
UCSF
UC San Francisco Previously Published Works

Title
Exploring the roles of RNAs in chromatin architecture using deep learning.

Permalink
https://escholarship.org/uc/item/22n6g8rc

Journal
Nature Communications, 15(1)

Authors
Kuang, Shuzhen
Pollard, Katherine

Publication Date
2024-07-29

DOI
10.1038/s41467-024-50573-w
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/22n6g8rc
https://escholarship.org
http://www.cdlib.org/


Article https://doi.org/10.1038/s41467-024-50573-w

Exploring the roles of RNAs in chromatin
architecture using deep learning

Shuzhen Kuang 1 & Katherine S. Pollard 1,2,3

Recent studies have highlighted the impact of both transcription and tran-
scripts on 3D genome organization, particularly its dynamics. Here, we pro-
pose a deep learning framework, called AkitaR, that leverages both genome
sequences and genome-wide RNA-DNA interactions to investigate the roles of
chromatin-associated RNAs (caRNAs) on genome folding in HFFc6 cells. In
order to disentangle the cis- and trans-regulatory roles of caRNAs, we have
compared models with nascent transcripts, trans-located caRNAs, open
chromatin data, or DNA sequence alone. Both nascent transcripts and trans-
located caRNAs improve the models’ predictions, especially at cell-type-
specific genomic regions. Analyses of feature importance scores reveal the
contribution of caRNAs at TAD boundaries, chromatin loops and nuclear sub-
structures such as nuclear speckles and nucleoli to the models’ predictions.
Furthermore, we identify non-coding RNAs (ncRNAs) known to regulate
chromatin structures, such asMALAT1 andNEAT1, as well as several new RNAs,
RNY5, RPPH1, POLG-DT and THBS1-IT1, that might modulate chromatin archi-
tecture through trans-interactions in HFFc6. Our modeling also suggests that
transcripts from Alus and other repetitive elements may facilitate chromatin
interactions through transR-loop formation. Our findings provide insights and
generate testable hypotheses about the roles of caRNAs in shaping chromatin
organization.

The human genome is folded into complex structures within the
nucleus with multiple levels of organization, including compartments,
topologically associated domains (TADs) and chromatin loops1,2. This
spatial organization is dynamic and varies across cell types and tissues,
and it is interconnected with cellular processes such as gene tran-
scription and DNA replication3–5. Recent studies have unraveled the
critical roles of CTCF and cohesin in three-dimensional (3D) genome
organization, including their involvement in TAD and loop formation
via the loop extrusion mechanism6–8. Other proteins, such as YY1 and
ZNF143, are potentially also regulating chromatin organization9–12.
However, all these structural proteins are widely expressed, and alone
cannot explain the dynamic and cell-type specific aspects of chromatin
organization.

A growing number of studies point to transcription as a potential
contributor to the dynamic aspects of genome folding13–17. While 3D
chromatin structures are known to play a role in gene silencing and
activation, the process of transcription can in turn affect 3D genome
folding in a cell-type- or tissue-specificmanner13,18,19. For example, TAD
boundaries are often located near or at active gene promoters3. Fur-
thermore, transcribing RNA polymerases (RNAPs) are reported to act
as moving barriers for the loop-extruding cohesins13. Thus, some
chromatin dynamics are expected to reflect a cis effect of nascent
transcription.

Transcribed RNA molecules may also contribute to chromatin
dynamics. Specifically, RNAs known as chromatin-associated RNAs
(caRNAs) have been observed to directly interact with DNA or to bind
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chromatin-associated proteins14,16,20,21. These caRNAs include nascent
RNAs, long non-coding RNAs (lncRNAs), small nuclear RNAs (snRNAs),
small nucleolar RNAs (snoRNAs), enhancer RNAs (eRNAs) and repeat
RNAs15–17,22,23. Most caRNAs bind close to their locus of origin (cis-
interactions), but many interact with distant genomic loci (trans-
interactions). Several of the latter trans-located caRNAs have been
implicated in chromatin regulation. For example, lncRNA HOTTIP
promotes distal TAD formation by forming RNA-DNA hybrid struc-
tures (R-loop) in leukemia24. Enhancer RNAs have been proposed to
mediate promoter-enhancer interactions by forming trans R-loops at
Alu sequences25. Several other trans-located caRNAs, such as lncRNAs
MALAT1, NEAT1, and Firre, also play critical roles in chromatin
organization26–29.

CaRNAs, particularly non-coding RNAs (ncRNAs), are proposed to
shape 3D genome structure viamultiplemechanisms14–17. First, caRNAs
can recruit chromatin regulatory proteins to specific genomic loci. For
example, caRNAs have been found to directly bind CTCF and serve as
locus-specific factors to recruit CTCF to TAD boundaries and loop
anchors24,30–34. Perturbing the abundance of RNAs or mutating the
RNA-binding region of CTCF weakens the insulation of TAD bound-
aries or disrupts the formation of chromatin loops24,30,31,34. Second,
caRNAs can act as scaffolds to organize chromosomal architecture by
integrating multiple regulatory proteins. A well-known example is the
lncRNA Xist, which initiates andmaintains X chromosome inactivation
by interacting with proteins15. Third, caRNAs can drive phase separa-
tion and coordinate the formation of various membrane-less nuclear
bodies16,17. For example, the lncRNA NEAT1 induces the assembly of
paraspeckles via phase separation and is indispensable for this nuclear
structure26,35.

Given the relatively small number of functionally characterized
trans-located caRNAs in genome folding, we hypothesized that other
examples remain tobediscovered. To explore this hypothesis,weused
machine learning and bioinformatics tools to interrogate RNA-DNA
interaction data. Several high-throughput approaches have been
developed to globally profile caRNAs, including chromatin-associated
RNA sequencing (ChAR-seq)36, global RNA interaction with DNA
sequencing (GRID-seq)37, RNA & DNA split-pool recognition of inter-
actions by tag extension (RD-SPRITE)28, mapping of RNA-genome
interactions (MARGI)21 and its improved version in-situ MARGI
(iMARGI)20,38,39. These techniques enable genome-scale investigations
of the mechanisms through which dynamically expressed caRNAs
contribute to nuclear organization.

Modeling 3D genome folding using machine learning offers an
efficient way to study chromatin dynamics that complements experi-
mental strategies. Recently, deep learning models, such as Akita40,
DeepC41 and ORCA42, have been developed to predict 3D genome
structure fromDNA sequence. Since thesemodels are highly accurate,
they enable researchers to decode sequence determinants of genome
folding through computational techniques such as in silico mutagen-
esis and feature importance scores43. More recently, models incor-
porating epigenomic data were built to achieve cell-type-specific
predictions44,45. Significantly, these models learned the sequence and
epigenetic correlates of 3D genome folding. The capability of deep
learning models to probe sequence and epigenetic dependencies of
genome foldingmotivated us to use this approach to explore the roles
of caRNAs in 3D genome architecture.

