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ABSTRACT OF THE DISSERTATION

Advancing Physics-Based Simulations:

Integrating Conventional and Machine-Learning Approaches for

Enhanced Computational Efficiency

by

Yadi Cao

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Demetri Terzopoulos, Co-Chair

Professor Chenfanfu Jiang, Co-Chair

This thesis presents novel approaches to improve the accuracy and efficiency of scientific

simulations, particularly those involving complex geometries, intrinsic physical modeling,

and demanding computational costs.

The first contribution extends the MPM to unstructured meshes, addressing the chal-

lenges of the transfer kernel’s gradient continuity and stability issue on any general mesh

tesselation. The Unstructured Moving Least Squares MPM (UMLS-MPM) incorporates

a diminishing function into the MLS kernel’s sample weights, ensuring an analytically

continuous function and gradient reconstruction. It is the first-of-its-kind framework in

this field. Several numerical test cases demonstrate the method’s stability and accuracy.

The second contribution is a hybrid scheme for modeling the interaction between com-

pressible flow, shock waves, and deformable structures. By combining recent advancements

in time-splitting compressible flow and Material Point Methods (MPMs), this approach

seamlessly integrates Eulerian and Lagrangian/Eulerian methods for monolithic flow-

structure interactions. Reflective and penetrable boundary conditions handle deforming

boundaries with sub-cell particles, while a mixed-order finite element formulation utilizing

B-spline shape functions discretizes the coupled velocity-pressure system. This comprehen-
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sive framework accurately captures shock wave propagation, temperature/density-induced

buoyancy effects, and topology changes in solids.

The third contribution addresses challenges in learning physical simulations on large-

scale meshes using Graph Neural Networks (GNNs). Existing state-of-the-art methods

often encounter issues related to over-smoothing and incorrect edge construction during

multi-scale adaptation. To overcome these limitations, a novel pooling strategy, termed

bi-stride, is introduced. This approach, inspired by bipartite graph structures, involves

pooling nodes on alternate frontiers of the breadth-first search (BFS), eliminating the

need for labor-intensive manual creation of coarser meshes and mitigating incorrect edge

problems. The proposed BSMS-GNN framework employs non-parametrized pooling and

unpooling through interpolations, resulting in a substantial reduction of computational

costs and improved efficiency. Experimental results demonstrate the superiority of

the BSMS-GNN framework in terms of both accuracy and computational efficiency in

representative physical simulations on large-scale meshes.
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CHAPTER 1

Introduction

In the realm of scientific exploration, simulation has emerged as a reliable and rigorous

method for conducting research across various domains. From computational fluid

dynamics (CFD) (Anderson and Wendt, 1995; Eymard et al., 2000; Reddy and Gartling,

2010; Bridson, 2015) to computational solid elastodynamics (Fung et al., 2001; De Borst

et al., 2012; Hughes, 2012; Jiang et al., 2016a), simulations have proven to be invaluable

tools in understanding and visualizing intricate physical phenomena. This introduction

delves into the dynamic landscape of simulation, highlighting its significance, challenges,

and the innovative solutions that drive its advancement.

While simulations hold immense potential, their integration into real-world applications

is not without challenges. These challenges include handling complex geometries and

boundaries, such as those encountered in computer graphics (Li et al., 2020a; Fang

et al., 2021) and CFD (Osher and Fedkiw, 2001; Peskin, 2002; Taira and Colonius, 2007),

addressing complex physical phenomena like plasticity (Klár et al., 2016; Jiang et al.,

2017a; Gao et al., 2017; Li et al., 2022b,a) and turbulence modeling (Alfonsi, 2009;

Germano et al., 1991; Shih et al., 1995; Piomelli, 1999), and dealing with scenarios where

only partial observations are available, such as human body modeling. Additionally,

simulations often come with demanding computational costs, as exemplified by large eddy

simulation (LES) (Piomelli, 1999) and direct numerical simulation (DNS) of CFD (Moin

and Mahesh, 1998).

Traditionally, addressing these challenges has relied heavily on the expertise of re-

searchers who meticulously crafted solutions tailored to specific problems. While these

expert-driven approaches have proven effective, they often require extensive manual
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intervention and fine-tuning. In recent years, the field of machine learning has evolved

significantly, demonstrating its potential to complement, and in some cases, replace

conventional simulation methods as surrogate models (Sanchez-Gonzalez et al., 2020; Pfaff

et al., 2020; Sun et al., 2020). Additionally, substituting traditional numerical solvers

with a physics-informed loss term (Raissi et al., 2019; Karniadakis et al., 2021; Gao

et al., 2021, 2022), and learning models that operate at coarser resolutions, can accelerate

future simulations (Kochkov et al., 2021). This evolving synergy between simulation and

machine learning holds the promise of revolutionizing the application of simulation and

computing in real-world scenarios.

This thesis focuses on leveraging both conventional and machine learning approaches

to push the boundaries of accuracy and efficiency in scientific computing and simulations.

By harnessing the strengths of both methodologies, the aim is to address the challenges

associated with simulations involving complex geometries, intricate and partially unknown

modeling, and demanding computational costs. From traditional material point methods

and CFD to the development of state-of-the-art machine learning methods for simulations,

each chapter contributes to the overarching goal of enhancing the accuracy and efficiency

of simulations. The next section will motivate the major research components of the

thesis in greater detail.

1.1 Motivations

1.1.1 Unstructured Moving Least Squares MPMs

The Material Point Method (MPM) (Sulsky et al., 1995) is a hybrid Eulerian-Lagrangian

approach, originally introduced to solid mechanics to extend the capabilities of both the

Fluid-Implicit Particle (FLIP) method (Brackbill et al., 1988) and the Particle-in-Cell

(PIC) method (Harlow, 1962). MPM tracks all physical attributes on a collection of

particles, while leveraging a background grid to solve the governing equations. The

effectiveness of MPM is well-documented in handling extreme deformations of solid

2



materials including, but not limited to, biological soft tissues (Ionescu et al., 2006; Guilkey

et al., 2006), explosive materials (Guilkey et al., 2007; Ma et al., 2009a), sand (Homel

et al., 2014; Klár et al., 2016; Tampubolon et al., 2017), and snow (Stomakhin et al., 2013;

Gaume et al., 2018, 2019).

In terms of Lagrangian formulations, MPM is classified into total Lagrangian (Vaucor-

beil et al., 2020; Vaucorbeil and Nguyen, 2021; Vaucorbeil et al., 2022a,b), where particles

are perceived as a static embedding within their initial cells, and updated Lagrangian

(Pretti et al., 2023) MPM, wherein a particle’s neighboring cell is dynamically updated

at each timestep based on the particle’s new location. Each approach presents distinct

advantages and challenges: The total Lagrangian MPM avoids numerical dissipation errors

and artificial fractures, but faces difficulties with significant mesh distortion, whereas the

updated Lagrangian MPM demonstrates enhanced robustness in scenarios involving large

mesh distortions. Our study concentrates on the updated Lagrangian MPM.

Despite its numerous applications, the updated Lagrangian MPM predominantly

utilizes a uniformly-structured background grid. This poses challenges when simulating

domains with complex geometries, commonly encountered in mechanical and geotechnical

engineering (Fern et al., 2019), due to difficulties in discretizing space conformally.

Consequently, several researchers (Wikeckowski, 2004; Beuth et al., 2011; Jassim et al.,

2013; Wang et al., 2021) have advocated the adoption of unstructured (2D) triangles

or (3D) tetrahedra for discretization, offering flexibility in accommodating geometrically

complex boundaries. However, most existing methods on the unstructured mesh rely on a

piecewise linear (C0) basis function (Wikeckowski, 2004; Beuth et al., 2011; Jassim et al.,

2013; Wang et al., 2021), leading to discontinuous gradients across element boundaries.

Since stress evaluation depends on the gradient of the projection kernel between particles

and grids, particles crossing cell boundaries induce oscillations in the stress field, thereby

generating substantial numerical errors known as cell-crossing error (Bardenhagen and

Kober, 2004).

Efforts to mitigate this cell-crossing error include the generalized interpolation material

point (GIMP) method (Bardenhagen and Kober, 2004; Charlton et al., 2017), dual domain

3



MPM (DDMPM) (Zhang et al., 2011), utilization of high-order basis functions like B-

splines (Steffen et al., 2008; Gan et al., 2018), and methods based on moving least squares

(MLS) basis functions (Hu et al., 2018; Tran et al., 2019). Despite these advancements,

limitations persist, either restricted to structured grids or confined to 2D tessellation with

triangle elements (Koster et al., 2021). The cell-crossing error remains a notable challenge

in applying general unstructured tessellations within MPM across both 2D and 3D.

