a threshold. The unit matrix is also rotated by the same

angle for each transformation. It can be shown that the product of the

orthogonal matrices for each rotation is the required eigenvector matrix

[118].



As mentioned above, it is necessary to keep the eigenstates in the

same order as in the initial diagonalization. This is important to main-

tain the fit to experiment because the eigenstates will no longer be in

the proper order for line assignments and will cause an erroneous diver-

gence [125]. Such a situation is partly avoided in MQITER. Subroutine

HAMIL5 calls USWAP which calculates the sum of squared deviations

according to
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2
11 ..

1.)
(A. IS)

If none of the eigenvectors have changed position then the minimum ele-

ments of matrix 11 will be along its diagonal. If one of the off-diagonal
~

elements in a particular row is the minimum value of that row, then the

eigenstates and eigenvectors are swapped accordingly. This procedure

should maintain the line assignments and avoid divergence due to the

method of diagonalization. This rearrangement of the eigenvalue sequence

is particularly common when the dimension of the submatrix is large and

it contains several degenerate states.

Subroutine MQ2DIFF is used to calculate the multiple quantum spec-

trum from final parameters. As with the other parts of the program,

MQ2DIFF will calculate incomplete multiple quantum spectra when not all

submatrices of the Hamiltonian have been diagonalized. Since there is

no offset term in the Hamiltonian computed by HAMIL5, transition fre-

quencies for each order are calculated relative to the centers of the

orders. HAMIL5 also assumes that all chemical shifts are zero and so

each order is symmetric about its center. MQ2DIFF only outputs one half

of the symmetric spectrum. After the presentation of the spectrum with

identifying line numbers and transition states, the frequencies of one



half of each order are presented as a descending list of positive

numbers. MQ2DIFF attempts to identify degenerate transitions in this

list. The eigenstates may also be scanned for degeneracies to help

locate doubly degenerate symmetry representations.

Subroutine SYMSET is called by MQ2DIFF to classify eigenstates by

their symmetry relations. The calculation is based on the group theory

result stated in the following equations.

If I<f ./ All r .> 1
2

:F 0,
]. ]
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then r. = r ..
]. ]

(A.19)

In Equation (A.19), the f symbols refer to the irreducible symmetry re-

presentations of states i and j. For NMR single quantum transitions,

neglecting symmetry breaking relaxation effects, the magnetic dipole

transition operators are totally symmetric (i.e., ~l representation)

[36]. Equation (A.19) states that to find states of the same irreduci-

ble symmetry representation, the transition element

must be found and compared to zero. Instead of Ix, a more convenient

operator to use in SYMSET based on the form of the simple product states

is I. SYMSET loops through all eigenstates and calculates the appro-

priate matrix element from the expansion of these in terms of simple

product states with the eigenvectors from HAMIL5 as coefficients. The

resulting matrix elements are compared to a threshold level and if found

greater than this level the corresponding states are labelled as belong-

ing to the same irreducible representation. In this manner, all states

are classified by representation. An alternative to the approach of



calculating each matrix element individually is to set up the transition

operator in the simple product basis and then transform it using the

eigenvector matrix.

When not all submatrices have been included in the calculations of

HAMIL5, matrix elements of 1_ alone are not sufficient to determine all

the sYmmetry relations among eigenstates. The missing submatrix is

n"bridged" by computing matrix elements of I where n-l is the number of

submatrices missing. This allows symmetry representations for states

below the missing Zeeman manifold to be connected to those above.

n
However, calculations show [126] that matrix elements of I for states

within the same representation may vanish and so this method may omit

allowed transitions. The best possible calculation, without expressing

the point group of the molecule in the Hamiltonian [127] is to use the

single quantum operator 1_.

Once the representations have been determine~, MQ2DIFF outputs all

the symmetry allowed transitions for the multiple quantum orders of inter-

est. This presentation carries none of the information concerning inten-

sities as they are dependent on experimental parameters as described in

the previous chapters. Also output by the program are the eigenstates

organized by the symmetry representations found by SYMSET. In this

list, states labelled as representation #1 are those for which no non-

zero matrix elements were located. States of representation #2 are the

totally symmetric (~) states. The extreme Zeeman states are always

found in this representation. The relationship of the other represen-

tations to the actual point group irreducible representations must be

made by examination of the dimensions of each Zeeman manifold.
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A.2.4 Program Example: Benzene

As an example of the operation of MQITER, consider the case of

benzene oriented in a liquid crystal as in previous chapters. The high

order transitions produce very simple spectra and the line splitting of

the sole five quantum pair is sufficient to determine the entire spectrum

when hexagonal ring geometry and scalar couplings are assumed. Because

of this, it is not necessary to use MQITER to iterate to a solution for

the benzene spectrum. However, it is a well understood and characterized

spectrum and so a convenient example to choose. This particular example

is for the fit of one calculated spectrum to that of another and so the

parameter errors are extremely small. The use of MQITER with actual

experimental lines assignments also produces a very good fit with the

parameter errors found to be well within the bounds expected on the basis

of the digital resolution of the Fourier transform spectrum.

An initial run is necessary to give line numb~rs for assignment to

the "experimental" spectrum. In the second run, the line assignments

come from another simulation with a different set of couplings which

represents this "experimental" spectrum. As seen in the RMS error calcu­

lation, the initial fit is already fairly close. Both D's and J's were

varied in the iteration, the parameter sets corresponding to ortho, meta,

and para couplings. During the cycles, states are swapped by the method

described in the previous section. Note that only degenerate states are

affected by this swapping implying that, even without this check, con­

vergence would be obtained because the RMS error would still decrease.

The final parameter errors reported are indeed very small. After the

refined parameters are output, the variance -covariance matrix and the

eigenvectors from its diagonalization are given. This eigenvector matrix
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is not completely diagonal indicating strong mixing of the parameters.

This is to be expected for the dipolar coupling parameters due to their

dependence mentioned above, but in addition, each eigenvector shows

significant mixing of dipolar and scalar couplings. Even though no

anisotropic (or "pseudo-dipolar") contribution from J .. is included in
1J

the Hamiltonian, this eigenvector matrix shows that the D.. 's and J 's
1J ij

are not linearly independent.

After the simulation is performed and the frequencies output, a

listing of degeneracies found among the eigenstates is given. Following

this, the symmetry classifications of eigenstates is shown. The cor-

respondence between these classes and the point group representations is:

representation #1, AZ state; representation #Z, ~ states; representation

#3, E;,b states; representation #4, B
l

states; representation #5, E~,b

states; representation #6, BZ states.
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A.2.5 Computer Output for Benzene Example
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TI"PI"(;B ~CG:l 4-NCT-H;81 16:42:1E! 2e PaBe 2
CAS r benz1 U

bl!T' %I!~ e ltl!ratloD e:ulIlple

D( 1 2 -1381.80"8
J ( 1 2 6.e~0u

D( 1 ~ -250 1918
J ( 1 :3 1.1l"00

t / 1 4 162.~e0?

J ( 1 4 ~.5e00

D' 1 " -2~PI.l~"0-
J / 1 ~ 1 . eo~) 0 C-

D/ 1 e -l:3ee 000'"
J' 1 6 6.0""0"

t / 2 ~ -1:-;01?eoZJ"
J ( 2 :3 6 0900

D 2 4- -2~~ .1~i1I"

J ' <: 4 1.e'(,)'~:·

D / 2 ~ -1152.5000
J' 2 " 1'!.50~"

r / <' e 2~eo 18ee
J' 2 e 1.00021

D' :3 4 -1~00.0"00

J' :3 ~ 6.(h'·J0

D( :5 ~ -250 19.",
J( 3, ~ 1.0"0""

t/ :3 e -le~.~p'~7

J r 3 e o S000

D' 4 ~ -130llJ.llJ0"0
J ( 4 ~ = 6 .l~rl-1V

J:( 4 e -250 1901
J' 4 5 1 ."""'~

t( ~ e -1303.iieefi
J( 5 e' e 8111

TOTA t II Cl lRlQ ENTlnD 32
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'!'I'lP"'O!.LOG;l 4-NO'-1981 16;42:18.2E

251

tIN! iSSIGN!"INTS lOR TBI 2 OOJHTO~ SFICTIO~

tINI • IIPIRI",INliL lllQOINCT

1 1~6~ •£1111
2 41'''. 9EN
~ 2332.2101

24: 2253 . "41.
2~ 22~3 .741"
4:! ~~~ .74q'1
2E !5!5~. 740.
2f 1629.131"
2S 1e29.13ee
~7 £189.710'
~f -5"" .740'
41 2"23.02rl
~f 695.e4el
~~ 1321.:000
7 3310.€?~1

TMPf"CB. :CG; 1 4-NO'-1981 16:42:18 2e hge 5

LIN! ASSIGNMINTS lOR THE ~ QOiN~~ SPICTHUM

TIN' • rXPIRIl'llNTiI llIQUINCY

2 ~261. ~Ei'll

4 1£127 .1411
6 479".£1999

2~ 13e3.e~e.

2El 2143.e~8e

2f 13"3.e!5lM
'II'll 2a3.~9ge....
~€ -!'€.1701
3'7 1733.10"1
~5 -39.eSll
E4 2e,s .Ul".
72 1314.6288
7'; 1314.e201

4-NOi-1S81 1e:42:1S.2E

LINI ASSIGN~INTS 101 THI 4 OUANTO~ SPICTIO~.

rIN! , IIPIWI!"IN'!'iI "IQOINeT

1 . 1~8~.el~1
2 41.4.8e81
4 2332.2181

T!"Pf":Cll reG;1 4-NO'-1881 18:42:18.28

tINI ASSIGNMINTS rOJ TBI ~ QUANTUM SPICTIU!"!

UHF " IIP!II"IN!AI rllQOINCt---- -- -- -_.._----------------------
1 2371.87ge



THPHCE leG;1 4 NeY-1981 16 42:18 2E Fig'! E

PJtOGU,. !"OITII - STU! or ITIIUIJI CJICUUTIONS.

ITlR"TION " 1 R 1'1 S IIIOR • 74.303
SUPPII: STU IS: e • ~

SWJP~IU STU'lS 17 • 12
ITIR.lTION II 2 R f"I S IRiOR • e. Hl

SWAPPIl: STAT!S: ~ • e
SVAPPID STATES· 12 • 17
SW"PPIt STATIS ... ~2

ITIIlA'rION II :5 R ,. S rno! .. e .1ZI7
S"I!PPID SUTIS· 17 • 12
SWAPPIt SUTIS ~0 ••
SUPPIr suns ~ !54 · '9
SVjpPID STATIS =~ • 58

ITlP/TION " 4 P. P1 S !RRO!! .. ~. U~?

PARA~~!!R ~!~" 1

D12
r2~

I:~4

D4e
r~e

I:1e

PAP.A~!T~R SIT II 2

!1~

D24
D3=­
1:46
D15
D26

PAF.~~ET19 5IT" :5

PARA~FT~R SIr II ,

J12
J23
J34
He
J~e

J1e

J13
J24
J3=
He
J1~

J26

PIRA~ITIB SIT II 8

J14
J2!5
J38
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r",p"'QJ.LOG;l t 'NOY-iS81 1«5:t2:18.28 F««e 10

RUINIt ~AU"'I'!'lRS

DC 1 2" : -12!59.99te
J( 1 2 9.99'78

D( 1 ~ = '242.!5~~1

J( 1 ~' 5."'0~~

Df 1 4 -1~ .5022
J( 1 4 = 1.0e6~

DC 1. ~ -242.5051
J( 1- ~ 5."'''3~

I ( 1 e = -12~9.994B

J( 1 E 9.9978

D: 2 ~ : -12=9.994e
Jf 2 :5 9.9979

D( 2 '"
-242 !5i'!51

J' 2 '"
5.0f13~

D' 2 ~ = 1~7 ~e'22

T' 2 .' 1.ee6~..

DI 2 6 -242.5~:1

J{ 2 e ~ 0e3~

Df 3 4 -1259.99"'8
J' 3 '"

9.997~

E{ :5 ~ = -242.~"~1

J' 3 ~ !5.01113!5

D· 3. e -1~'7.5"22

Jf 3 e ~ 1 "e6~

DC 4 ~ = -12~9.g904e

J( 4 ~ 9.9978

t' 4 e ,- 242 ~r~l

JC 4 E !5 "3!5

~( = 6 -12!:9.~4e
J{ ~ e • 9 99'78
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TI"PI1CE I CG a • NO'-1~81 16 42:18.28 Fa~e 12

254

riTIII CJ C011lICIINTS lOR THI NORHAL !QUATICNS
(EIICRI IIAGON~LIZAtION)

11 I' 1!;13I-02 -0 1194:! -12 -~ 15171-0:2 V1 Hi161-03 it\. 13i14i-03 II: 2~E~!-"~

2; -0 1194:1-12 I .3664J:-e2 -~.2915E-I3 -0.1;7U-03 -".4772i.-"~ -0 .23~.:f-02

3) -0 1!:1171-12 -0291~1-"3 0 9.'331-~2 -e.6€4:3i-i6~ -t:.1~lEi-0~ k:: .1E7H-Id3

4 " 1916I-0~ -0. 1974:F-13 -0 8~4::3I-0~ 0.30S9i-02 -0. H171-02 -".20131-"2

e '! 13e4J: Z~ -" .7721-03 -e 1!1EI-02 -~ 1417£-02 II:: .:27!:1U;-~c tl.1:~=i-"2

€ 0 23851-13 -0 .232el-12 ~ 1E72I-"~ -0 2E13I-,it2 rr:.l~9!:1i.-1012 kl .6!:2a-162

IIG!NVAlUIS 01 NOIl1AL EQUAtIONS MATBII

237 698 74:5. E5!:1 521.~!:I!:i

THPMCE ICG a Fage 1~

IIROR ,teTCIS ANt STANDARt DITIATICNS Cl IIGiN!ASIS PABAHITIIS

0 ~391 I 4:817 1.2337 1.4:94:2 1.3315 1.2619
S~ANrARr IIIOR ~ o 001

-0 ~395 • 72S4: -1.e7!1 -0.5.4:e e.:!156 -"./1057
STANDAID IRIOR = 1.001

e :2354: e.~"78 r. S412 -0. ll4:ee -i .aS7 -" .174:e •
stANDARD IIPOI = I Iill

• 71~1 -1.194:4 -1.1~31 e.~S4: 8.3623 e.15~7

SUNDUr DIOI • il 2'''1
I 1e3e -e 3371 ".le21 -I 17.2 0.7"18 -I.4:~72

STANDARD IIROR = I.e.
e Z391 -'Z.33~e 0.132' -e.381E £.2612 Ie.eeSile

S!ANDARD II!OR 2 • 011

TI1PI'!Cll ICG a Fage H

PIOJA!II IRIOIS CJ IICINIASIS P'RA~ltll SItS

1
2
3

"•
6

fI.HI
~."ep

f III
I ....
e.el'
• ...1



TMPHC! ICG;l

BIll NIt FNTRGlTS

255

IN' 1 .. -23'8 621111

TN' :?' ,. -1126 12'5
!" ~ 23.2~6P

IN' 4' .. -1336 '91!
PH ~ ) '" -56!5 S827
n: e = -565.E827
I'H 7' .. -1128 121~

IN( F) -782 8~83

r~: f 17!56.3!574:
iN 1 "" -16 4:116
IN' U', ,. 1117 7761
no 12 -671.4:SeE
1"1 1:! = -616 334:~

IN 14' • 671 6273
I~ 1!: 1"17.7761
I" If '" 178 9272
r~ 17' :: -671 4:ee9
:~ 1: 74:8.7367
I~' 16 :: 176 9272
EN 2e' = -616 334:2
P: 21 74:£1 7367
EN~ 2~' :: -~93 379S

IN: :?:!l -64:8 6532
Pi 2.1 = 912.9626 IN ~~ • 1'17.77154:
HI 2! = -14: 564:9 EN' ~6 ' '" 6'11.15282
!"4' 2E' -521 4: e4:f: IN' ~7' .. -8;15,3301'
n' 27 1121,2e5~

IN L;· a4:6 2722 IN( ~e :: 23 .258S
!"4( 2S; 1127 629!? IN !S' .. -1338 4:'16
H ~~ 1127 6311 IN' eel • -11215 1218
EN' ~1 = -21 747:1 IN' 61' • -56!5.8826
IN "ll~' = -571 3£131 !ri' e~ ; .. -1126 1211... OC

!"4 .... -571.3E32 IN( e:n • -56!5.se28L'-

IN :!4 .. 1121 2;53
!J4' ~!~ 513 0170 IN 64' or -23'8.6211
H' 3E 513.0(1170
nl' ;!? '" 197' U7?
IN' ~E' U7S77111
EN ::as -54:8.6663
I~ , 4 1178 4:E~~

IN( 4] , :: 4:'7 8772
EN "2 =- -!54:B.666~

n' 4~ :: -752.8VS3
u· 44' :: 1756 3~77
!l\! 4~ :: -593.3e'1
f",l 4e .. -16 Ule
IN' 4?' :: 1?6 9273
I'i 4£ :: -67" .4:£191
I'" 4S .. 7'8 7~9"IN: !!e' .. lil17.776e
H: ~1 • 1715.9273
I~' , ~~ • -818 33'"
IIIf' ~~ ) .. -87"eil0
I~ !4 ' :: ?'8.738;



THPHCJ ICC; 1 .-NOY-l!:!81 16 :'2 :18 .28 Page 17

1 OUAN'l'17" SPIC'I'~OH CltCUU'l'ICN

TIN! " TRIOUlN':! 1HZ) rUNS nION STATIS SIP'1'1

.... _---- -------------------~------~---------------------~---~--~

lOWI! OTlJ~TOH II = :5 . OPPIll QU.lN'l'UM 1# • 2,
2 2371.87'70 3-) 1 2

LCWER OU,tN~U'" " '" 2 UPPIII QUANTU,.. " . 1

HI 2H3.ege~ 11-,. :2 :3

12 509.7Ee0 13-) 2 3
14 2143.E967 1~ ) ~ 3
1~ 13'3.0,77 16-~ :2 3
1E' 1383."'''6 lS-) 2 3
IS ~V9.7ee:! :2e ) :2 :3
22 -eee.0e32 e-,' .. :2..
23 1733.1086 9-) 3 :2

L4 -3S.6ee~ 1~ ) ;! ,
~3 208e .11ee 14:-> 4 <l
"I: -104.6051 12-) = 5
e1 -124.6~e2 17 ) ~ 5
e:2 1314. E194 1e-~ e 5
65 1314.6194 21

,
= 5;

LCVIP Cr.H:~t1'" II : 1 UP!'!! QUANTU" " . ~

9~ 1653 ?7eS 24-, E :2

Ill''' 261.3243 26-) E 2

1 :2 322S •.dE:'6 ;:e-~ e ,
11~ -~'3.394e 24-; Ii :2

12" -2277.E416 26-) 9 2
122 6eg.9UE 2E ) l:i ;:

13E S29.3742 a-, 11ll 2
148 -~0e."724 26 ) 1" 2
B:? 24E2.6e~E :2E ) 1': :2

lF~ 109.e~3e 25:;-;" 11 3
'04 Ul9.e~41 30-) 11 3
H~e -1~Ee.1~92 32 ) 11 3
Ie7 -1~~!.1~92 ;!3-> 11 3
16S -~a.769" 35-) 11 3
IN -~H.7eg:: :!s-) 11 3
leI 1751.7743 27-,> 12 5
lae 1791.7'748 34-) 12 5
192 1l1'7!.36~7 ~e-) Ie ~

19~ 121.e22~ 39-:> 12 5
IS!" 1878.3668 41-) 12 5
Ige 121. ~22~ 42-) 12 5
203 1743.ge'2 29-) 1~ 3
2"4 1743.964d 38-) 13 3
2 e 4~.9~14 32-) 13 3
2~7 4~.9~13 33-/ 1:! 3
20S 1119.3416 3~-> 13 3
a9' 1119.3414 36-) 13 3
217 -1312.2!'! 23-) 1. ~

21i; -6e6.5923 2~-> 14 4:

231 13fl12.4:!i'~ 37 ) H 4:

l'e3 95••7.2e 2110;,/ Ie :5
264 9~'.7'29 ~.,-) 16 3
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TI1PHC! leG;1 '·NOY-1gS1 1e '2:18.2e hge 1E

268 -7t7.3111t 32-:;- 1E 3
cf'7 -74'7.310' 33-) 1e 3
2es 32e.,78£1 ~5-'> 1f 3
271 32e.8787 36-) 16 3
:!':1 372. ~4ee 27-) 1e 5
:!0£1 372.54£16 34-) 1e 5
312 -3t1.S597 38-) 1E 5
:!13 -12i7.t03e 35;-) 1E ~

:!1~ -3U.~59~ 41-) 18 5
:!115 -1297.U32 42-) 1e 5
:!94 17'71. 81S!4 40-) 22 ti
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r""p""QJ LOG;l

JRIQ (HZ'

~-HO'-1S81 leg~:le.2e

tlGINIR1C!