In this study, we thus extended the Akita model to predict cell-
type-specific chromatin contact frequencies using not only DNA
sequence but also RNA-DNA interaction data. We call the resulting
modeling framework AkitaR. To advance our understanding of the cis-
and trans-regulatory roles of caRNAs in chromatin architecture, we
designed AkitaR to use either nascent RNA or trans-located caRNA.
Comparisons of these models to each other and to models trained on
sequence or open chromatin data allowed us to dissect how each of

these relate to chromatin interaction frequencies genome-wide. We
showed that AkitaR achieved significantly better predictions on
regions of the human genome with cell-type-specific genome folding.
Particularly, some chromatin interactions were uniquely captured by
the model with trans-located caRNAs. Examination of the feature
importance scores showed not only the general contribution of caR-
NAs at CTCF peaks, TAD boundaries and loop anchors but also
revealed slightlydifferent contributions ofdifferent types of caRNAs at
nuclear structures, such as snoRNAs in nucleoli and nuclear speckles.
This enabled us to develop testable hypotheses about the roles of
specific types of caRNAs in genome folding.

Results
In order to characterize the roles of caRNAs in 3D genome folding, we
downloaded the genome-wide RNA-chromatin interactions in human
foreskin fibroblast cells (HFFc6) and human embryonic stem cells
(H1ESC) captured by iMARGI and the corresponding genome-wide
DNA-DNA interactions captured by Micro-C from 4DN data portal
(https://data.4dnucleome.org/) (Supplementary Table 1)20,46,47. We
chose iMARGI data over other techniques thatmapgenome-wideRNA-
DNA contacts, because iMARGI hasbeenperformed in humancell lines
that have rich transcriptomic and epigenomicdatasets we could use to
interpret the high-quality chromatin interaction data. We used HFFc6
for our primary analyses, and leveragedH1ESC for identifying cell-type
differences.

To disentangle the roles of nascent transcription versus trans-
located caRNAs, both of which are involved in 3D genome organiza-
tion,webrokedown thehumangenome into 2048-bpbins anddefined
nascent transcripts as all the RNAs transcribed from a given 2048-bp
DNAbin and trans-located caRNAs as all RNAs transcribed fromat least
1Mb away from the bin. We opted for 1Mb to identify trans-located
caRNAs instead of the 100 or 200 Kb used in previous studies39,48 in
order to align with the window size of our predictive models and also
to remove self-interactions for the vast majority of genes ( ~ 99.9%). As
different types of caRNAs may engage in different trans-interactions
(Fig. 1a) and contribute to different chromatin features, we further
classified trans-located caRNAs into eight groups: snRNAs, snoRNAs,
other small RNAs, lncRNAs, misc_RNAs, RNAs from protein coding
genes, RNAs fromother types of genes andRNAs from regions without
known gene annotation.

CaRNAs interact with cis and trans located open chromatin
To explore how caRNAs are spatially localized inside the nucleus, we
examinedwhether caRNAs identified by iMARGI preferentially interact
with any parts of the genome. Similar to DNA-DNA interactions, we
observed that RNAs tend to interact with DNA regions that share
the same spatial or functional annotations as the loci from which they
are transcribed, such as being in the same compartment or having the
sameSpatial Position Inferenceof theNuclear genome (SPIN) state49 or
chromatin state identified by chromHMM50,51 (Fig. 1b and Supple-
mentary Fig. 1). Beyond that, caRNAs interact more frequently with
DNA regions with high versus low transcriptional activity (Fig. 1b and
Supplementary Fig. 1). This trend is confirmed by the enrichment
of caRNAs at open chromatin regions (Fig. 1c). Interestingly, the
enrichment was also observed for trans-located caRNAs (Fig. 1c), and
the amount of trans-located caRNA attached to DNA regions was
positively correlated with the region’s chromatin accessibility (Pear-
son’s R =0.37).

Considering that many RNA-DNA interactions across spatial or
functional annotations may be from trans-interactions, we assessed
the percentage of RNA-DNA interactions occurring in trans in HFFc6
both globally and for each annotated gene. We included caRNAs
transcribed from the DNA loci on the same chromosome but at least
1Mb away plus those encoded on different chromosomes. CaRNAs
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primarily interacted with proximal DNA regions (Fig. 1d), and of all the
interactions on the same chromosome, over 90% spanned a distance
of less than 1 Kb (Fig. 1e). Nevertheless, 38.38% of RNA-DNA interac-
tions occurred in trans, including 6.14% within the same chromosome
and 32.24% on different chromosomes (Fig. 1d). These results are quite
different from DNA-DNA interactions from the Micro-C data, where
trans-interactions across chromosome are less frequent (6.46% within
the same chromosome and 11.92% on different chromosomes). This
difference suggests that the proximity ofmost caRNAs to chromatin is
not due to their being transcribed from DNA that is nearby in the 3D
nucleus.

Notably, we observed that themajority of the small ncRNAs and a
number of lncRNAs and RNAs from protein-coding genes were
engaged in trans-interactions (Fig. 1a and Supplementary Fig. 2). Given
the well-established importance of several snRNAs and snoRNAs in
nuclear structures, these results suggest that other ncRNAs and tran-
scripts of some protein-coding genes may also regulate chromatin
structures.

