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Abstract

Real-time spike sorting and processing are crucial for closed-loop brain-machine interfaces and 

neural prosthetics. Recent developments in high-density multi-electrode arrays with hundreds 

of electrodes have enabled simultaneous recordings of spikes from a large number of neurons. 

However, the high channel count imposes stringent demands on real-time spike sorting hardware 

regarding data transmission bandwidth and computation complexity. Thus, it is necessary to 

develop a specialized real-time hardware that can sort neural spikes on the fly with high 

throughputs while consuming minimal power. Here, we present a real-time, low latency spike 

sorting processor that utilizes high-density CuOx resistive crossbars to implement in-memory 

spike sorting in a massively parallel manner. We developed a fabrication process which is 

compatible with CMOS BEOL integration. We extensively characterized switching characteristics 

and statistical variations of the CuOx memory devices. In order to implement spike sorting with 

crossbar arrays, we developed a template matching-based spike sorting algorithm that can be 

directly mapped onto RRAM crossbars. By using synthetic and in vivo recordings of extracellular 

spikes, we experimentally demonstrated energy efficient spike sorting with high accuracy. Our 

neuromorphic interface offers substantial improvements in area (~1000× less area), power (~200× 

less power), and latency (4.8μs latency for sorting 100 channels) for real-time spike sorting 

compared to other hardware implementations based on FPGAs and microcontrollers.
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I. INTRODUCTION

EXTRACELLULAR recordings of neuronal spikes using microelectrode arrays have been 

widely used in studying neural circuits involved in sensory [1], motor [2], and navigation 

[3] functions in the brain [4]. The recorded signals are a mix of activities from multiple 

neurons and a crucial processing step, called spike sorting, is required to separate the firing 

activities and assign the recorded spikes to individual neurons from the recordings. Spike 

sorting is an indispensable tool in neuroscience for studying neural circuits [5], connectivity, 

causality and decoding brain activities [6, 7]. It is also fundamental in decoding intentions 

from neural activity in brain-machine interfaces (BMIs) [8] and neural prosthetics [9]. 

Conventionally, spike sorting is performed offline by transmitting raw digitized signals 

recorded by neural electrodes to a nearby computer. However, the off-line processing 

approach becomes impractical for sorting neural recordings generated from advanced high-

density microelectrode arrays (HDMEAs) that comprise hundreds or thousands of recording 

sites in a single probe, such as recently developed Neuropixels probe [10]. Transmitting 

vast amounts of neural recording data from HDMEAs to an off-line spike sorter leads 

to excessive power dissipation which poses a serious risk of damage for the surrounding 

tissues [11]. For example, a 100-channel microelectrode array with a 16-bit ADC operating 

at 30kHz sampling frequency generates 3MSamples/s and dissipates mW-level power to 

nearby tissues. More importantly, to enable the closed-loop BMIs for prosthetics with 

multiple degrees of freedom, hundreds of neurons distributed in multiple cortical areas need 

to be monitored in real-time with minimal delay [12]. An 8-hour recording experiment using 

a 100-channel microelectrode array would accumulate ~200GB of data [13], demanding 

at least a few hours to sort the recorded spikes off-line [14]. The high latency associated 

with spike sorting becomes a limiting factor for closed-loop applications requiring rapid 

feedback. These drawbacks highlight the need for developing compact, low-power and high 

throughput hardware that can be integrated with high density implantable microelectrode 

arrays to perform on-chip spike sorting in real-time.

Although there have been sustained efforts to develop real-time spike sorting in FPGAs, 

most implementations are inefficient in terms of area and power consumption. Want et al., 
demonstrated a single channel real-time spike sorting while using >90% FPGA resources 

[15]. Laszlo et al. implemented the “Osort” algorithm in FPGA for sorting 128 recording 

channels, using hundreds of block RAM and DSP units. However, this approach does 

not scale well with channel count [16]. On the other hand, resistive switching random 

access memory (RRAM) has been considered as a promising next-generation memory 

technology due to its low switching energy, non-volatility, high switching speed and 

small footprint [17]. In-memory computing based on RRAM arrays has been widely used 

in accelerating data intensive applications such as neural network inferences, computer 

vision, and compressed sensing [18]. A crossbar array consisting of thousands of RRAM 

devices offers large non-volatile memory storage and facilitates massive parallelization of 

matrix-vector multiplications. These advantages make RRAM crossbars uniquely poised 

to implement a large number of dot-products in real-time with high energy-efficiencies. 

