
UCLA
UCLA Previously Published Works

Title
DRF x : An Understandable, High Performance, and Flexible Memory Model for Concurrent
Languages

Permalink
https://escholarship.org/uc/item/22g1n45b

Journal
ACM Transactions on Programming Languages and Systems, 38(4)

ISSN
0164-0925

Authors
Marino, Daniel
Singh, Abhayendra
Millstein, Todd
et al.

Publication Date
2016-10-13

DOI
10.1145/2925988

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/22g1n45b
https://escholarship.org/uc/item/22g1n45b#author
https://escholarship.org
http://www.cdlib.org/

16

DRFx: An Understandable, High Performance, and Flexible Memory
Model for Concurrent Languages

DANIEL MARINO, Symantec Research Labs
ABHAYENDRA SINGH, Google Inc.
TODD MILLSTEIN, University of California, Los Angeles
MADANLAL MUSUVATHI, Microsoft Research, Redmond
SATISH NARAYANASAMY, University of Michigan, Ann Arbor

The most intuitive memory model for shared-memory multi-threaded programming is sequential consistency
(SC), but it disallows the use of many compiler and hardware optimizations and thus affects performance.
Data-race-free (DRF) models, such as the C++11 memory model, guarantee SC execution for data-race-free
programs. But these models provide no guarantee at all for racy programs, compromising the safety and
debuggability of such programs. To address the safety issue, the Java memory model, which is also based
on the DRF model, provides a weak semantics for racy executions. However, this semantics is subtle and
complex, making it difficult for programmers to reason about their programs and for compiler writers to
ensure the correctness of compiler optimizations.

We present the DRFx memory model, which is simple for programmers to understand and use while still
supporting many common optimizations. We introduce a memory model (MM) exception that can be signaled
to halt execution. If a program executes without throwing this exception, then DRFx guarantees that the
execution is SC. If a program throws an MM exception during an execution, then DRFx guarantees that the
program has a data race. We observe that SC violations can be detected in hardware through a lightweight
form of conflict detection. Furthermore, our model safely allows aggressive compiler and hardware optimiza-
tions within compiler-designated program regions. We formalize our memory model, prove several properties
of this model, describe a compiler and hardware design suitable for DRFx, and evaluate the performance over-
head due to our compiler and hardware requirements.

CCS Concepts: ! Computer systems organization → Multicore architectures; ! Software and its
engineering → Parallel programming languages; Concurrent programming languages;

Additional Key Words and Phrases: Sequential consistency, memory models, DRFx

ACM Reference Format:
Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2016.
DRFx: An understandable, high performance, and flexible memory model for concurrent languages. ACM
Trans. Program. Lang. Syst. 38, 4, Article 16 (September 2016), 40 pages.
DOI: http://dx.doi.org/10.1145/2925988

This work is supported by the National Science Foundation under awards CNS-0725354, CNS-0905149, and
CCF-0916770 as well as by the Defense Advanced Research Projects Agency under award HR0011-09-1-0037.
This work was performed while the first author was at the University of California, Los Angeles. Portions
of this work were published previously in Marino et al. [2010] and Singh et al. [2011a]. This journal article
synthesizes the material published earlier [Marino et al. 2010; Singh et al. 2011a].
Authors’ addresses: D. Marino (current address), Symantec Corporation, 900 Corporate Pointe, Culver City,
CA 90230; A. Singh (current address), Google Inc., 1600 Amphitheatre Parkway Mountain View, CA 94043;
S. Narayanasamy, Computer Science Department, University of Michigan, Ann Arbor; T. Millstein, Computer
Science Department, University of California, Los Angeles; M. Musuvathi, Microsoft Research, Redmond.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2016 ACM 0164-0925/2016/09-ART16 $15.00
DOI: http://dx.doi.org/10.1145/2925988

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:2 D. Marino et al.

1. INTRODUCTION
A memory consistency model (or simply memory model) determines the order in which
memory operations of a program appear to execute and, thus, the possible values a read
can return. Memory models impose a performance vs. programmability tradeoff. Weak
memory models allow more compiler and hardware optimizations and thus improve
runtime efficiency, while strong memory models simplify program behavior and hence
make it easier to build robust software.

A natural memory model for shared-memory concurrency is sequential consistency
(SC) [Lamport 1979]. The SC memory model, unlike the weaker memory models that
are prevalent today in both hardware and programming languages, enforces two crucial
programming abstractions: sequential composition and shared memory. Sequential
composition allows programmers to assume that the computer executes instructions
in the order specified in the program, despite the intricacies of compiler and hardware
optimizations. The shared memory abstraction allows programmers to assume that
there is a single logical copy of a variable that can be atomically read and written,
despite the complexity of the memory hierarchy. Almost all programmers assume SC
semantics when writing and reasoning about programs. Even expert programmers
typically design their programs to be correct under SC and then insert synchronization
primitives (such as fences) to prevent non-SC behaviors.

Given the intuitiveness of SC and the difficulty of reasoning about weak memory
models, it should come as a surprise that none of today’s concurrent programming
languages support the SC memory model. Instead, they support variations of a weaker
model called Data-race-free-0 (DRF0), which only guarantees SC for programs that are
data-race free, with no guarantees for other programs. The data-race freedom require-
ment allows the compiler and hardware to perform a wide range of sequentially valid
(i.e., correct on a single thread in isolation) optimizations without violating SC. Unfor-
tunately, guaranteeing data-race freedom requires a significant amount of discipline
on behalf of the programmer: Every memory location that can be accessed simulta-
neously by multiple threads (where at least one access is a write) must be explicitly
annotated as synchronization. A single oversight—forgetting to acquire a lock, acquir-
ing the wrong lock, or simply forgetting to annotate a variable as synchronization—can
introduce non-SC program behaviors that are hard to understand and debug.

Our position in this article is that given the already-difficult task of reasoning about
concurrent programs, programmers should never be required to reason about behaviors
other than SC, even if this comes at some performance cost. To that end, in this article
we explore a new memory model called DRFx that is a middle ground between SC and
DRF0. Specifically, any language supporting SC also supports DRFx (but not vice versa
in general), and any language supporting DRFx also supports DRF0 (but not vice versa
in general). DRFx allows most DRF0 optimizations but only within bounded regions of
code. Unlike DRF0, DRFx limits the effects of these optimizations on program behavior
by halting potentially non-SC executions with an exception. This fail-stop semantics is
the only non-SC behavior exposed to the programmer. Moreover, an exception indicates
the presence of a data race in the program, which can be fixed to prevent the exception
in the future.

One way to view DRFx is as an “optimistic” variant of SC, allowing most DRF0-
compliant optimizations but then halting the program if this leads to non-SC behavior.
An alternative approach that we have explored in follow-on research [Marino et al.
2011; Singh et al. 2012] is a “pessimistic” style, which modifies the compiler and hard-
ware to ensure SC for all program executions. Specifically, we show that by carefully
restricting compiler and hardware optimizations on non-thread-local accesses and by
relaxing the ISA to allow the compiler to inform the hardware about thread-local ac-
cesses, SC is achievable with acceptable performance overheads.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:3

We believe that both approaches to providing SC reasoning for programmers are
valuable and worth further study, since there are a complex set of tradeoffs between
them. For example, SC provides a simpler programming model than DRFx since the
former ensures SC behavior without raising exceptions. On the other hand, as we will
see, DRFx in fact ensures a stronger property than SC for exception-free executions, a
form of region serializability, which can potentially simplify reasoning about thread
interactions. As another example, DRFx allows most DRF0 optimizations and can eas-
ily incorporate future advances in DRF0-compliant optimizations but only within the
bounded scope of a single region of code. On the other hand, an SC compiler and hard-
ware can support arbitrary optimizations on thread-local variables, without having to
respect any region boundaries. Given these complex tradeoffs, which we expand on in
Section 8, we believe that both SC and DRFx are viable options as a strong memory
model for multithreaded programming. Either one would be a significant improvement
over DRF0.

1.1. The DRFx Memory Model
DRFx assumes (like DRF0) that data races are errors, and it dynamically detects and
halts executions that exhibit a data race [Adve et al. 1991; Elmas et al. 2007; Boehm
2009]. Such detection ensures that a program execution is SC unless it is halted by the
data-race detector. There are two major challenges in this approach. First, the data-
race detection must be precise, neither allowing a program to complete its execution
after a data race nor allowing a data-race-free execution to be erroneously rejected.
Precise data-race detection in software is very expensive, even with recent optimiza-
tions [Flanagan and Freund 2009], and hardware solutions [Adve et al. 1991; Muzahid
et al. 2009] are quite complex. Second, it is not sufficient to detect data races in the
compiled program; rather, giving an SC guarantee to programmers requires that data
races be detected relative to the original source program.

Our DRFx memory model addresses both of the challenges. We leverage the observa-
tion of Gharachorloo and Gibbons [1991] that to provide a useful guarantee to program-
mers, it suffices to detect only the data races that cause SC violations. They illustrate
that such detection for a compiled program can be much simpler than full-fledged
data-race detection. We describe a compiler and hardware co-design that lifts their
guarantees from the binary to the source program while retaining high performance
and implementation flexibility.

We introduce the notion of a dynamic memory model (MM) exception which halts a
program’s execution. DRFx guarantees two key properties for any program P:

—Data-Race Completeness: If an execution is terminated with an MM exception,
then P has a data race.

—SC Soundness: If an execution is not terminated with an MM exception, then that
execution is SC.

Together these two properties imply the DRF0 property: data-race-free programs obtain
SC semantics (and are never terminated with an MM exception). However, unlike
DRF0, the SC Soundness property allows programmers to safely reason about all
programs, whether data-race free or not, using SC semantics. Finally, the Data-Race
Completeness property ensures that MM exceptions cannot be raised spuriously but
only when the program has a data race.

While these properties provide strong guarantees to programmers, they are carefully
designed to admit implementation flexibility. For example, DRFx allows an MM exception
to be thrown even if SC is not violated, as long as the original program has a data race.
This is an acceptable result since, as with the DRF0 memory model, we consider a
data race to be a programmer error. Conversely, DRFx also allows a data-racy execution

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:4 D. Marino et al.

to continue without exception as long as it does not violate SC. As we will see, our
compiler and hardware designs make good use of this flexibility.

SC Soundness requires only that an SC violation will cause execution to halt with
an MM exception eventually, which also provides implementers significant flexibility.
However, an execution’s behavior is undefined between the point at which the SC
violation occurs and the exception is raised. The DRFx model therefore guarantees an
additional property:

—Safety: If an execution of P invokes a system call, then the observable program state
at that point is reachable through an SC execution of P.

Intuitively, the above property ensures that any system call in an execution of P would
also be invoked with exactly the same arguments in some SC execution of P. This prop-
erty ensures an important measure of safety and security for programs by prohibiting
undefined behavior from being externally visible.

1.2. A Compiler and Hardware Design for DRFx

Gharachorloo and Gibbons [1991] describe a hardware mechanism to detect SC vio-
lations. Their approach dynamically detects conflicts between concurrently executing
instructions. Two memory operations are said to conflict if they access the same mem-
ory location, at least one operation is a write, and at least one of the operations is not
a synchronization access. While simple and efficient, their approach guarantees the
SC Soundness and Race Completeness properties with respect to the compiled version
of a program but does not provide any guarantees with respect to the original source
program [Gharachorloo and Gibbons 1991; Ceze et al. 2009].

A key contribution of DRFx is the design and implementation of a detection mech-
anism for SC violations that properly takes into account the effect of both compiler
optimizations and hardware reorderings while remaining lightweight and efficient.
The approach employs a novel form of cooperation between the compiler and the hard-
ware. We introduce the notion of a region, which is a single-entry, multiple-exit portion
of a program. The compiler partitions a program into regions, and both the compiler and
the hardware may only optimize within a region. Each synchronization access must be
placed in its own region, thereby preventing reorderings across such accesses. It is also
required that each system call be placed in its own region, which allows DRFx to guar-
antee the Safety property. Otherwise, a compiler may choose regions in any manner in
order to aid optimization and/or simplify runtime conflict detection. Within a region,
both the compiler and hardware can perform most standard sequentially valid opti-
mizations. For example, unrelated memory operations can be freely reordered within
a region, unlike the case for the traditional SC model.

To ensure the DRFx model’s SC Soundness and Race Completeness properties with re-
spect to the original program, it suffices to detect region conflicts between concurrently
executing regions. Two regions R1 and R2 conflict if there exists a pair of conflict-
ing operations (o1, o2) such that o1 ∈ R1 and o2 ∈ R2. Such conflicts can be detected
using runtime support similar to conflict detection in transactional memory (TM) sys-
tems [Herlihy and Moss 1993]. As in TM systems, both software and hardware conflict
detection mechanisms can be considered for supporting DRFx. We pursue a hardware
detection mechanism since the required hardware logic is fairly simple and is similar
to existing bounded hardware transactional memory (HTM) implementations such as
Sun’s Rock processor [Dice et al. 2009], Intel’s Haswell [Intel Corporation 2012], and
IBM’s Blue Gene/Q [Haring et al. 2012]. A DRFx compiler can bound the number of mem-
ory bytes accessed in each region, enabling the hardware to perform conflict detection
using finite resources. While small regions limit the scope of compiler and hardware
optimizations, we discuss an approach in Section 6 that allows us to regain most of the

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:5

lost optimization potential. Specifically DRFx hardware can execute and commit regions
out-of-order, coalesce regions to reduce the number of conflict checks, and exploit tem-
poral locality to exclude a significant fraction of accesses from participating in conflict
detection. These optimizations significantly improve upon the performance overhead
of the baseline hardware design for SC violation detection.

1.3. Contributions
This article makes the following contributions:

—We define the DRFx memory model for concurrent programming languages via three
simple and strong guarantees for programmers (Section 2). We also establish a set
of conditions on a compiler and hardware design that are sufficient to provide these
three guarantees.

—We present a formalization of the DRFx memory model as well as of the compiler
and hardware requirements (Section 3). We have proven these requirements are
sufficient to enforce DRFx.

—We describe a detailed compiler and micro-architecture design that instantiates our
approach (Section 5 and 6). In our design, the compiler ensures that regions have a
bounded size, allowing a processor to detect conflicts using finite hardware resources.
We describe a novel approach to regain most of the lost optimization potential due to
small region sizes. The hardware detects conflicts lazily, and we describe several opti-
mizations to our basic detection mechanism. We have implemented a DRFx-compliant
C compiler by modifying LLVM compiler [Lattner and Adve 2004] and have built a
simulator for the two DRFx-compliant hardware designs using the Simics-based FeS2
simulator [Neelakantam et al. 2008].

