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ARTICLE

Dendritic spine morphology regulates
calcium-dependent synaptic weight change
Miriam K. Bell1*, Maven V. Holst1*, Christopher T. Lee1, and Padmini Rangamani1

Dendritic spines act as biochemical computational units and must adapt their responses according to their activation history.
Calcium influx acts as the first signaling step during postsynaptic activation and is a determinant of synaptic weight change.
Dendritic spines also come in a variety of sizes and shapes. To probe the relationship between calcium dynamics and spine
morphology, we used a stochastic reaction-diffusion model of calcium dynamics in idealized and realistic geometries. We
show that despite the stochastic nature of the various calcium channels, receptors, and pumps, spine size and shape can
modulate calcium dynamics and subsequently synaptic weight updates in a deterministic manner. Through a series of
exhaustive simulations and analyses, we found that the calcium dynamics and synaptic weight change depend on the volume-
to-surface area of the spine. The relationships between calcium dynamics and spine morphology identified in idealized
geometries also hold in realistic geometries, suggesting that there are geometrically determined deterministic relationships
that may modulate synaptic weight change.

Introduction
Dendritic spines are small protrusions along the dendrites of
neurons that compartmentalize postsynaptic biochemical, elec-
trical, andmechanical responses. These subcompartments house
the majority of excitatory synapses and are key for neuronal
communication and function (Nishiyama and Yasuda, 2015;
Murakoshi and Yasuda, 2012). Because of their unique bio-
chemical compartmentation capabilities, spines are thought of
as computational units that can modify their synaptic strength
through a process called synaptic plasticity (Yuste and Denk,
1995; Nishiyama and Yasuda, 2015). There have been many
different approaches, both experimental and computational, to
understand how these small subcompartments of excitatory
neurons can regulate learning andmemory formation (Lee et al.,
2012; Segal, 2010). These studies have helped identify a few key
scientific threads: (1) the biochemical signal transduction cas-
cades in spines span multiple time scales, but Ca2+ is the critical
initiator of these events; (2) spines have distinct morphological
features that can be categorized depending on physiological or
pathological conditions (Table 1; Kasai et al., 2003); and (3)
synaptic weight update is a measure of the strength of a synapse
and represents the strength of the connection between neurons.
Synaptic weight represents changes to synaptic connection
strength that occurs during synaptic plasticity, such as during
long-term potentiation (LTP) and long-term depression (LTD;
Lee et al., 2012). In this work, we focus on bridging these

different ideas by asking the following question: how does spine
morphology affect synaptic weight update? To answer this
question, we develop a computational model that focuses on the
stochastic dynamics of Ca2+ in spines of different geometries and
map the synaptic weight update to geometric parameters.

Calcium plays a key role as a second messenger in bio-
chemical and physical modifications during synaptic plasticity,
triggering downstream signaling cascades within dendritic
spines and the entire neuron (Yuste and Denk, 1995; Yuste et al.,
2000; Augustine et al., 2003). Theoretical efforts have linked
calcium levels to synaptic plasticity change through a parameter
called synaptic weight that essentially captures the strength of
the synapse (Jahr and Stevens, 1993; Shouval et al., 2002;
Graupner and Brunel, 2012; O’Donnell et al., 2011). An increase
in synaptic weight is associated with synapse strengthening,
while a decrease in synaptic weight is associated with synapse
weakening (Lisman, 2017; Earnshaw and Bressloff, 2006). While
changes in synaptic strength require a host of downstream
signaling and mechanical interactions (Xia and Storm, 2005;
Mäki-Marttunen et al., 2020), the level of calcium is a well-
accepted indicator of synaptic plasticity and weight (Shouval
et al., 2002; Jędrzejewska-Szmek et al., 2017). This led to the
hypothesis that synaptic plasticity outcome could be determined
from the calcium dynamics alone; this theory has been readily
used for numerous models in computational neuroscience
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(Shouval et al., 2002; Mahajan and Nadkarni, 2019). Because of
their probabilistic nature and discrete number, calcium ion
channels and receptors appear to behave stochastically (Anwar
et al., 2013; Dudman and Nolan, 2009; Faisal et al., 2005). This
indicates that calcium dynamics in the spine leans toward
stochasticity, and it has been suggested that synaptic plasticity
itself relies on stochasticity for robustness (Cannon et al, 2010;
O’Donnell et al, 2011; Anwar et al, 2013; Koumura et al, 2014;
O’Donnell and Nolan, 2014; Fujii et al, 2017; Tottori et al, 2019).
In this work, we seek to understand how spine morphology can
modulate synaptic weight update predicted through stochastic
calcium dynamics.

Dendritic spines have characteristic sizes and shapes that
dynamically change over time in response to stimulus and are
associated with their function and synaptic plasticity (Bourne
and Harris, 2008; Holthoff et al., 2002). Just as whole-cell shape
is known to influence signaling dynamics (Calizo et al., 2020;
Neves et al., 2008; Rangamani et al., 2013; Héja et al., 2021; Bell
and Rangamani, 2021; Scott et al., 2021), studies have specifically
probed the interplay between calcium dynamics and dendritic
spine morphology (Bell et al., 2019; Cugno et al., 2019; Yuste
et al., 2000; Bartol et al., 2015). Because of the historical sig-
nificance of dendritic spines as electrical subcompartments, the
morphology of the spine neck has been implicated in regulating
calcium signaling, and longer spine necks were found to de-
couple spine-dendrite calcium signaling (Volfovsky et al., 1999).
Additional modeling work coupled actin–myosin contractions to
cytoplasmic flow to identify two time scales of calcium motion,
driven by flow and diffusion, respectively, that depend on spine
geometry (Holcman et al., 2004). A combined analytical and
numerical study showed how geometry and curvature gives rise
to pseudo-harmonic functions that can predict the locations of
maximum and minimum calcium concentration (Cugno et al.,
2019). More recently, we used a deterministic reaction-diffusion
model to investigate dendritic spine morphology and ultra-
structure and found that dendritic spine volume-to-surface-area
ratios and the presence of spine apparatus (SpApp) modulate
calcium levels (Bell et al., 2019). As we have shown before, the

natural length scale that emerges for reaction-diffusion systems
with boundary conditions that have influx and efflux rates is the
volume-to-surface-area ratio (Calizo et al., 2020; Cugno et al.,
2019). What remains unclear is whether the trends from di-
mensional analysis of deterministic models continue to hold
despite the stochastic nature of calcium influx and efflux across
the wide range of spine shapes.

In this work, using idealized and realistic spine geometries,
we investigate the impact of shape and stochasticity on calcium
dynamics and synaptic weight change. We seek to answer the
following question: How do specific geometric parameters—
namely, shape and size of dendritic spines—influence calcium
dynamics and therefore synaptic weight change? To address this
question, we built a spatial, stochastic model of calcium dy-
namics in different dendritic spine geometries. We used ideal-
ized geometries informed by the literature to control for the
different geometric parameters and then extended our calcu-
lations to realistic geometries. We probed the influence of spine
shape, volume, and volume-to-surface-area ratio on calcium
influx, variance of calcium dynamics, and the robustness of
synaptic weight. We show that although calcium dynamics in
individual spines are stochastic, synaptic weight changes pro-
portionally with the volume-to-surface-area ratio of the spines,
suggesting that there may exist deterministic relationships be-
tween spine morphology and strengthening of synapses.

Materials and methods
Model development
Ca2+ dynamics in dendritic spines have been previously studied
using computational models (Bartol et al., 2015; Friedhoff et al.,
2021; Cugno et al., 2019; Bell et al., 2019; Holcman et al., 2005). In
this work, we focused on modeling effort on the early, rapid
influx on Ca2+ for spines of different sizes and shapes with the
goal of identifying relationships between spine geometry and
early synaptic weight change. Our model is based on previous
works (Bartol et al., 2015; Bell et al., 2019; Mahajan and
Nadkarni, 2019) with some modifications and simplifications
to enable us to identify the relationship between spine mor-
phology and synaptic weight change. Inspired by Bartol et al.
(2015), we converted a previous deterministic model of calcium
influx (Bell et al., 2019) to a spatial, particle-based stochastic
model constructed in Monte Carlo Cell (MCell; Stiles and Bartol,
2001; Stiles et al., 1996; Kerr et al., 2008), to capture the sto-
chastic nature of Ca2+ dynamics in the small spine volumes. We
specifically focus on dendritic spine geometries and calcium
dynamics representative of hippocampal pyramidal neurons
(Bell et al., 2019). We detail the steps below.

Assumptions
Here we list the main assumptions in the model and describe the
components of the model shown in Fig. 1.

∙ Geometries: We investigate how spine geometry (spine
volume, shape, and neck geometry) and ultrastructure (spine
apparatus) can influence synaptic weight change, with the goal
of drawing relationships between these different morphological
features and synaptic weight (Fig. 1 e).

Table 1. Geometric parameters of different spine morphologies

Parameter Filopodiaa Thinb Mushroomc

Total length (L; µm) 2–20 0.98 ± 0.42 1.5 ± 0.25

Length of neck (l; µm) 0.51 ± 0.34 0.43 ± 0.21

Neck diameter (2r; µm) < 0.3 0.1 ± 0.03 0.2 ± 0.07

Total volume (µm3) 0.04 ± 0.02 0.29 ± 0.13

Volume of head (V; µm3) 0.03 ± 0.015d 0.27 ± 0.13

Total surface area (µm2) 0.59 ± 0.29 2.7 ± 0.93

Surface area of PSD (µm2) 0.05 ± 0.02 0.3 ± 0.1

Table modified from Alimohamadi et al. (2021).
aYuste and Bonhoeffer (2004); Kanjhan et al. (2016).
bHarris et al. (1992); Rodriguez et al. (2008); Spacek and Harris (1997).
cHarris et al. (1992); Spacek and Harris (1997).
dValue from Harris et al. (1992) was 0.03 ± 0.15, but we assume there was a
typo in the original text because the spine volume should not be negative.
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∙ Idealized geometries: Idealized geometries of thin,
mushroom-shaped, and filopodia-shaped spines were selected
from Alimohamadi et al. (2021), and the different geometric
parameters are given in Tables S1 and S2 and Fig. 1 b.
– Postsynaptic density (PSD): For each control geometry, the PSD
area was set as a fixed proportion of the spine volume.
– Size variations: For each spine geometry, we varied the volume
of the control geometry to consider the impact of different
morphological features.
– Spine apparatus: A SpApp is included in the thin andmushroom
idealized spines by scaling the spine geometry to a smaller size
and including it within the plasma membrane (PM) geometry.
These variations were included to modify the volume of the
spine in the presence of these organelles.
∙ Realistic geometries: We also investigated how spine

morphology affected synaptic weight change in realistic

morphologies. Realistic spine morphologies were reconstructed
from 3-D EM images (Wu et al., 2017) at sufficient mesh quality
to import into MCell (Lee and Laughlin, 2020). Realistic spines
were selected to have a variety of morphologies to reflect
filopodia-shaped, thin, and mushroom spines. PSDs were de-
noted based on the segmentation of the original 3-D electron
micrographs.