However, to the best of our knowledge, no studies have yet shown RRAM-based brain 

interfaces for real-time spike sorting.
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In this paper, we designed a compact, energy-efficient, and high throughput neuromorphic 

brain interface based on CuOx crossbar arrays that can perform spike sorting for 

extracellular neural recordings. On the hardware front, we developed a low-temperature 

fabrication process that is compatible with BEOL CMOS integration to fabricate high-

density CuOx crossbars. We developed a template matching-based spike sorting algorithm 

that is a hardware-friendly and scalable for mapping onto crossbars. In our neuromorphic 

brain interface, low amplitude neural signals (few μVs) from an implanted neural probe 

were amplified and digitized using an Intan amplifier. The neural templates were encoded 

into device conductances and stored in columns of CuOx crossbars (Fig. 1). Template 

matching was achieved by feeding neural signals to the wordlines (WLs) and using the 

crossbar architecture to compute their dot products with corresponding neural templates in 

each column. The sorting results were obtained parallelly by processing the weighted sum 

currents in the bitlines (BLs). We experimentally demonstrated the ability of our CuOx 

crossbar arrays to sort simulated synthetic spikes as well as extracellular recordings from 

in vivo animal experiments with high accuracy i.e. close to ideal software implementation. 

Based on experimental results, we also performed a system-level simulation and estimated 

that our approach can sort 100-channel recordings within 4.8μs with ~1000× reduction in 

chip area, ~200× reduction in power, and ~50× less energy per channel compared to the 

state-of-the-art FPGA and microcontroller implementations.

The rest of this paper is organized as follows. Section II presents device characterization 

results for CuOx devices, including DC switching, transient pulse responses, cycle-to-cycle, 

and device-to-device variations and retention. Section III describes the template matching 

algorithm and two datasets used in the hardware demonstration. Section IV explains how 

the algorithm is mapped to the hardware and the spike sorting in the crossbar. Section V 

discusses the system-level benchmarking results of our approach in comparison to other 

hardware implementations. Section VI summarizes this paper.

II. CUOx RESISTIVE CROSSBARS

We developed a wafer-scale process for fabricating 16 × 16 crossbar arrays of Au/CuOx/Au 

resistive switching devices (Fig. 2a). The SEM image of the crossbar array and the cross-

section schematic are shown in Fig. 2b and d. The fabrication flow is illustrated in Fig. 2c. 

First, Au with Cr adhesion layer (100 nm) is sputtered and patterned via photolithography 

and lift-off for bottom electrodes (or WLs) with 1μm linewidth and a 2um pitch. Then, 70 

nm of CuOx switching layer is deposited and patterned with reactive sputtering of Cu and 

Ar/O2 (95%/5%) gas. After that, top electrodes are deposited and patterned following the 

same fabrication steps as the bottom electrodes. Lastly, 300 nm of SiO2 layer is deposited 

and patterned to passivate the device active region to ensure long-term stability. Since all the 

processes for the CuOx crossbars are low-temperature process, it can be built directly on the 

BEOL of CMOS circuits.

After fabricating Au/CuOx/Au resistive switching devices, we extensively characterized 

them (Fig. 3 and Fig. 4). The Au/CuOx/Au devices displayed consistent bipolar switching in 

response to 30 DC voltage sweeps (Fig. 3a). They could be set to a low resistance state of 

~100Ω at VSET =~1.5V whereas applying VRESET =~−0.7V increased device resistances 
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to as high as ~1GΩ with low cycle-to-cycle variations (Fig. 3b). The high ON/OFF 

ratio (~ 107) of the device resistances (Fig. 3c) provides a sufficiently large window for 

implementing the neuromorphic brain interface. Furthermore, the relatively low SET and 

RESET voltages (Fig. 3b) is desirable for future integration with peripheral CMOS circuitry.

Low device-to-device variations are important to ensure accurate mapping templates to the 

crossbar. To quantify this, we randomly selected 120 Au/CuOx/Au devices from different 

regions of the wafer. Cumulative distribution (CDF) of switching voltage and resistance is 

shown in Fig. 4a and b respectively. The measured SET and RESET latencies are presented 

in [19]. The RESET transition (~80μs) was significantly faster than the SET process, 

highlighting the scope for further device optimization. Non-volatility of low resistance state 

(LRS) and high resistance state (HRS) was characterized by reading the device (Vread = 

0.1V) at regular time intervals immediately after a successful SET or RESET process. The 

Au/CuOx/Au devices could retain their LRS and HRS for more than > 10000 seconds, 

indicating these devices can faithfully store the neuron templates needed for real-time spike 

sorting and periodic refresh operations could be utilized if experiments taking longer than 

this time period (Fig. 4c).

III. TEMPLATE MATCHING ALGORITHM

A. Algorithm Overview

Spike sorting is a challenging clustering problem and many algorithms have been developed 

over the past years such as principal component analysis [20], template matching [21], 

Bayesian statistical frameworks [22], and hidden Markov models [23]. Among these, 

template matching is the most efficient approach to sort neural spikes [24]. It assumes a 

pre-existing database of neuron templates; the goal is to assign the best-fit templates to the 

detected spike waveform, hence clustering the spikes to specific neuron units. Motivated 

by this, we developed a template matching algorithm that can be directly mapped to the 

crossbars to achieve real-time spike sorting.