—We evaluate the performance cost of our compiler and hardware instantiations in
terms of lost optimization opportunity for programs in the PARSEC and SPLASH-2
benchmark suites (Section 7). The results show that the performance overhead is on
average 9.6% when compared to the baseline fully optimized implementation.

—We discuss the lessons we learned from this project, including limitations and chal-
lenges of our approach that we had not anticipated and the relationship to our work
on ensuring SC for all programs.

2. MOTIVATION AND OVERVIEW
This section motivates the problem addressed in the article and provides an overview
of our solution through a set of examples.

2.1. Data Races
Two memory accesses conflict if they access the same location and at least one of them is
a write. A program state is racy if two different threads are about to execute conflicting
memory accesses from that state. A program contains a data race (or simply a race) if
it has a sequentially consistent execution that reaches a racy state. Consider the C++
example in Figure 1(a). After thread t executes the instruction A, the program enters
a racy state in which thread t is about to write to init while thread u is about to read
that same variable. Therefore the program contains a data race.

2.2. Compiler Transformations in the Presence of Races
It is well known that sequentially valid compiler transformations, which are correct
when considered on a single thread in isolation, can change program behavior in the
presence of data races [Adve and Hill 1990; Gharachorloo et al. 1990; Manson et al.
2005]. Consider the C++ example from Figure 1(a). Thread t uses a Boolean variable
init to communicate to thread u that the object x is initialized. Note that although

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:6 D. Marino et al.

Fig. 1. (a) Original program. (b) Transformed program.

Fig. 2. Correct, data-race-free version of program from Figure 1.

the program has a data race, the program will not incur a null dereference on any SC
execution.

Consider a compiler optimization that transforms the program by reordering instruc-
tions A and B in thread t. This transformation is sequentially valid, since it reorders
independent writes to two different memory locations. However, this reordering intro-
duces a null dereference (and violates SC) in the interleaving shown in Figure 1(b).1
The same problem can occur as a result of out-of-order execution at the hardware level.

To avoid SC violations, languages have adopted memory models based on the DRF0
model [Adve and Hill 1990]. Such models guarantee SC for programs that are free
of data races. The data race in our example program can be eliminated by explicitly
annotating the variable init as atomic (volatile in Java 5 and later). This annotation
tells the compiler and hardware to treat all accesses to a variable as “synchronization.”
However, two reads to variables tagged with volatile annotation do not induce a par-
tial order among themselves. As such, (many) compiler and hardware reorderings are
restricted across these accesses, and concurrent conflicting accesses to such variables
do not constitute a data race. As a result, the revised C++ program shown in Figure 2
is data-race free and its accesses cannot be reordered in a manner that violates SC.

2.3. Writing Race-Free Programs Is Hard
For racy programs, on the other hand, DRF0 models provide much weaker guarantees
than SC. For example, the C++11 memory model [Boehm and Adve 2008] considers
data races as errors akin to out-of-bounds array accesses and provides no semantics to
racy programs. This approach requires that programmers write race-free programs
in order to be able to meaningfully reason about their program’s behavior. But races
are a common flaw, and thus it is unacceptable to require a program be free of these
bugs in order to reason about its behavior. As an example, consider the program in
Figure 3 in which the programmer attempted to fix the data race in Figure 1(a) using
locks. Unfortunately, the two threads use different locks, an error that is easy to make,
especially in large software systems with multiple developers.

1Although this “optimization” may seem contrived, many compiler optimizations, for example common-
subexpression elimination and loop-invariant code motion, can have the effect of reordering accesses to
shared memory.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:7

Fig. 3. An incorrect attempt at fixing the program from Figure 1.

Fig. 4. A program with a data race may or may not exhibit SC behavior at runtime. (a) Interleaving that
exposes the effect of a compiler/hardware reordering under relaxed memory model. (b) Interleaving that
does not.

Unlike out-of-bounds array accesses, there is no comprehensive language or library
support to avoid data-race errors in mainstream programming languages. Further,
like other concurrency errors, data races are nondeterministic and can be difficult to
trigger during testing. Even if a race is triggered during testing, it can manifest itself
as an error in any number of ways, making debugging difficult. Finally, the interaction
between data races and compiler/hardware transformation can be counter-intuitive to
programmers, who naturally assume SC behavior when reasoning about their code.

2.4. Detecting Data Races Is Expensive
This problem with prior data-race-free models has led researchers to propose to detect
and terminate executions that exhibit a data race in the program [Adve et al. 1991;
Boehm 2009; Elmas et al. 2007]. Note that it is not sufficient to only detect executions
that exhibit a strictly simultaneous data race. While the existence of such an execution
implies the existence of a data race in the program, other executions can also suffer from
SC violations. Figure 4(a) shows such an execution for the improperly synchronized
code in Figure 3. When executing under a relaxed memory model, statements B and C
can be reordered. The interleaving shown in Figure 4(a) suggests an execution where
the racing accesses to init do not occur simultaneously, but non-SC behavior (null
dereference upon executing statement G) can occur. The execution has a happened-
before data race [Lamport 1978; Fidge 1991; Mattern 1989].

Unfortunately, precise dynamic data-race detection either incurs 8× or more perfor-
mance overhead in software [Flanagan and Freund 2009] or incurs significant hard-
ware complexity [Prvulovic and Torrelas 2003; Muzahid et al. 2009]. The cost is due to
the need to build a happened-before graph [Lamport 1978] of the program’s dynamic
memory accesses in order to detect races. A pair of racy accesses can be executed
arbitrarily “far” away from each other in the graph. This increases the overhead of

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:8 D. Marino et al.

Fig. 5. The relationships among various properties of a program execution.

software-based detection and requires hardware-based detection to properly handle
events like cache evictions, context switches, and so on. Imprecise race detectors can
avoid some of these problems [Sen 2008; Marino et al. 2009a; Bond et al. 2010] but
cannot guarantee to catch all SC violations, as required by the DRFx memory model.

2.5. Detecting SC Violations Is Enough
Although implementing DRFx requires detecting all races that may cause non-SC be-
havior, there are some races that do not violate SC [Gharachorloo and Gibbons 1991].
Thus, full happened-before race detection, while useful for debugging, is overly strong
for simply ensuring executions are SC. For example, even though the interleaving in
Figure 4(b) contains a happened-before data race, the execution does not result in a
program error. The hardware guarantees that all the memory accesses issued while
holding a lock are completed before the lock is released. Since the unlock at D completes
before the lock at E, the execution is sequentially consistent even though the compiler
reordered the instructions B and C. Therefore, the memory model can safely allow this
execution to continue. On the other hand, executions like the one in Figure 4(a) do in
fact violate SC and should be halted with a MM exception.

The Venn diagram in Figure 5 clarifies this argument (ignore the RCF and RS sets
for now). SC represents the set of all executions that are sequentially consistent with
respect to a program P. DRF is the set of executions that are data-race free. To satisfy
the SC Soundness and Data-Race Completeness properties described in Section 1, all
executions that are not in SC must be terminated and all executions in DRF must be
accepted. However, the model allows flexibility for executions that are not in DRF but are
in SC: It is acceptable to admit such executions since they are sequentially consistent,
but it is also acceptable to terminate such executions since they are racy. This flexibility
allows for a much more efficient detector than full-fledged race detection, as described
below.

The DRFx memory model only guarantees that non-SC executions eventually termi-
nate with an exception. This allows SC detection to be performed lazily, thereby fur-
ther reducing the conflict detector’s complexity and overhead. Nevertheless, the Safety
property described in Section 1 guarantees that an MM exception is thrown before the
effects of a non-SC execution can reach any external component via a system call.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:9

2.6. Enforcing the DRFx Model
The key idea behind enforcing the DRFx model is to partition a program into regions.
Each region is a single-entry, multiple-exit portion of the program. Both the hardware
and the compiler agree on the exact definition of these regions and perform program
transformations only within a region. Each synchronization operation and each system
call is required to be in its own region. For instance, one possible regionization for the
program in Figure 3 would make each of {B,C} and {F,G} a region and put each lock and
unlock operation in its own region.

During execution, the DRFx runtime signals an MM exception if a conflict is detected
between regions that are concurrently executing in different processors. We define two
regions to conflict if there exists any instruction in one region that conflicts with any
instruction in the other region. More precisely, we only need to signal an MM exception
if the second of the two conflicting accesses executes before the first region completes.
In the interleaving of Figure 4(b), no regions execute concurrently and thus the DRFx
runtime will not throw an exception, even though the execution contains a data race.
On the other hand, in the interleaving shown in Figure 4(a), the conflicting regions
{B,C} and {F,G} do execute concurrently, so an MM exception will be thrown.

2.7. From Region Conflicts to DRFx

The Venn diagram in Figure 5 illustrates the intuition for why the compiler and hard-
ware co-design overviewed above satisfies the DRFx properties. If a program execution is
data-race free (DRF), then concurrent regions will never conflict during that execution,
that is, the execution is region-conflict free (RCF), so an MM exception will never be
raised. Since synchronization operations are in their own regions, this property holds
even in the presence of intra-region compiler and hardware optimizations, as long as the
optimizations do not introduce speculative reads or writes. This reasoning establishes
the Data-Race Completeness property of the DRFx model. Further, if an execution is
RCF, then it is also region-serializable (RS): It is equivalent to an execution in which
all regions execute in some global sequential order. That property in turn implies the
execution is SC with respect to the original program. Again, this property holds even in
the presence of non-speculative intra-region optimizations. This reasoning establishes
the SC Soundness property of the DRFx model.

In general, each of the sets illustrated in the Venn diagram is distinct: There exists
some element in each set that is not in any subset. In some sense, this fact implies
that the notion of region-conflict detection is just right to satisfy the two main DRFx
properties. On the one hand, it is possible for a racy program execution to nonetheless
be region-conflict free. In that case, the execution is guaranteed to be SC, so there is no
need to signal an MM exception. This situation was described above for the example in
Figure 4(b). On the other hand, it is possible for an SC execution to have a concurrent
region conflict and therefore trigger an MM exception. Although the execution is SC,
it is nonetheless guaranteed to be racy. For example, consider again the program in
Figure 3. Any execution in which instructions B and C are not reordered will be SC,
but with the regionization described earlier some of these executions will trigger an
MM exception.

2.8. The Compiler and the Hardware Contract
The compiler and hardware are allowed to perform any transformation within a region
that is consistent with the single-thread semantics of the region, with one limitation:
The set of memory locations read (written) by a region in the original program should be
a superset of those read (written) by the compiled version of the region. This constraint
ensures that an optimization cannot introduce a data race in an originally race-free

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:10 D. Marino et al.

Fig. 6. A transformation that introduces new memory reads.

program. Note that a DRF0-compliant compiler is also forbidden from adding new
memory writes into the compiled code, since that can introduce a race that changes
program behavior. However, a DRF0-compliant compiler can add new memory reads,
since such a race is harmless on non-race-detecting hardware [Boehm and Adve 2008].

Many traditional compiler optimizations (constant propagation, common subexpres-
sion elimination, dead-code elimination, etc.) satisfy the constraints above and are thus
allowed by the DRFx model. Figure 6 describes an optimization that is disallowed by
the DRFx model but allowed under DRF0. Figure 6(a) shows a loop that writes into
each cell of an array. A transformation that allocates a register for the loop-invariant
computation x+y is shown in Figure 6(b). However, on code paths in which the loop is
never entered, this transformation introduces reads of x and y. While such behavior
is harmless for sequential programs, it can introduce a race with another thread that
modifies one of these variables. One way to avoid introducing reads is to explicitly check
that the loop is executed at least once, as shown in Figure 6(c). The DRFx model allows
the transformation with this modification, although our current compiler implemen-
tation simply disables the transformation. In spite of this, the experimental results in
Section 7 indicate that the performance reduction due to lost compiler optimizations is
reasonable, on average 6.2% on the evaluated benchmarks.

In addition to obeying the requirement above, the hardware is also responsible for
detecting conflicts on concurrently executing regions. While performing conflict detec-
tion in software would avoid the need for special-purpose hardware, conflict detection
in software can lead to unacceptable runtime overhead due to the need for extra com-
putation on each memory access. On the other hand, performing conflict detection in
hardware is efficient and lightweight, as demonstrated by the TM support in several
existing processors [Dice et al. 2009; Intel Corporation 2012; Haring et al. 2012]. DRFx
hardware can actually be simpler than TM hardware, since speculation support is not
needed. Further, unlike in a TM system, the DRFx compiler can partition a program
into regions of bounded size, thereby further reducing hardware complexity by safely
allowing conflict detection to be performed with fixed-size hardware resources.

Having the compiler bound the size of regions is essential for efficient hardware
detection, but the fences inserted by the compiler for the purposes of bounding should
not unnecessarily disallow hardware optimizations. As such, the DRFx implementation
supports two types of fences: hard fences that surround synchronization operations
and system calls, and soft fences that are inserted only for the purposes of bounding
region size. Both the implementation and the formalism account for the fact that the
hardware can perform certain optimizations across soft fences that it must not perform
across hard fences.

3. FORMAL DESCRIPTION OF DRFx

This section describes the formalization of the DRFx model. Preliminary notation and
definitions are introduced in Section 3.1. A formal set of requirements sufficient to
establish the DRFx guarantees is broken down into the responsibilities of the compiler
and those of the execution environment. The execution environment implementation
described in this section is hardware but could potentially be a software interpreter

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:11

or some combination of hardware and software. Section 3.2 formally presents the re-
quirements that DRFx places on the compiler and establishes two key lemmas relating
a source program to the output of a DRFx-compliant compiler. In Section 3.3 the respon-
sibilities of the execution environment are formalized and two important properties of
a DRFx-compliant execution are established. Finally, Section 3.4 uses these results to
establish the properties of the DRFx model. Full proofs are omitted here, but the inter-
ested reader can find them in prior technical reports [Marino et al. 2009b; Singh et al.
2011b].

3.1. Preliminary Definitions
A program P is a set of threads T1, T2, . . . , Tn where each thread is a sequence of
deterministic instructions including:

—regular loads and stores (regular accesses)
—atomic loads and stores (atomic operations)
—branches and arithmetic operations on registers
—a special END instruction indicating the end of a thread’s execution
—fence instructions (a hard fence HFENCE and a soft fence SFENCE) used only in compiled

programs

Note that we assume the source language and target language are the same (actu-
ally the source language is a subset of the target language), so both source programs
and compiled programs are represented in the same way. An argument extending the
results to a high-level source language will be presented later.

We assume the semantics of our language is given in terms of how an instruction
changes a machine state M that contains shared global memory locations as well as a
separate set of local registers for each thread. This semantics dictates how a thread’s
abstract execution proceeds. We write (M, I) −→T (M̂, Î) to mean that executing in-
struction I in machine state M results in machine state M̂ with Î poised to execute next
in thread T . We write (M, I) −→∗

T (M̂, Î) to indicate several steps of execution (tran-
sitive closure of above). Fence instructions behave as no-ops: (M, HFENCE) −→T (M, I),
where I is the next instruction in program order in T and similarly for SFENCE.