∙ Time scales: Our goal is to consider the initial changes in
synaptic weight due to a single calcium pulse, consistent with
prior studies (Bartol et al., 2015; Shouval et al., 2002). Our focus
is on early time scale events associated with synaptic weight,
rather than the induction of LTP/LTD specifically. The time scale
of calcium transients is rapid, on the millisecond time scale
(Bartol et al., 2015; Holcman et al., 2004; Holcman et al., 2005),
owing to the single activation pulse, various buffering compo-
nents, and the SpApp acting as a calcium sink, rather than a

Figure 1. Model overview. (a) Our spatial particle–based model includes calcium influx through NMDAR and VSCC and calcium efflux to the extracellular
space through PMCA and NCX pumps and to the SpApp through SERCA pumps. Arrows indicate the movement of Ca2+ through the labeled pump, channel, or
receptor. Ωneck represents the Dirichlet boundary condition at the base of the spine neck, at which the concentration of calcium ions is clamped to zero.
Cytosolic calcium was buffered using cytosolic mobile and membrane-bound immobile calcium buffers. Inset: A change in membrane potential triggered by an
EPSP and BPAP acts as the model stimulus, along with the release of glutamate molecules. (b) The geometric factors considered in our model include spine
shape, spine size, neck radius and length, and SpApp size. We investigated three spine shapes: thin, mushroom-, and filopodia-shaped. (c–e) Calcium levels
determine the learning rate τw (c) and function Ωw (d), that in turn determine synaptic weight (e). The influence of geometry (spine volume, surface area, PSD
area, etc.) and ultrastructure (SpApp, internal organelles, etc.) on calcium signaling thus has an influence on synaptic weight. θD and θP represent the thresholds
for LTD and LTP, respectively. Panel a was generated using biorender.com.
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source (Basnayake et al., 2019; Basnayake et al., 2021). Each
spine geometry is initiated with a basal concentration of calcium
as shown in Table 2. For each geometry, these concentrations
were converted to numbers of Ca2+ ions to initialize the particle-
based simulations.
∙ Calcium model stimulus: The stimulus used in the model

is an excitatory postsynaptic potential (EPSP) and back-
propagating action potential (BPAP) offset by 10 ms and a glu-
tamate release that activates N-methyl-D-aspartate receptor
(NMDAR; Bartol et al., 2015) as shown in Fig. 1 a, inset. We in-
clude the presynapse as a surface from which glutamate is
released from a central location. α-Amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor (AMPARs), which competes
with NMDARs, to bind glutamate, are also included in the model
but do not contribute to the calcium influx.
∙ Channel and receptor dynamics: We assume that the

surface density of the receptors and channels on the membrane
of the spine is constant and uniformly distributed (Sabatini and
Svoboda, 2000; Holthoff et al., 2002). This assumption is based
on experimental observations (Sabatini and Svoboda, 2000) and
has been used in other computational models of calcium dy-
namics (Bell et al., 2019; Keller et al., 2008; Franks et al., 2002).
An important consequence of this assumption is that when the
surface area of the spine changes, the total number of receptors
will also change. How calcium influx scales with spine volume is
an important consideration with implications on how calcium
concentration scales with spine size (O’Donnell et al., 2011). The
constant receptor density assumption means that calcium influx
undercompensates for increases in spine volume (O’Donnell
et al., 2011).

∙ Boundary conditions: Calcium ion influx occurs through
NMDAR localized to the PSD region and voltage-sensitive cal-
cium channels (VSCCs) on the PM, based on Bartol et al. (2015).
Calcium ions leave the spine volume through the pumps on the
PM, plasma membrane Ca2+-ATPase (PMCA), and sodium–

calcium exchanger (NCX), and into the SpApp, when present,
through sarco/endoplasmic reticulum Ca2+-ATPase (SERCA)
(Bell et al., 2019). We consider the spine as an isolated geometric
compartment and do not consider the effect of calcium influx
from the dendrite at this time scale. The base of the spine neck
has a Dirichlet boundary condition of calcium clamped to zero
and acts as a calcium sink, which represents Ca2+ leaving the
spine into the dendrite owing to the sudden increase in calcium
in the spine (Holcman et al., 2005).

∙ Buffers: We do not model the different buffer species but
rather use a lumped parameter approach as was done before
(Mahajan and Nadkarni, 2019; Bell et al., 2019). Because free
Ca2+ is rapidly buffered in cells, we consider both mobile buffers
in the cytoplasm and immobile buffers on the PM (Bell et al.,
2019; Schmidt and Eilers, 2009; Schmidt, 2012). We also include
an exponential decay of calcium throughout the cytoplasm to
capture the complex cytosolic buffering dynamics without in-
cluding explicit buffers. Addition of more species introduces
many more free parameters and can make the model compu-
tationally intractable; therefore, we focus on a lumped param-
eter approach.

∙ Stochastic trials: Each simulation condition was run with
50 random seeds, and these individual runs were averaged
to obtain mean and SD (Friedhoff et al., 2021; Bartol
et al., 2015).

∙ Model readouts: We report Ca2+ dynamics in terms of the
number of ions rather than concentration. This is because the
total number of ions in the spine reflects total signal coming into
the spine and is the natural output from these particle-based
simulations. The total number of calcium ions is used as input
to calculate the synaptic weight change.

∙ Synaptic weight: The synaptic plasticity model developed
by Shouval et al. (2002) was adapted to have dependence on
total calcium ions rather than calcium concentration. The rate of
synaptic weight update depends on a learning rate, τw, and a
thresholding function, Ωw, that are both dependent on calcium
ion levels (Fig. 1, c and d). The learning rate determines the
rate of synaptic weight change, while Ωw determines if the
weight increases or decreases. Thresholds for LTP and LTD,
θP and θD, are set so that an intermediate level of calcium
leads to a weakening of a synapse and LTD, while an elevated
level of calcium leads to the strengthening of a synapse and
LTP (Shouval et al., 2002; Cho et al., 2001; Cormier et al.,
2001).

Dynamics of calcium ions in the spine volume
We summarize the main reactions for Ca2+ in the volume. These
reaction models were obtained from Bartol et al. (2015) and Bell
et al. (2019) and are discussed in detail below. Model parameters
are given in Table 2. We found that our calcium dynamics are
comparable to previously published models (Bell et al., 2019;
Bartol et al., 2015; Rubin et al., 2005; Hu et al., 2018) and

Table 2. Parameters used in the model

Variable Value Unit Reference

Initial [Ca2+]cyto 1 × 10−7 M Cornelisse et al. (2007); Bartol
et al. (2015)

Initial [Ca2+]ER 6 × 10−5 M Bartol et al. (2015)

Initial [Ca2+]ECS 2 mM Robinson and Stokes (1959)

kd 50 s−1 Bell et al. (2019)

DCa2+ 2.2 × 10−6 cm2 s−1 Griffith et al. (2016); Naraghi
and Neher (1997)

kB,on 1 × 106 M−1 s−1 Bartol et al. (2015)

kB,off 2 s−1 Bartol et al. (2015)

kBm,on 1 × 106 M−1 s−1 Schwaller (2010)

kB,off 1 s−1 Schwaller (2010)

DBm DCa · Bm 2 × 10−7 cm2 s−1 Griffith et al. (2016)

Initial [Bm] 2 × 10−5 M Schwaller (2010)

Initial [Bf] 4,791 molecule µm−2 Bartol et al. (2015)

The parameters that are passed directly into the MCell model are given in
the units native toMCell (M for concentration, cm2 s−1 for diffusion constants,
and molecules µm−2 for surface molecule density). These units are
converted into particle numbers for each compartment.
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experimental observations (Sabatini et al., 2002; Hoogland and
Saggau, 2004; Segal and Korkotian, 2014; Fig. S8).

In the volume, calcium bindswith fixed andmobile buffers in
the cytoplasm, modeled here generically by Bm to represent
mobile calcium buffers and Bf to represent fixed buffers.
Calcium-buffer binding is modeled by

Ca2+ + Bf #
kBf ,on

kBf ,off
Ca · Bf , (1)

and

Ca2+ + Bm #
kBm,on

kBm,off

Ca · Bm. (2)

Reaction rates for mobile and fixed buffers are provided in
Table 2.

An additional Ca2+ decay term is given by

Ca2+ →
kd
ø, (3)

where kd sets the decay rate. The value of kd is taken as 50 s−1

inspired by Bell et al. (2019) and Cugno et al. (2019).

PM
The primary influx of calcium through the PM occurs through
NMDARs and VSCCs, and calcium is pumped out of the volume
through PMCA and NCX. In this model, NMDARs depend on
both voltage and glutamate and are localized to the PSD region.
VSCCs are voltage dependent and localized throughout the PM.
PMCA and NCX are calcium-dependent pumps and are also lo-
cated throughout the PM surface.

NMDARs
NMDARs are localized to the PSD area with a surface density of
150 molecule µm−2 (Bartol et al., 2015). The activation of
NMDAR is modeled with an asymmetric trapping block kinetic
scheme as proposed in Vargas-Caballero and Robinson (2004).
The activation of NMDAR depends on the diffusion of glutamate
through the synaptic cleft and its binding to inactive receptors. A
surface identical to the top of the spine head is translated 2 µm
above the head to represent the synaptic cleft. At time t = 0 in each
simulation, 500molecules of glutamate are released at the center of
this synaptic cleft. The released glutamate molecules diffuse
through the cleft at a rate of 2.2 × 10−6 cm2 s−1 and bind to
membrane-bound proteins. On the postsynaptic membrane,
NMDARs compete with the glutamate receptor AMPAR for gluta-
mate; thus, AMPARs are also included in the simulation to model
this competition, but do not play a role in calcium influx. AMPAR is
also localized to the PSD area at a density of 1,200 molecule µm−2

(Bartol et al., 2015). The binding of glutamate to AMPAR ismodeled
according to the kinetic scheme proposed in Jonas et al. (1993).

Calcium ion flux through open NMDARs is modeled by the
simple unimolecular reaction

NMDAR →
kCa

NMDAR + Ca2+cyto. (4)

The rate of calcium influx is given by

kCa V( ) � γNMDAR · V − Vτ

2 · 1.6 × 10−19, (5)

where V is the membrane potential and Vr is the reversal po-
tential of NMDAR. The parameters for the NMDAR reactions are
the same as given in Vargas-Caballero and Robinson (2004), and
the parameters for the AMPAR reactions are the same as those in
Jonas et al. (1993).

Calcium influx through VSCCs
The influx of Ca2+ through an open VSCC is given by the reaction

VSCC →
kVSCC

VSCC + Ca2+cyto. (6)

The rate of calcium influx is given by

kVSCC �
γV t( )NA 0.393 − exp −V t( )

80.36

� �h i

2F 1 − exp V t( )
80.36

� �h i (7)

The influx of Ca2+ through VSCCs is also dependent on the
activation kinetics of VSCCs. The initial conditions for all the
VSCCs is the closed state, and the activation of the channels is
modeled here with a five-state kinetic scheme as used in Bartol
et al. (2015). The parameters for Ca2+ influx through VSCCs are
the same as in Bartol et al. (2015). VSCCs are located on the PM
with a density of 2 molecules µm−2.

Voltage calculations in the model
Because the transmembrane potential varies with time (Fig. 1 a,
inset) and the rate constants for NMDAR and VSCC are voltage
dependent, the values of these rate constants at each simulation
step were precomputed and passed into MCell. The voltage
stimulus representing a single EPSP starting at time t = 0, fol-
lowed by a single BPAP occurring at an offset of 10 ms, was
obtained from Bartol et al. (2015). Note that this time offset is
within the typical window for spike timing–dependent plasticity
(STDP) to induce LTP (Bartol et al., 2015; Griffith et al., 2016).

PMCA and NCX dynamics
PMCA and NCX are located on the PMwith areal density 998 and
142 molecule µm−2, respectively (Bartol et al., 2015), forcing
calcium to flow out of the cell. These pumps are modeled using
the set of elementary reactions and reaction rates from Bartol
et al. (2015).

SpApp
Calcium enters the SpApp via SERCA pumps and leaks out.
SERCA pumps are calcium dependent and located throughout
the SpApp membrane at 1,000 molecules µm−2 (Bartol et al.,
2015). SERCA influx is modeled as a series of elementary re-
actions with rates fromBartol et al. (2015). Calcium leakage from
the SpApp into the cytosol is modeled by the reaction

Ca2+ER →
kleak

Ca2+cyto, (8)

where kleak is 0.1608 s−1 from Bell et al. (2019).
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Extracellular calcium
Extracellular calcium was not explicitly modeled for ease of
computational tractability. We assumed a constant extracellular
calcium concentration (2 mM) that is negligibly impacted by
calcium influx to and efflux from the spine cytoplasm. The dy-
namics of Ca2+ are explicitly modeled once they enter the cell
through channels located on the PM and cease to be explicitly
represented once they are pumped out of the cell.

Synaptic weight change
Synaptic weight update was calculated using the classic model
from Shouval et al. (2002). The governing equations were
modified to take total number of Ca2+ ions rather than a con-
centration. Here, we use total number of ions to highlight the
details available from a stochastic simulation and to consider the
consequences of using this global readout on synaptic weight.

We modeled the changes in synaptic weight, w, as a phe-
nomenological relationship, inspired by Mahajan and Nadkarni
(2019) and Shouval et al. (2002). In our model, the change in
synaptic weight is given by

dw
dt

� Ωw − w
τw

, (9)

where τw is a learning rate, given as

τw � k1 + k2

k3 + 2Ca2+cyto t( )
.

