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ABSTRACT
We consider the joint optimization of sensor placement and trans-
mission structure for data gathering, where a given number of nodes
need to be placed in a field such that the sensed data can be recon-
structed at a sink within specified distortion bounds while minimiz-
ing the energy consumed for communication. We assume that the
nodes use joint entropy coding based on explicit communication
between sensor nodes, and consider both maximum and average
distortion bounds. The optimization is complex since it involves
an interplay between the spaces of possible transmission structures
given radio reachability limitations, and feasible placements satis-
fying distortion bounds.
We address this problem by first looking at the simplified problem
of optimal placement in the one-dimensional case. An analytical
solution is derived for the case when there is a simple aggrega-
tion scheme, and numerical results are provided for the cases when
joint entropy encoding is used. We use the insight from our 1-D
analysis to extend our results to the 2-D case, and show that our al-
gorithm for two-dimensional placement and transmission structure
provides significant power benefit over a commonly used combina-
tion of uniformly random placement and shortest path trees.

1. INTRODUCTION
Wireless sensor networks are often envisaged to comprise thou-
sands of nodes accomplishing a sensing task. Yet, the realities of
economies of scale in manufacturing and the high cost of many sen-
sors themselves mean that these nodes are currently significantly
more expensive than predicted. Therefore, typical deployed net-
works (e.g. habitat monitoring [1]) comprise a few hundred of
nodes, each with cost of a few hundreds of dollars. While we await
a future with ubiquitous cheap sensor nodes, a problem that is both
immediate and necessary is to accomplish the required tasks with a
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limited number of resource-constrained sensor nodes.
We consider the problem of deploying a finite number of sensor
nodes in a geographic area, and choosing a communication struc-
ture among the nodes on the corresponding network. A single sink
is responsible for gathering the sensor data, for storage or control
purposes. Since sensor nodes have limited battery power, an impor-
tant goal is to minimize the total power consumption of data gath-
ering, while keeping the sensing distortion within specified bounds.
An important characteristic of typical sensor networks, that can be
exploited for reducing the power consumption, is that the data mea-
sured at nodes is correlated.
Several algorithms have been proposed for energy efficient data
gathering [2, 3, 4]. However, these works do not take into con-
sideration the correlation in the data. Recent studies on the joint
rate allocation and transmission structure optimization for sensor
networks with correlated data can be found in [5, 6]. In particular,
the result of Cristescu et al [6] is similar in that it considers opti-
mal tree structures for data gathering that exploit correlation in the
measured data. Our work adds new constraints to this problem by
allowing node placement to be varied, thus introducing tough dis-
tortion constraints. This results in a more complex problem that
both requires a different approach to solve and produces novel re-
sults. Node placement for optimal coverage is a well-studied (and
difficult) problem (e.g. [7]). The work of [8] considers the problem
of energy-efficient topology aware placement. That work does not
exploit the correlation present in the data measured; also, the place-
ment constraints considered in that work are rather event driven
than related to the distortion of measurement.
A commonly used method for deploying sensor networks is the uni-
form random placement, since such a deployment is often the eas-
iest and cheapest. However, we believe that there are compelling
reasons for understanding the interactions between the node place-
ment and the data and transmission structures, and the effect of
these interactions on the efficiency of utilization. First, studying
the impact of placements lets us understand if other easy-to-deploy
configurations of sensor nodes can give us important gains in power
consumption. As we show in this paper, this is likely to be the
case. Second, controlled placement will be necessary for appli-
cations which have to deploy limited numbers of expensive nodes
(such as seismic nodes which need high precision) and hence the
location of sensors has to be optimized.
In this work, we are particularly interested in the relation between
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Figure 1: Two possible placement and structure configurations of
nodes A and B that satisfy specified sampling distortion bounds are
shown. A1 and B1 transmit their data over shorter cumulative dis-
tances than A2 and B2 respectively, but B2 can code its data with that
of A2 to exploit their high data correlation as a result of their proxim-
ity. Thus, determining the more power-efficient configuration among
many possible ones that satisfy distortion bounds is difficult due to the
interplay of placement and transmission structure.

