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Graphene-Dielectric Composite Metamaterials: Evolution from Elliptic to
Hyperbolic Wavevector Dispersion and The Transverse Epsilon-Near-Zero

Condition

Mohamed A. K. Othman, Caner Guclu, and Filippo Capolino∗

Department of Electrical Engineering and Computer Science,
University of California, Irvine, CA,92697 , USA

We investigated a multilayer graphene-dielectric composite material, comprising graphene sheets separated
by subwavelength-thick dielectric spacer, and found it to exhibit hyperbolic isofrequency wavevector dispersion
at far- and mid-infrared frequencies allowing propagationof waves that would be otherwise evanescent in a
dielectric. Electrostatic biasing was considered for tunable and controllable transition from hyperbolic to elliptic
dispersion. We explored the validity and limitation of the effective medium approximation (EMA) for modeling
wave propagation and cutoff of the propagating spatial spectrum due to the Brillouin zone edge. We found that
EMA is capable of predicting the transition of the isofrequency dispersion diagram under certain conditions.
The graphene-based composite material allows propagationof backward waves under the hyperbolic dispersion
regime and of forward waves under the elliptic regime. Transition from hyperbolic to elliptic dispersion regimes
is governed by thetransverseepsilon-near-zero (TENZ) condition, which implies a flatter and wider propagating
spectrum with higher attenuation, when compared to the hyperbolic regime. We also investigate the tunable
transparency of the multilayer at that condition in contrast to other materials exhibiting ENZ phenomena.

I. INTRODUCTION

Hyperbolic metamaterial (HM) refers to a subcategory of uniaxially anisotropic metamaterial, that can
be modeled by a diagonal permittivity tensor (in Cartesian coordinates) comprising entries with both
positive and negative real parts. The realization of hyperbolic dispersion allows wave propagation over
a wide spatial spectrum (infinite for an ideal HM), that wouldbe evanescent in a common isotropic
dielectric [1]. HMs are realized at optical frequencies using metal-dielectric multilayers [2–4], or metallic
nanowires [5], and at terahertz and infrared frequencies using semiconductor-dielectric multilayers [6, 7]
or carbon nanotubes [8]. In multilayer HMs, the emergence ofhyperbolic dispersion does not rely on any
resonant feature, thus it poses a potential for broadband enhancement of the local density of states (LDOS)
[9], subwavelength imaging [10, 11], and lensing [12]. Spontaneous emission rate of an emitter, as well
as the radiative decay of dye molecules, is proportional to the LDOS [11], hence it can be substantially
enhanced in the proximity of a hyperbolic metamaterial [13,14]. It was demonstrated in [2] that the
power scattered by a passive nanosphere located in the proximity of a metal-dielectric HM is enhanced
by orders of magnitude, while the HM absorbs most of the scattered power, opening a new frontier in
super absorbers designs based on near-fields transformation from evanescent to propagating regimes. A
wide band absorption was devised in [15] using tilted carbonnanotubes.

Multilayer HMs at optical frequencies take advantage of thewide frequency band in which metals
exhibit negative permittivity and support plasmonic modes[2, 3]. At infrared frequencies, graphene as
a tunable inductive layer constitutes a potential buildingblock for multilayer HM realizations. Further-
more tunability of HMs can be achieved using static fields to bias graphene [16, 17]. It is a remarkable
material with a wide operational frequency band starting from microwave regime [18], through terahertz
frequencies [19], and optical frequencies [20]. Graphene was utilized in design of metasurfaces in many
different applications, such as polarizers and absorbers [21, 22], and cloaking devices [23].
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In this paper we investigate a graphene-dielectric multilayer material that shows promising properties
as tunable HM at far- and mid-infrared frequencies, that waspredicted to provide a large enhancement
in the Purcell factor [24, 25]. In that recent work, the enhancement of emitted power by electrically-
small emitter near the interface of graphene-based HM as well as the near-field absorption properties
were developed using effective medium approximation (EMA)and transfer matrix methods, where the
limitations and validity of EMA were established [25]. Herewe show how the wavevector dispersion
diagram can be controlled and even transformed between hyperbolic and elliptic curves at mid- and far-
infrared regime. Moreover, we demonstrate the design guidelines of the graphene-based HM in terms of
the physical parameters for the purpose of engineering the evolution from hyperbolic to elliptic dispersion
condition. . In the last part of the paper we explore thetransverseepsilon near zero (TENZ) condition, its
relation to the dispersion diagram and the enhanced transparency of a thin film made of TENZ graphene-
dielectric layers for TM waves with a wide range of incidenceangle. The fabrication of the metamaterial
comprising as few as ten graphene-dielectric layers, whichwere shown to have characteristics that resem-
bles those of a semi-infinite stack [25], could be realized utilizing commercially available, high quality
chemical-vapor-deposition-(CVD)-grown graphene monolayer on a transition metallic (Ni or Cu) foil
[26, 27]. from which graphene can be transferred onto a SiO2/Si substrate using an intermediate host
such as a thermoplastic polymethyl-methacrylate (PMMA) for enhancing the transfer process efficiency
[28]. This process is followed by depositing a thin film of SiO2 or SiC on the graphene flake using CVD.
However, it was shown that a graphene monolayer on SiO2 can become highly disordered and increases
scattering losses [29]. The transfer of few-layer graphene(FLG) [26] on other compatible materials such
as Boron-Nitride (h-BN) might be of interest toward realizing the metamaterial, since h-BN shares the
same hexagonal structure with graphene [30].