θD + θP( )
, (10)

andΩw describes calcium dependence in the regimes of LTP and
LTD as

Ωw � 1

1 + exp −βP Ca2+cyto t( ) − θP
h in o − 0.5

1 + exp −βD Ca2+cyto t( ) − θD
h in o

(11)

We note that cytosolic calcium, Ca2+(t), is the total number of
ions in the spine. The differential equation for synaptic weight,
w, is solved in Matlab v2018b using ode23s, for each calcium
transient predicted by the MCell model. The initial synaptic
weight value is set to 0, so the change in synaptic weight and
synaptic weight update are the same value for this single stim-
ulation event. Synaptic weight parameters are given in Table 3.

Simulation information and parameters
Calcium simulations were conducted for a total simulation time
of 35 ms with a 500 ns time step. Each geometry is simulated in
MCell with 50 distinct seeds to generate an appropriate sample
size of results. All simulations use a write-out frequency of once
per iteration for reproducibility of results. Longer write-out
frequencies introduce nondeterminism to the trajectories aris-
ing from the MCell reaction scheduler. At the beginning of each
simulation, membrane proteins are randomly distributed over
specified regions of the spine geometry surface area according to
an assigned count or concentration. System configuration and
analysis scripts are all available on Github (https://github.com/
RangamaniLabUCSD/StochasticSpineSimulations).

Online supplemental material
Fig. S1 presents the profiles of the idealized geometries used and
various geometric parameters. Fig. S2 provides an artificial
calcium input to demonstrate how the synaptic weight function
depends on calcium transient dynamics. Figs. S3 and S4 provide
additional plots of calcium transient dynamics against volume
and as concentration in temporal plots, respectively. Figs. S5, S6,
and S7 provide additional plots of the thin spine neck variations,
mushroom spine neck variations, and thin spine with SpApp
variations, respectively. Figs. S8 and S9 also compare our
results to previous calcium transients and calcium dynamics,
respectively. Figs. S10 and S11 compare the use of total ion
number versus concentration to determine synaptic weight.
Fig. S12 provides a matrix of two-tailed t tests between all
simulations, and Fig. S13 provides synaptic weight predictions
for a pulse train. Videos 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 show the
spatiotemporal calcium dynamics. Table S1 and Table S2 list
all geometric variations. Table S3 lists values for realistic
geometries. Details on how to use realistic geometries in these
simulation modalities can be found in the supplemental text at
the end of the PDF.

Results
We first demonstrate the coupling between stochastic dynamics
of calcium in a single spine to the deterministic model of syn-
aptic weight update (Fig. 2). We then investigate whether spine
size has any effect on synaptic weight change of filopodia-
shaped spines (Fig. 3), thin spines (Fig. 4), and mushroom-
shaped spines (Fig. 5). Next, we consider the role of the SpApp
(Fig. 6). Finally, we investigate the relationship between spine
morphology and synaptic weight update in realistic geometries
(Fig. 7). Our results predict that synaptic weight change through
calcium dynamics is a deterministic function of geometric pa-
rameters of the spines (Fig. 8). We discuss these results in
detail below.

Table 3. Parameters for synaptic weight

Variable Value Units Reference

Initial w 0 Mahajan and Nadkarni (2019)

k1 1 s Mahajan and Nadkarni (2019)

k2 10 s Mahajan and Nadkarni (2019)

k3 1 × 10−3 Mahajan and Nadkarni (2019)

θD 100 Molecule Mahajan and Nadkarni (2019);a Shouval
et al. (2002)

θP 400 Molecule Mahajan and Nadkarni (2019);a Shouval
et al. (2002)

βD 0.2977 Molecule−1 Mahajan and Nadkarni (2019);a Shouval
et al. (2002)

βP 0.2977 Molecule−1 Mahajan and Nadkarni (2019);a Shouval
et al. (2002)

aThese parameters were converted from concentration units with
adjustments for consistency.
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The coupled model filters stochastic Ca2+ dynamics to update
synaptic weight
We demonstrate how the stochastic calcium model informs the
deterministic synaptic weight predictions. We consider a single-
seed trial for a single geometry, in this case seed 1 from a realistic
thin spine (Fig. 2 a). We observed that in response to the voltage
trace and glutamate release (Fig. 2 b), the NMDARs and VSCCs
stochastically opened and closed (Fig. 2, c and d), resulting in a
noisy calcium transient (Fig. 2 e). We compared our calcium
transients to both published experimental (Sabatini et al., 2002;
Hoogland and Saggau, 2004; Segal and Korkotian, 2014) and
computational (Bell et al., 2019; Bartol et al., 2015; Rubin et al.,
2005; Hu et al., 2018) results, and found a reasonable agreement
(Fig. S8). We next calculated the learning rate (Fig. 2 f) and Ωw

(Fig. 2 g) terms in the synaptic weight model as a function of this
calcium transient. We noticed that the noisy calcium dynamics
were filtered into a smoother synaptic weight prediction
(Fig. 2 h). For another example of how calcium pulse magnitude
and width translates to synaptic weight update, see Fig. S2. With
this understanding of how the two models integrate, we next
investigated how spine geometry influences calcium transients
and subsequent synaptic weight predictions.

Synaptic weight change depends on spine volume-to-surface-
area ratio in filopodia-shaped spines
We began our analysis with a simple question: does spine size
alter synaptic weight change? To answer this question, we first
examined filopodia-shaped spines. Dendritic filopodia are pre-
cursors of dendritic spines and serve to bridge the gap between
the dendrite and an axon that is passing by during synapse
formation (Ozcan, 2017). These are highly motile, elongated
structures that resemble tubules (lengths of 2–20 µm and neck

diameters <0.3 µm). The simplicity of this geometry allows us to
focus on the role of size alone in a simple spine geometry. We
used spine geometries of three different volumes (0.017, 0.058,
and 0.138 µm3). Simulations revealed that the calcium dynamics
in these tubule-shaped spines appeared to follow a “plug-flow”

behavior in which, at 15 ms, all the calcium was localized to one
region (Fig. 3 a). This behavior is because of the narrow geom-
etry of the spine, preventing dispersion of the calcium (see also
Video 1). Next, we examined the temporal dynamics of calcium
and noted that the larger spines had larger numbers of calcium
ions (Fig. 3 b) but also a larger variance of calcium ions (Fig. 3 c).
We further characterized the dynamics by considering the peak
calcium values and decay time constants of the calcium tran-
sients versus the spine volume-to-surface-area ratio. We chose
the volume-to-surface-area ratio as a geometric metric of spine
morphology because it encompasses both the cytosolic volume
through which calcium diffuses and the surface area of the spine
membrane through which calcium can enter and leave the
system. Additional analyses with respect to spine volume are
shown in Fig. S3 and example calcium transients are shown in
Fig. S4.

We noted that, indeed, increasing spine size, and therefore
the volume-to-surface-area ratio, causes a linearly propor-
tional and significant increase in peak calcium ions (Fig. 3 d).
We also found that the decay time of calcium from the peak
decreased with increasing volume-to-surface-area ratios and
satisfied an exponential dependence (Fig. 3 e). As spine size
increases, the decay time constant decreases, showing that it
takes longer for calcium to clear out of larger spines and spines
with larger volume-to-surface-area ratios. Finally, we calcu-
lated the synaptic weight change (see Synaptic weight change)
and compared this value at 35 ms across volume-to-surface-

Figure 2. Stochastic receptor, channel, and calcium dynamics inform deterministic synaptic weight update. (a) A realistic thin spine with a volume of
0.045 µm3 serves as an example spine to consider how stochastic receptor and channel dynamics translate into calcium transients that inform synaptic weight
update. Scale bar, 0.5 μm. (b) The model stimulus includes a set voltage profile that activates both NMDARs and VSCCs. We considered a single seed run (seed
1 for the realistic thin spine 39). (c) Activated, open NMDARs over time for a single simulation in the realistic geometry shown in a. (d) Activated, open VSCCs
over time for a single simulation in the realistic geometry shown in a. (e) Calcium transient due to the channel and receptor dynamics shown in c and d.
(f–h) Learning rate τw (f), Ωw (g), and synaptic weight update (h) calculated from the calcium transient in e.
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area ratios for the filopodia-shaped spines (Fig. 3 f). We ob-
served that while the smallest spine had no observable weight
change, presumably because of the net low calcium influx, the
weight change increases with increase in spine volume-to-
surface-area ratio (Fig. 3 f). Thus, we found that even for a
shape as simple as a filopodia-shaped spine, changes in spine
volume-to-surface-area ratio can dramatically alter calcium
dynamics and synaptic weight change in stochastic conditions,

suggesting a close coupling between spinogenesis and calcium
handling.

Thin and mushroom spines modulate synaptic weight changes
as a function of volume-to-surface-area ratio
We next asked whether the relationships of spine size and
synaptic weight change observed for filopodia-shaped spines
(Fig. 3) also held for thin and mushroom-shaped spines. Thin

Figure 3. Calcium dynamics and synaptic weight change in filopodia-shaped spines depend on spine volume-to-surface ratio. (a) Spatial plots il-
lustrating Ca2+ localization at 15 and 30ms for filopodia-shaped spines with different volumes (0.017, 0.058, and 0.138 µm3). The number above each geometry
corresponds to the number of Ca2+ in that frame. Two random seeds are shown as examples for each geometry. Scale bars, 2 μm. (b) Mean (solid) and SD
(shaded area) of Ca2+ transients across 50 simulations for each of the three filopodia-shaped spine sizes. (c) Variance of Ca2+ over time, displayed as variance
divided by 1,000 ions. (d) The mean and SEM (n = 50) of the peak number of Ca2+ in different filopodia-shaped spine sizes shows statistically significant
differences; *, P = 2.0262 × 10−11; **, P = 9.898 × 10−8; ***, P = 4.362 10−26 using two-tailed t-test. We fitted the trend in peak Ca2+ as a linear function of
volume-to-surface-area ratio, ζ; r2 = 0.5521 for the linear fit. (e) The decay time scales of each Ca2+ transient were estimated by fitting with an exponential
decay function c exp(kt). The mean and SEM (n = 50) of the decay time constant, k, shows statistically significant differences across filopodia-shaped spine
sizes; *, P = 1.6331 × 10−4; **, P = 0.0209; ***, P = 1.3381 × 10−6 from two-tailed t test. The mean decay time constants as a function of volume-to-surface-area
ratio, ζ, were fitted with an exponential a exp(bζ); r2 = 0.203 for the exponential fit. (f) The mean and SEM (n = 50) of the calculated synaptic weight change at
the last time point in the simulation for all filopodia-shaped spine sizes, plotted against the volume-to-surface-area ratio, shows statistically significant dif-
ferences between all cases; P12 = 2.7290 × 10−5; P23 = 2.8626 × 10−6; P13 = 1.6321 × 10−14 from two-tailed t test, where 1, 2, and 3 refer to the spines in
increasing size. We fitted the trend in synaptic weight as a linear function of volume-to-surface-area ratio, ζ; r2 = 0.3594 for the linear fit.
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and mushroom-shaped spines emerge from filopodia-shaped
spines as spinogenesis progresses (Ozcan, 2017; Freire, 2010).
It has been proposed that spines exist in a continuum of shapes
(Ofer et al., 2021), but historically it has been useful to categorize
spines into specific categories of shapes (Yuste, 2010). Thin
spines, with small heads and thin necks, have been classified as
“write-enabled” or learning spines due to their high motility.
Mushroom spines, on the other hand, with bulbous heads and

relatively wider necks, are termed “write-protected” or
memory spines due to their stability (Jasinska et al., 2019).
Thin spines are characterized by a spherical head, and we
repeated the calcium influx simulations in a small thin spine
with three different spine neck lengths (0.07, 0.06, and 0.04
µm) and thin spines of three different volumes (0.035, 0.119,
and 0.283 µm3) that were informed by the ranges found in the
literature (Fig. 4). We observed that, in thin spines, the