the data reconstruction distortion that results from the node place-
ment, and the power requirements of data gathering from the sen-
sors. An instance of the problem is shown in Fig. 2 where the
Voronoi cells represent the distortion, and the dotted lines describe
a possible tree structure to be used for data gathering.
More specifically, N nodes need to be deployed over a finite ge-
ographic region A, whose two-dimensional area is A. Each of
these nodes takes samples from a three dimensional random field
X(u, v, t), where (u, v) is the spatial location and t is the time-
axis. Each sensor transmits periodically its sensed data, through
multi-hop routing, to a sink located at the center of A. The sink
can reconstruct the sensor field in the region within specified maxi-
mum and average distortion bounds (Dmax and Davg respectively).
We assume that sampling in the time domain is sufficiently high
(above Nyquist frequency) for the sink to fully reconstruct the time-
axis. Thus, we only need to consider the distortion in reconstructing
snapshots along the spatial axes, X(u, v).
To enable data gathering, the sensor nodes build a routing tree rooted
at the sink, and transmit data along this tree. Note that there are sit-
uations where tree structures are not optimal, but for the sake of
simplicity we will limit our study to data gathering trees. The data
gathering procedure is periodic and originates at the leaves, pro-
ceeding iteratively towards the sink through multihop forwarding.
At each iteration, a junction node receives data from its children,
decodes the received data, jointly codes the decoded data with its
own data, and forwards the encoded data to its parent on the tree.
We use a simple but relevant energy related cost function to study
the interplay between placement (which determines locations of
nodes) and transmission structure (which determines how sources
on the tree are connected). Namely, the total cost of data gathering
over the tree structure described above can be written as

N�

i=1

Rate(i) × CommunicationCost(i) (1)

where Rate(i) is the total amount of data transmitted by node i,
and CommunicationCost(i) is the per-bit transmission cost from
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Figure 2: The Voronoi cells (solid lines) represent the distortion in
each cell. The tree structure (dotted lines) represents a possible trans-
mission structure.

node i to its parent on the tree. Since the data at nodes is correlated,
the rate at node i, Rate(i) depends on the particular set of sources
that are in the sub-tree rooted at i, and on their locations. Similarly,
the transmission cost per-bit, CommunicationCost(i), depends
on the identity of the particular node used as next hop to sink, and
on its position. Thus, the total power consumption depends on both
the placement and the transmission structure.
An illustration of this interplay is seen in Fig. 1, where even in a
simple example with two nodes, it is not easy to determine the most
power-efficient configuration. In terms of transmission distance,
configuration 1 is better since A1 and B1 transmit each over smaller
distance than A2 and B2, respectively. However, in configuration
2, A2 and B2 are closer to each other than nodes A1 and B1, hence
they are likely to be stronger correlated. This correlation can be
exploited by properly choosing the transmission structure (A2 →
B2 → sink). This can significantly reduce the amount of data that
node B2 needs to generate, by using side information from node A
in coding its data, thus reducing the total power consumption. In
general, if the data is correlated, the shortest path tree (SPT) is not
necessarily optimal as transmission structure [6].
The optimal solution involves searching through the spaces of all
possible configurations that satisfy distortion bounds, and all possi-
ble transmission structures that are feasible given radio reachability
limitations. While this combined optimization has not been consid-
ered in prior work, it is known that even a subset of our problem is
NP-hard [5, 6] (namely, the transmission structure optimization for
a given placement).
The rest of this paper is structured as follows. In Section 2, we
formulate precisely our problem, and describe the sensing, commu-
nication, aggregation and data reconstruction models. In Section
3, we consider the one-dimensional variant of the problem, pro-
vide analytical solutions for a simplified aggregation model and
analyze the joint encoding case numerically in detail. In Section
4, we extend the solutions from the one-dimensional case to the
two-dimensional case and show that it out-performs typical random
placement approaches. Finally, in Section 5, we discuss various
other interesting performance aspects of our solution, for instance,
even though we optimize only for total power, our solution provides
large benefits in terms of per-node energy utilization.
To the best of our knowledge, this is the first study of the interaction
between node placement under distortion constraints, transmission
structure optimization, and rate allocation in the context of sensor



networks that measure correlated data.

2. PROBLEM FORMULATION
We assume that we are given N nodes, that need to be placed in a
two dimensional region A, of area A. For simplicity, we assume
that the region is circular, and has a radius L. The placement of
nodes, P = {(xi, yi) ∈ A, 1 ≤ i ≤ N} is constrained by two
distortion metrics, the maximum distortion Dmax, defined as the
maximum acceptable distortion at any point in A, and the average
distortion Davg , defined as the distortion per unit area over A.