1.1.2 Shockwave and Compressible Flow Simulation with the MPM

Supersonic motions and the detonation of explosive devices give rise to shock waves

propagating through the air. Characterized by rapid pressure changes, shock waves carry

an immense amount of energy having destructive impacts on structures, including rock

fragmentation, organic tissue rupture, and soil displacement. Accurately simulating these

phenomena presents formidable challenges in efficiently handling both compressible flow

and its intricate two-way interaction with solids, particularly under conditions of extreme

deformation and topological changes. The ignition of explosive materials in fluids leads

to rapid motion exceeding the speed of sound, generating high-energy shock wavefronts

that cause extensive material disruption. These phenomena pose multifaceted challenges

to existing numerical simulation schemes.

In the domain of computer graphics, many established methods focus on simulating

incompressible fluids. Among these, hybrid Lagrangian/Eulerian approaches, such as

Particle-in-Cell (PIC) methods (Brackbill et al., 1988; Bridson, 2015; Jiang et al., 2015,

2017b; Fu et al., 2017), are widely adopted. PIC methods track fluid motion through

particles, facilitating the creation of initial fluid volumes or emission of fluids from

sources. Additionally, the time-splitting scheme (Chorin, 1967; Bridson, 2015) decouples

the nonlinear advection step from linear steps, enabling efficient solution of each step.

Various Eulerian advection schemes have been developed to accommodate large time

steps (Stam, 1999; Kim et al., 2005; Qu et al., 2019). Notably, the advection process

inherently conserves mass when using particle-based fluid representation. Conversely,
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enforcing incompressibility often involves pressure projection, entailing the solution of

a pressure Poisson’s equation. The pressure projection system is typically symmetric

positive definite (SPD) (Batty et al., 2007; Bridson, 2015) when a uniform grid represents

constant fluid density. For liquids with free surfaces, domain sparsity (Setaluri et al., 2014;

Wu et al., 2018) is frequently exploited to reduce memory usage and computational cost.

Adapting incompressible flow solvers, computer graphics researchers have devised

methods for modeling explosion effects by introducing artificial volume changes. A

prevalent approach involves “divergence control” to enforce a specified source value

for pressure divergence, effectively simulating non-uniform density. This technique has

been used to mimic the appearance of expanding smoke plumes (Feldman et al., 2003;

Takeshita et al., 2003). The Boussinesq approximation (Spiegel and Veronis, 1960) is

another method for simulating buoyancy-like effects. Procedural explosion models based

on grid-based incompressible flow simulations have also been developed (Kawada and

Kanai, 2011). However, these approaches often neglect various physical quantities except

velocity, potentially yielding misleading effects. The Boussinesq approximation-based

methods, in particular, rely on a temperature field-based buoyancy model, which may fall

outside its reliable regime, leading to convergence issues. Despite their visually plausible

outcomes, these methods lack physical accuracy, and the quality of their results relies on

artificial parameter tuning.

Unfortunately, extending from incompressible to compressible flow is far from straight-

forward, introducing several challenges:

• The utilization of particles and sparse grids to represent the fluid domain is no

longer viable due to the presence of ambient air, leading to a substantial increase in

the number of degrees of freedom (DOFs).

• The preference for direct one-step methods over operator splitting arises due to

internal relations, such as the Equation of State, between pressure and other

conserved variables (Forrer and Jeltsch, 1998; Forrer and Berger, 1999; Monasse

et al., 2012). This introduces additional complexities when handling nonlinear terms

using various methods like characteristic decomposition (Deconinck et al., 1993; Fey,
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1998).

• More accurate advection schemes, such as the Weighted Essentially Non-Oscillatory

(WENO) scheme (Shu and Osher, 1988; Liu et al., 1994), require conservatism and

often necessitate small time steps strictly bounded by a small CFL number and the

sound speed.

• The linear system associated with implicit integration is not guaranteed to be SPD

due to differing densities and resultant coefficients in the mass matrix.

Given the inevitable increase in the number of DOFs, much research in the compressible

flow domain has focused on addressing the last three challenges.

1.1.3 Bi-Stride Multi-Scale GNNs for Mesh-Based Physical Simulation

Simulating physical systems through numerical solutions of partial differential equations

(PDEs) is a fundamental pursuit in science and engineering, with diverse applications

spanning solid mechanics (Jiang et al., 2016b; Li et al., 2020a), fluid dynamics (Bridson,

2015; Cao and Li, 2018), aerodynamics (Cao et al., 2022), and heat transfer (Cao et al.,

2019). However, conventional numerical solvers often entail significant computational

expense, particularly in time-sensitive scenarios like iterative design optimization, where

rapid online inference is imperative.

In recent years, the machine learning community has exhibited keen interest in

enhancing efficiency or substituting traditional solvers with learned models. These

endeavors encompass holistic frameworks (Grzeszczuk et al., 1998; Obiols-Sales et al.,

2020) as well as those incorporating physics-informed losses (Raissi et al., 2019; Karniadakis

et al., 2021; Sun et al., 2020). Numerous existing initiatives leverage convolutional neural

networks (CNNs) (Fukushima and Miyake, 1982) for physical systems situated on two- or

three-dimensional structured grids (Guo et al., 2016; Tompson et al., 2017; Kim et al.,

2019; Fotiadis et al., 2020). Nevertheless, their rigid dependence on regular domain shapes

poses challenges for application on unstructured meshes. While it is feasible to deform

uncomplicated irregular domains into rectangular shapes to accommodate CNNs (Gao
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(a) Learnable Pooling (b) Pooling by Rasterization (c) Pooling by Spatial Proximity

Figure 1.1: Challenges of existing multi-level GNNs. (a) Learnable pooling (Gao and
Ji, 2019) may result in a loss of connectivity even after the 2nd-order enhancement. (b)
Pooling by rasterization (Lino et al., 2021, 2022a,b) and (c) by spatial proximity (Liu
et al., 2021; Fortunato et al., 2022) can lead to incorrect connections across boundaries at
the coarser level.

et al., 2021; Li et al., 2022c), the obstacle persists for domains with intricate topologies,

commonly encountered in practical scenarios.

As a consequence, the utilization of graph neural networks (GNNs) in physics-based

simulations on unstructured meshes has recently garnered substantial attention (Battaglia

et al., 2018; Sanchez-Gonzalez et al., 2018; Belbute-Peres et al., 2020; Pfaff et al., 2020;

Sanchez-Gonzalez et al., 2020; Harsch and Riedelbauch, 2021; Gao et al., 2022). The

rudimentary GNN approach involves stacking multiple message-passing (MP) layers to

model information propagation across space. However, as the graph size increases, this

strategy confronts two primary challenges: (1) Complexity ; with both the quantity of

nodes for processing and MP iterations increasing linearly, a quadratic complexity becomes

inevitable for both computation time and memory consumption of the computational

graph (Fortunato et al., 2022). (2) Oversmoothing ; graph convolution can be perceived as

a low-pass filter that dampens higher-frequency signals (Chen et al., 2020; Li et al., 2020b).

Stacked MP layers then iteratively project information onto the graph’s Eigenspace,

effectively smudging out all higher-frequency signals, thereby complicating training.
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To overcome these limitations, researchers have commenced introducing multi-scale

GNNs (MS-GNNs) for physics-based simulation (Li et al., 2020b; Liu et al., 2021; Lino

et al., 2021; Fortunato et al., 2022; Lino et al., 2022b,a). The multi-scale approach mitigates

oversmoothing by constructing sub-level graphs at coarser resolutions, promoting longer-

range interactions and curtailing MP iterations. Existing methods for constructing the

multi-scale structure encompass utilizing spatial proximity to generate sub-level graphs at

coarser levels (Lino et al., 2021; Liu et al., 2021; Lino et al., 2022a), applying Guillard’s

coarsening algorithm (Guillard, 1993; Lino et al., 2022b), manually generating coarser

meshes for the original geometry (Liu et al., 2021; Fortunato et al., 2022), or randomly

pooling nodes and applying adjacency matrix factorization (Li et al., 2020b). However,

these solutions suffer respective limitations. For instance, learnable or random pooling can

introduce artificial partitions in the sub-level graphs (Figure 1.1(a)), even with adjacency

enhancement, obstructing information exchange across partitions; spatial proximity can

result in erroneous edges across coarser level boundaries (Figure 1.1(b) and (c)); Guillard’s

algorithm is restricted to 2D triangle meshes; and manually generating thousands of

meshes is excessively labor-intensive.