Trans-located caRNAs are particularly enriched at TAD
boundaries
To investigate whether caRNAs play roles at particular landmarks
within the 3D genome, we first used the iMARGI data to examine their
abundance at TADboundaries. Sincemost TADboundaries are located
in compartmentA inHFFc6 (Fig. 2a) and tend tohavehigher chromatin
accessibility compared to surrounding regions (Fig. 2b), we hypothe-
sized that caRNAs would be enriched at TAD boundaries. In order to
check whether nascent transcripts and trans-located RNAs follow
similar patterns, we conducted separate analyses for each of them. As
anticipated, trans-located caRNAs peaked at TAD boundaries and
greatly decreased in flanking regions ( ± 50Kb) (Fig. 2b). After cate-
gorizing TAD boundaries in HFFc6 and H1ESC based on their strength
and cell type specificity (see Methods, Fig. 2b), we found that HFFc6
trans-located caRNAs are significantly less prevalent at TAD bound-
aries unique to H1ESC or with higher insulation strength in H1ESC than
at TAD boundaries shared with or more prominent in HFFc6. Similar
but weaker patterns were also observed for open chromatin signals
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(n = 727), protein-coding (n = 19,317), miRNA (n = 900) or snoRNA (n = 765). The
center line and triangle within the box represent the median and mean value,
respectively. The box represents the interquartile range (IQR), with whiskers set to
1.5 times the IQR. Outliers are shown in points. b The number of RNA-DNA inter-
actions (log2 normalized count) within and across compartments (left panel) and
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Spatial Position Inference of the Nuclear genome, Interior_Act 1: Interior Active 1,
Interior_Act 2: Interior Active 2, Interior_Act 3: Interior Active 3, Interior_Repr1:
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(ATAC-seq) (Fig. 2b). These results suggest the potential involvement
of trans-located caRNAs at TAD boundaries and their contribution to
TAD dynamics across cell types. Additionally, strong TAD boundaries
exhibited significantly higher ATAC-seq and trans-located caRNA sig-
nals than did weak boundaries, and the association between boundary
strength and trans-located caRNAabundanceheld after normalizing to
the corresponding ATAC-seq signals (Fig. 2c). These results further
indicate that the accumulation of trans-located caRNAs at TAD
boundaries is not solely driven by DNA accessibility.

Unlike trans-located caRNAs that peaked at all HFFc6 TAD
boundaries, nascent transcripts in HFFc6 mostly accumulated at TAD
boundaries unique to HFFc6 (Fig. 2b). They also tended to be more
frequent at strong TAD boundaries than weak ones (Fig. 2c). Overall,
these results indicate that nascent transcripts could also contribute to
the formation of TAD boundaries, particularly cell-type-specific ones,
aligning with the enrichment of TAD boundaries at active promoters
and the barrier function of RNAPs3,13.

CaRNAs increase the accuracy of 3D genome folding predictions
To learn how caRNAs contribute to 3D genome organization beyond
TADboundaries and in an unbiasedway, we developed adeep learning
framework called AkitaR. The models we implemented extend Akita40

to predict chromatin interaction maps by incorporating both DNA
sequence and RNA features extracted from nascent transcripts or
trans-located RNAs (Supplementary Fig. 3). Similar to the original
Akita, AkitaR uses 1D convolution neural networks to learn repre-
sentations from ~1Mb DNA sequence segments. The learned repre-
sentations at the resolution of 2048 bp were subsequently
concatenated with the RNA features, and dilated convolution neural
networks were used to learn long-range dependencies. Lastly, 1D
representations were averaged to 2D and further processed by dilated
2D convolutional neural networks to predict the ~1Mb x 1Mb contact
matrices at 2048 bp resolution (Fig. 3a). These were contact fre-
quencies after observed-over-expected normalization and log trans-
formation (see Methods).
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Wealsodesigned additionalmodels as controls or for comparison
with the iMARGI based models (Supplementary Table 1 and Supple-
mentary Fig. 3). For instance, since caRNAs are enriched in open
chromatin, one of these models combined DNA sequence with fea-
tures from chromatin accessibility (ATAC-seq) or ATAC-seq plus trans-
located caRNAs. To disentangle the expression level of RNAs from
their DNA contact frequencies and from nascent transcription, we
incorporated steady-state transcription (RNA-seq). A control model
with randomized signals from a standardized normal distribution was
also built to alleviate the possibility that the improved performance
was solely due to more features as input. Natural log transformations
were applied on the RNA or open chromatin features before model
fitting.

We found that all models with additional informative features
achieved better predictions than the model with DNA sequence alone

as input (Fig. 3b–d, Supplementary Data 1 and Supplementary
Figs. 4–6). This is consistent with results frommodels that incorporate
epigenetic features such as CTCF binding or histone modifications44.
Of the three RNA features, trans-located caRNA signals led to the
AkitaR model with the highest performance, closely followed by nas-
cent RNA, and then steady-state transcription (Fig. 3b, d, Supplemen-
tary Data 1, Supplementary Figs. 4, 6). On the other hand, at some
regions, nascent RNA signals contributed tomoreaccurate predictions
than trans-located RNA inputs did (Fig. 3d, Supplementary Fig. 5).
These results suggest that all the RNA features carry useful information
about 3D genome folding, particularly trans-located caRNAs, though
nascent transcription is more helpful at some loci. Adding chromatin
accessibility signals yielded better performance than adding RNA
features did (Fig. 3b, Supplementary Data 1 and Supplementary Fig. 4).
However, adding trans-located caRNA plus chromatin accessibility
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signals achieved even better performance than chromatin accessibility
signals alone (Fig. 3b, Supplementary Data 1 and Supplementary
Fig. 4), suggesting that RNA-DNA interactions provide additional
information beyond marking open chromatin. In support of this
hypothesis, we found that incorporating trans-located caRNAs into the
models increased the correlation between predicted and observed
insulation signals at TAD boundaries (Fig. 3c). Thus, deep learning
clearly highlights the information that RNA-DNA interactions carry
about chromatin organization.

CaRNAs help predict cell-type-specific genome folding
Since RNAs, particularly ncRNAs, are often expressed in cell-type-
specific ways52, we hypothesized that the performance boost provided
by incorporating RNA features into the AkitaR models would be most
notable in regions with cell-type-specific genome folding. To evaluate
this hypothesis, we first identified test regions that showed the largest
differences in chromatin organization between H1ESC and HFFc6
based on MSE (34 regions) or MSE plus stratum-adjusted correlation
coefficient (SCC) and structural similarity index measure (SSIM) (109
regions; see Methods) (Supplementary Fig. 7). We then evaluated the
performance of our models in these cell-type-specific regions, and
found that they showed a notably larger performance gap between
models with additional features and the model with DNA sequence
alone as compared to the ensemble of all test regions (Figs. 3b
and 4a, b, Supplementary Data 1, Supplementary Figs. 8, 9). This
finding demonstrates the capability of the AkitaR models to capture
dynamic chromatin organization. Since genome compartmentaliza-
tion correlates with RNA-chromatin interaction20, we further evaluated
model performance on cell-type-specific regions with compartment
changes. Interestingly, the model with trans-located caRNA signals

achieved similar or even better performance than the model with
chromatin accessibility signals on cell-type-specific regions with a
compartment transition from B in H1ESC to the more active A com-
partment in HFFc6 (Fig. 4a, b, Supplementary Data 1, Supplementary
Figs. 8, 9). This suggests the potential association of trans-located
caRNAs with compartment transitions. Furthermore, by visually
checking the cell-type-specific regions with better predictions from
the models incorporating trans-located caRNAs, we observed that
trans-located caRNAs helped capture some cell-type-specific chroma-
tin interactions better than all other RNA and ATAC-seq features
(Fig. 4c, Supplementary Fig. 10), prompting us to explore where these
interactions mapped and what caRNAs they involved.