2.1 Sensing Model
A frequently used sensing model is the Gaussian random field [9,
6]. This model is suitable for analysis and can provide the essen-
tial intuition to solve the problem in practice. We assume that the
field is a continuous-space two dimensional stationary random field
X(u, v), where u and v represent the geographic co-ordinates of
points in the region A. Without loss of generality, we assume that
the random field has zero mean, that is, µX = E[X(u, v)] =
0 ∀ u, v. We make simple assumptions about the nature of the ran-
dom field, and make no assumptions on whether this field is band-
limited or not. Let RX(τx, τy) denote the covariance function as-
sociated to the random field X(u, v). The correlation between two
points (ui, vi) (position of node i), and (uj , vj) (position of node
j) is given by rX(i, j) = RX(uj − ui, vj − vi). The correlation

functions are RX(τx, τy) = e−a
√

τ2
x+τ2

y , or in terms of Euclidean
distance, RX(d) = e−ad. Thus, rX(i, j) = e−adij , where dij is
the Euclidean distance between nodes i and j. Such a model is typ-
ical of spatially varying data and is used widely in spatial statistics
[10].
The power consumption incurred depends on two factors: the dis-
tance from a transmitting node to its parent, and the aggregate amount
of data transmitted over that distance.

2.2 Communication Model
For the transmission power, we use a standard transmission model
that assumes that the power per bit for transmission over a wireless
link is a function of the distance between the transmitter and re-
ceiver. We assume that there is an underlying transmission schedul-
ing protocol (such as SMAC [11]) that schedules transmissions over
a tree to avoids collisions. For the scope of this paper, we will ig-
nore the protocol overhead resulting from creating the schedules,
assuming that this overhead is small in comparison with the data
size.
If the distance between the transmitter and receiver is d, then the
power is E ∝ dκ where κ is called the path-loss exponent (typi-
cally 2 ≤ κ ≤ 4 [12].1 In addition, each node has a maximum
power at which it can transmit, which places a limit on the maxi-
mum transmission range, dκ ≤ Emax. Our model is simplistic to
keep the optimization manageable for this paper. In practice, two
additional factors need to be considered: (a) radios often have non-
isotropic propagation, and, (b) radios adjust power levels in discrete
steps rather than at arbitrarily fine granularity.
The radio communication constraint overlaps with the maximum
distortion constraint that we will discuss shortly. Both these con-
straints limit the maximum separation between nodes in the net-
work. Therefore, we do not consider this constraint explicitly in the

1In this work, we do not consider reception overhead, which would
increase the cost of communication per-hop, and can only improve
our results.

rest of this paper. We will consider the impact of communication
bounds in greater depth in an extended report.

2.3 Aggregation Model
For our aggregation model, we assume that each node performs
complete joint entropy coding of all the data coming from its cor-
responding sub-tree. We assume that each node quantizes its sam-
ples with an independent quantizer and all quantizers use the same
quantization interval. In order to express the amount of data in bits
resulting from first quantizing independently at each node and then
performing joint entropy at a given node of all that data in its corre-
sponding sub-tree, we will use the differential entropy as described
in [13]. The differential entropy of a k-dimensional multivariate
normal distribution Nk(µX ,RX) is:

h(Nk(µX ,RX)) =
1

2
log(2πe)k det(R)

We approximate the joint discrete entropy associated to the quan-
tized samples by assuming a high-resolution uniform scalar quan-
tization with step-size ∆ for all the nodes. Thus, as ∆ → 0, the
distortion at each node → ∆2/12 ([13]). Also, due to the fine
quantization, we assume that noise is uncorrelated with the signal.

H(Nk(µX ,RX)) ≈ h(Nk(µX ,RX )) − k log ∆

For any node i let Ti represent the set of nodes in the sub-tree rooted
at node i. Node i receives encoded data from its children, first de-
codes it, and then jointly compresses it together with its own data
(quantized samples). The total data rate sent from node i is approx-
imately:

H(Nk(0, R[Ti])) =
1

2
log(2πe)|Ti| det(R[Ti])−|Ti| log ∆ (2)

where R[Ti] denotes the covariance matrix associated with the nodes
in the sub-tree Ti, and |Ti| represents the number of nodes of the
sub-tree.