Figure. 5 outlines the algorithm (Step1-Step4) by showing a simplified example for 

classifying two neurons (n=2) from three-channel recordings (m=3). The same methodology 

can be used to classify a larger number of neurons recorded across hundreds of channels. 

Each neuron had a template matrix Tn = [Tn,1, Tn,2, …, Tn,m], where column Ti,j represented 

the template for neuron i corresponding to channel j (Fig. 5a). The Ti,j is a vector with S 

samples with S = fs× k, where fs is the sampling frequency and k is the user-define window 

that determines the duration of templates. In this example, fs = 30kHz and k = 3ms. Tn is 

built by horizontally concatenating these templates across m electrodes (m=3). The template 

matrix Tn was normalized by its Frobenius Norm (Tn/‖Tn‖F) to maintain the amplitude 

of the spikes in the same range (Fig. 5a). Similarly, we defined the neural signal V(t) = 

[V1(t), V2(t) …, Vm(t)], where Vj(t) is the recorded signal from channel j. Fig. 5b shows an 

example of recording in three channels at 30kHz. To perform the template matching, we first 

computed the waveform similarity Cn,m(t), which is the convolution between signals from 

channel m and the template of neuron n on channel m measured at time t. The convolution 

can be expressed as Cn,m(t)=Vm(t)*Tn,m, which is simply a sliding dot product between the 

signal and template. Then, the resulting waveform similarities from all m channels were 
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summed up for each neuron (Fig. 5c) to give Cn t = 1
m Cn, m t , the overall activation of 

neuron n at time t. In the final step (Fig. 5d), we applied a threshold, which is ~3 standard 

deviation of the Cn(t) to identify the spike times. After that, we assigned the spikes to the 

neuron having the largest Cn(t). Note that these templates are typically obtained offline 

through a semi-automatic algorithm with human curation to ensure accuracy. The details of 

mapping templates to the hardware are discussed in Section IV.

B. Datasets

We implemented the aforementioned template matching algorithm on two neural recordings: 

(1) a synthetic “NeuroNexus-32” data [25] and (2) “real” spikes from in vivo animal 

experiments recorded with the NeuroFITM probe [6] for validating our spiking sorting 

hardware with different neural electrode technologies. In the “NeuroNexus-32” dataset, 

the extracellular spiking activities with ground truth were generated using MEArec [25]. 

MEArec generated data in two phases. In the template generation phase, biophysically 

realistic neuron models were positioned at different locations of the NeuroNexus-32 probe 

model to produce extracellular potentials to form a template library. In the recording 

generation phase, it convolved the templates selected from the library with randomly 

generated spike trains. Additive Gaussian noise was added to the convolution results to 

obtain the final recording data. Typically, a channel can record activities of ~1-3 neurons 

nearby. Our synthetic dataset contains extracellular recordings of twelve neurons from 32 

channels sampled at 30kHz [19]. The “real” dataset contains 1 hour recordings sampled at 

32kHz from an in-vivo animal experiment recorded with the 32-channel NeuroFITM probe 

(Fig. 6a) [6], where spike sorting results from offline Kilosort algorithm [14] was considered 

as the ground truth. Figure 6b and c show representative neuron templates and the recordings 

in Ch4. Top of Fig. 6c shows the predicted spike train as square symbols and the clustered 

neuron spike waveforms are presented in Fig. 6d. As can be seen, for each neuron, the 

shape of the clustered spike waveforms closely matched their respective templates. A similar 

waveform example of NeuroNeuxus-32 and the complete template libraries of both probes 

can be found in our previous work [19].

C. Sorting Performance

The sorting outcome of our algorithm is determined against the ground truth spikes 

by comparing the spike time. To quantify the sorting performance, we employed the 

commonly-used F1 score (in %) given by 2TP/(2TP+FP+FN), where TP, FP, and FN denote 

the true positive, false positive, and false-negative outcomes. A TP is defined as a spike that 

has been classified correctly by the algorithm. An FP is defined as a spike that is classified 

as spiking activity but does not exist in ground truth data. An FN is defined as a spike that 

exists in the ground truth data but is not detected by our algorithm. The spike predictions 

from our algorithm agree with the ground truth well. Eleven out of twelve neurons in the 

NeuroNexus-32 dataset have F1 score > 90% (Fig. 7a), whereas all the two neurons in 

the NeuroFITM “real” dataset have F1 score > 85% (Fig. 7b). The F1 score of the “real” 

dataset is slightly less than the synthetic dataset due to higher noise and probe drifting 

[26] during the recording, making the classification more difficult. To map the templates 

to the hardware, we investigated how quantization impacts the F1 score. The template was 

quantized to 2N discrete levels between the min and max amplitude range of the normalized 
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template library. After quantization, we followed the same sorting pipeline to obtain the 

F1 score. Figure. 7c shows that the performance could be retained if the templates are 

quantized to at least 4-bit resolution for NeuroNeuxus-32 dataset, which is also applied for 

NeuroFITM dataset.