II. EFFECTIVE MEDIUM ANALYSIS OF GRAPHENE-DIELECTRIC MULTILAYERS

Graphene is a one-atom-thick layer of hexagonal arrangement of carbon atoms with a lattice constant of
0.264 nm, hence spatial dispersion effects introduced by graphene periodicity can be in general neglected
at terahertz frequencies. Although the existence of extremely slow surface modes can trigger spatial
dispersion effects [18, 31], those modes are essentially highly evanescent due to the periodicity of the
multilayer structure studied here, as it will be shown in Sec. 3. Graphene is electrically modeled by
the local isotropic sheet conductivityσ = σ′ + jσ′′ (assuming time-harmonic variation ofejωt), which
accounts for both interband and intraband contributions tothe total electronic transport [32, 33]. The sheet
conductivityσ is computed by the Kubo formula [34], which yields a functionof frequency, chemical
potentialµc, phenomenological scattering rateΓ, and temperatureT . Here we assume for graphene
Γ = 0.33 meV (using the same notation as in [34]), which corresponds to a mean electron scattering time
of about1 ps, at room temperatureT = 300 K. Graphene supports relatively low loss TM plasmonic
modes [16] (dictated by the negative imaginary part of the surface conductivityσ′′ < 0). As such,σ′′,
modeling the reactive response of graphene, plays a fundamental role in the manifestation of hyperbolic
dispersion in multilayer graphene-dielectric materials,as described in the following. We aim at analyzing
an infinite periodic multilayer structure depicted in Fig. 1whose unit cell is composed of a graphene sheet
and a dielectric layer of subwavelength thicknessd and relative permittivityǫd. A physical understanding
of wave propagation in such multilayers with subwavelengthperiod can be established by using the
effective medium approximation (EMA) approach, which is a quasi-static or local approximation for
metamaterials, often adopted for metal-dielectric multilayers [2, 3, 31]. According to EMA, the periodic
multilayer is regarded as an anisotropic homogeneous medium with effective relative permittivity tensor
ǫǫǫ eff = ǫt(x̂x̂+ŷŷ)+ǫzẑẑ, where the relative effectivetransversepermittivity ǫt is found by averaging the
transverseeffectivedisplacement current over the associated electric field in aunit cell (here, the effective
displacement current is defined as a quantity that includes both displacement current in the dielectric slab
and conduction current in the infinitesimally-thin graphene sheet). Then the relative effective permittivity
parameter for transversely polarized field is



3

Figure 1: Graphene-dielectric multilayer HM topology, modeled by a periodically-loaded transmission line. The unit
cell is indicated on the right and the graphene sheet is represented as a shunt admittance, and we denote the reference
plane for evaluating the Bloch impedance. At far- and mid-infrared frequencies, TMz waves exhibit hyperbolic
isofrequency wavevector dispersion.

ǫt = ǫ′t − jǫ′′t = ǫd − j
σ

ωǫ0d
. (1)

Since an individual graphene sheet is infinitesimally-thin, the conduction current is always along the
sheet, hence the permittivity experienced byz−directed electric field is not affected by graphene, leading
to ǫz = ǫd. The relation in Eq. (1) implies that when the graphene sheet is adequately inductive, in
particular whenσ′′ < −ωǫ0ǫdd, we obtainǫ′t < 0 and in turn the isofrequency wavevector dispersion is
hyperbolic [2], as demonstrated next. Let us consider planewaves propagating inside the metamaterial
with the spatial dependencee−jk.r wherek = kxx̂+kyŷ+kzẑ is the wavevector. A plane wave analysis
is particularly useful in understanding the multilayer’s response to sources because the radiation of a
dipole inside or close to the metamaterial can be represented as a spatial spectral sum of plane waves.

Due to the symmetry of the multilayer metamaterial with respect to thez axis, we will usekt =
√

k2x + k2y
for denoting the transverse wavenumber component and in thefollowing kt is taken real representing the
spatial spectrum of TEz (electric field transverse toz) and TMz (magnetic field transverse toz) waves.
The z-directed wavenumberkz = βz − jαz can assume complex values modeling propagation and
attenuation, accounting also for natural losses in the material constituents. Accordingly, the wavevector
dispersion of TEz and TMz waves inside the effective medium is given as

k2z = ǫtk
2

0
− k2t , TEz (2)

k2z = ǫtk
2

0
− ǫt

ǫd
k2t , TMz (3)

wherek0 = ω
√
µ0ǫ0 is the wavenumber in free space. When the losses are neglected (i.e., ifσ′ → 0) one

would obtain purely realǫt, hencekz (obtained via Eq.(2) and Eq. (3)) assumes either purely realvalues,
denoting the propagating spectrum, or purely imaginary values, denoting the evanescent spectrum. In
this lossless case, hyperbolic dispersion occurs whenǫt < 0, and the HM uniaxial medium allows for
propagation (i.e.,kz is purely real) of extraordinary waves (TMz) with a large transverse wavenumber
kt >