2.4 Data Reconstruction Model
We now describe the reconstruction procedure used by the sink to
reconstruct the entire continuous-space sensor field given the en-
coded data from a discrete set of sample points at the positions
of the N nodes. The sink periodically receives quantized values
X̂(u1, v1), X̂(u2, v2)..X̂(uN , vN ) from the N sensing nodes placed
at points (u1, v1), (u2, v2)..(uN , vN ) respectively. In general, given
these N quantized values, an interpolation procedure will result in
a reconstruction, X̂(u, v), that gives the samples at any location
(u, v) in the region A. In this work, we use a nearest-neighbor re-
construction procedure, which, although very simple, helps us un-
derstand the complex interactions in our problem and focus on the
power minimization issue. In future work, we plan to improve our
results using better interpolation models.2

Let Vi be the Voronoi cell corresponding to the sensor node i lo-
cated at position (ui, vi) (which is the centroid of Vi). Then:

X̂(u, v) = X̂(ui, vi) iff ||(u, v) − (ui, vi)||
≤ ||(u, v) − (uj , vj)||, (∀)j 6= i

Given that the sink uses a nearest neighbor reconstruction proce-
dure, we formulate the coverage and distortion constraints. The
2Note that optimal reconstruction is difficult, because of the differ-
ent issues of aliasing, non-uniform quantization, etc.



first constraint is a coverage constraint, which ensures that the set
of Voronoi cells covers the region A:

�
i=1,..,N

Vi = A (3)

To evaluate the maximum distortion, we use the fact that for an
isotropic radially decreasing correlation model, the maximum dis-
tortion points are located along the boundaries of the Voronoi cells.
By definition, all Voronoi cells are convex because of the prop-
erty of minimum distance decoding, therefore, the furthest points
in each Voronoi cell are the corners of the cell. The maximum dis-
tortion constraint controls the distance from these furthest points in
each cell to the centroid of the corresponding Voronoi cell. Thus,
for any point (u, v) in region A, the distortion of reconstruction
when it is assigned the same value as the nearest sampled point
(ui, vi) is:

Distortion(u, v) = MSE(u, v)

= E[(X̂(ui, vi) − X(u, v))2] ≤ Dmax

with the i sensor being closest to (u, v). Note that the error is com-
puted between the quantized version of the closest sample given by
X̂(u, v) which is received at the sink, and the actual unquantized
random variable, X(u, v).
Using the correlation model in Section 2.1, we obtain the distortion
between the unquantized random variables at the two points:

MSE(u, v) = E[(X̂(u, v) − X(u, v))2]

= E[(X̂(ui, vi) − X(u, v))2]

= E[(X(ui, vi) + nQ(ui, vi))
2] + E[X(u, v)2]

−2E[(X(ui, vi) + nQ(ui, vi))X(u, v)]

= E[X(ui, vi)
2] + E[X(u, v)2]

−2E[X(ui, vi)X(u, v)]

= σ2 + σ2 − 2σ2e−adij

= 2σ2(1 − e−adij ) ≤ Dmax (4)

where nQ is the quantization noise between the quantized random
variable and the original random variable, which is assumed to be
small due to fine quantization. As expected, the above equation
shows that the mean square error (MSE) is a concave and mono-
tonically increasing function of the distance between the location
(u, v) and the closest sample point. Therefore, the maximum dis-
tortion bounds the distance between any point in the region A, and
the nearest sample point. Thus, for the particular model that we
consider, the maximum allowed distance Rmax, is:

Rmax = −1

a
log(1 − Dmax

2σ2
) (5)

The average distortion constraint, defined as the mean square er-
ror in data reconstruction over the entire region MSE(A), can be
computed by integrating MSE(u, v) over A.

AvgDistortion(A) = MSE(A)

=
1

A

�
A

MSE(u, v)dudv ≤ Davg (6)

where MSE(u, v) is calculated as shown in (4). Then, for N sen-
sors, each with corresponding Voronoi cell Vi,

MSE(A) =
1

A

N�

i=1

MSE(Vi)

=
1

A

N�

i=1

�
Vi

MSE(u, v)dudv

=
1

A

N�

i=1

�
Vi

E[(X̂(u, v) − X(u, v))]dudv

≤ Davg (7)

2.5 Objective
We state now formally our objective to minimize the total power
cost, given the constraints described so far. Namely, our problem is
to find a placement P of nodes, |P | = N , and a tree ST rooted in
the sink, that spans the nodes in P , such that to

Minimize (1) under constraints (3), (4), (6). (8)

