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Abstract: SHP2, a pivotal component downstream of both receptor and non-receptor tyrosine kinases,
has been underscored in the progression of various human cancers and neurodevelopmental disorders.
Allosteric inhibitors have been proposed to regulate its autoinhibition. However, oncogenic mutations,
such as E76K, convert SHP2 into its open state, wherein the catalytic cleft becomes fully exposed to
its ligands. This study elucidates the dynamic properties of SHP2 structures across different states,
with a focus on the effects of oncogenic mutation on two known binding sites of allosteric inhibitors.
Through extensive modeling and simulations, we further identified an alternative allosteric binding
pocket in solution structures. Additional analysis provides insights into the dynamics and stability
of the potential site. In addition, multi-tier screening was deployed to identify potential binders
targeting the potential site. Our efforts to identify a new allosteric site contribute to community-wide
initiatives developing therapies using multiple allosteric inhibitors to target distinct pockets on SHP2,
in the hope of potentially inhibiting or slowing tumor growth associated with SHP2.

Keywords: protein tyrosine phosphatase; structure dynamics; multi-scale docking; computational
chemistry; molecular dynamics

1. Introduction

The SHP2, a non-receptor protein tyrosine phosphatase encoded by PTPN11, is integral
to the developmental processes mediated by growth factors, cytokines, and adhesion
receptors. SHP2 is ubiquitously expressed and is essential for the sustained activation of
the Ras-MAP kinase pathway, which plays a crucial role in cell proliferation, differentiation,
and survival. Additionally, SHP2 modulates several other critical signaling pathways,
including NF-κB, JAK-STAT, PI3K-AKT, PD-1, and various immune checkpoints, which are
involved in immune regulation and cell growth [1–4].

Activating mutations in SHP2 are implicated in developmental disorders such as
Noonan Syndrome [5] and are frequently observed in juvenile myelomonocytic leukemia
(35%), and, to a lesser extent, in acute myeloid leukemia (5%) [6]. These mutations are
also present at lower frequencies in other hematologic and solid tumors [4] and have been
shown to induce leukemia in murine models [7]. Conversely, inhibiting SHP2 demonstrates
antitumor activity across various cancer models [8,9].

Structurally, SHP2 comprises two tandem Src homology 2 domains (N-SH2 and C-
SH2), a protein tyrosine phosphatase (PTP) domain, and a disordered C-terminal tail
containing two phosphotyrosine-binding sites (Figure 1) [10]. The enzyme dynamically
transitions between a closed (basal) state, where the N-SH2 domain occludes the PTP
catalytic cleft, and an open (active) state, triggered by activating mutations or ligand
binding [11,12]. This allosteric transition, characterized by a substantial 120-degree rotation
of the C-SH2 domain, represents a conformational change of unusual magnitude that
has garnered significant research attention [11–14]. Nuclear magnetic resonance (NMR)
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spectroscopy and molecular dynamics simulations have been instrumental in elucidating
the key transition states and pathways underlying SHP2’s allosteric regulation [12,15–17].
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Figure 1. Overview of Structural Dynamics of the SHP2 Protein. (A) depicts the domain organization
of the full-length SHP2 protein. (B) illustrates SHP2 in its closed or basal state, PDB ID: 2SHP [10]. In
the closed state, the DE-loop of the N-SH2 domain occludes the PTP domain catalytic cleft, effectively
preventing the binding of diverse phosphorylated substrates and small molecules, and affecting the
SHP2 function. (C) showcases the open state of SHP2, PDB ID: 6CRF [11], induced by the oncogenic
mutation (E76K). The mutation causes a 120-degree C-SH2 domain rotation, exposing the catalytic
cleft and shifting the N-SH2 domain across the PTP domain. In the open state, the DE-loop of the
N-SH2 domain no longer interacts with the catalytic cleft of the PTP domain, resulting in complete
access to the catalytic cleft for pY-ligands. Additionally, this gain-of-function mutation compromises
the binding cavity for SHP099.

Recent investigations, employing molecular dynamics simulations and small-angle
X-ray scattering (SAXS), have revealed unexpected flexibility within the open state of the
E76K mutant, a model system for studying SHP2 activation [16,18–20]. Notably, molecular
dynamics simulations show that the E76K solution structure deviates significantly from the
crystal structure [18]. Furthermore, Anselmi and Hub reported a heterogeneous atomistic
ensemble of the E76K mutant in solution, in excellent agreement with SAXS data [20]. These
observations raise questions about the factors contributing to this flexibility, including
potential intrinsic domain instability or the influence of crystal packing effects.

