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ABSTRACT OF THE THESIS

Scaling Probabilistic Programming Using Arithmetic Structure

by

William Xichang Cao

Master of Science in Computer Science

University of California, Los Angeles, 2024

Professor Guy Van den Broeck, Co-Chair

Professor Todd Millstein, Co-Chair

Distributions on integers are ubiquitous in probabilistic modeling but remain challenging

for many of today’s probabilistic programming languages (PPLs), restricting their use as

modeling tools. The core challenge comes from the nature of these distributions: many of

today’s PPL inference strategies rely on enumeration, sampling, or differentiation in order to

scale, which fail for the high-dimensional complex discrete distributions involving integers.

Our insight is that there is structure in arithmetic that these approaches are not using. We

present a binary encoding strategy for discrete distributions that exploits the rich logical

structure of integer operations like summation and comparison. We leverage this structured

encoding through knowledge compilation to perform exact probabilistic inference, and show

that this approach scales to much larger integer distributions with arithmetic. Finally, we

demonstrate an application of these scalable integers in representing the continuous Beta

distribution, with potential application in Bayesian parameter learning.
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CHAPTER 1

Introduction

Probabilistic programming languages (PPLs) are expressive languages for defining probabil-

ity distributions. The core idea of a PPL is to enrich a programming language with the ability

to define, observe, and compute with random variables: hence, the program itself defines

a probabilistic model. These languages allow a user to specify a probabilistic model using

convenient programming language constructs such as functions and control flow, with the

task of inference – computing queries about the distributions in the model – being abstracted

away as part of the language implementation. A primary research task in probabilistic pro-

gramming is how to automate inference while still maintaining performance for expressive

classes of programs.

1.1 Probabilistic Programming with Integers

This thesis focuses on optimizing a particular programming feature: scaling inference for

programs with random integers and integer arithmetic. Integers are a natural program-

ming construct, and can be used to model things such as distributions over rankings, but

are very challenging for today’s approaches to probabilistic inference. The relationships be-

tween integer-valued random variables can be very complex: they can be added, multiplied,

compared, etc. This rich structure is opaque to today’s inference strategies.

Trace-based sampling like Markov-Chain Monte Carlo, importance sampling, and se-

quential Monte-Carlo all collapse integer distributions to a single sampled point [Gelman
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et al., 2015, Bingham et al., 2019, Dillon et al., 2017, van de Meent et al., 2018, Lew

et al., 2019]. These approximate inference strategies can scale well in many cases, but

they struggle to find valid sampling regions in the presence of low-probability observations

and non-differentiability (e.g., observing the sum of two large random integers to be a con-

stant) [Gelman et al., 2015, Bingham et al., 2019, Dillon et al., 2017].

Exact inference strategies work by preserving the global structure of the distribution,

but here there is a challenge: what is the right strategy for efficiently representing and

manipulating distributions on integers? Today’s PPLs that support exact inference and in-

teger manipulation – such as Dice [Holtzen et al., 2020], ProbLog [De Raedt et al., 2007],

Psi [Gehr et al., 2016], and WebPPL [Goodman and Stuhlmüller, 2014] – model integer

distributions using what is essentially a one-hot categorical encoding (i.e., an integer distri-

bution [0 7→ 0.25, 1 7→ 0.25, 2 7→ 0.25, 3 7→ 0.25] is represented simply as a vector). This

encoding style is not capable of exploiting the structure of addition: adding two random

variables effectively requires full enumeration.

1.2 Contributions

In this thesis, we demonstrate improvements on current inference methods for integer distri-

butions, and explore an interesting application of these improved integers. Our first contribu-

tion is a new representation of distributions on integers as distributions on binary encodings.

For instance, in the above example, rather than representing the distribution as an exhaus-

tive map from integer values to probabilities, we represent it as a joint distribution on binary

bits [00 7→ 0.25, 01 7→ 0.25, 10 7→ 0.25, 11 7→ 0.25]. The upsides of this seemingly-equivalent

representation are twofold. First, we can more efficiently represent the joint distribution

itself when it has certain structure. In this case, because the distribution is uniform, we can

represent it as a product of two independent Bernoulli distributions, one for each bit: we will

show that the ability to factorize the distribution in this manner leads to significant perfor-
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mance improvements. Second, this binary representation reveals the structure of arithmetic:

for instance, we can compare two integers by independently comparing each of their binary

digits and aggregating the results.

Clearly a binary representation of integers reveals structure, but how can we automati-

cally find and exploit this structure during inference in a PPL? As our second contribution,

we show that two of today’s PPLs – Dice [Holtzen et al., 2020] and ProbLog [De Raedt

et al., 2007, Fierens et al., 2015] – are already capable of exploiting this structure if it is

properly encoded into the program, by virtue of their knowledge compilation approach to

inference. We give a lightweight strategy for encoding integer distributions, and show em-

pirically that when using our new binary-encoded distributions these two languages scale to

significantly larger and more complex integer distributions without essential modifications

to their existing inference strategies.

As our third contribution we show that scalable support for random integer arithmetic

allows us to push the boundaries of discrete probabilistic programming systems in surprising

ways. We demonstrate how to model a Beta distribution, a continuous distribution, using

probabilistic integers. This modelling method exploits the conjugacy property of the Beta

distribution, through which we can always characterize the distribution through its (integral)

sufficient statistics. By doing so, we can use the Beta distribution as a prior for Bayesian

learning.

This thesis is organized as follows: Chapter 2 gives a motivating example for integer

arithmetic. Chapter 3 explains our integer representation and explores how common inte-

ger operations on this representation have structure exploitable by knowledge compilation.

Chapter 4 empirically evaluates our representation strategy against existing PPLs. Chapter

5 explores the representation of a continuous Beta prior with random integers. Chapters 6

and 7 discuss related work and conclude respectively.
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CHAPTER 2

Motivation

In this chapter, we present a motivating example highlighting how integer distributions can

be used in probabilistic programs and demonstrating how current probabilistic programming

systems fail to scale to such models.

2.1 A Luhn Algorithm Model

Consider the following probabilistic model based on student ID numbers. Suppose that an

optical character recognition system is attempting to parse a handwritten student ID number.

For each digit of the ID, it produces a probability distribution representing its beliefs about

what the digit could be. Combining this output, we get a probability distribution over all

possible student IDs.

The Luhn algorithm [Luhn, 1960] is a commonly used method of validating various ID

numbers including student IDs. Given a starting ID such as 70733428, the algorithm provides

for a way to compute a sum over the ID, giving us a check digit (4) which is then prepended

to the original ID to get a final ID: 470733428. This ID is the one actually issued to a

student; when provided with an ID, we can validate it by recomputing the sum and looking

at the check digit.

We wish to use the fact that the student ID can be validated to additionally inform our

single-digit distributions from the OCR system. We can implement this as a probabilistic

program like the one in Figure 2.1. This program first implements a function luhn_checksum

4



1 def luhn_checksum(id)

2 sum = 0

3 for i in 0..length(id) - 1

4 if i % 2 == length(id) % 2:

5 if id[i] > 4:

6 sum += 2 * id[i] - 9

7 else:

8 sum += 2 * id[i]

9 else:

10 sum += id[i]

11 return sum

12

13 id = [discrete([0.72, 0.01, 0.01, 0.01, 0.01, 0.01, 0.2, 0.01, 0.01, 0.01]),

14 ...,

15 discrete([0.01, 0.01, 0.05, 0.01, 0.01, 0.63, 0.2, 0.01, 0.01, 0.05])]

16 check_digit = id[0]

17 remaining_id = id[1:] //remainder of the array

18 check_val = luhn_checksum(remaining_id)

19 observe((check_digit + (check_val % 10)) == 10)

20 return id

Figure 2.1: A probabilistic program for the student ID probabilistic inference problem using

integer random variables (discrete), integer arithmetic (the Luhn algorithm function), and

Bayesian conditioning (observe)

that takes as input a list representing the digits of the student ID, excluding the check digit.

This function implements the Luhn algorithm to compute a sum over the digits, which is then

returned. It then creates a list id which contains distributions over integers derived from

the OCR system. The syntax discrete(v) for a vector v = [p0, .., pn] creates a distribution

over the numbers 0, .., n, in which the number i has the probability pi, and is used in our

program to represent said OCR distributions. Finally, the luhn_checksum function is called

on these integer distributions to get a distribution over checksums, and conditioning is done

using the observe keyword in line 19 to get an updated distribution over IDs.