3. OPTIMAL PLACEMENT AND STRUC-
TURE IN THE ONE-DIMENSIONAL CASE

Although our final goal is to solve the problem in the two-dimensional
case, the one-dimensional case is significantly more tractable since,
as we will show shortly, the transmission structure optimization is
trivial, and it is possible to understand the placement problem in
isolation.
We adapt the problem statement in Section 2 for the one-dimensional
instance. In this case, let X(s), 0 ≤ s ≤ L, represent the measured
random field along a one-dimensional line of length L, as shown
in Fig. 3. Since all transmission terminates at the sink, instances of
the problem where the sink is between nodes (not at the corner of a
line) can be split into two independent optimizations, one each for
nodes on either side of the sink with the sink at the corner. Further,
due to symmetry, it does not matter which end of the line the sink
is placed. Therefore, the N nodes 1, 2, .., N are placed in sequence
along the line with the sink at the left corner such that node 1 is
closest to the sink and node N is the furthest. We denote the dis-
tance between node i and node i − 1 by ri; {ri}N

i=1 represents the
set of unknowns in the one-dimensional optimization.

r1 r2 r3 r3 /2

1 2 3

L

Sink
data flow

Figure 3: One-dimensional node placement.

3.1 One-Dimensional Constraints
The coverage and distortion constraints can be readily formulated
similar to (3), (4) and (6). The Voronoi cells for the one-dimensional
problem are the mid-points between adjacent pairs of sample points
(nodes) as shown in Fig. 4. Without loss of generality, we use a
boundary extension of the Voronoi cell for the last node, rN . Thus,
the coverage constraint can be rewritten as:

Coverage Constraint:
N�

i=1

ri + rN/2 = L. (9)
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Figure 4: Voronoi cells and Maximum distortion distances for linear
placement.

As described in (4), the maximum distortion constrain restricts the
maximum distance from any node to the edge of the nearest neigh-
bor cell. Hence,

r1 ≤ Rmax
ri

2
≤ Rmax ; (∀) 2 ≤ i ≤ N (10)

Similar to (7), the average distortion (defined as the distortion per
unit length) is given by:

MSE(L) =
1

L

�
L

MSE(u)du

=
1

L

N�

1

�
Vi

E � (X̂(u) − X(u)) � du

=
1

L

� � r1

0

2σ2(1 − e−ad) + 2
N�

2

� ri
2

0

2σ2(1 − e−ad)

+

� rn
2

0

2σ2(1 − e−ad) �
= 2 − 2

La � 2N − e−ar1 − 2
N�

2

e−ari/2 − e−arN /2 � (11)

We analyze the joint placement-structure optimization in two steps.
First, we show that the optimal structure is simple shortest path
routing. We then proceed to optimizing the placement for different
choices of aggregation functions.

3.2 Optimal Structure is Shortest Path
Proposition 1: In a one-dimensional sensor network where there is
a single sink and joint entropy coding is used at each hop, shortest
path communication is optimal in terms of minimizing total energy.
We only provide a brief outline of the proof of this proposition due
to lack of space. If node i transmits its data to a node j where j > i
(i.e. j is further from the sink than i), the data from j must be
eventually routed through i to minimize power consumption. This
results from the fact that power per-bit increases super-linearly with
distance (since κ is between 2 and 4), hence it is always better
to multi-hop through as many intermediate hops as available [14].
Thus, to minimize power consumption, the aggregate data from j
must be routed through i. On the other hand, joint entropy coding
is a monotonically increasing function of the number of sources,
hence, if node i transmits its data to a node j where j > i, the
jointly coded data at j is larger than the amount of data when i did
not transmit to j, and this consumes more power to transmit to the
sink.

3.3 Optimizing Placement for 1-d transmis-
sion

Given that the transmission structure is shortest path forwarding
from nodes towards the sink, the placement problem can be refor-
mulated as:

{ri}N
i=1 = arg min

ri

N�

i=1

H(Xi, Xi+1, .., XN )rκ
i

= arg min
ri

N�

i=1 � 1

2
log(2πe)(N−i+1) det(R[Ti])

−(N − i + 1) log ∆] rκ
i (12)

under coverage (9) and distortion constraints (10),(11). In the above
equation, Ti (the sub-tree rooted in i) is the set of nodes i, i +
1, .., N as in (2).
It is hard to solve (12) analytically for an arbitrary correlation struc-
ture. We thus first obtain a closed-form solution for a simplified
scenario, where we assume zero correlation between data sampled
at different nodes. In this case, R[Ti] is diagonal (∀)i ∈ {1..N}.