The development of allosteric inhibitors that stabilize the closed state of SHP2 has
shown promise in clinical trials for advanced or metastatic solid tumors [21–30]. These
“molecular glue” inhibitors, like SHP099, target an allosteric site formed between the C-SH2
and PTP domains, demonstrating high-affinity binding and antiproliferative effects in
certain cancer cell lines [8]. However, activating mutations can destabilize the closed state,
leading to reduced inhibitor efficacy and drug resistance [31]. While a dual inhibition
strategy targeting an additional allosteric site at the N-SH2/PTP interface has been pro-
posed [32], the dynamic nature of SHP2 poses challenges for inhibitor binding, highlighting
the need for more robust allosteric inhibitors.

In light of these challenges, this study aims to elucidate the origin of the observed
flexibility within the open state of SHP2, particularly in the context of the E76K mutant.
We will also investigate the impact of activating mutations on the efficacy of existing
allosteric inhibitors. These insights will contribute to the development of more effective
therapeutic strategies targeting SHP2, including the identification of novel allosteric sites
less susceptible to the effects of activating mutations.
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2. Results and Discussion

In this study, we employed molecular dynamics (MD) simulations to investigate
the solution structures and dynamic stability of SHP2 in both its wild-type (closed state,
wtSHP2) and E76K mutant (open state, mtSHP2) forms. Simulations were conducted
using the FF19SB and GAFF2 force field in the TIP3P water and 298 K. Three production
trajectories of 500 ns each were collected on both monomeric (chain A and chain B) and
dimeric (chain A + chain B) configurations. To assess the impact of ligand binding, we also
simulated systems with the allosteric inhibitor SHP099 (chain A), also in three replicas of
500 ns each. Initial structures for all simulations were derived from available SHP2 crystal
structures. A total of approximately 28.6 µs of MD trajectories were collected in the explicit
water model (see Supplementary Table S1 for details).

Our analysis first focused on the dynamic stability of individual domains (N-SH2,
C-SH2, and PTP) to quantify the increased flexibility observed in the E76K open state.
As detailed in the Supplementary Information (Figure S1), each domain within wtSHP2
exhibited low RMSD values, indicating remarkable stability. This is likely due to the
compact, tightly packed arrangement of the protein in the closed state. In contrast, while
the N-SH2 and PTP domains of mtSHP2 maintained RMSD values comparable to wtSHP2,
the C-SH2 domain displayed significantly higher fluctuations, suggesting heightened
flexibility. This observation aligns with the lower certainty of the C-SH2 domain, which
reflects its relatively looser packing environment in the crystal lattice, both intermolecularly
and intramolecularly.

We further explored the role of crystal packing environment, a notable factor influenc-
ing structural variations in MD simulations. While four monomers are organized linearly in
a relatively straightforward packing pattern within the wtSHP2 unit cell, eight monomers
arrayed in a more complex packing formation within the mtSHP2 unit cell (Supplementary
Information, Figure S2). Obviously, the wtSHP2 unit cell closely mirrors our solvated
monomer/dimer MD simulation environment. In contrast, the mtSHP2 asymmetric unit
exhibits a more complex packing arrangement within the unit cell, leading to solvated
monomer/dimer MD simulations that do not fully capture this intricate packing. Thus,
the high variability in C-SH2 domain dynamics in mtSHP2 simulations may be partly due
to the absence of crystal packing constraints. Conversely, the lower C-SH2 variability in
wtSHP2 simulations could be attributed to solvation effects that better mimic the wtSHP2
crystal environment.

Given that the observed variations in individual domain dynamics are primarily
attributed to differences in crystal packing, the success of allosteric modulators in shifting
the open state structure towards the closed state is reinforced. The primary role of these
modulators is to act as “molecular glues”, stabilizing inter-domain interactions.

2.1. Impact of the Oncogenic Mutation E76K on Allosteric Inhibition Sites

Our study extends to the functional disruption of the E76K mutation on SHP2’s
allosteric inhibition. Traditionally, allosteric SHP2 inhibitors have focused on the allo-site-1
pocket [8], which is formed by residues from both the C-SH2 and PTP domains, such
as Arg111, Phe113, Glu250, Leu254, Gln257, Pro491, and Gln495 (Figure 2D,E). These
inhibitors function by stabilizing SHP2 in its closed state [21–30]. Through monitoring
the CA distance between Arg111 (on C-SH2 domain) and Phe113 (on PTP domain) across
various SHP2 states, we observed a uniform distance in all closed conformations, including
wtSHP2-ub, wtSHP2-b, and mtSHP2-b (Figure 2C). However, the open state, influenced
by the E76K mutation, exhibits a pronounced CA distance deviation, correlating with the
C-SH2 domain’s 120-degree rotation (Figure 2A,B) [11,12]. This movement signifies the
allo-site-1 pocket disruption upon SHP2 activation.
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ment of key residues Arg111 and Phe113, which play a role in the creation of the binding pocket for 
SHP2 inhibitors. (C) represents the CA distances between Arg111 and Phe113 that are involved in 
SHP099 binding across all SHP2 configurations. (D,E) illustrate the superimposed structures from 
the top MD solution clusters of each SHP2 system, while the binding site residues form a consistent 
cavity in the wtSHP2 and mtSHP2-b states, a discernible shift in two residues from the C-SH2 do-
main away from the binding pocket is evident for the pocket disruption in the mtSHP2-ub confor-
mation. The green sticks denote the crystallographic structure from the wtSHP2-b state. 