√
ǫdk0; these waves withkt >

√
ǫdk0 would be otherwise evanescent (i.e.,kz is purely imaginary)

either in a isotropic dielectric with permittivityǫd, or in a generic uniaxial anisotropic media withǫt >
0. This unusual phenomenon implies that highkt spectrum emanating from sources, which would be
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evanescent in free space, can be converted to propagating waves at HM interfaces. Ordinary waves (TEz)
are, however, evanescent for anykt whenǫt < 0. On the other hand, whenǫt > 0 we have realkz only
for limited spectrum of TMz waves withkt <

√
ǫdk0, which leads to the elliptic isofrequency wavevector

dispersion. Therefore the transition between hyperbolic to elliptic regimes is associated to the condition
ǫt = 0.

Instead, for realistic lossy cases,kz is complex and the wavevector isofrequency dispersion becomes
elliptic-like and hyperbolic-like (forǫ′t > 0 andǫ′t < 0, respectively), as shown in the examples in next
section. However, the interpretations regarding propagation of power are still valid provided that losses
are relatively small, and we will show that moderate propagation losses is a major advantage of graphene-
based HMs at far- and mid-infrared frequencies. When applying EMA, the dispersion relationβz − kt is
hyperbolic-like forkt >

√
ǫdk0 whenǫ′t < 0, and it converges to the asymptote|βz| ≈ |ǫ′tkt/ǫd| for large

spatial wavenumberkt, i.e., theβz − kt dispersion becomes linear, with a slope of|1 + σ′′/ (ωǫ0ǫdd)|.
To validate our EMA hypothesis, we obtain a more accurate representation of the wavevector dispersion

relation by employing Bloch theory [35] for a periodically loaded transmission line whose unit cell is
illustrated in Fig. 1. When each graphene sheet is modeled with a complex admittanceYs = σ =
σ′ + jσ′′, the dispersion relation for TMz or TEz waves in the periodic structure is cast in the form

cos kzd = cosκdd+ j
Ys

2
Zd sinκdd, (4)

whereκd =
√

ǫdk20 − k2t is thez-directed wavenumber of a wave inside the dielectric spacer, ZTM
d =

κd/(ωǫ0ǫd) andZTE
d = ωµ0/κd are the characteristic wave impedances for TMz and TEz waves, respec-

tively. This relation in (4) is yet accurate for arbitraryd andkt, i.e., accounts for transverse wavenumber
dispersion. For the spectrum in which the dielectric layer’s thickness is much smaller than the Bloch
wavelength and the wavelength inside the dielectric itself(|kzd| ≪ 1, |κdd| ≪ 1), we can apply the
following small argument approximationscosx ≈ 1 − x2 andsinx ≈ x, the dispersion relation in Eq.
(4) simplifies to the one obtained via EMA in Eq. (2) and Eq. (3)using the same definitions forǫt and
ǫz [25]. As we will discuss thoroughly in Sec. 3, Bloch theory proves that the propagating spectrum of
TMz waves is limited due to the periodicity, manifested by the Brillouin zone edge at whichβz=±π/d ,
and therefore the propagating spectrum in realistic HMs hasan upper bound even in lossless cases. Nev-
ertheless, the Brillouin zone edge (i.e.,βz=±π/d ) is reached in general at higher values ofkt, provided
that the periodd is extremely subwavelength .

In the following we report some aspects that demonstrate themerits of graphene-based HM: Graphene
conductivityσ = σ′ + jσ′′ is tunable with chemical potential variation via electrostatic biasing, henceǫ′t
is also tunable through negative or positive values, at a fixed frequency. This implies a possible transition
between hyperbolic to elliptic wavevector dispersion. Therealization of HMs using graphene is also
prone to graphene’s frequency response. For instance, graphene sheets are mainly capacitive in mid-
and near-infrared frequencies, because intraband contributions in graphene are dominant, and the TMz

surface modes on a single graphene sheet become on the improper Riemann sheet [16]. On the other
hand, at very low frequencies (GHz regime), the interband conductivity dominates leading to high losses.
Hence a proper frequency range for realizing hyperbolic dispersion extends from far-infrared up to low
mid-infrared frequencies. Furthermore, the dielectric thickness also plays role on the frequency range
of HM design. As the dielectric thickness is increased, the frequency range of negativeǫ′t shifts to
lower frequencies which are undesirable due to significant losses in graphene. Moreover, thicker spacers
require a larger biasing electrostatic potential between layers to achieve a moderate chemical potential
level in graphene sheets. On the other hand, when considering smaller periods (in the range of several
nanometers), it is expected that graphene sheets are no longer electronically isolated for such quantum-
scale interspacing, and a tight binding model for graphene layers must be taken into account in order
to evaluate the conductivity of graphene sheets [36, 37]. Therefore, for very small thicknesses, both
EMA relation, reported in (3), and transfer matrix analysismust be modified to account for quantum
tunneling between graphene sheets. In the next section we will explore and provide illustrative examples
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for graphene-based HM designs in terms of frequency response, losses and tunability and we will assess
the validity of the EMA in predicting hyperbolic or ellipticdispersion regimes.