Nuclear landmarks associate with trans-located caRNAs
To identify the caRNAs that contribute to 3D genomeorganization and
the DNA regions to which they associate, we used DeepExplainer53,54,
which allowed us to quantify the importance of each RNA and ATAC-
seq feature to the contactmap predictions. DeepExplainer generates a
score for each feature at each 2048 bp bin (see Methods). A negative
score indicates that contact frequency decreases when the feature
increases at that bin (e.g., caRNA is associated with loss of a chromatin
loop or increased insulation at a TAD boundary); a positive score
indicates that contact frequency rises when the feature increases. We
observed that the distributions of contribution scores for the multiple
RNA types were asymmetric, with slightly elongated left tails (Sup-
plementary Fig. 11), hinting that RNA-DNA interactions may be more
linked to insulation than to enhancing chromatin interactions. Though
the absolute contribution scores of caRNA features showed moderate
positive correlation with caRNA signals, many genomic bins with high
caRNA signals received low contribution scores, indicating that our
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models learnedwhere the caRNAsmight contribute to genome folding
(Supplementary Fig. 12). Trans-located caRNAs, which we already
showed are enriched at TAD boundaries (Fig. 2b, c), tended to have
higher absolute contribution scores at TAD boundaries than at their
flanking regions (Fig. 5a). In contrast, the contribution scores of nas-
cent transcripts were less elevated at TAD boundaries and remained

high in flanking regions, as we might expect when there is active
transcription within TADs.

To test the hypothesis that AkitaR has learned a relationship
between caRNA features and TAD boundary insulation, we performed
two simulations. First, we generated 1000 random sequences of ~1Mb
and introduced TAD boundaries at randomly selected loci by inserting
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convergent CTCF motifs. Progressively adding 1 to 4 CTCF motifs to
increase the insulation strength led the sequence model to predict a
decrease in average contact frequency (Supplementary Fig. 13a), sug-
gesting a possible negative correlation between insulation strength
and average contact frequency. Next, we selected 60 regions from the
held-out test dataset with relatively simple structures and gradually
increased the caRNA signal of each RNA type at selected TAD bound-
aries. We observed an increase of insulation strength for most of the
RNA types, and themajority of them showed a decrease of the average
contact frequency, including lncRNAs (Supplementary Fig. 13b). These
simulation results suggest that AkitaR has inferred a potential causal
role of trans-located caRNAs in strengthening TAD boundaries.

To further characterize the regions where caRNAs might shape
chromatin organization, we ranked the contribution scores for each
feature type and identified the genomic regions with scores in the top
(positive contribution scores) or bottom (negative contribution
scores) 1%. We found that the regions with bottom snRNA scores were
preferentially located in nuclear speckles, aligning with their well-
established roles in pre-mRNA splicing within nuclear speckles
(Fig. 5b)55,56. Additionally, we observed that regions with top snoRNA
scores were enriched in loci annotated as Interior_Repr2 (Interior
Repressive 2) by SPIN (Fig. 5b), which was putatively associated with
nucleoli49 where snoRNAs function57. These two expected associations
validate the capability of AkitaR to capture the functional roles of
caRNAs.

Beyond these cases, we observed that genomic regions with bot-
tom scores across RNA types were enriched at active chromatin, CTCF
peaks, active promoters, enhancers, TAD boundaries and loop anchors
(Fig. 5b). LncRNAs, snoRNAs and RNAs from unknown genes were
particularly enriched at CTCF peaks, stable TAD boundaries between
H1ESC andHFFc6, and shared TAD boundaries with higher insulation in
HFFc6 (Fig. 5b), suggesting that these RNAs contribute to TAD bound-
aries, potentially by recruiting or stabilizing CTCF, in active chromatin.
Interestingly, snoRNAs showed enrichment in nuclear speckles, con-
sistent with the increasing evidence of the regulatory roles of some box
C/D snoRNAs in alternative splicing58–60.On theother hand, regionswith
top scores were predominantly found in heterochromatin, particularly
near lamina or at lamina associated regions (Fig. 5b), indicating that
caRNAs play different roles at active and repressed chromatin, poten-
tially via different mechanisms. CaRNAs from protein coding genes,
however, showed very different patterns from all other caRNAs, with
bottom rather than top scoring bins being enriched in compartment B
and in particular at TAD boundaries with elevated insulation in HFFc6.
Extending this analysis to the top and bottom 5% regions produced
similar patterns, indicating that the enrichments are robust to the
contribution score threshold (Supplementary Fig. 14).

In contrast to these nuanced patterns that differ across caRNA
types and between active versus repressed chromatin, ATAC-seq fea-
tures were significantly enriched in active chromatin, regardless of

whether they had top or bottom scores (Supplementary Fig. 15). These
findings suggest that AkitaR captures differences between caRNA-DNA
interactions and chromatin accessibility, motivating us to explore
specific trans-located caRNAs. To further disentangle the independent
effects of caRNAs beyond their association with open chromatin, we
identified specific DNA regions where trans-located caRNAs have high
absolute contribution scores and ATAC-seq features do not (absolute
normalized contribution score > 0.25, |fold change | >5) (Supplemen-
tary Fig. 16). These regions showed similar chromatin and SPIN state
enrichments as the top and bottom scoring regions more generally
(Supplementary Fig. 16), confirming the contribution of trans-located
caRNAs to chromatin features beyond chromatin accessibility.

CaRNAs may form trans R-loops with Alu sequences
To identify the caRNAs with the largest contributions to AkitaR’s
chromatin map predictions, we ranked them based on their associa-
tionwithDNA regions that have high absolute contribution scores (top
or bottom 5% for each RNA type; Supplementary Data 2). We observed
that the top 10 RNAs were all highly prevalent in HFFc6 (Supplemen-
tary Fig. 17 and Supplementary Data 2). These included multiple
ncRNAs previously known to play roles in chromatin structures, such
as lncRNAs MALAT1 and NEAT1 and snRNAs RNU2-2P, RNU12 and
RN7SK16,26,29,35,61,62 (Fig. 5c, Supplementary Fig. 18 and Supplementary
Data 2). Interestingly, all top 10 snoRNAs are C/D box snoRNAs,
including SNORD47, SNORD79 and SNORD27 (Supplementary Fig. 18).
Beyond these, many RNAs without previous evidence for roles in
chromatin organization stood out, such as lncRNAs RNY5, RPPH1,
POLG-DT and differentially expressed lncRNAs between H1ESC and
HFFc6, such as THBS1-IT1 and ENSG00000260772. In addition, these
lncRNAswere preferentially associatedwith regionswith high absolute
contribution scores compared to the regions with low scores (Fig. 5c,
Supplementary Fig. 18). Since the pattern of enrichment of these
caRNAs mirrors that ofMALAT1 and NEAT1, we hypothesize that these
caRNAs also play mechanistic roles in 3D genome organization.

