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Graphene-Dielectric Composite Metamaterials: Evolution from Elliptic to
Hyperbolic Wavevector Dispersion and The Transver se Epsilon-Near-Zero
Condition

Mohamed A. K. Othman, Caner Guclu, and Filippo Cap(ﬁino
Department of Electrical Engineering and Computer Science
University of California, Irvine, CA92697, USA

We investigated a multilayer graphene-dielectric compeosiaterial, comprising graphene sheets separated
by subwavelength-thick dielectric spacer, and found italat hyperbolic isofrequency wavevector dispersion
at far- and mid-infrared frequencies allowing propagatidrwaves that would be otherwise evanescent in a
dielectric. Electrostatic biasing was considered for bl@and controllable transition from hyperbolic to ellipti
dispersion. We explored the validity and limitation of tHieetive medium approximation (EMA) for modeling
wave propagation and cutoff of the propagating spatialtspecdue to the Brillouin zone edge. We found that
EMA is capable of predicting the transition of the isofreqeye dispersion diagram under certain conditions.
The graphene-based composite material allows propagaitisaxckward waves under the hyperbolic dispersion
regime and of forward waves under the elliptic regime. Titeorsfrom hyperbolic to elliptic dispersion regimes
is governed by theansverseepsilon-near-zero (TENZ) condition, which implies a flatted wider propagating
spectrum with higher attenuation, when compared to the rivgie regime. We also investigate the tunable
transparency of the multilayer at that condition in coritta®ther materials exhibiting ENZ phenomena.

I. INTRODUCTION

Hyperbolic metamaterial (HM) refers to a subcategory obuizlly anisotropic metamaterial, that can
be modeled by a diagonal permittivity tensor (in Cartesiaardinates) comprising entries with both
positive and negative real parts. The realization of hypkeldispersion allows wave propagation over
a wide spatial spectrum (infinite for an ideal HM), that woble evanescent in a common isotropic
dielectric [1]. HMs are realized at optical frequenciesgsinetal-dielectric multilayers|[2+-4], or metallic
nanowires|[5], and at terahertz and infrared frequenciegsemiconductor-dielectric multilayers [6, 7]
or carbon nanotubes [8]. In multilayer HMs, the emergendg/pkrbolic dispersion does not rely on any
resonant feature, thus it poses a potential for broadbamaheement of the local density of states (LDOS)
[9], subwavelength imaging [10, 11], and lensing [12]. Sppoeous emission rate of an emitter, as well
as the radiative decay of dye molecules, is proportionghéoltDOS [11], hence it can be substantially
enhanced in the proximity of a hyperbolic metamaterial [14]. It was demonstrated in/[2] that the
power scattered by a passive nanosphere located in thengtgxif a metal-dielectric HM is enhanced
by orders of magnitude, while the HM absorbs most of the scedt power, opening a new frontier in
super absorbers designs based on near-fields transfomfiaiio evanescent to propagating regimes. A
wide band absorption was devised|in/[15] using tilted canemotubes.

Multilayer HMs at optical frequencies take advantage oflige frequency band in which metals
exhibit negative permittivity and support plasmonic moff:43]. At infrared frequencies, graphene as
a tunable inductive layer constitutes a potential builditmrck for multilayer HM realizations. Further-
more tunability of HMs can be achieved using static fieldsiss lgraphene [16, 17]. It is a remarkable
material with a wide operational frequency band startimgrfimicrowave regime [18], through terahertz
frequencies [19], and optical frequencies [20]. Grapheas wmiilized in design of metasurfaces in many
different applications, such as polarizers and absor2drs22], and cloaking devices [23].
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In this paper we investigate a graphene-dielectric mykitanaterial that shows promising properties
as tunable HM at far- and mid-infrared frequencies, that praslicted to provide a large enhancement
in the Purcell factor [24, 25]. In that recent work, the entement of emitted power by electrically-
small emitter near the interface of graphene-based HM akasehe near-field absorption properties
were developed using effective medium approximation (EMAJ transfer matrix methods, where the
limitations and validity of EMA were established [25]. Here show how the wavevector dispersion
diagram can be controlled and even transformed betweerrhylpeand elliptic curves at mid- and far-
infrared regime. Moreover, we demonstrate the design ¢jn&keof the graphene-based HM in terms of
the physical parameters for the purpose of engineeringvblat®on from hyperbolic to elliptic dispersion
condition. . In the last part of the paper we exploretth@sverseepsilon near zero (TENZ) condition, its
relation to the dispersion diagram and the enhanced tragrspaof a thin film made of TENZ graphene-
dielectric layers for TM waves with a wide range of incideacgle. The fabrication of the metamaterial
comprising as few as ten graphene-dielectric layers, wiiite shown to have characteristics that resem-
bles those of a semi-infinite stack [25], could be realizélizirtg commercially available, high quality
chemical-vapor-deposition-(CVD)-grown graphene moyeison a transition metallic (Ni or Cu) foil
[26,127]. from which graphene can be transferred onto a/&isubstrate using an intermediate host
such as a thermoplastic polymethyl-methacrylate (PMMA)Eiohancing the transfer process efficiency
[28]. This process is followed by depositing a thin film of i@ SiC on the graphene flake using CVD.
However, it was shown that a graphene monolayer or $8D become highly disordered and increases
scattering losses [29]. The transfer of few-layer grapi{Eh&) [26] on other compatible materials such
as Boron-Nitride (h-BN) might be of interest toward realgithe metamaterial, since h-BN shares the
same hexagonal structure with graphene [30].