III. HYPERBOLIC AND ELLIPTIC WAVEVECTOR DISPERSION

Let us consider a multilayer stack depicted in Fig. 1, that comprises graphene sheets and dielectric
layers withǫd = 2.2 and thicknessd. In our illustrations we only adopt positive values for graphene
chemical potential owing to the assumed reciprocity in the multilayers, and consider a typical range for
µc up to 0.5 eV in individual graphene sheets as suggested in [23]. We plot in Fig. 2 the relativetransverse
permittivity ǫt = ǫ′t − jǫ′′t versus frequency, for various chemical potential levels (µc = 0, 0.25, and 0.5
eV) and dielectric thickness (d =100, 50 nm). First we observe that the zero-crossing frequency of ǫ′t,
whereσ′′ = −ωǫ0ǫdd, is primarily defined by the periodd and it can be tuned via the chemical potential;
in turn the frequency of transition between the hyperbolic and the elliptic dispersion regimes can be
controlled. Assumingd = 100 nm (solid lines) in Fig. 2(a) we show that the frequency at which ǫ′t = 0
shifts from6.6 THz to 27.5 THz by increasing the chemical potential from 0 eV to 0.5 eV. For d =50
nm, similar control of the frequency at whichǫ′t = 0 is observed by varyingµc. Moreover whenµc = 0,
we see thatǫ′t = 0 occurs at 8.7 THz ford =50 nm, a higher frequency than thed = 100 nm case whose
zero-crossing frequency is around 6.6 THz. Graphene sheetsbecome capacitive at higher frequencies
(σ′′ = 0 denotes the transition from inductive to capacitive, for instance,σ′′ = 0 at ≃ 26 THz when
µc = 0 eV), however its contribution toǫ′t becomes negligible because of bothω in the denominator
of (1) and graphene conductivity saturates toπe2/(2h) ≈ 60 µS with a very small imaginary part, and
henceǫ′t approachesǫd.

We show a relative variation inǫ′′t whenµc is increased, indicating a possible way to tune losses. Note
that when the frequency dependenttransversepermittivity ǫ′t turns positive and becomes close to unity,
satisfyingσ′′ ≈ ωǫ0d(1 − ǫd), for instance at 15.6 THz whenµc =0.25 eV andd =100 nm, a finite
graphene-dielectric multilayer becomes almost transparent to TEz and TMz plane waves in free space
with kt ≪ k0, and all waves would travel withkz ≈ k0, as seen from (3) whenǫ′t ≈ 1.

In order to address some design considerations and tuning opportunities of graphene-based HM, we
show in Fig. 3(a,b), the real and imaginary parts ofǫt as a colormap versusµc andd. We also indicate the
ǫ′t = 0 contour denoting the transition between hyperbolic and elliptic dispersion regimes. The selection
of d determines the range of chemical potential levels in which hyperbolic/elliptic dispersion occurs. For
instance, whend = 0.2 µm, a tuning range for hyperbolic dispersion starts atµc = 0.1 eV, while for
d = 0.6 µm it begins atµc = 0.35 eV; this illustrates the need for thinner dielectric spacers due to

Figure 2: Real and imaginary parts of the effective relativetransversepermittivity ǫt = ǫ′t − jǫ′′t for graphene-based
multilayer HM for two possible designs withd = 100 nm (solid lines) andd = 50 nm (dashed lines).
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Figure 3: Contour plot exploring the tuning capabilities ofǫt for graphene-based HM via chemical potentialµc and
dielectric thicknessd at 10 THz.

the limitations on the chemical potential levels’ adjustability, up to 0.5 eV in this paper. On the other
hand, the choice of a thinner dielectric spacer, i.e., smaller d, effectively induces higherǫ′′t , so the losses
embodied inǫ′′t are larger at the same frequency and bias. For example, whend = 0.1 µm, ǫ′′t ≃ 0.4
but whend = 0.4 µm we notice thatǫ′′t ≃ 0.2, with larger negativeǫ′t in the former case than in the
latter. Nonetheless, a thin dielectric spacer allows feasible biasing by standard values of static potential
[21]. This demonstrates a basic trade-off in graphene-dielectric HM design, between the tuning ranges,
losses, and effective negative values ofǫ′t, and leads to a broad interpretation of the respective wavevector
dispersion, as described next.

The TMz wavevector dispersion diagrams according to EMA Eq. (3) andBloch theory for the multilay-
ered medium Eq. (4) are shown in Fig. 4. Here we report one of the two solutions of Eq. (3) and Eq. (4)
for kz = βz−jαz that corresponds to a wave whose Poynting vector is directedtowards the+z direction,
noting that the other root−kz is also a solution of (3) and (4), not reported for symmetry reasons. Accord-
ingly, the attenuation constantαz has positive sign, associated to the field decay (due to possible losses)
along the +z direction. On the other hand, for the hyperbolic regime one observesβz < 0 indicating back-
ward wave propagation because it satisfies the backward waveconditionβzαz < 0 explained in [38], for
kt >