A novel dual inhibition strategy has been proposed for more effective SHP2 inhibi-
tion, targeting a second pocket, allo-site-2, at the interface of the N-SH2 and PTP domains 
(Supplementary Figure S3) [32]. Despite this, achieving potent inhibition remains chal-
lenging, indicating the potential for improved inhibitor design. We hypothesized that the 
reduced efficacy of inhibitors at pocket allo-site-2 could be due to its transient stability. 
The pocket is flanked by key residues Glu83 and Arg265, which may predispose the site 
to inhibitor dissociation. 

To evaluate this hypothesis, we assessed the CA distance dynamics between Glu83 
and Arg265, which are crucial to the structure of the allo-site-2 pocket. As shown in Figure 
3A–D, these residues initially appear to be stable, maintaining the pocket’s integrity. 

Figure 2. Analysis of SHP099 binding site dynamics across all SHP2 simulations. (A,B) depict SHP2
in its closed (wtSHP2) and open (mtSHP2) conformations. In the closed state, SHP099 binds from
the back side, while the front-side access is hindered by a short disordered loop. However, mutation
E76K alters the binding pocket through a rotation in the C-SH2 domain, resulting in the displacement
of key residues Arg111 and Phe113, which play a role in the creation of the binding pocket for SHP2
inhibitors. (C) represents the CA distances between Arg111 and Phe113 that are involved in SHP099
binding across all SHP2 configurations. (D,E) illustrate the superimposed structures from the top
MD solution clusters of each SHP2 system, while the binding site residues form a consistent cavity in
the wtSHP2 and mtSHP2-b states, a discernible shift in two residues from the C-SH2 domain away
from the binding pocket is evident for the pocket disruption in the mtSHP2-ub conformation. The
green sticks denote the crystallographic structure from the wtSHP2-b state.

A novel dual inhibition strategy has been proposed for more effective SHP2 inhibi-
tion, targeting a second pocket, allo-site-2, at the interface of the N-SH2 and PTP domains
(Supplementary Figure S3) [32]. Despite this, achieving potent inhibition remains chal-
lenging, indicating the potential for improved inhibitor design. We hypothesized that the
reduced efficacy of inhibitors at pocket allo-site-2 could be due to its transient stability. The
pocket is flanked by key residues Glu83 and Arg265, which may predispose the site to
inhibitor dissociation.

To evaluate this hypothesis, we assessed the CA distance dynamics between Glu83 and
Arg265, which are crucial to the structure of the allo-site-2 pocket. As shown in Figure 3A–D,
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these residues initially appear to be stable, maintaining the pocket’s integrity. However,
the wild type complex (wtSHP2-b) gradually transitions into a disrupted state with a flat
surface after ~300 ns, and the mutant complex (mtSHP2-b) transitions into a state with a
salt bridge after ~100 ns, though occasional fluctuations back to the initial state are also
visible. These conformational changes underscore the transient nature of allo-site-2’s pocket
stability. When these residues are close together, the ligand cannot bind. When these
residues move apart, the pocket becomes a flat surface, both compromising the pocket’s
binding potential and resulting in the inhibitors showing less potency toward this site.
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Figure 3. Conformational Dynamics of the Allosteric Site-2 (allo-site-2) Pocket in SHP2. (A) shows the
superimposition of all closed-state MD solution structures, including wtSHP2-ub/b and mtSHP2-b,
along with their corresponding crystal structures 2SHP, 5EHR, and 6CRG, respectively, revealing
the pocket’s conformational consistency. (B) provides a distance analysis between two salt-bridging
residues flanking pocket allo-site-2. In wtSHP2-b, the two residues start from their initial stable state
but transition into a disrupted state, leading to a flat binding surface. In mtSHP2-b, the two residues
transition into a closed state, forming a salt bridge and capping the binding pocket. (C,D) illustrate
conformational variations observed in the simulations: Shift 1 in a wtSHP2-b simulation and Shift 2
in an mtSHP2-b simulation. (E) showcases the surface representation of allo-site-2. In MD solution
structures, the disordered loop stays either in an ‘in’ conformation in wt-SHP2-b, capping allo-site-2,
or in an ‘out’ conformation in mt-SHP2-b, allowing ligand-binding. The three crystal structures used
in MD simulations are shown along with the two MD solution structures. Note that the disordered
loop is missing in all three crystal structures.
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An area adjacent to allo-site-2, comprised of the disordered loop spanning residues
His85–Asp90 and Gln92–Val95, also appears to be significant in ligand binding (Figure 3E,
highlighted in yellow). We observed this loop oscillating between two distinct states: an ‘in’
conformation that acts as a cap, potentially sealing off the pocket (wtSHP2-b), and an ‘out’
conformation that opens allo-site-2, facilitating inhibitor binding (mtSHP2-b). This loop’s
flexibility introduces a steric barrier that could deter the binding of a second inhibitor to
allo-site-2, thereby influencing the overall inhibitor-enzyme interaction dynamics.