IV. HARDWARE IMPLEMENTATION OF SPIKE SORTING

A. Hardware Mapping

To process hundreds of spikes per second, it would be necessary to adopt a multi-core 

architecture (Fig. 8a) where each core consists of a crossbar that stores the templates for 

a specific set of neurons (Fig. 8b). Figure 8c illustrates how a set of templates could be 

mapped on to a crossbar core.

In the illustration, we assume that three channels (m=3) record spike activities of two 

neurons (n=2), resulting in a total of 6 templates. The templates from the same channel are 

mapped to the adjacent columns in the crossbar. The devices in the crossbar can store the 

templates using multi-level for analog implementation or binary (HRS or LRS) conductance 

states for digital implementation [27]. A column of devices with 16 (4-bit) multi-level can be 

used to map a template directly as shown in this example (i.e. templates of N1-Ch1 and N2-

Ch2 are mapped to the first two columns of the crossbar respectively). Similarly, templates 

from other channels are mapped to the rest of the columns to achieve the maximum usage of 

the array (Fig. 8c). If binary conductance state is used, four columns are required to map a 

template from MSB to LSB. Although device with multi-level states can achieve maximum 

area efficiency, it has been shown that these multi-level states may exhibit high device to 

device variations, non-linearity and resistance drift due to unstable filament formation [18]. 

In contrast, digital implementation is more robust against of variations [28], which makes 

it a better approach to realize high sorting accuracy for template matching task. In addition 

to conductance states, differential pair scheme is commonly used to represent both negative 

and positive values of the templates [29].

After all templates are mapped on a core, the voltage spike inputs on WLs (VWLi) 

are convolved with the templates stored as cross point conductances (Gij). The columns 

of the crossbar can perform template matching (BL currents IBLj = GijVWLi) in parallel. 

Since a set of templates from each channel need to convolve with neural signals from 

the corresponding channel, recordings from Ch1-Ch3 are processed in a time-multiplexed 

manner, the matching results (IBLn,j) for each channel are collected from the corresponding 

BLs in parallel (n: neuron; j: channel number). The final classification result is obtained 

by adding the BL currents for each neuron i.e., In = 1
m IBLn, j from all m channels and then 

assigning the spike to the neuron with the maximum In. For the sake of illustration, we show 

all templates mapped to a single crossbar. For practical applications involving large channel 

counts, a multicore architecture can be adopted, where each core is dedicated to a channel 

and stores all templates belonging to the assigned channel. As a result, all channels can be 

processed at the same time to achieve higher parallelism.
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B. Hardware Demonstration

A custom PCB board was used to access the WLs and BLs of the wire-bonded CuOx 

crossbar (Fig. 9a and b). Before mapping the templates, array read was performed to confirm 

the initial states of the crossbar. To read a single device, the selected WL was biased to 

Vread = 0.25V while all other lines were grounded. The as-fabricated devices had initial 

resistances greater than 500kΩ (Fig. 9c). As explained in Subsection A. Hardware Mapping, 

digital implementation was adopted in our demonstration. Neuron templates were quantized, 

binarized, and mapped onto crossbar columns using differential pair scheme. To program the 

devices to different states, we used Vdd/2 write scheme, where the selected WL and BL were 

biased to Vdd/2 and −Vdd/2, and all other unselected lines were grounded to prevent sneak 

paths (SET: Vdd = 4V and RESET: Vdd = 3V).

Figure. 9d–f shows four representative templates (F1-F4) of Neuro-FITM implemented 

in the crossbar. The templates were quantized to 4-bit and then binarized to two levels 

(“0”-black or “1”-white) off-line (Fig. 9d). “0” was mapped to HRS and “1” was mapped to 

LRS of the device respectively (Fig. 9e). Since the crossbar was initially off, only “1” needs 

to be programmed accordingly. The patterns of the hardware templates match well with 

software templates, indicating precise write operation. To validate the accuracy of crossbar 

convolutions, we biased all WLs to high (VWLs = 0.25V) and measured the BL currents. As 

shown in Fig. 9f, the weighted-sum BL currents (Isum) increased proportionately with the 

number of LRS devices in the columns. Templates from NeuroNexus-32 dataset are mapped 

in the same way [19].