Il. EFFECTIVE MEDIUM ANALYSISOF GRAPHENE-DIELECTRIC MULTILAYERS

Graphene is a one-atom-thick layer of hexagonal arrangeshearbon atoms with a lattice constant of
0.264 nm, hence spatial dispersion effects introduced by grapperiodicity can be in general neglected
at terahertz frequencies. Although the existence of exhgrslow surface modes can trigger spatial
dispersion effects [18, B31], those modes are essentiallyflfrievanescent due to the periodicity of the
multilayer structure studied here, as it will be shown in.S8c Graphene is electrically modeled by
the local isotropic sheet conductivity= o’ + jo” (assuming time-harmonic variation ef~*), which
accounts for both interband and intraband contributiotisedotal electronic transport [32,/33]. The sheet
conductivityo is computed by the Kubo formula_[34], which yields a functiminfrequency, chemical
potential .., phenomenological scattering rdfe and temperatur&’. Here we assume for graphene
I' = 0.33 meV (using the same notation aslin/[34]), which correspomdsthean electron scattering time
of aboutl ps, at room temperatufE = 300 K. Graphene supports relatively low loss TM plasmonic
modes|[16] (dictated by the negative imaginary part of théase conductivitys” < 0). As such,c”,
modeling the reactive response of graphene, plays a funatafhele in the manifestation of hyperbolic
dispersion in multilayer graphene-dielectric materiatsgdescribed in the following. We aim at analyzing
an infinite periodic multilayer structure depicted in Higwhose unit cell is composed of a graphene sheet
and a dielectric layer of subwavelength thicknéssd relative permittivity ;. A physical understanding
of wave propagation in such multilayers with subwavelengghiod can be established by using the
effective medium approximation (EMA) approach, which is wasj-static or local approximation for
metamaterials, often adopted for metal-dielectric mayirs [2| 3, 31]. According to EMA, the periodic
multilayer is regarded as an anisotropic homogeneous mredith effective relative permittivity tensor
€ = €:(XX+y¥)+e€,2z, where the relative effectieansversgermittivity ¢, is found by averaging the
transverseffectivedisplacement current over the associated electric fielduimitscell (here, the effective
displacement current is defined as a quantity that includésdisplacement current in the dielectric slab
and conduction current in the infinitesimally-thin grapbsheet). Then the relative effective permittivity
parameter for transversely polarized field is
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Figure 1: Graphene-dielectric multilayer HM topology, retetl by a periodically-loaded transmission line. The unit
cellis indicated on the right and the graphene sheet issepted as a shunt admittance, and we denote the reference
plane for evaluating the Bloch impedance. At far- and midaired frequencies, TMwaves exhibit hyperbolic
isofrequency wavevector dispersion.

g
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€ =€, — je =€q fjweod.
Since an individual graphene sheet is infinitesimally-ttie conduction current is always along the
sheet, hence the permittivity experienced:bydirected electric field is not affected by graphene, leading
to e, = e4. The relation in Eq. [{[1) implies that when the graphene steadequately inductive, in
particular wherv” < —wepeqd, we obtaine, < 0 and in turn the isofrequency wavevector dispersion is
hyperbolic [2], as demonstrated next. Let us consider pleanes propagating inside the metamaterial
with the spatial dependenee’** wherek = k,x + k,¥ + k.2 is the wavevector. A plane wave analysis
is particularly useful in understanding the multilayersponse to sources because the radiation of a
dipole inside or close to the metamaterial can be reprederg@ spatial spectral sum of plane waves.

Due to the symmetry of the multilayer metamaterial with egpo the axis, we will usék; =  /k2 + k2

for denoting the transverse wavenumber component and fiofiloeving &; is taken real representing the
spatial spectrum of TE(electric field transverse to) and TMF (magnetic field transverse t) waves.
The z-directed wavenumbek, = [, — ja, can assume complex values modeling propagation and
attenuation, accounting also for natural losses in the niahtonstituents. Accordingly, the wavevector
dispersion of TE and TMF waves inside the effective medium is given as

kf = etkg — kf, TE? 2)
kf = etkg — —k:f, T™# 3)
€d

whereky = w,/no€o is the wavenumber in free space. When the losses are naj(eeteif o’ — 0) one
would obtain purely real;, hencek, (obtained via Eq.{2) and Ed.](3)) assumes either purelyaaks,
denoting the propagating spectrum, or purely imaginaryes| denoting the evanescent spectrum. In
this lossless case, hyperbolic dispersion occurs when 0, and the HM uniaxial medium allows for
propagation (i.e.k, is purely real) of extraordinary waves (FMwith a large transverse wavenumber
ke > \/eako; these waves with; > ,/e;ko would be otherwise evanescent (i, is purely imaginary)
either in a isotropic dielectric with permittivity,, or in a generic uniaxial anisotropic media with>