In summary, the structural dynamics of Glu83 and Arg265, along with the flexible loop
adjacent to allo-site-2, play critical roles in the pocket’s stability and accessibility. These
factors must be considered in the design of more effective SHP2 inhibitors.

2.2. Identification of a New Allosteric Pocket

Allosteric inhibitors traditionally bind to SHP2 through a conformation-selection
mechanism, selectively targeting the protein’s closed state [21–30]. Regrettably, the E76K
activating mutation significantly diminishes the binding affinity of inhibitors targeting allo-
site-1 by approximately 100-fold [11,12]. Dual inhibition strategies could markedly improve
efficacy against the mutant SHP2 state, as opposed to the singular action of SHP099, which
immobilizes SHP2 in its closed conformation [32]. As previously mentioned, the allo-site-1
pocket, formed at the interface of the C-SH2 and PTP domains, is effectively bound by
SHP099 [8]. However, the second pocket, allo-site-2, demonstrates dynamical instability,
which may lead to only marginal stabilization when leveraged for dual inhibition.

We postulate the presence of additional allosteric sites that could be harnessed to
stabilize the closed state of SHP2, particularly to counteract the hyperactive E76K mutant’s
effects. Therefore, discovering a novel secondary binding pocket is a key objective of our
research aimed at achieving potent and comprehensive inhibition of SHP2.

For reliable pocket prediction, we employed a three-prong approach: (1) AlloSite
v2.0 web-based server (https://mdl.shsmu.edu.cn/AST/Allosite/index.jsp, accessed on
7 March 2023), (2) AutoSite v1.0 software package [33], and (3) visual inspection. The
first two strategies identified not only established allosteric pockets but also revealed a
previously unrecognized pocket—termed the allo-closite pocket—at the junction of the
N-SH2, C-SH2, and PTP domains, distinct from the SHP099 binding site (Supplementary
Figure S3). The third approach involved manual examination of potential pockets in all
SHP2 closed conformations based on surface analysis. Upon comparing the allo-closite
pocket in both open and closed crystal structures of SHP2, we observed its absence in
the initial crystal structures, despite its stability in MD solution structures of closed SHP2
states. The allo-closite pocket encompasses residues His8, Asn10, Ile11, Thr12, Val14, Glu15,
Asn18, Leu19, Thr22, Arg23, Asn103, Cys104, Ala105, Asp106 (N-SH2 domain); Pro144,
Phe147, Cys174 to Tyr179, Asp188, Ser189 (C-SH2 domain); and Thr239 to Lys242 of the
PTP domain.

Integrating these findings, we delved into the dynamics of the allo-closite pocket, both
with and without the SHP099 inhibitor, to confirm its stability in all closed states of SHP2
(Figure 4). Based on CA distances between contributing SH2 and PTP domain residues, our
structural analysis revealed that the allo-closite pocket forms robustly in all closed SHP2
states, with constituent residues coalescing to establish a well-defined pocket. Conversely,
in the mtSHP2 state unbound to SHP099, we detected dynamic convergence of the SH2
domains and divergent movement of the PTP domain residues. After a 250 ns simulation
(Figure 4A), a notable CA distance divergence among the pocket-forming residues in
mtSHP2 unbound to SHP099 indicated pocket destabilization (Figure 4B). Intriguingly,
when bound to SHP099 (Figure 4C,D), the allo-closite pocket exhibited greater stability—
surpassing even the apo wtSHP2—highlighting the potential exclusivity of our identified
pocket in the closed state and its selective affinity, akin to that of SHP099.

https://mdl.shsmu.edu.cn/AST/Allosite/index.jsp
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closite pocket. (D) presents the CA distance (CA-dist) plot for SHP2 simulations when bound to
SHP099, which aids in assessing the pocket dynamics upon inhibitor binding.