258

---------_._--------------------------~----~-~

32c9 eeet8 1
24E2 Se3e 1
2371 877,. 1
2277 8ue 1
2143 S98~ 2
28.8 118e 1
1751 7743 ~

17'71 SSM 1
174:5 9M2 2
17:!3 uee 1
ISS~ 7719 1
1~E8 t~92 2
1~14 8194- 2
1312 2e8:: 1
1~l!I:5 "~'7? 2
1:5e2 48f11~ 1
12S7 4"3f1 2
1119 3416 2
1"7e 36~7 ~

g~" 722€ 2
929 :5742 1
E43 :594F 1
el!le ee~2 1
747 3U'. 2
fE9 SHe 1
fEB ~92:5 1
=14 769' 2
!:k:9 7e6~

,
~e~ Q!724 1
372 ~4eE 2
:He e~97 -=
~ce 879El 2
2St 32~3 1
lCl e22~ ::
le9 e~3a 2
184 6861 2
4~ 9~14 ~

:!9 eBe~ 1

TOTAL " UNIQUE JREQ • :5E



Tf1PMQI LeG;l hge 20
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/2 QUiNTO" SPIC1!~ CALCUlATION

----------------------------------------------------------------
IIN~ " ll1QUINCY (HZ ) tlAN5ITION STATIS 5y,.f1

rOVIR QUANTU~ ,,~ 3; UPPfl QUANTUM # = 1

1 1565.SU9
2 4.1e4.g77~

3 2332.2.e~

LOIFll QUANTUM II 2 UPPl! QOANTO,", " . "
22 22~3.7~E!2

2~ 22~3.7~fJ7

2~ 5~5.7374

2e ~~~.7:57:5

2e 1629.127e
29 1629.1274
37 se9.71~7

39 -544.7489
41 2423."1~4

~e S9~.E3E:5

~e 1321.52e~

7P. :531'.5991
8'1 USS7 .H5S~
e7 lSS7.Hsse
~1 973.75£17
92 17.2164
94 97~.7599

S~ 17.2162

LCWIR OUI.NTU~ II : 1 OPPIlt OOANTO~ " • -1

13€ -I.f.el
137 2539.1661
139 7eS.39e'7
1!:1 -2539.1e~e

1~2 I.Iee2
1~4 -1772.7e9~

16e -766.396'7
~67 1772.769:5
ISS ~."",e~

le~ -S4I.84ee
lee 8.8.82
leg -S4e.S4S7
19. -16341.1118
1£13 '.""4
19~ -H534.11I.
201 -....".
202 1419.2257
2! e -f. ~'~2
207 1419.22~7

21~ 793.281e
a! 183•• 111:5
219 79:5.2818
22. '.HI~

22:5 18:5•• 111e
~2! .....1
2~9 •••••9

8-) 1
9-) 1

1'-.1 1

29-) 2
3"-> 2
32-) 2
33-) 2
35-) 2
36-) 2
24-) :3
26-;- ....
2e-) 3
23-) 4
25-) 4
37-) 4
27-) II:

~

34-> ~
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APPENDIX B

Programs to Calculate Biphenyl Dipolar Couplings

The proton dipole-dipole couplings of a biphenyl group with either

D2 or D
4

symmetry are calculated with programs BIPH4PARA or BIPHSPARA.

Program BIPH4PARA calculates couplings for any particular set of molec-

ular parameters. This program will also increment one of the para-

meters to produce a series of couplings. Program BIPH5PARA computes a

least-squares fit of the calculated couplings to a set of experimental

couplings which are given as part of the input. Both programs calculate

the Al symmetry lines allowed in the six and seven quantum transitions.

BIPH4PARA writes these line frequencies to a disk file which is later

used to produce variation plots like these shown in Chapter 4.

The following sections outline the coupling constant calculation

and give a brief description of each program.

B.l Dipolar Couplings for Biphenyl

The form of the coupling constant equations is essentially the same

when either DZ or D4 symmetry is assumed. The more general case is the

one with less symmetry: the DZ point group. This is the symmetry

assumed in the equations below. The D
4

couplings are derived by first

transforming the order tensor from coordinate system #1 (see Fig. 4.5)

and then proceeding with the equations for DZ symmetry. This trans­

formation may be written as
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(B.l)

where S(l) and s(Z) refer to the order tensors in molecular coordinate
~ ~

system #1 and #Z respectively. The transformation matrix R is given in
~



Equation (2.3). For the transformation required, angle a = +~/2 and

B = y = O. The non-zero order parameters in coordinate system #2 in

terms of coordinate system #1, are then
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= (S(l) _ S(l» cos~/2sin~/2
xx yy

(B.2a)

(B.2b)

(B.Zc)

The equations for the coupling constants are given below. Since co-

ordinate system #Z is used throughout, the superscript Z is dropped.

These equations all contain the average couplings for conformations, with

~. The numbering is according to Figure (4.5). "The following defini-

tions are used in the coupling constant equations. The internuclear

distances when the dihedral angle ~ is zero are denote as r Z60 ' r 150 ,

r
160

, and r Z50 ' The angles a,B,y,y' ,0, and 0' are given by the

following trigonometric relations.

sino.
r 67-r

Z3
ZrZ60

sinS
r 58-r14
2r150

siny
r 14-r67

= 2r160

siny'
r S8-rZ3

= ZrZ50

sino
r 14-r

Z3
=

Zr12

sino' =
r S8-r67

Zr56

(B.3a)

(B.3b)

(B.3c)

(B. 3d)

(B.3e)

(B.3f)



Finally, with the constant related to nuclear properties,

Z Z
K = -y h/4TI , the coupling constants are given below. For Ring A:

p
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K
= --

3
r lZ

[s (3cos
2
8-l) + (S -s )(cosZ~-sinZ~)

zz xx yy
. 2.r

Sln u

(B.4a)

K
= --

3
r

14

[(S -5 )(cosZ~-sin2~) + 45 cos~sin~]
xx yy xy

(

r )3
D - D ~

23 - 14 r
Z3

(B.4b)

(B.4c)

K 2
D13 = -3- [Szz (3cos e13z-1) + (5xx - Syy)

r
13

x sinZe
13z

(cosZ~ - sinZ~)

For Ring B:

D
S6

= K
3

[5 (3cos
2
8' -1) + (5 - 5 )sin

2
8']

zz xx yy
r

S6

K
= -3- [(S - 5 ) -S ]xx yy zz

r
S8

(

r s8)3
= D --58 r

67

K 2 2
= -- [5 (3cos 8

57
-1) + (5 - S )sin 8

57
]

r
S7

zz z xx yy z

where

cos613z

rlZcoso
= r

13

cos6S 7z

rS 6cos8'
= r

S7

(B.4d)

(B.Sa)

(B.Sb)

(B.Se)

(B.Sd)



For inter-ring couplings, the full equation for Dij in terms of

internuclear distances, order parameters and direction cosines (Eq. 2.3)

must be used as they do not reduce simply as with the intra-rirgcouplings.

The cosines of the angles 8
i

. defining internuclear vectors in the
JCL

molecular axis frame are calculated from the trigonometric relations in

Equation (B.3) and the r .. values. These are then used in Equation (2.3)
~J

to obtain inter-ring couplings. These inter-ring couplings are for an

average of the conformations with dihedral angles +~. To calculate the

four-conformation average (+~, -~, ~+~, ~-~) the following equations are

used.

i\5 D18 D45 °48

D
15

+D
18 (B.6a)= = = = Z

°16 °17 D46 °47

D
16

+D
17 (B.6b)= = = = Z

DZ6 °Z7 D
36

D
37

DZ6+DZ7
(B.6c)= = = 2 .

°Z5 °Z8 °35 °38

D
Z5

+D
Z8 (B.6d)= = = = Z

B.2 Program BIPH4PARA

Program BIPH4PARA calculates biphenyl dipolar couplings from

Equation (B.4-6). For D4 symmetry, the input parameters are r lZ ' r 14 ,

r Z3 ' r Z60 (distance r Z6 at ~ = 0), S~~), (S~) - S~», and angle ~.

Since the second ring (Ring B) is equivalent to the first, its geometric

parameters are set equal to those above. For DZ symmetry, the added
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parameters required as input are r 67 ,

required for coordinate system #2 are

r
58

, and r
S6

• The order parameters

8 (2) (S (2) _ 8 (2» and 8(2). The
zz' xx yy' xy

calculation of couplings is done in coordinate system two regardless of

which symmetry is assumed and, for D4 , the order tensor is first trans­

formed according to Equation (B.2).



After calculating the D.. 's, BIPH4PARA sets up the Hamiltonian
~J

(assuming no offset and chemical shift terms) in the simple product basis

set for the submatrices with magnetic quantum numbers M = ~4. ~3, and +2.

These submatrices are then diagonalized. The totally symmetric (AI)

eigenstates are identified as follows. The coefficients of each eigen-

vector from the diagonalization are summed. It can be shown that this

sum will vanish unless the state is of ~ symmetry [34]. Al symmetry

states found in this manner are labelled and printed out. From this

symmetry determination, the ~ symmetry transitions expected in the six

and seven quantum regions are calculated.

BIPH4PARA will perform the coupling constant and frequency calcu-

lations for a series of parameters by incrementing one of them over a

given range. Two files are created containing the six and seven quantum

~ spectra calculated for each set of couplings. These may later be

plotted by another program. This is the method used to produce the

variation plots shown in Chapter 4.

B.3 Program BIPH5PARA

This program performs the same coupling constant and Al subspectra

calculations as BIPH4PARA. Instead of varying just one parameter, any

or all parameters for either symmetry case can be varied in a least

squares fit of the calculated couplings to experimental ones given as

input. The intermediate couplings are not printed and the ~ subspectra

simulation is only done at the completion of the iterative process.

The least squares iterative procedure used to fit the couplings is

essentially the same as that for program MQITER and most if the discus-

sion given in Appendix A applies to BIPH5PARA as well. The method of

calculation for the derivatives of the Dij'S with respect to order
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parameters and geometric quantities is noteworthy. Rather than giving

the derivatives from Equation (B.4-6) explicitly, they are estimated as

a change in the D.. 's with a one percent change in the parameter:
1J

(B.7)

where

(B.8)

D.. is the coupling constant calculated with parameter
1J

constant with Pk + 16Pkl. This is the method of

In Equation (B.8)

Pk and D~. is the
1J

estimating derivatives adopted in the more general program SHAPE written

by Diehl and Bosiger [128].



APPENDIX C

Disk Based Fourier Transform Programs

The core memory capacity of the Data General Nova 820 computer used

for operating the spectrometer described in Chapter 5 allows the ca1cu-

1ation of a Fourier transform of up to 8192 points (complex). For the

typical 1inewidths and spectral range required in a non-selective multiple

quantum experiment on a large spin system, this is not of adequate length.

As an example, considering the spectra presented in Chapter 4, the trans-

form size required (32k) already equals the memory available, leaving no

room for the executable program. As a solution, a set of programs were

written to allow the calculation of the transform in pieces performing

phase shifts and transpositions on the intermediate result. This

appendix describes the algorithm used, discusses the possible errors

induced by the calculation, and presents a description of the programs.

C.1 Disk Based FFT Algorithm

(The description presented here follows closely that given in Ref. [129].)

The discrete Fourier transform of a time series d(j) may be written
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Nl -1

D(k) = I d(j) ~k
j=O

(C.1)

where d(j) is N1 points long, D(k), the transform, is N2 points long, and

We assume

k 0,1, ..• ,N2-l. (C.2)



(C.3)
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where Co is the amount of core storage available to hold a fraction of

d(j). We then write d(j) in composite indices

d (j) d (j 0' j 1)

j = jo + jlCO

jo = 0, 1, ..• ,CO-l

j1 = 0, 1, .•. , Cl-l (C.4)

Likewise, D(k) may be indexed,

(C.5)

Rewriting Equation (C.l) with these indices gives

(C.6)

Expanding the exponential factor and noting that ~ = 1, Equation (C.6)

reduces to

(C.7)

For the case where Cz = C, and using the notation



~.] = exp (i271"/N) ,

(C.8a)

(C.8b)

(C.8c)
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Equation (C.7) becomes

C -1 C -1
jOkZ j1kZ jOkOo 1

D(kZ,kO) I I d (j o,j 1) W \.]1 Woj=O j =0
1

CO-l . k [ . , C -1
j1kZ

d (j 0' j 1l]I J o 0 J OKZ II
(C.9a)= Wo W WI

j =0 j =00 1

CO-1 j k

D(k
2

,kO) = L WOO B(j O,kZ)' (C.9b)
. 0 0J =0

with

(C.9c)

(C.9d)

Equation (C.9) shows that if we first do CO,C1-point Fourier transforms

of d(jO,jl)' phase shift each section of the result according to Equation

(C.9c), and finally do a Co-point Fourier transform, we will obtain the

desired frequency spectrum.

If Equation (C.9) is written in matrix form, we can readily see

what is required of computer calculations. First, the program must

Fourier transform the columns of the input matrix d:
"""

(C.IO)



Next, the matrix A is phase shifted according to Equation (C.9c) and the
~

transpose of this matrix is Fourier transformed to complete the calcu-

lations:
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(C.ll)

Matrix gT is written to the output file to facilitate later calculations

and display.

C.2 Errors

For the acquisition system employed in the spectrometer, data is

represented and stored as fixed point (integer) numbers in the range

~32767 (only 10 bits are actually digitized). It has been shown [130]

that an upper bound to the ratio of the RMS error to that of the root

mean squared value of the result for the Cooley-Tukey FFT algorithm is

RMS(error)
RMS(result)

2(M+3)/2 Z-B(0.J)
=----,,..;;....----=--~;,,,,:;.,,:---:-

RMS(initial timefunction) (C.lZ)

In Equation (C.lZ), the number of points in the transform is N = ZM and

B is the number of bits for single precision integer arithmetic (B = 15

for a 16 bit-word computer operating in twos complement mode). For an

8 K, complex FFT on a Nova 820, the numerator on the right side of

Equation (1.12) evaluated to Z.34 x 10-3 . This is generally sufficiently

small to be ignored. The ratio of Equation (C.12) increases as IN and,

even for the transform size required in the multiple quantum experiments,

it is not considered to contribute to errors in the analysis.

The factors contributing to Equation (C.12) are i) the propagation

of errors present in the input time series, ii) errors induced by the

mathematical requirements of the FFT algorithm and iii) the necessity to

scale the transform calculation occasionally intermediate to the final



result. This last contribution also arises because the RMS value of the

intermediate result in the FFT algorithm increases from one cycle to the

next [130]. This tendency for the RMS magnitude of the spectrum to in­

crease during the FFT calculation effects the programming approach

significantly. If the entire calculation were to be performed on

integers, provisions would have to be made to detect overflow during

both transforms and the phase shifting of Equation (C.9c). With trans­

form lengths above 16 K, the typical methods of bit shifting to scale

the calculations during overflow is no longer adequate. The highest

intensity lines become small with the many divisions by two and, for the

usual cases where the full dynamic range available from the acquisition

is desired, low intensity lines are completely lost.

The solution to this problem and one that removes the contribution

to Equation (C.12) from scaling is to perform all computations in

floating point arithmetic. In addition, using floating point numbers

removes errors associated with multiplication and addition. Errors in

intensity and frequency determinations from the final spectrum are then

almost completely a result of errors propagated from the experimental

time series.

C.3 Programs

Besides the programs DSKFFT, DSKFTI, and DSKFT2 which do the actual

transformation, several other programs are necessary to produce tau­

averaged spectra such as those presented in Chapter 4. CONVERT takes

the original integer data and converts it to floating point representation.

DSKSCL, DSKMAG, DSKBASE and DSKBADD are used to scale, take magnitudes,

baseline correct and co-add the data and calculated spectra. Finally,
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RETSPC is designed to re-convert the floating point spectrum to integers

by truncation.

These programs were written specifically for the Data General

commercial operating system RDOS but could be modified to run on almost

any mini- or micro-computer. A memory size of 32 K words and a moderate

amount of disk storage are required. Calculations of a 32 K Fourier

transform on the NOVA system described in Chapter 5 requires about

one-half hour. The operation of all the disk programs is described in

more detail elsewhere [117]. Because these programs are quite lengthy,

a listing (~80 pages) is not given here. Copies may be obtained from

the author upon request.
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lnt~~~~ mqlt(10),lparam(1~),tlcatl

i~teGer t1tle(72',cIse(48),mqo(18)
r~al d (<l~' ,c J (<l~
loglcFl 1us

data mqlt 10.-1 I, Iparl~ I 1~·~ I, tltle I 72·e I
data d I <l5.1.~/, cJ I <l5*11:.8
data C'S~ / 4~.e I

c
C MQI'l'SI!
C
C SITS UP DIU 101 P'IOITIB
C
C CUTPUf lItl IS MOIfIR.tIT
C

lu II:
mu:plrp·1~

11141'1111-230

c
c tblS seccior opers up approprIate tIle lad sets up
c 1r.ltlel d~ta

c

c
t1pe 1 1
accept 1e2, case
wr1t~(1.1e3' case

c
tlcntl=e
t1Pe 1~4

:t 14rs(lu l ) tlcrtl-1

c
c datf lnltlallzatloD sectIon
c

t7pe U'~
. ccept 106, t1 tle
wrlte(1,1e7) tItle

2 t7pe 1~e
cccept ., n
It'r ge 1 .and r leo le) go to :5
type 407
go to 2

:5 loword-f.
lt f t ~q 9) loword-?
lf f r .~q 11 loword-e
[",l-r-l
tcu=a·n"'1/2
t7pe 2 1. n,loword
accept •• loword.
1t t .eq 9 .aad. loword .It. 7) loword-7
1r l a .Pq 1e .aad. loword. .It. c) lowor4-e

~ter"'f

type 2P:5
1t 1~U (lu ) i iter"1
write(1,-) t,loword.lter.tlcnCl

c
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c tb@ n@xt s@ctlon bandl@s Input of tb@ couPllnc COtstatts
C

1t'lter eq 0) go to ~e0

if iter = 1 ther @nter th@ line assignlllent
da t ..

do 151 1 'l.ncp
..,rite'1,-) cl(ll
do lEI 1'1.llcp
vrite!l,-) cJ(l ~

1t tlcntl .@q. 1 SO to 211

t7P@ 2Y'~

ka l
do 108 1=1.nllll
lpl-1"'1
do 101 J 7 1pl.n
t7P@ 2"6. 1 oJ
acc@pt - i(t.,
t7P@ 2ee. 1. 1
~ccept -, CJfk\
)[ak" 1
c;OnUDyeU",

1~'"

160

c
c
c
c

21t0

r.vllre:l
rorcl=Y'
type :5~1

- ccept -. n1
t7pe :5:"
1t' cot 7alls(lu~) nvlln@-e
lt nwline .np. 1 go to 180
tne :5e:5
accept -. nord
t1P@ 3 ~

accept - (mqlt(i).1-1.torcl)
1t'tlcntl .eq. I so to 181

1c~ vrlt@(l.-) nl.nor4.lvlln@
~t nvllre eq. e) go to 19~
wrlu'l,-1 (IIIq1t,U. 1-1.1~'

tlpe 3:'7
110 191 1 ·1.tord
tlpe 39'S. IlIqU (1
do 17" J:1.~~Jllr

t7pe 308
accept -. lnu•• trq
write(l.-) IDUIlI.trq
It'ltulll eq. e) £0 to 19.

171lJ 10011 U nue
191Ci cor:t1r.ue

c
c deta Input tor perallleter sets
c

1S,~ tne "03
Accept -; IIfle.

wrlte(l.-) nos
tne 4'~
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dO :588 1=1 ••05
40 290 J-l.~axparp

2We 1para~'J\·'
t1pe 408. 1
40 :5ee j-l ••o%parp

340 t1pe :509
accept •• Ip
1f(1p It. QQl BO to :544
tne 407
go to 340

:544 if (1p .eq. ", «0 to :5!:5
ipaull'l( j 1-1p

:55" continue
3~~ wrlte(1.40S) (lparall'l(j), J=l.~axparp\

3III0 cOI!t1rue

for~et stAtments

tomat( .1%. 'Pro«ralll I"IQITSIT',. I
.1r.'Drtc collectloD tor pro«ra~ I"IQITII.'II.
1% 'Vhat 15 the case na~e (data flle nall'le) for this run?')
fo MIla t : 4//Jal '
fo",,~ t'l x.4Iel)
tormat(lz.'Bas tbis case been bartled before with',I,
lz 'the sa~e 4ata flle? '.$'
forlll~t I T .'Enter a case tltle (u~ to 72 char):')
format (7241)
fo",at(lz.72.1 \
to~~t(/,lx.'How ~eD7 SplDS In this case? '.$)
format' ,lz. 'Jor ' ,12,' SplDS, tbe lowest order (or' ,',
lz.'whlcb a co.plete trequeDcy ~alculatloD 15 posslble',I,
lz '15 the ',12,' quaDt~ spectrum. Other oriers'.I,
1%.'~a1 be calculte4 but will be ~lssln. sOllie allowed' ,I,
lx.'traDsltloDS.',I,
lz 'Inter the lowest order tor which a complete trequ.ncl,'.I.
lx 'c&lcul&tlor is des1re4 ',$)
to",&t(lx,'ls tbis In lteratlye run' ',$)
(OJ'lllet(/.tx,'IDter tbe coupl1ag constants (1n Bz) •• • ',11)
form&t( l'%.'D(',12,','.12,'). ',$)
fomat(12z.'J('.12,','.12,'j • ',$)

588 tne 409
14 bl rr·'
it'1ars(1u» 14b1rr-l
type 582
etccept • .r.~qo
wr~te(1,.) 1dblrr,n~qo

1t·n~qr. .le. e\ «0 to 42~

t1pe 5":5
accept .,(~0(1), 1-1.n~qo)

wrlte(1 •• ' (~qo(l • 1-1.nmqo)
4,~ tne ~Y~

th J'-0
if yans(lu'~ thr a -l.1
1f thr eq. -1.0. «0 to 4~e

t1pe 506
accep t •• thr

wr1te(1,·) ttr

clo5e(ur~t-e1)

4:5.

c
c
c

1"1
1
1

1 lit2
h:5
104

1
h~

Ule
lilt?
h.·e
2k:l

1
:c
3
4

!I
6

2":5
4:. ~
2"6
21.1E



3d
3e3

1
3""

1
3~~

3107
1
2
3

"3.:.8
310Y
"13

1
"0S

I
2
:3
4
5
6

4 .. 6",,7
4~E"....~

1
502

1
5"3

1
5CS

I
5t<.o .-

c
e
c
c

format(/1x,'Eov maDJ lteratlye c,c~es are ~o be allowed? ' ,$)
tOMllt( Ix,'llDe esS1CDmeDt IDpUt. "
1J' 'low meDr orders eonUID liDe asslgnments? ',$)
tormlt(lx,'Is tbls I new set ot 11ne asSlgDments',I,
IX.'tor this cese? ',$~

tormat(ly,'Inter tbese ofters: ',$)
tormat( Ix.'Atter the prom;t, enter tbe llne DUllIbers fro~' .1,
Ix. 'the s1mulation IDd tbe experlmentll frequencles',I,
1x 'assl~ne4 to theM (eDter eacb palr wlth a CB). A zero',I,
Ix 'tor. llre Dumber termlnltes lDput. A total ot 230',1,
lx.'llDes ere elloved.'II)
format(/' tiDe IssICDmeDts for the ',12,' queDtum spectrum:'/)
formet(' » ' ,$)
formet(/1x,'P!rameter set lDput.'.I,
Ix.'Eow ~arJ para~eter sets are there? '.$)
format(/1x.'After tbe prompt, enter eacb of tbe parameters'",
1x '112 a set lach eDter, should be a two dl«1t Dumber',I,
Ix,'correspomd1Dg to tbe Duclel lInd J coupled.',I,
Ix '(A aero meeDS nucleus teD IDd tbe lover Dumber Ducleus'",
1x 'ls the flrst d1c1t 112 the palr.)',I.
IX.'Poslt1ye Dumbers refer to t"s ard DegatlYe Du.bers' ,I,
1x 'refer to J"s'.II~