This example program showcases the benefits of probabilistic programming as a modeling

tool: we can implement this student ID model by simply implementing a (non-probabilistic)

5
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Figure 2.2: Single-marginal performance for ID example on increasing ID lengths. WebPPL

and Psi scale exponentially due to having to enumerate all paths.

algorithm - the luhn_checksum function - and using it directly with probabilistic components

(integer distributions; conditioning on a fact). Being able to automate fast inference over

such programs is an important step in making these languages practical for this purpose.

2.2 Current Language Performance

If we implement this program in today’s probabilistic programming languages, we will run

into a problem. Even if we only wish to compute the marginal probability over a single

digit of the ID, Figure 2.2 shows that the runtime will scale exponentially in the number of

digits in the student ID. Each additional digit will contribute a multiplicative amount to the

number of total possible ID instantiations, meaning that any approach involving enumeration

is inherently exponential. In practice, this means that programs containing student IDs of a

realistic length (9-10 digits) will not run.

The fact that such straightforward programs fail to scale on existing probabilistic pro-

gramming systems is the primary motivation behind our work. We have implemented our

encoding of integer distributions in Dice.jl, a discrete PPL embedded in Julia that uses the

same knowledge compilation approach as Dice [Holtzen et al., 2020]. Figure 2.2 shows that

our technique allows inference for such programs to scale for a larger, more realistic number

of digits.
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CHAPTER 3

Representing & Manipulating Integer Distributions

This chapter describes the key technical details behind a binary encoding approach and

explains how such an encoding allows the knowledge compilation inference strategy used by

Dice and ProbLog to automatically exploit arithmetic structure. We first provide a brief

introduction to inference via knowledge compilation. We then demonstrate and analyze

various approaches to constructing distributions over integers within probabilistic programs.

Finally, we show how the binary encoding can be leveraged by knowledge compilation to

identify and exploit contextual independencies for inference over distributions with integer

arithmetic.

3.1 Integer Distributions via BDDs

Thus far we have seen (via example) how binary-represented distributions expose structure

and can enable effective scaling in practice. In this section we explain exactly how this

performance improvement is achieved during inference. In particular, we show how knowl-

edge compilation is capable of automatically finding and exploiting the structure of integer

distributions and operations. Inference via knowledge compilation is currently the state-of-

the-art approach to exact discrete probabilistic inference in certain classes of probabilistic

programs [Holtzen et al., 2020, De Raedt et al., 2007, Chavira et al., 2006, Chavira and

Darwiche, 2008, Fierens et al., 2015].

The heart of inference via knowledge compilation is a reduction from inference to weighted

7



model counting (WMC). Let φ be a Boolean formula and w be a map from literals in φ to

real-valued weights; the pair (φ,w) is called a weighted Boolean formula. Then, the weighted

model count WMC(φ,w) is a weighted sum of models of φ:

WMC(φ,w) =
∑
m|=φ

∏
ℓ∈m

w(ℓ). (3.1)

This reduction to WMC is not useful on its own however: the WMC task is #P-hard for an

arbitrary Boolean formula φ. This is where knowledge compilation comes into the picture: φ

is compiled into a data structure that supports efficient weighted model counting in the size

of the data structure. A common example of such a knowledge-compilation data structure

is a binary decision diagram (BDD), which supports linear-time WMC, but there are many

others [Darwiche and Marquis, 2002]. PPLs like Dice and ProbLog work by compiling

a program into a BDD or related compilation target and thereby reducing probabilistic

program inference to WMC on that target [Chavira and Darwiche, 2005, Sang et al., 2005].

The cost of the knowledge compilation approach to inference is almost entirely determined

by the structure of the program; the more structure that exists, the more compact the

resulting BDD or related data structure can be. This leads to our core contribution: a

new logical representation of integer distributions that is amenable to efficient compilation

into BDDs. To demonstrate how BDDs can encode integer distributions, Figure 3.1 shows

two different multi-rooted BDDs that represent the same distribution on integers. In both

cases the roots in each BDD represent random variables for each binary digit: b0 is the

0-order digit, b1 is the 1-order digit. Weights of each positive literal are shown on the left

(with the negative literal weight being 1 minus the positive literal weight); dotted edges

represent a false assignment and solid edges represent true assignment. Intuitively, a binary

representation has the potential to be more compact than a naive categorical representation

due to the reduction in the number of roots: for instance, Dice [Holtzen et al., 2020] requires

one root for each possible integer value.

8
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(b) Multi-rooted BDD for an BITWISE INT encoded integer.

Figure 3.1: BDDs representing the integer distribution [0 7→ 0.1, 1 7→ 0.1, 2 7→ 0.2, 3 7→

0.3, 4 7→ 0.3] resulting from CATEG INT and BITWISE INT encoding methods. BIT-

WISE INT achieves a smaller BDD by compactly representing higher order bits.

As an example of how to use these data structures, consider computing the marginal

probability of the high-order bit b2 being true. This is WMC(b2, w), which is 0.3 – that is

clear in Figure 3.1b since the sole path from b2 to the true node has weight 0.3, but it

is also true for the sole path from b2 to the true node in Figure 3.1a, which has weight

(0.9 ∗ 0.89 ∗ 0.75 ∗ 0.5) ≈ 0.3. In general, to compute the probability of an arbitrary integer,

we convert it into binary and conjoin the appropriate roots: for instance, to compute the

probability of the integer 0, we compute WMC(b0 ∧ b1 ∧ b2, w).

9



3.2 Integer Encodings

The previous section demonstrated the potential for binary encodings in knowledge com-

pilation, but how do we connect this to probabilistic programs? In this section we give

lightweight encoding strategies for translating discrete(..) syntax for an arbitrary dis-

tribution over integers into distributions on Booleans, which knowledge-compilation-based

languages like Dice and ProbLog are already capable of representing. How might such dis-

tributions be represented in a probabilistic programming language in practice? To make the

problem concrete, we define the integer representation problem as follows: given an input

vector [p0, .., pw], we want a method which returns a distribution over integers taking on value

i with probability pi. While this is relatively restricted by demanding that our distribution

is contiguous with lowest value 0, we can convert this to other distributions, for example by

adding an offset or multiplying by a constant.

3.2.1 A First Approach

One natural way of constructing such a categorical distribution is as a set of if-else state-

ments, with each branch corresponding to a different value. For example, the following

probabilistic program snippet would correspond to the integer distribution with probability

vector [0.1, 0.2, 0.3, 0.4]. The syntax flip(θ) used in the program is commonly used in discrete

PPLs to represent a Bernoulli random variable with bias θ.

1 if flip(0.1) // Bernoulli(0.1)

2 return 0

3 elseif flip(0.2/0.9)

4 return 1

5 elseif flip(0.3/0.7)

6 return 2

7 else

8 return 3

We use a sequence of these random flips as arguments to the if-else statements to gen-

10



erate the mixture of numbers; note that we renormalize the flip probability at each step to

get the correct distribution. This approach is generalized in Algorithm 1. This and future

algorithms should be interpreted as a general method to represent a distribution over inte-

gers in any probabilistic programming language supporting Bernoulli random variables and

(non-probabilistic) integers. Note that representing a categorical variable in this way is a

probabilistic program framing of the SBK encoding presented by Sang et al. [2005].

Algorithm 1: CATEG INT (v ∈ [0, 1]w)

Input: Vector v such that v[i] ∝ pr(i)

if w == 1 or flip
(

v[0]∑
v

)
then

return 0

else

// recurse on the remainder of v

return 1 + CATEG INT(v[1:])

What would occur if we use Algorithm 1 to represent a distribution over binary-encoded

integers in a language such as Dice? The BDD for one distribution represented using this

approach is given in Figure 3.1a. Note that for each bit, the decision diagram is essentially

a linear chain; intuitively, this corresponds to checking each if-else guard in sequence. There

is almost no node reuse occurring in this BDD.

3.2.2 A More Compact Encoding

We propose an alternative method of representing integers from a probability vector that

produces provably more compact BDDs. Rather than constructing our mixture by a linear

pass through the probability vector, we can instead divide the vector into two parts, using

a divide-and-conquer approach. Consider the same example as above, where we are again

given as input a probability vector [0.1, 0.2, 0.3, 0.4]. To get the wanted distribution, we

can conditionally add the value 2 with probability 0.3+0.4
0.1+0.2+0.3+0.4

, corresponding to the latter

half of the vector. Depending on if 2 is added, we then conditionally add the value 1,

11



with probability derived from the subvectors [0.1, 0.2] and [0.3, 0.4]. An example program

implementing this is given below:

1 num = 0

2 if flip(0.7) // 0.3 + 0.4

3 num += 2

4 if flip(0.4/0.7)

5 num += 1

6 else

7 if flip(0.2/0.3)

8 num +=1

9 return num

This approach is formalized in Algorithm 2. For the sake of simplicity, we assume the

input vector is always of length 2b for some number b; this means that we always divide the

vector into its two halves. For an arbitrary input vector, we can simply pad 0 probability

values to fulfill this condition; in practice, this algorithm can easily be adapted to work

without this explicit padding.