0. This unusual phenomenon implies that highspectrum emanating from sources, which would be
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evanescent in free space, can be converted to propagatiegwbaHM interfaces. Ordinary waves (T)E
are, however, evanescent for apywhene, < 0. On the other hand, wheq > 0 we have reak, only
for limited spectrum of TM waves withk, < ,/esko, which leads to the elliptic isofrequency wavevector
dispersion. Therefore the transition between hyperboleliptic regimes is associated to the condition
€t = 0.

Instead, for realistic lossy casds, is complex and the wavevector isofrequency dispersiontbeso
elliptic-like and hyperbolic-like (fok; > 0 ande; < 0, respectively), as shown in the examples in next
section. However, the interpretations regarding propagaif power are still valid provided that losses
are relatively small, and we will show that moderate propiagdosses is a major advantage of graphene-
based HMs at far- and mid-infrared frequencies. When apgliEMA, the dispersion relatiofi, — k; is
hyperbolic-like fork, > |/esko whene; < 0, and it converges to the asymptdte| ~ |e;k; /4| for large
spatial wavenumbdy,, i.e., thes, — k; dispersion becomes linear, with a slopgof- ¢’/ (wegeqd)|.

To validate our EMA hypothesis, we obtain a more accurateesgmtation of the wavevector dispersion
relation by employing Bloch theory [35] for a periodicallydded transmission line whose unit cell is
illustrated in Fig.[l. When each graphene sheet is modeléu avcomplex admittanc®, = ¢ =
o' + jo”, the dispersion relation for TMor TE* waves in the periodic structure is cast in the form

Y
cos k,d = cos kqd + j;Zd sin kqd, 4)

wherer, = /eqki — k? is the z-directed wavenumber of a wave inside the dielectric spatEf =
ka/(weoeq) andZTE = wpg/kq are the characteristic wave impedances for'Taid TE waves, respec-
tively. This relation in[(#) is yet accurate for arbitrafyandk,, i.e., accounts for transverse wavenumber
dispersion. For the spectrum in which the dielectric layéhnickness is much smaller than the Bloch
wavelength and the wavelength inside the dielectric it§&lfd| < 1, |kqd| < 1), we can apply the
following small argument approximatiomssz ~ 1 — 22 andsinz =~ z, the dispersion relation in Eq.
(4) simplifies to the one obtained via EMA in EqJ (2) and HJ. 8ing the same definitions fey and
€, [25]. As we will discuss thoroughly in Sec. 3, Bloch theorppes that the propagating spectrum of
TM* waves is limited due to the periodicity, manifested by th#l@&rin zone edge at whiclf,=+7/d ,
and therefore the propagating spectrum in realistic HMsamagpper bound even in lossless cases. Nev-
ertheless, the Brillouin zone edge (i.8.=+x/d ) is reached in general at higher valuesgfprovided
that the period! is extremely subwavelength .

In the following we report some aspects that demonstratetirits of graphene-based HM: Graphene
conductivityoc = ¢’ + jo’’ is tunable with chemical potential variation via electatist biasing, hence,
is also tunable through negative or positive values, at dfisequency. This implies a possible transition
between hyperbolic to elliptic wavevector dispersion. Taalization of HMs using graphene is also
prone to graphene’s frequency response. For instancehgmapsheets are mainly capacitive in mid-
and near-infrared frequencies, because intraband catitnits in graphene are dominant, and the*TM
surface modes on a single graphene sheet become on the anjitigmann sheet [16]. On the other
hand, at very low frequencies (GHz regime), the interbamdiootivity dominates leading to high losses.
Hence a proper frequency range for realizing hyperbolipetision extends from far-infrared up to low
mid-infrared frequencies. Furthermore, the dielectrickhess also plays role on the frequency range
of HM design. As the dielectric thickness is increased, tlegjdency range of negativg shifts to
lower frequencies which are undesirable due to signific@syds in graphene. Moreover, thicker spacers
require a larger biasing electrostatic potential betwegers to achieve a moderate chemical potential
level in graphene sheets. On the other hand, when congidemialler periods (in the range of several
nanometers), it is expected that graphene sheets are nerlelegtronically isolated for such quantum-
scale interspacing, and a tight binding model for graphagerk must be taken into account in order
to evaluate the conductivity of graphene sheets$ [[35, 37]erdfore, for very small thicknesses, both
EMA relation, reported in[{3), and transfer matrix analysigst be modified to account for quantum
tunneling between graphene sheets. In the next section lvexpiore and provide illustrative examples
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for graphene-based HM designs in terms of frequency regptosses and tunability and we will assess
the validity of the EMA in predicting hyperbolic or elliptdispersion regimes.