!O~et(lx,'Pfrfll'leterset' '.12./)
formate , Sa, what?' )
fo rrn,: t ( 151" \
fo~at(l1.,'~o fOU vlsh te lDclude a search fer dOUbly',
, degetlerete', " elcerstetes 1tl freq calculatlor? '.$)
fO~ft(1T,'P.ow MeeT orders do JOu want c6lcualted?',I,
Ix "-1 ",ears all orders) ',$)
fo~.t!lx,'Inter tbe orders lOU went 112 the order',I,
1% 'Uey are to be calculated: ' ,$)
forrnat(lx,'Is tbe default value (1.0e-4) of the thresnold' ,I,
1x. 'for allowed frequencles to b~ used? ',$)
fo""at(lI.'Erter the threshold to be uied (posltlye number) ,

$

fnd of p rogralll

step
erd
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C PBOGIA~ MQIfll
C
C lAX 'MS 'liS ION.
C
C
C THIS PROGIAM SIHULATIS TBI MOLTIFLI QUANTOM NMi SflCTIOM lCI OP
C TO 1e COOPLID SPINS l/Z. !HI PICC!A~ CAN 11TH!! SI~PII SI~OIATI

C THI SPICTRUM F!OM CIYIN COOPLING CONSTANTS 01 ITERATION A SIT
C Cl INITIAL PARA~ITIIS TO lIT AN !IPIBI~INTAI SFIC7BOM.
C
C lOR UP TO lIGHT SPINS THI INTIRE SPICTBOM (ALL ~Q OltISS) CAN
C EI CALCULATED 101 NINI SFINS TEl SIYIN QOANTO~ SPICTBO~ ANt
C J!OTT All COMPLETI. leI TIN SPINS TBI IOWIST COMPIITI SfICTBO~

C IS THI lIGHT QUANTUM SPICTiUM. 10_11 OIDERS TBJN TBISI JII
C FOSSI!II. JOT NOT AIL IIGINSTA!IS ANI IRIQUINCIIS All CAICOIJTlt
C
C
C
C Il ITl!=! JUST TBI SI~UIATION IS DONI.
C II ITIR GT e TEl PIOGIAM IS ITIiATING ON INPUT PARAHITIIS.
C A TOTAL Cl NI I1IIATIONS WILL !1 PBIiOBHlD II CCNYIIGINCI
C IS NOT IIAC!!D lIBST. CONVIIGINCI IS IEACHID WH&~ THI IIIATI'}
C ~IRCIN! CHANGE IN THI R ~.s. IRRCR CI TEl iIT E,T.IIN THIORY
C A~t IIPIIIHINT!I SPECTRA ICR SUCCISSI'! ITIBArIONS IS IISS THAN
C CN! !lIRC INT.
C
C
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C

C

rI~INSION SIGHA(28~.PIOJII(2!i

IN~IGIR I(2e' M(2:).TITLI(72).lLCNTL,CASE(.2}
IN!IGII I~QO(11),FrINt(7\

CO~~ON / ClILE I ISC.FLIND I1P
CO~~ON CSTAT! N.tST~2.1~2.),NI(11).~SM(11),

1 NSP(l1 ."AI~A'!.NST •

CC"'l"fON t(.~) .CJ(.~) .IN(2~e ~ ,ITlI ,NOS ,IFUAM(ze .1:}.
1 rt~!(2~6.2e· .~QIT(2.10·.LlSs(z~e .IIFIB(Z30i.
2 IC·23e.2~),J(23e .'(7e4).B'(2e'.~OB((.se~)

I~UITAII~CI (SIGMA,JY,.(PROJIB,D
C
C CPIN SCIJ.TCR DATA FILlS

ISt;"'3
CPIN·U~IT·'3.TTP!s'SCIATC!'.ACCISS·'rIBICT·,INItIAISIZl-1.

1 II~IND~IZI-l.BICORDSIZI·l.BICOBDTTPi-'IIIID'.

2 ASSOCI1TJYAIIAEll-IlP)
CP!NUNIT·••• !YPl=·SC!ATCR·.ACCISS·'DIRICT'.I~ItI!ISIZl-1,

1 ix~INrSlzl.l.RICORtSIZI-l.~ICC~DTTPi·'iIIlt'.

2 JSSOCIATTYAlIAJII·I1P2)
C
C EI!t IN CASl TITLI.

CPJNfUNIT·'l.NAMI-'MOITII.IA!'.TTPI·'OID')
51AD 1 ••81' C1SI
W!ITI(~ ••r21 CASI
RIA~'1,711) TITII
RITI(6,7'2~ TITLI

C
C BIA~ IN CONTICL 'AII!J!IS ANt PIB10I~ INITIAL CALCUlATIONS.

iIAD'1,. I.LOWOID.ITII.JLCNTI
1l1-te~t8 .8
IIPlIP5-15
NH1·N-1
NPI-H+l

C



C CALCULA'I JINOMIAt COIIIICIIN'!, AND N!P
NI'l

'
-l

NSP(l)=l
to 21 J=l,N
JP1-J+1
JD N+1-J
HI JP1'z(NI(J'-JD IJ

2 NS~CJPll-NSP(J'+Ne(JP1)

C
C rITII~INI MAIMAT. NSM, NST. NJIII, IIIND

NT-NPI-IOVOJI:
II (MOD(N.2) - MOD(tOVORDt~» .IC. ,: NT-NT+1
NT N'f/2
I"U"'n=1
IO 12 J=1,NT
~11.HAT=M1II(NI;J ,~1IMAT

12 I"A Y MAT=MAI0(N0'J·IOVOlti.MAIMJT)
NS~""2
NFIL!=fl
N5""1:=1
1[=1
to 1:5 J=2.N
IF Nr(J: .GT I'1U,.,AT" GC TC 1~

I[=I 4 1
NSI'1(I ~NS"'C[-1 +H,'J
NST""NST~N~(J!

FIINtCI-1)=N0(J)-Ne(J)
N1ILI=~J'ItI+1

13 CC~'TINl'1

NS"'(~41)=NS"'CI'+1

c
NCll"N-NM1/2

C ;IA1: IN COUPLING CONSTANTS
IF ILCNTII ~.~,~

4 :PIN'UNIT-02.NAMl-CASI,1YPi=#CLI')
RI At' 2 -) (D (I ), 1,1, NCP ,
FIADf2.- (CJ(II. I-1.NCP'
GC TC 1V,

~ HIADCl.-) (r(J), J=l,NCP)
RIAD;l.- (CJ(J'. J·lt~CP)

Ie e J-1 NCP
I(.n=I:(J' ~.I

6 CJ J -CJ(J/~.I
CPIN'UHIT-t2,NAMI-C1SI,TTPl-'NiW')
_IITI(2,-) (D(I). l-l,Nep)
.111!(2,-' (CJ(I • l-l,NCP

1 CAlL CNTCU'(D.CJ,N)
C

II '=""'1 =fI
IIITIi IQ, z' GO TO ••

C RIAt IN IIPIII",INT1I IINIS
ftlAD 1.- NI,NOID,NVLINI
10 31 I-l.1f!
"'011(1.1 \·-1

31 /,,0IT(2.I .,
Ie 1~ 1-1.23'
!ISS(Il:.

1~ II~IR(I =1.'
e

nJPII-1
If NwtIN! .10.' CO TO 37
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BIAt(1,e) (nOITC1,I), i-i.iii
Ie 3!! I-l,NOID

27 5IA))(1.- LNUM.lHQ
Il LNU~ .LI. e, GO '0 3~

IiSS(NIIPII)-INUM
IIUIR(NIIPII'zlIQ
~QIT(2 I -MQIT(2.I'+1
NIlPII=NUPIJf+l
Il NIIPII .GI. 231' GO TO ~2

GC TO 27
3!5 CONTINUI
32 CALL LIHOID(NOID

C
C WRI" MQIT,LASS.IIPIB TC DISI fIll

_BITI(2,-~ «P'QIT:I.I). 1-1,2), 1-1.11'
VRITI(2.-) (LASS'I'. l-l,2~8)
_IIT1(2,-) (IIPII(I), I~l.~~')

GO TO 3e
c
C ~IAD IN CLD LINI ASSIGNMIH7S

37 BIAD(2.- «I':QIT(I,I',I=1.2), I l,te
~1~t(2,.) (LASS(I , I-l,23el
RUD(2,-) (lIP!I{I). l=l,2:!')
!O 39 JC=l,lI

39 NI1PIR=NIIPIR-MQIT(2,JC'
3e NIXPII~NIIPIH-l

~RITI(6,72" NIIPIR
C
C WRITz IINI ASSIGNP'INTS TO CUTFUT
C

11 N~LINI .NI ~ GO TO ~6~

NCPt=e
to 36(1 I=l,U

3S(' If ",eIT(l,ll .NI. -1 NORD~NORI~l

~e!l 1=0
Io 3el JC-l,NCRD
WIITI(6.739' "OITfl.JC'
J=I"'QI'!"2,JC)
IO 371 l=l,J
1=1-1
WIITltS,7,,) IASS'I),IIPIR(I)

~7' CO::TINUI
3El' ceNTINUI

C
C READ IN PA!A~ITIR SIT DA!A

1lIJ.l: 1,'" ~ NOS
111))(1 -, «IPAlAM(I.J), J-l,NPABPS), l-l,NOS)
dITI(6,7U'

c
c
C IN!IH I'IIATI" LOOP,

ee CAlL HAMIL!!
II I!ll IQ "GO'O !l"

C
C IllS' SQUAllS 10UTIIIS
C

CArt CONDIT
CAlL 1111'(111.II.Nlll',IIIPII)
CA!L leIMAL(NIIPI!)
II NI11' .IQ •• ~ GO '0 '"
CAlL MI."f,NOS.DI',L,M.
II'tlT 1Q.") .IITlte,7~W)
CALL CORRIC
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411

413
405
4~7

C
C
C
C
c
c

471

lnl-nll+l
GO !O !5!5

C END OF ITEI1TION LOOP
C
C CU!fUT II1INID P111"IT115
~0~ to ~e7 I=I.NOS

1 RITI ( 6 •728) I
re ~e!5 J'I.NP~RPS

I=IP.AR1"(I.J'
ICUT-UBS(I)
11'1) 411,4'7,.13
,BI11(6.7371 lOUT
CC TO U~

~!ITI(6,73e) lOUT
CONTINUE
ceNTINUI
.! IT I (6 , 73" )
CALL CNTOUT(D.CJ.N'

IlIRC! AN~ITS IS.

CUTPUT cellr 01 NCR~1t IOUATICNS
D~-TRA~S - DC --(-I'

rc 471 I a l.7e4
WeRI'I '=TO)
C~LL MINf(VOPI.NOS.DI1.L.M
II tIT 10. , r) VBITI(e.7~9)

'HI '! H S. 7!51 )
!:O 4~9 NS-l.NOS
n':v- r NS' 1 )-NeS
IBIGB=IICW+NOS
Ito ~= ItO';+l
II NOS-14) 416.41e.417

41e IRITI(6.7!52) NS,{WOII(I). I=IICV IBIGB)
GO 10 4"

417 'RITI(6,7~31 NS.f40RI(II laIIO~ IHIGHI
4l'9 CO~TINUI

C~LL GINST~(f.NOS

5IC!".&(1 =,Ct·
11 HOS IQ. 1) GO TO 42e
CALL IIG2('.~ORI.SIGMA,'.Ncs.e:
dIT}(6. ?~4)
II NOS-14) !516.!516,!517

~16 BITI(6.7!5!5' (SIG"~(I\. I-l.NOS'
ac TO 42e

!51? ~JITI(e.7!56) (SIG~~(I), [-l.NCS)
42f INL-HIIPII

n:-SzNOS
rl'=(IRI-1I1-INI) (lNL-INOS)
to 4~!5 J-1.NOS

43~ FI~!II(J,-a.~

ttllITI( e, 7M)
ICOL~-'
IC 4~0 NS-l.NCS
!J2'SQIT'DIT SIGM~(NS»
IN DI"ICOLMII-NOS
IBIGB-INII+f(OS
IICV·INDI+l
.RItII6.732 ('iOIl(1 .I=ILOW.IBIGI)
WRITI(6.73!5, lIZ
10 445 .1--1,"05

~~ PROJII(NS\-PIOIlI~NS '+(~OII(INDI+Jl-1I2l--2
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ICCt",N-ICOI.PfN+l
4-~1I CONTINU'

to 48' J a l.NOS
4e~ fRC!II'JI.e.e?t~-Solt(P'OJII(Jl)

_BITIfE,733) (J,'IOI£I(J), J-l,NCS)
dITI!8,738\
CAlt leUt(N,"'IIPf!T,IN,N!l

C
C
C CALCULATI ALLOWID PfQ LINIS
C
~01 BIAD(l.- IDJIII.N~O

II NMQO 11. e' GO TO ~~',:

BIAr(l,-) (I~QO(I), I-l,NPfCC)
~~e BIAD(l,- TBI

CAlL P402I111'THI,IlJIII.HPfCC,IMOC)
CIcS!CUNn-'l }
CLCSI (UN I'l'-e2
ct· SI(UNn-03 '
STOP

C
4-Ll JORPf!T'4fAl)
4~2 FORMAT'lS1,lex,' CAS!:',~I 4-IA1/\
701 FORMAT; 72Al,
7,~ FCF.~AT~/l~X.72Al,ll)

724 IORP4AT(' TOTAl _ OJ lBIO Ih!IBID a',r4,
72E iORMAT, '.' PABAl"'iTlI sn - ',12, )
729 !Cli",Ufl.

l' If! DIttRMIN!NT OJ MATIII !O II INJIBTID IS ZIBO fff', )
73e IOil'"AT (lEI, I.' IUINED PAUMITERS. • ',/ 1

73~ ~C~"'~T(~X,<P4AXf14.NOS1>r~.4~
7~3 IO?MA!(lPl,,' PRO!A!II IRBeRS OJ IIGIN!ASIS "

J'PAR.!!'IrTlR SITS .• . ','1,
2(~~,I2 ~I.I1l.3' ~

734- JOR!'"I!(1P1, " IRBOI 'ICTORS AND STANDllD tIJIATICNS '
1.'C1 fIGIN~ASIS PAP.AMITERS •• • ',f)

73! JC3MA!(1;1.'S!!N~~~D IR!OR - '.lE ~}
7~6 JOPr-AT' un, " RUINID unGUS •. ' ,
737 FOBMAT{' J', 12
738 tORNA!(' ~',I2'

73~ IOPHAT(1!1, " lIN! ISSIGN~INTS lOB TBI ' .12,
l' QOA~'l'UN SPIC!IOPf.'./15I,'LINI _'.lII,'iIPiIIMiNtAL lREQUENCY'
1 I 1~,4e('-'}.I·

74~ JOPMA1/~I,I4,14I,J12 4)
741 IO~MAT(1Pl,l.

l' FP.~GRA'" "'QITII - START 01 ITIIATIJi CALCOLATIONS.',II)
7~1 FCP.P4JT(lB1,' ~A'l'IIl or COIIJICIINTS rOI TBI NOi~_I,UATICNS'

1. ' ;)110RI DIAGONALIZJTION •• '/11
7!2 lC~~AT(2I,I2,') ',<NOS>I("IN(1~, 128·NCS)).i/J
7~3 !OB~J!(21,I2.') ',1419.~,I,<NCS-14>IS.~/)
7:4 iOft"IT t /.21,'IIGIN'ALOlS 01 NCI"AL IQUJfIONS "Atlll •• •'/)
7~~ !CI~!"ATf8I, <NCS)1<~IN(12, (He/NCS !) >.31>
7ee IORMATf~I,1419.3, .<NOS-1t 19.3 l

IND
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SUEROUTINI LINCID(NORDl
e
c
e
e
e tHIS SUJROUTINI ORDlIS Til tINi ASSICN~!NTS or IIPIBIMINTAI
e lINIS TBAT 111 INPUT lBOM !HI TTY 101 AN IT1IATIV1 BUN.
e
e

CO~MON tr.51,eJ(4~1.IN(2~e),ITllfNOS,IP1RAM(28.1~).
1 II~!(2~e,2P).MOIT(2.1e).lASS(2~0}.IIPIR(230).
~ te:2~~.2~1.J(230'.'(7e4).JV(28I,WOR(.gee)

e
INtIl=0
to 1~0 Isl, NORD
~t""'QITr:?I)

IIrNI I'. 1) co TO 99
Nt!'!l=NL-l
IC ~i' J-1,HLMl
JI" J"'INDII
JP1=J+l
10 4~ (-JP1.Nl
(1"l!·INDU
IF1ASS(JM~ .L1. L1SS«(M:) GO TO 45
IT =!J.SS (JM)
IASS:J~)~I1SS(!~'

LASS:!", -LT
U=IlPrR'J!'!)
iIPIR(J~isrIPIR(II")

iPFR( i{"" -n
~~ CCt\':I~llI

516 CCN'!'INUI
&& INuE1.=INDEX"'MQIT(2,I
1Lt: ceNTINUI

c
RnURN
iNI
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C

SU~BCU1INI CNTOUT(1!1,AR2,~)
c
c
c
C CUTPUTS COUPLING CONSTANTS TO LPi.
C

~I~INSION lR1(1),lR2(1)

~"'l-N-l

I E 1
Ie 30 I z l,NP11
YPl z Y·l
10 3~ J-YP1,N
IOU~=AR1(() • 4.e
CJOUT=AR2(I' • 4.0
WRITI f e,731) I,J,IOUT,I,J,CJOUT

~'" !=("1
C

731 10P.MATC' DC',I2,',',I2,'j = '.112.4,1
1 " J ( , •I ~, .• ' ,I 2, ') • ' ,112. 4 • /I )

IlITURN
INI
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50BROUTIHI !1HIL~
c
C '11"HS 'IISION.
C

. C ~BIS PROGRAM SETS UP 1ND CALLS rOR TBI DIAGON1LIZATION or TBE
c JIII-I~DOCTION BAMILTONIAN 01 AN N SPIN 1/2 SISTl~ (N 1155 THAN 11).
C C~LY DIPOLAR AND SCALAR COUPLING CONSTANTS ARI.INCIUtl* IN
C TBI HAMILTONIAN. TBI SO!RCOTINI IS CAILID BY HQITIB.
C ALSO CAlCULAilD IS TBI HATRII Cl DlI1'ATI'15 01 TBI
C iIGI~VALUI5 ~ITH RESPICT TO THI PARlHITEBS jiING ITIRATED
C OP~N THIS IS MATIII DL~B ..
C
C SUBIOU~IN1S CAIIID All NUMSRT, IIC2, ONTIAN, ANt ~ATID

C AISC C}LIID JII RIADH5 AND VIITHS
C
C

c

C

c

II~INSION ~(2~e~),5(~ge0:,5T(~90e)

INTICI~ NUMB(2,102t),IST(7e),I5P(ll),IILIP(2),JLIND(7)

CO~MON I crILE I ISC,rLIND.Irp
COMMON C5TAT} N,L5T(2,1024).N0(11).N5H(11),

1 NSP(l1 l ,P'AII'!U,N5T

CC~MON D:45),CJ(4~),IN(256),ITII,NOS.IPARAM(28,l~),

1 tLM! 256.2E\,MQIT(2,10 ,IASS(2~II,IIPIR(230),

2 IC~2~~ 2~),B(23~','(784).BV(2e),WOR(4900)
iQUIVAII~CI (WOII,ST),(B(1),DC(1.1».(S(1).tC(1.12»

N:ARPS-l!'
NI"1:N-1
NS!!T!=2-N
NC~:N·~Ml/2

C

c

If ITER .10. I' GO TO 31
10 2~ I-l.HOS
II "'P ( 1 , I )-0 . "
~O 24 J:l.NPARPS
j{:I'eARA~'I,J)

IIII', 10.15.10
1~ r.L~hll.I -DL~B(1,I)+1.0

24 ceNTINUI
15 IIH!INST.I)·Dl~B(l,I)2= CONTINUE
31 ICp.. t ,

10 3~ I:l.NCP
3: LC?=ECP·t(Ij·CJ(I \

iN'l '-Ie:
iN'NS'J\-ICP

37 I"S~ll'=1

CAll NUMSRT(NU~B.N,NSTATl)

IS1(l,I)~NUMB(1.NSTA!!)
lS~(2.1·:NU~J(2,NSTAT1'

lS!!l.NS!1TII-NUM!(l,1)
IS'J(2,NS'JATI)-NUMJ(2,1)
Ull.-1

II e
c ~AIN LOOP

IO lit0 JS-1,NP"1
INI: "c



11=0
to ~I J-1.NSTATI
11'NU"'P{i.J) .HI. IS) GO 'fC .u
II 11"1
IU-U!-1
11'11 tl. "'AX"'AT) IST(II)-NU"'E(l.J)
IST{1.III)-NU~B(1.J)
lSTi2.I1I'-15

41; CONTINt'I
IJ(II CT. ",AXMA7) GO TO lee
If If·1

C
f"ST'=U
I"f" 1"5T"',.,51

4! 11'1~:

C
to E?I ,,--1 ....5T
IO e~ L-t.P"
1M 11':+1
IF L .NI M) GO TO 60

C IIACOHAI Illl"rNTS
I"S!{ "1
to ~9' !::: 1. H
151'(1;=-1
U({IS:{!') .AlIr ,..51) .NI. 0) I5P(I)=1
P'SI"!"5K"'2