1.2 Contributions

In Chapter 2, we introduce an innovative MPM framework that effectively addresses

the challenges discussed in Section 1.1.1 with theoretical guarantees on the continuous

kernel and gradient reconstructions for MPM on the general mesh. Our contributions are

manifold (Cao et al., 2023b):

• We introduce a novel material point method based on an MLS reconstruction process

that resolves cross-cell errors in general unstructured tessellations, representing a

pioneering effort in this field.

• This achievement was realized by incorporating a diminishing function into the

sample weights of the MLS kernel. We provide an analytical proof of our approach,

establishing a theoretical bound for its effectiveness.
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• Additionally, we present comprehensive numerical experiments that demonstrate

the versatility and ease of integrating our method into existing MPM frameworks.

In Chapter 3, we introduce a novel method for simulating potentially destructive

interactions between compressible flow (shock waves) and nonlinear elastoplastic solids.

Our technical contributions (Cao et al., 2022) include:

• A hybrid Eulerian Finite Element and Lagrangian/Eulerian Material Point scheme

for monolithic modeling of compressible flow and nonlinear structural interactions;

• A mixed treatment of reflective and passable interfaces inspired by porous media

theory, enabling stable sub-grid resolution—a crucial element for modeling gas and

fragment interactions accurately; and

• A new mixed-order finite element discretization utilizing B-spline kernels with

mismatching interface pressure orders and (thus) non-staggered solid/fluid degrees

of freedom, avoiding additional interpolation steps and resulting in a diagonally

dominant SPD system for velocity-pressure unknowns.

In contrast to the method of Kwatra et al. (2010), which couples staggered Marker-and-

Cell (MAC) grid finite difference-based fluids with purely Lagrangian solids, our approach

is based on the non-staggered grid. This eliminates extrapolation during the advection

step for compressible flow. Our framework relies on operator splitting and remains stable

for large time step sizes determined by pressure gradients and maximum velocities.

In Chapter 4, we discern that all the limitations of multi-scale graph neural networks

stem from immature operations, specifically pooling and establishing graph connections at

coarser levels. We devise operations that 1) uphold accurate connections at coarser levels,

2) abstain from introducing edges that blur boundaries, 3) remain universally applicable

to any mesh type, and 4) are automated. We tackle these challenges with two progressive

contributions (Cao et al., 2023a):

• First, we introduce a novel yet straightforward pooling strategy, termed bi-stride.

Bi-stride is inspired by bi-partition determination in a directed acyclic graph (DAG).
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It pools all nodes on alternate breadth-first search (BFS) frontiers, such that a

2nd-powered adjacency enhancement (A← A2, where A is the adjacency matrix

of the graph) conserves all correct connectivity. Bi-stride exclusively leverages the

input mesh, obviating the need for spatial proximity, is universally applicable to

any mesh type, and is fully automated.

• Second, bi-stride pooling preserves direct connections between pooled and unpooled

nodes; leveraging this advantage, a single MP operation suffices for information

exchange between pooled and unpooled nodes before transitioning to the adjacent

level; we also devise a non-parameterized aggregation and propagation method,

akin to interpolation in U-Net, to manage the transition between adjacent levels.

These simplifications significantly curtail computational requisites compared to

state-of-the-art approaches.

In unison, these two contributions give rise to our Bi-Stride Multi-Scale GNN (BSMS-

GNN), an innovative framework representing a notable advance in the domain of learned

mesh-based simulations that are especially suitable for deployment in genuine industrial

applications where meshes frequently feature intricate geometry and considerable size.
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CHAPTER 2

Unstructured Moving Least Squares Material Point

Method

The Material Point Method (MPM) is a hybrid Eulerian-Lagrangian simulation tech-

nique for solid mechanics with significant deformation. Structured background grids are

commonly employed in the standard MPM, but they may give rise to several accuracy

problems in handling complex geometries. When using (2D) unstructured triangular

or (3D) tetrahedral background elements, however, significant challenges arise ( e.g.,

cell-crossing error). Substantial numerical errors develop due to the inherent C0 continuity

property of the interpolation function, which causes discontinuous gradients across element

boundaries. Prior efforts in constructing C1 continuous interpolation functions have either

not been adapted for unstructured grids or have only been applied to 2D triangular

meshes. In this study, an Unstructured Moving Least Squares MPM (UMLS-MPM)

is introduced to accommodate 2D and 3D simplex tessellation. The central idea is to

incorporate a diminishing function into the sample weights of the MLS kernel, ensuring

an analytically continuous velocity gradient estimation. Numerical analyses confirm

the method’s capability in mitigating cell crossing inaccuracies and realizing expected

convergence.

11



2.1 Methodology

2.1.1 Governing Equations

Following standard continuum mechanics (Bonet and Wood, 2008), consider the mapping

x = ϕ(X, t), which maps points from the (reference) material configuration, represented

by X, to their corresponding locations in the (current) spatial configuration, represented

by x. In this framework, velocity is defined in two different but equivalent manners.

On the one hand, V (X, t) = ∂x
∂t

(X, t) defines the Lagrangian velocity in the material

configuration. On the other hand, the Eulerian velocity in the spatial configuration, is

denoted by v(x, t) = V (ϕ−1(x, t), t). Furthermore, the deformation experienced by the

material points is quantified using the deformation gradient, given by F (X, t) = ∂x
∂X

(X, t).

The determinant of this gradient, represented by J , is also crucial as it provides insights

into volumetric changes associated with the deformation process.

Given these definitions, the conservation equations for mass and momentum (neglecting

external forces) are (Zhang et al., 2016; Bonet and Wood, 2008)

ρJ = ρ0,

ρ
Dv

Dt
= ∇ · σ,

(2.1)

where ρ represents the density, D/Dt is the material derivative, and

σ =
1

J
PF T . (2.2)

is the Cauchy stress tensor, which is related to the first Piola-Kirchhoff stress P = ∂Ψ
∂F

,

where Ψ denotes the strain energy density. The evolution of the deformation gradient is

given by

Ḟ = (∇v)F . (2.3)

Consider a domain represented by Ω. Boundaries on which the displacement is known,
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represented as ∂Ωu, are governed by the Dirichlet boundary condition

xk(x, t) = x̄k(x, t), ∀x ∈ ∂Ωu, (2.4)

where x̄k denotes the predetermined displacement for component k. Boundaries on which

the tractions (forces per unit area) are predefined, represented as ∂Ωτ , adhere to the

Neumann boundary condition

σkl(x, t)nl = τ̄k(x, t), ∀x ∈ ∂Ωτ , (2.5)

where τ̄k is the prescribed traction for component k, and σkl(x, t)nl represents the traction

inferred from the stress tensor σkl acting in the direction of the outward unit normal

vector nl. For ease of reference and notational clarity in our framework, the subscripts k

and l refer to components k and l of any given vector or tensor.

To solve the conservation equations for mass and momentum within the MPM frame-

work, one often turns to the weak form. Specifically, a continuous test function ϕ, which

vanishes on ∂Ωu, is employed. Then, both sides of the equation are multiplied by ϕ and

integrated over the domain Ω:

∫
Ω

ϕρẍkdΩ =

∫
∂Ωτ

ϕτkdA−
∫
Ω

∂ϕ

∂xl

σkldΩ. (2.6)

At this juncture, integration by parts and the Gauss integration theorem are utilized,

nullifying the contributions on ∂Ωu due to the vanishing of the test function on this

boundary subset.

In the standard implementation of the MPM, physical quantities are retained at

material points and then projected onto background grids for further computation.

Equation (2.6) is discretized within the grid space by leveraging the Finite Element

Method (FEM) and then solved using either implicit or explicit time integration schemes.

This article focuses on the explicit symplectic Euler time integration method. While

the extension to implicit methods is possible and indeed straightforward, that would be
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Algorithm 1 Explicit MPM.

