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Recent mathematical and statistical modeling of leprosy incidence data provides estimates of the current undiagnosed population 
and projections of diagnosed cases, as well as ongoing transmission. Furthermore, modeling studies have been used to evaluate the 
effectiveness of proposed intervention strategies, such as postleprosy exposure prophylaxis and novel diagnostics, relative to current 
approaches. Such modeling studies have revealed both a slow decline of new cases and a substantial pool of undiagnosed infections. 
These findings highlight the need for active case detection, particularly targeting leprosy foci, as well as for continued research into 
innovative accurate, rapid, and cost-effective diagnostics. As leprosy incidence continues to decline, targeted active case detection 
primarily in foci and connected areas will likely become increasingly important.
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Leprosy, caused by the Mycobacterium leprae bacterium, persists 
in at least 122 countries. Globally, about 200 000 new leprosy cases, 
including approximately 18 000 in children, are diagnosed every 
year, with many more thought to be occurring undetected [1, 2]. 
Delayed diagnosis is problematic from the perspective of disease 
progression to more serious complications, as well as transmis-
sion to others. This, in turn, may lead to neurological impair-
ment and subsequent disabilities characteristic of leprosy [3, 4]. 
Antibiotic treatment both curbs transmission and halts disease 
progression, but does not reverse the neurological impairment 
that has already arisen. Reasons for delayed diagnosis include dis-
regard of early symptoms, difficulties in differential diagnosis (ie, 
distinguishing between leprosy and other diseases with similar 
symptoms), and fear of stigma [5].The epidemiological dynam-
ics of leprosy are driven by the typically prolonged durations 
between infection and symptom onset, and then between symp-
tom onset and diagnosis [6]. Although data to precisely estimate 
these periods are scarce, it is clear that the period from exposure/
infection to symptom onset ranges from months to decades [6]. 
The delay between symptom onset and diagnosis is exacerbated 
by stigma, accessibility of healthcare professionals, and common 
misdiagnosis, particularly in the initial phase of symptom onset. 
Most diagnosis is passive (ie, the patient must present to health 
services), rather than active (ie, the health system actively seeks 

cases), although many countries implement household contact 
tracing. Misdiagnosis or delayed diagnosis is compounded by 
the variability of the clinical presentation upon symptom onset. 
Bacterial loads typically rise gradually with disease progression, 
and a large proportion of patients have low bacterial loads (pauci-
bacillary [PB] cases), which are challenging to recognize as lep-
rosy. Conversely, a smaller proportion of patients have very high 
bacterial loads (multibacillary [MB] cases), and are much more 
transmissible. Disability increases during the course of infection, 
so early diagnosis and treatment are crucial to reduce both trans-
mission and sequelae of infection.

In 1991 the World Health Organization (WHO) established 
the target of eliminating leprosy as a public health problem, 
defined as a prevalence of <1 per 10 000 people, by the year 
2000. Although this target was achieved, when averaged across 
the global population, much higher prevalence persisted in a 
number of countries [7]. In 2012, a new target was set to achieve 
“global interruption of leprosy transmission” by 2020. This tar-
get was formulated in the London Declaration to support con-
trol and elimination of 10 neglected tropical diseases, including 
leprosy.

Since 2000, the number of annual, newly detected cases 
has fallen by more than one-half, but transmission is contin-
uing. A lesson learned is that creating quantitative targets can 
result in perverse outcomes [1, 8]. The 2020 WHO targets were 
revised in the Global Leprosy Strategy 2016–2020 to become 
more circumspect—aiming at reducing the global prevalence of 
grade 2 disability, while maintaining the ultimate goal of trans-
mission elimination [9]. Current interventions are based on 
prompt diagnosis and treatment. Emphasis is placed on reduc-
ing social and legal barriers to early diagnosis, and transition 
toward active detection of cases in focal high-risk regions.
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Leprosy is at a critical point in terms of global and national 
programs. Its long incubation period creates problems for 
measuring the impact of immediate policy changes—policy 
is reacting to changes in transmission that occurred a decade 
previously, and the impact of changes now will not be seen 
for a decade. We believe that modeling can play a key role in 
managing leprosy to zero transmission and zero disability: a 
leprosy-free world. The purpose of this supplement article is 
to summarize the key policy-relevant recommendations from 
recent transmission modeling of leprosy.