Algorithm 2: BITWISE INT (v ∈ [0, 1]2
b
)

Input: Vector v such that v[i] ∝ pr(i)

p←
∑2b−1

i=2b−1 v[i]∑2b−1
i=0 v[i]

if length(v) == 1 then
return 0

else

if flip(p) then

// Recurse on second half ≥ 2b−1

return BITWISE INT(v[2b−1 : 2b]) + 2b−1

else

// Recurse on first half < 2b−1

return BITWISE INT(v[0 : 2b−1])

Note that while Algorithm 2 uses arithmetic to produce the distribution, it only ever adds

or returns powers of two, which directly correspond to the bits of the integer. Therefore, when
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implementing the algorithm as a distribution on a tuple of bits, we encode each such addition

by simply setting the appropriate bit. For the same example as above, our implementation

constructs a tuple of bits (b1, b0) corresponding to a binary number such that b1 = flip(0.7)

and b0 = if b1 then flip(0.4
0.7

) else flip(0.2
0.3

).

How does this method of representing integer distributions differ than the one given

before? To see this, we look at the BDD for a distribution written in this manner given

in Figure 3.1b. We can see a clear difference between this BDD and that for the approach

given in Algorithm 1. The most significant bit corresponds to a BDD depending on only

one flip, as this corresponds to the largest power of two: only one flip is used to determine

its value. For the less significant bits, we add an additional layer of variables for each one,

with the number of layers in total corresponding to the number of bits needed to represent

the input distribution. This is in contrast to the CATEG INT encoding, which requires

checking a linear chain of variables for each bit, and so achieves a much more compact BDD

representation.

We formalize this difference in BDD size in Proposition 1. Note that variable order can

greatly influence the size of a BDD, and finding the optimal variable order is an NP-hard

problem [Meinel and Theobald, 1998]; we follow the Dice convention of ordering logical

variables using (strict, left-to-right) evaluation order. For example, in Figure 2.1, the

Boolean variables encoding the discrete distribution on Line 13 occur before the variables

in the distribution on Line 15 in the order.

Proposition 1. A discrete distribution over the integers {0, 1 . . . , 2b−1} compiles to a BDD

of size Θ(b2b) when represented using CATEG INT (Algorithm 1) and a BDD of size Θ(2b)

when represented using BITWISE INT (Algorithm 2), with variables in flip evaluation order.

It is BITWISE INT that we have implemented in Dice.jl and experimentally evaluate

in the following chapter.
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3.2.3 Uniform Integers

The previous encoding strategy works for arbitrary distributions on integers, but in practice

one often encounters common highly-structured distributions such as the uniform. One

advantage of our approach is that we can exploit the structure of such distributions in

order to scale significantly better than the general approach presented in Algorithm 2. In

particular, the structure of the uniform distribution allows for a special encoding with fully

independent flips.

Since the probability of every integer is equal, we can encode a uniform distribution over

integers {0, 1, . . . , 2b−1} by adding the values 20, 21, . . . , 2b−1 independently with probability

0.5. From a bitwise perspective, this is same as independently setting each bit of the number

to be true with probability 0.5. As an example, consider the uniform distribution over inte-

gers {0, 1, . . . , 15}. Clearly, each possible instantiation of (flip(0.5),flip(0.5),flip(0.5),flip(0.5))

is equally likely, and thus equivalently the probability of each integer in the range.

The method described above works for uniform distributions whose range is 2n for some

n; for ranges that are not a power of 2, we use the fact we can decompose any natural

number into a sum of powers of 2. This enables a uniform distribution over any range

to be represented as a mixture of multiple uniform distributions over smaller power-of-two

ranges. We formalize this idea in Algorithm 3, which gives a method for representing uniform

distributions starting at 0; the correctness of this approach is shown in the appendix. We

can then use this approach to achieve any uniform distribution by adding an offset. Just like

the previous algorithms, this algorithm is implemented by constructing sequences of bits in

a manner equivalent to arithmetic.

We note that unlike the BITWISE INT algorithm, where less significant bits have a

dependence on more significant bits, our uniform algorithm leverages independence between

the bits. Therefore, the BDD obtained when using UNIFORM is more compact than for our

other algorithms, and fewer variables are needed to represent such a distribution.
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Algorithm 3: UNIFORM(n)

Input: Positive integer n

b← ⌊log2(n)⌋

if flip
(

2b

n

)
then

sum ← 0

for i← 0 to b− 1 do

if flip
(
1
2

)
then

sum ← sum + 2i

return sum

else

return UNIFORM(n− 2b) + 2b

3.3 Efficient Integer Operations

While the binary representations of discrete and uniform distributions over integers are

interesting, they do not by themselves necessarily give much advantage. If adding two such

distributions still requires an explicit enumeration of all possible sums, then we have not

gained much over the existing inference approaches. However, the binary encoding enables

us to leverage the structure of integers to do much better than this for common operations.

In this section, we demonstrate this for integer comparisons and addition.

3.3.1 Integer Comparisons

The comparison operator on binary tuples can be implemented using logic circuits like those

in computer hardware. Suppose we compute a < b for two binary numbers a = 001 and

b = 100. The circuit first compares the most significant bits (MSBs) of these numbers, which

are 0 and 1 respectively - enough to know that a < b is true. If the two numbers instead

had the same MSB, we would need to start this comparison over on remaining bits. This

process of computing a < b highlights its key contextual independencies. First, given the
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MSBs of the operands are different, the result of a < b does not depend on the remaining

bits. Second, given the MSBs of the operands are same, the computation on the remaining

bits does not depend on the value of the MSBs. This structure gets automatically exploited

when we use this standard logic circuit to compare integer distributions, where the inputs

are now weighted Boolean formulas represented as BDDs, rather than bits.

More concretely, consider the following probabilistic program which defines two random

variables having a uniform distribution over the integers {0, 1, . . . , 7} and then outputs the

probability of one integer being less than the other.

1 a = uniform(0, 8)

2 b = uniform(0, 8)

3 return (a < b)

Enumerating all the values that a and b can take in the above program would lead to

64 combinations. In contrast, the BDD for the comparison operation has size linear in the

number of bits, as it exploits contextual independences. We later present empirical results

demonstrating that this leads directly to better scalability for discrete inference.

3.3.2 Integer Addition

Consider two binary numbers a = 001 and b = 100 that we wish to add. The least significant

bit (LSB) of a+b is computed as the xor of the LSBs of a, b and 0 (the initial carry bit). The

carry, computed as the and of the LSBs of a and b, is passed on to the next bit and the same

process will be repeated for the remaining bits. The process described above shows that

given the carry bit, each bit of the result is independent of the lesser significant bits of the

operands. Similar to the comparison operation, encoding addition on integer distributions

as a logical circuit directly exploits such contextual independencies to produce a compact

BDD, which in turn leads to significant performance gains. The manner in which addition

corresponds to a compact BDD has been explored before; Wegener [2004] showed that for

an optimal variable ordering, there is a linear bound on the BDD for addition.
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In this section, we described the structure of two arithmetic operations, comparison and

addition, independently. When composing these operations together, the compilation of

weighted Boolean formulas will naturally compose as described in previous work [Holtzen

et al., 2020]. The sizes of the resulting BDDs depend highly on the variable ordering —

but even when the variable ordering is not optimal, contextual independences can still be

identified and exploited, as shown by the experiments in the next section.
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CHAPTER 4

Empirical Evaluation

In this chapter, we empirically evaluate our integer compilation strategy. While we have

demonstrated that a binary encoding exposes structure that knowledge compilation can

exploit, it remains to be seen if this can improve the performance of probabilistic programs.

In addition, we have yet to show how our approach compares to other inference methods on

larger, more complex arithmetic models. We seek to answer the following questions:

1. Does a binary encoding benefit existing knowledge compilation based languages?

2. Does our approach outperform those of existing PPLs that support exact discrete

inference?

To this end, we have implemented our integer representation in Dice.jl, a PPL em-

bedded in Julia that uses the same knowledge compilation approach as Dice [Holtzen et al.,

2020]. In Dice.jl (binary), unsigned random integers are implemented using the strategy

described in the previous section; signed random integers are additionally implemented as

a natural extension. The language provides the syntax discrete(..) for arbitrary integer

distributions and uniform(..) for uniform distributions, implemented using the algorithms

in Section 3, as well as the operators =, <,+,−, ∗, /, and %. Simple operators are imple-

mented as logical circuits, while more complex operators are implemented by composing

simpler ones. 1

1Our implementation and code for all experiments are available at https://github.com/Tractables/
Dice.jl/tree/arithmetic.