To explore the caRNAs that might shape genome structure over
chromatin accessibility, we investigated the caRNAs (top10) that were
preferentially associated with genomic regions having higher absolute
trans-located caRNA contribution compared to chromatin accessi-
bility. We identified a list of RNAs that was nearly identical to the one
identified genome-wide (SupplementaryData 2). However, someRNAs
were found to preferentially interact with these differentiated regions
but were not enriched in top or bottom scoring regions overall. These
included the ncRNAs ZNRF3-AS1,MIR6726 andMIR4796, whichnot only
showed higher interaction ratios with the differentiated regions but
also interacted with more than one of these DNA regions (Supple-
mentary Data 3 and Supplementary Fig. 19). These caRNAs are high-
confidence candidates for contributing to nuclear structures in spe-
cific ways beyond being generally associated with accessible
chromatin.

Fig. 5 | Chromatin-associated RNAs are associated with TAD boundaries, loop
anchors and nuclear structures. a The absolute contribution scores of nascent
transcripts (left panel) and trans-located caRNAs (right panel) at TAD boundaries
and their flanking regions.bHeatmap showing enrichment (log2 enrichment score)
of genomic regions with top 1% (positive) and bottom 1% (negative) contribution
scores of each typeof caRNAacross TADboundaries, loop anchors, Spatial Position
Inference of the Nuclear genome (SPIN) and chromHMM states. c Example of four
RNAs that preferentially interact with genomic regions with high absolute con-
tribution scores (top 1%, top 5%, top 10%, bottom 1%, bottom 5%, bottom 10%)
rather than with regions with lower absolute contribution scores (middle 10%).
dThe proportion of RNAs transcribed from repetitive elements for the interactions
betweenDNAandRNAsderived fromunknowngenes. eThe proportionof the RNA
sequences in the candidate interactions that might form R-loops originated from
Alu sequences and the proportion of the corresponding DNA sequences were
annotated as Alu elements. f The proportion of TAD boundaries (left panel) and

loop anchors (right panel) having RNA-DNA interactions that could form R-loops.
g An example locus showing candidate R-loops at Alu elements illustrating the
contributionof trans-locatedRNAs to theprediction of chromatin interactions. The
Alu elements that may form R-loops with RNAs at the loop anchors of a chromatin
interaction that was specifically predicted by the model with trans-located caRNAs
are shown in the track denoted Repetitive element. The candidate R-loops are
numbered as 1, 2, 3 and 4 at the associated Alu elements. The best local alignment
(with gaps) of the RNA and DNA sequences of the candidate R-loops (the com-
plementary DNA sequences to RNAs are not shown) is shown. The nucleotides
matching between RNA and DNA sequences are highlighted in red. Interior_Act 1:
Interior Active 1, Interior_Act 2: Interior Active 2, Interior_Act 3: Interior Active 3,
Interior_Repr1: Interior Repressive 1, Interior_Repr2: Interior Repressive 2,
Near_Lm1: Near Lamina 1, Near_Lm2: Near Lamina 2. Source data are provided as a
Source Data file.
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Since genomic regions with bottom contribution scores from
RNAs of unknown genes were enriched at TAD boundaries and loop
anchors, we further explored the interactions between DNA and RNAs
derived from unknown genes. We found that around 37% of these
RNAs were transcribed from repetitive elements (Fig. 5d). Since Alu
sequences were proposed to promote long-range enhancer-promoter
interactions, possibly throughR-loops25,63, we aligned the sequences of
each pair of DNA-RNA trans interactions in HFFc6 using the local
alignment function of the python module pairwise2 in search of
potential candidates for R-loop formation. Around 0.3% of trans
interactions were considered as candidates by exhibiting over 80%
identity between RNA and DNA sequences plus continuous, unin-
terrupted perfectmatches exceeding 10 base pairs. We found that 32%
of the RNA sequences in these candidate interactions originated from
Alu sequences, and 93% of the DNA sequences were annotated as Alu
elements (Fig. 5e). Furthermore, these candidate interactions tended
to increase at stable TAD boundaries, TAD boundaries having higher
insulation strength in HFFc6 or unique to HFFc6 in contrast to TAD
boundaries with higher strength in H1ESC or unique to H1ESC (Fig. 5f).
The same trend was also observed for loop anchors (Fig. 5f), aligning
with the roles of Alu sequences in long-range enhancer-promoter
interactions. More importantly, both loop anchors of the cell-type-
specific interaction thatwas capturedby themodelswith trans-located
caRNAs but no other models in Fig. 4c could form trans R-loops at Alu
sequence loci (Fig. 5g). This provides a potential mechanism for loop
formation at loci with trans Alu RNA-DNA interactions, demonstrating
the capability of the AkitaR model to capture these interactions and
generate testable, mechanistic hypotheses.

Discussion
In this study, we proposed deep learning models that leverage both
DNA sequence and the distribution of caRNAs across the genome to
predict chromatin interaction maps. Both nascent transcripts and
trans-located RNAs contributed to these AkitaR models being able to
make more accurate predictions than with sequence alone, especially
in regions of the genome with different folding between cell types.
While the magnitude of improvement was modest, it was statistically
significant, and the models also learned the importance of caRNAs at
chromatin features, such as CTCF peaks, TAD boundaries and loop
anchors. Amongst the caRNAs that preferentially interacted with
genomic regions having high absolute trans-located caRNA contribu-
tion scores were RNAs with known roles in chromatin structure, such
as snRNAs at regions located in nuclear speckles, snoRNAs in nucleoli,
and the lncRNAs MALAT1 and NEAT1. These validations gave us con-
fidence in our discovery of several RNAs that might be involved in the
regulationof chromatin organization inHFFc6, includingRNY5,RPPH1,
POLG-DT and THBS1-IT1.