3.3.1 Analytical Solution for Independent Data at
Nodes

In this case, the optimization in (12) reduces to minimizing� N
1 � (N − i + 1)( 1

2
log(2πe) − log ∆) 	 rκ

i since det(R[Ti]) is
unity when nodes are uncorrelated and the variance of the random
process is one. Dropping the constant scaling factor that does not
impact the minimization, we get:

{ri}N
i=1 = arg min

ri

N�

i=1

(N − i + 1)rκ
i (13)

As an example, suppose in Fig. 3 the samples at nodes 1, 2 and 3 are
uncorrelated, and each of the nodes has one unit of data to transmit
to the sink. In this case, node 3 transmits one unit of data, node 2
transmits two units (its own unit + one forwarded unit), and node 1
transmits three units. Let us now see the impact of each constraint
in the above optimization.
First, we consider the optimization in (13) when only the coverage
constraint (9) is active. Using a Lagrangian multiplier, we obtain

{ri}N
i=1 = arg min

ri

N�

i=1

(N − i + 1)rκ
i − λ

�
(

N�

i=1

ri) + rN/2�
We solve the above Lagrangian optimization using partial deriva-
tives:

ri = � λ

κ(N − i + 1) 
 −(κ−1)

, (∀) 2 ≤ i ≤ N ;

rN = � 3λ

2κ 
 −(κ−1)

where λ =

�
L� N−1

1 ( 1
κ(N−i+1)

)−(κ−1) + 3
2
( 3
2κ

)−(κ−1)
� κ−1

Fig. 5 shows the optimal {ri}N
i=1 in a placement with N = 15

nodes over a line of length L = 200, for the case of quadratic
and cubic path-loss exponents, κ = 2 and 3. As expected, nodes
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Figure 5: Placement for different values of pathloss exponent (κ). As
κ increases, placements become more uniform, since communication
power dominates differences in aggregated data size.
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Figure 6: Impact of distortion constraints. The Rmax constraint
places a ceiling on the maximum ri whereas the Davg constraint equal-
izes ris to reduce the average distortion.

further from the sink transmit smaller amounts of data over longer
distance than closer ones, which need to transmit larger amounts of
aggregated data. However, the impact of increasing data load for
nodes closer to the sink is balanced by the effect of the path-loss
exponent κ, since communication power increases super-linearly
with distance. Thus, the optimal choice reflects a balance between
these two opposing factors. As the path-loss exponent is increased
from κ = 2 to κ = 3, the communication overhead dominates,
hence, spacing between nodes becomes more uniform
The maximum and average distortion bounds impact on placement
in significantly different ways as shown in Fig. 6. The maximum
distortion constraint places a ceiling on the maximum separation
between nodes, whereas the average distortion constraint reduces
the mean error by making cells more equally sized.

3.3.2 Performance of Joint Coding Case
For the analysis of the correlated data case, we use MATLAB op-
timization toolbox for numerically finding the optimal solution of
(12). We use the model in 2.1 with parameter a = 0.001 (high cor-
relation) in this study. For this model, the placement of nodes for

Sink

Figure 7: The Voronoi cells (solid) and transmission structure
(dashed) for a wheel placement, for data-gathering at a sink located
at the center of the circular region A.

the joint coding case has essentially the same behavior as that for
the zero correlation case. This behavior results from the continuous
and slowly decaying nature of our correlation model.
We evaluate the performance of our optimal one-dimensional place-
ment by comparing its power consumption to that of a commonly
considered uniform placement. We show the relative performance
for two values (a relatively small one and a relatively large one,
given our model) for each variable, as shown in Table 1. For a rea-
sonable choice of distortion and network parameters, we see that
even for low number of nodes we get a factor of 1.2 to 2 benefit
over the uniform spacing case. For a larger network, these gains
increase. Among other parameters, increasing Rmax increases the
flexibility in placement, hence it makes possible to further minimize
power consumption. Increasing L for fixed Rmax has the opposite
effect, since the feasible placement region reduces. Increasing the
number of nodes N (for fixed Rmax), increases both the corre-
lation between nodes (hence the aggregation benefit), and reduces
the average per-hop distance for multihop transmission, thus, power
consumption reduces.