18



2 4 6 8 10 12 14

10−3
10−2
10−1
100
101
102
103

a < b

ti
m
e
(s
)ProbLog (binary)

ProbLog (native)

Dice.jl (binary)

Dice.jl (one-hot)
2 4 6 8 10 12 14

10−3
10−2
10−1
100
101
102
103

a == b

2 4 6 8 10 12 14
10−3
10−2
10−1
100
101
102
103

E[a+ b]

Figure 4.1: Time needed to compute the given operation on two random integers with varying

bitwidth (x-axis).

Reported runtimes are a median over at least 5 runs; all experiments were run with a 1

hour timeout. A best-effort attempt was made for each language to implement benchmarks

in a maximally performant manner. More experimental details are available in the appendix.

4.1 Improving Knowledge Compilation Languages with a Binary

Encoding

In this section, we demonstrate the benefit a binary encoding brings to knowledge compilation

based languages. We compare our integer representation method to the methods of the PPL

Dice [Holtzen et al., 2020] and the probabilistic logic programming language ProbLog [Fierens

et al., 2015], both of which use knowledge compilation as their approach to inference. We

do this by comparing the time needed to compute the simple arithmetic operations a + b,

a < b, and a == b on random integers of width 2n for varying n from 1 to 15. Here, the

runtime of each method corresponds to the time needed to compile and run inference on each

representation, effectively measuring how well the knowledge compilation based inference can

exploit the structure of each simple function. For addition, we use the expectation of the sum

as our target computation to avoid an output distribution with an exponentially increasing

support.

To allow for a fair comparison between ProbLog’s native integer representation and our
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binary representation, we implement equivalent ProbLog programs computing the arithmetic

operations, one using native ProbLog encodings and one using a binary representation. Both

programs can then be run using ProbLog, controlling for the specific knowledge compilation

system. To compare with Dice’s native one-hot integer encoding, we implement both the

one-hot encoding and our binary encoding in Dice.jl. We then run the simple arithmetic

programs using both encodings.

The results of these experiments are presented in Figure 4.1. We can clearly see that our

binary encoding outperforms the existing integer representation strategy used in each lan-

guage; while at small distribution widths (on the order of 24), they are roughly comparable,

our approach scales much better to larger integer distributions.

4.2 Complex Arithmetic Models

We also evaluated Dice.jl on more complex models involving distributions over integers.

The models were taken from a variety of sources. These include examples involving integers

from the existing PPL literature, various examples using continuous distributions adapted

to a discrete space, natural modelling tasks using integers such as ranking and text ma-

nipulation, and traditional algorithms in a probabilistic setting. A short description of our

baselines and their sources is given in the appendix.

As a point of comparison, we use two other PPLs supporting exact discrete inference.

We identify two major classes of exact inference approaches used for discrete probabilistic

programs: enumerative methods, which work by enumerating all paths through the program,

and symbolic methods, which represent and compute the probability distribution through

symbolic expressions. We compare against WebPPL [Goodman and Stuhlmüller, 2014] from

the former category and Psi [Gehr et al., 2016] from the latter.

We also compare against a version of Dice.jl that uses a one-hot encoding of integer

distributions as a proxy for existing knowledge compilation approaches; this comparison
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Table 4.1: Runtimes in seconds for probabilistic models using integers in various PPLs. ✗

indicates a timeout (over 1 hour).

Benchmarks Dice.jl (binary) Dice.jl (one-hot) WebPPL Psi (DP) Psi

book 5.297 ✗ ✗ ✗ ✗

tugofwar 0.106 2660.373 21.012 ✗ ✗

caesar-small 0.041 4.968 0.074 2.022 402.196

caesar-medium 0.239 39.518 0.135 12.505 ✗

caesar-large 0.556 122.109 0.227 30.387 ✗

ranking-small 0.007 0.025 0.83 103.572 ✗

ranking-medium 0.022 0.077 ✗ 318.658 ✗

ranking-large 0.048 0.150 ✗ 330.51 ✗

radar1 0.034 0.664 118.002 394.525 2.517

floydwarshall-small 0.009 0.152 0.009 0.115 113.467

floydwarshall-medium 0.515 624.220 9.51 2792.14 ✗

floydwarshall-large 3.406 ✗ ✗ ✗ ✗

linear extensions-small 0.003 0.004 0.016 0.351 5.153

linear extensions-medium 0.007 0.013 0.465 111.38 ✗

linear extensions-large 0.072 0.164 162.009 ✗ ✗

triangle-small 0.086 102.544 3.693 616.746 482.14

triangle-medium 0.455 1123.171 28.354 ✗ ✗

triangle-large 17.365 ✗ ✗ ✗ ✗

gcd-small 2.876 ✗ 0.189 24.33 ✗

gcd-medium 103.614 ✗ 2.501 467.581 ✗

gcd-large ✗ ✗ 46.626 ✗ ✗

disease-small 7.91 ✗ 1.093 109.242 1009.848

disease-medium 764.212 ✗ 327.545 ✗ ✗

luhn-small 0.039 0.594 0.428 44.164 ✗

luhn-medium 4.575 23.933 42.372 ✗ ✗
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avoids language-specific differences in performance.

Our results are summarized in Table 4.1. Many of our benchmark models can naturally be

scaled to different sizes; they are implemented in small, medium, and large (corresponding

to model size) variants to display the scaling behavior. Psi supports two exact inference

algorithms: a default symbolic exact inference algorithm (”Psi”) and its specialized dynamic

programming inference algorithm (”Psi (DP)”).

For the majority of benchmarks, our approach outperforms the current exact inference

approaches, often achieving an orders-of-magnitude speedup. This result empirically val-

idates the ability of our compilation strategy to exploit arithmetic structure in order to

improve inference performance. We observe that the binary encoding outperforms the one-

hot encoding with the same underlying knowledge compilation approach, demonstrating its

superiority in exposing arithmetic structure.

We note that Dice.jl does not always outperform WebPPL, the enumeration based

approach. We make special note of these examples. The caesar example introduces many

random integers but immediately makes an observation on their value, thereby reducing the

enumeration task and making this tractable for all approaches. The disease example contains

parametric distributions on integers; for example, a binomial distribution with parameter

n distributed by a uniform distribution. These distributions have much less structure to

exploit, and so our approach becomes essentially enumerative, but with additional overhead

in compilation. The GCD example, which makes repeated use of the mod (%) operator,

similarly has a harder to exploit structure. However, we can see in general that our approach

scales well to larger examples and outperforms existing PPLs that support exact discrete

inference.

In addition to program runtimes, we provide a supplementary metric: BDD size. BDD

size serves as a proxy for how well knowledge compilation can exploit structure: the more

compact the BDD, the smaller the representation of our function, and the faster weighted

model counting can be executed. Table 4.2 compares the resultant BDD size for various
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Table 4.2: BDD sizes for probabilistic models using a binary vs one-hot encoding

Benchmarks binary one-hot

tugofwar 2400 2821

caesar-small 1304 3879

caesar-medium 6344 17879

caesar-large 12644 35379

ranking-small 691 1146

ranking-medium 6218 8297

ranking-large 11491 15680

radar1 181 332

floydwarshall-small 10 10

floydwarshall-medium 341 237

linear extensions-small 29 53

linear extensions-medium 133 257

linear extensions-large 997 1538

triangle-small 10273 150089

triangle-medium 40419 1156785

luhn-small 518 1010

luhn-medium 2899 7361

models when compiled in Dice.jl using a binary or one-hot encoding. We can see that in

almost all cases the binary encoding results in a smaller BDD, in some cases much smaller.

Note that these are the models for which the one-hot encoding did not timeout; it is likely

for those models that timed out that the one-hot encoded BDD size are much larger than

the binary encoded BDD size.
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CHAPTER 5

Enabling Continuous Priors with Discrete

Distributions

Previous chapters presented an inference strategy for integer distributions allowing for the

scaling of integer arithmetic. We now demonstrate an interesting application of these inte-

gers: representing the continuous Beta distribution in a discrete space. Continuous priors

are an essential part of Bayesian reasoning.

5.1 Representing a Beta Prior

One particularly useful prior for discrete PPLs like Dice.jl is the Beta prior Beta(α, β),

which is conjugate to the Bernoulli. The Beta distribution is continuous and thus not

amenable to direct representation in Dice.jl. However, we observe that if a Beta prior for a

Bernoulli random variable has integral parameters α and β, then the posterior distribution

is also a Beta with integral parameters. This section explains how we use this observation

to represent Beta distribution in Dice.jl.