1: Determine material point-grid connectivity, calculate kernel functions wip

2: P2G:
Nodal mass: mi =

∑
p ρpVpwip

Nodal momentum: pi =
∑

p vpρpVpwip

Nodal velocity: vi = pi/mi

3: Internal force: f int
i = −

∑
p Vpσp∇wip

4: Gravity: f ext
i =

∑
p wipmpgp

5: Nodal force: fi = f ext
i + f int

i

6: Deformation of grid:
Updated nodal accelerations: ẍi = fi/mi

Update nodal velocities: ṽi = vi + ∆tẍi

Enforce Dirichlet conditions: ẍi = 0 and fi = 0
7: G2P:

Update point velocities: v∆t
p = vp + ∆t

∑
iwipẍi

Update point positions: x∆t
p =

∑
i wipx̃i

8: Update deformation gradient: F∆t
p =

(
I +

∑
i(x̃i − xi)(∇wip)

T
)
Fp

9: Update point volume: V ∆t
p = det(F∆t

p )V 0
p

10: Update point stresses: σp = C(Fp)
11: Enforce plasticity, reset grid deformation, advance to next timestep

orthogonal to the contribution of the article.

2.1.2 Explicit MPM Pipeline

The explicit MPM pipeline in each time step is delineated into four main stages: (1)

the transfer of material point quantities to the background grid, commonly known as

Particle-To-Grid (P2G), (2) the computation of the system’s evolution on this background

grid, (3) the back-transfer of the evolved grid quantities to the material points, designated

as Grid-To-Particle (G2P), and (4) the execution of supplementary processing tasks,

specifically on strain and/or stress to incorporate effects such as elastoplasticity return

mapping and material hardening. Finally, the hypothetical deformation incurred on

the background grid is reset for the next computational cycle. Algorithm 1 presents an

overview of the MPM pipeline, and the main stages are elaborated below.
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Stage 1: P2G In the MPM, discrete material points represent physical attributes such

as mass, position, and velocity. For a given particle, labeled p, and a grid node, labeled i,

the interpolation function’s value associated with node i, evaluated at the spatial position

xp of particle p, is represented as wip. Similarly, the gradient of this interpolation function,

evaluated at the same location, is denoted as ∇wip. In the explicit MPM framework, the

lumped grid mass is defined as mi =
∑

p ρpVpwip, where ρp represents the density and Vp

the volume of each material point. This definition facilitates the momentum calculation

on the grid, expressed as

miẍi = f int
i + f ext

i , (2.7)

where ẍi is the acceleration of grid node i. The internal forces f int
i and external forces

f ext
i acting on the grid nodes are as follows:

f int
i = −

∑
p

Vpσp∇wip, (2.8)

f ext
i =

∑
p

mpwipbp +
∑
p

mpwipgp. (2.9)

The stress tensor σ is linked to the deformation gradient F through the constitutive

relation

σ = C(F ), (2.10)

which defines how material deformation influences internal force.

Stage 2: Evolution on the Background Grids Nodal accelerations are computed

using (2.7). To update the velocities and positions of the grid nodes, a symplectic Euler

time integrator is employed:

ṽi = vi + ∆tẍi (Velocity Update), (2.11)

x̃i = xi + ∆tṽi (Position Update). (2.12)
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These equations ensure a time-stepped progression of the grid nodes where the time step

size ∆t is chosen based on the CFL condition.

Stage 3: G2P The FLIP scheme (Brackbill et al., 1988) is utilized for all the experiments

discussed in Section 2.3. In FLIP, the material point positions and velocities are updated

as

x∆t
p =

∑
i

wipx̃i, (2.13)

v∆t
p = vp + ∆t

∑
i

wipẍi. (2.14)

Subsequently, the evolution of the deformation gradient F in (2.3) is discretized as

F∆t
p =

(
I +

∑
i

(x̃i − xi)(∇wip)
T

)
Fp. (2.15)

With an initial F 0 = I, material point volumes are updated as

V ∆t
p = det(F∆t

p )V 0
p . (2.16)

Stage 4: Post-Processing and Resetting the Background Grid This stage

encompasses all post-processing tasks such as plasticity return mapping and hardening

(Simo and Hughes, 2006). In the updated Lagrangian MPM, the grid is reset to a non-

deformed state. This can be done by not updating grid positions while discarding other

grid information such as velocity and acceleration.

2.1.3 Transfer Kernel

In the MPM, the transfer kernel is vital for relaying particle information to adjacent

grid nodes. Techniques such as the B-spline MPM (Steffen et al., 2008) and GIMP

(Bardenhagen and Kober, 2004) use a specific compact support function to smoothly

influence nearby grid nodes, whereas methods like Moving Least Squares MPM (MLS-
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MPM) (Hu et al., 2018) determine the kernel implicitly, based on the proximity of nodes.

However, both strategies follow a similar workflow: (1) identifying the set of nearby nodes,

and (2) calculating the weights (transfer kernel) for each node in relation to a particle in

its influence zone.

This section first introduces the general MLS reconstruction process and the application

of MLS-MPM with a comprehensive linear polynomial basis. This is followed by a

discussion on a superficially straightforward extension of MLS-MPM to unstructured

meshes, highlighting the aforementioned steps of identifying nearby nodes and computing

the transfer weights. We then delve into the desirable properties of the kernel, emphasizing

why the naive extension fails to yield continuous gradient reconstructions when particles

cross cell boundaries. Finally, we offer a solution addressing the issue of discontinuous

gradient reconstructions and propose UMLS-MPM.

2.1.3.1 Introduction to General MLS and MLS-MPM

The essential concept of Moving Least Squares (MLS) is to approximate a function u at a

point z within the continuous domain surrounding x. This approximation is achieved

by employing a polynomial least-squares fit of u based on its sampled values at specific

points xi, where each ui denotes the value of u at xi. The functional reconstruction is

given by

u(z) = P T (z − x)w(x), (2.17)

where P (z − x) = [p0(z − x), p1(z − x), . . . , pl(z − x)]T represents the polynomial basis,

while w(x) = [w0(x), w1(x), . . . , wl(x)] comprises the corresponding coefficients, and l

indicates the number of polynomial basis functions. The coefficients w(x) are determined

by minimizing the cumulative weighted reconstruction errors at the sampled points. This

is done by substituting z ← xi into (2.17) for each sample:

w(x) = argmin
∑
i∈Bx

d(xi − x) ||ui − P T (xi − x)w(x)||2. (2.18)
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Here d represents the inverse of a separation function, which is typically a positive

value that decreases with increasing separation distance. It acts as the weight for the

reconstruction error at each sample. The set Bx encompasses the local region around x

where this weighting function is non-zero; i.e., d(xi − x) > 0.

This minimization leads to the following solution for w:

w(x) = M−1(x)b(x), (2.19)

where M (x) =
∑

i∈Bx
d(xi−x)P (xi−x)P T (xi−x) and b =

∑
i∈Bx

d(xi−x)P (xi−x)ui.

Substituting (2.19) into (2.17), we obtain the reconstruction

u(x) =
∑
i∈Bx

d(xi − x)P T (z − x)M−1(x)P (xi − x)ui. (2.20)

The Linear Polynomial Basis Case A special case involves using a complete linear

polynomial basis, as is done in MLS-MPM (Hu et al., 2018), where P (xi − x) =

[1, (xi−x)T ]T . Then (2.20) can reconstruct the function value û and provide an estimation

of the gradient ∇û at x as follows:

 û

∇û

 = M−1(x)QT (x)D(x)u, (2.21)

where u = [u1, . . . , uN ]T is the stacked sampled values, Q(x) = [P (x1 − x), . . . ,P (xN −

x)]T is the stacked basis for every sample, D(x) is the diagonal sample weighting matrix

with Di,i(x) = d(xi − x), and M (x) = Q(x)TD(x)Q(x). We adopt the linear basis.

2.1.3.2 Extending MLS-MPM Onto Unstructured Meshes

We select MLS-MPM as the foundational approach due to the inherent versatility of

MLS, which enables application to adjacent nodes without reliance on specific topological

or positional constraints. Our implementation and experimental work have focused on

triangular and tetrahedral meshes. Nonetheless, it is worth noting that our method can
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Particle location

0th ring of neighbors

Further neighbors

1st ring of neighbors+

Figure 2.1: Schematic plot of the zeroth and first ring of neighbors.

easily be extended to other kinds of unstructured grid tessellations by designing a smooth

and locally diminishing function ηv compatible with the tessellation, such as the one we

design below in (2.29) for simplex cells.

Identifying Nearby Nodes Around a Particle To determine the nearby vertices for

a given particle p, we first locate the cell that encompasses p and refer to its vertices as

N 0
p , representing the 0-ring neighbors of p. Then, we define N 1

p as the 1-ring neighbors,

which comprise all nodes connected to N 0
p . Note that N 0

p is a subset of N 1
p . Similarly, we

can define N 2
p , . . . in an analogous manner, as illustrated in Figure 2.1.