We extend the notion of a thread’s abstract execution to a program by having ex-
ecution proceed by choosing any thread and executing a single instruction from that
thread. We write:

(M, {I1, . . . , Ij, . . . , In}) −→P (M̂, {I1, . . . , Îj, . . . , In})

if (M, Ij) −→T j (M̂, Îj). We call one or more of these steps a (partial) abstract sequential
execution:

(M, {I1, . . . , In}) −→∗
P (M̂, { Î1, . . . , În}).

We define a behavior to be a pair of machine states and denote it by Mstart ! Mend.
Intuitively, we use behaviors to describe a starting machine state and a machine state
that is arrived at after executing some or all of a program. The standard notion of
sequential consistency can be phrased in terms of behaviors and abstract sequential
executions.

Definition 1. M0 ! M is a sequentially consistent behavior for a program P, or M0 !
M is SC for P, if there exists an abstract sequential execution (M0, {I10, . . . , In0}) −→∗

P

(M, {END, . . . , END}) where each Ii0 is the first instruction in thread Ti. We say that
M0 ! M is a sequentially consistent partial behavior for P if there is a partial abstract
sequential execution (M0, {I10, . . . , In0}) −→∗

P (M, {I1, . . . , In}) where each Ii0 is the first
instruction in thread Ti.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:12 D. Marino et al.

We say that two memory access instructions u and v conflict if they access the same
memory location, at least one is a write, and at least one is a regular access. We say
that a program has a data race if it has a partial abstract sequential execution where
two conflicting accesses are ready to execute. More formally:

Definition 2. A program P has a data race if for some M0, u, v,

(M0, {I10, . . . , In0}) −→∗
P (M, {I1, . . . , u, . . . , v, . . . , In}),

where each Ii0 is the first instruction in thread Ti and u and v are conflicting accesses.
We shall say that such a partial abstract sequential execution exhibits a data race.

This canonical, formal definition captures the notion of a simultaneous data race in
an abstract sequential execution. As discussed in Section 2.4, optimized, racy programs
can yield results that are not sequentially consistent even on executions where a strict
simultaneous data race does not occur. Such executions exhibit a happened-before
data race, where conflicting accesses are not ordered by any atomic synchronization
operations. In several of our proofs, we look for a happened-before data race in an
execution and then rearrange the execution trace to generate a valid execution of the
program that exhibits a simultaneous data race.

3.2. DRFx-Compliant Compilation
As described informally in Section 2, one of the responsibilities of a DRFx-compliant
compiler is to divide a program into code regions that satisfy several requirements.
We formally capture these requirements with the notion of a valid thread partition,
introduced here.

A partition Q of a thread T is a set of disjoint, contiguous subsequences of T that
cover T . Call each of these subsequences a region. Regions will be denoted by the
metavariable R.

Definition 3. A partition Q is valid if:

—each atomic operation and END operation is in its own region
—each region has a single entry point (i.e., every branch has a target that is either in

the same region or is the first instruction in another region)

We extend the notion of abstract execution of a thread from instructions to regions
as follows. We write (M, R) −→T (M̂, R̂) if (M, I1) −→T · · · −→T (M̂, In), where

—I1 is the first instruction in R,
—I2, . . . , In−1 ∈ R,
—Ik ̸= I1 for each 2 ≤ k < n, and
—In is the first instruction in region R̂ (it is possible that R̂ = R).

For threads with valid partitions, (M, R) −→T (M̂, R̂) intuitively means that begin-
ning with memory in state M, executing the instructions in R in isolation will result
in memory having state M̂ and T ready to execute the first instruction in region R̂.
Extending this to programs, an abstract region-sequential execution is one where a
scheduler arbitrarily chooses a thread and executes a single region from that thread.

We can now formally introduce the notion of region serializability, which will be the
key to establishing that an execution of the optimized, compiled program is sequentially
consistent with respect to the source program. We define region-serializable behavior
for a program P in terms of an abstract region-sequential execution.

Definition 4. We say M0 ! M is region-serializable behavior, or RS, for P with
respect to thread partitions Qi if there is an abstract region-sequential execution

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:13

(M0, {R10, . . . , Rn0}) −→∗
P (M, {R1, . . . , Rn}), where each Ri0 is the first region given

by partition Qi for thread Ti.

Now let us introduce notation for the read and write sets for a region given a starting
memory state. read(M, R) is the set of locations read when executing R in isolation
starting from memory state M. write(M, R) is defined similarly. Note that these are
sets and not sequences.

We can now describe the requirements the DRFx model places on a compiler. Consider
a compilation P ! P ′ where each thread Ti in P is partitioned into some number, mi,
of regions by Qi. So we have

P = {T1, . . . , Tn} = {R11 · · · R1m1 , . . . , Rn1 · · · Rnmn}.
Furthermore, the compiled program has the same number of threads and each is
partitioned by some Q′

i into the same number of regions as in the original program. So
we have

P ′ = {R′
11 · · · R′

1m1
, . . . , R′

n1 · · · R′
nmn

}.

We consider such a compilation to be DRFx-compliant if:

(C1) The partitions Qi and Q′
i are valid.

(C2) For all i, j, M, we have (M, Rij) −→Ti (M̂, Rik) ⇐⇒ (M, R′
i j) −→T ′

i
(M̂, R′

ik)
(C3) For all i, j, M, we have read(M, Rij) ⊇ read(M, R′

i j) and write(M, Rij) ⊇
write(M, R′

i j)
(C4) Each region R′

i j in the compiled program contains exactly one fence operation
and it is the first instruction. Each of the fences surrounding an atomic operation
must be an HFENCE. The fence preceding an END operation also must be an HFENCE.

Intuitively, the above definition of a DRFx-compliant compilation requires that a DRFx-
compliant compiler choose valid partitions for a program’s threads, perform optimiza-
tions only within regions, maintain the read and write sets of each region, and introduce
HFENCE and SFENCE instructions to demarcate region boundaries. These fence instruc-
tions communicate the thread partitions chosen by a DRFx-compliant compiler to the
execution environment. In the next section, we will refer to these as the fence-induced
thread partitions of a program.

We now state the two key lemmas we have proven for DRFx-compliant compilations.

LEMMA 1. If P ! P ′ is a DRFx-compliant compilation and M0 ! M is a region-
serializable behavior for P ′ with respect to its fence-induced thread partitions, then
M0 ! M is a (partial) sequentially consistent behavior for P.

PROOF SKETCH. We can transform an abstract region-sequential execution of P ′ to
an abstract region-sequential execution of P due to (C2). Clearly an abstract region-
sequential execution qualifies as an abstract sequential execution.

LEMMA 2. If P ! P ′ is a DRFx-compliant compilation and P ′ has a data race, then P
has a data race.

PROOF SKETCH. Essentially, we take a partial abstract sequential (but not necessar-
ily region-sequential) execution of P ′ that exhibits a simultaneous data race, truncate
it to the earliest happened-before data race, and reorder the truncated trace while
maintaining program dependencies to achieve a trace of P ′ with a region-sequential
prefix and a suffix containing a simultaneous race. The ability to perform this reorder-
ing and achieve a region-sequential prefix relies critically on (C1), which insists that
atomic accesses are in their own region. We can then use (C2) and (C3) to construct an

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:14 D. Marino et al.

abstract sequential execution of P exhibiting a (possibly different) data race from the
racy execution of P ′.

Full proofs for the lemmas in this section can be found in Marino et al. [2009b].

3.3. DRFx-Compliant Execution
We now formally specify the requirements that the DRFx model places on a machine
executing a program. Note that the requirements for the execution environment are
cleanly separated from those for the compiler. All references to a program in this section
refer to a compiled, optimized program and not to the original source program.

Unlike compilers, machines do not typically perform optimizations that completely
transform the input program. They more or less faithfully execute the instructions
given to them, reordering instruction execution and locally speculating in order to
avoid expensive stalls. This difference is reflected in our formal description of a relaxed
execution which records traces of instructions from the input program along with
memory ordering information. It is also crucial for our formalism to model the data
race detection mechanism in order to prove both Data-Race Completeness (we must
show that all detections truly indicate a racy program) and SC-Soundness (we must
establish that the lack of a detection precludes certain dynamic memory orderings that
would violate region serializability). Note that data-race detection is performed for each
region, but just like a machine may have multiple instructions in flight and execute
them out of order, a machine may also have multiple regions in flight and perform
conflict detection for them out of order, subject to certain restrictions.

We will represent a (partial) relaxed execution, E, of a program as a 5-tuple E =
(M0, T , EO, RCS, err). Each of the components is described below:

—M0 is the initial machine state
—T is a set of individual, dynamic thread traces (T = {τ1, . . . , τn}). Each thread trace

τi contains all of the instructions executed so far in thread i starting with the first
instruction and continuing in program order without skipping over any instructions.
(Note that any out-of-order instruction execution performed by the machine is not
captured by these traces.) We call this order TO; it totally orders the dynamic in-
structions executed within a thread and is a partial order on all instructions in the
program execution.

Each thread trace is divided into dynamic regions (notated using metavariable
ρ), with all instructions between two fence instructions in the trace belonging to
one dynamic region. This is referred to as the fence-induced partition. We call the
fence-induced partition valid if all atomic operations are immediately surrounded by
HFENCE instructions. Although, strictly speaking, TO is a relation on instructions, we
will also use it to order dynamic regions within a thread trace.

—EO is a relation that specifies a partial order on memory accesses. If two operations u
and v access the same memory location and at least one of them is a write, then either
u <EO v or v <EO u. Furthermore, two operations that do not access the same memory
location are not related by EO. EO uniquely defines the write whose value each read
sees (i.e., the most recent write to the same location in EO). Note that EO ∪ TO may
contain cycles, so the relaxed orderings allowed by optimizations such as out-of-order
execution and store buffers are captured by EO rather than by the thread traces.

—RCS is a map from dynamic regions to a conflict detection state in the set
{uncommitted, lagging, committed}. Intuitively, RCS models a conflict detection mech-
anism that works on the fence-demarcated regions and moves them through three
states as they execute, from uncommitted, possibly to lagging, and, finally, to
committed when detection successfully completes with no region conflict found. A
conflict detection mechanism may commit SFENCE bounded regions out of program

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:15

order, and a lagging region is one that has not yet committed but for which a later
region has committed.

—err is either ∅ or a single element of EO, u <EO v. Intuitively, a non-empty err will
indicate a conflicting pair of accesses in concurrently executing regions which triggers
an MM exception. An execution that has err = ∅ is called exception-free, while an
execution where err ̸= ∅ is called exceptional.

We further define a hardware dependence partial order, D, that captures intra-thread
data and control dependencies. D is a subset of TO and orders a read before a TO-
subsequent memory access if the value returned from the read is used to compute: the
address accessed by the subsequent instruction, the value written by the subsequent
instruction, or the condition used by an intervening branch.2 D also orders writes to a
location before TO-subsequent accesses to the same location.

We say that an execution E = (M0, T , EO, RCS, err) is well formed for a program P if
all of the following conditions are met:

(WF1) Each thread trace τi represents a valid sequential execution of thread i in P
given that each read sees the value written by the (unique) closest preceding
write in EO. [Instruction semantics are respected.]

(WF2) EO is consistent with D in the sense that u <D v =⇒ ¬v <EO u. Furthermore,
EO|wr ∪ D must be acyclic, where EO|wr is the subset of EO containing only write-
to-read (i.e., read-after-write) dependencies (u <EO|wr v ⇐⇒ u <EO v ∧ u a write ∧
v a read). [Execution order respects intra-thread dependencies, and speculative
writes are not visible to other threads.]

(WF3) A committed or lagging region never follows an uncommitted region in a thread
trace. That is, if there is some ρ such that RCS(ρ) = uncommitted, then for all
ρ ′ such that ρ <TO ρ ′, RCS(ρ ′) = uncommitted. [All uncommitted regions appear
consecutively at the end of each thread trace.]

(WF4) A lagging region always has some committed region following it in its thread
trace. That is, for all ρ such that RCS(ρ) = lagging, there exists some ρ ′ such that
ρ <TO ρ ′ and RCS(ρ ′) = committed. [A lagging region always has a later region
that committed out of order.]

(WF5) All regions preceding an HFENCE in a thread trace are committed. No thread
trace contains an atomic access without an HFENCE immediately following it.
[An HFENCE stalls until conflict detection for all prior regions completes.]

Intuitively, conditions (WF1) and (WF2) simply ensure that our machine correctly exe-
cutes instructions and obeys intra-thread data and control dependencies. In particular,
Condition WF2 prevents a machine from speculatively writing a value and making it
visible to other threads before a read on which the write depends completes.3

Conditions (WF3) and (WF4) establish some basic conditions that we assume for
a conflict detection mechanism. Multiple uncommitted regions may be in-flight in a

2Note that even “artificial” dependencies, where a computation uses a value read from memory in such a
way that it does not actually influence the subsequent instruction (for instance, the read value is XOR’d with
itself always resulting in 0), are included in D.
3It is interesting to note that the conditions for a DRFx-compliant compilation do allow optimizations that
introduce a speculative write within a region, as long as they do not change the read and write sets of any
abstract execution of the region. Even so, “out-of-thin-air” results due to such optimizations are prevented
by either detecting a data race or ensuring region serializable behavior during execution of the compiled
program. By prohibiting the hardware from making speculative writes visible to other threads, we facilitate
our proof that if the hardware raises a data-race exception, then the program indeed has a data race. While
we could likely relax this prohibition using something similar to the compiler’s requirement to maintain read
and write sets on all executions, this seems unnecessarily complex given that most hardware architectures
already satisfy the condition.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:16 D. Marino et al.

thread simultaneously. Regions may commit out of order, but when this happens, prior
uncommitted regions in the same thread must be classified as lagging regions. Condi-
tion (WF5) establishes that HFENCE instructions force all prior regions to commit. Fur-
thermore, atomic operations may not complete (i.e., become visible to other threads)
until their region is committed and the succeeding HFENCE is executed.

A well-formed execution has well-defined behavior and a conflict detection state that
meets some basic structural conditions, but we have not yet specified what conflicts
must be detected in order to establish the DRFx guarantees. To be DRFx compliant, an
exception-free execution must exhibit region-serializable behavior, and an exceptional
execution must imply a racy program. We have devised a set of conditions on the conflict
detection mechanism that suffice to establish compliance. They essentially require a
machine to commit a region only after all accesses in the region are complete and
globally visible, and only if it can guarantee that the region’s accesses either do not
conflict with, or are memory-ordered before, any accesses in uncommitted regions on
other threads. The conditions allow some flexibility to commit SFENCE-bounded regions
out of order but ensure that memory ordering cycles cannot be introduced as a result
of the lagging regions. Finally, the conditions require that the detection mechanism
reports an exception only if there truly are conflicting accesses on different threads,
neither of which is from a region that has already committed.