Assume we have the following program where Dice.jl is extended to permit restricted

classes of Beta priors, where the parameters α and β must be constant integers:

1 θ = Beta(1, 2)

2 x = flip(θ)
3 observe(x)

4 return θ

We can perform inference for the posterior by exploiting well-known conjugacy results be-
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tween Beta priors and Bernoullis. In particular, observing that x is true, as is done on Line

3 above, increases the pseudocount α by 1, making the posterior for θ become Beta(2, 2).

Similarly, observing that x is false increases the pseudocount β by 1.

To automate this approach in Dice.jl, we introduce program variables A and B to

represent the pseudocounts α and β, respectively. We then conditionally update these pseu-

docounts after each flip: increment α if the flip returns true; otherwise increment β.

Doing so ensures that later observations will have the desired effect on the pseudocounts.

The only remaining challenge is that discrete PPLs that employ knowledge compilation,

like Dice.jl, only support flips whose parameters are constants, so the flip(θ) on Line 2

above is not supported. To encode it, we use the fact that E[Beta(α, β)] = α
α+β

, so the flip

on line 2 can be simplified to flip( A
A+B

). Unfortunately, Dice.jl still does not support this

construct, since A
A+B

is not a constant. However, A + B is always a deterministic integer,

since each observation increases it by exactly 1. Therefore, we can introduce a variable T

representing A+B and encode flip( A
A+B

) as uniform(0, T ) < A (where uniform(0, n) is the

uniform distribution over the integers 0, .., n− 1). Finally, we observe that it is not necessary

to maintain both variables A and B, since B is derivable from A and T. The final transformed

version of the program is as follows:

1 A = 1, T = 3

2 x = uniform(0, T) < A

3 A = if x then A+1 else A

4 T = T + 1

5 observe(x)

6 return (A, T-A)

If we wish to draw another flip on the same Beta prior, we can simply repeat the code in

lines 2-4 above. In this way, what we have actually implemented is a Beta-Bernoulli process

via a Polya urn model - something analyzed in detail in probabilistic programs by Staton

et al. [2018]. We also note that this representation strategy — an implementation of an urn

model — can also be used for many other distributions in addition to the Beta [Mahmoud,

2008].
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5.2 Beta Prior Application: Bayesian Network Parameter Learn-

ing

a s

e
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1 ? 1 0 ? 1
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Figure 5.1: Visualization of and example missing dataset for the survey Bayesian network.

One natural application of a Beta prior is as a prior distribution for learning the param-

eters of a (binary) Bayesian network. The task of Bayesian network parameter learning can

be described as follows: given a set of data consisting of instantiations of network variables,

we want to find the network parameters maximizing the probability of this data. One inter-

esting case is when our data is incomplete; that is, there are some variables not given a value.

In this setting, a Bayesian approach to parameter learning must consider all (exponentially

many) possible instantiations of these missing values [Darwiche, 2009].

Using our Beta prior implementation described in the previous section, this setting can

naturally be modeled within Dice.jl.. A Bayesian network can be expressed in the proba-

bilistic program with Beta priors on each network parameter; a dataset can then be observed.

By returning the distribution over our Beta parameters α and β, we obtain our posterior, a
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α β Pr(.)

9 3 0.226

8 4 0.207

10 2 0.177

7 5 0.160

6 6 0.109

5 7 0.066

4 8 0.035

3 9 0.016

2 10 0.005

Figure 5.2: Output posterior distribution and visualization. The output represents a mixture

over Beta distributions, represented by their parameters α and β.

mixture over Beta distributions. These can then be manually combined to obtain the exact

posterior density function.

We provide a brief example of this on the survey Bayesian network1. The structure of this

network is shown in Figure 5.1; we simplify the network by making all variables binary so

that the Beta is a suitable prior. We note that we can actually generalize to the non-binary

case with a Dirichlet prior using an approach similar to that used for the Beta. We also

provide an example missing dataset for the network; the entry ? indicates a missing value.

For this example, we focus on the specific parameter θo|e = Pr(O = 1|E = 1), for which we

give a uniform prior Beta(1, 1).

By running the program representing this task, we get a large output distribution over

Beta parameters - a mixture over Beta distributions. Note that it does not contain as

many entries as possible instantiations, as some complete variable instantiations result in

1https://www.bnlearn.com/bnrepository/
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the same posterior Beta. If we plot the corresponding mixture, we can get a posterior PDF

— note that this is an exact posterior recovered from the Beta parameters, in contrast to

the approximate result one would get from sampling-based inference methods. The output

and PDF visualization are given in Figure 5.2.
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CHAPTER 6

Related Work

Various other probabilistic programming languages and systems support exact inference on

integer distributions. To our knowledge, our method is the first to attempt to leverage a

binary encoding to exploit arithmetic structure. In this chapter, we discuss the existing

approaches to exact inference on integer distributions, and the applicability of our method

to these approaches.

6.1 Alternative Inference Approaches

Knowledge-compilation-based PPLs are most closely related to this work [Holtzen et al.,

2020, De Raedt et al., 2007, Fierens et al., 2015, Saad et al., 2021, Pfanschilling et al., 2022].

All these languages stand to benefit from our new binary-encoding. Other PPLs perform

exact discrete inference by eliminating discrete variables via enumeration or variable elimi-

nation; these approaches lose global structure and hence cannot exploit arithmetic structure

as in our approach [Goodman and Stuhlmüller, 2014, Bingham et al., 2019]. Symbolic meth-

ods support integers by representing them as a symbolic formula or program [Gehr et al.,

2016, Narayanan et al., 2016]; we believe that in principle it may be possible to adapt these

symbolic representations to use a binary representation, but currently these systems do not.

Recent work uses probability generating functions (PGFs) to represent (potentially un-

bounded) discrete distributions [Klinkenberg et al., 2023, Zaiser et al., 2023]. PGFs repre-

sent the distribution symbolically, but do not appear to be compatible with our strategy
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for binary encodings. Sampling based inference algorithms work very well for probabilistic

programs with continuous distributions, but do not exploit the global structure of integer

arithmetic [Kantas et al., 2009, Hoffman and Gelman, 2014, Arouna, 2004, Wu et al., 2016].

Probabilistic graphical model (PGM) based inference methods [Pfeffer, 2009, McCallum

et al., 2009, Sanner and Abbasnejad, 2012, Koller and Friedman, 2009] support integers

by treating them as categorical distributions. PGMs struggle to represent arithmetic: for

instance, a CPT for adding two n-bit numbers requires O(2n) entries.
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CHAPTER 7

Conclusion

We presented a strategy for encoding random integers in probabilistic programs via a bi-

nary representation, which allows arithmetic operations to be performed through standard

Boolean circuits. When combined with the knowledge compilation approach to probabilistic

inference, this strategy naturally exploits structure in arithmetic that current approaches

do not account for. We showed empirically that this allows existing discrete PPLs to scale

to significantly more complex probabilistic models. One interesting consequence is that we

can now leverage conjugacy to represent the Beta distribution, a continuous distribution, in

purely discrete programs.

While the work in this thesis has demonstrated the ability of a binary encoding in a

knowledge compilation system to speed up programs with integer arithmetic, there remain

areas to be explored. For instance, it remains unclear how a method such as this binary

encoding can be applied to non-knowledge compilation exact inference methods, such as

symbolic inference. In addition, while we give an example of the use of integers in representing

a Beta distribution for learning tasks, it remains to explore the full scope of this application

and other possible applications of fast inference over integers.

Follow-up work to that presented in this thesis leverages the increased efficiency of arith-

metic with a binary encoding for inference on hybrid (having both discrete and continuous

variables) programs. This work expands the idea of a binary integer encoding to a binary

fixed-point encoding, which can be used for a discrete approximation of continuous dis-

tributions. These discrete approximations can then leverage the same structure through
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knowledge compilation that we observed in this thesis for fast approximate inference on the

continuous distributions, obtaining improvements over existing inference approaches [Garg

et al., 2024].
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APPENDIX A

Proofs

A.1 BDD Sizes of Integer Distribution Encodings

A.1.1 Preliminaries

A b-rooted BDD B with m decision variables computes some function {0, 1}m → {0, 1}b at

its roots. Note that we can treat each root of the BDD as corresponding to an individual

function {0, 1}m → {0, 1}; in this manner we can equivalently treat such a BDD as a tuple

of functions ({0, 1}m → {0, 1})b. We will let B(x⃗) = (B1(x⃗), . . . , Bb(x⃗)) denote this tuple.

Here, x⃗ contains the decision variables of the BDD, with the variable order of the BDD

matching the order of the components of x⃗.