Figure 4. Changing thin spine size modulates calcium dynamics and synaptic weight change. (a and b) Spatial plots illustrating Ca2+ localization at 15
and 30 ms for small thin spines with three different neck lengths, 0.07, 0.06, and 0.04 µm (a) and three different volumes, 0.035, 0.119 and 0.283 µm3 (b). The
number above each geometry corresponds to the number of Ca2+ ions in the frame. Two random seeds are shown as examples for each geometry. Scale bars,
0.5 µm. (c)Mean (solid) and SD (shaded area) of Ca2+ transients across 50 simulations for each of the three thin spines with different neck lengths. (d) Variance
of Ca2+ over time for the thin spines with different neck lengths, displayed as variance divided by 1,000 ions. (e) Mean (solid) and SD (shaded area) of Ca2+

transients across 50 simulations for each of the three thin spine sizes. (f) Variance of Ca2+ over time for the thin spines of different sizes, displayed as variance
divided by 1,000 ions. (g) The mean and SEM (n = 50) of the peak number of Ca2+ in different thin spine sizes and with different neck lengths show an overall
increasing trend. The spines of different sizes show statistically significant differences between the each size; P12 = 5.2641 × 10−6; P23 = 2.7377 × 10−9; P13 =
5.0036 × 10–20 from two-tailed t test, where 1, 2, and 3 denote the different sized spines in increasing size. We fitted the trend in peak Ca2+ as a linear function
of volume-to-surface-area ratio, ζ; r2 = 0.4939 for the linear fit. (h) The decay time scales of each Ca2+ transient were estimated by fitting with an exponential
decay function c exp(kt). The mean and SEM (n = 50) of the decay time constant, k, shows statistically significant differences across thin spine sizes; P12 =
4.3976 × 10−4; P23 = 1.1541 × 10−4; P13 = 5.4590 × 10−8 from two-tailed t test, where 1, 2, and 3 denote the different sized spines in increasing size. The mean
decay time constants as a function of volume-to-surface-area ratio, ζ, were fitted with an exponential a exp(bζ); r2 = 0.1630 for the exponential fit. (i) Themean
and SEM (n = 50) of the calculated synaptic weight change at the last time point in the simulation for all thin spine sizes and neck lengths show an increasing
trend against the volume-to-surface-area ratio. We fitted the trend in synaptic weight increase as a linear function of volume-to-surface-area ratio, ζ; r2 =
0.2698 for the linear fit. The spines of different sizes show statistically significant differences between all sizes; P12 = 0.0315; P23 = 1.0661 × 10−5; P13 = 2.5751 ×
10−8 from two-tailed t test, where 1, 2, and 3 denote the different sized spines in increasing size. Inset to right of i: legend for g–i.

Bell et al. Journal of General Physiology 9 of 20

Stochastic simulations of spine calcium dynamics https://doi.org/10.1085/jgp.202112980

https://doi.org/10.1085/jgp.202112980


calcium ions were concentrated in the head at 15 ms but dis-
persed more uniformly by 30 ms (Fig. 4, a and b; and Video 2).
We did not observe plug–flow-like behavior as we did for
filopodia-shaped spines, likely because of the differences in
both shape and volume of the thin spines. The thin spines with
different neck lengths showed very similar calcium transients
and variance (Fig. 4, c and d), except for the thin-necked spine,
which showed much more variance during its decay dynamics.
For a closer look at the thin spine neck variation dynamics, see
Fig. S5.

Calcium dynamics in thin spines follows the expected tem-
poral dynamics (Fig. 4 e), with larger spines having larger peak
calcium and increased time to decay. Larger thin spines also
have larger variance in calcium ion transients over time
(Fig. 4 f). Next, we found that the maximum calcium ions per
spine was significantly larger in larger spines, with statistically
different values for the different-sized spines. The peak calcium
increased linearly compared with spine volume-to-surface area
but with a smaller slope compared with the filopodia-shaped
spines (maximum peak values in filopodia-shaped spines

Figure 5. Changing mushroom spine size modulates calcium dynamics and synaptic weight change. (a and b) Spatial plots illustrating Ca2+ localization
at 15 and 30 ms for medium mushroom spines with three different neck lengths, 0.13, 0.10, and 0.08 µm (a) and three different volumes, 0.080, 0.271, and
0.643 µm3 (b). The number above each geometry corresponds to the number of Ca2+ in the frame. Two random seeds are shown as examples for each
geometry. Scale bars, 0.5 µm. (c) Mean (solid) and SD (shaded area) of Ca2+ transients across 50 simulations for each of the three mushroom spines with
different neck lengths. (d) Variance of Ca2+ over time for the mushroom spines with different neck length, displayed as variance divided by 1,000 ions. (e)Mean
(solid) and SD (shaded area) of Ca2+ transients across 50 simulations for each of the three mushroom spine sizes. (f) Variance of Ca2+ over time for the
mushroom spines of different sizes, displayed as variance divided by 1,000 ions. (g) The mean and SEM (n = 50) of the peak number of Ca2+ in different
mushroom spine sizes and with different neck lengths show an overall increasing trend. The spines of different sizes show statistically significant differences
between the each size; P12 = 4.1244 × 10–13; P23 = 6.6467 × 10–15; P13 = 7.8934 × 10–32 from two-tailed t test, where 1, 2, and 3 denote the different sized spines
in increasing size. We fitted the trend in peak Ca2+ as a linear function of volume-to-surface-area ratio, ζ; r2 = 0.5474 for the linear fit. (h) The decay time scales
of each Ca2+ transient were estimated by fitting with an exponential decay function c exp(kt). The mean and SEM (n = 50) of the decay time constant, k, shows
statistically significant differences across mushroom spine sizes; P12 = 6.8175 × 10−6; P23 = 6.4075 × 10−6; P13 = 1.1118 × 10−10 from two-tailed t test, where 1, 2,
and 3 denote the different sized spines in increasing size. The mean decay time constants as a function of volume-to-surface-area ratio, ζ, were fitted with an
exponential a exp(bζ); r2 = 0.2380 for the exponential fit. (i) The mean and SEM (n = 50) of the calculated synaptic weight change at the last time point in the
simulation for all mushroom spine sizes and neck lengths show an increasing trend against the volume-to-surface-area ratio. We fitted the trend in synaptic
weight increase as a linear function of volume-to-surface-area ratio, ζ; r2 = 0.4224 for the linear fit. The spines of different sizes show statistically significant
differences between all sizes; P12 = 5.1012 × 10−10; P23 = 2.0097 × 10−11; P13 = 2.1447 × 10−23 from two-tailed t-test, where 1, 2, and 3 denote the different sized
spines in increasing size. Inset to right of i: legend for g–i.
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increased three times faster than those in thin spines; Fig. 4 g).
This suggests that the size dependence of calcium grows
slower in thin spines than in filopodia-shaped spines. The
decay time also showed an exponential decay in thin spines
with increasing volume-to-surface-area ratio (Fig. 4 h). The
exponent was smaller for thin spines compared with filopodia-
shaped spines (47.9 versus 22.43), suggesting that the decay
rate with respect to volume-to-surface-area ratio was slower
in thin spines. Finally, the synaptic weight change showed an
increase with volume-to-surface-area ratio in thin spines

(Fig. 4 i), indicating that larger spines are capable of stronger
learning outcomes.

Finally, we repeated our analysis for mushroom-shaped
spines of different neck length (0.13, 0.10, and 0.08 µm) and
increasing volume (0.080, 0.271, and 0.643 µm3; Fig. 5). The
effect of the shape of the spines is evident in the spatial dy-
namics of calcium (Fig. 5, a and b; and Video 3). Even at 15 ms,
we noted that while a vast majority of calcium ions were local-
ized in the spine head, there was spillover of calcium into the
neck; this is particularly evident in the spines of larger volume

Figure 6. Sp App size modulates synaptic weight change in mushroom spines. (a) Spatial plots at 15 and 30 ms for thin spines with SpApp of different
volumes (net spine volumes of 0.026, 0.030, and 0.033 µm3). (b) Spatial plots at 15 and 30ms for mushroom spines with SpApp of different volumes (net spine
volumes of 0.203, 0.235, and 0.255 µm3). The numbers on top of the shape indicate the total number of calcium ions at that instant in both the SpApp and
cytoplasm. Two random seeds are shown as examples for each geometry. Scale bars, 0.5 µm. (c and d) Calcium ions over time as mean and SD (c) and variance,
displayed as variance divided by 1,000 ions (d), for all three thin spines with different SpApp sizes. Shaded regions in c denote SD. (e and f) Calcium ions over
time as mean and SD (e) and variance, displayed as variance divided by 1,000 ions (f), for all three mushroom spines with different SpApp sizes. Shaded regions
in e denote SD. (g) Peak calcium ion number for each thin and mushroom spine with a SpApp, with the mean and SEM (n = 50), show an increasing trend over
volume-to-surface-area ratio. We fitted the trend in peak values with a linear function against the volume-to-surface-area ratio, ζ; r2 = 0.6091 for the linear fit.
The mushroom spines show statistically significant differences between sizes; P12 = 0.0010; P23 = 0.0101; P13 = 4.0801 × 10−7 from two-tailed t test, where 1, 2,
and 3 denote the different sized spines in increasing cytosolic volume. The thin spines show statistically significant differences only between two of the three
paired cases; P13 = 0.0453; P23 = 0.0461 from two-tailed t test. (h)We fitted the decay dynamics of each calcium transient with (c exp[kt]) and report the decay
time constant, k, as a mean and SEM (n = 50) against volume-to-surface-area ratio. The decay time constants were not statistically different for the mushroom
spines, but the thin spines show a statistical difference between the second and third spine; P23 = 0.0289 from two-tailed t test. We fitted the trend in decay
time constants as a function of volume-to-surface-area ratio with an exponential a exp(bζ), where ζ is the volume-to-surface-area ratio; r2 = 0.2219 for the fit.
(i) Calculated synaptic weight change mean and SEM (n = 50) at the last time point for all three thin spines with SpApp and all three mushroom spines with
SpApp show an increasing trend. We fitted the trend in synaptic weight with a linear function against the volume-to-surface-area ratio, ζ; r2 = 0.2558 for the
linear fit. Calculated synaptic weight change at the last time point for all three thin spines shows no statistically significant difference due to SpApp size. The
mushroom spines had statistically significant differences between all cases; P12 = 2.0977 × 10−4; P23 = 0.0198; P13 = 6.0097 × 10−7 from two-tailed t-test, where
1, 2, and 3 denote the different sized spines in increasing cytosolic volume. Inset to right of i: legend for g–i.
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Figure 7. Real spine geometries show size dependence for calcium dynamics. (a) Spines similar to the idealized geometries were selected from a re-
constructed dendrite (Wu et al., 2017). Representative filopodia-shaped spines, thin spines, and mushroom spines were selected and labeled with their volume
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(Fig. 5, a and b). Spine neck length showed similar increase and
decay dynamics to each other (Fig. 5, c and d), but the thick-neck
mushroom spine in particular showed a reduced variance. For a
closer look at the mushroom spine neck variation dynamics, see
Fig. S6. The effect of increases in volume, and therefore in-
creases in volume-to-surface-area ratio, on the temporal dy-
namics of calcium is an increase in peak calcium (Fig. 5, e and g)
and variance (Fig. 5 f) and a decrease in the decay time constant
(Fig. 5 h). Interestingly, changing the neck length in the mush-
room spine creates the opposite trendwith respect to volume-to-
surface-area ratio (Fig. 5, g and h), suggesting that spine neck
length is an additional geometric factor for mushroom spines to
tune their calcium response. The synaptic weight change in
mushroom spines increases with spine volume-to-surface-area
ratio and is larger for these mushroom spines than the filopodia-
shaped and thin spines (Fig. 5 i). We observed that the peak
calcium showed a linear increase with volume-to-surface-area
ratio, with a slope that lies between the thin spines and
filopodia-shaped spines. Finally, the decay time constant de-
creased with spine volume-to-surface-area ratio but with a
smaller exponential decay compared with thin spines and
filopodia-shaped spines. These two results point to the following
conclusions. First, an increase in spine volume results in an
increase in critical readouts of synaptic plasticity, and second,
the shape of the spine alters the quantitative relationships of
synaptic plasticity by allowing access to different volume-to-
surface-area ratios.