Ring Level Selection for Nearby Nodes When a specific level of ring neighbors

is chosen as the nearby nodal degrees of freedom, a natural question arises: What is

the minimum number of rings required to satisfy the desired properties of the MPM

kernel? Assume N 0
p is selected, meaning the particle only affects the vertices in the cell

where it currently resides, and at least C0 continuity is required for the kernel. This

scenario leads to the kernel degenerating, which is characterized by the kernel affecting

merely the shared edge in 2D or the shared face in 3D when the particle transitions

across cell boundaries, as depicted in Figure 2.2a. Conversely, opting for 1-ring neighbors,

N 1
p , effectively circumvents this issue, ensuring a non-degenerate kernel interaction as

illustrated in Figure 2.2b.
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(a) If 0th ring of neighbors are DOFs (b) Expand to use 1th ring of neighbors

Particle location

Inactive DOFs

Common 0th/1st ring of neighbors+

+ Added/removed ones

Figure 2.2: The selection of different ring of neighbors. (a) When N 0
p alone is selected

as the active Degrees of Freedom (DOFs), as a particle crosses the cell edge, the DOFs
indicated by the blue and red boxes are added or removed, respectively. Consequently,
the weights on these DOFs must approach zero to ensure C0 continuity, resulting in kernel
degeneration along the edge. (b) Advancing to N 1

p addresses this issue by incorporating a
sufficient number of DOFs to fully encompass the particles.

Computing the Weights For conciseness and consistency, we will omit the function

arguments and subscripts, such as x and i in (2.21). Instead, since we project onto the

mesh vertex v, we will hereafter use the subscript v and obtain the following rewritten

form of (2.21):  ûp

∇ûp

 = M−1
vp Q

T
vpDvpuvp, (2.22)

where uvp = [uv1 , . . . , uvn ]T is the stacked vertex values with vi ∈ N 1
p , i ∈ [1, n] and the ma-

trix Mvp = QT
vpDvpQvp with stacked vertex basis Qvp = [P (xv1 − xp), . . . ,P (xvn − xp)]

T

and diagonal sample weighting matrix Dvp such that Dpv,i,i = dvp = d(xv1 − xp), where

d is chosen to be a B-spline function.
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2.1.3.3 Required Properties for the Transfer Kernel

Despite implementing a broader interpolation kernel, the reconstruction method described

in Section 2.1.3.2 is not directly applicable as it still suffers from cell crossing errors. To

grasp this problem, consider the essential desirable properties for an MPM kernel:

1. The kernel must be a non-negative partition of unity. This means that the sum of the

kernel weights for all nearby vertices to a particle should equal 1; i.e.,
∑

v∈N 1
p
wv = 1,

with each individual weight wv ≥ 0,∀v ∈ N 1
p .

2. There should be a continuous reconstruction of both the function value and gradient

as the particle transitions across the cell boundary.

Methods such as B-spline MPM and GIMP are specifically designed to fulfill these

requirements. With MLS-MPM, the partition of unity is inherently assured by the

characteristics of MLS (Levin, 1998). The non-negativity of this partition additionally

depends on preventing sample degeneration, a requirement met in MLS-MPM due to

its use of uniform background nodes. Furthermore, MLS-MPM ensures continuous

reconstruction by utilizing a B-spline for sample weighting, which provides C1 continuity.

A key insight from MLS-MPM is that whenever a grid node is added or removed

from the nearby node set, its B-spline weighting function also smoothly approaches

zero, ensuring its influence on the assembly of M and Q in (2.21) is infinitesimal and,

hence, the continuity of the reconstruction. However, since our method determines

nearby vertices based on the ring of neighbors rather than proximity, a uniform sample

weighting function cannot guarantee diminishing influence for the added or removed

vertices. Consequently, the abrupt changes in influence of these vertices during the MLS

assembly yield discontinuous reconstruction. This issue will be addressed in the next

section.

2.1.3.4 Remedying Discontinuous Reconstruction Across the Cell Boundary

To mitigate the abrupt influence changes from vertices being added or removed during

cell crossings, an intuitive solution is to diminish their impact on the MLS assembly.
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This can be accomplished by adjusting the kernel to predominantly rely on vertices that

remain common before and after crossing the cell boundary. Intuitivly, we can multiply

any initial sample weighting function dvp that is C1 by a smooth diminishing function ηvp;

i.e., dvp ← ηvpdvp. Here, ηvp approaches zero for vertices that are added or removed from

N 1
p during the cell crossing. The formal proof is provided below.

For conciseness, we drop the subscripts vp in the following proofs. Assume there exists

a smooth, diminishing function η for the nodes added or removed from the set of nearby

nodes N 1 when a particle crosses the boundary of a cell. As such, we need to prove that

our kernel value and gradient estimation is continuous across the boundary.

Proposition 1. The kernel value and gradient estimation generated by the diminished

sample weighted MLS is continuous across cell boundaries.

Proof. Let N 1
o,n be the sets of nearby nodes before/after the particle p crosses the

common edge between the old/new cells N 0
o,n. Here, the subscripts o, n denote the

old/new cell, respectively, and the superscripts 0, 1 indicate the ring-0/1 neighbors of

the cell, respectively. Let xo,n
p be the position of particle p before/after the crossing and

||xn
p − xo

p|| = O(ϵ). Define the common node set N 1
c = N 1

o ∩ N 1
n , the added node set

N 1
a = N 1

n \ N 1
c , and the removed node set N 1

r = N 1
o \ N 1

c . Since η is locally diminishing

for v ∈ N 1
a,r, we have a positive value K1 such that η = O(K1ϵ) = O(ϵ). The pertubation

for the assembled matrix M before/after the particle p crosses an edge is

δM =
∑
v∈N 1

c

δ(ηdPP T ) +
∑
v∈N 1

a

ηdPP T −
∑
v∈N 1

r

ηdPP T , (2.23)

where the first term is continuous by construction since every factor is smooth; i.e.,
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||δ(ηdPP T )|| = O(ϵ). For the second and third terms, since η = O(ϵ), we have

||δM || ≤
∑
v∈N 1

c

||δ(ηdPP T )||+
∑
v∈N 1

a

||ηdPP T ||+
∑
v∈N 1

r

||ηdPP T ||

≤
[
|N 1

c |+
(
|N 1

a |+ |N 1
r |
)

max
v∈N 1

a,r

||dPP T ||
]
O(ϵ)

= O(|N 1|h2ϵ)

= O(ϵ).

(2.24)

Here, as long as the mesh has a reasonably good quality, |N 1| is finite and small; i.e.,

there is a finite and small amount of ring-1 neighbors. Also, h, a constant, is the support

radius of the kernel, outside of which the weight is zero. In all, both |N 1| and h can be

omitted in the analysis.

The perturbation of the inverse matrix is given by

||δM−1|| = ||(M + δM)−1 −M−1||

= ||M−1 −M−1δMM−1 +O(||δM ||2)−M−1||

= ||M−1δMM−1 +O(ϵ2)||

≤ ||M−1δMM−1||+O(ϵ2)

≤ ||M−1||2 · ||δM ||+O(ϵ2)

=
||δM ||
σ(M )2min

+O(ϵ2)

= O
(

ϵ

σ(M)2min

)
+O(ϵ2)

= O
(

ϵ

σ(M)2min

)
,

(2.25)

where σ(M)min is the minimum singular value of M .

Similarly, for the perturbation in the assembled vector QTDu before/after the particle
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crossing is

||δ
(
QTDu

)
|| = ||

∑
v∈N 1

c

δ(ηduP ) +
∑
v∈N 1

a

ηduP −
∑
v∈N 1

r

ηduP ||

≤
∑
v∈N 1

c

||δ(ηduP )||+
∑
v∈N 1

a

||ηduP ||+
∑
v∈N 1

r

||ηduP ||

≤
[
|N 1

c |+
(
|N 1

a |+ |N 1
r |
)

max
v∈N 1

a,r

||duP ||
]
O(ϵ)

= O(|N 1|hϵ)

= O(ϵ).

(2.26)

Furthermore, we can establish the following bound for the assembled vector QTDu:

||QTDu|| = ||
∑
v∈N 1

ηduP ||

≤ |N 1| ·max
v∈N 1

||ηduP ||

= O(|N 1|h)

= O(1).

(2.27)

Finally, the perturbation for
[
ûp,∇ûT

p

]T
from (2.22) is

[
ûp,∇ûT

p

]T
= ||δ(M−1QTDu)||

= ||δM−1QTDu + M−1δ
(
QTDu

)
||

≤ ||δM−1QTDu||+ ||M−1δ
(
QTDu

)
||

≤ ||δM−1|| · ||QTDu||+ ||M−1|| · ||δ
(
QTDu

)
||

= O
((

1

σ(M )2min

+
1

σ(M )min

)
ϵ

)
.