Since trans-located RNAs tended to be enriched at open chro-
matin regions and the model with chromatin accessibility signals
achieved better performance than the one with trans-located RNA
signals, it might be argued that trans-located RNAs diffused randomly
and that their enrichment in these regions solely reflected the acces-
sibility of chromatin. However, our results suggest that trans-located
RNAs may play causal roles in genome folding on top of randomly
diffusing to distant DNA regions. Firstly, trans-located caRNA signals
were found to be higher at strong TAD boundaries compared to weak
ones even after being normalized on ATAC-seq signals. Secondly,
stable TAD boundaries, TAD boundaries with higher insulation
strength in HFFc6 or the ones unique to HFFc6 also tended to have
RNA-DNA interactions thatmight form trans-actingR-loops.Moreover,
themodel with both chromatin accessibility and trans-located caRNAs
also slightly outperformed the model with only the chromatin acces-
sibility. Additionally, the model with trans-located caRNA signals
achieved better performance on some subsets of the test regions

compared to the one with chromatin accessibility signals. Particularly,
we observed that some local chromatin features were only accurately
predicted by the models with trans-located caRNA signals as input.
Their loop anchorsmight bemediated by trans-acting R-loops formed
at Alu sequences. Lastly, genomic regions with high absolute con-
tribution scores from different RNA types also showed enrichment in
chromatin and SPIN states both in active and repressed chromatin in
contrast to the enrichment of genomic regions with high absolute
ATAC-seq contribution scores only in active chromatin. On the other
hand, the chromatin being open could also have been the result of the
binding of trans-located caRNAs. For example, lncRNAROR is reported
to promote H3K4me3 at TIMP3 genes in trans by recruiting MLL164, a
histone methyltransferase that trimethylates H3K465. Additionally, R-
loops, which may form in trans, have been observed to extensively
overlap with H3K4me3 peaks66 and reduce DNA methylation at pro-
moter regions67,68. Moreover, RNAs can open up the chromatin in a
rapidmanner by neutralizing positively charged histone tails with their
negative charges69. Chromatin-associated RNAs could also help main-
tain an open chromatin structure by binding with structural
chromatin-associated proteins, such as SAF-A70 and Df3171, and the
depletion of RNAs leads to chromatin compaction69,71–73. Together
these results indicate that AkitaR is useful not just as a predictive
model but also as an explanatory method for generating testable
hypotheses about the functions of caRNAs.

Although most of the eight RNA types increased the accuracy of
the chromatin map predictions, each type was associated with some-
what distinct chromatin structures. For example, snoRNAs, lncRNAs
and RNAs from unknown genes showed more enrichment at CTCF
peaks, shared TAD boundaries and loop anchors than did snRNAs,
whereas lncRNAs were more enriched at promoters and enhancers
compared tootherRNA types.Moreover, besides snRNAs,weobserved
the enrichment of snoRNAs in nuclear speckles. While it is well-
established that snoRNAs have vital functions within the nucleolus,
growing evidence suggests that some snoRNAs, including SNORD27,
SNORD88C, and SNORD115, may exert regulatory influence over the
alternative splicing of pre-mRNAs that originate from distantly located
genomic loci58–60. Finally, we noticed that regions with positive con-
tribution from RNAs of different types, particularly RNAs from
unknowngenes, showed enrichment at heterochromatin and lamina or
near lamina regions. This is consistent with the recent evidence that
ncRNAs, especially repetitive ncRNAs, play roles in anchoring specific
genomic loci to nuclear lamina or recruiting H3K9me3-related
methyltransferases to promote heterochromatin23,74,75.

The high performance of our AkitaRmodels allowed us to explore
the contribution of caRNAs ingenomeorganization in an unbiased and
effective way. Leveraging feature importance scores or high-
throughput in silico screening, we could efficiently prioritize candi-
date genomic loci that are dependent on caRNAs for accurate genome
folding and develop hypotheses for functional characterization with
additional analyses. These hypotheses could be further validated with
experimental techniques, such as genome engineering, RNA inhibition
or RNA overexpression, in the context of 3D genome folding. We
anticipate that this strategy of integrating deep learning models with
bioinformatics analyses will drive the generation of hypotheses and
accelerate wet lab discoveries.

While AkitaR offers us an effective way to unravel the roles of
trans-located caRNAs in genome folding, our approach has several
limitations. First, the genome-wide RNA-chromatin interaction data
that we used to extract the trans-located RNA features were limited to
several cell types, making it difficult to generalize our models and
analyses to awide rangeof cellular contexts. Secondly, as trans-located
caRNA signals might somewhat reflect the accessibility of chromatin,
models may face challenges in distinguishing which regions trans-
located caRNAs play a driver role and which regions they act as
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passengers. Lastly, many of the RNAs might only function in trans at
limited regions, and our analyses based on genome-wide signalsmight
not be able to capture the contribution of these RNAs.

In summary, we investigated the roles of caRNAs, particularly
trans-located caRNAs, in regulating 3D genome folding by genome-
wide analyses and deep learning models. We showed the contribution
of both nascent transcripts and trans-located caRNAs to genome
organization. These analyses provide insights and generate testable
hypotheses about the roles of caRNAs in chromatin organization.

Methods
Micro-C data and processing
High-quality Micro-C datasets mapped to hg38 in .pairs format for
HFFc6 andH1ESCwere downloaded from the 4DNdata portal (https://
data.4dnucleome.org/)46,47 and processed into 2048-bp (211bp) bins,
followed by genome-wide iterative correction (ICE) normalization,
adaptive coarse-graining, observed over expected normalization, log
transformation, clipping to (−2,2), linear interpolation and convolution
with a 2D Gaussian filter for smoothing40. These data and their paired
genomewere further divided into training (7009), validation (419) and
test (413) examples, each of which was a ~ 1Mb (220bp) region.

Annotations of compartment and TAD boundaries for the Micro-C
datasets identified by cooltools at the resolution of 25 Kb and 5 Kb,
respectively, were also downloaded from the 4DN data portal76. TAD
boundaries with insulation strength between 0.2 and 0.5 were con-
sidered as weak boundaries and the ones with strength larger than 0.5
were defined as strong boundaries. The TAD boundaries in a cell type
that were within 20 Kb of the TAD boundaries from the other cell type
weredefinedas sharedTADboundaries, otherwise theywereconsidered
as cell type unique TAD boundaries. The log2 fold change of insulation
strength for the shared TAD boundaries were further calculated and
used to classify them into stable TAD boundaries between H1ESC and
HFFc6 with no insulation difference (jlog2ðHFFc6=H1ESCÞj<= 1), shared
TAD boundaries with higher insulation strength in H1ESC
(log2ðHFFc6=H1ESCÞ<� 1) and shared TAD boundaries with higher
insulation strength in HFFc6 (log2ðHFFc6=H1ESCÞ>1).