SpApp size tunes synaptic weight changes by altering the
volume-to-surface-area relationships
Approximately 14% of dendritic spines have specialized ER
called SpApp, which are preferentially present in larger, mature
spines (Chirillo et al., 2019; Spacek and Harris, 1997; Bell et al.,
2019). Furthermore, recent studies have shown that the SpApp
and the ER are dynamic structures in the dendrite and dendritic
spines (Perez-Alvarez et al., 2020). Previously, we showed that
the SpAppmodulates calcium transients in deterministic models
of calcium influx (Bell et al., 2019) by altering the net fluxes
(Cugno et al., 2019). Here, we investigated how these relation-
ships are altered in stochastic models in thin and mushroom
spines (Fig. 6). When a SpApp is present in the spine head, it
effectively reduces the volume of the spine cytosol and, in the
time frame of our consideration, acts as a calcium sink (by the
action of the SERCA pumps; Sabatini et al., 2002). One example
trajectory in a mushroom spine with a SpApp is shown in Video
4. We varied SpApp size in the small-sized thin spine and
medium-sized mushroom spine (Fig. 6, a and b; and Table S2).
Calcium transients and variance showed much smoother dy-
namics for the mushroom spines than the thin spines (compare
Fig. 6, e versus c). Peak calcium values were all statistically
different for the different SpApp sizes in the mushroom spines
but not the thin spines. Decay time constants were fitted with an

exponential relationship (Fig. 6 h), but there were no statistical
differences across different mushroom spines. All different sizes
of the SpApp produce synaptic weight changes that are statis-
tically different in themushroom spines; increases in SpApp size
result in smaller spine volume (and smaller volume-to-surface-
area ratio) and therefore produce smaller weight changes (Fig. 6
i). The thin spines had a more complex trend and did not have
statistically significant differences in predicted synaptic weight.
For a closer look at the variations of the SpApp within thin
spines, see Fig. S7. We conclude that the presence of SpApp al-
ters the volume-to-surface-area ratio for spines and therefore
tunes calcium levels and synaptic weight updates in the large
mushroom spines with an inverse relationship to SpApp size.

Simulations in realistic geometries reveal that synaptic weight
change depends on spine volume and volume-to-surface-
area ratio
Thus far, we focused on idealized geometries of spines to iden-
tify relationships between key synaptic variables and key geo-
metric variables. We found that the peak calcium value, decay
time constant, and synaptic weight depend on the volume-to-
surface-area ratio within each shape classification. Do these
relationships hold for realistic geometries as well? To answer
this question, we selected realistic geometries frommeshmodels
(Lee and Laughlin, 2020) informed by electron micrographs
from Wu et al. (2017).

Realistic spines have more complex geometries that do not
fall into the exact morphological categories that we used for
idealized spines. To test the significance of these variations, we
selected two spines of each shape (thin, mushroom, and filopo-
dia) and conducted simulations with the exact same parameters
as the idealized simulations (Fig. 7 a). We chose realistic geom-
etries that were within the range of sizes of the idealized ge-
ometries. The PSDs in the realistic spines were annotated during
the segmentation process, and no modifications were made to
the PSD marked regions. To capture filopodia-shaped pro-
trusions, we selected long, thin spines (with minimal differen-
tiation between the head and neck) that had marked PSD,
because we did not include dendritic filopodia in the dendrite
section. Details on how to use realistic geometries in these
simulation modalities can be found in the supplemental text at
the end of the PDF. We showed the spatial distribution of cal-
cium ions for a single seed for filopodia, thin, and mushroom
spines (Fig. 7 b) and found that due to the complexity of realistic
morphologies, the calcium distribution was more complicated
than those observed in the idealized spines.

For filopodia-shaped spines, we found that peak calcium and
variance varied with volume, but the variance was not appre-
ciably different for the two spines that we used to conduct
simulations (Fig. 7, c i and ii; and Videos 5 and 6). The realistic
thin spines we chose had volumes similar to the filopodia-
shaped spines, and they also exhibited calcium dynamics

and shape. Scale bars, 0.5 μm. (b) Snapshots at 15 and 30 ms for a single seed for a filopodia-shaped spine (i), thin spine (ii), and mushroom spine (iii).
(c) Calcium transients as means and SD, along with variance over time for the realistic spines of different shapes: (i and ii) filopodia-shaped spines, (iii and iv)
thin spines, and (v and vi) mushroom spines. The realistic spines are labeled with their volumes.
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Figure 8. Idealized and realistic spines show overall trends in peak calcium, decay rates, and synaptic weight change with respect to various
geometric parameters. We plotted all calcium peaks, decay time constants, and synaptic weight predictions for the various geometries against different
geometric parameters including volume-to-PSD-area, volume, surface area, volume-to-surface-area ratio, and PSD-area-to-PM-area. We fitted the trends in
peak values with a linear function against the geometric parameter. We fitted the decay dynamics of each calcium transient with c exp(kt) and report the decay
time constant, k, as mean and SEM (n = 50) against the geometric parameter. We fitted the trend in synaptic weight change with a linear function against the
geometric parameter. (a) All calcium peaks as mean and SEM (n = 50) across volume-to-PSD area ratio show no dependence. r2 = 0.0152 for the linear fit.
(b) r2 = 0.0091 for the fit of decay time constants against volume-to-PSD area ratio. (c) Calculated synaptic weight change mean and SEM (n = 50) at the last
time point for all idealized and realistic spines shows no dependence on volume-to-PSD area ratio. r2 = 0.0060 for the linear fit. (d) All calcium peaks as mean
and SEM (n = 50) across volume show a clear increasing trend. r2 = 0.5666 for the linear fit. (e) r2 = 0.1478 for the fit of decay time constants against volume.
(f) Calculated synaptic weight change mean and SEM (n = 50) at the last time point for all idealized and realistic spines shows an increasing trend against
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proportional to their volume (Fig. 7, c iii and iv; and Videos 7 and
8). Mushroom spines had larger volumes and larger PSD areas
compared with thin or filopodia spines (Fig. 7, c v and vi; and
Videos 9 and 10). Again, the calcium dynamics was proportional
to the volume and showed that larger spines have higher peak
calcium values. Thus, the relationships of spine geometry and
calcium dynamics hold in realistic geometries as well.

Discussion
Dendritic spines have been extensively studied as biochemical
signaling compartments, and their role in calcium sequestration
has been theorized (Bell et al., 2019; Cugno et al., 2019; Yuste
et al., 2000; Kotaleski and Blackwell, 2010; Murakoshi and
Yasuda, 2012; Yasuda, 2017; Friedhoff et al., 2021). Their
unique morphological traits and the classification of spine
sizes and shapes with respect to function suggest possible
structure–function relationships at the level of individual
spines. In this work, we used stochastic modeling of calcium
transients in dendritic spines of different geometries to under-
stand how spine size and shape affect the change in synaptic
weight. Using a stochastic simulation is important to investigate
variance among spine shape and size, as dendritic spines have
small volumes and probabilistic channel dynamics. Using ide-
alized and realistic geometries, we found that geometric prop-
erties, specifically volume-to-surface-area ratio, affected key
properties of calcium transients including peak calcium, decay
time constants, and synaptic weight change. We discuss these
findings in the context of different aspects of synaptic plasticity.

Our models predict that despite the individual calcium
transients being stochastic, there is a predictive deterministic
trend that appears to carry through the different sizes and
shapes of the spines used in our model (Fig. 8). One of the ad-
vantages of our modeling approach here is that we can directly
compare across the entire range of idealized and realistic ge-
ometries. By considering all the data from our models, for a total
of 18 geometries with 50 simulations in each, we found that the
peak calcium number is more or less linear with the volume,
surface area, and volume-to-surface-area ratio (Fig. 8, d, g, and
j). The decay time constant for calcium transients shows an
exponential decay for larger volume-to-surface-area ratios,
volumes, and surface areas, with quite a bit of variability for
smaller ratios (Fig. 8, e, h, and k). We note that both peak cal-
cium and decay time constants show clearer trends within the
same spine protrusion type (i.e., comparing within the same
color). Finally, the synaptic weight change increases as volume-
to-surface-area ratio, volume, and surface area increase (Fig. 8,

f, i, and l). We emphasize that our goal is to demonstrate a trend
in the data as opposed to building numeric functions. Although
we fitted the various data, the r2 is often weak, indicative of the
complexities that underlie such efforts.

We want to highlight two takeaways from the synaptic
weight trends with respect to volume-to-surface-area ratio.
The first takeaway is that within a spine shape group (com-
paring within a specific color in Fig. 8), there are clear in-
creasing trends with respect to volume-to-surface-area ratio.
The second takeaway is that while there are general trends in
the data highlighted by the fit lines in Fig. 8, there appear to be
three regions with slightly different synaptic weight trends at
small, intermediate, and large volume-to-surface-area ratios.
We discuss the possible consequences of these trends in more
detail below.

In the idealized geometries, the PSD area is a manually fixed
proportion of the spine volume, but realistic geometries do not
have this artificial constraint. Therefore, we redid our analysis
using volume to PSD area ratio and PSD area-to-surface-area
ratios (PSD to PM ratio). Interestingly, we did not see a clear
trend within the plots against volume to PSD area ratio (Fig. 8,
a–c). In comparison, the PSD area to PM area ratio shows the
same relationships overall as volume-to-surface-area ratio
(Fig. 8, m–o), but this time with clustering of data around some
ratios. This indicates that the PSD area is an important addi-
tional degree of freedom for synaptic weight change that must
be considered for interpretation of geometric features, and using
realistic geometries with boundary markings allows us to in-
vestigate this. It is important to note that there is a lot more
variability in the smaller volume-to-surface-area ratios, sug-
gesting that the response of smaller spines may bemore variable
than that of larger spines. This feature can work as a double-
edged sword: it may provide an advantage during the develop-
ment of spines or be an disadvantage in the case of loss of spines
(Yuste and Bonhoeffer, 2004; Stein and Zito, 2019).

We interpret our predictions in the context of spine shapes.
Filopodia are prevalent during early synaptogenesis and can
transition into dendritic spines based on synaptic activity
(Ozcan, 2017). Additionally, various disease states produce
modified dendritic spines that appear more like filopodia (Ruhl
et al., 2019). The lack of significant weight changes for the
smallest filopodia-shaped spine indicates that there is a volume
threshold at which filopodia receive enough stimulus to trigger
synaptic weight change and transition toward more stable, ma-
ture dendritic spines. Importantly, the early synaptic weight
changes emphasize how the increase in spine volume changes
the weight outcome from LTD to LTP. This increase in synaptic

volume. r2 = 0.4635 for the linear fit. (g) All calcium peaks as mean and SEM (n = 50) across surface area show a clear increasing trend. r2 = 0.5327 for the linear
fit. (h) r2 = 0.1427 for the fit of decay time constants against surface area. (i) Calculated synaptic weight changemean and SEM (n = 50) at the last time point for
all idealized and realistic spines shows an increasing trend against surface area. r2 = 0.3887 for the linear fit. (j) All calcium peaks as mean and SEM (n = 50)
across volume- to- surface- area ratio show an overall increasing trend. r2 = 0.351 for the linear fit. (k) r2 = 0.1114 for the fit of decay time constants against
volume-to-surface-area ratio. (l) Calculated synaptic weight change mean and SEM (n = 50) at the last time point for all idealized and realistic spines shows an
increasing trend against volume-to-surface- area ratio. r2 = 0.2815 for the linear fit. (m) All calcium peaks as mean and SEM (n = 50) across PSD surface area to
PM surface area ratio show an overall increasing trend. r2 = 0.1441 for the linear fit. (n) r2 = 0.0428 for the fit of decay time constants against PSD-to-surface-
area ratio. (o) Calculated synaptic weight change mean and SEM (n = 50) at the last time point for all idealized and realistic spines shows an increasing trend
against PSD-to-surface-area ratio. r2 = 0.1186 for the linear fit. Inset above e: legend for all plots.
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weight emphasizes how an increase in spine size can push a thin
spine to transition into a stable, larger mushroom spine.

The difference in peak calcium level, decay dynamics, and
synaptic weight changes as different spine shapes are scanned
across different sizes can also provide insight into spine shape
transitions during development and maturation. Filopodia-
shaped spines have larger increases in peak calcium levels and
synaptic weight updates and faster decreases in decay time
constants as their volume-to-surface-area ratios and volumes
increase, compared with both thin and mushroom spines (Figs.
3, 4, and 5). This suggests that filopodia spines can very quickly
alter their calcium levels and therefore are well suited for ini-
tially identifying possible synaptic partners and subsequently
directing resources to those filopodia that are good candidates to
transition to dendritic spines (Lohmann and Bonhoeffer, 2008).
Once filopodia are established, their linear calcium increase with
volume might be unsustainable and might lead to reduced levels
of increase for thin spines of comparable volume-to-surface area
(and volume). This suggests that larger stimuli might be nec-
essary to push thin spines toward more excitation, perhaps to
prevent excessive numbers of thin spines from maturing and
leading to resource depletion and excess neural connectivity
(Sorra and Harris, 2000). Mushroom spines once again show
more of an increase in synaptic weight as they increase in vol-
ume-to-surface-area ratio (and volume), but at volumes shifted
from the filopodia-shaped spines, perhaps highlighting their role
as key communication hubs (Sorra and Harris, 2000). The
volume shift seen in mushroom spines versus filopodia-shaped
spines might serve to limit the number of mature, highly ex-
citable dendritic spines as both a key neuronal network and
resource regulation feature. When the SpApp acts as a sink, its
presence dampens synaptic weight changes in mushroom
spines, potentially acting to stabilize the spine from future
changes, as suggested by others (Jasinska et al., 2019; Mahajan
and Nadkarni, 2019).

