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Draft Genome Sequence of an Antarctic Isolate of the Black
Yeast Fungus Exophiala mesophila

Claudia Coleine,a Laura Selbmann,a,b Sawyer Masonjones,c Silvano Onofri,a Laura Zucconi,a Jason E. Stajichc

aDepartment of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
bMycological Section, Italian National Antarctic Museum (MNA), Genoa, Italy
cDepartment of Microbiology and Plant Pathology, University of California—Riverside, Riverside, California, USA

ABSTRACT A 30.43-Mb draft genome sequence with 10,355 predicted protein-
coding genes was produced for the ascomycete fungus Exophiala mesophila strain
CCFEE 6314, a black yeast isolated from Antarctic cryptoendolithic communities. The
sequence will be of importance for identifying differences among extremophiles and
mesophiles and cataloguing the global population diversity of this organism.

Black yeasts are a polyphyletic morphoecological group of fungi classified in either
the Chaetothyriales order of class Eurotiomycetes or class Dothideomycetes (phy-

lum Ascomycota; subphylum Pezizomycotina). They are distinguished by high melanin
content, thick and multilayered cell walls, and an extraordinary ability to survive in
extremes and tolerate chemical and physical stresses, such as extreme pH and tem-
peratures, desiccation, UV ionizing radiation, and alpha particles (1–8).

Within the Herpotrichiellaceae family (Chaetothyriales), there are many recognized
species in the genus Exophiala which are adapted to a multitude of ecological niches,
including human environments (9, 10). Isolates from oligotrophic water sources, such as
sinks, drainpipes, swimming pools, bathing facilities, and drinking water, have been
described (11, 12). Species in this genus have been explored for their potential in
bioremediation applications (13, 14), and several species have been isolated from
glaciers (15) and microbial ecosystems specialized to extreme temperature and aridity,
such as Antarctic endolithic communities (16–18). We assembled a draft genome
sequence of an Antarctic strain to provide resources for comparative studies of adap-
tation and evolution of this intriguing group of fungi.

Exophiala mesophila strain CCFEE 6314 was provided by the Culture Collection of
Fungi from Extreme Environments (CCFEE) of the Mycological Section of the Italian
Antarctic National Museum. The culture was isolated from a cryptoendolithic commu-
nity at Mt. Billing (71°15=S, 163°00=E) on continental Antarctica. The rock sample was
collected using a sterile chisel and preserved at �20°C until the strain was isolated by
directly plating fragments of colonized rock on petri dishes containing 2% malt extract
agar (MEA). The pure culture was grown on 2% MEA medium plates for 6 weeks at 10°C
and DNA extracted from the total biomass following the cetyltrimethylammonium
bromide (CTAB) protocol (19). Melanin was removed through two phenol-chloroform
purification steps. Genomic DNA was sheared with Covaris S220 ultrasonicator and
sequencing library constructed using a NeoPrep TruSeq Nano DNA sample prep kit
(Illumina) in the University of California—Riverside Genomics Core.

A total of 2.9 million 2 � 300-bp paired-end sequence reads were obtained from a
multiplexed library from one Illumina MiSeq flow cell. A quality check of reads was
performed with FastQC (v0.11.3) (20), followed by genome assembly with MaSuRCA
(v2.3.2) (21), using default parameters (cgwErrorRate � 0.15), which included quality-
based read trimming and corrections. Trimmed reads averaged 198 bp. Genome scaf-
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folds were filtered of vector contamination with Sequin (v15.10) (https://www.ncbi.nlm
.nih.gov/Sequin/) and redundant scaffolds eliminated if completely aligned with at least
95% identity to a longer contig using MUMmer (v3.23) (22) as implemented in “fun-
annotate clean” in Funannotate (v0.5.5) (23). The assembly was 30.43 Mb in total length
(number of contigs, 207; N50 value, 522 kb; maximum contig size, 1.43 Mb; L50 value, 20;
GC content, 50%; coverage, 54�).

The Funannotate (v0.5.5) (23) pipeline was used to annotate the genome. Briefly,
consensus gene models were produced by EVidenceModeler (EVM) (24) using ab initio
predictions from AUGUSTUS (v3.2.2) (25) and GeneMark.hmm-ES (v4.32) (26) combined
with protein-to-genome alignments from Exonerate (v2.2.0) (27). Self-training for
GeneMark.hmm-ES was performed using default parameters, AUGUSTUS was trained
with alignments of the BUSCO ascomycota_odb9 data set (v9) (28), and prediction
parameters were archived (29). Protein annotations were assigned by similarity to Pfam
(30) and CAZy domains (31, 32) using HMMER (3.1b2) (33), MEROPS (34), eggNOG (v4.5)
(35), InterProScan (v5.20-59.0) (36), and Swiss-Prot (37) by BLASTP (v2.5.0�) (38)
searches using Funannotate defaults. A total of 10,355 protein-coding genes were
predicted and prepared for GenBank submission by the Genome Annotation Generator
(39).

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number NAJM00000000. The version de-
scribed in this paper is the first version, NAJM01000000. The Illumina sequence reads
were released under SRA accession number SRR5223779 and associated with BioProject
number PRJNA342238.
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