MATHEMATICAL MODELING OF LEPROSY

Mathematical modeling of infectious disease is an efficient 
and powerful tool for quantifying transmission patterns and 
for predicting future trends in leprosy diagnoses as well as the 
potential impact of interventions. Transmission dynamics of 
infectious diseases are inherently nonlinear. The risks for an 
individual developing leprosy are determined by the number of 
cases and the extent of their infectiousness among their con-
tacts, while the incidence in the population is determined by the 
past history of individual exposure. Consequently, preventing 
an infection or curing a case also reduces the risk of transmis-
sion to the remainder of the population.

The first mathematical models for leprosy were developed by 
Lechat in the 1970s–1990s [10], from which recent models were 
adapted [11, 12]. These models provide a mechanistic descrip-
tion of the transmission of leprosy in a population, taking into 
account the history of infection, the type of leprosy (ie, PB or 
MB), diagnostic efforts, treatment with multidrug therapy, and 
relapse rates [13]. Other models explored the potential interac-
tions of leprosy with tuberculosis, both of which are mycobac-
terial diseases [14].

To explore interventions targeted at contacts of index cases, 
a stochastic individual-based model was developed that incor-
porates household transmission dynamics and heterogeneity in 
susceptibility [15]. This approach explicitly models life histories 
(ie, birth, household formation, death) and history of infection 
of individuals. More recently, a sophisticated back-calculation 
statistical approach was developed to make inferences about the 
transmission dynamics using information on the time between 
infection and diagnosis [16].

In 2015, the neglected tropical disease (NTD) Modeling 
Consortium was set up with funding from the Bill & Melinda 
Gates Foundation, the Children’s Investment Fund Foundation 
UK, and the Novartis Foundation to provide modeling anal-
yses of progress toward the London Declaration 2020 targets 
for 9 neglected tropical diseases. Within the framework of this 
consortium, the Novartis Foundation provided funding for 3 
groups working on leprosy over 2 years. The 3 groups have used 
different mathematical and statistical modeling approaches, 
including (1) back-calculation, (2) stochastic compartmental 
model, (3) the stochastic individual-based model SIMCOLEP, 

and (4) linear mixed effects regression as a benchmark. Each 
group further developed and applied its model to answer pol-
icy-relevant questions [16–20], in particular whether 2020 tar-
gets were likely to be met.

To validate the results of the different models, we have com-
pared the consistency of predictions generated by the respective 
models [17]. The range of model frameworks employed covers 
the gamut of quantitative methodologies: multilevel statisti-
cal trend models, statistical back-calculation, compartmental 
transmission models, and fully individualized simulations. All 
models were fitted to leprosy data obtained from the national 
Information System for Notifiable Diseases (SINAN) data-
base of 4 Brazilian states with hyper-, high, medium, and low 
endemicity, respectively. Trends of the new case detection rate 
(NCDR) were projected until 2040. The different models gener-
ated highly consistent mean short-term forecasts over 3 years, 
with some divergence between longer-term forecasts. Whereas 
the forecasts of transmission models were constrained by 
assumptions about infectious disease dynamics, the statistical 
models do not incorporate such assumptions and, accordingly, 
exhibited considerably more variability in forecasts. Robust 
predictions are fundamental to assess progress toward WHO 
targets and evaluate the effectiveness of strategies to facilitate 
achieving the targets.