2.3. Extensive Multi-Tiered Screening for Hit Compound Discovery
2.3.1. Hit Compound Identification

Our newly identified pocket underwent virtual screening against a cancer-specific small
molecule library from the NCI Open Database (https://cactus.nci.nih.gov/download/nci/
index.html, accessed on 28 March 2023). This rigorous process involved a three-tiered
screening approach designed to pinpoint potential hit compounds. Following a consensus
selection process after Tier I and Tier II screenings, the top 2000 compounds for both
wtSHP2 and mtSHP2 receptors were determined (Supplementary Table S2), leading to the
identification of 73 common top-hit compounds (Supplementary Table S3). Because of
large amounts of polar and charged residues in the allo-closite and the pocket’s shape, these
top hits underwent further scrutiny by visual inspection of their interactions with pocket
residues and their drug likeness, resulting in a selection of 18 promising, relatively planar
candidates for detailed analysis (Table 1), hereafter referred to as theoretical binding affinity
(t-BA) hits, as their selection was primarily based on their predicted t-BA values.

In pursuit of a broader scope of candidate compounds, we expanded our visual in-
spection beyond the top 2000 compounds to include those that did not reach the highest
ranks. This comprehensive evaluation considered the drug likeness, the binding orienta-
tions, and interactions with critical residues across the three domains, recognizing that
the molecule’s alignment is pivotal for effectively stabilizing the domain interfaces. This
exhaustive analysis yielded 21 additional potential compounds (Table 2). When contrasting
these compounds, referred to as human-visualized interaction (h-VI) hits, with the initial
set of t-BA hits (Table 1), no overlap was observed. Yet, a comparison with the 73 t-BA hits
from Supplementary Table S3 unveiled five shared hit compounds, demonstrating some
convergence between the selection methodologies.

https://cactus.nci.nih.gov/download/nci/index.html
https://cactus.nci.nih.gov/download/nci/index.html
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Table 1. The top 18 compounds selected from 73 common top-hit compounds at the end of Tier II
screening (affinity in kcal/mol).

Label
wtSHP2 + SHP099 mtSHP2 + SHP099

Molecule-ID Affinity Molecule-ID Affinity

C1 NSC-103858 −7.4 NSC-103858 −7.5
C2 NSC-106445 −7.7 NSC-106445 −7.9
C3 NSC-118695 −7.5 NSC-118695 −7.5
C4 NSC-121342 −7.3 NSC-121342 −7.2
C5 NSC-121974 −8.4 NSC-121974 −7.6
C6 NSC-210399 −7.5 NSC-210399 −7.2
C7 NSC-252124 −7.4 NSC-252124 −7.6
C8 NSC-261054 −7.4 NSC-261054 −7.3
C9 NSC-30502 −8.1 NSC-30502 −7.6

C10 NSC-39355 −7.3 NSC-39355 −7.4
C11 NSC-39913 −7.5 NSC-39913 −7.4
C12 NSC-39917 −7.5 NSC-39917 −7.7
C13 NSC-60678 −8.4 NSC-60678 −8.3
C14 NSC-67586 −7.4 NSC-67586 −7.4
C15 NSC-163300 −8.6 NSC-163300 −7.9
C16 NSC-23127 −6.2 NSC-23127 −7.5
C17 NSC-250352 −8.2 NSC-250352 −7.4
C18 NSC-74702 −7.8 NSC-74702 −7.9

Table 2. Manually selected top 21 compounds from the Tier I and Tier II screening (affinity in
kcal/mol).

Label
wtSHP2 + SHP099 mtSHP2 + SHP099

Molecule-ID Affinity Molecule-ID Affinity

C1 NSC-14757 −7.9 NSC-14757 −8.1
C2 NSC-153191 −8.1 NSC-153191 −7.6
C3 NSC-211584 −7.3 NSC-211584 −7.1
C4 NSC-299137 −7.8 NSC-299137 −7.7
C5 NSC-371876 −7.4 NSC-371876 −7.3
C6 NSC-380323 −7.6 NSC-380323 −7.5
C7 NSC-39909 −7.5 NSC-39909 −7.4
C8 NSC-39918 −9.7 NSC-39918 −7.5
C9 NSC-618161 −7.6 NSC-618161 −7.5

C10 NSC-637201 −7.8 NSC-637201 −8.1
C11 NSC-649243 −7.2 NSC-649243 −7.2
C12 NSC-649245 −7.7 NSC-649245 −7.5
C13 NSC-665127 −7.9 NSC-665127 −7.6
C14 NSC-747599 −7.3 NSC-747599 −7.2
C15 NSC-85195 −7.3 NSC-85195 −7.2
C16 NSC-103851 −7.4 NSC-103851 −7.4
C17 NSC-252174 −8.9 NSC-252174 −7.8
C18 NSC-400376 −7.7 NSC-400376 −7.5
C19 NSC-53298 −7.1 NSC-53298 −7.7
C20 NSC-63675 −7.1 NSC-63675 −7.2
C21 NSC-74671 −7.1 NSC-74671 −7.3