I11. HYPERBOLIC AND ELLIPTIC WAVEVECTOR DISPERSION

Let us consider a multilayer stack depicted in Hig. 1, thahpdses graphene sheets and dielectric
layers withe; = 2.2 and thicknessl. In our illustrations we only adopt positive values for graph
chemical potential owing to the assumed reciprocity in thatilayers, and consider a typical range for
1e Upto 0.5 eV inindividual graphene sheets as suggestedjn\|&3plot in Fig.[2 the relativeransverse
permittivity e; = €, — je; versus frequency, for various chemical potential levels=£ 0, 0.25, and 0.5
eV) and dielectric thicknessi (=100, 50 nm). First we observe that the zero-crossing fregjuehe;,
wheres” = —wegeqd, is primarily defined by the periodland it can be tuned via the chemical potential;
in turn the frequency of transition between the hyperbotid ¢he elliptic dispersion regimes can be
controlled. Assuming = 100 nm (solid lines) in Fig[2(a) we show that the frequency atohlaj = 0
shifts from6.6 THz to 27.5 THz by increasing the chemical potential from 0 eV to 0.5 e & =50
nm, similar control of the frequency at whieh= 0 is observed by varying.. Moreover when.. = 0,
we see that, = 0 occurs at 8.7 THz fod =50 nm, a higher frequency than the= 100 nm case whose
zero-crossing frequency is around 6.6 THz. Graphene sheetsme capacitive at higher frequencies
(¢’ = 0 denotes the transition from inductive to capacitive, fatamces” = 0 at ~ 26 THz when
ue = 0 eV), however its contribution te, becomes negligible because of battin the denominator
of (@) and graphene conductivity saturatesrtd/(2h) ~ 60 uS with a very small imaginary part, and
hencee; approaches,.

We show a relative variation ief’ wheny, is increased, indicating a possible way to tune losses. Note
that when the frequency dependémainsversepermittivity €, turns positive and becomes close to unity,
satisfyingo” ~ wepd(1 — €4), for instance at 15.6 THz whem. =0.25 eV andd =100 nm, a finite
graphene-dielectric multilayer becomes almost transpaceTE® and TMF plane waves in free space
with k; < ko, and all waves would travel with, ~ ko, as seen froni{3) whetj ~ 1.

In order to address some design considerations and tunipgriomities of graphene-based HM, we
show in Fig[B(a,b), the real and imaginary parts;cds a colormap versys. andd. We also indicate the
e, = 0 contour denoting the transition between hyperbolic arigtaldispersion regimes. The selection
of d determines the range of chemical potential levels in whighelnbolic/elliptic dispersion occurs. For
instance, whem = 0.2 um, a tuning range for hyperbolic dispersion startgat= 0.1 eV, while for
d = 0.6 um it begins atu. = 0.35 eV, this illustrates the need for thinner dielectric spaadue to

== U.=025¢eV H.=05¢eV
A ] 27 ‘ A A ]
g 1 1.5F 7
E .
E 0.5F \’\;‘
z L0 St

0 10° 10!
Frequency [THz] Frequency [THz]

Figure 2: Real and imaginary parts of the effective relatimasversepermittivity e; = ¢; — je; for graphene-based
multilayer HM for two possible designs with= 100 nm (solid lines) andl = 50 nm (dashed lines).
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Figure 3: Contour plot exploring the tuning capabilitiesspfor graphene-based HM via chemical potentialand
dielectric thicknesg at 10 THz.

the limitations on the chemical potential levels’ adjudigh up to 0.5 eV in this paper. On the other
hand, the choice of a thinner dielectric spacer, i.e., #ndlleffectively induces highet/, so the losses
embodied ine} are larger at the same frequency and bias. For example, wher).1 um, ¢/ ~ 0.4

but whend = 0.4 um we notice that; ~ 0.2, with larger negative; in the former case than in the
latter. Nonetheless, a thin dielectric spacer allows fdadiiasing by standard values of static potential
[21]. This demonstrates a basic trade-off in grapheneadigt HM design, between the tuning ranges,
losses, and effective negative valueggfand leads to a broad interpretation of the respective vemtev
dispersion, as described next.