(2.28)

In the incomplete singular value decomposition of M , the singular values will always

be non-negative. And if the surrounding nodes are not degenerate, the minimum singular

value σ(M)min will always be positive and the condition number of M is bounded.

Therefore, as long as the mesh is of reasonably good quality, both the function value and
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gradient estimation is C0 across the boundary.

Note the above conclusion holds for any general mesh tessellations. For simplex

elements, we design the following ηvp:

ηvp =
∑
n∈N 0

p

BnpAv,n, (2.29)

where, for particle p, Bnp represents the barycentric weight for n ∈ N 0
p , and A is the

mesh’s adjacency matrix. Geometrically, for a nearby vertex v ∈ N 1
p , ηvp denotes the

sum of the barycentric weights for all vertices n ∈ N 0
p that are directly connected to v.

Note that ηvp = 1, ∀v ∈ N 0
p . Next, we prove that (2.29) is locally diminishing for N 1

a,r

when the particle crosses the edge. Note that the proof is presented in 2D when a particle

crosses an edge; the extension to 3D and other crossing cases is straightforward.

Proposition 2. The function η in (2.29) is locally diminishing for ∀v ∈ N 1
a,r.

Proof. Formally, we must prove that for any v ∈ N 1
a,r, when xp crosses the edge of a

triangle and ||xn
p − xo

p|| = O(ϵ), the smoothing function η = O(ϵ).

Denote the edge that the particle is crossing as e and the portion of ||xn
p − xo

p|| in the

new/old cell as Ln,o. Trivially,

Ln,o ≤ Ln + Lo

= ||xn
p − xo

p||

= O(ϵ).

(2.30)

Then, referring to Figure 2.3, let the far-away node not on the edge but in the new/old

cell be vfar (i.e., vn,ofar /∈ e ∧ vn,ofar ∈ N 0
o,n) and the height from a node v to an edge e be

H(v, e). Since the height is orthogonal to the edge, we have H(xn,o
p , e) ≤ Ln,o = O(ϵ).

Consider the barycentric coordinate contributed by the far-away node, in the new/old
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Particle locationCommon 0th/1st ring of neighbors+

Inactive DOFs+ Added/removed ones

H(xp
o, e)

H(xp
n, e)

H(vfar
n, e)

H(vfar
o, e)

||e||

Height to the edge

Helper lines to form a triangle

+

Figure 2.3: A visual proof that η diminishes locally. As described in (2.31), for every
vertex v within the first ring of neighbors, N 1

a,r. The dashed line denotes the perpendicular
height from a given position to the shared edge. Dotted lines are drawn to construct a
triangle between the point xp and the edge, facilitating the computation of the barycentric
coordinates.

cell respectively, for xp:

Bn,o
vfar

=
H(xn,o

p , e) · ||e||
H(vn,ofar, e) · ||e||

=
H(xn,o

p , e)

H(vn,ofar, e)

= O(
ϵ

H(vn,ofar, e)
)

= O(ϵ).

(2.31)

Finally, if a node is added/removed during the particle crossing (i.e., v ∈ N 1
a,r), this

means that v is only connected to the far-away nodes vn,ofar but not to the edge e; i.e.,
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(a) uniform 1D mesh

(c) periodically shrinking-expanding 1D mesh

Node: 1 2 3 4 5 6 7 8 9

(b) uniform, truncated 1D mesh

2 3 4Node: 1

Figure 2.4: Different 1D meshes used for verification of kernel reconstruction. (a) Uniform.
(b) Uniform but truncated. (c) Periodically shrinking/expanding.

Av,vn,o
far

= 1,∀v ∈ N 1
a,r, otherwise Av,n = 0,∀n ∈ e ∧ ∀v ∈ N 1

a,r. Hence,

η =
∑
n∈N 0

BnAv,n

= Bn,o
vfar

Av,vn,o
far

+
∑
n∈e

BnAv,n

= Bn,o
vfar
· 1 +

∑
n∈e

Bn · 0

= Bn,o
vfar

= O(ϵ), ∀v ∈ N 1
a,r.

(2.32)

This concludes the proof.

2.1.3.5 Verification of the Proposed Kernel

To verify that the proposed method can produce continuous reconstruction, analytical

and numerical solutions of the kernels are produced on 1D and 2D meshes, respectively.

For the 1D case, the first basic verification is conducted on a uniform mesh, as the

setup in Figure 2.4a. Here, each cell has a length of 1, so is the unit support length for

the B-spline as the sample weights. The analytical solution for the uniform 1D mesh,
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obtained using Mathematica 2023, is as follows, where the kernel value is denoted as

f =



0.25(0.5−x)2x
x5−6x4+13.5x3−13.75x2+6.3125x−0.5625

, 0.5 < x ≤ 1

−x6+5x5−9.5x4+8.5x3−3.3125x2+0.3125x+0.0625
−x5+4x4−5.5x3+3.25x2−1.3125x+1.0625

, 1 < x ≤ 1.5

x6−12x5+58.5x4−148.25x3+205.563x2−147.063x+42.25
x5−11x4+47.5x3−100.25x2+103.313x−41.125

, 1.5 < x ≤ 2

x6−12x5+58.5x4−147.75x3+202.563x2−141.438x+39
−x5+9x4−31.5x3+53.75x2−45.3125x+16.125

, 2 < x ≤ 2.5

x6−19x5+149.5x4−623.5x3+1453.31x2−1794.19x+915.687
−x5+16x4−101.5x3+318.75x2−495.313x+304.188

, 2.5 < x ≤ 3

−0.25x3+2.75x2−10.0625x+12.25
−x5+14x4−77.5x3+212.25x2−288.313x+156.688

, 3 < x ≤ 3.5

0, Otherwise,

(2.33)

and the gradient estimation is denoted as

g =



− 1(0.5−x)2x(x−2)
x5−6x4+13.5x3−13.75x2+6.3125x−0.5625

, 0.5 < x ≤ 1

−x5+5x4−10.5x3+11.5x2−5.8125x+1.0625
−x5+4x4−5.5x3+3.25x2−1.3125x+1.0625

, 1 < x ≤ 1.5

−x5+9x4−33.5x3+65.75x2−67.3125x+27.625
−x5+11x4−47.5x3+100.25x2−103.313x+41.125

, 1.5 < x ≤ 2

−x5+11x4−49.5x3+112.25x2−125.313x+53.625
x5−9x4+31.5x3−53.75x2+45.3125x−16.125

, 2 < x ≤ 2.5

−x5+15x4−90.5x3+274.5x2−417.813x+254.188
x5−16x4+101.5x3−318.75x2+495.313x−304.188

, 2.5 < x ≤ 3

x4−13x3+62.25x2−129.5x+98
−x5+14x4−77.5x3+212.25x2−288.313x+156.688

, 3 < x ≤ 3.5

0, Otherwise.

(2.34)

Figure 2.5a shows the continous kernel reconstruction with the diminishing function η,

while Figure 2.5b, as an ablation, shows that the discontinuous reconstruction even for

the simplest uniform mesh, proving the necessity of η.

Note that the presence of a particle within a boundary element, as depicted in

Figure 2.4b, can lead to a negative weight value for the most interior node. This

phenomenon is exemplified by Node 3 in Figure 2.6, where the kernel degenerates due

to the absence of a first ring of neighboring elements on the boundary side during MLS

sampling. To remedy the problem of negative kernel values and prevent numerical
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Figure 2.5: Ablation study of reconstruction with or without diminishing on 1D mesh.
Comparison of kernel values and gradient estimations on a uniform 1D mesh (a) with and
(b) without applying the diminishing function.

W
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x [m]

Node 1
3

2
Sum

Node positions
4

Figure 2.6: A failure example when there is no extra layer near the boundary. The
negative weight for Node 3 (yellow) when the particle is in the boundary cell and there is
no extra layer.

instabilities (Andersen and Andersen, 2010), drawing an additional layer of elements

beyond the original boundary is recommended in practice.

The next verification is on a periodically shrinking and expanding 1D mesh (Fig-

ure 2.4c). The mesh contains cyclic cell sizes of [. . . , 1, R,R2, R, 1, . . . ] designed to mimic

the transition between varying resolutions. The size transition ratios tested range from

1.1 to 1.5 so as to correspond with the typical transition ratios in FEM analysis. Kernel

reconstructions are conducted on Nodes 5, 6, 7, and 8 as they can present a full cycle. As

shown in Figure 2.7, both the kernel and the gradient estimations are piece-wise C1.