4. TWO-DIMENSIONAL PLACEMENT AND
STRUCTURE

While the one-dimensional problem instance can be well-understood
since node placement optimization separates from transmission struc-
ture optimization, the two-dimensional case is significantly more
complex. Even for a fixed location of nodes, the problem of opti-
mizing the transmission structure for power efficient data gathering
is NP-complete. If the aggregation function at nodes is concave
and dependent on the number of nodes that relay via that node,
then the optimization problem includes the Steiner tree problem;
moreover, the problem is NP-complete also when the aggregation
function is known [5, 15]. If the aggregation function at a node de-
pends also on the transmission structure among the nodes that relay
via that nodes, then, even for very simple settings, the problem re-
mains NP-complete [6]. We expect that the arbitrary positioning of
nodes and the distortion constraints can only increase the complex-
ity of the joint placement and transmission optimization problem,
thus we conjecture that our problem is NP-complete too. Our goal
in this section is, therefore, to provide good approximation algo-
rithms based on intuition from the one-dimensional solution.



Pathloss Exp
(κ)

Rmax N L Davg

Small (10) Large (20) Small (10) Large (20) Small(100) Large(300) Small (0.05) Large(0.15)
κ = 2 1.3 1.8 1.3 1.8 1.9 1.3 1.5 1.6
κ = 3 1.3 1.5 1.2 1.6 1.5 1.3 1.4 1.5

Table 1: Gain of optimal placement over uniform placement for different settings.
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Figure 8: Deriving the Rmax constraint in 2d placement. For any of
the Voronoi cells, the furthest points are the corners of the cell.

4.1 Placement Strategy
Our two-dimensional placement strategy replicates the linear place-
ment along a wheel structure as shown in Fig. 7. The wheel com-
prises nspoke spokes where each spoke has nradial nodes placed
along it. Each node transmits data using shortest path forwarding
along the spoke on which it is placed. Note that the shortest path
might not be always optimal for explicit communication coding [6],
however we restrict to such simple gathering trees, which can be
constructed distributedly in polynomial time. We study in more de-
tail the placement problem; the study of alternative transmission
structures is subject of further work.
Fig. 7 shows both the transmission structure and the Voronoi cells
for such a placement. Besides being analytically tractable, the wheel
structure captures the essential behavior that we would want from
an efficient two-dimensional placement and transmission structure.
The network is dense closer to the sink where the data load is
higher, and sparse further away from the sink.
While the two-dimensional placement is simple once we have de-
cided that the placement and transmission structure is along a wheel,
many questions remain to be solved. How do we place the nradial

nodes along each spoke such that the distortion bounds are not vi-
olated over the entire two-dimensional area, A? Given N nodes,
how many nodes, nradial, do we place along each spoke and how
many spokes, nspoke, do we place angularly over the wheel? A
lookahead into the results in Fig. 9 suggests that performance gains
are not only sensitive to the choices of nspoke and nradial, but there
is a non-obvious choice of these parameters that provides maximum
power benefit.
Note that, even if we propose a deterministic placement strategy,
our approach provides meaningful insight into the design of ran-
dom radial distributions for nodes placement in an arbitrary area in
practical scenarios.
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Figure 9: As the number of nodes per-spoke (nradial) is increased,
gains initially improve but eventually R̄max is too constrained, hence
gains reduce.

4.1.1 Maximum distortion bound
We will translate the maximum distortion constraint for the two-
dimensional case, to a one-dimensional bound that we can solve
using the technique described in Section 3. Consider the Voronoi
cells for a single spoke as shown in Fig. 8. As discussed in Sec-
tion 2.4, the maximum distortion corresponds to the distortion at
the point that is furthest from its nearest sampled point. By defi-
nition, such a point should lie on the Delaunay triangulation of the
sample points. Since each Voronoi cell is convex, this point lies on
one of the corners of the cell. Due to radial symmetry, the Voronoi
cells for nodes on each spoke are identical, hence, it suffices to con-
sider the maximum distortion bound on cells corresponding to any
one of the spokes.
Consider the triangle with sides a, b and c that is formed between
any sampling point and one of the corners of its Voronoi cell (see
Fig. 8). The maximum distortion constraint is satisfied if c ≤ Rmax

(5). Since the radius of the region A is L, the angle between any two

spokes is θ = � 2π
nspoke � , and b ≤ L sin � θ

2 � , then it follows that a

sufficient condition for c ≤ Rmax is a ≤ � R2
max − L2 sin2 � θ

2 � .
Thus, in order to have the two-dimensional maximum distortion
distance of Rmax satisfied, it suffices to place nodes along each
spoke such that the one-dimensional distortion distance along each
line is bounded by:

R̄max = � R2
max − L2 sin2 � π

nspoke � (14)

Due to the place limitations, we do not consider the 2D average dis-
tortion case from this paper; we will analyze it in a more extended
publication shortly.
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Figure 10: As the number of nodes placed in the network is increased,
the gains increase.