The TM? wavevector dispersion diagrams according to EMA Ef. (3)Blodh theory for the multilay-
ered medium Eq[{4) are shown in Fig. 4. Here we report onesofitle solutions of Eql{3) and Ed.]1(4)
fork, = 8, —ja, that corresponds to a wave whose Poynting vector is diréoteatds thet-z direction,
noting that the other roetk, is also a solution of{3) andl(4), not reported for symmetasoms. Accord-
ingly, the attenuation constant has positive sign, associated to the field decay (due tolgedsisses)
along the % direction. On the other hand, for the hyperbolic regime dreeoves’, < 0 indicating back-
ward wave propagation because it satisfies the backward eaditions.«, < 0 explained in|[38], for
ke > \/eako. In general, for the elliptic case, whép < /e;kq the validk, = 3. — ja, solution with
positivea,, is the one with3, > 0, indicating that waves under the elliptic dispersion regame forward
waves because they satisfy the conditibn, > 0. In Fig.[4(c,d) we show the dispersion diagrams in a
much wider spatial spectrum than in Fig.4(a,b) for the saases. In the reported cases, all witk= 100
nm, 3. curves in Fig[ 4 keep either an overall hyperbolic or ellighape due to limited losses. When
e =0 eV (and correspondingly > 0) the medium exhibits elliptic dispersion, moreoykris nonzero
for k; > \/eqko wherea, exhibits a dramatic increase, i.e., waves become mostlyeseznt. On the
other hand, whep. =0.25 eV or 0.5 eV, one ha$ < 0 leading to hyperbolic dispersion. We emphasize
that EMA is fully capable of predicting the hyperbolic antigic wavevector dispersion regimes in the
spatial spectrum reported in Figl 4(a,b) in perfect agreemth the Bloch wavenumber. In a much
wider range of the spatial spectrutmas in Fig.[4(c,d) the EMA-based normalized wavenumhgik,
starts to deviate from Bloch theory. Bloch theory predibtsiband edge whey&, approaches-7/d and
a, exhibits a dramatic increase, denoting a bandgap. HoweViér &ssumes infinite growth o8, /o
following the asymptotic linearizef, — k. relation, given bys, ~ —e}k:/eq Whenk; > ko. For higher
negative values of}, (corresponding to higher.), the Brillouin zone band edge is met at smalledue
to steepep, — k; curves, as seen from Figl. 4(e} &= —1 ande}, ~ —11 for u. = 0.25 and 0.5 eV). Al-
though the effective permittivity parameters are imparfanfast characterization of graphene-dielectric
composites and providing physical interpretation of thel@ion from elliptic to hyperbolic dispersion,
they do not account for transverse wavenumber dispersibn3®. Accordingly, EMA predicts an in-
definite propagating spatial spectrum in HMs (that is indé@aded by Brillouin zone edge according to
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Figure 4. Wavevector dispersion diagram of ()and (b)«. versusk; (both normalized byko) at 10 THz and

d = 100 nm. In (c) and (d) a wider spatial spectrum of the wavevecispeatsion is provided in order to identify
values wheres. approaches the Brillouin zone edge. (= —=/d) denoted by a horizontal dotted line in (c). This
happens whek, ~ 52ko andk; ~ 38k, for u. = 0.25 eV andu. = 0.5 eV, respectively. Calculations are based
on both EMA (dash-dotted lines) and Bloch theory (solid$ine
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Figure 5: Real and imaginary parts of the Bloch (solid lin@s)l effective (dashed lines) impedance of graphene-
dielectric multilayers withi = 100 nm whenu. = 0.5 eV for (a) k: = 0 and (b)k: = 5ko.

Bloch model), and consequently overestimate the LDOS amdi¢tar-field power absorption in HMs as
already discussed in![2-4,125].

We provide in Fig.[b both the Bloch impedance of graphen&edidgc multilayers at the reference
plane shown in Fig[d1, witd = 100 nm. In addition, we report the effective wave impedance ef th
metamaterial obtained via EMA for TMplane wave Ze¢ = k. / (wepe:) Wherek, is evaluated using
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Figure 6: (a) Real and (b) imaginary parts of the Bloch impeggord = 100 nm andk; = 0.

Eq. (3), seel[40]. The two impedances are close to each aihéf &= 0 case (Fig[b(a)) whereas for
ki = 5ko the effective impedance shows noticeable difference fon beal and imaginary parts from
the Bloch calculations. Nonetheless, the effective impedarovides a good prediction regarding the
transition frequency between propagating and evanespentra. Moreover, we notice that the real part
of the impedance is negligible at low frequencies in Eij.) 5énereas it peaks at the frequency where
e, = 0. From Fig.[6(a) one can see that afteturns positive, the impedance becomes dominantly real,
with relatively small reactive part, owing to the presenta mainly propagating plane wave in elliptic
dispersion regime fok; = 0. On the contrary fok; = 5k, case, at lower frequencies , wave propagates
in the hyperbolic dispersion regime while havigg< 0, and the impedance real part is relatively large,
as depicted in Figl15(b), whereas the impedance becomesfrarely reactive after; turns positive,
denoting a mainly evanescent wave. At higher frequendiesjrpedance fok, = 0 case becomes
matched to free space at37 THz at whiche, ~ 1 as shown in Fig[d6(a). At much higher frequency
ranges, the impedance approaches the impedance in isdrsgliess dielectric wherg= ¢, in both Fig.
Bl(a) and (b). For clarification, we report the Bloch impedaas a color plot showing the dependance
on frequency and chemical potential in Figl 6, where the ihapee peaking is observed as a clear
manifestation of the TENZ condition, as it will be demonttthalso in Sec. 4. Based on the conclusions
in [25], in order to guarantee the validity of EMA for each sfsal component of propagating plane
waves withk; < kg, the dielectric thickness should be electrically-smadi,,il < 0.02), for accurate
representation of the impedance and wavevector using timegenized model derived above.