The final verification and ablation tests were performed on a 2D unstructured mesh

featuring “&” shapes. The comparison between scenarios with and without the use of η,
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Figure 2.7: Reconstruction on a periodically shrinking/expanding 1D mesh. Kernel values
(left column) and gradient estimations (right column).
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(a) The weight w/out diminishing function (b) The weight w/ diminishing function
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Figure 2.8: Ablation study of reconstruction with or without diminishing on 2D mesh.
(a) without and (b) with the application of the diminishing function.

as shown in Figure 2.8a and Figure 2.8b respectively, validates the importance of η and

the effectiveness of the proposed method in managing unstructured meshes.

2.2 Conservation of the Linear and Affine Momentum When

Combined With Affine Particle-in-Cell

In the previous section, we numerically verified the continuous reconstruction capabilities

of our approach. Before we move into conducting numerical test cases, it is noteworthy

to highlight that UMLS-MPM conforms to the partition of unity and conserves the linear

basis, assured by the properties of Moving Least Squares (MLS) (Levin, 1998), specifically:

∑
i

wn
ip = 1,

∑
i

wn
ipx

n
i = xn

p ,∑
i

wn
ip(x

n
i − xn

p ) = 0,

As a result, incorporating UMLS-MPM into the Affine Particle-In-Cell (APIC) framework

(Jiang et al., 2015, 2017b) will conserve both total linear and total angular momentum
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of the system. This implies a significant advantage of our methodology: that it can be

seamlessly integrated with any existing MPM framework to broaden its application on

unstructured meshes.

For self-completeness, a simple introduciton to APIC is provided herein, while a more

thorough proof and explanation are available in the original APIC paper (Jiang et al.,

2015).

In APIC, mass mp, position xp, velocity vp, and an affine matrix Bp =
∑

i wipvi(xi −

xp)
T are stored and tracked on particles. Then,

Definition 2.2.1. The total linear momentum on grids is

P tot
i =

∑
i

mivi.

Definition 2.2.2. The total linear momentum on particles is

P tot
p =

∑
p

mpvp.

Definition 2.2.3. The total angular momentum on grids is

I tot
i =

∑
i

xi ×mivi.

Definition 2.2.4. The total angular momentum on particles is

I tot
p =

∑
p

xp ×mpvp +
∑
p

mp(Bp)
T : ϵ,

where ϵ is the Levi-Civita permutation tensor, and for any matrix A, the contraction

A : ϵ =
∑

αβ Aαβϵαβγ, which is usually used to transition from a cross product into the

tensor product u×v = (vuT )T : ϵ. Also note that for the total angular momentum of the

particles: 1) the grid node locations can be perceived as the sample points of a rotating

mass centered at the material particle location, and 2) the total angular momentum
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comprises both that of the center and that of the affine-rotation of the grids around the

center.

APIC P2G is given by

mn
i =

∑
p

wn
ipmp

Dn
p =

∑
i

wn
ip(x

n
i − xn

p )(xn
i − xn

p )T

mn
i v

n
i =

∑
p

wn
ipmp(v

n
p + Bn

p (Dn
p )−1(xn

i − xn
p ))

(2.35)

with G2P given by

vn+1
p =

∑
i

wn
ipṽ

n+1
i

Bn+1
p =

∑
i

wn
ipṽ

n+1
i (xn

i − xn
p )T ,

(2.36)

where the superscript˜means the intermediate value after the update on grids but before

the G2P process.

2.2.1 Numerical Validation

A numerical validation as in (Jiang et al., 2015) is also conducted here to verify these

conservations. A square with a side length of l = 0.2 is discretized with 20× 20 particles.

The physical properties of the square are as follows: E = 1 × 104 Pa, ν = 0.3, and

ρ = 1.0 kg/m3. Initially, the square is divided into two halves by a hypothetical vertical

line through the middle. The left half is initialized with an upward velocity v = (1, 0) m/s,

while the right half is initialized with a downward velocity v = (−1, 0) m/s. The schematic

plot of the setup is presented in Figure 2.9a.

The background mesh is generated using Delaunay triangulation with a target element

size of 0.01 m in a 1× 1 m2 box. The simulation is run for 1× 106 time steps with a time

step size of 1× 10−5 s. Three typical timestamps are plotted in Figure 2.9b–d.
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Figure 2.9: Setup and snapshots of a rotating elastic square.
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on grids

Figure 2.10: Conservation of the rotating elastic square system. Logs of (a) linear and (b)
angular momentum of the rotating cube experiment after 106 time steps.

The proposed conservation is accurately illustrated in Figure 2.10a–b, with only

round-off errors on the order of 1 × 10−15 and 1 × 10−7 for the total linear and affine

momentum of the system, respectively.

2.3 Experiments and Results

To demonstrate and assess the effectiveness of our approach, particularly its reduced cross-

cell error owing to the continuous gradient reconstruction, we have chosen representative

test cases from prior related studies. Our benchmarking relies on analytical solutions

when feasible, or alternatively, on the standard B-spline MPM at a sufficiently high

resolution. All experiments were carried out on a single PC equipped with an Intel®

Core™ i9-10920X CPU.
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0 2520

(a) Problem setup

(b) Initial material point distribution

x = 0 +x

Figure 2.11: Setup of the 1D bar vibration test.

2.3.1 1D Vibrating Bar

Consider the 1D vibration bar problem shown in Figure 2.11a (Wilson et al., 2021). The

left end of the bar is fixed and the right has a sliding condition in the x direction. The

physical properties of the bar are: E = 100 Pa, ν = 0, L = 25 m, and ρ = 1 kg/m3. The

initial velocity conditions are u̇(x, t = 0) = v0 sin (β1x) with β1 = π
2L

.

The analytical expression of the center of mass in this problem is

x(t)CM =
L

2
+

v0
β1Lω1

sin (ω1t) , (2.37)

and

u̇(t)CM =
v0
β1L

cos (ω1t) , (2.38)

with ω1 = β1

√
E/ρ.

The original experiments in (Wilson et al., 2021) included two velocity settings:

v0 = 0.1 m/s and v0 = 0.75 m/s. The lower velocity setting, v0 = 0.1 m/s, was utilized

solely for validation against the linear kernel MPM, as it does not involve cell crossings.

Here, we focus on the higher-velocity setting to assess the effectiveness of UMLS-MPM in

addressing cell-crossing errors.

Figure 2.12 presents the convergence rate of UMLS-MPM with grid refinement. Specif-

ically, Figure 2.12a shows that, with the exception of the coarsest resolution dx = 2 m,

UMLS-MPM consistently achieves high accuracy, with a maximum root mean square error

(RMSE) of 0.554% in particle displacements. Figure 2.12b indicates that the convergence
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Figure 2.12: Displacement and convergence rate of the 1D vibration bar. (a) The center
of mass displacement of the bar and (b) convergence rate of the RMSE of particle
displacements.

rate is approximately second order on coarser grids, but it starts to level off on finer grids

due to mounting temporal errors, aligning with established MPM theory (Jiang et al.,

2016b).

Figure 2.13a displays the stress profile for a particle located at x0 = 12.75 m, which

undergoes the most frequent cell crossings during its vibrational motion. The outcomes

achieved with UMLS-MPM showcase a remarkable level of smoothness and precision.

Figure 2.13b illustrates the energy dynamics for the entire system, revealing that the sys-

tem’s energy is largely conserved throughout the simulation, with only slight fluctuations.

These findings collectively underscore the robustness and precision of UMLS-MPM in

managing intense cell crossings by particles.

2.3.2 2D Collision Disks

Next, we considered the problem of two colliding elastic disks shown in Figure 2.14a

(Wilson et al., 2021). The physical properties of the disks are: E = 1000 Pa, ν = 0.3,

ρ = 1000 kg/m3, and v = ±(0.1, 0.1) m/s for the left and right disks, respectively. Each

disk was discretized with 462 material points using the triangle mesh of a disk. The

background mesh was generated using Delaunay triangulation with a target element size
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Figure 2.13: The stress of sampled particle and system energy of the 1D vibration bar.
(a) The stress at the sampled particle closest to [17.5, 0.5] and (b) the system energy.