4.2 Choosing the Number of Spokes and Nodes
per Spoke

The tradeoff involved in finding the optimal choice of nspoke and
nradial can be understood from (14). From the one-dimensional
analysis, we know that separately increasing either rradial or R̄max,
and keeping the other constant, can reduce power consumption.
However, in this case, the two parameters have opposite effects on
each other. For instance, if rradial is increased, nspoke decreases
and, therefore, so does R̄max (14). This interaction is illustrated in
Fig. 9.
How do we obtain a good choice of nradial and nspoke? While an
exact solution for determining the optimal choice of wheel place-
ment parameters is hard to find, an intuitive and effective approx-
imation is to find the placement that maximizes nspoke × R̄max.
Our approximation algorithm performs within 10% of the optimal
(computed through exhaustive search) for configurations that we
have tested.
Fig. 10 plots the improvement of an efficient wheel placement (as
determined by the above metric) over the uniformly random place-
ment in the circular area A, where the transmission structure is a
shortest path tree. When the number of nodes in the network, N is
low, the performance gains are low, since the distortion bounds pro-
vide less flexibility to optimize placement. As N increases, these
gains increase up to a factor of 5. Thus, not only does our wheel
placement consistently out-perform a random placement with short-
est path trees, it can potentially provide an order of magnitude im-
provement if sufficient flexibility is allowed in terms of number of
nodes and distortion bounds.

5. CONCLUSIONS AND FURTHER WORK
To summarize, we have formulated an optimization problem that
considers jointly node placement, transmission structure and data
structure in a data gathering sensor network, in terms of an energy-
related cost function. We have studied in detail the 1-D case, namely
we provided a closed-form solution for the node placement when
the data is independent, and outlined the methodology to solve nu-
merically the case when aggregation at nodes results in joint en-
tropy coding, for arbitrary correlation structures. We used our in-
sights from the 1-D setting to propose an approximation algorithm
that places nodes in a radial “wheel” structure in the 2-D case. We
show that significant power gains can be obtained with such a node
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Figure 11: The power gains at the bottleneck node are very large, with
50 times improvement for large N .

placement scheme over commonly used uniformly random place-
ments.
We have dealt with only a subset of issues raised by the above for-
mulation in this paper. We now briefly mention some extensions
to our study, and some insights that demonstrate other substantial
benefits of our placement.
Optimizing bottleneck energy consumption: Our problem for-
mulation optimizes for the total power consumption in data-gathering,
but in a practical scenario, metrics such as network lifetime are
likely to be as important. A commonly used metric for network
lifetime is the time at which the first node dies, in other words, what
is the power consumption of the bottleneck node. For instance, in a
typical sensor network, the bottleneck node is the one that is closest
to the sink, since it forwards a large amount of traffic. Fig. 11 shows
that the power consumption of the bottleneck node in the optimal
placement is two orders of magnitude lower than in the uniform
random placement. Thus, huge gains in network lifetime can be
expected from our optimized placement. In future work, we seek to
incorporate this metric explicitly into our optimization.
Extension to Slepian-Wolf coding: While our work considers the
explicit communication case, where nodes have to receive data to
be able to code jointly, Slepian-Wolf type of coding [13] enables
coding of data at nodes without explicit communication, assuming
that knowledge about the joint statistics are available at each node.
The Slepian-Wolf instance of our problem can be easily solved by
applying a result from [6], which shows that the optimal transmis-
sion structure is always an SPT, and the optimal rate allocation can
be found by solving an LP optimization problem.
Robustness to Node Failures and Inaccuracies in Correlation
Model: Our work makes some simplifying assumptions regarding
node stability, radio connectivity and the availability and stability
of a correlation model. In practice, all these parameters are subject
to large variability due to environmental factors. For instance, it is
well-known that nodes fail and radios are unpredictable. Thus, a
shortest path-based radial transmission structure may not always be
the most efficient due to packet-loss or failure of intermediate hops.
A routing strategy such as Directed Diffusion ([4]) will re-route
data through a different spoke, changing the aggregation benefit, a
factor that we have not considered in this work. In addition, our
work optimizes for a well-known correlation model, but a desirable
feature in practice may be easy deployment under varying condi-



tions. In future work, we intend to evaluate the robustness of our
design to these variables.
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