√
ǫdk0. In general, for the elliptic case, whenkt <

√
ǫdk0 the validkz = βz − jαz solution with

positiveαz is the one withβz > 0, indicating that waves under the elliptic dispersion regime are forward
waves because they satisfy the conditionβzαz > 0. In Fig. 4(c,d) we show the dispersion diagrams in a
much wider spatial spectrum than in Fig.4(a,b) for the same cases. In the reported cases, all withd = 100
nm,βz curves in Fig. 4 keep either an overall hyperbolic or elliptic shape due to limited losses. When
µc =0 eV (and correspondinglyǫ′t > 0) the medium exhibits elliptic dispersion, moreoverβz is nonzero
for kt >

√
ǫdk0 whereαz exhibits a dramatic increase, i.e., waves become mostly evanescent. On the

other hand, whenµc =0.25 eV or 0.5 eV, one hasǫ′t < 0 leading to hyperbolic dispersion. We emphasize
that EMA is fully capable of predicting the hyperbolic and elliptic wavevector dispersion regimes in the
spatial spectrum reported in Fig. 4(a,b) in perfect agreement with the Bloch wavenumber. In a much
wider range of the spatial spectrumkt as in Fig. 4(c,d) the EMA-based normalized wavenumberβz/k0
starts to deviate from Bloch theory. Bloch theory predicts the band edge whereβz approaches−π/d and
αz exhibits a dramatic increase, denoting a bandgap. However EMA assumes infinite growth ofβz/k0
following the asymptotic linearizedβz − kt relation, given byβz ≈ −ǫ′tkt/ǫd whenkt ≫ k0. For higher
negative values ofǫ′t, (corresponding to higherµc), the Brillouin zone band edge is met at smallerkt due
to steeperβz − kt curves, as seen from Fig. 4(c) (ǫ′t ≃ −1 andǫ′t ≃ −11 for µc = 0.25 and 0.5 eV). Al-
though the effective permittivity parameters are important for fast characterization of graphene-dielectric
composites and providing physical interpretation of the evolution from elliptic to hyperbolic dispersion,
they do not account for transverse wavenumber dispersion [31, 39]. Accordingly, EMA predicts an in-
definite propagating spatial spectrum in HMs (that is indeedlimited by Brillouin zone edge according to



7

Figure 4: Wavevector dispersion diagram of (a)βz and (b)αz versuskt (both normalized byk0) at 10 THz and
d = 100 nm. In (c) and (d) a wider spatial spectrum of the wavevector dispersion is provided in order to identifykt
values whereβz approaches the Brillouin zone edge (βz = −π/d) denoted by a horizontal dotted line in (c). This
happens whenkt ≈ 52k0 andkt ≈ 38k0 for µc = 0.25 eV andµc = 0.5 eV, respectively. Calculations are based
on both EMA (dash-dotted lines) and Bloch theory (solid lines).

Figure 5: Real and imaginary parts of the Bloch (solid lines)and effective (dashed lines) impedance of graphene-
dielectric multilayers withd = 100 nm whenµc = 0.5 eV for (a)kt = 0 and (b)kt = 5k0.

Bloch model), and consequently overestimate the LDOS and the near-field power absorption in HMs as
already discussed in [2–4, 25].

We provide in Fig. 5 both the Bloch impedance of graphene-dielectric multilayers at the reference
plane shown in Fig. 1, withd = 100 nm. In addition, we report the effective wave impedance of the
metamaterial obtained via EMA for TMz plane wave,Zeff = kz/ (ωǫ0ǫt) wherekz is evaluated using
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Figure 6: (a) Real and (b) imaginary parts of the Bloch impedance ford = 100 nm andkt = 0.

Eq. (3), see [40]. The two impedances are close to each other for kt = 0 case (Fig. 5(a)) whereas for
kt = 5k0 the effective impedance shows noticeable difference for both real and imaginary parts from
the Bloch calculations. Nonetheless, the effective impedance provides a good prediction regarding the
transition frequency between propagating and evanescent spectra. Moreover, we notice that the real part
of the impedance is negligible at low frequencies in Fig. 5(a), whereas it peaks at the frequency where
ǫ′t = 0. From Fig. 6(a) one can see that afterǫ′t turns positive, the impedance becomes dominantly real,
with relatively small reactive part, owing to the presence of a mainly propagating plane wave in elliptic
dispersion regime forkt = 0. On the contrary forkt = 5k0 case, at lower frequencies , wave propagates
in the hyperbolic dispersion regime while havingǫ′t < 0, and the impedance real part is relatively large,
as depicted in Fig. 5(b), whereas the impedance becomes almost purely reactive afterǫ′t turns positive,
denoting a mainly evanescent wave. At higher frequencies, the impedance forkt = 0 case becomes
matched to free space at≈37 THz at whichǫ′t ≈ 1 as shown in Fig. 6(a). At much higher frequency
ranges, the impedance approaches the impedance in isotropic lossless dielectric whereǫt ≈ ǫd in both Fig.
5(a) and (b). For clarification, we report the Bloch impedance as a color plot showing the dependance
on frequency and chemical potential in Fig. 6, where the impedance peaking is observed as a clear
manifestation of the TENZ condition, as it will be demonstrated also in Sec. 4. Based on the conclusions
in [25], in order to guarantee the validity of EMA for each spectral component of propagating plane
waves withkt < k0, the dielectric thickness should be electrically-small, i.e.,d < 0.02λ0 for accurate
representation of the impedance and wavevector using the homogenized model derived above.