Chromatin loops at 5 Kb and 10 Kb resolution for the Micro-C
datasets were identified using HiCCUPS7. Similar to TAD boundaries,
the loop anchors were classified as shared loop anchors and cell type
unique loop anchors with distance limit of 20 Kb.

iMARGI data and processing
iMARGI data in .pairs format for HFFc6 and H1ESC on hg38 were
obtained from the 4DN data portal and converted into contact
matrices at the resolution of 10-bp (for preliminary analyses), 2048-bp
(for model inputs), and 5000-bp (for analyses at TAD boundaries and
loop anchors) after removing low-quality mappings (MAPQ<= 30)20.
Nascent transcription was estimated as the number of reads with their
RNA ends mapped to each bin (10-bp/2048-bp/5000-bp) in the con-
tact matrices (log value for model input). In order to get the signals of
trans-located RNAs at each bin for the trans-located caRNAmodel, the
interactions between RNAs and DNAs within ~1Mb (220bp) linear dis-
tances were filtered out. The self-interactions between genes that are
longer than ~1Mb (220bp) were also removed. Considering the
potentially distinct roles of different RNA types, we annotated the RNA
ends of the contact matrices with comprehensive genes from GEN-
CODE (v43).We noticed thatmany snoRNA genes annotated in Refseq
weremissed in GENCODE but showed high expression in iMARGI data.
We thus incorporated the annotations of snoRNAs from Refseq into
GENCODE.We then classified the bins in theRNAend into eight groups
based on their overlap with the transcription sites of different types of
RNAs, which are snRNAs, snoRNAs, other small RNAs, lncRNAs, mis-
cellaneous RNAs, RNAs from protein-coding genes, RNAs from all
other types of genes and RNAs from regions without known gene
annotations. The total number of reads from all RNAs in each RNA

groupwith theirDNAendsmapped to a binwas calculated as the trans-
located caRNA signal of that bin from the RNA group. Log transfor-
mation was performed for model input.

Besides gene annotations, the RNA and DNA end of the iMARGI
interactions were annotated for repetitive elements with data from the
RepeatMasker database for downstream analyses77.

RNA-seq and ATAC-seq data
RNA-seq and ATAC-seq data in .bigWig format for HFFc6 were down-
loaded from the 4DN data portal, respectively47,78,79. Log values of the
normalized signals of each 2048-bp bin on the library size of iMARGI
data were extracted from the data to get the input for the model with
steady-state transcription level or the model with chromatin accessi-
bility. The signals of ATAC-seq at 5000-bp binswere also calculated for
the analyses at TAD level.

Model architecture, training and evaluation
AkitaRwas extended fromAkita topredict 3Dgenome folding by using
both DNA sequence and RNA / ATAC-seq signals. We kept the head of
Akita and adjusted the trunk architecture by concatenating the above
RNA / ATAC-seq features of length 512 to the vector representations of
DNA sequence. The DNA representation was the output of 11 con-
volution blocks, each of which included convolution, batch normal-
ization andmax-pooling layers. Keeping hyperparameters the same as
Akita, the model was trained to maximize Pearson’s correlation coef-
ficient between experimental maps and predictions. We chose to
optimize on Pearson’s correlation coefficient overmean squared error
(MSE) because pixel-wise MSE tends to be very sensitive to noise80. To
ensure robust comparison between different models, each model was
trained five times, and the one with the best performance based on
both MSE and Pearson’s correlation was selected for downstream
analyses and contact map visualization.

Model performance was evaluated on the test dataset usingMSE,
SCC, Pearson’s and Spearman’s correlations. Correlations were cal-
culated using the functions in the python SciPy library. To examine
the capability of the models to capture cell-type-specific regions, two
subsets of test regions that had different contact maps between
H1ESC and HFFc6 were selected based on MSE, SCC and SSIM. One
cell-type-specific subset included the regions with high MSE ( > 0.3)
between H1ESC and HFFc6 experimental maps. The other one con-
sisted of not only regions with high MSE ( > 0.3), but also those with
low SCC ( < 0.2) or SSIM ( < 0.08). Here, SCC is the weighted sum of
Pearson’s correlation for each stratum and shares the similar range as
Pearson’s correlation coefficients81. Since both the predicted and
experimental contactmap used in this study were normalized against
distance dependent decay, SCC is highly consistent with Pearson’s
correlation. SSIM is a widely used metric in imaging studies that
qualifies the similarity between two images82. To further evaluate
whether RNAs were associated with the compartment changes
between cell types, the cell-type-specific subsets were further divided
into the oneswithout compartment change, the ones that switched to
compartment B in HFFc6 from compartment A in H1ESC and also the
ones that changed to compartment A in HFFc6 from compartment B
in H1ESC.

Insulation scores
Insulation profiles of experimental and predicted contact maps were
identified by sliding along each diagonal bin of the contact matrix
using a diamond-shaped window and calculating the average contact
frequency within the window83. The bins at the end of the diagonal
were ignored for calculation.

Trans-located proportion of RNAs
iMARGI data in .pairs format was first converted into .bedpe format.
The total number of reads with RNA end mapped to each gene was
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calculated as its nascent transcription. Then the read pairs with their
DNA and RNA end within ~1Mb (220bp) linear distances were removed
and the resulting readsmapped to each genewas regarded as its trans-
located abundance. The ratio of the trans-located abundance to its
nascent transcriptionwas calculated as the trans-locatedproportionof
each RNA gene. To better distinguish the roles of host genes and the
genes within them, the reads mapped to the genes within them were
subtracted from the host genes.

Signals at TAD boundaries and flanking regions
Nascent transcription and trans-located caRNA signals at the resolu-
tion of 10-bp were first converted into bigWig format using
bedGraphToBigWig84. Then the signals of ATAC-seq, nascent tran-
scription and trans-located caRNAs at TAD boundaries and their
flanking regions were calculated using deepTools computeMatrix
from the bigWig files and plotted using deepTools plotHeatmap85.

CTCF ChIP-seq and binding sites
CTCFChIP-seq peaks and signalsweredownloaded fromENCODEdata
portal86. The genome-wide CTCF sites identified by FIMO using all
three CTCF PWMs in JASPAR database with p-value less than 1e-5 were
downloaded from the R resources AnnotationHub87.