KEY FINDINGS FROM MATHEMATICAL MODELING

Feasibility of Global Interruption of Leprosy Transmission

The primary aim of the NTD Modeling Consortium was to 
provide a quantitative answer to the question of whether global 
interruption of leprosy transmission could be met by 2020. 
We focussed on the feasibility of reducing the NCDR to <10 
per 100 000, which would be indicative of declining transmis-
sion. As country-level incidences can mask local dynamics, we 
focused on state and district levels. Blok et al showed that, given 
current control, the NCDR is predicted to remain far above the 
target of 10 per 100 000 by 2020 in several states or districts in 
India, Brazil, and Indonesia [18]. By way of validation, similar 
results were shown in the model comparison article focusing on 
4 states in Brazil [17]. Specifically, long-term predictions of the 
NCDR trend in Brazil indicated that the target of 10 per 100 000 
is unlikely to be achieved before 2040 in high- and hyperen-
demic states. Modeling demonstrated that global interruption 
of leprosy transmission is unfeasible within 2 decades [17, 18].

An important concern that the modeling has highlighted 
is the imprecision of the concept of “interruption of trans-
mission.” This can be interpreted as the complete cessation of 
transmission, which is highly unlikely if there are any extant 
infections. Alternatively, it could correspond to the reduction 
in the reproduction number, R0, below 1, the threshold below 
which each case transmits to <1 new case on average. The lat-
ter target is much more feasible, and would eventually achieve 
the global eradication of leprosy. Nonetheless, the eradication 
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process would play out over many, many infection cycles; as 
each cycle lasts many years, the timely eradication of leprosy is 
highly unlikely without further, novel interventions, especially 
given the presence of nonhuman reservoirs.

The major impediment for achieving interruption of transmis-
sion is the pool of undiagnosed symptomatic and asymptomatic 
leprosy cases, which contribute to the transmission of M. leprae. 
Modeling has shown that the number of undiagnosed sympto-
matic and asymptomatic cases is approximately twice the number 
of diagnosed cases [21], although the exact ratio of symptomatic 
to asymptomatic cases is likely to vary according to the epidemi-
ology (eg, whether transmission is increasing or decreasing) and 
diagnostic effort (ie, duration between onset of symptoms and 
diagnosis). This substantial pool of infected persons, still contrib-
uting to the transmission of M. leprae, must be addressed if lep-
rosy is to be eliminated and, ultimately, eradicated.

Geographical Variation

The model results emphasize the geographical variability in 
both current trends and future predictions. Under status quo 
interventions, regions with lower incidence are predicted to 
reach the 10 per 100 000 threshold within a few years, whereas 
those with higher incidence are predicted to have only a small 
chance of reaching this threshold within 20 years. This pattern 
is also reflected at a state level (eg, Brazilian states) and may 
apply at smaller spatial scales [22]. The general spatial distri-
bution of leprosy is characterized by a shrinking to “islands” 
of high incidence in which transmission is perpetuated. These 
foci contribute disproportionately to ongoing transmission and 
will be particularly challenging to control with current inter-
ventions. On the other hand, a more limited geographic distri-
bution of leprosy will become increasingly feasible to consider 
mass interventions, such as chemoprophylaxis, targeted on 
these areas to achieve further reduction both geographically 
and epidemiologically.

A limitation of the current models is that they do not include 
the influence of human movement and migration. A  recent 
study reported leprosy prevalence as high as 10% from a sam-
ple of people recruited from a bus station in Brazil [23]. The 
individuals sampled were self-selected following an awareness 
and recruitment campaign. This study highlights 2 important 
points. First, as predicted by models, there is a considerable 
burden of undiagnosed cases. Second, populations moving 
(especially on buses) may be at elevated risk of infection than 
the general population: Approximately one-third of diagnosed 
cases did not reside in the recruitment catchment area, and 
approximately one-half were residing in a state different from 
their birth. Both leprosy and use of public transportation are 
likely to be positively related to poverty [24]. The assumptions 
of mathematical models are typically that population size is 
constant, such that turnover is limited to equal rates of birth and 
death. The statistical approaches that have been used predict the 

future number of cases that will contribute to the data stream 
without geographic stratification. However, these Brazilian data 
suggest that many leprosy cases may not be diagnosed where 
they are infected.