Note that the function computed by the BDD has as output a bit vector of length b. This

can be interpreted as a b-bit unsigned integer, and we will treat the two interchangeably

throughout these proofs. This also suggests that a function f : {0, 1}m → {0, . . . , 2b − 1}

can equivalently specify a BDD; we will use JfK to denote the corresponding BDD.

We will be dealing with probabilistic BDDs, where each decision variable is given a

weight representing a probability. Intuitively, this can be seen as replacing each xi with

a random Xi = Bernoulli(pi); each decision variable has positive weight pi and negative

weight 1 − pi. The BDD can thus be viewed as representing a probability distribution

over potential outputs, where the probability corresponds to the weighted paths through

the BDD. We will say a probabilistic BDD B(X⃗) with probability assignments p⃗ encodes a

probability distribution over unsigned integers Pr(V ) if the two distributions are the same,
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i.e. the distribution over output bits of (B(X⃗), p⃗), when interpreted as integers, is identical

to Pr(V ).

A.1.2 Categorical Encoding of Integer Distributions

Recall Algorithm 1. Expanding the recursion and simplifying the arithmetic structure, we

get the following natural encoding method for integers, which is similar to how the algorithm

is implemented in practice.

g(x⃗) =



0 if x0

1 else if x1

. . .

2b − 2 else if x2b−2

2b − 1 else

In Algorithm 1, each xi is given some probability pi, corresponding to the flip in the

algorithm. In this algorithm, we recurse on the tail of the input probability vector v, and

so this probability pi =
v[0]∑

v
represents the conditional probability that we return a number,

given that our returned value is greater than or equal to that number. We formalize this

encoding method in Definition 1.

Definition 1. Given a distribution Pr(V ) over the integers {0, ..., 2b − 1}, define

encodeCATEG(Pr(V )) = (JgK , p⃗), where pi = Pr(V = i|V ≥ i) for 0 ≤ i ≤ 2b − 2, and g is

34



defined as follows:

g(x⃗) =



0 x0

1 ¬x0 ∧ x1

. . .

j xj ∧
j−1∧
i=0

¬xi and 0 ≤ j ≤ 2b − 2

. . .

2b − 1
2b−2∧
i=0

¬xi

Note that with the vector variable order x0, x1, .., x2b−2, this exactly matches the program

variable order of Algorithm 1, and thus the evaluation order in the proposition.

Lemma 2. Pr(v ≥ x) =
∏x−1

i=0 Pr(v ̸= i|v ≥ i)∀x, v ∈ N0. Proof omitted; proceed by

induction.

Lemma 3. For any distribution Pr(V ) over the integers {0, ..., 2b−1}, encodeCATEG(Pr(V ))

encodes Pr(V ).

Proof. Let (JgK , p⃗) = encodeCATEG(Pr(V )). We prove that for all 0 ≤ j ≤ 2b− 1, Pr(g(X⃗) =

j) = Pr(V = j).

Case 1: 0 ≤ j ≤ 2b − 2.

Pr(g(X⃗) = j) = Pr

(
Xj ∧

j−1∧
i=0

¬Xi

)

= Pr(Xj)

j−1∏
i=0

Pr(¬Xi) (Independence)

= Pr(V = j|V ≥ j)

j−1∏
i=0

Pr(V ̸= i | V ≥ i) (As Pr(Xi) = pi)

= Pr(V = j|V ≥ j) Pr(V ≥ j) (Lemma 2)

= Pr(V = j)
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Case 2: j = 2b − 1.

Pr(g(X⃗) = 2b − 1) = Pr

2b−2∧
i=0

¬Xi

 =
2b−2∏
i=0

Pr(¬Xi) (Independence)

=
2b−2∏
i=0

Pr(V ̸= i|V ≥ i) (As Pr(Xi) = pi)

= Pr(V ≥ 2b − 1) (Lemma 2)

= Pr(V = 2b − 1)

A.1.3 BDD Size of the CATEG INT Encoding

We prove the first half of Proposition 1.

Proposition 1 (first half). A discrete distribution over the integers {0, 1 . . . , 2b− 1} com-

piles to a BDD of size Θ(b2b) when represented using CATEG INT (Algorithm 1), with

variables in flip evaluation order.

We will use LSBi(j) to denote the ith least significant bit of j; for example, LSB2(13) =

0.

Lemma 4. Let (JgK , P ) = encodeCATEG(Pr(V )), where Pr(V ) is the distribution over the

integers {0, .., 2b − 1}. JgK will be exactly the BDD C with the following structure:

For each root 1 ≤ i ≤ b, C has nodes Ni,0, Ni,1, . . . , Ni,2b−2i−1−1, at the levels of decision

variables x0, x1, . . . , x2b−2i−1−1, respectively.

low(Ni,j) = if j < 2b − 2i−1 − 1 then Ni,j+1 else 1

high(Ni,j) = LSBi(j)

The roots of the BDD Ci each point to the corresponding node Ni,0.
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Intuitively, the high edge of a node indicates that that decision variable is true, meaning

that we have ”chosen” our number (and thus the corresponding value for the bit); the low

edge means that we should move on to the next bit. As an example, the BDD for b = 2

follows (terminal nodes visually duplicated for clarity).

C1

N1,0

N1,1

N1,2

T F

C2

N2,0

N2,1

T F

Proof. We argue that the described BDD is reduced. Note that the BDD essentially consists

of linear chains from each root node. It is clear that no node has isomorphic children, as

one child is always a terminal node while the other child is a decision node, and therefore we

cannot eliminate any nodes. As the BDD consists of chains, merging nodes must be done

between chains. As described, each chain is of a different depth, and so resolves on a different

final decision variable. Therefore, at no stage can two nodes compute the same subfunction,

and so we cannot merge nodes.

As our BDD is reduced, it is canonical for the represented function. Therefore, showing

that the function represented by C is the same as g will show that our BDD JgK has the

same structure.

We will now show that for all x⃗, Ci(x⃗) = LSBi(g(x⃗)), and thus that the functions are

equivalent.

Let Si,j(x⃗) denote the state of Ci at the level of xj, given a (potentially partial) assignment

to x⃗; this is the subfunction that must be computed at that point. This is usually a node at

level xj, but can be a lower level node such as a terminal node (representing that the decision

node can be skipped). See the following BDD and corresponding states as an example.
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S1,0(x0, x1, x2) = N1,0

S1,1(0, x1, x2) = N1,1

S1,1(1, x1, x2) = 0

S1,2(0, 0, x2) = N1,2

S1,2(0, 1, x2) = 1

S1,2(1, x1, x2) = 0

C1

N1,0

N1,1

N1,2

T F

Let P (t) be the statement

Si,t = if (g(x⃗) < t) ∨ (t > 2b − 2i−1 − 1) then LSBi(g(x⃗)) else Ni,t.

P (1) holds as the initial node of all Ci(x⃗) is always Ni,0.

Assume P (t) for an arbitrary t ≤ 2b − 1.

Consider going to the next node. If we are at a terminal node, then the state stays the

same, otherwise we go to the low or high edge based on xt. Thus, to advance state, we

replace Ni,t with if xt then high(Ni,t) else low(Ni,t).

Si,t+1 = if (g(x⃗) < t) ∨ (t > 2b − 2i−1 − 1)

then LSBi(g(x⃗))

else (if xt then high(Ni,t) else low(Ni,t))

We substitute for high(Ni,t) and low(Ni,t).

Si,t+1 = if (g(x⃗) < t) ∨ (t > 2b − 2i−1 − 1)

then LSBi(g(x⃗))

else
(
if xt then LSBi(t) else

(
if t < 2b − 2i−1 − 1 then Ni,t+1 else 1

))
xt ∧ ¬(g(x⃗) < t) implies g(x⃗) = t.

Si,t+1 = if (g(x⃗) < t) ∨ (t > 2b − 2i−1 − 1)

38



then LSBi(g(x⃗))

else
(
if xt then LSBi(g(x⃗)) else

(
if t < 2b − 2i−1 − 1 then Ni,t+1 else 1

))
Two branches are now equivalent (LSBi(g(x⃗))) and can be combined.

Si,t+1 = if (g(x⃗) < t) ∨ (t > 2b − 2i−1 − 1) ∨ xt

then LSBi(g(x⃗))

else
(
if t < 2b − 2i−1 − 1 then Ni,t+1 else 1

)
g(x⃗) < t ∨ xt is equivalent to g(x⃗) < t+ 1.

Si,t+1 = if (g(x⃗) < t+ 1) ∨ (t > 2b − 2i−1 − 1)

then LSBi(g(x⃗))

else
(
if t < 2b − 2i−1 − 1 then Ni,t+1 else 1

)
In the outer else, t ≤ 2b − 2i−1 − 1 (by the condition). In the inner else, t is also

≥ 2b − 2i−1 − 1.