Formally, we call a well-formed execution E = (M0, T , EO, RCS, err) DRFx compliant if
it satisfies all of the following conditions:

(E1) There exists a total order RO on committed and lagging regions that is consistent
with EO ∪ TO lifted to regions. [The set of committed and lagging regions have an
order consistent with thread and memory ordering.]

(E2) There do not exist a read r ∈ ρr and a write w ∈ ρw such that RCS(ρr) ̸= uncommitted
and RCS(ρw) = uncommitted and w <EO r. [Reads in committed and lagging regions
do not see writes in uncommitted regions.]

(E3) There do not exist a read r ∈ ρr and a write w ∈ ρw such that RCS(ρr) = uncommitted
and RCS(ρw) = committed and r <EO w. [Writes from committed regions are visible
to reads in uncommitted regions.]

(E4) If err = u <EO v, then u ∈ ρu and v ∈ ρv conflict, u and v are from different threads,
neither ρu or ρv is committed, and at least one of these regions is uncommitted.

Intuitively, the conditions ensure a conflict detection mechanism in which committed
regions are guaranteed not to contain accesses that participate in a race that violates
region-serializability, while lagging regions are guaranteed to not participate in a race
that violates region-serializability with accesses in other lagging regions or committed
regions but may participate in a violating race with an access in an uncommitted region.
Condition (E1) ensures that any race that would cause committed and lagging regions
not to be serializable is caught. Condition (E2) requires that all reads in a region must
complete before it or any subsequent region commits. Condition (E3) requires that all
writes in a region must complete and be visible to other threads before it commits.

We need one more bit of notation to express our key lemmas: an operator on a
well-formed, partial relaxed execution that truncates incomplete thread traces to in-
clude only committed and lagging regions. Note that Condition WF3 ensures that all
uncommitted regions in a thread trace occur consecutively at the end. The truncation
operator drops instructions from these uncommitted regions from the end of each trace,
removes pairs from EO if at least one operation in the pair has been truncated from its
thread trace, removes truncated regions from RCS, and sets err to ∅. We notate this as
follows: ⌊(M0, T , EO, RCS, err)⌋ = (M0, ⌊T ⌋, ⌊EO⌋, ⌊RCS⌋,∅).

The following lemmas establish two key results for DRFx-compliant executions.
Notice that these lemmas allow us to relate relaxed executions to properties that are

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:17

defined in terms of abstract, interleaved executions (region-serializable behavior and
racy programs). In this way, they can be easily combined with Lemmas 1 and 2, which
did not need to reason about relaxed execution ordering.

LEMMA 3. If E is a well-formed, DRFx-compliant execution of a (compiled) program P
with valid fence-induced thread partitions, then ⌊E⌋ exhibits region-serializable behav-
ior for P w.r.t. to the fence-induced partitions.

PROOF SKETCH. This follows quickly from (E1) and (E2). Condition (E2) establishes
that any value read by an instruction in ⌊E⌋ was written by an instruction that is also
in ⌊E⌋ and thus the truncated execution is well formed. Furthermore, Condition (E1)
establishes an order on the regions in ⌊E⌋ that is consistent with both thread order
and the way that EO orders conflicting accesses within those regions. This establishes
that the execution is serializable w.r.t. the regions.

LEMMA 4. If there is a well-formed, exceptional, DRFx-compliant execution of a (com-
piled) program P with valid fence-induced thread partitions, then P has a data race.

PROOF SKETCH. From Lemma 3, we know that the execution has a region-serializable
prefix. We then use this to construct an abstract sequential execution of the prefix. Be-
cause the execution is exceptional, Condition (E4) guarantees that we have conflicting
accesses neither of which is contained in a committed region and at least one of which
is from an uncommitted region. We can extend the execution of the prefix to an ex-
ecution demonstrating a happened-before data race. Essentially, for a program with
valid fence-induced thread partitions, a happened-before relation between operations
on different threads implies the existence of an HFENCE following one operation on its
thread and preceding the other on its thread. Since neither of the conflicting accesses
is from a committed region, and Condition (WF5) requires regions preceding an HFENCE
to be committed, we know the accesses cannot be related by happened-before. Finally,
we derive from this an execution of P that exhibits a simultaneous race.4

Full proofs for the previous two lemmas can be found in Singh et al. [2011b]. Rather
than starting with the conditions for well-formed, DRFx-compliant execution, the proofs
in the cited technical report are done in the context of the particular architectural
design described in Section 6. Conditions (E1) through (E4) capture the supporting
lemmas from the technical report that are used to establish the results above.5

3.4. DRFx Guarantees
Putting together the lemmas from Sections 3.2 and 3.3, we can prove the following
theorem, which ensures that a DRFx-compliant compiler along with a DRFx-compliant
execution environment enforce the SC Soundness and Race Completeness properties.
We call an execution complete if either it is exceptional (contains a non-null err compo-
nent) or all the thread traces in the execution terminate in an END operation.

THEOREM 1. If P ! P ′ is a DRFx-compliant compilation, and E is a complete DRFx-
compliant execution of P ′ with behavior M0 ! M, then either:

—E is exception-free and M0 ! M is sequentially consistent behavior for P
or

—E is exceptional and P contains a data race.

4In fact, there are exceptional, DRFx-compliant executions where the conflict detected is not reachable through
an abstract sequential execution, but this can only happen as the result of a previous data race that is
reachable.
5Note that an earlier technical report [Marino et al. 2009b] establishes similar results under a different set
of conditions that were too restrictive for the eventual hardware design.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:18 D. Marino et al.

The arguments presented above were developed entirely in the context of a low-level
machine language. The results can, however, be extended to a high-level source lan-
guage in the following way. Imagine a “canonical compiler” that translates each high-
level statement into a series of low-level operations that read the operands from mem-
ory into registers, perform appropriate arithmetic operations on the registers, and then
store results back to memory. Any optimizations are then applied after this canonical
compiler is run. We can extend the results to the high-level language simply by requir-
ing that the compiler choose a region partition that does not split up instructions that
came from the same high-level source language expression or statement. This argu-
ment assumes that the number of memory accesses in the compilation of any statement
in the source language is bounded by the maximum region size. If the source language
does not guarantee this property, then its compiler can emit a warning in the rare
case that a single source statement is forced to span multiple regions warning the user
that, in the presence of data races, the statement may not execute atomically and an
exception may not be thrown. We further discuss this and related issues in Section 8.3.

The definition of a DRFx-compliant execution and Lemma 3 establish that all DRFx-
compliant executions are region-serializable up to the latest committed region in each
thread. Combining this fact with Lemma 1, we can see that, restricted to committed and
lagging regions, a DRFx-compliant execution is SC with respect to the original source
program. Note that an HFENCE operation cannot execute until all previous regions
in its thread are committed (condition (WF5)). Therefore, requiring that system calls
are preceded by HFENCE instructions and only use thread-local data ensures that the
behavior they exhibit would have been achievable in an SC execution of the original
program. This establishes the Safety property of the DRFx model.6

4. COMPILER AND HARDWARE IMPLEMENTATION
There are several possible compiler and hardware designs that meet the requirements
necessary to ensure the DRFx properties as described in the previous section. In the
next two sections, we describe one concrete approach for the DRFx-compliant compiler
and hardware. It is evaluated in the Section 7. The approach is based on two key ideas
crucial for a simple hardware design:

—Bounded regions: First, the compiler bounds the size of each region in terms of
number of memory accesses it can perform dynamically using a conservative static
analysis. Bounding ensures that the hardware can perform conflict detection with
fixed-size data structures. Detecting conflicts with unbounded regions in hardware
would require complex mechanisms, such as falling back to software on resource
overflow, that are likely to be inefficient.

—Soft fences: When splitting regions to guarantee boundedness, the compiler inserts
a soft fence. Soft fences are distinguished from the fences used to demarcate synchro-
nization operations and system calls that are called hard fences. While hard fences
are necessary to respect the semantics of synchronization accesses and guarantee the
properties of DRFx, soft fences merely convey to the hardware the region boundaries
across which the compiler did not optimize. These smaller, soft-fence-delimited re-
gions ensure that the hardware can soundly perform conflict detection with fixed-size
resources. But it is in fact safe for the hardware to reorder instructions across soft
fences whenever hardware resources are available, essentially erasing any hardware
performance penalty due to the use of bounded-size regions.

6Condition E2 is also essential in establishing the Safety property since it ensures that no read preceding a
system call sees a write from an uncommitted region that might not be part of an SC execution.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:19

5. DRFx-COMPLIANT COMPILER
A DRFx-compliant compiler was built by modifying the LLVM compiler [Lattner and
Adve 2004]. As specified by the requirements (C1) through (C4) in the previous section,
to ensure the DRFx properties, the compiler must simply partition the program into valid
regions, optimize only within regions, avoid inserting speculative memory accesses, and
insert fences at region boundaries.

5.1. Inserting Hard Fences for DRFx Compliance
A hard fence is similar to a traditional fence instruction. The hardware ensures that
prior instructions have committed before allowing subsequent instructions to execute
and the compiler is disallowed from optimizing across them. To guarantee SC for race-
free programs, the compiler must insert a hard fence before and after each synchroniza-
tion access. On some architectures, the synchronization access itself can be translated
to an instruction that has hard-fence semantics (e.g., the atomic xchg instruction in
AMD64 and Intel64 [Boehm and Adve 2008]), obviating the need for additional fence
instructions. In the current implementation, the compiler treats all calls to the pthread
library and lock-prefixed memory operations as “atomic” accesses. In addition, since
the LLVM compiler does not support the atomic keyword proposed in the new C++
standard, all volatile variables are treated as atomic. All other memory operations
are treated as data accesses.

To guarantee DRFx’s Safety property, a DRFx-compliant compiler should also insert
hard fences for each system call invocation, one before entering the kernel mode and
another after exiting the kernel mode. Any state that could be read by the system call
should first be copied into a thread-local data structure before the first hard fence is
executed. This approach ensures that the external system can observe only portions of
the execution state that are reachable in some SC execution. Transforming system calls
in this way is not implemented in the compiler used for the experiments in Section 7.

To insert a hard fence, the compiler uses the llvm.memory.barrier intrinsic in LLVM
with all ordering restrictions enabled. This ensures that the LLVM compiler passes do
not reorder memory operations across the fence. LLVM’s code generator translates this
instruction to an mfence instruction in x86, which restricts hardware optimizations
across the fence.

5.2. Inserting Soft Fences to Bound Regions
In addition to hard fences, the compiler inserts soft fences to bound the number of
memory operations in any region. Soft fences are inserted using a newly created in-
trinsic instruction in LLVM that is compiled to a special x86 no-op instruction that can
be recognized by the DRFx hardware simulator as a soft fence. The compiler employs
a simple and conservative static analysis to bound the number of memory operations
in a region. While overly small regions do limit the scope of compiler optimizations,
experiments show that the performance loss due to this limitation is about 6.2% on
average (Section 7). After inserting all the hard fences described earlier, the compiler
performs function inlining. Soft fences are then inserted in the inlined code. A soft
fence is conservatively inserted before each function call and return and before each
loop back-edge. Finally, the compiler inserts additional soft fences in a function body as
necessary to bound region sizes. The compiler performs a conservative static analysis
to ensure that no region contains more than R memory operations, thereby bounding
the number of bytes that can be accessed by any region. The constant R is determined
based on the size of hardware buffers provisioned for conflict detection.

The above algorithm prevents compiler optimizations across loop iterations, such as
loop-invariant code motion, since a soft fence is inserted at each back-edge. However,

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:20 D. Marino et al.

it would be possible to apply a transformation similar to loop tiling [Wolfe 1989] which
would have the effect of placing a soft fence only once every R/L iterations, where L is
the maximum number of memory operations in a single loop iteration. Restructuring
loops in this way would allow the compiler to safely perform compiler optimizations
across each block of R/L iterations.

5.3. Compiler Optimization
After region boundaries have been determined, the compiler may perform its optimiza-
tions. By requirements (C2) and (C3), any sequentially valid optimization is allowed
within a region, as long as it does not introduce any speculative reads or writes since
they can cause false conflicts. As such, in the current implementation, all speculative
optimizations in LLVM are explicitly disabled.7 Note, however, that there are several
useful speculative optimizations that have simple variants that would be allowed by
the DRFx model. For example, instead of inserting a speculative read, the compiler could
insert a special prefetch instruction that the hardware would not track for purposes
of conflict detection. The Itanium ISA has support for such speculation [Triebel et al.
2001] in order to hide the memory latency of reads. Also, as shown earlier in Fig-
ure 6, loop-invariant code motion is allowed by the DRFx model, as long as the hoisted
reads and writes are guarded to ensure that the loop body will be executed at least
once and the loop block is contained in a region. As described in the previous section,
regions could be constructed to have multiple iterations of a loop within a soft-fenced
region, over which the compiler is able to perform loop-invariant code motion and other
sequentially valid optimizations.

6. DRFx-COMPLIANT HARDWARE: DESIGN AND IMPLEMENTATION
This section discusses the proposed DRFx processor architecture. A lazy conflict detection
scheme using bloom filter signatures is described, as well as several optimizations that
allow efficient execution in spite of the small, bounded regions created by the DRFx
compiler. We first give a brief overview of the design and then delve into more detail.

6.1. Overview
To satisfy DRFx properties, the runtime has to detect a conflict when region-serializ-
ability may be violated due to a data race and raise a memory model exception (Sec-
tion 2.7). Figure 9 presents an overview of a DRFx hardware design that supports this
conflict detection. Additions to the baseline DRF0 hardware are shaded in gray. The
state of several hardware structures at some instant of time during an execution of a
sample program is also shown. Section 6.11 discusses the implementation details of
the proposed design.

In hardware transactional memory systems, the ability to rollback is a necessity. As
such, they can easily tolerate false positives in their conflict detection mechanism by
simply rolling back and re-executing. This allows them to use cache-line granularity
conflict detection, which may report false races. DRFx, on the other hand, does not re-
quire a rollback mechanism. But, because it terminates an execution on detecting a
race, false race reports cannot be tolerated. As such, DRFx performs byte-level conflict
detection. Performing precise, eager byte-level conflict detection complicates the coher-
ence protocol and cache architecture [Lucia et al. 2010]. For instance, such a scheme
would require the hardware to maintain byte-level access state for every cache block,
maintain the access state even after a cache block migrates from one processor to
another, and clear the access state in remote processors when a region commits.