We report in Fig[7 the frequency dependance of the qualftityc. | wherea, andg, are calculated
by Bloch theory, for graphene-dielectric multilayers with= 100 nm. The ratio|3./«.| constitutes a
figure of merit for understanding if a wave is mainly propaggbr attenuating. The horizontal white
dash-dotted line marks the transition frequency from hiypkce to elliptic dispersion (the latter occurring
always above the transition frequency) and the transitappkns when the real pattcrosses zero and
turns positive causing the elliptic regime. Har < ,/eqko, 3. is relatively very small compared to
a, which implies mainly evanescent spectrum (purely evaergsa absence of losses), for hyperbolic
dispersion frequencies < —o”/(epeqd). However, fork, > /e ko, wavevector dispersion has a
hyperbolic-like shape, with attenuation moderately low (and slightly increasing as seen in Eig. @ du
to the losses in graphene, and therefdte «. | exhibits an overall increase, where it reaches a maximum
value~ 130 as inu. = 0.5 eV yielding a wide propagating spectrufeg < k;/ko < 40 at 10-20
THz. Notice that for even largek:, the propagation constagt tends to—=/d while «, experiences
an abrupt increase, as shown in Hig. 4(d), denoting the hawjrof a strong evanescent spectrum. In
the elliptic dispersion regime, occurring at higher fremgies such that > —o”/(egeqd), the trend for
B. anda, is reversed. Elliptic dispersion arises at 6.6 THz fior= 0 eV, as depicted in Fig7, and
the propagating spectrum with < ,/ezko is allowed in the composite multilayer. For higher chemical
potentials, as for example. = 0.5 eV, hyperbolic wavevector dispersion is supported for dietgies
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Figure 7: Thefigure of merit| 8. /.| versus frequency and spatial wavenumberfor both hyperbolic and elliptic
regimes. Two chemical potential levels are consideredu{a}0 eV; and (b)u. = 0.5 eV.
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Figure 8: Thefigure of merit|3. /a.| versus dielectric thicknessand spatial wavenumbés;, at 10 THz, for both
hyperbolic and elliptic regimes. Two chemical potentiails are considered: (a). =0 eV; and (b)u. = 0.5 eV.

up to 27.4 THz, and the dispersion becomes elliptic thereafter. Motiat at frequencies less than 1
THz, waves poorly propagate due to higher losses in grapsiesets, i.e., wave propagation has a low
figure of merit. On the other hand, elliptic dispersion regjraccurring for frequencies greater than 30
THz, has small attenuation constant fgr< ,/e;ko due to relatively low loss in graphene, and thus a
high figure of merii 3. /a.| > 150. Note that the lowest operational frequency for hyperbdipersion
regime with high|3. /.| is limited by graphene losses, whereas the highest freguemnenable by the
chemical potential.

We now examine the how the figure of mejit. /.| varies versus the transverse wavenumber
assuming different design values for the dielectric sggéinn Fig.[8(a) we observis, /a. | at 10 THz
varyingd, for u. = 0 eV, where only elliptic dispersion regime is observed for thvicknessi considered.
However, hyperbolic dispersion is supported when appatgchemical potential is achieved, as shown
in Fig. [B(b) foru. = 0.5 eV. In this latter case, whe#h = 1 um, TM* waves are mainly evanescent
for large transverse wavenumbgr> /e ko, irrespective of the chemical potential levels reportegthe
Consequently, a typical dielectric thickness in the ranigg0s-100 nm is deemed appropriate to utilize
in graphene-dielectric multilayers for tunable HM designs
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IV. TRANSVERSE e-NEAR-ZERO CONDITION

Finally, we describe an interesting frequency region atihi changes sign and it assumes values very
close to zero. We denote this regime as transverse epsitrezaso (TENZ), which is manifested under
the conditions” ~ —wegeqd, i.€., when graphene sheet’s inductive susceptance comuesn®r the
small capacitive susceptance of each dielectric layer. WMggvsn Fig.[9(a) and (b), the level of biasing
potential {:.) required to achieve the TENZ condition at a given frequenayg the corresponding,
respectively. We note that the required bias voltage for ZEBNa certain frequency decreases for thinner
unit cells, i.e., smalled, however losses become larger due to increased graphestelsingity, especially
at low frequencies. For example wheér= 50 nm, we require.. to be tuned to 0.1 eV in order to achieve
the TENZ condition at 15 THz, and we havg ~ 0.1, whereas if the metamaterial is designed with
d = 200 nm, the amount of bias required to realize TENZ conditiorhatdame frequency is about 0.2
eV and the losses are lowef ~ 0.02. In view of such observations one can easily identify thertgn
ranges and show that for smaller unit cell thickness thentunange is larger but one must tolerate the
losses in such design.