Using the programmed templates, we performed spike sorting on NeuroNexus-32 and 

NeuroFITM recordings. Neural data encoded as 8-bit voltage pulse trains were fed 

into the WLs and Isum were measured on the BLs. Figure. 10a and Figure. 11a show 

the NeuroNexus-32 and NeuroFITM recordings and the hardware spike sorting results 

implemented to sort representative three neurons (N1-N3) from the NeuroNexus-32 data 

and two neurons (N1,N2) from the NeuroFITM data. The neural voltage traces from the 

recording channels (Ch1-3 in NeuroNexus-32 and Ch1-4 in NeuroFITM) are shown at the 

bottom. Hardware convolution trace generated by CuOx crossbar represents final current 

In = 1
m IBLn, j by adding weighted sum currents measured in each IBLn,j for “m” channels and 

“n” neurons (NeuroNexus-32: m = 3, n =3; NeuroFITM: m = 4, n = 2). The raster plots on 

the top of Fig. 10a and Fig. 11a show the spike train predicted in hardware compared with 

the ground truth spikes for Neuronexus-32 and NeuroFITM dataset, respectively.

Figure 10b and Fig. 11b show the callouts for the spikes highlighted in rectangular boxes 

(Fig. 10a and Fig. 11a). Inside the boxes, the snippet spike waveform of each neuron is 

shown in the left. Channels are coded in different colors that match with the signal traces 

above. The template matching results in software and hardware are shown as convolution 

traces in the middle (SW) and right (HW) respectively. Different colors represent N1-N3 

of NeuroNexus-32 and N1-N2 of NeuroFITM. The software convolution traces are shown 

as arbitrary units while hardware traces are shown as measured weighted sum currents. For 

each spike, the neuron with the highest peak in the convolution trace was assigned to the 

spike. The shapes of convolution traces produced by the CuOx crossbars matched closely 
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with software, thereby confirming our hardware can reliably sort neural spikes. Note that 

the off-peak regions of the hardware convolution traces are slightly noisy compared with 

software mainly due to variations in the programmed device conductances across crossbar 

columns. This issue can be alleviated by adopting a more robust “program and verify” 

scheme in storing the templates in the crossbar [30].

C. System-level Performance Benchmarking

Based on the hardware spike sorting results obtained over a 100ms time window (Fig. 10 

and Fig. 11), we evaluated F1 scores on the entire 30s-wide recordings in both neural data 

and compared them with software predictions. The hardware F1 scores were calculated by 

performing template matching between neural signals with hardware templates that contain 

measured device resistances. To evaluate sorting performance across multiple neurons, we 

averaged F1 score based on neuron number. Table I shows neurons could be sorted with high 

mean accuracy (~92.5% for NeuroNexus-32, ~94.6% for NeuroFITM).

To project the sorting performance of multi-core architecture (Fig. 8a) with our crossbar-

based spike sorting hardware, we performed a system-level benchmarking to estimate area, 

power, and latency and compared it with the state-of-the-art FPGA and microcontroller 

implementations. All implementations included in Table II use in-vivo experimental 

datasets and template matching based approach for a fair comparison. Our work and 

microcontroller implementation [31] demonstrated sorting for 32-channel probe while 

FPGA [15] implemented sorting for a single channel. The area per channel was estimated 

by the number of columns used in mapping a neuron template of a channel (i.e. ~8 columns 

are used for a channel template and it occupies 40 μm × 20 μm = 8 × 10−4 mm2). Power 

per channel was calculated by averaging power consumption Pavg = 1
N Isum × V read across a 

representative spike waveform snippet during template matching. Here, N is number of 

samples in the spike waveform (N=30), Isum is the weighted sum current for processing a 

sample measured crossbar.

Overall, our crossbar-based spike sorting hardware promises ~1000× smaller (area/channel) 

[15] and ~200× reduction in power consumption [31] compared to state-of-the-art spike 

sorting hardware implementations that rely on FPGAs (Table II). To better understand the 

sorting latency in the multicore architecture, we assume one crossbar core can have size 

up to 256 × 256 and 10ns read latency. Unlike previous works that rely on sequential 

processing, each crossbar core in the multi-core architecture can process multiple recording 

channels in a highly parallelized manner. We estimated twelve CuOx crossbar (256 × 256) 

cores can sort 100 channel recordings within 4.8μs using the same mapping scheme of our 

hardware demonstration. As a result, it consumes ~30-50× less energy (energy = power × 

latency) [15, 31]. These performance gains make real-time spike sorting possible using our 

crossbars for high throughput BMI applications.

V. CONCLUSION

We presented a high throughput neuromorphic brain interface for real-time spike sorting 

based on resistive crossbar arrays. We fabricated CuOx crossbars using a simple low-

temperature process enabling easy 3D BEOL integration with underlying CMOS circuits. 
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In order to realize real time spike sorting, we developed a hardware compatible template 

matching algorithm and developed methods for mapping onto crossbar arrays. We 

demonstrated that hardware implementation of template matching using CuOx crossbars 

can accurately classify spikes from individual neurons recorded in vivo. Our neuromorphic 

approach offers substantial performance gains in area, power, latency, and energy for spike 

sorting hardware designed for processing recordings from neural probes with high channel 

counts. Our work paves the way towards in-memory computing-based real-time spike 

sorting and processing hardware for next-generation closed-loop brain interfaces.