We report in Fig. 7 the frequency dependance of the quantity|βz/αz| whereαz andβz are calculated
by Bloch theory, for graphene-dielectric multilayers withd = 100 nm. The ratio|βz/αz| constitutes a
figure of merit for understanding if a wave is mainly propagating or attenuating. The horizontal white
dash-dotted line marks the transition frequency from hyperbolic to elliptic dispersion (the latter occurring
always above the transition frequency) and the transition happens when the real partǫ′t crosses zero and
turns positive causing the elliptic regime. Forkt <

√
ǫdk0, βz is relatively very small compared to

αz, which implies mainly evanescent spectrum (purely evanescent in absence of losses), for hyperbolic
dispersion frequenciesω < −σ′′/(ǫ0ǫdd). However, forkt >

√
ǫdk0, wavevector dispersion has a

hyperbolic-like shape, with attenuationαz moderately low (and slightly increasing as seen in Fig. 7) due
to the losses in graphene, and therefore|βz/αz| exhibits an overall increase, where it reaches a maximum
value≃ 130 as inµc = 0.5 eV yielding a wide propagating spectrum

√
ǫd < kt/k0 . 40 at 10−20

THz. Notice that for even largerkt, the propagation constantβz tends to−π/d while αz experiences
an abrupt increase, as shown in Fig. 4(d), denoting the beginning of a strong evanescent spectrum. In
the elliptic dispersion regime, occurring at higher frequencies such thatω > −σ′′/(ǫ0ǫdd), the trend for
βz andαz is reversed. Elliptic dispersion arises at 6.6 THz forµc = 0 eV, as depicted in Fig. 7, and
the propagating spectrum withkt <

√
ǫdk0 is allowed in the composite multilayer. For higher chemical

potentials, as for exampleµc = 0.5 eV, hyperbolic wavevector dispersion is supported for frequencies
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Figure 7: Thefigure of merit|βz/αz| versus frequency and spatial wavenumberkt, for both hyperbolic and elliptic
regimes. Two chemical potential levels are considered: (a)µc =0 eV; and (b)µc = 0.5 eV.

Figure 8: Thefigure of merit|βz/αz| versus dielectric thicknessd and spatial wavenumberkt, at 10 THz, for both
hyperbolic and elliptic regimes. Two chemical potential levels are considered: (a)µc =0 eV; and (b)µc = 0.5 eV.

up to 27.4 THz, and the dispersion becomes elliptic thereafter. Notice that at frequencies less than 1
THz, waves poorly propagate due to higher losses in graphenesheets, i.e., wave propagation has a low
figure of merit. On the other hand, elliptic dispersion regime, occurring for frequencies greater than 30
THz, has small attenuation constant forkt <

√
ǫdk0 due to relatively low loss in graphene, and thus a

high figure of merit|βz/αz| > 150. Note that the lowest operational frequency for hyperbolicdispersion
regime with high|βz/αz| is limited by graphene losses, whereas the highest frequency is tunable by the
chemical potential.

We now examine the how the figure of merit|βz/αz| varies versus the transverse wavenumberkt,
assuming different design values for the dielectric spacing d. In Fig. 8(a) we observe|βz/αz| at 10 THz
varyingd, forµc = 0 eV, where only elliptic dispersion regime is observed for any thicknessd considered.
However, hyperbolic dispersion is supported when appropriate chemical potential is achieved, as shown
in Fig. 8(b) forµc = 0.5 eV. In this latter case, whend = 1 µm, TMz waves are mainly evanescent
for large transverse wavenumberkt >

√
ǫdk0, irrespective of the chemical potential levels reported here.

Consequently, a typical dielectric thickness in the range of 50−100 nm is deemed appropriate to utilize
in graphene-dielectric multilayers for tunable HM designs.
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IV. TRANSVERSE ǫ-NEAR-ZERO CONDITION

Finally, we describe an interesting frequency region at whichǫ′t changes sign and it assumes values very
close to zero. We denote this regime as transverse epsilon near zero (TENZ), which is manifested under
the conditionσ′′ ≈ −ωǫ0ǫdd, i.e., when graphene sheet’s inductive susceptance compensates for the
small capacitive susceptance of each dielectric layer. We show in Fig. 9(a) and (b), the level of biasing
potential (µc) required to achieve the TENZ condition at a given frequency, and the correspondingǫ′′t ,
respectively. We note that the required bias voltage for TENZ at a certain frequency decreases for thinner
unit cells, i.e., smallerd, however losses become larger due to increased graphene sheet density, especially
at low frequencies. For example whend = 50 nm, we requireµc to be tuned to 0.1 eV in order to achieve
the TENZ condition at 15 THz, and we haveǫ′′t ≈ 0.1, whereas if the metamaterial is designed with
d = 200 nm, the amount of bias required to realize TENZ condition at the same frequency is about 0.2
eV and the losses are lowerǫ′′t ≈ 0.02. In view of such observations one can easily identify the tuning
ranges and show that for smaller unit cell thickness the tuning range is larger but one must tolerate the
losses in such design.