Impact of Additional Control Strategies and Tools

Modeling has highlighted the need for a shift in the current lep-
rosy control strategies to improve the likelihood of achieving 
an NCDR <10 per 100 000 in a reasonable time frame, and ulti-
mately interrupting transmission [17, 18, 21]. To develop effect-
ive intervention strategies, a better understanding of M. leprae 
transmission and its risk factors is still needed [25]. Models 
can play an important role in testing assumptions about the 
transmission of M. leprae. For example, the stochastic individu-
al-based model SIMCOLEP has been used to assess the different 
mechanisms of susceptibility, ranging from random to genetic 
mechanisms [15]. More importantly, models can be used to 
identify new entry points for strategies, and to evaluate the effi-
cacy and cost-effectiveness of additional control strategies.

Universally, model results underscore the importance of 
more rapid diagnosis and treatment, preferably during the 
asymptomatic stage, to further reduce the NCDR of leprosy 
[16, 21]. The back-calculation analysis highlighted that earlier 
diagnosis will initially increase the number of diagnoses, but 
this will eventually fall due to the success of the intervention, 
whereas slower diagnosis has the opposite effect, that is, exac-
erbating future incidence (Figure 1A). The SIMCOLEP results 
echo this pattern (Figure 1B). A reduction in passive case detec-
tion delay by 2 years will first increase the NCDR as previously 
undiagnosed symptomatic cases are detected, but will then 
decline. Adding a test to detect asymptomatic leprosy cases 
among household contacts of a patient, followed by appropriate 
treatment, will further decrease the NCDR.

It is important to note that for leprosy, underlying changes in 
case incidence are masked in different ways in surveillance data. 
If there is a slowing in case detection, then this is unlikely to be 
detectable from the surveillance data for many years (Figure 1, 
blue line), meaning that a large burden of undetected cases 
grows [1]. This suggests that alternative measures of the success 
of a program should be reported alongside the NCDR, such as 
the age of cases, the self-reported time from onset of symptoms 
to detection, or some estimate of the likely date of exposure for 
the subset of cases for which this can be identified.

Given the importance of decreasing the time to diagnosis, 
there are a number of tools being developed to reduce this time 
and prevent transmission from identified cases [5]. Innovative 
ways to prevent leprosy include administering chemoprophy-
laxis or immunoprophylaxis to contacts of patients with newly 
diagnosed leprosy, and earlier diagnosis through screening 
with diagnostic tools to identify leprosy patients. A modeling 
study concerning Pará State in Brazil showed that administer-
ing chemoprophylaxis to household contacts, in addition to the 
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current control (ie, passive case detection and treatment, and 
household contact tracing), would further lower the NCDR 
and would accelerate achieving a level of 10 per 100 000 [20]. 
Efficiency would also be improved by a diagnostic test that is 
able to detect asymptomatic leprosy cases. Model results showed 
that the NCDR could be reduced by approximately 50%–80% in 
the long run, depending on the sensitivity of the test and leprosy 
endemicity. Even sensitivity as low as 50% could achieve a sub-
stantial reduction (Blok et al, unpublished data).

Future Steps and Data Needs

Mathematical modeling can be a useful tool for informing the 
design of programs and policies to control and eliminate leprosy. 
However, modeling needs data, and there is a need to ensure 
accuracy, veracity, and completeness of reported data. Open 
access to annual national and subnational leprosy data, includ-
ing data about the details and implementation coverage of the 
control program, is essential. Also, improvements in granular-
ity of case data would be informative, including specifying age 
groups, household size, and information about the context (eg, 
geographical location, migration history). Additional measures 
of program efficacy are needed to optimize control strategies, 
given that the NCDR is a function of the effort expended to 
find them. Data pertinent to program efficacy include time 
from symptom onset to diagnosis, program coverage, and com-
pliance rates of active case finding. Studies about stigma as well 
as legal and cultural issues might inform the design of multi-
faceted programs that address interdependent social and epi-
demiological challenges.