Acknowledgments

This work was supported by Office of Naval Research (N000142012405), the National Science Foundation 
(ECCS-1752241, ECCS-2024776), and the National Institutes of Health (DP2 EB030992). The fabrication of the 
devices was performed at the San Diego Nanotechnology Infrastructure (SDNI) of the University of California San 
Diego, supported by the National Science Foundation (ECCS-1542148).

REFERENCES

[1]. Nicolelis MA, Ghazanfar AA, Stambaugh CR, Oliveira LM, Laubach M, Chapin JK, Nelson RJ, 
and Kaas JH, “Simultaneous encoding of tactile information by three primate cortical areas,” 
Nature neuroscience, vol. 1, no. 7, pp. 621–630, 1998. [PubMed: 10196571] 

[2]. Georgopoulos AP, Schwartz AB, and Kettner RE, “Neuronal population coding of movement 
direction,” Science, vol. 233, no. 4771, pp. 1416–1419, 1986. [PubMed: 3749885] 

[3]. Moser EI, Kropff E, and Moser M-B, “Place cells, grid cells, and the brain’s spatial representation 
system,” Annu. Rev. Neurosci, vol. 31, pp. 69–89, 2008. [PubMed: 18284371] 

[4]. Quiroga RQ and Panzeri S, “Extracting information from neuronal populations: information theory 
and decoding approaches,” Nature Reviews Neuroscience, vol. 10, no. 3, pp. 173–185, 2009. 
[PubMed: 19229240] 

[5]. Luo L, Callaway EM, and Svoboda K, “Genetic dissection of neural circuits: a decade of 
progress,” Neuron, vol. 98, no. 2, pp. 256–281, 2018. [PubMed: 29673479] 

[6]. Liu X, Ren C, Lu Y, Liu Y, Kim J-H, Leutgeb S, Komiyama T, and Kuzum D, “Multimodal neural 
recordings with Neuro-FITM uncover diverse patterns of cortical—hippocampal interactions,” 
Nature Neuroscience, vol. 24, no. 6, pp. 886–896, 2021. [PubMed: 33875893] 

[7]. Liu X, Ren C, Huang Z, Wilson M, Kim J-H, Lu Y, Ramezani M, Komiyama T, and Kuzum D, 
“Decoding of cortex-wide brain activity from local recordings of neural potentials,” Journal of 
Neural Engineering, 2021.

[8]. Chaudhary U, Birbaumer N, and Ramos-Murguialday A, “Brain—computer interfaces for 
communication and rehabilitation,” Nature Reviews Neurology, vol. 12, no. 9, pp. 513–525, 
2016. [PubMed: 27539560] 

[9]. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, 
Velliste M, Boninger ML, and Schwartz AB, “High-performance neuroprosthetic control by an 
individual with tetraplegia,” The Lancet, vol. 381, no. 9866, pp. 557–564, 2013.

[10]. Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, Bauza M, Beau M, Bhagat J, Böhm 
C, and Broux M, “Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain 
recordings,” Science, vol. 372, no. 6539, 2021.

[11]. Kim S, Tathireddy P, Normann RA, and Solzbacher F, “Thermal impact of an active 3-D 
microelectrode array implanted in the brain,” IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, vol. 15, no. 4, pp. 493–501, 2007. [PubMed: 18198706] 

[12]. Nicolelis MA and Lebedev MA, “Principles of neural ensemble physiology underlying the 
operation of brain—machine interfaces,” Nature reviews neuroscience, vol. 10, no. 7, pp. 530–
540, 2009. [PubMed: 19543222] 

[13]. Gibson S, Judy JW, and Marković D, “An FPGA-based platform for accelerated offline spike 
sorting,” Journal of neuroscience methods, vol. 215, no. 1, pp. 1–11, 2013. [PubMed: 23415852] 

Shi et al. Page 9

IEEE Trans Electron Devices. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[14]. Pachitariu M, Steinmetz NA, Kadir SN, Carandini M, and Harris KD, “Fast and accurate spike 
sorting of high-channel count probes with KiloSort,” Advances in neural information processing 
systems, vol. 29, pp. 4448–4456, 2016.

[15]. Wang PK, Pun SH, Chen CH, McCullagh EA, Klug A, Li A, Vai MI, Mak PU, and Lei TC, 
“Low-latency single channel real-time neural spike sorting system based on template matching,” 
PloS one, vol. 14, no. 11, p. e0225138, 2019. [PubMed: 31756211] 

[16]. Schäffer L, Nagy Z, Kincses Z, Fiáth R, and Ulbert I, “Spatial information based OSort for 
real-time spike sorting using FPGA,” IEEE Transactions on Biomedical Engineering, vol. 68, no. 
1, pp. 99–108, 2020. [PubMed: 32746008] 

[17]. Yin S, Kim Y, Han X, Barnaby H, Yu S, Luo Y, He W, Sun X, Kim J-J, and Seo J.-s., 
“Monolithically integrated RRAM-and CMOS-based in-memory computing optimizations for 
efficient deep learning,” IEEE Micro, vol. 39, no. 6, pp. 54–63, 2019.