Si,t+1 = if (g(x⃗) < t+ 1) ∨ (t > 2b − 2i−1 − 1)

then LSBi(g(x⃗))

else
(
if t = 2b − 2i−1 − 1 then Ni,t+1 else 1

)
In the inner else, g(x⃗) > t by the outer condition and t = 2b − 2i−1 − 1 by the inner

condition; together, g(x⃗) > 2b− 2i−1− 1. For all such g(x⃗), LSBi(g(x⃗)) = 1 (as 2b− 1− 2i−1)

is the largest number at most 2b− 1 with the ith bit set to 0). Thus, we can merge two more

branches.

Si,t+1 = if (g(x⃗) < t+ 1) ∨ (t+ 1 > 2b − 2i−1 − 1)

then LSBi(g(x⃗))

else Ni,t+1
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Thus P (t)→ P (t+ 1) and thus P (t) holds for all 1 ≤ t ≤ 2b − 1.

Consider P (2b − 1).

Si,2b−1 = if (g(x⃗) < 2b − 1) ∨ (2b − 1 > 2b − 2i−1 − 1) then LSBi(g(x⃗)) else Ni,2b

Si,2b−1 = LSBi(g(x⃗))

Therefore JgK and C are equivalent.

Proposition 1 (first half).

Proof. Let (B, p⃗) = encodeCATEG(Pr(V )), where Pr(V ) is a distribution over the integers

{0, .., 2b − 1}. It follows directly from Lemma 4 that
∑b

i=1 2
b − 2i−1 = b2b − 2b + 1 decision

nodes are needed for B.

A.1.4 Bitwise Encoding of Integer Distributions

Recall Algorithm 2. By expanding the algorithm, we obtain the following encoding method

for integers, which again is similar to how it is implemented in practice.

B1(x⃗) = xε

B2(x⃗) = if xε then x1 else x0

B3(x⃗) = if xε then (if x1 then x11 else x10) else (if x0 then x01 else x00)

...

Our xs are again derived from the algorithm; here, we recurse on the two halves of the

input vector, and our probability ps is the relative weight of the latter half of the vector

(corresponding to the larger numbers, with a value of 1 for the MSB). While in the written

algorithm we conditionally added a power-of-two, what we are in essence doing is probabilis-

tically setting the value of the most significant bit. The subscript s refers to the sequence
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of more significant bits that have already been determined; for example, xε is deciding the

value of the most significant bit (given an empty string, for no prior sequence), while x11 is

deciding the third MSB, given that the first two MSBs are 11.

We formalize this encoding in Definition 2. Let si denote the ith bit of a 1-indexed bit

string or number; for example, 00103 = 1. Let |s| denote the length of a bit string. Let ⌢

denote concatenation for bits and bit strings.

Note that we use two different types of subscripts: decision variables are subscripted by

bit sequences for identification purposes, while a subscript i on values such as numbers and

bitstrings represents the ith bit of the value.

Definition 2. For a distribution Pr(V ) over the integers {0, .., 2b − 1} with, define

encodeBITWISE INT(Pr(V )) = (B, p⃗) such that for each bit string s, 0 ≤ |s| < b, there is a

decision variable xs with probability ps = Pr(V|s|+1 |
|s|∧
i=1

V = si).

Intuitively, the bits are chosen left-to-right, and each decision variable chooses the next

bit given a bit string of past choices. Consider the following examples, where the empty bit

string is denoted as ε.

Pr(xε) = Pr(V1)

Pr(x0) = Pr(V2 | ¬V1)

Pr(x1) = Pr(V2 | V1)

Pr(x0100) = Pr(V5 | ¬V1 ∧ V2 ∧ ¬V3 ∧ ¬V4)

We specify Bi(x⃗) = xB1(x⃗)⌢B2(x⃗)⌢...⌢Bi−1(x⃗) for 1 ≤ i ≤ b. For example, B1(x⃗) = xε, B2(x⃗) =

xB1(x⃗), B3(x⃗) = xB1(x⃗)⌢B2(x⃗), and so on.

Lemma 5. For any distribution Pr(V ) over the integers {0, .., 2b − 1},

encodeBITWISE INT(Pr(V )) encodes Pr(V ).

Proof. Let (B, p⃗) = encodeBITWISE INT(Pr(V )). We prove that for any possible assignment
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to bits a⃗ ∈ {0, 1}b, Pr(B(X⃗) = a⃗) = Pr(V⃗ = a⃗).

Pr(B(X⃗) = a⃗)

=
b∏

i=1

Pr(Bi(X⃗)) = ai |
i−1∧
j=1

Bj(X⃗) = aj) (Chain rule of probability)

=
b∏

i=1

Pr(XB1(X⃗)⌢...⌢Bi−1(X⃗) = ai |
i−1∧
j=1

Bj(X⃗) = aj) (Bit specification)

=
b∏

i=1

Pr(Xa⌢1 ...⌢ai−1
= ai |

i−1∧
j=1

Bj(X⃗) = aj) (Condition)

=
b∏

i=1

Pr(Xa⌢1 ...⌢ai−1
= ai |

i−1∧
j=1

XB(X⃗)⌢1 ...⌢Bj−1(X⃗) = aj) (Bit specification)

=
b∏

i=1

Pr(Xa⌢1 ...⌢ai−1
= ai) (Independence)

=
b∏

i=1

Pr(Vi = ai |
i−1∧
j=1

Vj = aj) (As Pr(Xs) = ps)

= Pr(V = a⃗) (Chain rule of probability)

A.1.5 BDD Size of the BITWISE INT encoding

We prove the second half of Proposition 1.

Proposition 1 (second half). A discrete distribution over the integers {0, 1 . . . , 2b − 1}

compiles to a BDD of size Θ(2b) when represented using BITWISE INT (Algorithm 2), with

variables in flip evaluation order.

Lemma 6. Let encodeBITWISE INT(Pr(V )) = (B,P ), where Pr(V ) is the distribution over

the integers {0, ..., 2b − 1}.

B will be exactly the BDD C with the following structure:
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For each root 1 ≤ i ≤ b, for all bit strings s of length less than i, let C have a node Ni,s

corresponding to decision variable xs.

low(Ni,s) = if |s| = i− 1 then 0 else Ni,s⌢0

high(Ni,s) = if |s| = i− 1 then 1 else Ni,s⌢1

The roots of the BDD Ci each point to the corresponding node Ni,ε.

Intuitively, for each root corresponding to bit i we consider up to a decision node of depth

i (corresponding to a prefix bitstring of length i− 1); if we have not yet reached that depth,

we instead go to a deeper decision node, with the appropriate new prefix.

As an example, the BDD for b = 2 follows (terminal nodes visually duplicated for clarity).

C1

N1,ε

TF

C2

N2,ε

N2,0 N2,1

TF

Proof. Note that the BDD described has variable order following the evaluation order from

Algorithm 2; the direct descendant of a node corresponding to the decision variable xs

will either correspond to the decision variable xs⌢1 or xs⌢0, both of which are later in the

evaluation order. As this holds for all nodes, the variable order must also follow globally.

We use a similar argument to that in the proof of Lemma 4.

We first argue that the BDD is reduced. The argument is along the same line: each root

now points to a tree deciding the value of the bit. No node has isomorphic children, as the

two children correspond to either (necessarily different) terminal nodes, or decision nodes

corresponding to different variables. In addition, as before each tree is of a different depth,
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corresponding to a different final decision variable, and so no two nodes on the same decision

variable can compute the same subfunction. Therefore, we cannot merge nodes.

It remains to show that the function described by the BDD C is equivalent to that from

the encoding B.

Let Si,j(x⃗) denote the state of Ci at the level of the first decision variable whose bit string

is of length j. See the following BDD and corresponding states as an example.

S2,0(xε, x0, x1) = N2,ε

S2,1(0, x0, x1) = N2,0

S2,1(1, x0, x1) = N2,1

S2,2(0, x0, x1) = x0

S2,2(1, x0, x1) = x1

C2

N2,ε

N2,0 N2,1

TF

Let P (t) be the statement, Si,t(x⃗) = if t ≥ i then Bi(x⃗) else Ni,B1(x⃗)⌢...⌢Bt(x⃗).

P (0) holds as there is no bit index greater than or equal to 0 and Si,0(x⃗) = Ni,ε by the

placement of the roots.