!: CCNTINUI
p(!!""=l!' Ie
I!'IND .Kl. 0' GO 70 56
Kit' "
!C 5!:: I::: 1•NI':1
IP1~I-l

10 ~~ J .. IPt.N
!IU·1
~(LM =R(LMI+(I:ill'+CJ(III)*ISP(J)*I5P(I)

u CC~!IHUI

CC '!O PI=6 !O 59 I=1.NPARP5
!=I'?AP,A!"I'INr.I I
urI 5?ee.57=7 ICP1=IAB5(I/le'
Il ' ICPlI0. 01 ICPl-11
ICP2~"'OD(IABS(I).10)
Il i ICP2 .10. I' ICP2-10

~~ ~(l'" =E(I""+15P(ICP11"'15P(ICF~)
GO '!O Fe

c
c ell DIAGONAL lLEMINTS.
e~ JW~1

JSP=1ll
n(ll" -~ (I

1"51=1
to 7!: JC .. t.N
II"IST(t) .AND. ,..SI) - (15T('1) .ANt. P1SI» 70.n.n

7~ ~5P-J5p·l

IJLIP (J. -I
JW"'2

7~ I"SIt='1SI"'2
11 JSP .NE. 2' GO TO 6~
1!='2"'N-IlI.IP(l> ;"'(I1LIP(l,-l>l2 - IlLIP(l )+lrLIP(2)
Il~INt NI. 0) GO TO 77
~(L!'" r -D(I~'·2.~"'CJ«(5·

GC TC e'"
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IO 9~ I=l j NPARPS
(-IP.lB.lM ND.I'
11«( 10 e) GO TO 80
lCP1"I.lJS(I.1I)
IltICPl .IQ. I' ICP1-lt
1CP2-~Cr(Il!S(I).le)

1IeICP2 10· e) 1CP2-l0
!6 (2-N-1CP1)-(ICP1-l)/2 - ICPl + ICP2
IIIIS NI. I~I GO TO 9~

IJ (() e3 .ee .e5
63 8(LM'-H(LM1+2.e

GC TO 9~

e~ B(I~)-B(IM)-l e
5'= CONTINUE

C
e0 CONTINUE

C
C

294

c

C
F7

C

II(ITIR tl. 1 .AND. INt .10. I) GO TO 87
IliIND .NI. e\ GO TO 91
CAll RIADMS(lf.1SC.S.lt1ND.I1P)
ROUGP t1AGONAIIZ11ION
C1LL UNTRAN(P..S.MST.ST~

CALL I!G2(E.S.EN.MST0,~ST,ITIR)

CALL 'RITMSlIf.ISC.S,lLIND.IlPI
II'ITIR LI. el GC TO ge
Ii ITIR .NI. l' GO TO gee
CAll WRITMS(Il.ISC+1.s,rlI~I.Irp;

GO 'fO 97
:ALL US;AP(ST.s.rN.MST.MST~.!l)

GO ':C 97

CAr! ON1RAN(P.S.~ST.ST\

IC 9' 1-1.""ST
II~"'A'!'I.I)
tL~Bi~ST0+I.I~D\·H(II)

INt=Ut+l
IJ'INr II. NOS) GO TO 4~

"'ST~=~STe+I'IST

CCNTINUI
II'ITIR HI. e) RITURN
.RIHI6.UJ2'
CALL rCU~IN.I'IA1MAT.IN,N~;

U';URN

!ORMAT~l~l./.' EN1RG1IS (HZ) •.• '/)
~"l:
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SuiBOUTiNi NuHSlfCNUMJ.N,Nh)
c
C . !A!UtATIS fBI NUMBIR 01 ONIS IN fBI EINAR! IIPIISINTATION Cl INTiGIRS.
C

IIMINSION NUMJ(2,NN)
Ie 28 J-l,NN
JJ J-1
NUI'1!(1.J -JJ
111
LL"0
Ie 1l (a1,N
11((JJ AND. II) HI. 8) tl-LI+1
KI'-2·U

h. CCr-rTINUI
NUr.B(2 ,.T '-II

21£' CONTINUE
C

R!'1'URN
IND
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SUBIOUTINI IIC2(B,S,EN,MST~,N,ITIR)
C
C SU!PROGRAM IIGIN - 'liS ION '2
C
C !!IS SUBBOUTINE DIACONALIZIS AN N BT N STMMETRIC MATBII B BY T~l
C JACOBI MfTBOD. TBI UPPIR TRIANGULAR !l~MiNTS 01 H (ti(I,J)7 J .GI. I)
CAB! INTEIID COLUMN-VISl IN A 1-D AllAY. TBI SUBBCU~INi CU~PUTS ~BI
C IIGIN'At~IS IN THI 'ECTOI IN. TBI TRANS10BMATION ~ATRII IS
C CU1P01 IN 'ICTOR S (B - S-H-tIAC-S-INT). DIPINtING ON TBI fAIUI 01
C TTIR, S IS IITllR SIT IQUAL TO THI OhIT MATBII OR LIFT AS INPOT
C WIT~ SUCCISI'! JACOBI ROTATIONS EiING MULTIPLIit INTO IT.
e
C ~~I SUBPeUTIN! IS ADAPTlr 1BO~ SUBBCUTINI "iIGIN" IN TBI IB~
C SYSTI~/3e~ SCIINTI1IC SUBBOUTINI PAC(AGE.
C

tI~rNSICN B(l ",SI11,IN(1
eN=N
BANGI=l 01-6
I1(ITIR-11 18,18,25

1<: IJ -<'
IO 20 J=l,N
to 2" I~l.N
IJ=IJ .. 1
S(IJ)=0 e

2" Il I .:EQ. J\ S(IJ1"1.0
C
25 ANCRM=~ e

LO 3ft'1 J=2.N
J""l=J-l
to 30 I=l,Jf"l
IJ !":A'I' I.J 1

~~ h~:R"'=ANCRM + H(IJ1.E(IJI
ANOR~-SORT(2.0·ANORM)

IF;!NOf~ .L!. BANGE1 GO !O 12~
~NCRMI=A~CR~ • RANGI I ON
IN!·!!
T?R .... ANOR..

C
4~ :HR~!F.R QN

c
~~ IO le~ M-2,N

,.,.1'P"-1
to 111lS L=l,"'Ml
I~ f"AT:l.M)
IJ'ABS;B(Lf'I» .IT. TEI1 GO TC 180

c
INt"21
rI ,",U(!.I)
"!'I-MAT',",.f'I'
IIIJ·P'M~I-E(lL}

lIftIf1 IO. 1Il.1Il) DIf1:l.SI-~0

AA ~.~·ATA~(2.e.H(LM\/DlrF

SIr~A·SIN!U1

COSA"'CCS' U)
SINA2"SIU·SINA
COSA2-CCSA·COSA

C
to 7~ ("'1.N
111(-L' 61.7V.62

61 !I ~A!'I.t)

KI'1 !"IA'1' (,1'1 ~

GC TO e~

62 IJ'I-M' 63,70,64



63 IL'MAT L.Il
IM."'AT'I M)
GC 'f0 e~

64 IL-MATfL.II
IM~f'lAT IP1 .1)

65 BB COSA-B(Il) - SIMA-B(IM)
~(IP1 -SINA.H(IL) + COSA-H(IM)
E(U -FE

n CCNTINUI
C

SS~2 P-SINA-COSA.g(LM)
BB CCSA2-B(lt) + SINA2l'H(MM) - 55
B(~M -SINA2-E(LL' • COSA~S(M~) • SS
lllL,·EE
B(r~\=-DIrl-SINA-COSA + B(1M)-(CCSA2 - SINA2)

C
!O ei l .. l.N
II (1-1)"'N + I
1"'- {"'-1 ''''N • I
SS CCSA"'S (IL) - SINA-S (1M)
S(I~l.SINA-S(Il) + COSA-S(IM)
S(It ~SS

E,;, CC~THmI

c
100 CONTINUI

C
IF'IND 10 0) GO TO 120
IN::-0
GC TO 'fv

(;

1~~ II TBB .G'f. ANOR~l\ GO TO 4~

C
125 rc 1~~ I~l.N

II MA'I' I. I \
J,.I"'HSTl
IN··:h!f(II)

130 CONTINOI
C

lil TURN
lND
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SOBBODTINIONTI1N(1.0.N.ST\
c
C tHIS SUBROOTINE CALCUL1TES tHI UNITABY TRANSfOBMATION
C :U-1DJCINT)*1*(U) lOR THI SPICIAL CAS! VBili A IS RIlL SYMMi-
C IBIC AND U-ADJOINT-U-TIANSFOSI.
C
C BISOl! HITUINlr IN A
C N IS TU! DIMENSION OJ A,U ANt NSQ-N**2.
C STCRAGF ~ODI 01 MATRICES IS SINGLE SUBSCRIPT fECTOR VITH ONLI
C UPPIR tilANGll HAIl OJ A STOBlt.
C
C ST IS A jOll MATIII.
C

tI~FNSION ST(l ',I(l).U(l'
c

NSO-=N*N
te 1'" In-l.Nsa

1, STiIST -~.0

C
C JORM PRODUCT AU IND STORI IN ST

re ~.: ItI1-1.N
!o ~~ IDX2-1.N
IN~-~ATVLC(IDll.IDI2.NI

re ~~ I=1,N
IIiItX]-I) ~0.20,20

2~ IN2=~AT(I.IDXl\
GC TO ~(?

3~ IN2:MA!fIDX1,I)
4~ IN1·~A~ViC(I,IrX2.N)

ST IN3 sST{IN3) + I(IN2)*U(1N11
5~ ce~'!INUI

c
c JOB~ pF.OrUCT U-TRANSPOSr.*ST AND STORE IN A

te 100 nU s 1,N
te 1~0 IDI2=IDX1.N
IN1:~A~(IDX1.In12

A ( I Nl ) 20 0
IO 1"0 I""1.N
IN2=~!!V1C(I,ItX2.N)

IN~=~A~V!C(I,Itl],N)
ACIN] ·=A·IN1· ...U{IN3)*ST(IN2)

hie CONTINUE
C
C

ItITU~N

iNI:
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SUBROOTIN! CONDIT
c
C Uln MS ,IRS ION.
C
C IRIS SUlIOUTINI fORMS TBI IOUATICNS cr COHtI1ION JOR A llAST
C SQUARIS I1iIA1I'1 lIT or iN IIPliIMINTAL SPECTRUM TO TSICBY.
C CUAN~I1IFS CALCUIATID IN TBIS SUBPROGRAM ARi SDM(PABTIAL IIBIV.
C cr NU(I' V.R.T. PARAMETIR p(Jl) AND (ND(OIS) - ND(CilC) WHIRl
C 1El ~U'S ARI JRIQUINCIIS (11'Bl1 IXPIRIMiNTAl OR TEIORETICAL)
C AND TiT PARAMFTIRS P iRI TBI INITIA! PARAMETERS JIING IT!BArlt
c UPON. T~r SOM IS RITOBNID (IN COMMON) IN ARRAY DC AND TBI
C -RISItUA1S· ARE RITURNlt I~ ARRAI J.
C
C
C THIS SUBiOUTIN! IS MODELID AfTER THAT FOUND IN TBI
C F~OCRAM "LAOCOCN3.·
C
C

c

C

C

C

INTIGIP. CRDIR.OIS,DML,DMO

COMMON I CST~TE I N,LST(2,1024),N0(11J,NSM(11).
1 NSP(l1),l"AIMAT,NST

CovMON r'4~l.CJ(4!).EN(2~6j.ITIB.NOS.IPARAH(2~.1~).
1 rI~!'2e€.?e).HOIT(2,19l.LAS5(2~e),tIPIR(230).
~ :c 23~.2;\.B{230'.'(7S4).IV(2e\,WORI(4900l

IC 3e0 ICRD-l.t:
Nt ~OI~(2.ICRD\

:RIIP.=~OIT(l.IORrl

IT'CRt!R .10. -1) GO TO 4e~

C
C 10CP ovIR ZElMAN SOBMATRICIS

II~I>'e
iCZl-1
z.: 2'v IZ-l.N
II'CRI!R .10. 9 AND. IZ .10. 1) GO TO 200
IF (IZ·ORDIRl .GT. NP1' GO TO 250

C SOB~~TnII tIMINSIONS

:~T=NG!I'IZ)

t~UN0:IZ·ORtER\

Il'r~I II. ~!1.MAT) GO TC 134
leZl..,(ZI"'l
GO '1'0 2{1l0

134 Ii'r~u .GT. ~JXMAT) GO TC 2ee
iCZ2"-1
to 1~6 I~I.OBDrR

Ii'N:'{IZ I) .Ll. ~AXHAT) GC TC 1~6

!(Z2..,U2+1
IJ5 COOfTIKUE

c Ir.~P OVI~ lOVER IIGIN51ATI5
1IS-£
IF: IZ .Hi. I' LI5-NSM( IZ-tzl)
N,.:p=r~t

If'ORDiR .IQ. 0) HTOP-NTCP-l
to 1'1'0 J-I.NTOP



lIS s U:S+l

C lOOP OllP. UPPIR IIGENST!TIS
UIS-NSM(IZ-IZ2+ORDIB'
NOst
IY(ORDI! .NI. I) GO TO 135
NO'J-1
ns-uls+J

135 to 95 JST-NU.DMU
OI5:0r5+1

C lINI MUM!l! COUNTIR
II NlsUN hI
UI"'U
IO 8? NC a l.NL
HI-nl-1
Il:LASS(XII) .NE. LINE' GO TO 6~

~(III'217.PER(II(' - (iH(UIS)-IN(lISj J

IO '10 X-I ,NOS
7~ rCIIII.1 -DLMB(OIS.I) - DL~B(LI5.()

8~ CONTINU!
C
9~ CCN!INU!
l~iC r.ONTINUE
2~0 CCNTINtT!

C
2~. (I=U ... Nl.
:3"~ CC"!TINtTI

C
4~.: itITUR,.

IND
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RIAL MINIHR

SOBBOUTINl lRRIT(IR1,NI,NIIIT,NL;

nI'MS ,IRS ION.

.'ALUATES R.M.S. IRROR lOR A VICTOR or RESIDUALS IROM ONI
ITIBATI'I CTCLI IN NMR ITIBATI'I PROGiAM. THIS 'IRSION 15 ~CDIrlIt
FBC~ PROGRA~ "LAOCOON."

E IS TFI 'ICTal 01 IISIIDAlS.
ITER IS TBI NU~BIB OJ fBI FRISINT ITIIATIVI CTCII.
lRl IS TEl RMS IRROB lROM tHI LAST CTCLI.
NI IS !HI TOTAl NUMBIR OJ ITIR1TIONS AILOWID.
NIIIT IS A PARAMETER TO II USID IN DETIRMINING WHITHER

fURTEIB ITIRATI'I CYCLIS SHCOIr BI iUN.
Ir NIIIT-0 RITURNIt Ne JURTEIR ITIRATIONS NICISSJRJ.
If NEIIT-l, lUTHIR CYCLES ARI BIQUIR1D.

~I IS THI NO~EiR or RISItUALS CONTAINlt IN B.

CO~~CN D-45',CJ(4~\,IN(2e6 ,ITIR,NOS,IPAiA~(2a,l~),
IL~!'2!6 2e),MQIT(2,10!,LASS(2~e),EIPIR(230),
IC'2~0.2e),B(23e),V(7e~),BV(2el,WORI(4gee)

I"INIRR - 1.r1-e
iR2~e e
INL-Nt

Ie 4 ['-l.NL
4 £R2-FR2·B(I'*B(I

lR2-S0HT'iR2/1NLI
I111R2 GI. HINIRR) GO TO ~

,RITI(S.41!'1' IR2
GO ore E
~RITI(E,~el) ITII,1R2

IJ('lR1-fR2)/IR1-~.el)e,a,lr
NIXIT=e
Hi =IR 2
RI':DRN

Ir- ITIR-NI) 111,8,a
IU-UL
UII!=l
JiI'IDP.h

FCR~ATr~I,'ITIRATION _ ',I2,31,'R ~ S IRROi • ',Ie.~)

10RHAT:/.' ITIRATION CYClE TIR~IN1TID -',I,
Ji~S IRROR LESS THAN ~I~I~UM ALLO'itl',I,
iJlkOR = ' ,I16 .4, )
iN'

c
c
c
c
c
C
c
c
c
C
C
C
C
C
C
C
C
C

C

1
C

C

C

...
c
~

C
10
110

C
3rtl
4:~l

l'
2'



C
C
C
C
C
C
C
C
C
C
C

1
C

C

C

C

20~

2i6
C

21~

C
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SOBBOOTI~1 NOB"~L(NL\

'AI '"S 'liS ION.

THIS SOBBOOTINI SITS OP THI NOR"AL IQOATIONS lOB A LIAST
SQUARlS ITIRATI'! PBOCIIDOHi.
!~I "~TRII PIODOCTS DC-TR~NS.DC AND DC.B ARI 10i~ID WHIRl DC IS rBI
MATRIX OJ DIII'ATI'IS OJ lRIQUlNCIIS WITH
RISPIC~ 10 P~RA"ITlRS AND E IS THI ~ATRII OJ BISIIUJIS
EIT.rFN C~LCOLJTID AND OBSIRliD lRiQUtNCIIS.

CO~MON D(~5\,CJ(~~l,IN(256 ,ITIR,NOS,IPARA~(28,15),

rL~BC2e6 2e),MQITC2,18)rLJSS(23e;,IIPERC23~),
IC(230.2P),B(238\,l(7S4/,JV(2e),WORI(4980)

IO 21r NSI-I,NOS
Ie 286 NS2-NS1,NOS

INtI1'~ATVECCNS2,NSI,NOS)

INtI2-MATVICCNS1,NS2,NOS)

V(IHIII -0.0
Ie 20~ IIO-I,NL
V(INtXl l =VCINDX1 +DCCLIQ.NS1)·DCCLiQ,NS2)
V'INII2'=VCINDXI'

EV NS1 =~.8

ro 2le LIO-I,NL
!V:NSI '=!V(NSl).DC(LIQ,NS1)·BCIIC)



SUIBOUTINI COIIIC
c
C lAI,ff'lS fUSION.
C
C ~P.IS SUBROUTINE lPPLIiS coaBiCTIONS TO Pll1f'1ITIIS TBAT
C lRI BIING ITIR1TIt UPON. IT IS tlSIGNID TO BI C1LLII l1Cf'!
C ~HI ~!IN PROGR1M f'lQITIR.
C
C
C
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c

C

C

COH~CN I CSTATI I N.LST(2.1024),N0el1).NSMel1),
1 NSpell).p'!lI"U,NST

COMMON Df~5'.CJ(45).INe255 .ITII.NOS.IP111M(26.1~).
1 IL~!e2~e 28),~OIT(2.10)rLASSe2~e).IIPiRe23Z).
2 Ice231.2~).1(231),'(7e4J.BV(2e),WORle4gee)

NPnpS·l~

IO 310 NS-1.KOS

COilF=V "
Ie 20e NSJ-l.NCS
INrl=~A!VrCCNS.NSB.NOS'

~i. crPR.CCR~ • VfINLI)*jVCNSB'

rc 3A9 (~l.NPARPS

r.c IP!P.}"eNS.I)
IC?l~IAPSCIC 10)
IrIICPl .EQ. I) ICPl-10
I CP2·I"'C'1)' lABS eIC , .10 :
IJ'ICP2 lQ. 0) ICP2-10
ICPC-12*~-ICP1)*(ICP1-1'/2-ICP1+ICP2'

Il(IC' 3 re.31r.3re
3~e CJ'ICPC)=CJeICPC)+CORR

GO TO ~~s

3~E I'ICPC'-I(ICPCl+CORR
:5"9 CONTINtlI
31~ COtoTINUI

C
anURN
IND



c
C THIS SUliOUTINl II-1BB1NGiS 1 lD lECTOR lillY
C (IIll) RIPRISENTING 1 GINEIlt RilL M1TRII INTO tBI STOiAGi
C ~ODI WHIRl ONlY TBI UPPII TRIJNGULlJ B1Ll OJ TBI JBR1Y IS 1IPT.
C THIS BIDuelS StOR1GI IIQUIRlHiNTS lOR IE1L SIHMITIIC lBRAYS.
C
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c

C

C

rI~INSION lBB{l)

~lTCNT=1

ro lee ICOLHN-l.IDIH
INDJz(ICCI~N-l)·ItIH

10 1~0 IROW-1.ICOLHN
JRR(MA~CNT)·ARR{INDI+IROW)

~lTCNT=MITCNT+l

C
100 CONTINUI

C
HITORN
}N~



SUBRCUTINI MIN'(A.N.t.l.M)
c
c INVrBTS A MATRIX
C

II"lnSION .l(l).L(l).I'1(l)
BIAL A.D.IIGA.HOrD

c
!=1 e
NI -N
Ie EY (:l.N
HI H(·H
L(l' I
flC[:·[
II-H!"I
:nGA~A(U\

Ie 2: Ja[.H
IZ-H-(J-l)
to 21/1 I=I.N
IJ oIZ·I
IJ'ABSfBIGA)-ABSCA(IJ») 1~.2e.20

1~ !IGA=.1(IJ\
If Ii-I
/"(I'=~

2~ CONTI~UI

C
J=L(K~

11 .I-I ~~.35.25

4::: K!-·[-N
IO 3~ Io:l.N
KI !I-~

bt:n--.a'ul
~ I !I-I"'J
jiKr ""A(JI'

3i !(JI =f:lt
c
3~ I=/"·.K

If'I-l 4~.4f.3=

3E ~P·N·(I-l'
to 40 J=I.N
J! N[+J
':1 ;P+J
!!OLD=-A'JI'
ArJ[)·j(JII

4e A(JI'=HOID
c
4~ IJf~IGl' 4S.46.4e
4f I=V, e

H'!'URN
4e rc ~~ I-l.N

IJ'I-I~ ~e.~5.~e

to II N!·I
ACII -j(111/(-BIG.1)