7The LLVM implementation has functions called isSafeToSpeculativelyExecute, isSafeToLoadUncondi-
tionally, and isSafeToMove, which we modified to return false for both loads and stores.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:21

Instead, DRFx hardware employs lazy conflict detection [Hammond et al. 2004]. Each
processor core has a region buffer that stores the physical addresses of all memory
accesses executed in a region. An entry is created in the region buffer when a memory
access is committed from the reorder buffer (ROB). We consider a load instruction
completed when it commits from the ROB, while a store is considered completed when it
retires from the store buffer. When all the memory accesses in a region have completed,
the processor broadcasts the address set for the region to other processors for conflict
checks. Once the requesting processor has received acknowledgments from all other
processors indicating a lack of conflicts, it commits the region and reclaims the region
buffer entries. The communication and conflict check overhead is reduced by using
bloom-filter-based signatures to represent sets of addresses [Ceze et al. 2006]. Each
processor core has a signature buffer that is used to store the read and write signatures
for all its in-flight regions.

The region buffer has to be at least as large as the maximum number of instructions
allowed to be executed in a soft-fenced region created by the DRFx compiler. The static
analysis used by the DRFx compiler to guarantee this bound is necessarily conservative
and may create regions that are much smaller than the desired bound. But performing
frequent conflict checking for very small soft-fenced regions would hurt performance.
To reduce this cost, our hardware coalesces adjacent regions separated by a soft fence
into a single region at runtime when there is sufficient space available in the region
buffer. Supporting this optimization requires using a region buffer somewhat larger
than the maximum possible region-size guaranteed by the compiler.

When executing a hard fence, the DRFx hardware stalls the execution of all future
memory accesses until all accesses preceding the fence have completed. This helps
guarantee correct behavior of synchronization operations and ensures that any conflicts
that are detected indeed correspond to a data race. But it also prevents full utilization of
processor resources since instruction and memory level parallelism cannot be exploited
across the fence. If the more frequently occurring soft fences behaved the same as hard
fences, then these lost opportunities to exploit parallelism would result in significant
performance overhead. Fortunately, this is unnecessary since soft fences do not indicate
the presence of synchronization. In fact, memory accesses from a region can be allowed
to execute even if earlier regions that end in soft fences have not committed. In addition,
regions separated by a soft fence can be committed out of order. The formal proofs
outlined in Section 3 admit these optimizations and establish that the DRFx runtime
requirements are still satisfied.

6.2. Signature-Based Lazy Conflict Detection
Let us assume that a processor treats soft fences the same as hard fences, an assump-
tion that we will relax later in the discussion. DRFx hardware employs lazy conflict
detection to detect when region-serializability could have been violated due to a data
race.

Each processor core has a region buffer to record the addresses of memory locations
accessed in a region. Each region buffer entry corresponds to a cache block and stores
the cache block’s address along with two bit vectors that keep track of which bytes
in the cache block have been read and which have been written. This organization of
the region buffer entry allows us to use a single region buffer entry to track multiple
memory accesses to the same cache block within a region. The DRFx compiler bounds
the size of a soft-fenced region to a predefined bound B, which determines the minimum
size that a processor needs to provision for a region buffer. In practice, however, most
regions use fewer entries during execution since accesses to the same cache block are
coalesced.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:22 D. Marino et al.

Similarly to DRF0 hardware, the memory accesses within a region can execute out-
of-order, and in the case of stores, retire from a store buffer out-of-order. An entry in
the region buffer is created for a memory access when it is committed from the ROB.

Once all of a region’s memory accesses have committed from the ROB, and all of
its stores have retired from the store buffer, the executing processor broadcasts the
region’s address set to the other processors to perform conflict checks. On receiving
a conflict check request, a processor intersects the received address set with the ad-
dresses currently in its region buffer. If this intersection is empty, then an ACK message
is sent to the requester indicating that no conflicts were detected. After receiving ac-
knowledgments from all other processors, the requesting processor commits the region
by deleting its address entries from the region buffer.

Broadcasting every address accessed by every region and checking their presence in
every other processor’s region buffer is clearly expensive. To reduce this cost, bloom-
filter-based signatures [Ceze et al. 2006] can be used. We use two signatures to sum-
marize the memory addresses accessed by a region, one for reads and one for writes.
Signatures for each in-flight region are stored in the signature buffer (more than one
region could be in-flight due to the out-of-order execution optimizations discussed later
in Section 6.5). To perform conflict checks for a region, a processor first broadcasts only
its read and write signatures. To conservatively detect whether two address sets sum-
marized by bloom filter signatures might intersect simply requires an AND operation.
Each processor checks for potential read-write or write-write conflicts by comparing
the incoming signatures with each of the signatures currently in its signature buffer.
If a potential conflict is detected, then a NACK is sent to the requester. Upon receiving a
NACK, the processor sends the full address set for the region so precise conflict detection
can be performed.

The size of our bloom filter signatures needs to be large enough so false conflicts,
which require the expensive transmission of full address sets, are rare. On the other
hand, large signatures could themselves incur significant communication overhead.
But, since many regions can be in flight in a processor at once, the signature may
be compared with many remote regions, increasing the probability of getting a false
conflict. To address this problem, large signatures (1024 bits) are used, but they are
compressed before transmission to reduce communication overhead. We use cache block
addresses to build these signatures, helping to keep the number of unique addresses in
each signature small. Because many regions have small access sets, their signatures
are effectively compressed using a simple, efficient run-length encoding scheme. This
strategy resulted in very high compression ratios that significantly reduced communi-
cation overhead.

6.3. Concurrent Region Conflict Check and Region Execution
When a processor P receives a conflict check request for a region R′, it need not stall
the execution of its current region R while it performs the conflict check. A conflict
check can be performed in parallel with the execution of a local region. The intuition
here is that any memory access in the pipeline (and not yet included in the region
and signature buffers) can be shown to have executed after the memory accesses in
R′ because all accesses from R′ have already been completed. Thus, if no conflicts are
detected, we can order R′ before R in the region serialization of the execution.

However, care must be taken to ensure that all memory accesses in the pipeline are
actually completed after the memory accesses in R′. Stores are not completed before
they are committed from store buffer, and therefore a store in the pipeline is definitely
not completed. But an in-flight load may have already read its value from the cache
while still in the pipeline before it has reached the head of the ROB and created an
entry in the region buffer. To ensure that its value has not been changed by a completed

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:23

Fig. 7. An example binary compiled using a DRFx compiler.

region that has been serialized before the current region R, any load that has already
read the data from cache is re-executed if the accessed cache block is invalidated or
evicted before the load is committed from the ROB. This mechanism is the same as the
speculative load-execution technique proposed by Gharachorloo et al. [1991] to improve
the performance of both SC and TSO hardware. The same mechanism can be used in
DRF0 hardware to speculatively execute loads across fences. In our DRFx design, this
mechanism is enforced for all loads (even if they are not speculating across fences). We
expect the overhead of this re-execution to be small since cache invalidations between
instruction issue and retirement are rare.

6.4. Coalescing Soft-Fence-Bounded Regions
The DRFx compiler uses a conservative static analysis to estimate the maximum number
of instructions executed in a region. This could result in frequent soft fences. But
a processor can dynamically ignore a soft fence if the preceding soft-fenced region
executed fewer memory accesses than a predetermined threshold T. Combining two
contiguous soft-fenced regions at runtime does not violate the DRFx guarantees, because
any conflict detected over the newly constructed larger region is possible only if there
is a race, and ensuring serializability of the larger, coalesced soft-fenced regions is
sufficient to guarantee SC for the original unoptimized program.

However, the processor needs to ensure that the newly constructed region does not
exceed the size of its region buffer. The design guarantees this by using a region buffer
that is of size T + B, where B is the compiler specified bound for a soft-fenced region,
and T is the threshold used by a processor to determine when to ignore a soft fence.
Too high a value for the threshold T would result in large regions at runtime, which
might negatively impact performance due to the increased probability of false conflicts
being detected in the bloom filter signatures. Also, it could undermine the out-of-order
commit optimization discussed in Section 6.6.

6.5. Out-of-Order Execution of Regions
When a processor encounters a hard fence, it must wait for all memory accesses from
preceding regions to complete before executing memory accesses from the later region.
This is clearly a requirement for hard fences, since we may detect false data races if
memory accesses are allowed to be reordered across hard fences that demarcate syn-
chronization operations. However, this execution ordering can be relaxed for soft fences,
allowing multiple uncommitted regions to be in-flight simultaneously. For example, in
Figure 7, I7 can be allowed to execute even if regions R0 and R1 have pending memory
accesses in the ROB or the store buffer. If there is a pending store in a previous region
(e.g., I1), then its value can be forwarded to a load in a later region (e.g., I7).

The correctness of the above optimization can be intuitively understood by observing
that executing memory accesses out-of-order only results in more in-flight accesses
that could potentially conflict. Therefore, it does not mask any conflicts that would

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:24 D. Marino et al.

have been detected before. Also, reordering accesses across soft fences will not cause
any access to be reordered across a synchronization operation. As such, any conflict
that is detected as a result of this reordering still implies the presence of a data race.

6.6. Out-of-Order Commit of Regions
Once a region’s memory accesses have completed, a processor can initiate a conflict
check and commit the region from its region buffer if the check succeeds. Since in-
structions are committed from the ROB in program order, it is guaranteed that when
a region is ready to commit, all memory accesses from the preceding regions would
have also committed from the ROB. There could, however, be stores in the store buffer
pending for the earlier regions. As a result, those earlier regions would not yet be ready
to commit. In this scenario, it is possible to conflict check and commit the later region
whose accesses have all completed. The not-yet-committed, prior regions correspond
to the lagging regions in the formalism described in Section 3.3. In order to satisfy
Conditions (E1) and (E2) for lagging regions, addresses for the uncommitted, previous
regions must be included in the conflict check message for the later region.

For example, in Figure 7, say region R0 is waiting for its store I1 to be retired from the
store buffer. In the meantime, I4 has completed and has retired from the store buffer.
Now R1 is ready to commit. The processor can perform conflict check for R1 (including
the addresses from all prior uncommitted regions), and if no conflict is detected, commit
it by deleting its entries from the region and signature buffers (but leaving the entries
for uncommitted, prior regions). This optimization can be intuitively understood by
observing that even if a write from R0 lingering in the store buffer eventually causes
a conflict with an access in another processor’s pipeline, then the successful conflict
check of the addresses in R1 and R0 at the time R1 commits establishes a global order
of all committed and lagging regions in the system at that point. This guarantees SC
behavior up to the latest committed region in each thread.

6.7. Exploiting Locality in Memory Accesses
The hardware design discussed so far includes all the addresses accessed within a re-
gion when performing the conflict detection. In order to reduce the number of addresses
that need to be conflict checked for a region, we propose an optimization that exploits
the temporal locality exhibited by applications. Our insight is that once a processor
core has conflict checked an address, it does not need to perform the same check again
until it relinquishes the coherence permission for that address.

Once a cache block address has been conflict checked for reads, subsequent reads to
this block can be treated as non-conflicting and excluded from conflict detection until
the processor relinquishes its cache coherence permission for that block. Similarly,
once a write is conflict checked, future reads and writes to the block can be excluded
from conflict detection until permission to the cache line is downgraded. In order to
distinguish the read and write cases, each cache block is extended with two additional
safe bits:

—read-safe: If set, then it indicates that the cache block has been conflict checked for
read-permission.

—write-safe: If set, then it indicates that the cache block has been conflict checked
for read and write permission. Note that the write-safe bit also implies the read-safe
property.

On a cache miss, a cache block is fetched with both bits being cleared. If a memory
operation accesses a block that has both safe bits cleared, then it is added to the region
buffer and its cache block address is added to the signature corresponding to current
region. If a write is performed with write-safe bit in the cache block cleared, then the

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:25

Fig. 8. Out-of-order commit and locality optimizations together can violate DRFx guarantees.

write operation is added to the region buffer and its block address is included in the
signature. In all other cases, the access is still added to the region buffer, but since
the cache line has already been appropriately conflict checked, the cache block address
is not included in the signature. In all cases, safe bits in the region buffer entry are
updated based on the current state of the cache block’s safe bits.

The cache block safe bits are updated during the conflict check that happens before
region commit. During the first phase of the conflict check, the region’s signatures are
broadcast to all other cores. If there is no conflict detected in this first phase, then
the read-safe and write-safe bits of the accessed blocks are set as appropriate: A cache
block’s write-safe bit is set if the region buffer indicates that the region performed a
write access to the block and the read-safe bit is set if the region performed a read of
the block.

If the second phase of conflict detection is required, then memory accesses that
were found either read-safe or write-safe need not be sent unless the processor has
since lost cache permission for the accessed block. This selective approach reduces
the amount of data that are sent during the conflict detection process and reduces
the bandwidth requirement imposed on the interconnect. However, if the processor
core has lost coherence permission to a block, then we must be careful to ensure that
accesses to this block are included in both phases of conflict detection.

To accomplish this, when a cache block with either its read-safe or write-safe bit set
loses its coherence permission (eviction, invalidation, or downgrade from modified to
a shared state), any region buffer entries matching the block are updated to clear the
safe bits, and the block address is added to the appropriate region signatures based
on the region buffer entries. In this way, the affected accesses will be included in both
phases of conflict detection.

Incompatibility with out-of-order region commit: Since this design reduces
demand on the interconnect and performs conflict detection only if there is a possibility
of a conflict for memory accesses, it may be tempting to use this optimization along with
out-of-order commit of regions optimization (Section 6.6). However, we observe that
this locality optimization cannot be employed together with the out-of-order commit
optimization, as it could result in violation the DRFx guarantees. We illustrate this
problem using the example shown in Figure 8. In this example, two processors (P1 and
P2) are executing four soft-fenced transactions each containing only a single instruction.
Let us assume that variables x and y are allocated on separate cache lines Cx and Cy,
respectively. Furthermore, assume that Cx is cached by P2 with read-safe bit set and
the store operation in R1 pending in the store buffer after missing in the cache. In the
meantime R2 completes its execution and starts its commit without waiting for the
commit of preceding region. Since there are no conflicting accesses in P2 (empty region

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:26 D. Marino et al.

buffer), R2 can be committed before R1. Subsequently, P2 executes R3 and commits it
without detecting any conflict as R2 has been removed from the region buffer in P1.
After this, R4 completes its execution. Note that the read operation will find the cache
block with read-bit safe and will not participate in the conflict detection. Therefore, P2
does not include x’s address in conflict detection and commits R4 without detecting any
conflict. Finally, R1 completes and P1 broadcasts x’s address during conflict detection,
but it does not detect any conflict as P2’s region buffer is empty at this point of time.
Thus, P1 commits R1 without raising any MM exception. However, this execution is not
SC because execution of the regions is not serializable. Therefore, out-of-order commit
and cache locality-based optimizations are incompatible with each other in preserving
DRFx guarantees.