When considering why these trends hold across volume-to-
surface-area ratios, it is important to note that Ca2+ influx is
through receptors and channels with constant densities at the
PM, or in the case of NMDARs, localized to the PSD. Therefore,
as spines get larger, they have more surface area and more Ca2+

influx, which leads to higher numbers of total Ca2+ ions. This
increase in total ions due to constant receptor and channel
densities explains the increasing trend in peak Ca2+ number.
When considering decay dynamics, Ca2+ efflux is due to pumps
of constant density on the PM or the SpApp. Additionally, Ca2+

ions decay everywhere in the cytoplasm, bind to mobile buffers
in the cytoplasm and fixed buffers on the PM, and bind to the
spine neck base, which acts as a sink. Therefore, since many
efflux or binding terms are either on the PM through pumps or
at the base of the spine neck, larger volume-to-surface-area
ratios mean that ions must diffuse further to reach the neck base
or PM, explaining why decay time constants seem to decrease
with increasing volume-to-surface-area ratio.

While changing geometric features can occur when spines
increase and decrease in volume, they can also modify their
volume, surface area, and volume-to-surface-area ratio by
having a SpApp or through changes in spine neck geometry. We

investigated these additional features (Figs. 4, 5, 6, S5, S6, and
S7) and found that spine neck and SpApp size had volume-
dependent effects. The smaller thin spine neck length and
SpApp variations did not show much influence on peak calcium,
decay rate, or synaptic weight, while the larger mushroom spine
neck length and SpApp variations did have some impact on these
readouts. Therefore, there are various means by which a spine
can modify its synaptic weight response.

There has been substantial debate on deterministic versus
stochastic studies for spine signaling (Kummer et al., 2005;
Rüdiger, 2014; Skupin et al., 2010). Numerous studies have
looked at the importance of stochastic calcium dynamics
(Friedhoff et al., 2021; Friedhoff and Ramlow, 2021), and we
agree that the consideration of stochasticity is important as
noise often leads to efforts to average out its effects (Anwar
et al., 2013). However, comparing our findings here to our
previous deterministic results (Bell et al., 2019) shows that
geometric factors play a critical role in determining Ca2+ dy-
namics; both approaches show that Ca2+ characteristics depend
on the volume-to-surface-area ratio. Additionally, our hybrid
approach of stochastic calcium dynamics and deterministic
synaptic weight update is becoming increasingly common
(Anwar et al., 2013; Rüdiger, 2014; Rodrigues et al., 2022 Pre-
print). However, care should still be taken in assuming model
type as the dynamics of the species, not just particle number,
plays an important role in the stochasticity of the system
(Kummer et al., 2005).

We note that our study is only a small piece of the puzzle with
respect to synaptic plasticity. There are many open questions
remaining. Of particular interest and needing additional explo-
ration is whether one should use total number of calcium ions or
calcium concentration in evaluating synaptic weight change. For
instance, we found that when calcium results are converted
from total ions to average concentration along with the phe-
nomenological synaptic weight equations, we got different
trends in synaptic weight update results (Figs. S10 and S11). We
note that this model of synaptic weight change has been used
previously for concentration studies (Mahajan and Nadkarni,
2019; Shouval et al., 2002). We also observe that converting
our previous results (Bell et al., 2019) into total ions shows the
same trends for maximum Ca2+ peak and decay time constants
as the current study (Fig. S9). Thus, a simple unit consideration
can lead to conflicting results in spatial models and indicates that
we need further discussion and investigation on the structure of
phenomenological equations for synaptic weight to understand
which factors of calcium dynamics matter and to what degree.
Additional investigation is also needed in experimental data
to relate fluorescence readouts to concentration or molecule
numbers. However, we do compare our calcium transients to
previously published experimental and computational results
and find reasonable agreement (Fig. S8).

Related to these conflicting findings when considering ion
total versus concentration, previous studies have considered the
assumptions between calcium influx and spine geometry, more
specifically the assumption of how calcium influx scales with
spine volume (O’Donnell et al., 2011). Here the constant receptor
and channel density assumption leads to an under-compensation
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scenario in which calcium influx does not scale with spine vol-
ume, leading to lower calcium concentrations for larger spines. See
Fig. S4 for examples of our model results in terms of calcium
concentration. Because the synaptic weight model depends on
calcium influx, when using concentration to determine synaptic
weight, larger volume spines have less synaptic weight increase.
Therefore, the sublinear calcium influx assumption leads to this
discrepancy in synaptic weight predictions based on total calcium
ions versus ion concentration. See Figs. S10 and S11 for examples of
this discrepancy. Further research is needed to determine how
exactly calcium influx scales with dendritic spine volume in vivo,
as it is currently unknown which assumption is correct (O’Donnell
et al., 2011). Regardless of the relationship between dendritic spine
volume and calcium influx, the spine uses variousmeans tomodify
its calcium transients, including internal organelles such as the
SpApp acting as either a calcium source or sink (Matsuzaki, 2007).
More research is needed to explore the relationship of geometry-
dependent calcium trends and their consequences on phenome-
nological synaptic weight predictions.

An additional limitation of this study is the use of traditional
P values for statistical analysis of the data (see Fig. S12 for details
on h and P values), since the statistics field has suggested moving
away from null-hypothesis significance testing (Wasserstein
et al., 2019). We also note that our current focus is on very
early events, and these models must be extended to longer-time-
scale events to explore the biochemical and geometric interplay
for downstream signaling (Bhalla, 2004; Ohadi and Rangamani,
2019; Ohadi et al., 2019; Mäki-Marttunen et al., 2020). Associated
with these longer-time-scale events, calciumoften occurs in pulse
trains owing to high-frequency stimulation of the dendritic spine
(Chen et al., 1999; Zhu et al., 2015). We compared synaptic weight
predictions for a single calcium transient to those due to a pulse
train of activation at a single frequency (Fig. S13). However,
further investigation should be done to more closely consider the
role of stimulus magnitude and frequency on synaptic weight
update. In addition, it is important to note that this calciummodel
and these dendritic spine geometries are representative of hip-
pocampal pyramidal neurons. Calcium signaling, dendritic spine
structure, and synaptic weight induction are neuron type spe-
cific, and other studies, including some MCell simulations, have
investigated calcium signaling and synaptic plasticity in other
neuron types (Friedhoff et al., 2021; Antunes and Simoes-de-
Souza, 2018; Antunes and Simoes de Souza, 2020; Koumura
et al., 2014). In some neuron types, including Purkinje cells, cal-
cium release from the ER can play a vital role in calciumdynamics
and subsequent synaptic plasticity (Koumura et al., 2014); thus,
care must be taken when considering different neuron types.

In summary, our computational models using idealized and
realistic geometries of dendritic spines have identified potential
relationships between spine geometry and synaptic weight
change that emerge despite the inherent stochasticity of calcium
transients. We predict that dendritic spine morphology alters
calcium dynamics to achieve their characteristic functions; in
particular, so that filopodia can quickly change their synaptic
weight, large mushroom spines can solidify their synaptic con-
nections, and intermediate-sized spines require more activation
to achieve larger synaptic weight changes. Additionally, we

predict that within a certain spine shape, increasing volume (and
increasing volume-to-surface-area ratio), while assuming re-
ceptors and channels are also recruited, allows for a larger future
increase in synaptic weight, suggesting that the volume change
associated with LTP and LTD serves to reinforce the biochemical
changes during synaptic plasticity. Therefore, spine morphology
tunes synaptic response. The advances in computational model-
ing and techniques have set the stage for a detailed exploration of
biophysical processes in dendritic spines (Miermans et al., 2017;
Basnayake et al., 2019; Ohadi and Rangamani, 2019). Such efforts
are critical for identifying emergent properties of systems be-
havior and also eliminating hypotheses that are physically in-
feasible (Bell and Rangamani, 2021; Lee et al., 2021). Models such
as this and others can set the stage for investigating longer-time-
scale events in spines, including the downstream effectors of
calcium (Jędrzejewska-Szmek et al., 2017; Mäki-Marttunen et al.,
2020; Hayer and Bhalla, 2005; Ordyan et al., 2020), and actin
remodeling for structural plasticity (Bonilla-Quintana et al., 2020;
Rangamani et al., 2014).
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Supplemental material

We constructed a stochastic model of calcium influx into dendritic spines of different morphologies. In this model are calcium influx
through various receptors and channels and calcium efflux through various pumps localized to the PM or SpApp (a specialized form
of ER). Each simulation condition was run with 50 random seeds. We then took the stochastic calcium temporal dynamics and input
them into deterministic equations for synaptic weight update. Using this framework, we can vary spine size and shape to see how
geometric factors influence weight updates. We specifically considered calcium dynamics in terms of total calcium ions.

Model readouts
We simulated synaptic weight updates for each of the 50 calcium transients and then took the mean and SD of the synaptic weight
prediction. Because we are working with a stochastic model and are considering Ca2+ in terms of ions, we converted the parameters
in the synaptic weight equations from units involving concentration to units of molecules, based on average spine volumes and
realistic numbers of calcium ions in dendritic spines. It is important to note that using total Ca2+ ions is a global view of the dendritic
spine, while concentration can be considered as more of a local measurement. As mentioned, this synaptic weight change is a
phenomenological relationship between Ca2+ and synaptic weight that captures the concept of synaptic strength change, and it
remains unclear if using ions versus concentration is a better approach for predicting this change.

We converted our results into average concentrations by dividing the calcium transients by the respective spine volume, con-
verting our synaptic weight parameters into units of concentration, and rerunning our synaptic weight calculations (Fig. S10).
Interestingly, we see a different trend within the concentration simulations versus total ion simulations. We believe the relationship
between spine volume and calcium influx is leading to these differences and requires further investigation (O’Donnell et al., 2011).
We believe that the synaptic weight model might also be parameter dependent, in particular with regard to βP, βD, θP, and θD. This
again brings into question the approach of local versus global calcium readouts and how to capture these effects with the parameters
in phenomenological models. Further investigation is required to understand the considerations behind these different approaches.

Multiple pulses of calcium
We consider the case in which a spine is activated multiple times to produce a series of calcium pulses and predict the synaptic
weight update from this series of calcium pulses. To do this, we repeated each calcium pulse 10 times with 35 ms between activation
events. We note that this is an assumption that has potential consequences on our results. However, for simplicity, we assume the
same calcium transient for each pulse train. We input these calcium pulse trains into the synaptic weight equations.

Matlab analysis of Ca2+ transients
We usedMatlab v2018b to analyze the max Ca2+ peak and decay time constants for the stochastic Ca2+ results. For each realization of
the Ca2+ transient, we used the max() function to find the peak Ca2+ value and corresponding time. We fitted the transient after the
peak using the fit() function set to exp1. The parameters from each fit, corresponding to a realization from a random seed, and
statistics such as the mean and SD were computed. The SEM was found by dividing the SD by the square root of the number of
individual trials, in this case 50 trials.

Statistical analysis
Statistical significance was determined using two-tailed two-sample t test assuming equal means and variance (ttest2() function) in
Matlab v2018b with a significance cutoff at P = 0.05. Statistical comparisons were made between the distributions of observables
yielded by the 50 simulations of the compared experimental conditions. Trends in the stochastic results data were fitted using all 50
seeds for each of the simulations being considered in the fit. The reported trend lines were estimated using the data from all 50 seeds,
as opposed to fitting to the means only. Linear fits and exponential fits were computed in Matlab using the functions fitlim() and
fit(), respectively. We highlight that we are using the classic approach of null-hypothesis significance testing, P values, and sta-
tistically significant verbiage, which has been questioned as perilous and oversimplistic (Wasserstein et al., 2019). We have provided
the P values for each result comparison for closer consideration (Fig. S12). The linear and exponential trend lines shown have a range
of r2 values and are used to show general trends. We emphasize, however, that in some plots we fitted to either very few data points
or a small domain. Therefore, we reiterate that these factors limit the interpretation of the quantitative nature of the fits.