[18]. Sebastian A, Le Gallo M, Khaddam-Aljameh R, and Eleftheriou E, “Memory devices and 
applications for in-memory computing,” Nature nanotechnology, vol. 15, no. 7, pp. 529–544, 
2020.

[19]. Shi Y, Ananthakrishnan A, Oh S, Liu X, Hota G,Cauwenberghs G, Kuzum D, “High Throughput 
Neuromorphic Brain Interface with CuOx Resistive Crossbars for Real-time Spike Sorting,” 
International Electron Devices Meeting, vol. In press, 2021.

[20]. Adamos DA, Kosmidis EK, and Theophilidis G, “Performance evaluation of PCA-based spike 
sorting algorithms,” Computer methods and programs in biomedicine, vol. 91, no. 3, pp. 232–
244, 2008. [PubMed: 18565614] 

[21]. Wouters J, Kloosterman F, and Bertrand A, “Towards online spike sorting for high-density neural 
probes using discriminative template matching with suppression of interfering spikes,” Journal of 
neural engineering, vol. 15, no. 5, p. 056005, 2018. [PubMed: 29932426] 

[22]. Bar-Hillel A, Spiro A, and Stark E, “Spike sorting: Bayesian clustering of non-stationary data,” 
Journal of neuroscience methods, vol. 157, no. 2, pp. 303–316, 2006. [PubMed: 16828167] 

[23]. Herbst JA, Gammeter S, Ferrero D, and Hahnloser RH, “Spike sorting with hidden Markov 
models,” Journal of neuroscience methods, vol. 174, no. 1, pp. 126–134, 2008. [PubMed: 
18619490] 

[24]. Rey HG, Pedreira C, and Quiroga RQ, “Past, present and future of spike sorting techniques,” 
Brain research bulletin, vol. 119, pp. 106–117, 2015. [PubMed: 25931392] 

[25]. Buccino AP and Einevoll GT, “Mearec: a fast and customizable testbench simulator for 
ground-truth extracellular spiking activity,” Neuroinformatics, vol. 19, no. 1, pp. 185–204, 2021. 
[PubMed: 32648042] 

[26]. Rossant C, Kadir SN, Goodman DF, Schulman J, Hunter ML, Saleem AB, Grosmark A, 
Belluscio M, Denfield GH, and Ecker AS, “Spike sorting for large, dense electrode arrays,” 
Nature neuroscience, vol. 19, no. 4, pp. 634–641, 2016. [PubMed: 26974951] 

[27]. Hong X, Loy DJ, Dananjaya PA, Tan F, Ng C, and Lew W, “Oxide-based RRAM materials for 
neuromorphic computing,” Journal of materials science, vol. 53, no. 12, pp. 8720–8746, 2018.

[28]. Yu S, Li Z, Chen P-Y, Wu H, Gao B, Wang D, Wu W, and Qian H, “Binary neural network 
with 16 Mb RRAM macro chip for classification and online training,” in 2016 IEEE International 
Electron Devices Meeting (IEDM), 2016, pp. 16.2. 1–16.2. 4: IEEE.

[29]. Yao P, Wu H, Gao B, Eryilmaz SB, Huang X, Zhang W, Zhang Q, Deng N, Shi L, and Wong 
H-SP, “Face classification using electronic synapses,” Nature communications, vol. 8, no. 1, pp. 
1–8, 2017.

[30]. Shim W, Seo J.-s., and Yu S, “Two-step write—verify scheme and impact of the read noise in 
multilevel RRAM-based inference engine,” Semiconductor Science and Technology, vol. 35, no. 
11, p. 115026, 2020.

[31]. Luan S, Williams I, Maslik M, Liu Y, De Carvalho F, Jackson A, Quiroga RQ, and Constandinou 
TG, “Compact standalone platform for neural recording with real-time spike sorting and data 
logging,” Journal of neural engineering, vol. 15, no. 4, p. 046014, 2018. [PubMed: 29623905] 

Shi et al. Page 10

IEEE Trans Electron Devices. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Proposed neuromorphic brain interface based on CuOx crossbar array for spike sorting. 