6.8. Handling Context Switches
A thread can incur a context switch at runtime for a variety of reasons. If a thread is
context switched out in the middle of a region’s execution, then we cannot detect SC
violations caused by this partially executed region in which the compiler could have re-
ordered memory accesses. Therefore, when possible, we require that the context switch
be delayed until the subsequent soft-fence instruction. As our regions are bounded in
the number of memory instructions, most well-behaved programs will eventually exe-
cute a soft fence after a finite amount of time. To account for problematic programs that
perform unbounded computation while still performing a bounded number of memory
accesses, we require that the DRFx compiler insert additional soft fences in regions that
could potentially execute unbounded number of instructions. By doing so, we make it
possible for scheduler-induced thread context switches to be delayed without affecting
the fairness of the operating system scheduler. For such delayed context switches, the
hardware waits until all prior regions are committed and performs the context switch
when the region buffer is empty.

Certain context switches, such as those induced by page faults and device interrupts,
are critical and cannot be delayed. We observe that DRFx-style conflict detection should
be disabled for low-level system operations such as the page-fault handler. It is unclear
if halting such critical functionality with a memory-model exception is a good design
choice. Instead, we propose that such low-level code be (either manually or statically)
verified to be data-race free.

When critical context switches occur, the processor retains the region buffer entries
for the switched-out thread. When the processor is executing the page-fault or the
interrupt handler, it continues to perform conflict detection on behalf of the switched-
out thread. Since conflict detection is disabled for the handler, no new entries are added
to the region buffer. When the handler has finished, we require that the operating
system schedule the switched-out thread on the same processor core. At this point, the
thread continues using the region buffer, which contains the same entries it had at the
time it was switched out.

While a page fault is being serviced for a thread, a processor can execute other
threads instead of waiting for the data to be fetched from the disk. We can allow N
context switches while handling a page-fault by provisioning a region buffer with a
size that is N times that of the maximum bound specified by the compiler. For example,
if the compiler bounds the region size to 64 locations and region buffer size is 512,
we can allow eight context switches. Supporting multiple context per processor core
would require detecting conflicts among threads concurrently executing on the same
processor core. This can be done by virtualizing the region buffer by adding a context
identifier. Adding a memory operation to the region buffer already requires searching
it to determine if an entry for the cache block exists. During this search, the processor

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:27

can check if an entry with a conflicting access and a different context identifier exists,
and, if so, raise a memory model exception indicating a data race.

6.9. Debugging Support
When a program is terminated with an MM exception, the processor provides the
addresses of the starting and ending fence instructions of each conflicting region to
assist in debugging.

A processor may encounter non-MM exceptions such as a null-pointer dereference,
division by zero, and so on, while the current region is yet to complete. In this scenario,
the processor stalls the execution of the current region and performs conflict detection
for the partially executed region. If the conflict check succeeds, indicating no data race,
then it raises the non-MM exception. But if a conflict is detected, then the processor
throws an MM exception instead.

An MM exception in our design is imprecise in the sense that the state of the program
when an exception is raised may not be SC, because the compiler or hardware could have
already performed SC-violating optimizations in regions that contain racing accesses.
Even an eager conflict detection scheme can only guarantee that the program state
at the time of an exception is SC with respect to the compiled, binary program [Lucia
et al. 2010]. The state could still be non-SC with respect to the source program due to
compiler optimizations.

6.10. System Calls and Safety
The DRFx compiler places each system call in its own region, separated from other
regions by hard fences. Furthermore, the compiler generates code to ensure that system
calls only access thread-local storage. Any user data potentially read by a system call is
copied to thread-local storage before executing the preceding hard fence, and any user
data written by the system call is copied out of thread-local storage after the succeeding
hard fence.

An adversarial program may not obey the DRFx compiler requirement that every
region’s size be bounded to a predefined limit. When a program executes a region that
exceeds the bound, the DRFx hardware can trivially detect that condition and raise an
MM exception to ensure safety.

6.11. DRFx Hardware Design Details
Region and signature buffers for each processor core are the main extensions to the
baseline hardware structures. We assume a snoop-based architecture that we extend
with additional messages to support conflict checking. Conflict check messages are
independent of coherence messages. Figure 9 shows our DRFx hardware extensions to
a baseline out-of-order processor with store buffer. In the proposed design, we commit
regions in-order but exploit the locality in memory accesses as discussed in Section 6.7.
We now describe these extensions in detail.

When a hard fence is committed from the ROB, a new region is created by first
finding a free entry in the signature buffer (one with its valid bit unset), initializing
the entry’s fields, and storing its index in the current Signature Buffer Index (SBI)
register. The SBI register keeps track of the signature buffer entry corresponding to
the region that is currently being executed. When a soft fence is committed from the
ROB, we create a new region only if the current region size (stored in the region-Size
field of the region’s signature buffer entry) exceeds a pre-determined threshold T (32
in our experiments). If a hard or soft fence starts a new region, then its instruction
address is stored in the Region-beginPC field of the new region’s signature buffer entry.
This information is used while reporting an MM exception.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:28 D. Marino et al.

Fig. 9. Architecture support for DRFx (shown in gray).

When a memory instruction commits from the ROB, it searches the region buffer to
check if there is an entry for the same cache block address already present for current
region. A new region buffer entry is allocated for it if there is no prior entry for this
cache block in the region buffer. The register rFree keeps track of the total number of
free entries in the region buffer. If no free region entry is available, then the memory
access is stalled at the commit stage of the pipeline. Free region buffer entries are
organized as a free-list. The head and tail registers point to the first and last entries
in the free list, respectively. The head and tail of a region is stored in the RBI-begin
and RBI-end fields in the signature buffer entry of that region (RBI stands for Region
Buffer Index).

A region buffer entry contains the following fields: cache block address, read and
write bit vectors to keep track of bytes accessed within the cache block, read-safe and
write-safe bits, and an E bit that is set when the cache block has lost its coherence
permission. When a memory operation commits from the ROB, it sets the bits corre-
sponding to the accessed memory location in the appropriate bit vector. Furthermore,
for loads, the read-safe bit is updated based on the state of the safe bits in the cache
when the block was accessed. For stores, the write-safe bits in the region buffer entry
is updated on retirement (see below for details). The read/write-safe bits are reset
when the corresponding cache block loses its coherence permission or is evicted from
the cache. In any of these events, the E bit is also set in the entry to remember this
event. When a region commits without detecting a conflict in signatures, it sets safe
bits in the cache only if E bit in the region buffer entry is not set.

When a load reads from the cache, it needs to remember whether the accessed cache
block had either of read-safe or write-safe bit set or not. To this end, we extend
load queue entries to have additional bit: rs, which is set if either of read-safe or
write-safe bits were set in the cache block. On a cache block invalidation, the load

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:29

queue is searched and the rs bits of any entries corresponding to the cache block being
evicted are reset. When a load is committed from ROB, it uses the rs bit to update
its region buffer entry. The address of the accessed cache block is inserted into read
signature if the rs bit is not set. A store updates the write-safe bit in its region buffer
entry when it retires from the store buffer. To update the region buffer entry directly,
we save the RBI of the corresponding region buffer entry in the store buffer. It also
updates the write signature if write-safe bit was not set in the cache.

In order to easily determine when all a region’s stores have completed, a counter
numPendingStores is kept in the region’s signature buffer entry. This counter is incre-
mented when a store is put into the store buffer and is decremented on retirement of
a pending store from the store buffer.

When a hard or a soft fence commits from the ROB, its region’s regionDone bit is set
in the signature buffer. Also, its region’s Region-endPC is updated with its instruction
address. A region is ready to commit if its regionDone bit is set and numPendingStores
is zero. Before committing a region, its addresses need to be conflict checked with all
the in-flight regions in remote processor cores. During this process, the region’s SBI is
used as its identifier in the conflict check messages.

If the conflict check succeeds, then the region is committed by deallocating its entries
in the signature and region buffers. The signature buffer entries are identified with
the region’s SBI used during conflict check. The start and end of a region’s entries in
the region buffer are determined using the RBI-begin and RBI-end fields stored in that
region’s signature buffer entry. These region buffer entries are then added to the free
list.

6.12. Feasibility of DRFx Hardware
In this section, we discuss the complexity cost of the proposed DRFx hardware. The major
changes include the addition of the region buffer, the signature buffer, and the conflict
controller responsible for conflict detection.

Both region buffers and signature buffers can be efficiently implemented without
adding significantly to the hardware complexity. The region buffer is organized simi-
larly to a store buffer. However, instead of holding data values for memory accesses,
each entry in the region buffer includes two small bit vectors. We only need a finite-sized
region buffer because regions are statically bounded by the DRFx compiler. The signa-
ture buffer in a processor core includes multiple bloom filters that can be efficiently
implemented in the hardware [Ceze et al. 2006].

The major design complexity in DRFx is due to the requirement of precise conflict
detection. Our precise conflict detection mechanism involves two phases of conflict
detection: conservative conflict detection via signatures and precise conflict based on
the byte addresses of accessed memory locations. During the first phase of conflict
detection, signatures are broadcast to other cores. Prior to a broadcast, signatures are
compressed using a simple and efficient run-length encoding scheme. This scheme also
allows a core to decompress signatures without incurring too much overhead.

During the first phase of conflict detection, two signatures are checked for a conflict.
This check is efficiently performed by taking an intersection of two signatures using
a bitwise AND operation. If the intersection is empty, then no conflict is detected for
these two signatures. If a conflict is detected, then the second phase of conflict detection
is required.

The second phase of conflict detection includes comparison of bit vectors associated
with an entry in the region buffer. In this phase, a core receives a list of cache block
addresses and associated bit vectors for read and write operations. Each address is
sequentially searched in the region buffer by performing a CAM lookup. If a match is
found, then bit vectors associated with the received cache block and matching region

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:30 D. Marino et al.

Table I. Processor Configuration

Processor Four-core CMP. Each core operating at 2GHz.
Fetch/Exec/ Four instructions (maximum 2 loads or 1 store) per cycle in each core.
Commit width

Store Buffer TSO: 64-entry FIFO buffer with 8-byte granularity.
DRF0, DRFx: 8-entry unordered coalescing buffer with 64-byte granularity.

L1 Cache 64KB per-core (private), 4-way set associative, 64B block size, 2-cycle hit latency,
write-back.

L2 Cache 1MB private, 4-way set associative, 64B block size, 10-cycle hit latency.
Coherence MOESI snoop protocol
Interconnection Hierarchical switch, fan-out degree 4, 512-bit link width, 2-cycle link latency.
Memory 80-cycle DRAM lookup latency.

Region buffer 544 entry, 8 banks, 2-cycle CAM access.

Bloom filter 1024 bits. 2 banks indexed by 9-bit field after address permutation [Ceze et al. 2006].
2-cycle access latency.

buffer entries are compared for a match. These comparisons are performed by bitwise
AND operations on bytemasks.

Another design complexity arises from how the proposed buffers (region and signa-
ture) are placed and routed on chip. This layout could impact the access latencies of
these buffers. In our experiments we have assumed moderately aggressive latencies
for these buffers.

7. PERFORMANCE EVALUATION
This section presents some performance results comparing the performance of pro-
grams compiled and executed under the DRFx memory model to those compiled and
executed under a DRF0 model.

7.1. Methodology
The baseline compiler is the LLVM [Lattner and Adve 2004] compiler with all optimiza-
tions enabled (similar to compiling with the -O3 flag in gcc) and with fences inserted
before and after each call to a synchronization function and each access to a volatile
variable.8 The DRFx compiler is the implementation described in Section 5: hard fences
are inserted before each call to a synchronization function and each access to a volatile
variable, optimizations that perform speculative reads or writes are disabled, and soft
fences are inserted to conservatively bound region size to 512 memory accesses.

Both the baseline and DRFx architectures are simulated using a cycle-accurate,
execution-driven, Simics-based x86_64 simulator called FeS2 [Neelakantam et al.
2008]. The baseline architecture is a four-core chip multiprocessor operating at 2GHz
(Table I). It allows both loads and stores to execute out of order between fences. The
DRFx architecture adds support for soft fences and conflict detection as described in the
previous section, using a region buffer of size 512 (compiler bound) + 32 (to support
region coalescing).

Performance is measured over a subset of the PARSEC [Bienia et al. 2008] and
SPLASH-2 [Woo et al. 1995] benchmarks. All of these benchmarks are run to com-
pletion. For PARSEC benchmarks (blackscholes, bodytrack, facesim, ferret, fluidan-
imate, streamcluster, swaptions), the simmedium input set was used. For SPLASH-2

8The unmodified LLVM compiler using its x86 backend targets hardware obeying the TSO memory model.
The baseline simulated architecture uses a weaker memory model that permits additional reorderings not
allowed by TSO. As such, we insert the additional fences around synchronization accesses to ensure that the
program behaves correctly on the weaker model.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:31

Fig. 10. Slowdown of benchmark programs run under the DRFx model compared to a baseline DRF0 model,
broken down in terms of cost of lost compiler optimization and cost of hardware race detection.

Fig. 11. Effectiveness of region coalescing and the out-of-order region execution and commit optimizations.

applications (barnes, cholesky, lu (contiguous), radix, raytrace, water-spatial, and
volerand), the default inputs were used.

7.2. Comparison of DRFx with Other Relaxed Memory Models
Figure 10 compares the performance of the TSO, DRF0, and DRFx memory models. The
results are normalized to the execution time of DRF0 hardware executing a binary pro-
duced by the stock LLVM compiler. Since the stock compiler is for x86 (TSO memory
model), we added fences before and after synchronization operations to ensure correct
memory ordering on DRF0 hardware. For DRFx, we measured both the cost of lost com-
piler optimizations and the cost of conflict detection in hardware. To measure the cost
of lost compiler optimizations, we executed the binaries produced by the DRFx-compliant
compiler on DRF0 hardware that treats soft fences as no-ops. To measure the cost of
conflict detection, we evaluate a processor configuration that employs optimizations
discussed in Section 6. In Figure 10, we find that a DRFx-compliant compiler (labeled as
“DRF0 HW, DRFx Compiler”) incurs about 6.2% overhead on average due to restricted
compiler optimizations. Conflict detection in the hardware adds about 3.4% overhead.
In the following sections we will show that the optimizations proposed in Section 6 are
crucial for low conflict detection overhead.