Geometries
Idealized, axisymmetric geometries were used to represent the structure of dendritic spines in this study. Three general spine
shapes are represented—thin, mushroom-shaped, and filopodia-shaped—and each shape is further varied in size and, for the thin
and mushroom spines, neck radius.
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Geometry generation
The geometries were generated from 2-D ideal spine profiles obtained fromAlimohamadi et al. (2020) consisting of a series of points
(r, z) that form the outline of the respective geometry’s rotational cross section. Using Netgen/NGSolve v6.2 (Schoberl, 1997), we
revolved these profiles about the z-axis to yield a rotationally symmetric 3-D spine geometry (Fig. S1). In all spine geometries, a
circular PSD was centered at the top of the spine head. The PSD area was set as a function of spine volume according to the rela-
tionship observed in Borczyk et al. (2019).

Size and neck variations
To further explore the effects of geometric variations on calcium transients and stochasticity, and to facilitate the comparison of
spine geometries of similar volumes and different shapes, the base geometries of all three shapes were scaled to two additional
volumes beyond the base shapes from Alimohamadi et al. (2021). The additional versions of the thin spine, initially smaller than the
other spine shapes, were scaled such that their length measurements were 1.5 and 2 times their original values, resulting in volumes
3.375 and 8 times that of the initial thin spine, respectively. The base mushroom spine, intermediate in volume, was scaled to 0.66
and 1.33 times its original size, resulting in volumes 0.287 and 2.353 times its original value, and the base filopodia-shaped spine,
initially the largest in volume, was scaled to 0.5 and 0.75 times its original size, resulting in volumes 0.125 and 0.422 times its
original volume. This scheme ultimately resulted in three different sizes for each spine shape, spanning a similar range of volumes.

The neck radius of the thin andmushroom spines was also varied, with neck lengthmodified as well to preserve spine volume. To
create the different spine sizes, the 2-D spine profiles were dilated about the origin by a certain scale factor, and the resultant image
was rotated about its vertical axis using Netgen/NGSolve to produce a scaled-up or scaled-down 3-D geometry. In the thin and
mushroom 2-D profiles, the x values of points along the spine neck were scaled by a certain coefficient, and the length of the neck
was then scaled by the squared inverse of the coefficient tomaintain an approximately constant volume. A list of all spine geometries
used, and their respective geometric measures, is in Table S1.

SpApp
Some dendritic spines are observed to have a SpApp, an extension of the smooth ER, extending from the dendrite into the neck and
head of the spine (Spacek and Harris, 1997). In this study, the effects of the presence of the SpApp on calcium transients and
stochasticity were investigated; to achieve this, the thin and mushroom spine geometries were further modified with the addition of
a SpApp of varying sizes. For both spine shapes, the control-sized SpApp geometry was constructed by scaling down the original
spine geometry and extending the SpApp neck, such that the SpApp occupied ∼10% of the spine volume and extended to the base of
the spine. SpApp size was then varied by scaling the SpApp geometry up and down and changing the neck length such that the
SpApp base coincided with the spine base. SpApp was not added to the filopodia-shaped geometry, as the SpApp was not generally
found to be present in such spine shapes (Spacek and Harris, 1997). The SpApp-containing geometries are also listed in Table S2.

Realistic geometries
Realistic geometries were chosen from among those on the full dendrite geometry generated in Lee et al. (2020). Briefly, the
geometric meshes were generated from electron micrographs in Wu et al. (2017) using GAMer 2 (Lee et al., 2020). Individual spines
with labeled PSD and volumes similar to the idealized geometries were selected from the realistic dendritic branch.

Additional simulation results

Artificial calcium transients highlight how calcium peak and pulse duration influence synaptic weight prediction
To graphically solidify the relationship between the calcium and the various synaptic weight update terms, we used artificial calcium
transients as input into the synaptic weight model (Fig. S2 a). We considered three different cases: (1) a high calcium level (1,000
ions) for 5 ms, (2) a lower calcium level (300 ions) for 5 ms, and (3) a high calcium level (1,000 ions) for 10 ms. We can clearly see
that for the prescribed calcium inputs, the τw learning rate filters for rate of change to synaptic weight during the calcium pulse,
while Ωw determines if the synaptic weight increases or decreases (Fig. S2, b and c). We see that as the calcium transient moves
within the prescribed thresholds of LTP and LTD, the learning rate increases and decreases, while the Ωw term flips between
negative, positive, and no change. For the selected LTP and LTD thresholds, both high calcium level cases lead to synaptic
strengthening, while the lower calcium level case leads to synaptic weakening (Fig. S2 d).

Simulation results versus other geometric parameters show various trends
We plotted maximum Ca2+ peak, decay time constant, and synaptic weight against volume for all size variations of filopodia-shaped
spines, thin spines, mushroom spines, and mushroom spines with SpApp (Fig. S3). We found similar trends across volume as we
observed across volume-to-surface-area ratio. To understand the effect of volume on these calcium readouts, we plotted several
calcium transients for different geometries in terms of concentration, by dividing by the respective geometries’ volumes (Fig. S4).
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Spine neck size shows differences in the large mushroom spines but not the smaller thin spines
The spine neck has long been discussed as a key parameter governing calcium signaling within dendritic spines (Volfovsky et al.,
1999). We also explored the effects of varying spine length and radius, while preserving spine volume.We first varied the spine neck
on thin spines of the control volume (Fig. S5 a). We saw that while the calcium transients have considerable overlap, the thin-necked
spine shows significant variance at later time points compared with the other spines (Fig. S5, b and c). We found no statistically
significant differences between peak calcium values and only decay differences between the thinnest and thickest necks (Fig. S5, d
and e). Synaptic weight changes for the thin spines with different neck geometries showed no significant differences but were
trended toward negative weight changes for thicker necks (Fig. S5 f). We next explored mushroom spines with thinner or thicker
neck geometries but with the same volume as the mushroom control spine (Fig. S6 a). While the mean of the calcium transients
appeared quite close, there was significant difference in variance for the mushroom spine with the thick neck (Fig. S6, b and c). We
saw differences in peak calcium only between the thinnest and thickest of the mushroom neck cases, and no significant difference in
decay time constant (Fig. S6, d and e). Synaptic weight calculations show that the presence of the thinnest versus thickest neck on a
mushroom spine does lead to statistically significant differences in synaptic weight updates (Fig. S6 f). This indicates that spine neck
morphology might have more implications for these larger mushroom spines, compared with the smaller thin spines.

The presence of SpApp in thin spines causes no clear trend in synaptic weight update
We varied the size of SpApp in thin control spines with the SpApp acting as a calcium sink with SERCA pumps (Fig. S7 a). We found
that the presence of SpApp makes the calcium transient response more complex, with a double peak visible in the variance for thin
spines (Fig. S7, b and c). While we can fit the peak calcium values and decay time constant trends against both volume (Fig. S7, d and
e) and volume-to-surface-area ratio (Fig. S7, g and h), SpApp presence shows no clear trend in synaptic weight change for thin
spines, and the differences were not statistically significant (Fig. S7 f).

Comparison to previous experimental and computational results
We compared our calcium transients to previously reported experimental and computational studies (Fig. S8). For a more direct
comparison, we normalized the various readouts to 1 and time shifted the traces to all begin around the same time point. We
considered the mean transient of a small idealized thin spine (0.035 µm3) and large idealized mushroom spine (0.643 µm3) from our
study. We found that the small thin spine decays quite quickly while the larger mushroom spine has decay dynamics more similar to
previously published findings.

Our previous deterministic results match the qualitative trends seen in these results
We previously published a deterministic reaction diffusion model of calcium dynamics in dendritic spines of different morphologies
(Bell et al., 2019). We found trends in the peak calcium concentration over spine volumes in that work and wanted to directly
compare those results to our findings in this work. Using the results from Bell et al. (2019), we integrated calcium concentration over
the spine volume at each time point, found the peak calcium in ions, and fitted the decay dynamics of the calcium transient with an
exponential decay function, c exp(–kt). We compared the peaks and decay time constants over both volume and volume-to-surface-area
ratio and found the same qualitative trends as our findings in the current work (Fig. S9). We converted our current findings into
concentration by dividing the total calcium ion transients by the geometry volumes and considered five example transients for the
three control idealized geometries and three realistic geometries (Fig. S4). We found that the thin spines have the highest con-
centrations, followed by filopodia, and then mushroom spines.

Synaptic weight changes depend on calculations with ions versus concentration
Synaptic weight update equations are typically phenomenological relationships based on Ca2+. Historically, many mathematical
models considering synaptic weight changes have considered synaptic weight changes in terms of concentration (Shouval et al.,
2002; O’Donnell et al., 2011; Mahajan and Nadkarni, 2019). In this model, we considered Ca2+ in terms of Ca2+ ions. We wanted to
consider if the use of ions versus concentration influences the synaptic weight update results. We converted the synaptic weight
equations by converting the parameters from units involving molecules to concentration by dividing by the average spine volume
(0.06 µm3) and converting to µM.We converted all the Ca2+ transients to µM by dividing by each respective spine geometry volume
andmodifying units. We plotted the synaptic weight change at 35ms for all simulations when considering ions versus concentration
(Fig. S10). We found that synaptic weight change predictions do change when using ions versus concentration, because the con-
centration also considers the volume of the spines. Using concentration leads to a decreasing trend in synaptic weight with in-
creasing volume, which is the opposite of the trend seen using ions. We did, however, still find protrusion-type specific trends
within the overall dynamics.

There are several considerations to make during this comparison. First, as mentioned, the synaptic weight equations used are
phenomenological relationships between Ca2+ and the concept of synaptic weight, which captures the idea of synaptic strength-
ening, which would actually occur through the insertion of receptors, such as AMPAR, and potentially spine volume increase. It
remains unclear if total ion count, which is a global consideration of the whole spine, or Ca2+ concentration, which considers the local
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environment, is the correct value to consider for synaptic weight calculations. Furthermore, we used average concentration in Fig.
S10, c and d, but dendritic spines are known to have signaling nanodomains, so it could be possible that it would be more accurate to
consider peak concentration instead of average concentration for this calculation. Additionally, it is possible that the thresholds for
LTP versus LTD need to be modified when considering a global reading, such as total ions in the spine, versus a local measurement,
such as local concentration. Should synaptic weight change depend on the total amount of Ca2+ influx or the local environment
within the spine? This is an ongoing consideration that needs further analysis and discussion.

Another consideration with this analysis is that the synaptic weight update is calcium dependent. We plotted the dynamics of the
filopodia-shaped spine for a more direct comparison between calcium transients in terms of calcium ion and concentration (Fig. S11).
We can see that even through there is more calcium ion influx as the spines get larger, that increase in influx is not proportional to
the increase in spine volume. Said another way, calcium influx is sublinear with respect to volume increase, so larger spines have
lower calcium transients. This is a consequence of our assumption of constant receptor density. This idea has been explored quite
elegantly in O’Donnell et al. (2011). Therefore, calcium influx related to spine volume should continue to be explored, and the
consequences of geometry-dependent calcium trends on phenomenological relationships for synaptic weight need to be investigated
further.

Two-tailed t test results for all stochastic simulations
We conducted two-tailed t test calculations between all stochastic simulations for both idealized and real geometries for maximum
Ca2+ peak, decay time constant, and synaptic weight change. We display both the h and P values for each comparison (Fig. S12). We
use a P threshold of 0.05 to determine the binary h value. A P value <0.05 indicates that the two results are statistically different and
produces an h value of 1; a P value >0.05 indicates that the two results are not statistically different and produces an h value of 0.
P values have been truncated at two decimal points.