Neural signals recorded by the multichannel neural probe are amplified and digitized using 

an Intan amplifier and ADC respectively. CuOx crossbar array performs spike sorting in 

real-time. That can be used as real-time feedback for a closed-loop neural interface.
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Fig. 2. 
(a) Image of a wafer including fabricated 16 × 16 CuOx crossbar arrays and single devices 

for testing. (b) SEM images of 16 × 16 crossbar with 4μm2 cross point. Scale bar: 10μm. (c) 

Fabrication process for CuOx-based single devices and 16 × 16 crossbar. (d) Device cross-

section (callout window) highlighting the 70nm CuOx resistive switching layer sandwiched 

between 100nm Au electrodes. A 300nm SiO2 passivation layer is deposited on top of the 

stack.
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Fig. 3. 
(a) DC switching characteristics of single devices for 30 cycles. (b) Cumulative distribution 

function (CDF) of SET (1V to 2.5V) and RESET (−1V to −0.2V) voltages. (c) CDF of high 

resistance state (100MΩ to 100GΩ) and low resistance state (100Ω – 1kΩ) resistances.
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Fig. 4. 
CDF of the (a) switching voltages and (b) HRS/LRS resistances measured across 120 

devices randomly selected on the wafer. c) Retention characteristics. Device resistance was 

monitored intermittently using 0.1V read pulses.
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Fig. 5. 
(a) Normalized templates of N1 and N2. (b) Neural recordings of three channels. (c) 

Computing the overall activation of neuron n neural recordings i.e., voltage traces with 

normalized templates N1 and N2. Summing the convolution traces (Cn,m(t)) corresponding 

to each neuron. d) Thresholding and assigning spikes to neurons N1 or N2 based on whether 

C1(t) > C2(t) (assign to N1) or C1(t) < C2(t) (assign to N2).
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Fig. 6. 
(a) Image of a 32-channel NeuroFITM probe with four representative channels highlighted 

as red. (b) Representative templates for the two neurons in Ch4. (c) Example 500ms-

recordings from Ch4 with predicted spike train marked in colored squares. (d) Clustered 

spikes for N1 and N2 for Ch4.
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Fig. 7. 
F1 scores (%) for (a) NeuroNexus-32 and (b) NeuroFITM dataset. (c) F1 score (%) as a 

function of template precision for 12 neurons in NeuroNexus-32 dataset. 4-bit quantized 

templates are used in hardware experiments.
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Fig. 8. 
(a) Real-time spike sorting processor with multiple crossbar cores. (b) Representative 

templates of two neurons with three channels. (c) Crossbar spike sorting: each crossbar 

column stores a neuron template. 8-bit digitized neural signals are provided as voltage 

inputs and weighted-sum currents from convolutions are obtained on the BLs. Neuron-wise 

aggregation of channel currents determines the sorting result.
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Fig. 9. 
(a) Custom PCB board to access individual WLs and BLs of the CuOx crossbar for the write 

and read operations. BLs can be accessed through the connectors shown in the lower left 

while WLs can be accessed through the connectors in the top right. (b)16 × 16 crossbar 

wire-bonded onto a PGA package. (c) Initial resistance map of a 16 × 16 CuOx crossbar. 

(d) Four representative binarized (black=0 and white=1) filters (F1-F4) from NeuroFITM. 

(e) Programmed crossbar columns implementing these filters. (f) Isum measured at VWLs 

=0.25V for four filters.
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Fig. 10. 
(a) NeuroNexus-32: Ch1,2,3 are used to classify neurons N1, N2, N3. A segment of 

recordings from Ch1 to Ch3 and predicted hardware (HW) convolution (Conv) traces for 

three neurons. (b) Representative spike sorting results for N1-N3 showing convolution 

implemented in HW agrees with the software (SW) implementation.

Shi et al. Page 20

IEEE Trans Electron Devices. Author manuscript; available in PMC 2023 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
(a) NeuroFITM: Ch1,2,3,4 are used to classify neurons N1, N2. Segments of recordings 

from Ch1 to Ch4 and predicted HW conv traces. (b) Representative spike sorting results for 

N1, N2 implemented in HW agrees with the SW implementation.
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TABLE I

F1 SCORE FOR SOFTWARE AND HARDWARE IMPLEMENTATIONS.

NeuroNexus-32 F1 Score (%) NeuroFITM F1 Score (%)

SW 92.89% 96.04%

HW 92.48% 94.62%
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TABLE II

BENCHMARKING OUR RESULTS AGAINST PREVIOUS WORKS [15, 31] IN TERMS OF HARDWARE TYPE, RECORDING DATA USED IN 

THE STUDIES, CHANNEL COUNT, AREA/CHANNEL, POWER/CHANNEL, SORTING LATENCY, AND ENERGY/CHANNEL. THE ACCURACY 

OBTAINED ONNEURONEXUS-32 AND NEUROFITM DATA FROM SOFTWARE (SW) AND HARDWARE (HW) EXPERIMENTS.

Reference This Work [15] [31]

Hardware Crossbar FPGA Microcontroller

Recording Data Simulated, in-vivo experiments in-vivo experiments in-vivo experiments

No. of channel 32 1 32

Area/Channel (mm2) 8e-4 > 10 0.78

Power/Channel (mW) 2.15 460 3.11

Sorting Latency (μs) 4.8 per 100 channel 0.72 per channel 169 per channel

Energy/Channel (nJ) 10.3 331.2 525.6
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