55 CCNTINfJF
C

10 e~ I-l.N
n H[·I
:l01D=.1' I I'
IJ· I· H
IO 65 J"l.N
IJ IJ·~

Il~I-1 e0.6f.se
€~ IJIJ-l' €2.S5.S2
62 ~J IJ-I·I
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A(IJl-BOl~.!(IJ) + I(IJ)
6~ CONTINUi
C

ltJ=J-N
IC 7~ J=l,N
IJ-IJ·H
IJ(J-I I 78 7~,70

7£ j(IJ'-j(IJ},BIG1
7~ CONTINUE
C

C
# (U '-1 elBIG!

ee CONTINU!
C

K- ..
lee (::(-1

11·( 1~0.1~e.105

10~ I-t(I'
II~I-(' 12I,12e.ll~

l~e JQ-N·((-1)
JR.:N·(I-l)
rc 110 J::l,N
J(-JQ-J
FOU=! (J!)
';I-JR+J
A(J( =-A"JI'

11~ j(JI -EOlD
120 J ..!"!((:

I1J-1 101.101.125
In II "'(-N

Ie 1~~ I~l.N
r,:y .U-N
r.CU:-j'II)
';1 -n-!+J
ACn =-l:JI\

13~ j(JI '-HOI~

CO TO 111
1 ell' liE TURN

INr
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c Checks c matrlx (52) a«elust a prevlously stored
c watrlJ or u~lt Isc+l Check 15 tor mlnl~um RMS
c dlfference In ele~ents of rows wlth one another.
c !he su~ of (sl(J.k)-s2(1.kl)"''''2 for all t from
e 1 to Idl~ Is calculated. ThiS 15 stored as tJI(l).
c The MlnlMum of thls vector 15 then found and
c :f that ,1rlmum 1f Dot tor J-l thet the correspOrdlD€
c colu~n5 ct 52 are Interchan«ed. Also the eleMents
c er(ll!sti+.1) l!!Id eU(Mste+l) ere sweppec1.
e
e !hls routlre 15 deslgted to ~eep the oreier of elgenstates
c -Dd el~ervector5 the saMe tor suceeslve cycles In tae
~ iteratlve portlor of mqlter. This wll1 help convergence
c In t~e case vttere the dla«,nalllatlon of tbe Bamlltonlar
c miY l~,~yert/rtly swap elgenstctes.

dl~erslor dJl(71',sl(I),s2(1),er(1)
Integer tllnd(7 I ,stl.st2
co~~or I cfl1e /lsc,tllnd.lfp

c read lr orlg1tal ~atrlJ

c~ll recdms(lf.lse+l.s1.fllnd.lfp)

c loop o~er colu~r.s by ~

ao 5ev J -1.1Um
,Io't, ,.j-1 l"'ld 1",

c loop o~er colu~ns by 1
do 200 1-1.1dlm
djl/1 :.f! e
ioff=(:-ll"'ldlm

do le0 t 1,ldl111
1~kl dj:"l :dJl(l' • (st<jOff·t - s2(10!f+kJl"""2

2cr cortirue

c fltd 1II1nl111um
s~fll"dJi(l )
kkt=1
do 301 t~-2.1dll11

H' djl tk l .~e. s~cll) 1(0 to 3"kl
ktt""n
SJ'lel1 :dj1(kk)

30~ cort1r~e

if'kkk .eq. JI go to ~r~

e 5vap elgenvectors

aoff=(ktk-ll"'ldlM
do 400 k"'1.1dl,"
IndU" joff+k
1"dr2-toff+t
temp=s? ( ~ Tdxl )
s2 IDdxl -s2(lndx2 1

s2 lrd7? -te~J:

4ki~ co r t1 nue

c swap el~pnvelues
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sU-J+fI'stI'!'
st2=kkk"'IllS til
t~Illp"'@r(sU \
~rfst1 -~r(st21

~D·st21 .. telllp

c output sw!pp~d st!t~s

writ~(6,lflI stl,st2

500 cont1l1u~

rl!turt:

l~l fOrlllatfl'x,' SWAPPED STATES· ',14,' , ',14)
end
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c Tb1s subrout1re outputs tbe co~te~ts of e~erg1 Yector
C en 111 t12.' fomato States 11 each Zel!lllall 1I&1l1tolc1
care seperate4 b1 a blank 11ne. N 15 the lumber ot sp1ns,
~ max~at 15 the s11e ot the largest Zeellal lIan1fold
c cor.tc1re4 1~ tn ~n4 ne 1s the erral cOllta1n1ng the
c t1rom1al coeff1c1ents (d1~enslons ot the Zeellan man1tolds).

41menslor en(1l.n8(1)

dO 500 J=-l,npl

1f:r{"C.l' .~t. max,"Ul go to ~Ii!le
rt~rb"re( 1)-1
vrlte(S.,i11 (leng.en(leng • leng-nD.nt)
rb ·z:b+rfJCJl

~"" corU rue

~eturn

~,l rC!"lllctU("x.'!N('.13.'~ = '.1'12.,,»)
etc1
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su~rout1De ~q2diff(tbr,1dbirr,n~qo,i~qo)

c rult1ple quartu~ treque~cT calcula~1~g rout1Le.
c vers10n 6. 'AI/TMS yerSioD.
c
c Tbis subroutine calculates allowed (b7 sl~Metrl)
c l1n~s in a ~ultiple quantum spectrum. AnT allowed order
C Ci.r be c~lculated. Orders for which DO~ all elgeDyector
c matrices haye beer calculated will not be co~plete.

c
c sUbro~t1ne s1mset 15 called to classit, eigenstates
c t7 s~metr1.

c
c th~ 15 the min1mum allowed thres~old tor allowed
c trarsltiors.
c
C Idblrr Is the fla, tor degeDerac1 checking
c 14birr-l eigenstates scaDDed for degeneracies
c Idbirr-' e1genstates not scanned.
c
c nmqo 15 the number ot orders to calculate.
c ~qo 15 t~e vector corta1r1rg the orders to calculate
c Ilpment5 of mqo def1ne what order spectra are calculated IDo
c If r~Go=-l, all orders are calculated start1ng w1th 1
c thrcug~ r and then tbe zero quantum.
c
c this yerS1eD rllews up to 10 spins.
I;

d1~eDslor s2f~P0~ ,sl(3136',treq(1810)
irtege r deg,ldbl(256l,1s,m(256l,sym
1Dtegp! 1de«er(10ee),1mqo(1),d"l,dmu,ues,tl1td(7)
lo~lcal topnet,helt,lcs

cOm~or ctlle 1sc,t11rd.1tp
commor. I cstete / D,lst(2,1024),n0(11),nsm(11),

1 nsp(11 ,maxmat,nst

co~or d(45).cj(~5),er(2S6),1ter,nos,1param(2e,15),

1 dlmb(2=5.2~~.mqlt(2,l'l.las5(230 ,exper(230),
, dc! 2'~ ce 1. b (23~ I ,v(7e~ l. ~\'(2e) ,wort (~~0~)

equ1valerce (worl,s2),(1dbl(1).dlMb(1.1»,
! 51'1 .dl~b(1.2\

c :~ tlall:!
It thr eq. -1) thr·l.'e~
rtreq=
rstate-2··r
rpl""n·l
rml z !:-]

llo ~ 11 z 1,25f
~ IdDI"11 0

Ics" fo Be "
nalt z false.
Itldblr~ .Pq. I «0 to 1
U"1
1top-[m1
do 6 l""1.1top
"~tcp·I!' (1+1l
:f jtop gt. maxmat) go to 6
ClO ~ j-l.jtop
kttit- i
~rtldbl(~k) reo 0 .or J Pq. jtop) go to ~
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11 110.fI"'en(tt'
jp1-j+1
);t.. tk
do " t=- Jp1 oj t op
kkk-kkk·1
12 -lie. 8"'er (kkk)
If:11 .eq. 12 IdDl(ktt'·)[k

" co Il t1 II UI!
5 corUrue
6 continue

c
c calculdte s7~~etrle5

c
1 c!ll !¥M5et(s1.s2.1s7m.nrep.thr}

~fl~od(r 2} .re e') hdf-.true.
1f'cm~n «t. e) «0 to 111
do 212 1:1.1'

~12 Imqo(I-1
1~qO(IiJll )-e
r~~o"IIPl
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(;

c
c

111

10

13
133

1

~AIN IQOP OY1R OBtiBS TO CAlCUIATI

tto E~£' ~q·l.~mqc

",p 1rr--i0 'rq)
wr~te'6.705· Illqo
11:)[·:1
Ute:£,
torhrf .false.
do 1\ 1=1.1e(~

freq(j';=e.e
id.e~f't i j -0
l!'l ow-r /2 1
1f'helf' mlow=n+2
rt rpl '",qC'
~f' rrod(r.2)-~od'mqo.2'1 .eq. il nt-nt+l
rt rt ?
de 13 j=1.r.t
it rV(.1~ .le. mu:mu .arc1. 1I£{J+lI:qo) .le. Ill.xmat}

go to 13
w!'1tP (S. 722)
E;O to 13~

COYJt1D\:P
"1'1 te (6. 7e;,;
_rae( e. "23)

kz 1"'1
dO 20f 1z-1.r
1"11w-1II10w-1
1!I~rlf mlow-mlow-1
rrup-mlnw-Illqo
1f ~elf lIIup=1II10w-2-mqo

~f'",q~Pq, e .ard. 1: .eq 1) go to ~~~

:.f! '1z-"':to) .&t IIpl) go to 38i'

c d1~en!lor5 cf lower end upper 5uDm.trl(;es.

ell'! 1=r. ... (1 ~)



c

c

134

13~

276

277

27~

dIllU'De(1z+llIqo'

1f 41111 .~t. 41l1u) tophef-.true.
1t'tophat .ard. (.DOt. les» go to 3il
lf 4m1 .le •••xlllat) go to 1~

1u2"'k:z1+1
,..0 to 28111

It,4ll1u .gt ••aZlllat) go to 280
kz2=1
do 1:5e 1 -=1 ,mq 0
It,n0(lz+1 \ .le. maxlllat' go to 136
lu2-kz2+1
cOl'Urue
lt mqo .ne. e' go to 27€
1t(~~lf' ~o to 27~

~r1te(6.~e3) IlIlov
go to 27E-
vr1te(6,e0~) mlow
1;0 to 27e
1t half' go to 277
wr1te(6,~V1) IlIlow,llIup
co to 7"F
~rlte(5.ee2) IlIlow,mup

loep over lower e1~enstates

I es"0
1t 11 ne. 1 \ les=nsm(1z-klll
:ltep=dnl
if'IlIqo .eq ~; rtop-rtop-1
tto 10111 J·1.ntop
les=les+l

loop over upper p1ge~states
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ues·nsIlI t lz-t.12+mq01
ru·l
:f'mqo reo V) go to 13~

nu J+l
:Jes=ues~.1

135 dO 95 Jst-~u,dlllu

ues=ues+l
c 11re • eounter

11 ~ e=l1 ne+1
1f Ub1rr .n~ • ., .and. 1dbl(les) .ne. ")go to 95

c e1~er.st~tes ct salllP s71l1111etrl?
It'1S11l1(les) re. lS7~(ues ,) go to 9~

~ pos5ible degenerete sltuatloD tor zero quantum?
it'ldt1rr .ne ".<!'DeL

1 1clbl(ue5) Pq le5 .U!d mqo .eq. e» GO to SiI~
C ye5, o~tput treq

freq(kk)=er(ues)-en(les)
slt1' 'U1m'les ~"1
~rlte(6.5'1 I l1ne,treq(kk),ues,lps,Slll1
k~'kk+]

~frtk It. 1rll) go to 95
Hi te(6,786'
~t::' to 3e,'

c IND 01 loops oyer upper.lover e1fenstates an4
c :vrr sPts ot submatrlces.
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COI"t1 rue
contin1:e
cOllUllue

161::
H5

calculate 4e~elleracles

it ::p"kk-l
rfreqr'
It(1top leo 1) bO to ee00
W1'1 t e (6. 70S I
de 17~ lcllt-l.1top
it(1deger(lc~t) .eq. -1) £0 to 17~

11 1 8eZ-treq(lcDt l
4e~=1

1epl=1ert+l
1t 1ep1 .£t. Hop' £0 to 165
do 16f Jcnt-lcp1.1top
it'14eget{Jcnt) .eq. -1) £0 to 161
12 1.eeZ*treq(Jcntl
1t'1!bs(:1) .ne. 1abs(12» ~o to 160
ideger:Jeu)"-l
it'll eq. 1Z deg-deg+l
eo!'t1l!u~

rf1'eq-rf1'eq+1
14~~eD(icDtl=aeg

cortln~e

co!' til:Uf'

i~~ ~alt locp over orders.

output trequ~reies. If there are to cbemlcal
~tltts. then 0~l7 tbe aDsolute values output.

It lcs ~o tc 666
co !5~5 1 1.1e~f'
t1'eq(1 =abs(treq'1l)
c~ll f~qfut(treq.14e~er.ltcpl

write(f.707) rtre~

~r--'.
eB6

c

E...

t;

c
c

,-UtP1:t results ot 4egener4c1 seareb ot e1genstates.
it'ldblrr .eq. I go to 7~1

wrHe(6. 714)
do 748 11-1.n5t
1f'ldtl~11 l) ?43.74~.743

7~~ wrltf'(~.71~) 11,er(11).ldbl(11)
~o to 74H

?4~ writP(6.71~: 11.en(11)
?4f cortll'ue
7~1 wr1teI6.?1?'

c
c cutput s~~etrl classIficatIons
c

Iflr "
nr~p-r -ep+1
do 778 jj-1.rrep
wr1te('3.71e·' JJ
kkr ..V.
do 7ff 11-1.rst
1f 1S1m( 11 ."e. ktl go to 76"
wrlte(6.71~) 11.~n(11)

tJrI"" kk "'''1
'iti~ cortinue

w1'ltp(e.71&1 ttt



'7'71

c

~"1
'7"3

'7B~

'706
'7,7
709

71t
71~

'716

717

71e
719
'722
723
E01

(: •. 2

ee3
e.. 4

FORMA! STATIMENTS

to~.t(4~,14,13%.t12.4.17~,13,'->',13,13%,12)
tonll4 t ! 6%. 'LINI #I' .181. 'rllQUINC I' ,4.1, '(HZ) ,

l,SI.'TRANSITION STATIS',~I.'SI~~'./)

JO",,"n (1BI, .•181,12. ' ~UANT~ SPICTIUM CAtCUI..lTI ON • • .'./)
10RMAT(' lee. rlrQ IA'I !11N CALCULATEDI')
FORMAT(/.' rOfit , UNIOUI '110 .',15./)
10PI''lA'!'(1B1, ,7J,'nIQ (IZ)',l1I,'DIGINlJUCy',I.

111,48;'_'1"
JORMAT(1El,leI,'ENIIGT DIGINIBJCY CALCULiTIOK. .'./)
JOR"'!!(' IN(',I3,') • ',712.4)
lOHMAT(' IN('.I3.') • '.r12.4

1,~X,'IS rICINI!ATI WIT! STAT! .',14)
JOR,..A'!'(1Hl ••1'1.

l' SY~METRY CLASSIfICATION or IIGENSTATES ••• '/)
JORMAT(/.~I.' STATES 01 RI?RISINTATION .'.13)
10RMA'J( .181.' TOTAt HUI'1!1R OJ SUTIS • ',13)
JOR~AT~17X,'(INC0I'1PLETISPECTRUM}'./)
jOP."'_T(I7.,7~('-' )
leR"'!T( , IOVII QUANTUM #I : '.12.' ; UPPIR QUANTU'" _ • '

1. I~/
JOP.~AT(/' lOWER QUANTU~ #I : ' .12.'/2',

]' ; UPPlR QUANTU,.. #I • '.12,' 2'/)
FORI'1AT(/' QUANTUM #I : '.12/)
lOR~!!(/' QUANTUM #I • ',12,'/2'/1

r~turrt

~J!c1
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sutroutlre s1~set(sl.s2.1sTm.nrep.thres)

c
c rete~lres s1~~etr1 relationships a~0£6 elgerstates
c 5tere4 OD 41st. ~atrl% elements at I _lnus are
c calculated alld nOli-zero results are taten to repreSeDt
c tw~ states 1~ tbe s.~e represelltatloD.
c
c sl aDd s~ arp Input metrlcps used tor the elgeD~ector

c ~atrlces read tro~ 41st.
c
c ~ 15 the Du~ber ot spillS
c
c iurt 1~ the ullit number read all tor elgeD~ector ~atrlces.

c
c r0 Is the ~ector ot binomial coeftlcients.
c DS~ 15 t~e su~ ot 41~ellsloDs at allowed sUbm&trlces.
c nsp 15 the su~ ot dl~eDsloDs at all su~atrlces.

c ~8x~at 15 the largest allo~e4 submatrl% 41~e[s1oD.

c r.5t 15 t~e tot~l Du~ter at elgenstates.
c 1st 15 the two d1~en510Dal matrl% ot simple product
c st~tes ard the DU~ber ot "one- spillS 1n each.
e
c th~es 15 thp ~1ninum allowed threshold tor allowea
~ trans1tl~DS

c
c ~n ellt. IST~ contelrs the Dumbers tro~ ItO NRIP which
c Id~ntlf1 thp representatlars found tor the elgenstates.
c
~ ; 51mmetr1 ru~ber of one (1) 1ndlcates ~ totally
c 5ynmetrlc stetp 'AI 51~metr1).
e
c r~ithe· el~erstates or elgeDyector5 ~re rearranged.
c
c

al~er.slor sl(1).5~(1).lsym(1)
!'etl lv(7£,),uv(?f1)
1Dte~er Spl(7~1.5pU(7e\.dml.dmu.dmp.u5tete.utmp.usp

~rtegpr ui,sk1p,ues,tI1nd(?)
logical tophef

C'Oll'mon I citle / lsc.fUnd.lfp
CO"l1l'O[ / estate / r,lst(2,U24),t:,Hll),r5m(11),

nsp(11·.mar~et.D5t

ClO 7 1-1,llst
7 151m!1 ~0

iS7m t 1 =1
iS7m(rst'-1
nlll!-r.-1
~oph!'f-.fe1Se

1rep~1

tp1"'n""
slrip-t'
115 '£'
do ~e 1=1.lIp1
!f/r~(1' .le. me!mat) ~o to 9~

1-0 to 91
G0 co:':t1nue

~o tr 9:5
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81 115-1-1
do 92 J-l.IIPl
If'IIV(J' .le ~exmet) ~o to 93
sk1p-slrl p+1

92 coet1Due

c ~AIN LOOP

93 tz 1
th r-a bs ( thre~ ,
1f'thrlt. l' thr-l.0/thr
do 5ee~ 1z-Z.rm1

c file Dumbers
If 11-kz
uf ·-If-l
Jump"""
1f f 1z .eq. lUI Jump-stlp

c power of r m1nus operator.
1111p=Jump"'1

c d1mPDslor of lover submatrlx
dr'll -re( i r>
if dml .le. mexmat' go to 94
T.Z ·tz-1
~o to ~"~E'

c dl~enslor of upper submatrlx
1.4 c!1'''rll~ (1 :.o+ll11p I

c dlmer.slor of operator ~atr1x

clmp-Il'"Dpl-1np'
1p"Lsp(npl-(1mp+l) .

c ~olrters to beg1rr1rg of s1mple product states.
Isp"'J:sp'1z-1'
usp=nsp(11-1+1mp'

c collect sp1r. product states
d, ::0 l't-l,dml

e., spl'kk =lst(l.lsp+tt)
dO e~ kt=l.d~u

E~ 5pu(tt)-lst(l,usp+tt)

1f'4nl ~t. dmu) tophaf-.true.

if'tophaf) &0 to 10
c read l~vl!r sUb~atrlx Into 51; upper IDtO s2

CEll rpa4ms(1~.lsc,s1.f11nd.1fpl
call read~s(ur.lsc.s2.f11nd.ltp)
,"0 to 11

c ~e;d lcvpr submatrlx 1nto s2; upper 111to sl
1~ call read~s(lt.1sc,s~,fl1rd.1tp)

call reedllls(vf.1sc.sl.f11Dd.lfp)

C lol'p oypr lover ,,1geDstates

11 les~r5~(lz-kz)

do .. fie ..1-1,4ml
les"lps+l

11 . kl1 .dllli
If'trp~arl gc to 2~
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c

c

c

c

c
c

50

25
~1

2..,

62

~~ i: !~ltlt~h,
€=o to ~2

110 ~1 tk l,dllll
Iv ki: 'S2(1l+tk

qUick chect to See It this eigerSt4te 15 totally s1~III.

1t Is1111Cles' .DP. e) go to 38
su",-(" I

do 20 t't.::1,dllll
su",-sUIII-lv(tk'
ItPr.s·;~s(l~'.~·su",)
1t' Hers •re e) 15rm Cl es) =1

10 P over upper e1genstates

ues 15""11-)[1)+4",1
do 3"" t'u-l,dJllu
uPsT1Jes+1

JlICVP e1gerveetor to uv

:u= 'k'u-1 '·drru
If t~p~af' go to 3~

do 6(' tk=1.dll'u
uv·kk)~s?(lu+kk)

itO tt:' 62
do 61 Jri:=1.dl"u
uy'kJr)=s1(1u+kJr)

qUick ~heek to see if this eigenstate is totally SYlllm.

1t !sy!"(ues) .ne 0) go to ?~

sum:e 0
do 7" 1ri:1.dJllu
su!!,=sUl'l+uv(Jrkj
itens-abs(lee.e-suIII)
if'Hers .rp. fill 1s1111(ues)=1

chpek tor possible previous s1111111etr1 calculatlor
~oth total11 s1llllll. (lrep-l' 0111 posslbi11t1·
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c ~atri7 eleJllert ~alculat1on section.
!U'" -0. C"

c loop o~er si",ple product states of lover eigerstate

do 2"" IIII-l,d"'l
lstr-te"spl'",l)

c loop o~er si",~le product states of upper elbenstate

do 1"" 1II1:-1,dlllU
~15 ta U"'SJlU (IIIU )

c lo~p ower cOlllporerts ot I !!'lnus operator
c I 1'I1tl:S to illlp pover)

do 1~~ ruc-1.dJllp
c ch~sp oppr.t~r



1ml~-lst/1.1p+DUCl

c im1rlustate) • • 7
1t' fustate .aDd. IM1~) .~e .• ) go to 158

c utmp - Imlalustate)
utwp-ustate + Imlr

c <lstatplutmp) • <lst.tellml~lustate) - I ?
It l lstfte .~e. utmp) go to 1~~
sum~su~+lY(ml)·uY(mu)

~o to 111"
1~0 corU~ue

100 cort1rue
20" co ~ tinue

Itens=tbr-{sumesum)

1t~lte~s .eq •• ' go to 3'.
c ror.' 7eTO matrlz element; check to see 1t one ot
c these e1gerstates preYlous11 classifIed.