When considering wave propagation at that particular d@miand if losses are to be neglected with-
out compromising the generality of the conclusions, thesgatatic approximation derived from EMA
Eq. (3) reveals &, — k; dispersion relation with very small slope, i.e., the disjmr curve is almost
flat. However, at highek; the EMA approximations become inaccurate, @dyrows until it reaches
the Brillouin zone edge-7/d. The accurate wavevector dispersion of TMaves according to Bloch
theory, using Eq[{4) and ™ = r,/(weoeaq), is given by

(O_/ +jo_//) ’id
2 WEQEY

cosk,d = coskqgd+j sin kqd. (5)
The conditione, ~ 0 is satisfied whewepeqd ~ —c”, and it leads to

/

20-/1

d
cosk,d ~ cos kqd + % sin kqd + j Kaqd sin kqd. (6)

This latter dispersion equation is further simplified unther small argument approximatiorgd| < 1
as

/

4
2| + Olrad]"). )

cosk.d ~ 1+ j(kqd)? ‘ J

——— d=50nmm —— d=100nm - — - d=200nm d =500 nm
0.5¢

0.4f

. 03}
0.2f
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Figure 9: The zero-crossing frequency «fevaluated according to EMA. _, = " /(2mepeqd) varying the
=
chemical potential, for various thicknessegb) Imaginary part of the transverse permittivity evaluated af / _.
=
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Figure 10: Isofrequency wavevector dispersion in the TEMNZerbolic, and elliptic regimes, showing both (&)
and (b)a.. calculated by Bloch theory at four different frequencies, (1.9, 12, 15 THz), whep. = 0.1 eV.

The imaginary term in Eq[17) is negligible singer4d)* o’ /25”"| < 1 for graphene-dielectric multi-
layer with a subwavelength period, and therefore one siraptginsk, ~ 0, far enough from the Bril-
louin zone edge. Therefore, the TENZ conditigrr: 0, implies a flat isofrequency dispersion diagram
with small k. over a wide range of;. We report in Fig[Il0(a,b) the isofrequency wavevectorelision
at four different frequencies, at which we show hyperboispdrsion (10 THz with, ~ —1.01 — 50.09),
elliptic dispersion (15 THz witle; ~ 0.84 — 50.05), and the TENZ transitional state (at 11.9 THz and
12 THz, withe; ~ —0.001 — j0.075 ande; ~ 0.028 — 50.072, respectively), where both, and«, for
all cases are normalized ldy. In Fig.[10(a) one can observe that the slope ofhe- k; dispersion is
reduced wherje;| is much smaller than unity, as also predicted analyticallig. [T), still preserving
limited values of the attenuation constant. Note that the elliptic regime (at 15 THz) also shows a
very low slope of the3, — k; dispersion, however the attenuation constanis large, because waves
are mainly evanescent for large. Fig.[10(a) shows that the TENZ regimes are responsiblelfioost
flat propagation constantd./ko| < 1) up tok; ~ 10k, with a moderately low attenuation constant
«,. However, for largek;, we observe that, experiences a sharp increase towards the Brillouin zone
edge, together with an increase of the attenuation constanin Fig. [I0(b) we observe that the atten-
uation constant exhibits significant difference for HM areNIZ regimes that requires some important
consideration. Although the two TENZ cases have smaléhan the hyperbolic one (at 10 THz), they
experience a higher attenuation than HM casekfor- ,/eqko, whereas the opposite relation is valid
for k; < /ezko. Therefore we can observe the two trends: on one hand TEN&sllatter 3, — k;
relation and a widek; spectrum than a fully hyperbolic regime, on the other haedyperbolic regime
exhibits smaller attenuation constant than the TENZ cases. Note also that the TENZ is a transitional
state toward elliptic dispersion, at which the attenuatigrbecomes even higher fég > /eqko, and
forward waves §.«. > 0) can propagate fak; < ,/ezko with low attenuation constant.

It has been shown in_[41, 42] that isotropic epsilon-neao-Z6ENZ) material inside a waveguide
supporting TE modes is able to tunnel electromagnetic wattese we elaborate on TENZ materials
at far- and mid-infrared frequencies designed using gnagitielectric multilayers and explore their
capabilities of tunneling electromagnetic waves [43]. §idar an electrically-thin slab of thickness
made by eithera TENZ{ ~ 0, ¢, # 0)oranIENZ ¢; = ¢, = ¢, ~ 0) material in free space. Under TE
wave incidence, TENZ and IENZ slabs provide an identicghoese and the reflection from such slabs
can be set arbitrarily small by decreasing their thicknasseported in [44]. However, for TMoblique
plane waves impinging on a lossless IENZ semi-infinite nialtetotal reflection occurs for angles greater
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than the critical angléf/ko = sinf = /e, ~ 0. For an electrically-thin IENZ slab, transmission of
TM* plane wave takes place for small angles of incidefiee {; < 65, whereés is considerably small)
due to evanescent waves exhibiting frustrated multiplec#tins at the slab interfaces. By including the
effect of losses in IENZ slabs, absorption and local eledieid enhancement were reported for specific
incident angled; > 65 in [45]. Instead, we provide here the Fivieflection and transmission coefficients
(RTEN? andTTEN?) for a thin TENZ slab