When considering wave propagation at that particular condition, and if losses are to be neglected with-
out compromising the generality of the conclusions, the quasi-static approximation derived from EMA
Eq. (3) reveals aβz − kt dispersion relation with very small slope, i.e., the dispersion curve is almost
flat. However, at higherkt the EMA approximations become inaccurate, andβz grows until it reaches
the Brillouin zone edge−π/d. The accurate wavevector dispersion of TMz waves according to Bloch
theory, using Eq. (4) andZTM

d = κd/(ωǫ0ǫd), is given by

cos kzd = cosκdd+ j
(σ′ + jσ′′)

2

κd

ωǫ0ǫd
sinκdd. (5)

The conditionǫ′t ≈ 0 is satisfied whenωǫ0ǫdd ≈ −σ′′, and it leads to

cos kzd ≈ cosκdd+
κdd

2
sinκdd+ j

∣

∣

∣

∣

σ′

2σ′′

∣

∣

∣

∣

κdd sinκdd. (6)

This latter dispersion equation is further simplified underthe small argument approximation,|κdd| ≪ 1
as

cos kzd ≈ 1 + j (κdd)
2

∣

∣

∣

∣

σ′

2σ′′

∣

∣

∣

∣

+O(|κdd|4). (7)

Figure 9: The zero-crossing frequency ofǫ′t evaluated according to EMAf
ǫ
′

t
=0

= σ′′/(2πǫ0ǫdd) varying the

chemical potential, for various thicknessesd. (b) Imaginary part of the transverse permittivityǫ′′t evaluated atf
ǫ
′

t
=0

.
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Figure 10: Isofrequency wavevector dispersion in the TENZ,hyperbolic, and elliptic regimes, showing both (a)βz

and (b)αz calculated by Bloch theory at four different frequencies (10, 11.9, 12, 15 THz), whenµc = 0.1 eV.

The imaginary term in Eq. (7) is negligible since
∣

∣

∣
(κdd)

2
σ′/2σ′′

∣

∣

∣
≪ 1 for graphene-dielectric multi-

layer with a subwavelength period, and therefore one simplyobtainskz ≈ 0, far enough from the Bril-
louin zone edge. Therefore, the TENZ conditionǫ′t ≈ 0, implies a flat isofrequency dispersion diagram
with smallkz over a wide range ofkt. We report in Fig. 10(a,b) the isofrequency wavevector dispersion
at four different frequencies, at which we show hyperbolic dispersion (10 THz withǫt ≃ −1.01− j0.09),
elliptic dispersion (15 THz withǫt ≃ 0.84 − j0.05), and the TENZ transitional state (at 11.9 THz and
12 THz, withǫt ≃ −0.001− j0.075 andǫt ≃ 0.028− j0.072, respectively), where bothβz andαz for
all cases are normalized byk0. In Fig. 10(a) one can observe that the slope of theβz − kt dispersion is
reduced when|ǫ′t| is much smaller than unity, as also predicted analytically in Eq. (7), still preserving
limited values of the attenuation constantαz . Note that the elliptic regime (at 15 THz) also shows a
very low slope of theβz − kt dispersion, however the attenuation constantαz is large, because waves
are mainly evanescent for largekt. Fig. 10(a) shows that the TENZ regimes are responsible for almost
flat propagation constant (|βz/k0| < 1) up to kt ≃ 10k0, with a moderately low attenuation constant
αz. However, for largerkt, we observe thatβz experiences a sharp increase towards the Brillouin zone
edge, together with an increase of the attenuation constantαz . In Fig. 10(b) we observe that the atten-
uation constant exhibits significant difference for HM and TENZ regimes that requires some important
consideration. Although the two TENZ cases have smallerǫ′′t than the hyperbolic one (at 10 THz), they
experience a higher attenuation than HM case forkt >

√
ǫdk0, whereas the opposite relation is valid

for kt <
√
ǫdk0. Therefore we can observe the two trends: on one hand TENZ allows flatterβz − kt

relation and a widerkt spectrum than a fully hyperbolic regime, on the other hand the hyperbolic regime
exhibits smaller attenuation constantαz than the TENZ cases. Note also that the TENZ is a transitional
state toward elliptic dispersion, at which the attenuationαz becomes even higher forkt >

√
ǫdk0, and

forward waves (βzαz > 0) can propagate forkt <
√
ǫdk0 with low attenuation constant.

It has been shown in [41, 42] that isotropic epsilon-near-zero (IENZ) material inside a waveguide
supporting TE modes is able to tunnel electromagnetic waves. Here we elaborate on TENZ materials
at far- and mid-infrared frequencies designed using graphene-dielectric multilayers and explore their
capabilities of tunneling electromagnetic waves [43]. Consider an electrically-thin slab of thicknessh
made by either a TENZ (ǫt ≈ 0, ǫz 6= 0) or an IENZ (ǫt = ǫz = ǫr ≈ 0) material in free space. Under TEz

wave incidence, TENZ and IENZ slabs provide an identical response and the reflection from such slabs
can be set arbitrarily small by decreasing their thickness,as reported in [44]. However, for TMz oblique
plane waves impinging on a lossless IENZ semi-infinite material, total reflection occurs for angles greater
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than the critical anglekct/k0 = sin θci =
√
ǫr ≈ 0. For an electrically-thin IENZ slab, transmission of