11' lsym(l!'s' .eq." .and. Is1m(ues) .eq. 0) go to 175
H:hymlles) .!'q (Il) ~o to 16~

lsY"/uesl-ls1~(les)

go to ~""
16~ ~sY~(les -Isym(ues)

e;o tc ~""
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c Ile~ ~epresentatloD.

irep=l T!'p+l
is,.""l!'s~-lrep

Isym(ues -1T!'J)

('0:- t1 r:~l!'

cort1rue

cor.t1nul!'
r.rE'p:1 r-ep

returr
end



c this sUbroutln@ outputs frequencies trom Ye~tor tr@q
c -r.d thpir associet@d -stat1st1c~1" deg@nerac1es trom
~ :de6er Itop 15 the maximum number of treque~c1es l~

c treq. frequenc1es w1th a degenerac1 of -1 are
c skipped Or complet10n. 14egen 1s set to -1
c in all elemerts.

dl~en5lon freq(1 '.14egen(1

c f1r.4 t1rst treq

175 do l~r l··I.Hop
11' lde~ec( 1 \ .eq. -1) go to lee
.=1
t=0 to lP2

lEe eouinue
c '11 dore

returr

c find npxt maximum treq
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1c-=

1E~

c

1

C'urr..treq (t)
d.o le~ 1=-t.1top
it ldel':er::(l' .eq. -1 .or. treq(i
~c tc 1e~
It,:i
llC to 1~2

ccrt 1r. ue
"axlmu~ fourd. output
~rlte(6.5~1' treq(kl.ldegeL(k)
:4£'~f"~(k --1
EO to 1'i'~

.le. curr)

6~1 format 4:x,t12.4,15x.13·
eJ'ld.



SUbr~ut1ne readms(1rec,1u,1np,f11nd,1tp)
c
c Fea~s 1r. data trom t1le open on un1t _ 1u.
C J1lt" must be opered tor sequent1al, d1rect access.
c Fecord s1ae should be ~ b7tes.
c
c tata 1s read lrto real arrar inp with urtormatted,
c direct access reeds. Irec determines whiCh sectlon
e of the tile to read and flind Is an inte~er

c arra, eonta~rlD~ the Dumber ot teCOrds lr eleh sect1or.
c lfp 1s the lssoc1ated .~rlable tor the t1le.
c

~eal 1Dp ~1)

1nteger fUrd (1)

c
e 4etermlre 1ritlal record M
c

~r'.t"l

if lree eq. 1) go to 20
rt lrpc-l

4 0 1 (." i:= 1 , r t
l~ Init=1clt+fllnd(i)

c
c posItion flle pointer to 1c1t1cl reccr4
c

2~ r1rd(1~'ic1t

c
c read data
c

rt ~tlll'4 ~ 1ree .
dl) H"!' 1 1 ,~t

re. d ( 1u ' 1nit 1np a )
inl t:=l r it+1

llrle continue

returc
ere!
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subroutire wrltms(lrec.iu.out.tll~4.ltp)

c ~rltes 4ata to tlle opened OD uDit - iu.
c file must be opened tor sequent1el. d1rect access.
~ Re~ord size Should be 4 brtes.
c
c Date 1s wr1tten tram real arreT out with uDtormatted.
c dl p ect access writes Irec determines the section
c 1t the file to rece1Te the data ard flird is ar irteger
c ,rrey corta1niDg the n~ber ot records iD each section.

real out(1)
111 te~P!' t11 ad. ( 1 )

c
c aeterm1rp initiel rerord •
c;

in1t=1
it'iree eq. 1) bO to 2r
nt 1rec-l
do 1" 1-1.llt

1. ir:t=irlt.flird(i

(;

c "rite data
c

2~ l!t fl1 [!c!'i rec )
do 11l1f1 l-1.r.t
"rite'lu 'lrit! oudi l

init=itit·1
1"0 rc~t1rue

returr
end
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lUNCTICN "IT(I.J1
C
C tRIS IS 1 FUNCTION TO CO"PUTI TBI IND!I JOR lN liRAt IOCA~ION

C IEIN CNIt THI UPPER BALl TRIANGLE or A T~O DIMINSIONAL ARRAt
C IS S~ORID. TBI lRGUMINTS I AND J ARI THE NORMAL 2I I~LiI1S.

C J MUST II GT I lOR TBI COMPUTAION TO BE COBRleT.
e
C

iI~RN

INt

iU~C~ION "ATVEC(I.J.N)
C
C
C
C TEIS IS A TUNCTION TO COMFUTE TBi IND1I lOR AN AIBAY LOCATION
C VB!N A GINIRAL 2t ARRAY IS STCRiD AS A SINGLi VICTCi.
C AHGU~rN!S I ANn J ABE THE NCR~AI 2D INDEXlS. N IS rEI ~I~lN-

C SleN OJ THF 2t ARRAY.
C

C
E!TURN
IN~
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c
C calculat~s coupling constants tor a biphenyl
cllll th aS1rr.l1l~tric.1l1 c11stortecl ri rgs.
c : ..--------
C
c Coodlrete system #1; D4 symmetry:
c lhe orig1n 15 !t the center ot ten c-c lnter ring brldge.
c The I-aIls bls~cts the dlhedral angle, the z-axis 15 along
c the benzene para bonds to tbe sUbstituents.
c
c Cocrdl~at~ s7st~~ '2; D2 sl~~~try:

c !h~ I-axls pass~s through tb~ ~IRhenyl par- bords,
c the ~rlg1~ 15 located 1n ring 2 (wIth protoDs 5,6.7,6),
c the I-dX~S lies ir th~ plare of thIs rlng an~ the 1-axls
c 15 nor~el to 1t
c
c This versIon (M 41 toes not ·sy~~etrIze· the hamiltonian
c tetor~ diagoralizetior (l.e. bph.ham is called Instead
c It bphh!m~.

c
c th!s versIon lr.cr~~nts .ar1ous param~ters for differert passes
c
c :nput (in cO!lllllor "geol'l"l
c
c :12. rI4. r2~. r2611l, r67. r5S, r!:6,
C 51' (1%":'-SY1 1"'12;;, 511, delta
c

implIcit double pr~cIslon (a-h,o-I)
doubl~ prec111c~ th(16),lIl(4),11IC4),sC5l
~eal d·2F),cj(2e\,csCe),en(25e).~otf,treq(ee),cjd4(2e)

re·l wImI.w2mI.w1mn.w2~n,zmx,vl(5~)

inte£er iS1~(2~61,t0(6)

logIcal lans
co~~cr I geo~ I r12.rl.,r260.r67.r~S.r56,szz.s2p.sxy,deltc

co~~or coup / d,cj.cs,woft
c~~rt I estate I n.lst(2.2561
d~t~ cjd4 I 2.0,~.0,V.~,4·l.0,e.5.5.e.~,2.0.6·~.~,

2 e,~0,e.5.0.5.0.0,2.0 I
~a!a ne I 1,E,2E,2e.e,1 /

c get Input

110 1 j=l 2~6
en'j):f.l1l

1 i57,"~j -ll'
40 2 1=1 e

2 cs'l)-0 v
r=:
woff=f i"
type • ' ~hIch coord 51Ste~? (lor 2)'
. CC~'Dt • .Icoord
t7pe·· ' INP~! OF INITIAl PARAMETERS;'
type .,' enter r12: '
cce'Pt •• r12

t7pe • ' ert~r rI4:
accept .,rI4
tl'P~ Ill.' ~nter r23: '
dcc~pt .,r2~

type •. ' ~nt~r r261: '
<CC~Jlt -,r26'
it Icoord .eq. 1: go to eeS6
tlpe *.' ~nter r67:"
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;ccPpt - r67
t7pe - ' enter r5~: '
accept -,r58
t7pe - ' e~ter r~6: '
accept -.r5~

6e66 t7pe -,' enter SIZ:
rccept - sIr
t7pe -,' enter (srZ-S77)
accept -,52p
if(lcoord ,e~. 1 ~o to 6067
t7pe -,' erter 5%7: '
accept -.5%7

6167 t7P... ' enter del ta: '
accept -,delta
type -.' which perameter do lOU WiSh to vary?'
t7PP - ' SZ'l • 1 r12 • 7'
t7pe -' (su-sn) 2 r23· E'
t1pe -,' s:rl:5 r58 • S'
tlpe - ' del ta • 4 r260 • 10'
t7pe -.' 1'14 • 5 r56 • 11'
t7pe -.' r67 • 6'
('cept - ,lpa r'

type -.' what Is the lr.cre~e~t It this parameter?'
accept -,sine
type • • how ~ery values?'
accept -,!'arg

type -,' are the d4 J"s to be used In the sl~ulatlon?'
Iflyens~ldu~:1 ~o to 11
do 12 i·'.2~

12 cj 1 =~.~

~o tc ,:3
11 do 14 1=1.2P
14 cJ 1 ='cJd4 (1

13 !ad=4 dr~.d£tfr'1.0de0·

~k -2 ~d0e·(245.e17d00-·2,l)

wl~x·' pi

v2"'1.'"~ p
vl"'r'"P 0
v2!!lIl",e.ft
-IIIt:-1 ~

iwfla,.=fI
~pen~urlT-l.l'a",e='splr1.da',tlpe·'Dew')
op~n(urlt.2,r~",e·'5plf2.da',t1pe·'Dew')
rq ~

wrlte(1.602' neng,nq
r.q 7
wrlte'?Fe?) rar.g.r.q

c ~alD l~op ever order paramEters
de ~~p~ rd·l.Dcr.~

c co~put~ ~elta 11' rads
~dpI='d~lta.rad Ipe.ed~e

it'lccrr!! .eq, 2 "'0 to 50!0
c
c coord!rete s7ste~ _I

s(1 =-~zz
5(2 'S2p·«deos(rdel/2,0d"~').·2-(ds1D(rdel/2."d0~)}••2)
S(~~·5?p·(~co~(rdel,2.fd0e)·d~1:(rd~1/2.~d~~»
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c
6l::E~

c

2"1
1 '

"3'
4'

C

5(4 =-e edel
S(!ll_e' ed'"
rf!'7=-r2:!
T~e"rH

r~6-rl:C'0 to 611fit

cocrdlrat~ srstem .2
s(l hsu
5(2 =s2p
S(~:-S%1

S(4)-e ede"
5(: =1.ldee

computp tr1g fu~ct1ons of d~lta

cSc11-c1cos(rdel)
5Ddl=dsl III r4~1)

output lrlt1~l peram~ters

~rirt 201, r12,r14,r23,r2Si,r67,r5&,r56,(s(li, 1-1,3),deltd
formatl'1program b1pb3 - 1nlt1al parameters ..• '"
-12 :: ',~l4 4/,' rl4 • ',~l4.6/,' r23 ,. ',e14.6/,
r2f" :: ' .el4 6 " r67 - ',e14.6,,' r5e - ',el4.6/,
r50:: ',e14.61I,' SII ,. ',el4.6/,' (sIX-sl1) ,. ',e14.c/,
577 .. ',e14.61!.' DELT! ,. ',f1~.4111)

co~pute reeded d1stances at delta-"

~~1 trl4 r23 !2.~d00

rx2=(r5=-r67)/2.~d00

~%~"\r~;-r14 !2.Pdee
~x~~(r14 r67:/2.Vd~0

rI5=(r5E-r23)i2.~c1ee

rX5"lr67-r2~ 12.0d"~
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C cc~putP tr1g functlons of reeded angles

srd'"'n:' r12
csd-dsqrt(1.~d~0-SDd·*2.0)

51:· =rx6/r26V
csa~dsqrt(1 Idll-SII.··2.8)
5114p= rx2 'r56
csdp.dsqrt(1 0d0r.-slldp"2.e)

r74"r26e·csa
rl1::r12*csd·ry4
T72=r~6·csdp+r74

rI3=rl1+r I 2- r I4

c calculate lnternuclear d1stallces tor delta""

~l6t-dsqrt(rl1••2.e+rx~••2 e)
rl5~"dsqrt(rl~••2 ,+rx3*·2 e)
r2~0::dsqrt(rI2··2••·rI5**2.")

sr.e;=n~rlr16"

csg"'rrl rlee
sll~p""n5/r25e

csgp"rI2/r2~7

SDD"!'X~ rl!le
cs~~r1~lr150

~r~rt lVI, sIa,srb,Stg srg~.sIl4,sDdp,r160,r1~~,r2~~



c

101 fO~et('lpro~ram b1ph3 - cclcu\at1oD of S,7 qua&tum',
l' for ~rl sulluUuteil 111pher,1. ,III,
2' tr1« ya1ues:',II.' SDI • ' .el4:.6,I,' saD ~ '9 el~.6.I,

3' SD~ - '.el4:.6.I,' SD«P - ' .el~.S.I,' sud • '.e14.6.1.
" Sl!dp - '.el~.6 : " rUlI· '.e14.6.,,' r15" • ',e14.ti,I,
:' r250 = '.el~.6111

ca1cu1,t~ 1x7'S ~D4 17x's

1X7!1 )-r14··sl'd1
17X '1 . ~r1~·csdl

lX1(2 -r23·sud1
17x(2)=r:?~·csctl

1:17::5 =-1 1410
17T.(3,wr57
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1X7(4)=I Idee
l1X{4 ' rse

c calcul,tP th's

th '1): (1 YX (1 )-1:1% (:5) )·2 ,0U0
t~ 2·= 11'1(1 -lxY(3)\/2.11l4~~

th :51=(171(2-171(:5) ·/2.04~0

tb'4)~(lxl(2\+lx7(3»,2.e4e0

tb ~~=(lyxI1'-17%(41\/2.14~0

th ' S,:11'1(11+1Iy(4»/2.04'0

th·7)= 11X(?)+11%13»;2.l1ld~11l
th F =(IX7(2 -lX1(3) IZ.ict~0

th I 9 : : ( 111 I1 i +11,.c• ) )1~ . 04 .: 0
tb ' ll1l)·(lx1{1 )-lxl(4»/2 ••40B

th 11'-(11X(1 +11X(:5) ·/2."d~(lJ

th'1:? )=( 11Y( 1 ,-17.1(3») IZ.0H0

th(13)~(17X(2)-17X(4»/2.'d81
tb·14 (lx7(2'+lx1(4l)/2.ldB0-

tt' '1~):(171(2 '+111'(4) )/2.0U0
tb'I~)&(lx7(2)-1x7(4».2.lct0e

c ce1cu1et~ 1utPrDucleer d1stlDces tor delta Dot s 8

r17-ctSqrt(r71••Z 0 + th(11J*·Z.i + th(1Z)**Z.01
-1F.~4sq~t(r71••2 e + tt(1).*2.0 + tb(2)**2.~)

r2~=4s~rt(r12"2.e + th(13'··Z.1 + th(14)·*~.I1l)
r2=-ctsqrt(rI2.*2.~ + th(151·.2.0 + tb(16)**2.0)
r2e2dsqrt(r14"2 f + tt(3)**2.~ + th(~)·*2.1)

r1~-dsqrt{r73••Z ~ + th(e)**2.11l - th(S)*·2.11l:
r27-ctsqrt(r7.**2.11l + tb(7)*.Z.11l • th(B)·*2.0)
rle-45~rt(r73••2.11l + tb(~)·.2.B • th(ll1l)··~.~)
rI:5.d5qrt((r23+rl~)/Z.0d~~).*~.P + (ryI-ry4,**Z.£)
r57~dsqrt«{re7+r5e)2.'4Ie).·2.1 + (rI2-r7~)··2.e)

c ~utput 1~terru1cear d1stlDc~S

yilrt .,' r17 $ '.r17
]:rl rt *.' rlE - ' .r1f



print" ' !'2~ • ' .r2~
~r1rt ":' r2€ • ',r28
pr1nt ",' r2f • ' ,r26
pr1nt ",' r15 • ',r15
pr1nt ",' r27 • ',r27
pr1rt ",' rl~ • ' ,fie
pr11!t ".' r13 • ' .r13
~r1rt ".' r57 • ',r~7

c calculate angles between internuclear vectors aDd
c moleculer a%15 515te~.

rpd2-rad 2.lIJd0f

aDgl~~rpd2-dataD(~.lIJd00·(rl1-rl~)/(r2~+rl~J)

th13~=dc(5(eD~13,

th131=CSdl"dSir(al!gl~)

th131&SDdl"4s1D(ang13l

'D~~7-~pd2-d~tcr.(2."d0~"'r12-r7~)/(r67+r5E)}
tb~7Z=dcos(arg57~
thfl7%&c!s11l(Ulg57
tb ~71- I"e! Q'l'

tb5ez-csap
th!'6x= SDap
t~ ~6y= . , I'e! Vol

th12z=csc1
t!! 121=('S en.s lid
th127W:SDdl-srd

th:6r=r71 r1f
tt1Ex= U:: 1 \ Ir16
th16r=th (~l/n6

tb:?Sz=rr4 r2€
tb26x=tb'3'/r26
th267=th!4 1/r26

th15r= r1'!- r1 ~

tb15x"'th'5'/r15
th1~1-th 'e I/r1~

th?7z=r14 r2"
th27%= t t. 7'/ r27
tb27,-thlSl/r27

tb1Fz"ry~ r1F
thHx"'th·9'/r18
th19r-th'lel/r18

th17Z=rrl r17
th17x:tb 11 '/r17
th17r·th'l~1/r17

tb2~z-r12 r2~

tb25x-th'13'/r25
th2~1·thI14)/r?5

l.h2@z=rr2 r2El
th2Ex=th 15\/r28
th28r-th'16J/r2e
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c ~.lculet~ coupllrgs

412=4k-coupl(tb12z.th12x.th121. s • r 12l
423.4k-coupl(~.e4pe.cs41,SD41.s.r23J

414=dk-Coupl(e.140e.cSdl.SDdl.s.r14)
413=dk-coupl(th13z.th13x,th131,s,r13)

d~6~4k-cOupl(th~el.th~6x.th~61,S,r56)
467-dk-Coupl(e.1411.1.e408,e.84Ie,S.r67)
4~5·dk-coupl(e.0d0I,l.ed~0.9.e40~.s.r~e)

d~? 4k-Coupl(tb~71.th57x.th571.S,r~7)

d2S~coupl(th26I,th26x.th261,s,r2S)

d27·COUp~(tb27z,th27I,th271,s,r27)

a42f=4k-:42S + 427)/2.1401

41f·coUpl(th15z.th15x. th157.S,r15)
d1E:cOUpl(thlSI,th18x,th18y,s,rlE)
edl5s 4k- 415 • 418)/2.1409

42~:couplCth2!z,th25I,th2~1,s,r2~)
d2~=coupi(th2~z.th2~x.th281,s.r2e)

a42~:4k- 425 • 42e~/2.e40e

d16 coupl(thI6z,th16I,th16y,s,rI6)
d17=coup:(thI7I,th17x,t h171,s,rI7)
4d16=4.- 416 • 417l/'.e4~0

c ~ut~ut r~sult

~r:r.t • ' RING !'
prl rt -,' 41? • ' ,412
~r:nt -.' 423 = ',d2~
pritt -,' 414 • ',414
prlrt -.' d1~ • ' ,d13
prirt -,' llnG !'
~ri rt -,' d~6 • ' ,d56
print -,' d6? • ' ,dE7
pr:rt -,' d5E • ',456
~rirt -,' d~7 • ',457
prlDt -,' INTI~ lING COUPLINGS (AYliAGID OYiR CCNIORMATICNS)'
print -,' 426 • ',a426
~r!rt -,' 41~ • ',.415
prlr.t -,' 42~ '" ' ,a4?5
priT.t -.' dIS • ',adlS

c r~arr4rge coupllrgs to orderlrf used In simulations.

d(1 =412 / 4.2'
4 (2 .-d 13/4 . r
d(3,",414 4.0
41"!' =1415/4."
4 (t .·"d16/4."
ctCe)=e416:4.e
d(7 =.d15/4."
4(t: 1·423/4.e
d(9''''4134.1
d (10 ""42f/4.0
4 (!1 ."'4 ~6/4 . k'
d.( 12)=C!d26/4.f
cs(13 'e4Zt/4."
4(1' -41U4.!!
ct(15)"'acl25/4.0
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c

d (16 \ -4426/<1.11
4(17 -a426/-1.0
4(1 0 )-ecl25/-1."
4(19 ~l415/-1• .,
4 (221 ·-.ue/4. i\
4(21)-ecl164'"
4(22 -;.415/-1.f
d(23 ·d~6/4.V

4(24)=457:4.1
d(25 =4~E/".e
4(26··487/4.V
4(27)=457,4.'
d(2E =4~6/"."