2.3.2. Protein–Ligand Interaction Profile Analysis

Next, we conducted an in-depth analysis of the protein–ligand interaction (PLI) profiles
for the 39 compounds selected through both t-BA and h-VI criteria. This examination began
with the top-hit compounds identified based on theoretical binding affinity (t-BA). The
PLI profiles for wtSHP2-b (Supplementary Figure S4) revealed predominant interactions
between the compounds and key pocket residues, including Asn10 and Glu15 from the
N-SH2 domain, along with Asp106, Glu139, Pro144, Phe147, Cys174, Gln175, Glu176, and
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Leu177 from the C-SH2 domain. For mtSHP2-b (Supplementary Figure S5), the PLI profiles
pinpointed critical interactions within the pocket, notably with His8, Glu15, Asn18, Arg23
from the N-SH2 domain; Asp106, Glu176 from the C-SH2 domain; and Asp241, Lys242
from the PTP domain.

For the compounds chosen based on human visualization interaction (h-VI) criteria,
the PLI profiles against wtSHP2-b (Supplementary Figure S6) indicated that the compounds
predominantly interact with Asn10, Lys35 from the N-SH2 domain; Asp106, His116, Glu139,
Pro144, Phe147, Gln175, Glu176, and Leu177 from the C-SH2 domain; and Glu238, Thr240,
Lys244, Glu249 from the PTP domain. The PLI profiles for mtSHP2-b (Supplementary
Figure S7) highlighted key compound interactions with residues His8, Glu15, Leu19, Thr22,
Arg23 from the N-SH2 domain; Asp106, Glu176, Tyr179 from the C-SH2 domain; and
Asp241 from the PTP domain.

In summary, nearly all 39 compounds meeting either t-BA or h-VI criteria form hydro-
gen bonds with multiple residues across different protein domains. Furthermore, many of
these compounds contain aromatic rings, facilitating additional hydrophobic or cation-π
interactions.

2.3.3. Potential Binding to Allo-Site-1

For comparison, we also conducted docking analysis of the 39 selected compounds
against the allo-site-1 pocket (on the receptor structure without SHP099, as in Tier I).
The analysis details and docking results are provided in Tables S4 and S5, respectively.
Notably, none of the 39 compounds exhibited high affinity for allo-site-1, when compared
with the binding affinity of −13 kcal/mol for SHP099 in the crystallographic pose [8].
Upon visualization of the binding poses, only NSC-163300, NSC-637201, NSC-39918, and
NSC-63675 were successfully inserted into the tunnel-like pocket. These compounds also
displayed the lowest predicted binding affinities among the 39 compounds tested. This
comparative analysis suggests that these compounds are less likely to compete effectively
for binding to allo-site-1, supporting our goal of using the compounds in a dual allosteric
inhibition scheme along with SHP099.

2.3.4. Stability Analysis via MD Simulations in Tier III Screening

Our Tier III screening involved MD simulations of complexes with selected hit com-
pounds. We conducted a total of 78 MD simulations for wtSHP2- and mtSHP2-ligand
systems to assess the stability of these complexes. Each hit compound complex underwent
a 100 ns production MD simulation, which allowed us to weed out weak binders within
the allo-closite pocket.

To gauge their dynamic stability, we monitored the root-mean-square deviation
(RMSD) of each hit compound. We established a threshold RMSD of 3 Å as the stability
criterion; compounds exhibiting an RMSD less than this value were deemed stable and
were selected for further scrutiny. Our visual analysis indicated that compounds with
RMSD under 3 Å maintained significantly greater stability and consistent orientation within
the pocket compared to those with RMSD values above 3 Å (Figure 5A,B).

Our findings identified 11 highly stable, 13 partially stable, and 15 unstable hit com-
pounds for wtSHP2. Correspondingly, for mtSHP2, we discovered 11 highly stable, 12
partially stable, and 16 unstable compounds. Notably, the highly stable compounds demon-
strated similar stability profiles in both wtSHP2 and mtSHP2, suggesting a favorable
selectivity for the closed state of SHP2 (Figure 5C,D). The partially stable and unstable
compounds, however, exhibited variability between the two receptor states.

Additionally, we extended the production molecular dynamic (MD) simulations for
the 11 highly stable compounds up to 500 ns as the crystal structures and analyzed their
RMSD fluctuations within allo-closite (Figure S8). Most compounds remain well-positioned
in the pocket, with RMSD under 3 Å. These extended simulations further underscore the
high stability of the identified compounds.
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wtSHP2 and mtSHP2 based on t-BA criteria. (B) Ligand RMSD based on h-VI criteria. (C) Stability
distributions in collective MDs. (D) Superposition of all ligands to show the ligand distributions in
the allo-closite pocket. (E) Conformational change of the allo-closite gate-keeper residues, forming
salt bridge upon binding of hit compounds. (F) 2D structures of 11 stable common compounds.