Synaptic weight predictions from a single calcium transient mimic those from a pulse train
For all simulations so far, synaptic weight prediction used a single calcium transient as input. However, usually a dendritic spine
receives a pulse train of activation, so wewant to consider the consequences of a pulse train of calcium transients on synaptic weight
updates. To do this, for each 50 calcium transients per geometry, we repeated the calcium temporal dynamics 10 times with 35 ms
between the initiation of the calcium spikes. This induction protocol of 29 Hz is within the regime expected to begin to produce LTP
in dendritic spines (Chen et al., 1999; Zhu et al., 2015). We compared the synaptic weight update for a single pulse to the update for a
pulse train (Fig. S13, a and b). We found that the synaptic weight change increases in magnitude for the pulse train condition but
keeps the same general trends observed in the single-pulse simulations, indicating that a single pulse does give a good approximation
of pulse train dynamics at this frequency. However, it is clear that the conversion between single pulse and pulse train is not as clear
for the realistic geometry cases. Additionally, the pulse train predictions showed an increase in SD, with more cases showing the
ability to increase or decrease their synaptic weight. Therefore, while the mean synaptic weight change for each condition held
across a single pulse and multiple pulses, the pulse train widens the synaptic weight regime that a spine can enter.
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Figure S1. 2-D spine profiles. (a–c) The 2-D spine profiles and the resultant rotationally symmetric spine geometries for thin spines (a), mushroom spines (b),
and filopodia (c).
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Figure S2. Artificial calcium transients demonstrate how learning rate, Ωw, and synaptic weight depend on calcium temporal dynamics. (a–d) To
illustrate the relationship between calcium (a), τw (b),Ωw (c), and synaptic weight (d), we constructed three artificial calcium profiles with Heaviside functions.
The calcium profiles are (1) 1,000 ions for 5 ms (red line), (2) 300 ions for 5 ms (yellow dashed line), and (3) 1,000 ions for 10 ms (blue dotted line).

Figure S3. Trends across volume are similar to trends across volume-to-surface-area ratio. Peak calcium levels, decay time constant, and synaptic
weight updates for size variations given as volumes for filopodia-shaped spines (a–c), thin spines (d–f), mushroom spines (g–i), and mushroom spines with
SpApp (j–l). Peak calcium is fitted with a line with a fixed zero intercept. *, **, and *** denote statistically significant values between the different sized spines.
P values for each comparison are shown in Fig. S12.
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Figure S4. Examples of calcium transients in terms of concentration for various geometries. Five examples of calcium transients in terms of con-
centration for the filopodia control geometry (a), thin control geometry (b), mushroom control geometry (c), realistic filopodia spine 17 (d), realistic thin spine
39 (e), and realistic mushroom spine 13 (f).

Figure S5. Effect of spine neck variation on synaptic plasticity in thin spines. (a) Spatial plots at 15 and 30 ms for thin spines of the same volume with
different neck geometries (neck radius of 0.04, 0.06, and 0.07 μm). The number above each spine corresponds to the number of calcium ions present at that
time point. Scale bar, 2 μm. (b and c) Calcium ions over time (b) and variance, displayed as variance divided by 1,000 ions (c), for all three thin spines with
different neck cases. Shaded regions in b denote SD. (d) Peak calcium ion number for each thin spine with the mean and SEM (n = 50) show no statistically
significant differences using a two-tailed t test. We fitted the trend in peak calcium as a linear function of spine neck base surface area; r2 = 0.0009 for the
linear fit. (e) We fitted the decay portion of each calcium transient with the exponential decay function c · exp(−kt). The decay time constant mean and SEM
(n = 50), k, only statistically significant differences shows between the thin and thick necks; ***, P = 0.0322 from two-tailed t test. We fitted the trend in decay
time constants as a function of spine neck base surface area with an exponential a · exp(−bψ), where ψ is the spine neck base surface area; r2 = 0.0256 for the
exponential fit. (f) Calculated synaptic weight change at the last time point for all three thin spines shows no statistically significant difference due to neck size.
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Figure S6. Effect of spine neck variation on synaptic plasticity in mushroom spines. (a) Spatial plots at 15 and 30 ms for mushroom spines of the same
volume with different neck geometries (neck radius of 0.08, 0.10, and 0.13 μm). The number above each spine corresponds to the number of calcium ions
present at that time point. Scale bar, 2 μm. (b and c) Calcium ions over time (b) and variance, displayed as variance divided by 1,000 ions (c), for all three
mushroom spines with different neck cases. Shaded regions in b denote SD. (d) Peak calcium ion number for eachmushroom spinewith the mean and SEM (n =
50) show statistically significant differences between the thin and thick spines; ***, P = 0.0029 using a two-tailed t test. We fitted the trend in peak calcium as
a linear function of spine neck base surface area; r2 = 0.0528 for the linear fit. (e) We fitted the decay portion of each calcium transient with the exponential
decay function c · exp(−kt). The decay time constant mean and SEM (n = 50), k, shows no statistically significant differences from a two-tailed t test. We fitted
the trend in decay time constants as a function of spine neck base surface area with an exponential a · exp(−bψ), where ψ is the spine neck base surface area;
r2 = 0.0036 for the exponential fit. (f) Calculated synaptic weight change at the last time point for all three mushroom spines shows a statistically significant
difference only between the thin and thick spines, ***, P = 0.0244 from two-tailed t test.
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Figure S7. Sp App size modulates synaptic weight change in thin spines. (a) Spatial plots at 15 and 30 ms for thin spines with SpApp of different volumes
(spine cytosolic volumes of 0.026, 0.030, and 0.033 μm3). The numbers on top of the shape indicate the total number of calcium ions at that instant in both the
SpApp and cytoplasm. (b and c) Calcium ions over time as mean and SD (b) and variance, displayed as variance divided by 1,000 ions (c), for all three thin
spines with different SpApp sizes. Shaded regions in b denote SD. (d) Peak calcium ion number for each thin spine with a SpApp, with the mean and SEM (n =
50), show statistically significant differences between two of the three paired cases; *, P = 0.0461; ***, P = 0.0453 from two-tailed t test. We fitted the trend in
peak values with a linear function against the cytoplasm volume; r2 = 0.0145 for the linear fit. (e)We fitted the decay dynamics of each calcium transient with
c · exp(−kt) and report the decay time constant, k, as a mean and SEM (n = 50). We found statistically significant differences only between the second and third
spines; *, P = 0.0289 from a two-tailed t test. We fitted the trend in decay time constants as a function of cytosolic volume with an exponential a · exp(−bV),
where V is the cytosolic volume; r2 = 0.0177 for the fit. (f) Calculated synaptic weight change at the last time point for all three thin spines shows no statistically
significant difference due to SpApp size. (g and h)We also plotted peak calcium ion number and decay time constant against the cytosolic volume-to-surface-
area ratio (g and h, respectively). (g)We fitted the trend in peak values with a linear function against the volume-to-surface-area ratio; r2 = 0.0214 for the linear
fit. (h) We fitted the trend in decay time constants as a function of volume-to-surface-area ratio with an exponential a · exp(−bζ), where ζ is the volume-to-
surface-area ratio; r2 = 0.0178 for the fit.
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Figure S8. Normalized calcium transients from different experimental and computational studies. We plotted the temporal dynamics of the small
idealized thin spine (0.035 µm3) and large idealized mushroom spine (0.643 µm3) versus reported experimental calcium transients from previous studies
(Sabatini et al.,2002; Hoogland and Saggau, 2004; Segal and Korkotian, 2014) and computational model results from previous studies (Bell et al., 2019; Bartol
et al., 2015; Rubin et al., 2005; Hu et al., 2018). The various experimental transients are reported in terms of fluorescence, and we assumed the transients were
linearly proportional to concentration (Yasuda et al., 2004). We normalized the various transients and time shifted them for a more direct comparison. We
plotted from Fig. 1 f in Sabatini et al. (2002), Fig. 1 in Segal and Korkotian (2014), and Fig. 2 d in Hoogland and Saggau (2004). We also compared Fig. 3 of Bell
et al. (2019), Fig. 5 of Hu et al. (2018), Fig. 1 a of Rubin et al. (2005), and Fig. 7 i of Bartol et al. (2015).

Figure S9. Previous calcium simulation results match the qualitative trends in these results. (a)We fitted the trend in peak values with a linear function
against the cytoplasm volume; r2 = 0.8776 for the linear fit. We fixed the y intercept at zero. (b)We fitted the decay dynamics of each calcium transient with
c · exp(−kt) and report the decay time constant, k. We fitted the trend in decay time constants as a function of cytosolic volume with an exponential a · exp(−bV),
where V is the cytosolic volume; r2 = 0.4283 for the fit. (c) We fitted the trend in peak values with a linear function against the volume-to-surface-area
ratio; r2 = 0.3492 for the linear fit. (d)We fitted the trend in decay time constants as a function of volume-to-surface-area ratio with an exponential a · exp(−bζ),
where ζ is the volume-to-surface-area ratio; r2 = 0.9054 for the fit.
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Figure S10. Synaptic weight updates when considering Ca2+ in terms of ions or concentration. (a–d) Synaptic weight updates for each stochastic
idealized and real geometry simulation when synaptic weight calculations are in terms of ions (a and b) and concentration (c and d). We plotted the synaptic
weight changes against the spine volume for calculations using ions (b) and concentration (d). We fitted the trends using a linear function of volume; r2 = 0.4635
for the ion fit and r2 = 0.1229 for the concentration fit.
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Figure S11. Synaptic weight updates when considering Ca2+ in terms of ions or concentration for the filopodia-shaped spines. (a) Spatial plots il-
lustrating Ca2+ localization at 15 and 30 ms for a filopodia-shaped spine with volume 0.138 μm3. The number above each geometry corresponds to the number
of Ca2+ in that frame. Two random seeds are shown. Scale bars, 2 μm. (b)Mean (solid) and SD (shaded area) of Ca2+ transients across 50 simulations for each of
the three filopodia-shaped spine sizes (0.017, 0.058, and 0.138 μm3). (c) Synaptic weight prediction for each of the filopodia geometries calculated as a function
of total calcium ions. We fitted the trends using a linear function of volume-to-surface-area ratio; r2 = 0.3594 for the ion fit. (d)Mean of the calcium transients
for each filopodia-shaped spine size converted to concentration. (e) Synaptic weight prediction for each of the filopodia geometries calculated as a function of
calcium concentration. We fitted the trends using a linear function of volume-to-surface-area ratio; r2 = 0.1143 for the concentration fit. We found statistically
significant differences between the first and third spines and between the second and third spines; P12 = 0.1301; P23 = 2.2567 × 10−4; P13 = 1.1347 × 10−4 from
two-tailed t test, where 1, 2, and 3 correspond to the spines in increasing volume.
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Figure S12. Two-tailed t test comparison between all simulations.We conducted two-tailed t tests between all simulations and display the h value and P
value for maximum Ca2+ peaks (a and b), decay rate constant (c and d), and synaptic weight change (e and f). Displayed P values are truncated at two decimal
points.

Figure S13. Single pulses and multiple pulses show similar trends in synaptic weight updates across different geometries. (a) Synaptic weight change
due to a single pulse of calcium for the different spine geometries. (b) Synaptic weight change due to multiple pulses of calcium for the different spine
geometries.
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Video 1. Sample video of idealized filopodia simulation. A single seed of an idealized filopodia simulation is shown for the whole time period from 0 to 35
ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Video 2. Sample video of idealized thin spine simulation. A single seed of an idealized thin spine simulation is shown for the whole time period from 0 to 35
ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Video 3. Sample video of idealized mushroom spine simulation. A single seed of an idealized mushroom spine simulation is shown for the whole time
period from 0 to 35 ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Video 4. Sample video of idealized mushroom spine with a SpApp simulation. A single seed of an idealized mushroom spine with a SpApp simulation is
shown for the whole time period from 0 to 35 ms. The PM and SpApp membrane mesh are shown in blue and the Ca2+ ions are red.

Video 5. Sample video of realistic filopodia 17 simulation. A single seed of a realistic filopodia 17 simulation is shown for the whole time period from 0 to 35
ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Video 6. Sample video of realistic filopodia 37 simulation. A single seed of a realistic filopodia 37 simulation is shown for the whole time period from 0 to
35 ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Video 7. Sample video of realistic thin spine 39 simulation. A single seed of a realistic thin spine 39 simulation is shown for the whole time period from 0 to
35 ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Video 8. Sample video of realistic thin spine 41 simulation. A single seed of a realistic thin spine 41 simulation is shown for the whole time period from 0 to
35 ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Video 9. Sample video of realistic mushroom spine 13 simulation. A single seed of a realistic mushroom spine 13 simulation is shown for the whole time
period from 0 to 35 ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Video 10. Sample video of realistic mushroom spine 18 simulation. A single seed of a realistic mushroom spine 18 simulation is shown for the whole time
period from 0 to 35 ms. The PM mesh is shown in blue and the Ca2+ ions are red.

Provided online are Table S1, Table S2, and Table S3. Table S1 and Table S2 list all geometric variations. Table S3 lists values for
realistic geometries.
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