~.lculate spectru~

call cntprt(d,cJ,~l
elll bph"h.~(eD,ls~'

call peout(~,28,e~,ls7~,r")

c ~utput spectrum
prlrt 1113

1&.3 fo~at ( '1 Al subspectra •• • '111 j

prltt 104
1~4 !O~ft(' SII QUANTUM LINES'/)

:prirt IP~

1~5 ro~at/l:1,17(' '),1,10:1,':1'11 ." to 1M: • 2';)
k=]
11=rk;(1 1 ne(2 :"1
!'1 l1·nfl/~ )-1
do ~5" jc-=l1.hl
:t'ls7~C 1c\ .re. U go to ~50

freq(k'.abs(er(l '-eD(Jc~'
k=}[-1

==k. corU rue
call destr~(treq.k-1)
1:t1:.}[-I
do ~~6 l=1.n1'l
w1'1)=1'req(1)
w1"'Y'fl"e1;l(v1iI '.'111'1:11==c .1~r·a~lrl(vI(1),vl~r)
prInt tee:

lee to~et{//lI:1,'IMI - 3 to I!"I - 3'1)
k=1
11 r.\'I(1 )"1
t1 l1-re 2 '-I
12 ri'(l '-r~(2)+1!ltr3)+r~(4)"1

1:2 l2"'r:f.I'~1-1

d~=5~ jel-l1,h1
~1"1S)'",1.1c1) .ne 1) go to ~~~

~o ~55 jc2-l?,h2
If'ls)'~lJe2; .ne 1) Sc to 555
1'req't'=er(Jc1)-er(Jc21
1t Itlx(ll •••• bsCtreq(k':) .eq. II ,0 to 555
k-I['1

5~5 cortl rue
call des1'rq(treq.k-1 l

rf2"(!E-1 12
rp d1 t1'2
do ~~7 1=1,z:t2
'11'1 nfl -treq(l
.1"'J~.",al1(treq(1l,wll"x)

~~7 .1",n .",11:1(freq(1 ,VIi'll:'
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wr1uCt.ee2) rp
wr1teCl,Et~) (wl(l), 1-1,DP)
wrHe(1,6M) (1"'%, 1-1,Dp)
pr1nt lr.7

18'7 fonnat( " SInN OUANTUM LINIS',I,19('_')//,
21el.'IM: • ~ to IM\ - 3'/'

k-l
11 r.eO)"'l
hI 11+nt (2 I-I
40 ~6e jc-11,hl
if'ls7111r ~c) ·ne. 1) go to ~6e
treq(k ·.bs(eD(jC -eD(ll)
w2111X-Elllaxl(freq(k',w2mI)
w2~r-a"'lrl(freq(k)tw2",r)

k=~-l

56. continue
call dpsfrq(treq,k-l)
Dp k-l
writp t t'. fH?2) rp
wr1teC?,60~) (freq(l), l=l,Dp)
wr1teI2.6~~l (IIllI. 1-1,Lp)

c end ",~in loop

g" to
1 ·50~l,5ee2,5003.500~,500~,5006,5e07,50~ct

~ 5~~~,~ell,5ell)

3 ipar

50~1 szz-szz-s1nc
1;0 tc ff,'ll

5~V2 s2p~s2p+S1[c

~o t, ~(lI00

~ ... ~ 1f lccrrd .eq 1) stop
SI:y=sI7+s1rc
go tc ~000

e~.~ deltf-delta+s1rc
~o to 5e0e

5"0~ r14-rl.:+s1nc
~o tC' flo~e

~e0f r67~rf7+s1[c

11' 1coc,rc1 .eq. 1 r23-r67
~o to !V;'gi

5e~7 r12~rl?+slnc

go t:: ~,000

5~.~ ·2~=r2~-slnc

~o to ~eel/l

t00~ :f~=r5E+slDC

if'lccrr4 .eq. 1 rl~·r!e

£0 to ~"efl

501P- T2e0~r260+s1LC

Po0 tc ~Il.fo

5~11 r~~cr5E+s1rc
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If'1eoerd .eq. 1 rlZ-r56

cor.Urue

wr1te(1.eez' 1vfla,
wrlte(l.ce~) wl~l.wl~D.%~X

vrltE(2.~02) 1wflag
vr1te(2.6~\ w2mxtv2mDtZ~X

close(uDU-l )
close(uI!U-2)
format(16'
formc't(el'.61
el!!!

double pree1s1oD funet10D eoup1
(tb%tthxtthl.Str~

i~pllclt double preels10r (a-h,o-I)
d1!!!ens1on s(5

c ecleulites ~rlsotroplc coupl1D6S after fonn~lGs

C o~ Imsley ard 11rdo~

Sz%~s'l

s2n=s(&
sxy=s(;~)
5X% =5 (4

5'1 =s(!"

COJpl=( S%z.(~ 0d00·thz.·2.e-l.~de0)•
-s2p"'(thx*-2.0-thy·"'Z.0 1

~ +4.edr~*( sxy*Cthx-thYI
3 +su* (thx*th z)
" -5YZ. (th1*thz) I )

co~pl=coupl I (r.*3.~)

returr
eDd
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~uDr~~tlr~ bph~ha~(~D.ls1~

c this Is p yerslon ot hamll written for
c the special s1~m~tr7 of a ~ara-substltuted

c clpheryl witb ~ s~m.

~ O~11 the 11 S1m~etr7 el~~n5tates are labeled in
c s1~~etry yector lS1~'

t;

e
t; sets up and 4ia~onallZPs fre~ induction decay
c ~a~lltonlar ot N spitS 1 2 (N less tban g).

('o~~or I coup I 4(28 ,cj(28I,cs(8I,woft
commor I cstate I n,lst(2,~~eJ

al~~nslor h(40e·.s(7~4\,enrl).nu~b(2,256),n~(6)

dl~pr:sio~ lst(70 1 .1sp(e: lfllp(2Jtlcst(4,12,4)
dl~enSlor c(784).vort(7E4).ls7~(lJ

data r9 I 1.6,2E,28,8,l I
det; lest I 1.8.2-", 2.7,2*e. 3.6.2*". 4,~,2-e. ~2·0,

1 1.2E,?*0 7,3-", e.11,17.2€, 14,23,2*", 1~.3-". ~,5.1e.27.

2 ~.10021.24. 15.2~.2-". 3.4.22.25. 16,3-0, 6,13.2*0.
3 12 ~*V 1.2e.2*~. 22.3*~. ~.12.1e,21. e.1~,2*". le,~*e.
4 c.l1.24.~7. ~.Q.19,20. 9.14.2*v, 4,7.25.25. 13.3*e,
~ 15.2~.2·!Jlt l?:3-P. 1.e.2*0. 2.7,2-". 3.59~.0t

t ~,~.2•• 32*~ I

"'a1'l'at-2C
r.s t -7L
!!l"'t "'r-l
~cr"'r*r:rl 2

d':' 1~ l=1.nst
I!' isy!" 1 2,'

1Sy'" (1 ' =1
lsyrr.(:;!:t 21
C5"'~ "

do 32 1=1. r
32 acs-acs·cs(I'

!CtJ= / -.

(10'35 l=l.rc~
3= ecp=ecp-d(I'·cj(1 1

~D t --r*woft-eep-acs
~~'~st''''r*woft+ec~+acs

rrs~~··l

CEll ~~Msrt(n~mb.r..2~e'
lst'l.1)=ru~b(I.25e)

1st' 2. 1 - nu", b I 2.2 =6 I
ls~'I.~~~I-nu~~'1.1)
lst'2.25e)aru~b{2.1)

"Ir~ t

~r

ao 100 ,'5-1. r~1

15 t-J,:
tS'P"'?*ls r
"k 1/
d:> ~0 .1"'1,2!:6
:. t l' UI'" l' ( L,,\ I . ne 1s I ,1;0 t 0 4e
1ft -Irk" 1
J(kr.:jr.lr~ 1
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'.st'tk -nu",b (1, "
ISt'l,kk~)·ru~bfl.j)
Ist'2. kkk' -Is

4~ eortlnut!
II'st:tk
1",-et

1~ "'st .~t. "'!TI'Ilet' ~o to 100
~t"'lf~1

ao 80 ",s1.",st
de ee 1=1,'"
1'" 1"'~ 1
If'l .rt!. I'll' go t, 60

e dl;~or'l t!1t!~erts

II'sk:1
do 51{. lr"'l,e
isp' k =--1
:t'(~5t(ll .ard. II'sk' .re. el IspCkl"'1
II'sl':"",s)l:"'?

=~ conln'le
!:'llT' = vcff"'tstl
JrIr 0
~o =!: 1=1.r.1'l1
:'Pl=~-]

d, =!: .1=lpl,!'
Ill!: ~I!:-]

~'1~ =t(lm) ~ (d(kk)ecJ!kkl)"'lspCj)"'lsp(11
~= cntlnue

de!''' ~"!. r
=7 !l(1 .... =~(1!'l\ - csrll"'~Sp(i)

(.IJ t~ PI?

d1c!,t:')cel1Zt'
c~ll t'i~2(~.s.t!m,,,,stP..ldl~,01

! 1 ! d #1 .. til t t'S
~all e15Y",,,,(s,lsy~.mst0.1dlm)

II'5t~l':st"'+ldlm

co!'tiruf'

7.,

7t

~~~

c

\;

C

1.':

c :~!-dl·~cncl elt!~ents

Sot' Iv"'1
'<,u'0
~;l~ =.
~sr.l

:2':: ": Y=-'.I:
:'f'ist(ll i:nd. I'Isk) - (lstel'll .acd. mskli 7"',7=,71t
.1Sp- jSJ:e l
lfl1p' jv -It
~v-~

:rsJ( :Y'5""'~
if ~~p .r.e. 2 go to EP
r.!: '2"'r-:tllp(] I "'(Hl1p'1 '-11 1 2-1tllp(11+1!llt-(ZI
t(1~·=-d't5)·2,~"'cICk5)

c'~tl~ue •

~p~urn

e!.d



subrout1re peout(D,mExmat,eD,1s1m,n01

c th1s sUbrout1ne outPUtS the COnteDtS ot e~er~l vector
c ell 111 t12 •• format. States 11 each Zeemal maDltold
c are separated b7 a bla.,t l1ne. N 15 tbe number of sp1n,
c maxmat 15 the slze or the largest Zeema~ man1fold
c conte1red 1n en ~nd DI 1s the array conta1n1~ tbe
c t1rom1cl coeff1c1ents (41mers1ons of ttte Zeeman man1folds).

d1menslor en(l ',n0(1 ,151m(11

110 =''0 j 1.npl

If'Di(J) .gt. ~aImat) go to ~0~

rt =nb+r"! j )-1
pr1nt ~Il, (1eng.ell(1eng'.1s1m(leng), 1eag-nD,nt)
n'b~rt--rr .11

516'" co r t1 r\le

returD

334

fO!'1ll~t( I(~x. 'iN( '.13, "I

erd



c
C 10cetPs totall7 s,.~~trlc ~1c~nvectors 1n S ot
C dl~ens1or 41~ Output 1s7~ eonta1ns 1'5 tor these
C stet.s unetteeted tor others. f1rst element of
C 157m tr us~ 15 nen+1.
C

lnte«er 157~(1).te5t.41m
d1mens10n 5(1'

c loop over e1gervectors
tbr... teee e
l=nen
do 1~0~ 1e1g·1.41~

11 (1e1C-1 ).d1m
1""1 1
it (1s7~(l) .Ile. £ J go to 1C'fIl~

C sum coetf1clents of eigenvector
5um·A.~

dO !C~~ ~c·l.41",

50£ !u~=5~m·s(11.jc)

tP5t=r"s!ttr·sum
:f'test reo 0) 157l1l(1 '=1
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~UbTovtlDe 4esfrq(freq,ltop)

C this sub~outlDe outputs frequenc1es trom yeetor freq
c Ir deserd1rg order.
c It.p 15 the mlxlmu~ Du~ber of frequencies In freq.

4imerslon freq(l

if'lto~ Ie. ,) retur~
ltp"'ltopl
40 lS~ lr=l,ltp
11 oVIrJr"l
do lE~ Irk-llov,ltop
rm~T-fm~Tl(freq()r!,freq(kkl)

freq(H' -am1rl(freq(k),freq(kk))
f'req (it =mlx

lE:= cOlltir:ue

~rirt ell, (freq(k). t-l,ltop)

6~1 fomlt (4%. t12.4"
returr
erd
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SU!~OU!IHI CHT',!(AJ1,AR2,N)
c
c
c
C CUTPUTS COUPlINC CONStAN~S TO lPR.
C

t1~INS10N 1!1(1),AI2(1)
c

N'11-N-l
1=1
PRINT 732
IO ~I 1-l,NM1
IP1=I·]
to 30 J=1P1.N
rOrT~AR1(1' ••. r
CJCU1=AB2(1) •• 0
PRINT 731. I,J,DOUT,I,J,CJOUT

31li I-I 1
C
731 IORMA'!',' IH',I2,',',I2.') ~ ',r12 •• ,1

1.' J\',12,',',I2,' • ',112.4,1/)
?~2 ICR~A~'lH1l

HIURN
iNr
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c
c c!lculates coupllD, CODstarts for a DlpheD11
c wltb aS1~etrlcal17 dlstorted rlres.
c =-------------
c
c this versloD has error aDIlls1s where errors lD parameters
c Ire prop4Cated troM varlaDce - cOYlrla~ce mltri% of sp~tral

c slmu~ltloD. this 15 lDput at be~lDD1De of pro@rl~.

c
c Coo41nate slstem .1; t4 s1~etr1:

c !h~ orlelD 1s ~t the ceDter ot teb c-c IDter rlDg bridge.
c 1he x-ax1s b1sects the dlhedral aDele, the %·a11s Is aloog
c the bellleDe para boads to the substitueDts
c
c Co:rdlnate s1stem .2; t2 Slmmetrr
c -be z-axis passes tbrougb the bllheol1 para bonds,
C 7ht» orlelo is loce ted 10 r1!1&'2 (vl th protoDs ~,6,7,e),
c tbe x·ax!s 11es 10 the plare of thls rlDg aod the 1-axis
c 15 n~rm.l to 1t,
C
~ :12:5 versloD " 4\ does rot "s1mr.etr1ze" the hamlltoDlaD
c [e~o~e diaeoDaIlzltlon (l.e. t~h4ha~ ls called 1~stea4
c ')f lJp!:hdlll \ •
C
~ :h·S verslon performs a llr:ear least squared f1t of calculated
e co~pllngs to experl~Dtcl coupllogs. The lolta!l LDput
c ~e~~etrl aDd order parameters are varled 10 the Iterat1oo.
c
c icput ;lc commOD geam
c
c r12. r14, r23. r2Ee. r57, r5e, r~6,

c szz, '5XX-511 =s2p. 5X1. delta
c

1m~licit double prec1s1oD ~a-h,o·z)

doulJle precls10D dDev(12 ,~llst(12',dexp(12;.dc(12,11)

dO'Jble prec1s1oJl b '12) ,v(144) ,para(H \ ,ltv(U J
dJ~Dle prec151~D a{11.12'.\cx(12,12).YC1(11.11),a~(11)

'e 1 d(2EI,Cj(2e ,cs!e\.PD,2~6 .vott.treq(:0 1.CJd4(2E!
~rteger 1s1",(?~e' ,n.(6),l(12),m(12l.ipar(11J
l':>glcal JIll!
ch r=cter*4 dD,,,,e'121/'rI2 '.'tl~ '.'DI4 '.':1: '.

1 'tle '.'t2~ ','t26 '.'t2~'.
2 't~e '.'t~? '.'~~e '.'tS? •

comm~c / geom / sZI.s2p.S%1.4elta,rI4.rS7.r12.r2~,r~8.r26e,r56

cormor I geo~2 I r13.r~7

CO~OD coup 4.cJ.cs,vott
CCJ'IIIIOIl I c:st .. te / D.lst(2.2~\

~~~O[ / clt / rpar.lp4r.4c.b.v,~v

d.~a cJd4 I 2.e••.••e.!.~.e.•••• ~.~.e.I,2.1.8*0.1.
1 2.P.P..0.~.~.'.5.;.e.2.1 I

~at4 r.1 1.e,28,2!.8.1
!quI~aleDce :para.sll'

ge~ input

~o 1 J·l.2~
!D J )=, •

1 iS7~'J :p
do 2 1"'1.8

2 cs 1l s ••

["'::

"off-' e
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t7pe e~' Whlcb coord. 515tpm' (lor 2)'
'ccept e .lcoord
t7pe e,' INPUT 01 INITIAL FAIA~I~IIS'
t7pe e,' ellter 1'12: •
ecept - 1'12
r~e-r12

t7pe -,' ellter rl~: •
ecept .. 1'1.

r~e'=r14

t7pe -.' eater r23: '
"ecept - .r23
re7=r23
t7pe .,' ellter r2Se: '
- ecept -, r26'?
rc 1up=7
lt lcoord .eq. 1 10 to SeS6
Ilc=,up-12
t7pe -,' eDter r67: '
accept -,1'67 -
t7fe - ' eater r~E
ac~ept -,r~e

tlpe e,' ellter r~S: •
ccept -.r56

€i€E type -,' e!!ter 5II:
accept -.511
t7pe -,' enter (SXX-577 \
,:ccept -, s2~ "
5%1=" Nee
it leoel'd .eq 1 go to eeE?
t7pe e, .',~!l"ter 5X7: •
accept -.5%7

6~67 ~lye - ' enter delta
~ccept - ,del tei
do 122 I '-1,11

1~2 ip r / l .~
t7pe -,' Tbe paraweter5 wblcb caD be varlea are .••
lt lco~rd .eq 2 10 to sise
t7pe e,' 5%% • 1 :12?'
ty;e -,' (5X%-S77)" 2 r23 :: e'
tne -.' del tI .. • r2se 11'
(7pe ".' rl~ • ~'

@o to 6169
S"5~ t1pe -.' szz .. 1 r12 :: ?'

t7pe -' (SXX-S17'· 2 r23 .. e'
t7J:e -.' -sXf • 3 r~e .. 51'
:1lie -,' de Ita = • r268 " 111'
t7pe e " 1'1. • ~ r~15 • 11'
t:n:e -,' re7 • S'

6e6~ tlpe -.' Bow mall7 ot tbese 40 70U Wish to b••e var7"
-eeept -.apar
t7~e -,' 1rom the table above, whlcb para.eters are to vary"
ac~ept e,(lpar(1 , 1-1,npar)
T7pe - ' later tot;l • ot Iterltlye c7cles to oe allowe4:'
Jccept -,l'C7C
le-ID::"
t7pe .,' Do 70U wlsb to laclude error a.a17515?'
:t 7aa5(ldu~» 1erla-1

t7pe e,' are tbe 4. J"s to De used 1. tbe 51.ulatloa"
it 7aIl5(ldu~ ) 10 to 11
d" 12 t-1,2P

12 cJ 1 -1'.1
fO to 13
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Ie~st squares routlnes

caiculite derlvatl.es
do ~~e: np:al npar
ap -lpar(Dp)
'lre=' ~14Ie*d.abs.para(nfp
I'ara'rap,apara'Dap ·xlrc
call lt1ph4{-dnev,lcoo ret)
~~-~!r~p)apararn~p!-~Ine

call der1y(dIast,dtew,Jlrc.np,rccup)
1,;0IlUI1Ue

~alculate coupllr@s
Cell b1phd(d.lest,lcoord l

:t lter re 1 go to 9Egg
~all der4(d',4Iast,lcoord'
c~ll cntprt(d.,ej.e'
I'r'rt 333
lnlllat(1hl)

e.1
15

c
17
2it1

1 '
€'
3'
4'

E02
1

C

c
c
Se9~

333
c
c
c
C

9=9~

11 do 1. 1~l.2!

a cj;1 ',acJUU ~

c input ot experl_ental coupllngs
13 t1pe -.' EDter experl_eDtal dIpolar coupllngs

do 1~ l=l.neoup
de,,:p(1 ):a'.II4I'
tne eel, d.Dallle: 1
to'·IlI~t(leJ:,a.,'a ',$;
accept -,4exp(1)
;utput 1Dlt1al parallleters
~riDt 2el, r12.rl.,r23,r26e.r67,r~8,r56,sll,s2p,sx7,4elta
format('lprogra. b1pb~~r. - 1rItial paraMeters .• • '/1
r12 - '.el••• I.' rl.· ',el••e,' r2:!· 'sel•. e,
-2f0 a '.el. 61,' r67. ',el••61 ' r~E a ,el•.6/,
r~6 ',el" 6 ,'Sll:a ',.el•.f/,' (5·XX4I71·)· ',elf.6 •
S%1 ~ '.el•.6//,' DiLTA = ',tl•. ~/11

p'.rt El2. (dDallle'1),dexpO:, 1:al.DCCUp)
forlllat'lex,'experlIl1eDtal couplIngs .•• , •

'1~r.c.,'~ ',tl•.• )
Erte! 1terative loop
1ter-l
e!'1-=1. fide.