7.3. Effectiveness of DRFx Hardware Optimizations
Figure 11 demonstrates the importance of distinguishing soft fences and implementing
the optimizations described in Section 6. Here, performance is measured as execution
time normalized to that of DRF0 hardware. When soft fences are treated like hard
fences (label “DRFx: io exec, io commit”), the benchmarks experience slowdowns of
more than 3× on average. Enabling out-of-order execution and commit for soft-
fence-bounded regions significantly reduces this overhead to about 35.3% on average.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:32 D. Marino et al.

Fig. 12. Profile of commit stage stalls.

Coalescing soft-fenced regions further reduces this overhead to 4.0%. Coalescing
of the soft-fenced regions is highly effective in increasing the average region size.
The average soft-fenced region size without coalescing is only 8 memory operations.
Enabling coalescing for the soft-fenced regions increases their average size to about
1,200 memory operations. This increase in region size leads to lower frequency of
conflict detection and thus results in lower cost of the conflict detection. Finally,
enabling the optimization for exploiting locality in memory accesses (Section 6.7)
results in the overall best design and has about 3.1% performance overhead. Note that
as mentioned earlier in Section 6.7, out-of-order commit is not compatible with the
optimization for exploiting locality of memory accesses.

To understand different sources of overhead involved in the conflict detection, we
profiled cycles during which commit from the ROB is stalled (Figure 12). Since en-
tries are inserted into the region buffer at the commit stage, a core’s commit could be
stalled if the region buffer is full and cannot accept any new entry (“RegionBufferFull”
in Figure 12). Furthermore, a hard fence in DRFx can introduce additional stalls due
to the requirement that it must wait for all preceding regions (including the region
immediately preceding the hard fence) to complete their conflict detection (“Hard-
FenceCommitStall”) and commit before it can be inserted in the region buffer. For
some applications, conflict detection increases the stall cycles up to 17% of the total
execution time of DRF0 hardware. The large overhead for fluidanimate is due to its
usage of many locks (and hence hard fences). Furthermore, we find that the finite size of
the region buffer has very limited impact on overall execution time (“RegionBufferFull”
being almost negligible), primarily due to coalescing of the soft-fenced regions.

7.4. Scalability
Figure 13 shows the performance of DRFx as number of cores scale. As the number of
cores increases, the broadcast latency and the rate of false conflicts in signatures also
increase, leading to an increase in the cost of conflict detection. For the benchmarks
fluidanimate, barnes, and radix, the increase in conflict detection overhead could be
attributed to an increase in false conflicts when signatures are compared to a larger
number of regions on more cores, whereas, for streamcluster, the average region size
decreases with the increasing number of cores due to less work per thread and more
frequent hard fences in the program. These smaller regions lead to an increase in the
conflict detection overhead as the number of regions that a hard fence has to wait
for also increases. For other benchmarks, we observe only a small increase in conflict
detection overhead.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:33

Fig. 13. Scalability of DRFx with increasing number of cores.

8. CHALLENGES AND LESSONS LEARNED
8.1. Precise Conflict Detection
The biggest challenge for DRFx is the need to efficiently perform precise conflict detec-
tion. In DRFx, we chose lazy conflict detection over eager as discussed in Section 6.1. In
order to achieve precise conflict detection, DRFx uses the region buffer and broadcasts
a region’s read/write sets before the region commits. This broadcast is one of the ma-
jor challenges for a scalable DRFx design. Bloom-filter-based signatures are effective in
keeping the read/write set broadcast overhead low for a small number of cores. How-
ever, as we scale the number of cores, the probability of detecting a false conflict in
signatures increases. While regions can be executed out-of-order to hide the overhead
of conflict detection, this overhead cannot be hidden for hard fences, which must wait
for conflict detection of earlier regions to complete. In Section 6.7, we described one
approach to reduce the data sent during conflict detection, based on monitoring cache
coherence permissions, but this also comes at a cost of increased hardware complexity.

The challenge of precise conflict detection was a major reason that we later pursed
a “pessimistic” approach to ensuring sequential consistency, which simply disallows
compiler and hardware optimizations that can violate SC [Marino et al. 2011; Singh
et al. 2012]. To make this approach acceptable in terms of performance, both the
compiler and hardware rely on information about which memory accesses are safe—
accessing a thread-local or read-only location—and can therefore be reordered without
violating SC. The compiler and hardware can aggressively optimize the safe accesses as
usual but must conservatively handle unsafe accesses. The compiler uses a simple static
analysis to determine these safe accesses, and the hardware leverages this information
as well as dynamic information gleaned from the operating system’s page protection
mechanism.

8.2. SC vs DRFx

As described in Section 1 there are a complex set of tradeoffs between these two ap-
proaches to providing SC reasoning to programmers. First, it is unclear which model
provides the best benefits in terms of programmability. The SC model is simpler be-
cause it ensures a strong guarantee for all program executions. On the other hand, the
DRFx memory model ensures region serializability for executions that do not raise ex-
ceptions, which is a stronger property than SC. In our current DRFx-compliant compiler,
region boundaries are transparent to the programmer. However, one could imagine
an implementation of DRFx that makes the regions explicit (and others have pursued
related ideas [Lucia et al. 2010; Sengupta et al. 2015]), thereby allowing programmers
to reason about their code in terms of interleavings of atomic regions rather than
individual instructions.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:34 D. Marino et al.

Second, it is unclear which model provides more opportunities for compiler optimiza-
tions. While the DRFx compiler is able to reorder all memory accesses within a region, the
SC-preserving compiler can reorder memory accesses only if they are proven to be safe.
However, the DRFx compiler must respect region boundaries and so has a smaller scope
for its optimizations. Finally, it is unclear which model allows for the simplest hard-
ware modifications. The DRFx hardware must perform precise conflict detection, which
is a scalability challenge as described above. The SC hardware is comparatively simple,
but it additionally relies on compiler and operating system extensions for identifying
thread-local accesses.

8.3. Granularity Issues
As pointed out by Adve and Boehm [2010], an important issue in supporting SC for
real-world programming languages, which we have ignored until now, is the need to
define the granularity at which memory operations can interleave. A single line of
source code, such as i++ or x = y, can perform more than one memory access. Further,
even a single read or write of an integer variable might translate into multiple memory
accesses based on the alignment of the variable and the bit-width of the underlying
architecture. While the hardware usually only provides atomicity of individual memory
operations, it is desirable to specify the interleaving granularity at the programming
language level that is independent of the underlying hardware.9

The DRFx memory model alleviates the granularity issue by guaranteeing atomicity
of regions. Therefore, a programmer can assume that all statements in a region execute
atomically on exception-free executions. The challenge, however, is in exposing the re-
gion boundaries in a meaningful way to the programmer. This is exacerbated by the fact
that DRFx will sometimes be forced to insert a region boundary within a single source
statement. For instance, an assignment to a structure might involve many memory
accesses that exceed the size limitations of a region. Similarly, in a language like C++,
the compiler can implicitly insert inlined functions, such as constructors, destructors,
and overloaded operators, which may involve synchronization (e.g., those arising from
memory allocation). Developing programming languages/development environments
that expose these region boundaries to the programmer remains an unsolved problem.

In programs with no data races, the DRF0 model [Boehm and Adve 2008] guarantees
that code regions that are free from synchronization operations are guaranteed to be
atomic. Not surprisingly, both SC and DRFx, being strictly stronger memory models,
equally enjoy the atomicity of such large regions for data-race-free programs.10 DRF0
gets around the need to specify finer interleaving granularities as it provides no se-
mantics for programs with data races. But data-race freedom is simply assumed rather
than enforced. Thus, DRF0 does not enable programmers to safely rely on the atomicity
of synchronization-free regions any more than under DRFx or SC. By providing a low-
level possibly-hardware-specific interleaving granularity, SC provides a far stronger
semantics than DRF0 for programs with data races. In contrast to SC and DRF0, DRFx
is able to safely provide a larger interleaving granularity by dynamically checking for
data races.

9Doing so for low-level languages like C and C++ has additional challenges. These languages allow the
programmer to control the alignment of variables. But different architectures treat unaligned accesses
differently—some generate a bus error while others do not.
10However, as pointed out above, there is still the problem of exposing synchronization operations carefully
to the programmer. A single statement, such as x = 17 is still not guaranteed to be atomic in the presence
of compiler-inserted constructors or overloaded operators in DRF0, SC, and DRFx.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:35

9. RELATED WORK
This section discusses the most closely related work.

9.1. Memory Models With Exceptions
The C++ memory model [Boehm and Adve 2008] and the Java memory model [Manson
et al. 2005] are based on DRF0 [Adve and Gharachorloo 1996] and share its limitations
for racy programs, which we discussed in Section 1.

Concurrently with our work on DRFx, Lucia et al. [2010] defined conflict exceptions,
which also use a notion of regions to detect language-level SC violations in hardware.
Their approach can be viewed as a realization of DRFx-compliant hardware, but it differs
in important ways from our design. First, in their approach, a conflict exception is
reported precisely, just before the second of the conflicting operations is to be executed.

Precise conflict detection is arguably complex in hardware as one has to track access
state for each cache word and continue to track it even when a cache block migrates to
a different processor core. Further, when a region commits, its access state needs to be
cleared in remote processors. Finally, while this approach delivers a precise exception
with respect to the binary, the exception is not guaranteed to be precise with respect
to the original source program.

Second, in their approach, region boundaries are placed only around synchroniza-
tion operations, thereby ensuring serializability of maximal synchronization-free re-
gions, which is a stronger guarantee than SC. While this property could be useful
for programmers, it can result in unbounded-size regions and thereby considerably
complicates the hardware detection scheme and system software.

Adve et al. [1991] proposed to detect data races at runtime using hardware support.
Elmas et al. [2007] augment the Java virtual machine to dynamically detect bytecode-
level data races and raise a DataRaceException. Boehm [2009] provided an informal
argument for integrating an efficient always-on data-race detector to extend the DRF0
model by throwing an exception on a data race. However, detecting data races either
incurs 8× or more performance overhead in software [Flanagan and Freund 2009] or
incurs significant hardware complexity [Prvulovic and Torrelas 2003; Muzahid et al.
2009]. A full data-race detector is inherently complex as it has to dynamically build the
happens-before graph [Lamport 1978] to determine racy memory accesses. It is further
complicated by the fact that racy accesses could be executed arbitrarily “far” away
from each other in time, which implies the need for performing conflict detection across
events like cache evictions, context switches, and so on. In contrast, DRFx hardware is
inherently simpler, as it requires that we track memory access state and perform con-
flict detection over only the uncommitted, bounded regions. Unlike earlier hardware
data-race detectors that rely on post retirement speculation and checkpointing sup-
port, DRFx does not require such complex hardware support. The primary complexity
of post-retirement speculation and checkpointing arises from keeping track of specula-
tive memory accesses even after their commit from the ROB. Furthermore, hardware
data-race detectors like SigRace [Muzahid et al. 2009] use a signature-based conflict
detection scheme (albeit an imprecise one), whereas the primary source of hardware
design complexity for DRFx is precise conflict detection, which is arguably simpler than
post-retirement speculation and recovery.

Gharachorloo and Gibbons [1991] observed that it suffices to detect SC violations
directly rather than data races. Their goal was to detect potential violations of SC due
to a data race and report that to the programmer. However, their detection was with
respect to the compiled version of a program. DRFx incorporates the notion of compiler-
constructed regions and allows the compiler and hardware to optimize within regions
while still allowing us to dynamically detect potential SC violations at the language
level.

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:36 D. Marino et al.

More recently, Muzahid et al. [2012] and Qian et al. [2013] proposed hardware solu-
tions to detect SC violation at the runtime. Instead of relying on data races as proxy
SC violations, they record some metadata about memory accesses that complete before
all earlier accesses have been completed and pass on this metadata to other processors
with coherence messages to detect cyclic dependence chains. These solutions detect SC
violations with respect to execution of a given binary and do not account for reorder-
ings performed by the compiler. They are, however, inadequate for detecting conflicts
among regions as region serializability is strictly stronger property than sequential
consistency. In absence of the notion of regions, it is not clear how these solutions
would account for memory reordering done by compiler. These solutions, therefore, are
not sufficient for guaranteeing language-level SC.

9.2. Efficiently Supporting Sequential Consistency
If the hardware and the compiler can guarantee SC, then it is clearly preferable to
weaker memory models. There have been several attempts to reduce the cost of sup-
porting SC.

The Bulk compiler [Ahn et al. 2009] together with the BulkSC hardware [Ceze et al.
2007] provide support for guaranteeing SC at the language level. The bulk compiler
constructs chunks similar to regions, but a chunk could span across synchronization
accesses and could be unbounded. The BulkSC hardware employs speculation and
recovery to ensure serializable execution of chunks. Conflicts are detected using a
signature-based scheme and they are resolved through rollback and re-execution of
chunks. Forward progress may not be possible in the presence of repeated rollbacks.
The Bulk system addresses this issue and the unbounded chunk problem using several
heuristics. When the heuristics fail, it resorts to serializing chunks and executing safer
unoptimized code.

DRFx hardware could be simpler than Bulk hardware, as it avoids the need for specu-
lation (especially across I/O) and unbounded region sizes that have been the two main
issues in realizing a practical transactional memory system. However, DRFx requires
precise conflict detection, whereas Bulk can afford false conflicts. Our observations
that certain regions can execute and commit out-of-order and that conflict checks and
region execution in different processors can all proceed in parallel is unique. It may
help improve the efficiency and complexity of Bulk system as well.

SC can be guaranteed at the language level even on hardware that supports a weaker
consistency model using static analysis to insert fences [Shasha and Snir 1988; Kamil
et al. 2005; Sura et al. 2005]. However, computing a minimal set of fences for a program
is NP-complete [Krishnamurthy and Yelick 1996]. One approach to reduce the number
of fences is to statically determine potentially racy memory accesses [Kamil et al.
2005; Sura et al. 2005] and insert fences only for those accesses. These techniques are
based on pointer alias analysis, sharing inference, and thread escape analysis. In spite
of recent advances [Boyapati and Rinard 2001; Boyapati et al. 2002], a scalable and
practically feasible technique for implementing a sound static data-race detector also
remains an unsolved problem, as all the techniques require complex, whole-program
analysis.

There has been much work on designing an efficient, sequentially consistent pro-
cessor. But this only guarantees SC at the hardware level for the compiled program
[Ranganathan et al. 1997; Blundell et al. 2009; Ceze et al. 2007; Wenisch et al. 2007;
Lin et al. 2012].