TMz plane wave takes place for small angles of incidence (0< θi < θci , whereθci is considerably small)
due to evanescent waves exhibiting frustrated multiple reflections at the slab interfaces. By including the
effect of losses in IENZ slabs, absorption and local electric field enhancement were reported for specific
incident anglesθi > θci in [45]. Instead, we provide here the TMz reflection and transmission coefficients
(RTENZ

TM andT TENZ
TM ) for a thin TENZ slab

RTENZ
TM =

ζ

2Z0 + ζ
, T TENZ

TM =
2Z0

2Z0 + ζ
, (8)

where

ζ =
jh(k2

0
− k2t /ǫz)

ωǫ0
, Z0 =

√

k2
0
− k2t

ωǫ0
. (9)

Therefore upon having a thin slab of TENZ material,ζ can be made small enough (due to the existence
of finite, non vanishingǫz) in order to observe complete transmission for oblique TMz waves with a
wide range of incidence angles. This is in contrast to what happens for the IENZ case withǫz assuming
near-zero values; which implies that transmission only occurs aroundkt ≈ 0. We show in Fig. 11 the
reflection and transmission at 37 THz, by a TENZ material withǫt = −0.001 andǫz = 2.2, and by an
IENZ material withǫr = −0.001, assuming in both cases negligible losses. It is clear that the IENZ
material exhibits a very narrow transmission aroundθi ≈ 0◦ only due to evanescent waves (permittivity
has a negative value) tunneling through the subwavelength slab [43, 45], and the transmission window
dramatically diminishes asǫr approaches zero orh increases, in accordance with the trend observed in
[44]. On the contrary, the TENZ slab exhibits large and stable transmission over a wide range of incidence
angles, inherently complying with the flat wavevector dispersion relation in Eq. (7). Also, one should
point out that the TMz transmission in TENZ materials occurs up to much larger incidence angles than
TEz transmission, which is identical to an IENZ slab’s TEz transmission discussed in [44]. In principle
the different properties illustrated in the preceding simple example reveal the advantage of TENZ material
over conventional IENZ material in enhancing transmissionunder oblique TMz plane wave incidence.
For a more practical comparison, we report in Fig. 12 the transmission and reflection for two possible
TENZ and IENZ materials at mid-infrared. We consider a TENZ made of graphene-dielectric multilayer
biased withµc = 0.5 eV, accounting for losses, and having total thickness ofh = Nd whered = 50

Figure 11: Different characteristics of TMz plane wave (a) reflection and (b) transmission from a thin slab made by a
TENZ material (solid lines) and IENZ material (dashed lines) at 37 THz. Material losses in this example are assumed
negligible. The TENZ material exhibits much wider and flatter parameters varying angle of incidence than the IENZ
material.
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Figure 12: TMz plane wave (a) reflection and (b) transmission from a slab made by graphene-dielectric layers with
d = 50 nm andh = Nd (solid lines, using transfer matrix analysis) and an isotropic InAsSb slab of thicknessh
(dashed lines) at 37 THz.

nm, at 37 THz. Under these conditions EMA estimatesǫt ≈ −0.001 − j0.031 as seen from Fig. 2.
The IENZ material is assumed to be a heavily n-doped InAsSb semiconductor [46], which is engineered
via doping to exhibit low loss IENZ in this frequency range, i.e., ǫInAsSb ≈ −0.0001 − j0.038 at ≈37
THz (experimentally shown in [46]). In graphene-based TENZmaterial we observe a stable transmission
with respect to the angle of incidence, and it is not affectedmuch by losses in graphene as deduced from
the comparison of the lossy case in Fig. 12 and the lossless case in Fig. 11. The InAsSb thin slab,
however, exhibits a narrow angular range of transmission with higher sensitivity to losses, i.e., as the
imaginary part ofǫr is increased, angular transmission is slightly broadened,especially ash increases.
This indicates an advantage of using the graphene-based TENZ materials in tuning and enhancing TMz

plane wave transmission for wide angles of incidence. On theother hand, losses in natural materials or
engineered metamaterials that exhibit IENZ behavior degrades the performance considerably, and may
require integration of gain materials as in [45].

V. CONCLUSION

We have reported a HM implementation at far- and mid-infrared frequencies that comprises graphene-
dielectric layers, and showed that EMA describes the hyperbolic wavevector dispersion as well as the
transition to elliptic regime for specific conditions. Hyperbolic dispersion have manifested mainly at
far-infrared frequencies, where we have investigated the propagating spectrum properties and discussed
the effect of losses. We also showed that hyperbolic and elliptic dispersion regimes are associated to
backward and forward wave propagation, respectively. We have explored the tuning opportunities and
design considerations of the structure, as well as the translation from hyperbolic to elliptic wavevector
dispersion, and demonstrated a transitional state, TENZ, at which the wavevector dispersion diagram
becomes very flat. Furthermore, we have demonstrated that a thin slab made by a TENZ material becomes
transparent to both TEz and TMz plane wave, with the interesting characteristic that the transmission
and reflection of TMz waves are stable with respect to the incident angle, in contrast to what happens
in conventional IENZ materials. This property can be utilized in designing ultra-thin films for tunable
infrared applications.
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