C

c:
c

21e

celculcte res1duals
10 ~~6~ tal,rcoup
t:~)·4e%p(t)-4l.st(k~
c~ll e r lt2(erl,nc7c,ne71t,Dcoup,lter
call rorw2(r~oup\

de:~e.ldll

call 41111DY(Y.Dpar.d.et.l,IlI)
l'r' nt -,' tIT a ' .det
1t d.et eq. '.Id'" prlDt 7~
to~at·ll.'Dlrll~IN'NTOJ ~AT.II TO Di INYi!1!t IS ZIBOI!',)
~t rexit .eq I) 10 to !e.'
corr~etloD ot p.r.~eters

dO 31~ rs-l,npar
c:~rr=' H"
do 21. rt~b·l,apa r
·rd%·wat~ec:l~s.DSb.Dp.,1
c~~r~corr+Y(IDd.)·'Y(DSD)



tlpe •• ' Irter varlarce - covar1ance ~atrlz fro~ s1",u1atloI:'

do 9002 j-l.ncoup
d~ 9~~2 I-j.reoup
:11'e 9~e:!. j,1
eeept -.YCXlj.1
"c;~1.j -vc%(j.1

~",e2 C('l:, t1 aue
s.. .;:! fOlllFt'l·x.'CX('.12.·.·.12') = '.$

e

e
('

e

:511
p~ ~a (lpar(::S) )""PHa (lpar{ns) }.CO rr
eorthul
1ter~l ter"'l
go to iBi8
ec4 of IteratloD loop

1Utput flDal parameters
cutput InterDulce~r 41steDces
Ir~rt 334
tomat(II' nUL PU!P1I'U!S:· ..
~rlnt -,' r12 - ',r12
~r :'Y't .. " r13 ~ '. r13
~rlnt -,' rlt = '.r14
~rlnt -,' r23 • ' ,r23
Irint -.' r2Sf - ·.r2S'
prlnt -,' r56 = '.r56
Irint -.' r57 • '.r~7
pr:nt -.' r5B a ' ,r5B
J: ~1 a t *.' r67 ' I r67
~rlnt -.' s:r • '.S!%
Ir:nt .,' (s:u-s:11) - ' ,s2I
fr1nt *.' 5%7 - ' .5%Y
Ir;nt -,' delt~ - ·.4eltr.
it lera!! .eq " go to 5~5e
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do gee0 np-l , rpar
OJ 9~0~ ne=l.acoup

r.p ncl.' 0dZe
ao gee, 1-1.rpar
rpl~Matvec(Dpll.npar

g,;; '~p rc 1=t!{np,DC + v(npl).4c(nc 1;

d~ 9£50 l=l.rpar

dJ 904= ",2-1 , npar
veyrl.~2:-0.rd~3

do 9~4" j-l.rcoup
ap J - ... eelte
do 9~3~ k-l.ncoup

ge3~ ~p j':ap(j) 4 YcX(j.k)-a(m~.k)

Se~9 ey!1,m2 ·YC7:1.",2 - apiJ -a(1.jl

5il"~ cort1l!ue
9~~l' C 0 ~ U J!ue

c
cutput Yt!rlence - covarl.D~e .atrlces

J:r1rt 33~
~rlDt -.' Yerla.ce - ccvarlerce watrl% tror. s1.ulatlon'
tr:nt el~. (j.(Yc~(J.k'. k'l.DCOUp). J-l.DCOUP:



C
C

E.S

forma,t 2%,13,': ',<Dc,u~/2)e1,.e,/1Ix,

l<Dcoup /2+mc4(acoup,2'>el,.6'
pr~Dt ~33
fr~Dt *,' yarlaBCe - coyarlaree w.a,rlz tor parameters'
~rlDt SIS, Cj,(YC1(J,k1, k:1,Dpar), j a 1,Dpar)
to ~'" t ( 12%,13, ' , ,(lIlla r 12)e1 <4.15, /1 h,

l/r~ar 2+modCnpar,2»)e1,.15 )

c~1cuI!te speetru~
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~.~ call dordC4.dlast.lcoord i

~all cDtprtC4,eJ,S)
call bpb~bam(eD,1s~
call peou'(5.2E,eD,l s 1m,rl

c

l0~

c:c:

1· 7

.:;u'put spectrum
prirt 18:5
forl"HC"1 Ai sutspeet'a .. . '111)
P!1D t 18'
fO "11I,:0 t (' SII QUUTUI1 LINES' 11
J:f·!'t 10~
fo'mat(1x,1'1(' '), 1,10x," P'!l • to :"': - 2' )
11;=1
11 r~(1 -D£I(2 "'1
!' 1 11-ne ' ~ )-1
do 558 .'c-U,h1
~f 151~ljcl teo 1, ~o to !~e
freqtt l -absCeDt1 )-eB(jcl)
\c=k-l
\;ortlrue
call destrqttreq,k-1 1

~f:=)[-l

p:rt HE
to!'mat( 10z.':I1: == 3 to :,.: == 3',)
If=!
11 r.,>'1 :+1
1:1 11"nl(2 )-1
12 neil +D.(2 +D0'~)-D0(.)+1

n2 12·rr(~)-1

do ~~5 jc1==11,~1

if 1!11'll jel' .De. 11 go to ~55

jo ~~~ 'c2-12,h2
it 1571"7 jc2 ' .De" 11 go to !55~
!req(k ==eDtJe1 1-eD(jc2)
it 1fl.(18 l*absCtreqCk)) .eq e) '0 to ~~5
r. - r:-l
cortlDue
call destrqttreq,k-l'
priDt 187
to.,.,et ( II," SHIN QUAN'fUI1 LIN IS ' 1,1S C' _ ' ,II,

21 ill , 'I!"I • , to 111: == 3" )
t"·l
11 etCl 1
!'It 11+r.(2)-1
dO ~6. jc-U.bl
1t 151'"1J(, i .Ile. 1 I go t c ~ee
treq't\~.bsteD(jC~-erCl)

Jr- ~"'1

co !'Uz:ue
call destrqCtreq.t-l)
end



c
subroutlDe tor4(4.t2.1coord)
double ,ree15101 42(1)
redI4{1~

c rearr.ace coupllDC5 to or4erio, uset II 51_ul.tloDs.

d(1)-42(11/".0
d (2)-42( 2) I".'
d(~'=42(:51/".'
d(4:-t2(4)/".e
d ( ~ ) -4 2 ( ~ ) /" ••
d(6'-42(~l/".e

d(7 -42(")/,,.e
d( €I 1=42 (6) ".'
d,'9 =42(2'1" ••
del P "42'81/".e
d ( 11\-4,2 (1-) I" .•
d02 -a.2 ('1 \ I" ••
d (13 ",42(6 \1". e
d( 14 \-42 (t ) :" ••
d( 15- "42 (8 }.1".8
d ~ H5-· 0:42 ('1) 14.?
d {1? 'ad.2 (1) " • .,
el(le zd.2 s'I".1
di19·-42(")/,,.e
d(2£'=42(5) ·".8
4 121 "d2(5~/".1

d(:::2 -42'''l/4.V
d ( 2:5 \ "'42 (9) ," •1
d(24 z42(18\/4.'
d/2~ -42'11)/".8
d(2f'a42(12) 4.'
d(27 =42(1"/4.'
d(:::e '"4?(91/".ll'

returr
end
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subroutln@ blpb4(d,lcoord)
C
C c.lculat~ coup11tg COtstarts tor a blphem11
e w1th ~s1~etrlcalll distort@d rlngs.
c --- ----------
c
c Cocd1nitp slste~ N1; D~ s1mmetry:
c Th~ origin 1s .t the cpnt@r ot teh c-c Inter rlmg brIdge.
c !he I~axis bIsects tbe dlhedr.l angle. the I-aIls 15 alorg
c the berzene pera bonds to the substltuents.
c
c Coord1rate s1ste~ N2; D2 sl~~etrl:

c The z-~xis pftsses througn the RI~henll p.r. Donds,
L t~e or1~~~ 1s loc.ted 1t ring 2 (w1th protons e.6.7.E).
c The X-~X15 11es 1n the plane ot th1s ring .nd the 1-.xls
c :s ro~el tc it.
c
c

impl1c1t dOUble precIsIon (a-h.o-a)
double precIs10n th(16).lxyC,).11xCt).sC5).d(12)
co~m~t ~eom 511.s2p.sx1,delt•• rl~.r67.r12.r23.r5e.r26i.r56
co~mo[ / ~ecm2 / r13.r57

do 1 J=1.12
1 d(j ~~.~d00

:cd~~ d;e·dctet(1.0d~2'

dk -2 0dee-C245.017d00--2.e)

c co~pute delta In rads
rdel-deltc·rad/l~0.0d00

:f'icoord .eq. 2 go to ~e~e

c
c cD'r~lncte 515te~ -1

s(1 =S~1

s(2):S2p·(Cdcos(rdel 2.8de~»·-2-(dSit(rdel/2.~d~~»··~)

s(~ =s~p·(dcosCrdel/2.0dV0-dsit(rdel/2.'d~~~)
s(~ =v 0df~

s(~1=0 0d0r.
·6?:r2~

~~~=rll

r~e~r12

go to 6060

cccrd1rate s1stem _2
5(1)=511
s(2 -s2p
s(3'-SI1
S(4)-e 0dfe
s(~·=0.0d00

com~ute tr1~ tunctions at delt~

cSdi=dcos(r4el)
sDol·d!I~(rdpl)
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c co~p~tp rpeded dist'ncps at delt.-,

rxl-'r14-r23).2.'dee
rX2~(rf.f-r67·/2.0dI0

·T3-(r~~·r14'/2.Pd~0

rx~ (r]4-r67)·2.ed08
!x~:;r~E-r23\/2.idii



rxS-(r61 r23'/2.0dee

c comput~ trig fu~ctloms of t~eded angles

slId=rx1/r12
csd:4sqrt(1.0d00-slld**2.')
sna"rxe r258
cse:dsqrt(1.ldle-SD.**2.8)
slldp·n2/r~6

cSdpz dsqrt(1.ld8e-Slldp**2.e)

r7~=r26B*cs.

-71-r1?*csd+r7~

r72~r~€*csdp+r74

!'7~=r71+r72-r74

c cclculite Inter~uc1e.r distances for delta-"

rl~e-dsqrt(r71**2.I+rx2**20)
r15B-dsqrt(r73**2.B+rx3**2.B)
r2!e.=dsqrt(r72**2.B+rx5**2 e)

sn~=n4 rIse
CS,lt::-11/r160
St~p=rT.!,/r2~e

cS,ltp=r72 r25t'
sn ~""rx3/r15e
csb·r7~/r1!'0

C calcul~t~ lX7'S alld l1X'S

lX1'1 =ra*sr.dl
lyi.(]~ r14,*csdl

lXY!? -r23*slld1
IJT(~'-=r2~*csdl

lX1!3)-=E! fdee
l7X~~ r61

1%7(4,,,,e BUt'
171 (4 ""r5~

c calc~let~ th's

th(1)='17X{1)-171(3)1/2."d~e
th'2)='lX7C1)+lx7C3»/2.ld00

th 3'·llYI(2'-11XC3) /2.Hd00
~h .4)- (1 T7 (2 )+lX7 C3) )/2.04 iCI1l

th'5)s(lyx(1)-17XC4»,2.Bd0e
th 6·$ilx1(1\·lx7(4»/2.ed~e

th·71-'llI(2)+111(3)J/2.Bd~0

th'e)-Clx7(2)-lx7(3»/2.ldee

th 9\~(lyxCl\+17X{.»/2.ld~e

tt.'1~1·(lx7(11-1x7(.»/2.ed~e

tt'11) (17X(1)+17X(3»;2 ••del
th 12 1 :(1x7(1 ·-117(3')/2.'d~e

345



tb(13)·(17Z(~)-17Z(4»/2.ed08
tb14)~(lz7{2)+lr7(4»;2.'d0t

thrl~)·{17X(2)+17Z{4»/2.e408

tb(16)-(lz1(2)-lx7(4»/2 ••d8.

c calculatP 1aterauclear 41staDces tor delta Dot-8

117~I15qrt(r71-2.1+ th(U--2.8 + tb(12)--2.8)
rlS:dsqrt(r71-~.8+ tb(1).-2.~ + tb(2)--2.')
~25'"'4sqrt{r72--2.' • tb(13'--Z.8 • tb(l~)--Z.')
r2E-dsqrt(r72--2.0 • tb(1~'-2.8 + tb(16)--2.0)
~2S=dsqrt(r74--2., + tb(3)·-2.~ + tb(t)-·2.')
~1~-dsqrt(r73.~.0+ th(~).-Z.~ + tb(6)·-Z.IJ
r27-dsqrt(r74"2.0 • tb(7)·.2.e + tb(8)-·2.0)
rl~=dsqrt(r73••Z.1 + th(9) ••Z.I + tb(18)··Z.0)
~1~=4sqrt«(r23+rl~)/2.edet)••2.f + (rl1-r74)··2.e)
r57:4sqrt({(r67+r~)/2.'dll)·-2.'+ (r72-r74)-·2 •• )

c c~lcul;t~ !Dgles between lnternucle~r vectors ~nd

c molecular axis s7Stem.

rpd2= l'Sd/2 .0dll

thl~z='rYl-r1~)/r13
srl~=rr14+r2~) (2.ld~0·r13)

Tt:13x'"'cscU·sn13
t,h 13y'"'srdl·slll:3

th57z:'ry2-r74) r57
thf?x=:r67·r5~\/(2.8d00·r571

U:!'7p: . Vd ~r

thSE1=(;Scip
th::6x=Stdp
th!C'6y-eo "dee

th12zrcsc1
th12x"'csdl·snd
tl:12Y'"'Slldl·Sld

thIez-r71 rU!
th16x= th 1 '/r16
th16,:th '2' Ir16

th2ez- r74 r2f
tt:2Sx:rth3'/rZ6
th267-tb /4) Ir26

tb15pr7~ r15
T!:l!"x" th '!5 "/r15
thl!','"'U'6 ilrl~

th27z:o.r74 r27
tb?7r- tt: .,: Ir27
th27,-th'8 )/r27

tbH'z= 173 rIP
thlE'z-th(gl/rle
tbl~7·th!11)/r1e
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th17X:th(11)!r17
th171=th(12),r17

th2~1-T72/r25

th2~x-tb(13)/r2~

th251-tb(14)/r25

th2~%-!72/r2e
th2e%-th'l~)/r2e

th2Pl-tb/16),r2e

c calculat~ coup11nS5

d12:dk·C~up1(th12Z.th12%.th127.S.r12)
d23~4)·coup1(8.e4el,C541.St41,5,r23)

414-4~coupl(I.1488.C541,SD41.5.r14l
dl~:dk·coupl(th13z.th13%.th137,5,r13)

d56=4t·coup1(th56Z,th56%, th561,5,r5S)
d67:4k.C~upl(e.1411,1.14ee.e.84ee,S,r67)
d~E.dt·ccupl(e.ed~0,1.ed~0.e.e4~0,5,r~E)

d~7=4k·coup1(th57z,th57%,th577,S,r57)

d26 CO~P1(th26z.th26%,th261.5,r26)
d2?=coupl(th27 %,th27x,th27y,s,r27l
ad2€~dk.'d26 • 427)i2.fd~1

dl~=ceupl(thI5%.th15%,th151.5,r15)
dl:=coupi(thlEz,th18%,th18y,s,rlE)
adl~~4k. d15 • dle)/2.edee

d2~.ecupl(t~2~%,th2~%,th25Y,5,r2~)
d2~~coup1(th28z,th2~x,th2!y,s,r2e)
ad25=4k.-d25 • 42e)/2.ed~e

dle~ccupl(th16%.th16%,th16y,s,r16l

d1 7 -coupi(thl?z,th17x,th17y,s,r17)
ad16=4~ 416 • dI7)/2.ed~

c r~(rr!rse coup11D~s to order1ns used 1n s1~ulat1ocs.

4(1~-d12

d(2 -413
d(3;-414
4(4)=a41~

4(~ =0416
4(6 1-423
4(7)=a426
de: sad2t
d(9\-d~6

4(11'-457
d(ll a45F
d(12 -467

end

dc~~l~ prec1s1on funct10r coup1
~ (thz,'bZ,tb7,s,r:
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c111l1~u lor s (~ ~

c calculatps anisotropic coupllnts after formulas
c rf ~slel a~d LindoD.

su-sCl )
s2p=- 5 (2'
S:r1-5(3)
5%1:5(4:)
51%'""5 (f \

coupl-( 5zz.(3.ed~e.thz.·2.0-1.~d00)

1 +s2p.(thx••2.t-th1.*2.8)
2 +".840"'·( U1.(thx*th1)
:3 +5X z. (tb:r*th %)

" +S7z·(th7*thz) ) )
coupl~coupl / (r••3.1'

;eturr
erc1

348



c
C INfIRT~ A MATBII
C

I~~LICIT DOUBLE PRECISION (A-B,O-Z)
IIMINSION A(l),L(l),M(l)

c
1-1 i:D"'f
NI -N
to ee l=l,N
NI'NI"N
l( I) ~l

M(I·· ..1
(1=NI"!
!IGA-A(U)
to 20 J-l N
IZ - N-( J-1 i
:1:0 2e I=I,N
IJ IZ·I
Ir'r!BS(BIGA'-DA~S(l(IJl')1~,20,2e

15 !IGA~!(I:}
L{! -..1
"'(II:.-J

20 CONTINUI
C

J=V! .
11'J-I) ~~,3~,25

2 f Il.I !-N
IO 3l I-1.N
II II +N
P.OL!l:z-A I In '
.iI II-l+J
!(II'=A(';I)

3e A(JI =P.OLD
C
35 I:M'I'

IF I-K ~~,4=,3e

3E JP~N-(I-1)

IO 4e J-1,N
JI NI-J
JI=JP·J
B01t:-A( JI}
!(JI'=A(JI \

4i ~(JI!-F.Olr

C4= IF BIGA 4e,46,4~
4ti I" IllI v{/I

HITtYRN
4E DO ~f I-l,N

11' I-I ~p ,~!',!'0

51l' II NI"I
!(IK ",(II)/{-BIGA)

~!' CONTINU!
c

DO 55 I-l,N
I1=NI·I
BOLt=!{ II)
IJ I-N
IO 5! J-l.N
IJ IJ"N
11'1-1 5.,6f,S8

6~ Il·J-l 62,6~,e2

62 lJIJ-I+1
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&(IJ -POLD*j(IJ' + &(IJ'
~~ CON11HUI
C

IJ I-N
to 7~ J-l,H
IJ IJ4N
11(J-I 7e.75.78

7~ !(IJ:-~(IJ)/JIG!

75 CONTI NUl
C

C
!(!!21.8r~e/!IC!

H COljTINt'E
C

I=N
hOt 1-/::-1

11'1' 158,158,185
10:;; I=L(I

I1'I-I l20.l20.1~e

l0E JC N*(I-l)
JP N*( 1-1'
IO l1e J=1.N
JI-JQ"J
?OLD=! JK \
JI-JP.·J
A(~TI l--A (J I 1

110 A(JI =!OLD
ILL J=""I

rr'J-I' 1ee.1ee.125
12= II I-~

IO 1~V. r~1.N

II U-N
!:OLD=! II'
JI-U-I+J
ACH1=-j'JI)

1~~ A(JI =30LD
GC TC 1V0

1~~ R!'IUlIN
!ND
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sUDroutl~~ derl.(dlast,drev,zlmc,lpl,rcoup)
c
c co~putes 4erl.atl.es ot blph~D1l couPlln~s v.r.t.
c Iteratior ptrlmeters Derl •• tl.es Ire estimate' as
c the r~tl0 ot the ch~D~e in coupli~s vlth a 1 S cban~e

c 1~ a p4rtlcular parameter.
c
c
c dlast 15 the initial (c1cle _ It~r) couplings
c dnev is the coupllt~s calculated at para • para + line
c Ip· Is tte i~del In the ~atrll dc tor this dependence
e rcoup Is the rumber ot couplln,s (mcoup·7 tor t4 S1m~,

e and =1? for D2 s1mm)
c

:mpllclt dou~le precls10r. (a-h,o-z)
double preclsior 41Ist(1),drev(1)
CO~CD I cit I Dpar,lpar(11\,4e(12,ll).b(12) •• (1~~l,D.(11)

do le8 k~l reoup
dCk.lpX I .(dnev(k -41Ist(k'}/zlnc

1~~ continue

returr
etd
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SOiROUTINI I!IT2(!ll,NI,NIIIT,HL,ITiR)
C
C '11""5 'IISION.
C
C I"LOATIS I.H.S. 11101 101 A ,ICTOI 01 IISIDUILS llOH ONE
C ITIRITIT' CYCLI.
C
C THIS IS 1 DOUBLE PIICISION 'IISION.
C
C B IS THE "CTOR OJ IISIDUl1S.
C IT1! IS !PI HUHBIR 01 THE PRESENT IT1RIT1'1 CYCLi.
C IR1 IS TEl R~S IRROR 1RO~ THI LIST CYCLI.
C NI IS !HI TOTAL NUMB!! 01 ITERATIONS ALLOWED.
e ~lTIT I! A PARAMETI! TO BE US!t IN DETERMINING WHITHEB
C TORTHI! ITIJATITI CYCLES SIOULD II BUN.
e 11 ~IJIT·0 RFTURNED NO lORTHE! ITERATIONS ~IC1SSARJ.

C 11 Hr.XIT-l, rUTHER CYCLES A_I !!QOIRtD.
C NI IS THI NU~!IJ 01 RISIDOILS CONTAINED IN J.
C
C

IM~lICIT rOUEtl PRICISION (A-H,O-Z)
tOUBLI PRECISION MIN!I!

CO~CN CIT NPAI,IPAI(11).DC(12,11),B(12),T(1•• l,E'C11)

"I~!RP 1& 1.0Il-e
iR2=0 VDer
i'f'L-NL

I7~ITI!-NI' 111,6,8
HU-ER?
HUn:1
HUURN

FCR~AT(~1,'ITI!ATION , ',12,31,"1 ~ S IRIOR • ",Ie.J)
FOR~A1(1,' ITI!A!ION CYClI TI!~INAT1D -',I,
F"S ERBeR LI~S TYAN MINIMUM ALLOiiDI ",I.
iRRCP. ',D16.4.)
joND

ro 4 X"l.Nt
• E!2=!!2~!(t'·B(t

!R2=rSC!~(IR2/rNL

11(IR2 "~I" ~INIRR) GO TO 5
PJlI~T 401. ER2
GO TO ~

PRINT 301. IT11,1R2

11' (EEl-IR21/Ip.1-0.elD0e eleele
Nun... ",
IRl- ER2
FlTURN

C

c

C

~

C

E

C
10
11 It

C
301
.~1

1 '
?"
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SU!IOUTINI NOIM2(NL)
C
C UI/'MS 'liS ION .
C
C !BIS SUIROUTINI SirS UP rBl NOI~lL IOU1TIONS rOB 1 111ST
C SQUARES ITII1TI'I PIOCIIDURI.
C TEl ~!TRIJ PIODUCTS DC-TR1NS-tC lNL DC-) 111 rOIMID ~HIRE DC IS THI
C ~l~RIl OJ DIRIlATI'JS OJ rllQUINCIlS VITH
C RISPIC~ TO PARAMETEIS AND B IS 'EI M1TRII or BISIDU1LS
C E!TVE1~ C1LC~LATlt lN~ OBSII'ID lIIQUiNCIIS.
C
C

C

C

c

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
CO~~ON CIT NP1R,IP1R(11).DC(12.11).B(12),l(1•• ).ll(11)

NOS-NPAR
DO 21e N51-1,NOS
DO 286 NS2-NS1.NOS

INDI1=MlT'IC(NS2,NS1,NOS)
IND12-~1!TEC(NS1,NS2,NOS'

v(I ~DI1 ) of ere"
DO 20~ LEe-1,NI

c~f V(INrXll=lrINrIl ~DC(LIQ.NS1)-DC(LEQ,N52)
2~€ '(INDI?)~l(INDX1)

C
="NS1 - •. eN·~
Ie 210 lFO=1.NL

21V BY MS1 =Bl(NS1'.DC(lIQ.NS1 *B(110)
C

liITURN
iND
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