§ TENZ __ 27

TENZ _ T _ 8
RTM 2Z0+C7 ™ QZO"'C’ ( )
where
ih(k? — k2 /e, VK2 — k2
C:](O i/ )7 Zo = 0 t 9)

weQ weQ

Therefore upon having a thin slab of TENZ mater{atan be made small enough (due to the existence
of finite, non vanishing.) in order to observe complete transmission for oblique*TWwaves with a
wide range of incidence angles. This is in contrast to whapkas for the IENZ case with, assuming
near-zero values; which implies that transmission onlyueg@round:; ~ 0. We show in Fig[Il1 the
reflection and transmission at 37 THz, by a TENZ material wjte= —0.001 ande, = 2.2, and by an
IENZ material withe, = —0.001, assuming in both cases negligible losses. It is clear tfatENZ
material exhibits a very narrow transmission arodne: 0° only due to evanescent waves (permittivity
has a negative value) tunneling through the subwavelergtth[43,/45], and the transmission window
dramatically diminishes as. approaches zero drincreases, in accordance with the trend observed in
[44]. On the contrary, the TENZ slab exhibits large and gt#étainsmission over a wide range of incidence
angles, inherently complying with the flat wavevector dispn relation in Eq. [{7). Also, one should
point out that the TM transmission in TENZ materials occurs up to much largerdiecce angles than
TE? transmission, which is identical to an IENZ slab’s “T#ansmission discussed in [44]. In principle
the different properties illustrated in the preceding dergxample reveal the advantage of TENZ material
over conventional IENZ material in enhancing transmissioder oblique TM plane wave incidence.
For a more practical comparison, we report in Higl 12 thestrgission and reflection for two possible
TENZ and IENZ materials at mid-infrared. We consider a TEN&d@ of graphene-dielectric multilayer
biased withu. = 0.5 eV, accounting for losses, and having total thickness et Nd whered = 50

9[ [Deg.] 19[ [Deg.]

Figure 11: Different characteristics of T\Mplane wave (a) reflection and (b) transmission from a thib slade by a
TENZ material (solid lines) and IENZ material (dashed ly&ts37 THz. Material losses in this example are assumed
negligible. The TENZ material exhibits much wider and flagtarameters varying angle of incidence than the IENZ
material.
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Figure 12: TM plane wave (a) reflection and (b) transmission from a slabengdyraphene-dielectric layers with
d = 50 nm andh = Nd (solid lines, using transfer matrix analysis) and an iqutrdnAsSb slab of thickness
(dashed lines) at 37 THz.

nm, at 37 THz. Under these conditions EMA estimatesz —0.001 — j0.031 as seen from Fig[]2.
The IENZ material is assumed to be a heavily n-doped InAs8tcemductori[46], which is engineered
via doping to exhibit low loss IENZ in this frequency range.jejnassp ~ —0.0001 — 50.038 at ~37
THz (experimentally shown in_[46]). In graphene-based TEh&erial we observe a stable transmission
with respect to the angle of incidence, and it is not affeateth by losses in graphene as deduced from
the comparison of the lossy case in FIg.] 12 and the losslessinaFig. [I1. The InAsSb thin slab,
however, exhibits a narrow angular range of transmissidh higher sensitivity to losses, i.e., as the
imaginary part of, is increased, angular transmission is slightly broadeesgecially as: increases.
This indicates an advantage of using the graphene-based fiterials in tuning and enhancing M
plane wave transmission for wide angles of incidence. Orother hand, losses in natural materials or
engineered metamaterials that exhibit IENZ behavior déggahe performance considerably, and may
require integration of gain materials aslin/[45].

V. CONCLUSION

We have reported a HM implementation at far- and mid-infildrequencies that comprises graphene-
dielectric layers, and showed that EMA describes the hygerlvavevector dispersion as well as the
transition to elliptic regime for specific conditions. Hypelic dispersion have manifested mainly at
far-infrared frequencies, where we have investigated tbpgpating spectrum properties and discussed
the effect of losses. We also showed that hyperbolic angtielldispersion regimes are associated to
backward and forward wave propagation, respectively. We lexplored the tuning opportunities and
design considerations of the structure, as well as thel&tms from hyperbolic to elliptic wavevector
dispersion, and demonstrated a transitional state, TEN@h&ch the wavevector dispersion diagram
becomes very flat. Furthermore, we have demonstrated thai sléab made by a TENZ material becomes
transparent to both TEand TMF plane wave, with the interesting characteristic that taagmission
and reflection of TM waves are stable with respect to the incident angle, in ashto what happens
in conventional IENZ materials. This property can be witizn designing ultra-thin films for tunable
infrared applications.
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