Mathematical models have thus far focused on predicting the 
NCDR and number of new cases of leprosy, whereas disability 
due to leprosy has received relatively little attention. As the level 
of grade 2 disability, especially among children, is also an indi-
cation of the ongoing transmission and delayed diagnosis, there 
is a need to take grade 2 disability into account more formally. 
Models could inform policy makers about the future burden of 
disease and the impact of new strategies on the incidence of dis-
ability. To accurately incorporate these factors, additional data 
are needed about the disability burden and the time between 
onset of symptoms and onset of grade 2 disability.

Finally, when moving toward zero transmission, the NCDR 
increasingly becomes an unreliable indicator of reduction 
in transmission, given the confounding that arises from the 
interdependent relationship between diagnostic effort. A more 
accurate measure of transmission elimination would be, for 
example, the absence of leprosy cases among children [26]. For 
mathematical models to be informative, accurate reporting of 
cases among children and further new tools to monitor pro-
gress toward zero transmission are needed. These tools remain 
to be developed.

CONCLUSIONS

The succession of control, local elimination, and global eradi-
cation of leprosy will—at a minimum—require many decades. 
Persons infected today may take 20  years to develop clinical 
symptoms. A diagnostic that permitted diagnosis of asymptom-
atic cases would be a “game-changer.”

Figure 1. The predicted incidence of leprosy with changing diagnostic delays. A, Output from back-calculation showing how increasing delay (red) and decreasing delay 
(blue) alter current and future incidence (mean predicted values fitted to Ceara, Brazil). B, Output from SIMCOLEP showing how decreasing the passive case detection delay 
by 2 years (blue line) and adding a diagnostic test to detect asymptomatic cases among household contacts of an index patient (red line) alters current and future new 
case detection rate in leprosy in Amazonas, Brazil. SIMCOLEP predictions of the baseline scenario (black line) were based on the model quantification in Blok et al [17]. 
Abbreviations: dd, detection delay (shorter); ed, early diagnosis including detected asymptomatic cases; NCDR, new case detection rate.
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Incidence is highly aggregated in some areas, and migra-
tion and movement are important issues in many of these 
populations. It may be, for example, that migrant cases from 
high-incidence population are maintaining transmission in 
the low-transmission areas. Targeting intervention in such foci 
might achieve disproportionate returns. Generally, the pro-
longed duration between infection acquisition and symptom 
onset, combined with human migration, means that cases will 
not necessarily be diagnosed where they are infected. These 
geographical and temporal gaps are barriers to contact-tracing 
efforts aimed at efficiently identifying other cases.

Novel approaches to prophylactic treatment and diagnosis 
that enable the detection of asymptomatic infection will likely be 
fundamental to achieve elimination and, ultimately, eradication. 
Mathematical modeling can be used to design clinical trials of new 
diagnostics and to evaluate the cost-effectiveness of implemen-
tation programs. As leprosy transmission becomes increasingly 
clustered, the opportunity for mass interventions becomes more 
feasible. Mathematical modeling can be used to determine opti-
mal thresholds of local incidence and geographical distribution to 
trigger shifting between targeted and mass interventions within 
foci. The criteria for these triggers should incorporate data-driven 
relationships between improvements in diagnosis as screening 
becomes more effective and rates of case reporting increase.

Current modeling is limited by data availability and knowl-
edge about the disease. With limited knowledge about trans-
mission, simple models are usually as effective as more complex 
ones. There is a need for more detailed data to enable models to 
be refined, particularly in terms of individual-level, epidemio-
logical data relating to age and geography. Such data will enable 
the tailoring of intervention design to different settings between 
which optimal strategies likely vary. In order to continue to 
control leprosy, and to eventually eliminate and eradicate it, we 
need continued investments in data collection, modeling analy-
ses, and diagnostic innovations.
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