Finally, our simulations revealed evidence of induced fit within the pocket upon ligand
binding. The two critical gatekeeper residues, Arg23N-SH2 and Glu176C-SH2 (Figure 5E),
initially positioned approximately 17 Å apart, were observed to form a robust salt bridge
with a sub-3 Å distance upon full relaxation of the compounds at the end of the 100 ns
MD, enhancing pocket stability. Additionally, the polar segments of certain compounds
were occasionally seen approaching SHP099 in the allo-site-1 pocket, inducing a significant
rotation of the 1,4-dimethylpiperidin-4-amine moiety in SHP099. This observation suggests
the potential for crosstalk between the allo-closite and allo-site-1 pockets, possibly resulting
in increased SHP2 stability through a dual cooperativity mechanism. Figure 5F depicts
the 2D structures of select hit compounds that were consistently found to target the closed
state of the SHP2 protein.

3. Computational Details
3.1. Multi-Tier Molecular Docking

Given several closed states for SHP2 sharing similar structures with mutual RMSD
less than 1 Å, we went ahead to choose different receptors at different stages in our docking
screening, including wtSHP2-ub (closed-conformation, PDB ID: 2SHP [10]) initially, and
wtSHP2-b (closed-conformation, PDB ID: 5EHR [8]) and mtSHP2b (closed-conformation,
PDB ID: 6CRG [11]) simultaneously at the second stage.

Prior to initiating our screening approach, we first utilized RDKit (released 2023.03.1),
an open-source cheminformatics software [34,35], to refine the 0.26 million compounds
from the NCI Open Database. Utilizing a customized Python script, we pre-screened
compounds by stripping metal-containing compounds, acknowledging their potential
off-target interactions and toxicity risks. We also set a molecular weight threshold of
700 Daltons, emphasizing the importance of solubility and permeability in drug design.
Additionally, compounds with an absolute net charge of more than 1 a.u. are discarded to
discourage artificially strong electrostatic interactions in docking and to ensure targeted
binding efficacy and seamless membrane passage.

We begin with Tier I screening which includes docking of the pre-screened NCI
compounds targeting the SHP2 basal state without the SHP099 inhibitor, i.e., wtSHP2-ub.
The most dominant wtSHP2-ub MD solution conformation extracted from the k-mean
clustering analysis was utilized as a receptor structure for docking purposes [36,37]. ADFR
suite [38] and Meeko python package were used to prepare the protein and ligand structures.
AutoDock Vina v1.2.0 [39–41] was used in the docking runs. Details of docking setups
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can be found in Supplementary Table S4. Subsequently, after Tier I screening, we ranked
compounds based on theoretical binding affinity (t-BA) scores and chose the top 2000 hit
compounds for Tier II screening.

In Tier II screening, the top 2000 hits were further docked targeting SHP2 closed states
with the SHP099 inhibitor, i.e., wtSHP2-b and mtSHP2-b. Again, the most dominant MD
solution conformation extracted from the k-mean clustering analysis for each complex was
utilized as the receptor structure for docking purposes. Subsequently, compounds were
ranked based on t-BA-scores (Supplementary Table S2A,B).

For consensus docking results, we implemented two distinct selection criteria. The first
criterion (t-BA) relies on t-BA-scores to prioritize compounds. Here we sorted compounds
based on t-BA-scores for both receptors and then selected common compounds in the top
20 lists. This leads to six common top-hit compounds. We continued by selecting common
compounds in the top 40 lists that are not already selected in the top 20 lists. This leads to
11 additional common top-hit compounds. We continued this way for the top 60, top 80,
and top 100 lists, leading to a total of 73 consensus top hits (Supplementary Table S3). We
further visualized these top hits and selected 18 potential compounds for further analysis
(Table 1). In the h-VI criterion, we examined the spatial orientation of compounds within
the allo-closite pocket and their interactions with residues from all three domains of SHP2.
We not only visualized the top 2000 compounds, but also lower-ranked compounds. Finally,
we found a total of 21 potential compounds (Table 2).

3.2. MD Simulations

Four crystal structures were adopted for MD simulations, including ligand-free wild
type (PDB ID: 2SHP [10]) and mutant proteins (PDB ID: 6CRF [11]), and ligand-bound wild
type (PDBID: 5EHR [8]) and mutant proteins (PDB ID: 6CRG [11]). The missing loops of
all the crystal structures were modeled using Modeller in Chimera [42–45]. The ff19SB
force field was used to model proteins [46] and the TIP3P model [47] was used for water.
The Amber-compatible GAFF2 force field parameters [48] for all ligands were generated
with the Antechamber program of the AmberTools software suite version 2023 [37]. All
systems were solvated in a truncated octahedral box with a buffer of 8.0 Å and a NaCl
concentration of 150 mM in the LEaP program of AmberTools 2023 [37]. A 9.0 Å cutoff
was applied for the short-range electrostatic and nonbonded interactions. The long-range
electrostatics was handled with the PME approach with default settings [49]. All bonds to
the hydrogen atoms are constrained with the SHAKE algorithm [50,51] so that the leap-frog
method [52] with a 2 fs time step could be used for time integration. All simulations were
conducted with the PMEMD program for either the CPU or the GPU platform from the
Amber software suite version 2023 [36,53].