More recently, we proposed an approach to guarantee end-to-end SC through sep-
arate modifications to the compiler and hardware [Marino et al. 2011; Singh et al.
2012]. The compiler is modified to be SC-preserving—to produce a binary that preserves
SC if run on SC hardware—by restricting SC-violating optimizations to thread-local

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:37

variables. The hardware uses a combination of static and dynamic analysis to iden-
tify “safe” memory locations (both thread-local and shared, read-only data), which
can be freely reordered, and uses an auxiliary store buffer to fast-track “safe” store
commits. This approach requires neither whole-program compiler analysis [Kamil
et al. 2005; Sura et al. 2005] nor complex checkpoint-and-rollback support in hardware
[Ranganathan et al. 1997; Blundell et al. 2009; Ceze et al. 2007; Wenisch et al. 2007], re-
sulting in an efficient and complexity-effective design. We have compared DRFx against
proposed SC-preserving compiler and hardware in Section 8.

9.3. Transactional Memory
HTM systems [Herlihy and Moss 1993] also employ conflict detection between con-
current regions. However, unlike TM systems, regions in DRFx are constructed by the
compiler and hence can be bounded. Also, on detecting a conflict, a region need not be
rolled back. This avoids the complexity of a speculation mechanism. Thus, a DRFx sys-
tem does not suffer from the two issues that have been most problematic for practical
adoption of TM.

Hammond et al. [2004] proposed a transactional coherency and consistency (TCC)
memory model based on a transactional programming model [Herlihy and Moss 1993].
The programmer and the compiler ensure that every instruction is part of some transac-
tion. The runtime guarantees serializability of transactions, which in turn guarantees
SC at the language level. Unlike this approach, DRFx is useful for any multi-threaded
program written using common synchronization operations like locks, and it does
not require additional programmer effort to construct regions. TCC also requires un-
bounded region and speculation support. TCC suggests that hardware could break
large regions into smaller regions, but that could violate SC at the language level.

Our lazy conflict detection algorithm is similar to the one proposed by Hammond
et al. [2004] but without the need for speculation and conflict detection over unbounded
regions. Also, we employ signatures to reduce the cost of conflict checks. Unlike TM,
DRFx cannot afford false conflicts, which our design takes care to eliminate. But lazy
conflict detectors like TCC assume some form of a commit arbiter to regulate concurrent
commit requests for regions in different processors. As we discussed, we can allow all
regions to be conflict checked in parallel with the execution of current regions, which
could be simpler. Also, soft-fenced regions can be executed and committed out-of-order.

10. CONCLUSION
The DRFx memory model for concurrent programming languages gives programmers
simple, strong guarantees for all programs. Like prior data-race-free memory models,
DRFx guarantees that all executions of a race-free program will be sequentially consis-
tent. However, while data-race-free models typically give weak or no guarantees for
racy programs, DRFx guarantees that the execution of a racy program will also be se-
quentially consistent as long as a memory model exception is not thrown. In this way,
DRFx guarantees safety and enables programmers to easily reason about all programs
using the intuitive SC semantics. Furthermore, the minor restrictions DRFx places on
compiler optimizations are straightforward, allowing compiler writers to easily estab-
lish the correctness of their optimizations.

DRFx capitalizes on the fact that sequentially valid compiler optimizations preserve
SC as long as they do not interact with concurrent accesses on other threads. Since
performing precise data-race detection is impractically slow in software and complex
in hardware, DRFx allows the compiler to specify code regions in which optimizations
were performed. The hardware can then efficiently target data-race detection only
at regions of code that execute concurrently. This allows the DRFx-compliant compiler
and hardware to cooperate, terminating executions of racy programs that may violate

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:38 D. Marino et al.

SC. The formal development establishes a set of requirements for the compiler and the
hardware that are sufficient to obey the DRFx model. The implementation and evaluation
indicate that a high-performance implementation of DRFx is possible.

While DRFx mostly hides the effect of compiler and hardware relaxations from the
programmer, the state exposed to the program at a DRFx exception is non-SC. This
poses interesting challenges on how a programmer might possibly recover from these
exceptions. At one end, a solution would be to add in a hardware checkpointing support
to undo the effects of currently executing regions before throwing an exception. At the
other end, the compiler can bear the cost of recovery by emitting instructions to undo
compiler optimization at each instructions. Exploring the resulting tradeoffs between
compiler and hardware complexity is an interesting area for future work.

REFERENCES
S. Adve and K. Gharachorloo. 1996. Shared memory consistency models: A tutorial. Computer 29, 12 (1996),

66–76.
Sarita V. Adve and Hans-J. Boehm. 2010. Memory models: A case for rethinking parallel languages and

hardware. Commun. ACM 53, 8 (Aug. 2010), 90–101. DOI:http://dx.doi.org/10.1145/1787234.1787255
S. V. Adve and M. D. Hill. 1990. Weak ordering—A new definition. In Proceedings of the 17th Annual

International Symposium on Computer Architecture. ACM, 2–14.
S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. 1991. Detecting data races on weak memory systems.

In Proceedings of the 18th Annual International Symposium on Computer Architecture. 234–243.
Wonsun Ahn, Shanxiang Qi, Jae-Woo Lee, Marios Nicolaides, Xing Fang, Josep Torrellas, David Wong, and

Samuel Midkiff. 2009. BulkCompiler: High-performance sequential consistency through cooperative
compiler and hardware support. In Proceedings of the 42nd International Symposium on Microarchitec-
ture.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The PARSEC benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th International Conference on Parallel Architectures
and Compilation Techniques.

C. Blundell, M. M. K. Martin, and Thomas F. Wenisch. 2009. InvisiFence: Performance-transparent memory
ordering in conventional multiprocessors. In Proceedings of the 36th Annual International Symposium
on Computer Architecture.

H. J. Boehm. 2009. Simple thread semantics require race detection. In FIT Session at PLDI.
H. J. Boehm and S. Adve. 2008. Foundations of the C++ concurrency memory model. In Proceedings of the

2008 ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM, 68–78.
Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER: Proportional detection of data

races. In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI’10). ACM, New York, NY, 255–268. DOI:http://dx.doi.org/10.1145/1806596.1806626

C. Boyapati, R. Lee, and M. Rinard. 2002. Ownership types for safe programming: Preventing data races
and deadlocks. In Proceedings of OOPSLA.

Chandrasekhar Boyapati and Martin Rinard. 2001. A parameterized type system for race-free java programs.
In Proceedings of OOPSLA. ACM Press, 56–69.

L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. 2009. The case for system support for concurrency exceptions.
In USENIX HotPar.

Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. 2007. BulkSC: Bulk enforcement of sequential
consistency. In Proceedings of the 34th Annual International Symposium on Computer Architecture. 278–
289.

Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. 2006. Bulk disambiguation of speculative
threads in multiprocessors. In Proceedings of the 33rd Annual International Symposium on Computer
Architecture. IEEE Computer Society, 227–238.

D. Dice, Y. Lev, M. Moir, and D. Nussbaum. 2009. Early experience with a commercial hardware transactional
memory implementation. In Proceedings of ASPLOS.

T. Elmas, S. Qadeer, and S. Tasiran. 2007. Goldilocks: A race and transaction-aware java runtime. In Pro-
ceedings of the 2007 Conference on Programming Language Design and Implementation. ACM, 245–255.

C. Fidge. 1991. Logical time in distributed computing systems. IEEE Comput. 24, 8 (Aug. 1991), 28–33.
DOI:http://dx.doi.org/10.1109/2.84874

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

DRFx: An Understandable, High Performance, and Flexible Memory Model 16:39

C. Flanagan and S. N. Freund. 2009. FastTrack: Efficient and precise dynamic race detection. In Proceedings
of the 2009 Conference on Programming Language Design and Implementation.

K. Gharachorloo and P. B. Gibbons. 1991. Detecting violations of sequential consistency. In Proceedings of
the 2nd Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’90). ACM New York,
NY, USA, 316–326.

K. Gharachorloo, A. Gupta, and J. Hennessy. 1991. Two techniques to enhance the performance of memory
consistency models. In Proceedings of the International Conference on Parallel Processing. 355–364.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy. 1990. Memory consistency
and event ordering in scalable shared-memory multiprocessors. In Proceedings of the 18th Annual
International Symposium on Computer Architecture. 15–26.

Lance Hammond, Vicky Wong, Michael K. Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg, Manohar
K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. 2004. Transactional memory
coherence and consistency. In Proceedings of the 31st Annual International Symposium on Computer
Architecture. 102–113.

R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D. L. Satterfield, K. Sugavanam, P. W. Coteus, P. Heidel-
berger, M. A. Blumrich, R. W. Wisniewski, A. Gara, G. L.-T. Chiu, P. A. Boyle, N. H. Chist, and Changhoan
Kim. 2012. The IBM blue gene/Q compute chip. IEEE Micro 32, 2 (2012), 48–60. DOI:http://dx.doi.org/
10.1109/MM.2011.108

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: Architectural support for lock-free data
structures. In Proceedings of the 20th Annual International Symposium on Computer Architecture. ACM,
289–300.

Intel Corporation. 2012. Intel architecture instruction set extensions programming reference. 319433-012
Edition (Feb. 2012).

A. Kamil, J. Su, and K. Yelick. 2005. Making sequential consistency practical in titanium. In Proceedings of
the 2005 ACM/IEEE Conference on Supercomputing. IEEE Computer Society, 15.

A. Krishnamurthy and K. Yelick. 1996. Analyses and optimizations for shared address space programs. J.
Parallel Distrib. Comput. 38, 2 (1996), 130–144.

L. Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 7
(1978), 558–565.

L. Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Trans. Comput. 100, 28 (1979), 690–691.

C. Lattner and V. Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transforma-
tion. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization. IEEE Computer Society.

Changhui Lin, Vijay Nagarajan, Rajiv Gupta, and Bharghava Rajaram. 2012. Efficient sequential consistency
via conflict ordering. In Proceedings of the 20th International Conference on Architectural Support for
Programming Languages and Operating Systems.

Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans Boehm. 2010. Conflict exceptions: Pro-
viding simple parallel language semantics with precise hardware exceptions. In Proceedings of the 37th
Annual International Symposium on Computer Architecture.

J. Manson, W. Pugh, and S. Adve. 2005. The java memory model. In Proceedings of POPL. ACM, 378–391.
D. Marino, M. Musuvathi, and S. Narayanasamy. 2009a. LiteRace: Effective sampling for lightweight data-

race detection. (2009).
Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2009b.

DRFx: A Simple and Efficient Memory Model for Concurrent Programming Languages. Technical Report
090021. UCLA Computer Science Department. http://fmdb.cs.ucla.edu/Treports/090021.pdf.

Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2010.
DRFx: A simple and efficient memory model for concurrent programming languages. In PLDI’10. ACM,
351–362.

Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2011.
A case for an SC-preserving compiler. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation.

Friedemann Mattern. 1989. Virtual time and global states of distributed systems. In Proceedings Work-
shop on Parallel and Distributed Algorithms, Cosnard M. et al. (Ed.). North-Holland/Elsevier, 215–226.
(Reprinted in: Z. Yang, T. A. Marsland (Eds.), Global States and Time in Distributed Systems, IEEE,
1994, pp. 123–133.).

Abdullah Muzahid, Shanxiang Qi, and Josep Torrellas. 2012. Vulcan: Hardware support for detecting
sequential consistency violations dynamically. In Proceedings of the 2012 45th Annual IEEE/ACM

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

16:40 D. Marino et al.

International Symposium on Microarchitecture (MICRO’12). IEEE Computer Society, Washington, DC,
USA, 363–375. DOI:http://dx.doi.org/10.1109/MICRO.2012.41

A. Muzahid, D. Suarez, S. Qi, and J. Torrellas. 2009. SigRace: Signature-based data race detection. In
Proceedings of the 36th Annual International Symposium on Computer Architecture.

N. Neelakantam, C. Blundell, J. Devietti, M. Martin, and C. Zilles. 2008. FeS2: A Full-system Execution-
driven Simulator for x86. In Poster at Thirteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’08).

M. Prvulovic and J. Torrelas. 2003. ReEnact: Using thread-level speculation mechanisms to debug data
races in multithreaded codes. In Proceedings of the 30th Annual International Symposium on Computer
Architecture. San Diego, CA.

Xuehai Qian, Josep Torrellas, Benjamin Sahelices, and Depei Qian. 2013. Volition: Scalable and precise
sequential consistency violation detection. In Proceedings of the 18th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS’13). ACM, New York,
NY, 535–548. DOI:http://dx.doi.org/10.1145/2451116.2451174

P. Ranganathan, V. S. Pai, and S. V. Adve. 1997. Using speculative retirement and larger instruction windows
to narrow the performance gap between memory consistency models. In Proceedings of the 9th Annual
ACM Symposium on Parallel Algorithms and Architectures. 199–210.

Koushik Sen. 2008. Race directed random testing of concurrent programs. In Proceedings of the 2008 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’08). ACM, New
York, NY, 11–21. DOI:http://dx.doi.org/10.1145/1375581.1375584

Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D. Bond, and Milind Kulkarni. 2015. Hybrid
static–dynamic analysis for statically bounded region serializability. In Proceedings of the 20th In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’15). ACM, New York, NY, 561–575. DOI:http://dx.doi.org/10.1145/2694344.2694379

D. Shasha and M. Snir. 1988. Efficient and correct execution of parallel programs that share memory. ACM
Trans. Program. Lang. Syst. 10, 2 (1988), 282–312.

Abhayendra Singh, Daniel Marino, Satish Narayanasamy, Todd Millstein, and Madan Musuvathi. 2011a.
Efficient processor support for DRFx, a memory model with exceptions. In Proceedings of the 16th
International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XVI). ACM, 53–66.

Abhayendra Singh, Daniel Marino, Satish Narayanasamy, Todd Millstein, and Madanlal Musuvathi. 2011b.
Efficient Processor Support for DRFx, a Memory Model with Exceptions. Technical Report 110002. UCLA
Computer Science Department. Retrieved from http://fmdb.cs.ucla.edu/Treports/110002.pdf.

Abhayendra Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi. 2012. End-to-end sequen-
tial consistency. In Proceedings of the 39th Annual International Symposium on Computer Architecture.
524–535.

Z. Sura, X. Fang, C. L. Wong, S. P. Midkiff, J. Lee, and D. Padua. 2005. Compiler techniques for high perfor-
mance sequentially consistent java programs. In Proceedings of the 10th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 2–13.

Walter Triebel, Joseph Bissell, and Rick Booth. 2001. Programming Itaniumö-based Systems. Intel Press.
Thomas F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. 2007. Mechanisms for store-wait-free multi-

processors. In Proceedings of the 34th Annual International Symposium on Computer Architecture.
M. Wolfe. 1989. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE Conference on Supercom-

puting (Supercomputing’89). ACM, New York, NY, 655–664. DOI:http://dx.doi.org/10.1145/76263.76337
S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. 1995. The SPLASH-2 programs: Characterization

and methodological considerations. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture. 24–36.

Received July 2013; revised February 2016; accepted April 2016

ACM Transactions on Programming Languages and Systems, Vol. 38, No. 4, Article 16, Publication date: September 2016.