Assume P (t), which specifies Si,t. Consider advancing to the next node in the BDD based

on the assignment to decision variables (which does nothing if we are already at a terminal

node):

next(Si,t)

= if t ≥ i

then Bi(x⃗)

else
(
if xB1(x⃗)⌢...⌢Bt(x⃗) then high

(
Ni,B1(x⃗)⌢...⌢Bt(x⃗)

)
else low

(
Ni,B1(x⃗)⌢...⌢Bt(x⃗)

))
We replace xB1(x⃗)⌢...⌢Bt(x⃗) with Bt+1(x⃗).

next(Si,t) = if t ≥ i
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then Bi(x⃗)

else
(
if Bt+1(x⃗) then high

(
Ni,B1(x⃗)⌢...⌢Bt(x⃗)

)
else low

(
Ni,B1(x⃗)⌢...⌢Bt(x⃗)

))
We replace the high and low edges by the definition:

next(Si,t) = if t ≥ i

then Bi(x⃗)

else (if Bt+1(x⃗)

then
(
if t = i− 1 then 1 else Ni,B1(x⃗)⌢...⌢Bt(x⃗)⌢1

)
else

(
if t = i− 1 then 0 else Ni,B1(x⃗)⌢...⌢Bt(x⃗)⌢0

)
)

We rearrange the if conditions:

next(Si,t) = if t ≥ i

then Bi(x⃗)

else (if t = i− 1

then (if Bt+1(x⃗) then 1 else 0)

else
(
if Bt+1(x⃗) then Ni,B1(x⃗)⌢...⌢Bt(x⃗)⌢1 else Ni,B1(x⃗)⌢...⌢Bt(x⃗)⌢0

)
)

next(Si,t) = if t ≥ i

then Bi(x⃗)

else (if t = i− 1 then Bt+1(x⃗) else Ni,B1(x⃗)⌢...⌢Bt+1(x⃗))

The first two then branches collapse:

next(Si,t) = if t+ 1 ≥ i then Bi(x⃗) else Ni,B1(x⃗)⌢...⌢Bt+1(x⃗)

As the only node we now reach has bit string length t+ 1, next(Si,t) = Si,t+1. Therefore

P (t)→ P (t+ 1).
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Consider P (b− 1): Si,b−1 = if b− 1 ≥ i then Bi(x⃗) else Ni,B1(x⃗)⌢...⌢Bb−1(x⃗).

For all i ∈ {1, . . . , b − 1}, we see that the root labeled Ci(x⃗) reaches the value Bi(x⃗).

For i = b, the state reaches Nn,B1(x⃗)⌢...⌢Bb−1(x⃗), whose high and low edges are 1 and 0,

respectively. The last step goes to
(
if xb⌢1 ...⌢bb−1

then 1 else 0
)
= Bb(x⃗). Therefore B

and C are equivalent.

Proposition 1 (second half).

Proof. Let encodeBITWISE INT(Pr(V )) = (B, p⃗), where Pr(V ) is the distribution over the

integers {0, ..., 2b − 1}. It directly follows from Lemma 6 that B requires the following

number of decision nodes.
b∑

i=1

(# of bit strings of length less than i) = 2b+1 − b− 2

A.2 Encoding Uniform Integer Distributions

Proposition 2. ∀n > 0, Pr(UNIFORM(n) = i) = 1
n
for 0 ≤ i < n.

Proof. We show this by strong induction on n. When n = 1 or n = 2, this result trivially

holds. Consider n = k. Let 0 ≤ i < k, and b = ⌊log2(k)⌋ as in the algorithm.

Case 1: 0 ≤ i < 2b. UNIFORM(k) = i requires us to take the first branch of the if

statement. The conditional addition is equivalent to setting the b least significant bits of the

number to 1 with probability 1
2
and 0 with probability 1

2
. As each 0 ≤ i < 2b corresponds to

a single unique binary string of length b, the probability of the bit sequence being equal to

the wanted number is simply (1
2
)b. Therefore, Pr(UNIFORM(k) = i) = (1

2
)b(2

b

k
) = 1

k
.

Case 2: 2b ≤ i < k. UNIFORM(k) = i requires us to take the second branch of the

if statement. Using our inductive hypothesis (as k − 2b < k), Pr(UNIFORM(k) = i) =

(k−2b

k
) Pr(UNIFORM(k − 2b) = i− 2b) = (k−2b

k
)( 1

k−2b
) = 1

k
, as wanted.
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APPENDIX B

Experimental Details

Execution Details All experiments were run on a server with a 2.20GHz CPU and 504GB

RAM. WebPPL experiments were run on WebPPL v0.9.15; Psi experiments were run on

Psi version ec2cfc14a62a168afe7ce1d7269b92cf2882b830. Dice.jl experiments were run

using the code available at https://github.com/Tractables/Dice.jl/tree/arithmetic.

Benchmark Model Descriptions Below, we provide a small description of our bench-

marks with source details. The code implementations of all models are also available at the

same repository.

1. book: A model of flipping towards a target page in a book adapted from the Psi test

directory [Gehr et al., 2022].

2. tugofwar: Adapted from a traditional tug-of-war example [Huang et al., 2021], with

values made discrete.

3. caesar: The caesar-cipher example from Dice [Holtzen et al., 2020], with a different

number of characters being observed.

4. ranking: A model for learning a ranking system, adapted from Kisa et al. [2014].

5. radar1: A model of radar reception, adapted from a continuous model from Psi’s [Gehr

et al., 2016] benchmark suite.
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6. floydwarshall: An implementation of the Floyd-Warshall algorithm [Floyd, 1962] on a

graph with edges of random weight.

7. linear-extensions: A model counting linear extensions [Dittmer and Pak, 2018] where

we observe a partial order and get an output distribution over all matching total orders.

8. triangle: A model categorizing a triangle of random side lengths, adapted from the Psi

test directory [Gehr et al., 2022].

9. gcd: A model checking if two random numbers are coprime implementing Euclid’s

algorithm [Lehmer, 1938].

10. disease: A discrete disease model taken from existing works [Laurel and Misailovic,

2020].

11. luhn: A probabilistic model of student IDs leveraging the Luhn algorithm [Luhn, 1960].
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Hosam Mahmoud. Pólya urn models. Chapman and Hall/CRC, 2008.

A McCallum, K Schultz, and S Singh. Factorie: Probabilistic programming via imperatively

defined factor graphs. Proc. of NIPS, 22:1249–1257, 2009. ISSN 03643417.

Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in VLSI

Design: OBDD-foundations and applications. Springer Verlag, 1998. doi: 10.1007/

978-3-642-58940-9.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov.

Probabilistic inference by program transformation in hakaru (system description). In In-

ternational Symposium on Functional and Logic Programming - 13th International Sym-

posium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings, pages 62–79. Springer,

2016. doi: 10.1007/978-3-319-29604-3 5.

Viktor Pfanschilling, Hikaru Shindo, Devendra Singh Dhami, and Kristian Kersting. Sum-

product loop programming: From probabilistic circuits to loop programming. In Pro-

ceedings of the International Conference on Principles of Knowledge Representation and

Reasoning, volume 19, pages 453–462, 2022.

Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Charles River

Analytics Technical Report, 137, 2009.

52



Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. SPPL: probabilistic program-

ming with fast exact symbolic inference. In PLDI 2021: Proceedings of the 42nd ACM

SIGPLAN International Conference on Programming Design and Implementation, pages

804–819, New York, NY, USA, 2021. ACM. doi: 10.1145/3453483.3454078.

Tian Sang, Paul Beame, and Henry A Kautz. Performing bayesian inference by weighted

model counting. In AAAI, volume 5, pages 475–481, 2005.

Scott Sanner and Ehsan Abbasnejad. Symbolic variable elimination for discrete and contin-

uous graphical models. In AAAI, 2012.

Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron E. Freer, and

Daniel M. Roy. The beta-bernoulli process and algebraic effects. 2018. doi: 10.4230/

LIPICS.ICALP.2018.141.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An introduction

to probabilistic programming. arXiv preprint arXiv:1809.10756, 2018.

Ingo Wegener. Bdds—design, analysis, complexity, and applications. Discrete Applied

Mathematics, 138(1):229–251, 2004. ISSN 0166-218X. doi: https://doi.org/10.1016/

S0166-218X(03)00297-X. Optimal Discrete Structures and Algorithms.

Yi Wu, Lei Li, Stuart Russell, and Rastislav Bodik. Swift: Compiled inference for prob-

abilistic programming languages. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, IJCAI’16, page 3637–3645. AAAI Press, 2016. ISBN

9781577357704.

Fabian Zaiser, Andrzej S. Murawski, and C.-H. Luke Ong. Exact bayesian inference on dis-

crete models via probability generating functions: a probabilistic programming approach.

In Proceedings of the 37th International Conference on Neural Information Processing

Systems, 2023.

53