For each simulation, the initial minimization involved 2000 steps via the steepest de-
scent method, followed by an equal number of steps using the conjugate gradient technique.
During minimization, all protein and ligand heavy atoms were restrained with a force
constant of 10 kcal/mol-Å while hydrogen atoms and the solvents, including both water
molecules and ions, are allowed to relax. Next, a heating step over 200 ps was conducted,
starting from 0 K to 298 K with the Langevin thermostat [54] with a collision frequency of
1.0 per ps. Here the constant volume ensemble was used. Following the heating phase, an
equilibration phase was undertaken for 5 ns under the NPT ensemble with the Berendsen
barostat with default parameters [55], with the restraining force constant reduced to 5
kcal/mol-Å. The equilibration process was then repeated without any restraint. This was
followed by the final production run up to 500 ns in the NVT ensemble in the Berend-
sen thermostat [55]. MD simulations were repeated up to three times to collect sufficient
amount of data for conformational analysis. All MD trajectory analysis was conducted
with the CPPTRAJ program [56]. Specifically, the k-means clustering method was used to
extract dominant conformations from all trajectories and to detect conformational changes.
Clustering number was set to 10. The heavy atom (up to side-chain CB atoms) RMSD was
used as the distance metric.
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4. Conclusions and Future Directions

In this study, molecular dynamics (MD) simulations were utilized to elucidate the
structural and dynamic properties of SHP2 in both the wild-type (wtSHP2, closed state) and
the E76K mutant (mtSHP2, open state) conformations, examining monomeric and dimeric
forms as depicted in crystal structures. A comprehensive dataset was amassed from 28.6-µs
MD simulations in an explicit solvent model across various systems.

Our findings reveal that each domain of wtSHP2 retains substantial stability, whether
in monomer or dimer configuration. This stability is postulated to derive from the dense
organization of wtSHP2, where domains are tightly packed against each other. Transition-
ing to mtSHP2, the N-SH2 and PTP domains maintain stability comparable to wtSHP2.
However, the C-SH2 domain demonstrates increased flexibility, consistent with its less
defined electron density in the crystal structure, suggesting looser packing both intramolec-
ularly and intermolecularly. Notably, the crystal packing within the unit cell is significantly
different between wtSHP2 and mtSHP2. In wtSHP2, our MD simulations of solvated
monomers/dimers correspond well with the crystal structure. In contrast, the mtSHP2
presents a more complex packing, which may account for the disparities in domain stability
observed in our simulations.

Building on these structural insights, our simulations highlight the impacts of the
E76K mutation on the second allosteric binding site, where we observed a reduced binding
efficacy due to the site’s flat topology, which likely leads to increased inhibitor dissociation.
A pivotal aspect of our research was the identification of a new secondary binding pocket,
with the hope for robust and comprehensive inhibition of SHP2, especially in its mutant
form. This allo-closite pocket, situated at the interfaces of the N-SH2, C-SH2, and PTP
domains and remote from the SHP099 binding site, exhibited enhanced stability upon
SHP099 binding in comparison to the apo form of wtSHP2, signifying the pocket’s potential
as a selective target that operates via a conformation-selection mechanism.

To further substantiate our findings, we conducted a virtual screening of the predicted
pocket against the NCI cancer-specific small molecule library, implementing a three-stage
screening protocol. The screening process yielded 39 promising compounds, identified
through a consensus selection method complemented by human visualization after the ini-
tial screening phases. We then performed 100 ns MD simulations to weed out weak binders
among the selected compounds within the allo-closite pocket. From these simulations, 11
compounds emerged as highly stable, signifying their potential as hit compounds.

Looking forward, the intricate structural understanding of SHP2 and its mutants
obtained from this study opens new avenues for further research into novel therapeutic
interventions. Our findings underscore the potential of allosteric inhibitors, particularly
highlighting the importance of prolonged target binding for effective SHP2 suppression.
While our work is purely computational and requires experimental validation, the identifi-
cation and virtual screening validation of a novel allosteric pocket provides a compelling
hypothesis for future investigation. We encourage experimentalists within the scientific
community to explore this avenue further, following established strategies [11,12]. Contin-
ued research in this direction promises to refine drug design strategies, potentially leading
to more effective treatments for SHP2-associated cancers.
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