ChromHMM state and SPIN state
ChromHMM were employed to annotate the chromatin regions of
H1ESC and HFFc6 using six epigenomes (H3K27ac, H3K4me1,
H3K4me3, H3K9me3, H3K27me3 and H3K36me3), which were down-
loaded from the ENCODEdata portal86.Wedefined 18 chromatin states
using the default parameters and annotated them by checking their
enrichment for gene related regions (transcription start site (TSS),
transcription end site, gene body, exon and intron), repetitive ele-
ments and epigenetic peaks. The ones annotated as active TSSs, TSS
flanking regions or bivalent promoters were extracted as active pro-
moters and the ones annotated as active enhancers, genic enhancers,
weak enhancers and bivalent enhancers were obtained as enhancer
regions and used for downstream analyses. Annotations of SPIN
states49 were obtained from Jian Ma’s lab (Zhang et al. in preparation).

Contribution scores
DeepExplainer (DeepSHAP implementation of DeepLIFT)53,54 was
employed to compute the contribution scores of the RNA and ATAC-
seq features. For the examples in the validation and test dataset, ran-
domly selected 20 examples from the training dataset were used as
background. For the training dataset, we divided it into two subsets.
For the first half, randomly selected examples from the second half
acted as background, and vice versa. The contribution scores for each
feature were normalized by dividing into their maximum absolute
values.

Thegenomic regionswith their contribution scores locatedwithin
the top (positive) and bottom (negative) 1% and 5% for each feature
were extracted for enrichment analyses. Specifically, their enrichment
at CTCF sites, active promoters, enhancers, other chromHMM states,
TAD boundaries, loop anchors and SPIN states were measured by
calculating the ratio of observed over expected signals. To avoid the
bias caused by the bins with positive signals, only the ones with posi-
tive input values were used in the enrichment analyses.

Differential analyses of RNA contribution scores
The normalized scores of trans-located signals of each RNA type at
each DNA bin were compared to the scores of ATAC-seq signals. The
DNA bins with fold change greater than 5 and the absolute value of
normalized contribution score larger than0.25 were considered as the
oneswith differential contributions between trans-located caRNAs and
ATAC-seq signals.

Candidate RNA identification
A hypergeometric test was employed to evaluate whether RNA-DNA
interactions occur more often than expected by random chance.
The test assumes that each DNA bin has an equal probability to
interact with any RNA in a random manner and each interaction is
independent. The interactions with FDR < = 0.05 were extracted as
high-confidence interactions. These high-confidence interactions
were then used to identify RNAs that preferentially interacted with
selected DNA bins.

Simulations of increasing TAD insulations
Two different simulations were performed to explore how altering
DNA sequence or caRNA signals is predicted to alter local insulation
and chromatin contacts. First, one thousand random DNA sequences
of 220 bp were first generated using the SimDNA python package
(https://github.com/kundajelab/simdna). TAD structures were then
introduced by symmetrically inserting forward and reverse CTCF
motifs at randomly selected loci between 0.15 and 0.85 of each DNA
sequence. Following that, one to four convergent CTCF motifs were
progressively added to TAD boundaries with distance from previously
inserted CTCF motifs at 500 bp and the contact maps of the DNA
sequences were generated using the sequence alone model. Second,
60 regionswith relatively simple structureswere selected from the test
set, and the caRNA signals at selected TAD boundaries (1–2 for each
region) were increased by folds of e0.5, e1, e1.5, e2, separately for each
RNA type. Predictions were made with the model incorporating trans-
located caRNA signals, and the resulting map predictions were com-
pared to the starting map without elevated caRNA signals.

Pairwise alignment of DNA and RNA sequences
To search for potential candidates of R-loop formation, we extracted
the sequences of eachpair ofDNA-RNA trans interactions inHFFc6 and
then aligned them using the pairwise2 sequence alignment module in
the Bioptyhon package (local alignment)88. The ones with over 80% of
RNA sequence matching to DNA sequences and continuous perfect
matches exceeding 10 bp were considered as candidates.

Statistical analysis
Two-sided Mann-Whitney U tests were used to compare strong versus
weak TAD boundaries, model performance statistics and simulation
scenarios with different numbers of inserted sequences or different
levels of RNA features. Hypergeometric tests were employed to iden-
tify high-confidence, statistically significant RNA-DNA interactions.

Data availability
Publicly available data used in this study can be found at: 4D Nucleome
Data Portal (https://data.4dnucleome.org/) with accession numbers (1)
Micro-C for HFFc6 and H1ESC: 4DNESWST3UBH, 4DNES21D8SP8, (2)
iMARGI for HFFc6 and H1ESC: 4DNES9Y1GHK4, 4DNESNOJ7HY7, (3)
ATAC-seq for HFFc6: 4DNESMBA9T3L, (4) RNA-seq for HFFc6:
4DNESFH3EHTU [https://data.4dnucleome.org/higlass-view-configs/
d462e61d-88e5-48bc-969c-4c208412fea2/]; ENCODE data portal
(www.encodeproject.org/) with accession numbers (1) ChIP-seq data,
H3K27ac for HFFc6 and H1ESC: ENCSR510VXV, ENCSR880SUY, (2)
H3K4me1 for HFFc6 and H1ESC: ENCSR340XKM, ENCSR000ANA, (3)
H3K4me3 for HFFc6 and H1ESC: ENCSR639PCR, ENCSR000AMG, (4)
H3K9me3 for HFFc6 and H1ESC: ENCSR938NXC, ENCSR000APZ, (5)
H3K27me3 for HFFc6 and H1ESC: ENCSR129TUY, ENCSR186OBR, (6)
H3K36me3 for HFFc6 and H1ESC: ENCSR519CMW, ENCSR000ANB,
CTCF for HFFc6: ENCSR163ULN; R resources AnnotationHub for CTCF
binding sites (https://github.com/mdozmorov/CTCF); GENCODE, NCBI
(https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.40/,
RefSeq); UCSC (http://hgdownload.soe.ucsc.edu/goldenPath/hg38/
database/, RepeatMasker). Pretrained models, model input,
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contribution scores of RNA / ATAC-seq features as well as target map
and test set predictions are available at Zenodo (https://zenodo.org/
records/10015009). Other data used to generate the figures are
available in the CaRNAs_in_Chromatin_Architecture github repository
(https://github.com/shuzhenkuang/CaRNAs_in_Chromatin_
Architecture). Source data are provided with this paper.

Code availability
The code of AkitaR89 (modified from Akita), custom code for data
exploration and downstream analyses and a jupyter notebook for fig-
ure generation are available at https://github.com/shuzhenkuang/
CaRNAs_in_Chromatin_Architecture.
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