(a) setup

1.0v -v

0.2 -300 70

(b) t = 1.5s; before contact (c) t = 2.0s; total retardation

-300 70

(d) t = 2.5s; rebounding

-300 70

Figure 2.14: Setup and snapshots of the 2D collision disks. (a) Problem setup, (b)–(d)
Snapshots of the simulation at 1.5s, 2.0s, and 2.5s.

of 0.025 m. We plot key snapshots of the simulation in Figure 2.14b–d, with the impact

at 1.5 s, total retardation right before 2.0 s, and rebounding separation right before 2.5 s.

Quantitative results for the collision disks are presented in Figure 2.15. In Figure 2.15a,

a comparison of momentum recovery during collision between UMLS-MPM and the B-

spline MPM with sufficiently high resolution is shown. While a perfect momentum

recovery, such as that in the rigid collision (dashed gray line in Figure 2.15a), is not

expected, UMLS-MPM approaches this limit effectively. Similarly, Figure 2.15b displays

the kinetic energy recovery during the collision. The results indicate that UMLS-MPM

effectively preserves the system energy. Figure 2.15c illustrates the stress log at the

center particle of the left disk. The results align perfectly with the reference, but only

for negligible fluctuations, showing that UMLS-MPM does not generate spurious stress

37



(a) X momentum log
T [s]

 X
 M

om
en

tu
m

 [K
g 

m
/s

]
Our method

Rigid body recovery
Ref

(c) Stress log at sampled point
T [s] X

 S
tre

ss
 [P

a] Our method Ref

(b) Energy log

T [s]

En
er

gy
 [J

]

Kinetic, our method
Potential, our method

Total, our method
Ref
Ref

Ref

Figure 2.15: System momentum, energy, and sampled stress of the 2D collision disks. (a)
The momentum in the x-direction of the left disk, (b) the energies of the system, and (c)
the stress at the sampled particle closest to the center of the left disk.
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Figure 2.16: Setup of the 2D cantilever problem under different rotation angles. (a) 0◦,
(b) 15◦, (c) 30◦, and (d) 45◦.

oscillations either from the collision or cell crossings.

2.3.3 2D Cantilever With Rotations

Although an unstructured mesh offers the adaptability to match any boundary shape, the

cell orientation, or a different tessellation, can potentially affect accuracy. To illustrate the

precision of our method under various rotation angles, we examined the case of a cantilever

under its own weight, as shown in Figure 2.16a (Wilson et al., 2021). The cantilever’s

physical characteristics are as follows: length l = 10 m, height h = 2 m, gravitational

acceleration g = 9.81 m/s2, Young’s modulus E = 100000 Pa, Poisson’s ratio ν = 0.29,

and density ρ = 2 kg/m3. The cantilever was discretized with uniformly spaced particles
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Figure 2.17: Displacements and system energy of the 2D cantilever without rotation.
Plots of (a) the displacement in the y-direction at the right tip of the cantilever and (b)
the energies of the system.

in both directions. We created the background mesh using Delaunay triangulation, aiming

for an element size of 0.5 m. Additionally, we rotated the mesh of the cantilever by angles

of 15◦, 30◦, and 45◦ to showcase the resilience of our method to rotation, as depicted in

Figure 2.16b–d.

Figure 2.17a illustrates the spatial convergence of the y-displacement at the right tip

of the cantilever beam under grid refinement. Notably, except for the coarse resolutions

of dx = 2 m and dx = 1 m, errors for all finer resolutions are negligible. Therefore, a

resolution of dx = 0.5 m was employed to ensure sufficient accuracy for all subsequent plots

in this experiment. Figure 2.17b demonstrates that UMLS-MPM effectively conserves

energy, aligning with the reference B-spline MPM.

Figure 2.18a shows snapshots of the cantilever with different initial mesh rotation

angles. The results indicate that UMLS-MPM is robust under mesh rotation with only

minor visible errors. Figure 2.18b quantitatively compares the y-displacement at the right

tip. The results align well overall with both zero rotation and the reference, with errors

of 1.27%, 2.18%, and 4.72% for 15◦, 30◦, and 45◦ rotation, respectively.

The convergence rate of UMLS-MPM is demonstrated in Figure 2.19. The results

indicate that for cases with zero rotation, the convergence rate is second order. While the

RMSE increases slightly for cases with mesh rotation, it still remains in the magnitude

of 1E − 2, and the convergence rate remains near second order. These combined results
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Figure 2.18: (a) Snapshots of the cantilever with different initial rotating angles. (b)
Comparison of the displacement in the y-direction at the right tip of the cantilever.
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Figure 2.19: Convergence plot of the displacements of the 2D cantilever with rotations.
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Figure 2.20: Setup of the 3D slope failure. Geometry adapted from (Zhao et al., 2023b).

demonstrate the robustness and accuracy of UMLS-MPM under mesh rotation.

2.3.4 3D Slope Failure

Next, the performance of the proposed approach was investigated when dealing with

material behavior involving plasticity. To this end, we simulated failure of a 3D slope

comprosed of sensitive clay. The problem geometry was adopted from (Zhao et al., 2023b)

and is illustrated in Figure 2.20. Here, the bottom boundary of the slope is fixed and

the three lateral sides are supported with rollers. To model the elastoplastic behavior of

the sensitive clay in an undrained condition, a combination of Hencky elasticity and J2

plasticity with softening was used. The softening behavior is governed by the following

exponential form: κ = (κp − κr)e
−ηεpq + κr, where κ, κp, and κr denote the yield strength,

the peak strength, and the residual strength, respectively, εpq denotes the equivalent plastic

strain, and η is a softening parameter. The specific parameters were adopted from (Zhao

et al., 2023b). They are a Young’s modulus of E = 25 MPa, a Poisson’s ratio of ν = 0.499,

a peak strength of κp = 40.82 kPa, a residual strength of κr = 2.45 kPa, and a softening

parameter of η = 5. The assigned soil density is ρ = 2.15 t/m3.

The space was discretized using Delaunay triangulation with the shortest edge length

of 0.2 m. The material points were initialized with a spacing of 0.1 m in each direction,

amounting to 311,250 material points in the initial slope region. Note that the spatial

discretization aligns with the one used in (Zhao et al., 2023b) in terms of both the
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Figure 2.21: Comparison of the equivalent plastic strain between baselines. (Left) the
standard MPM uses quadratic B-splines basis functions as in Zhao et al.(Zhao et al.,
2023b), (Right) UMLS-MPM .
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Figure 2.22: Comparison of the mean normal stress between baselines. (Left) the standard
MPM uses quadratic B-splines basis functions as in Zhao et al.(Zhao et al., 2023b),
(Right) UMLS-MPM .
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Figure 2.23: Comparison of the run-out distance of the 3D slope failure.

shortest edge length of the background element and the number of material points. Also,

the F̄ approach proposed in (Zhao et al., 2023b) was utilized to circumvent volumetric

locking that UMLS-MPM solutions encounter when simulating a large number of particles

of incompressible materials. As a reference to verify the correctness of the proposed

formulation, the F̄ solution in (Zhao et al., 2023b) was used.

Figures 2.21 and 2.22 show the snapshots of the slope simulated by the standard and

UMLS-MPM, where particles are colored by the equivalent plastic strain and mean normal

stress, respectively. We can see that UMLS-MPM effectively captures the retrogressive

failure pattern of slopes made of sensitive clay. Also, in terms of equivalent plastic

strain fields and mean normal stress fields, we observe a strong similarity between the

UMLS-MPM solution and the reference solution from (Zhao et al., 2023b).

For a further quantitative comparison, Figure 2.23 presents the time evolutions of

the run-out distance—a measure of the farthest movement of the sliding mass. Observe

that the distances in the standard and UMLS-MPM solutions are remarkably similar.

Taken together, these findings confirm that the proposed method performs similarly to

the standard MPM.
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Figure 2.24: Setup of the 3D elastic object expansion.

2.3.5 3D Elastic Object Expansion in a Spherical Container

Finally, we examined the performance of UMLS-MPM in problems involving complex

boundary geometry. In this problem, the standard MPM with a structured grid may be

challenged to impose conforming boundary conditions. Hence, a collision between an

elastic body with a spherical container was considered and simulated.

The geometry of the problem, as demonstrated in Figure 2.24, involves an elastic

object in the shape of a Metatron, which is located at the center of a spherical container

(with a radius of 0.5 m). The object is initially compressed isotropically (with an initial

deformation gradient of F = 0.75I), storing non-zero elastic potential energy. At the

onset of the simulation, the stored elastic energy is released, causing the object to expand

and collide with the spherical container’s boundary. To capture the elastic behavior of

the object, a Neohooken elasticity was adopted with a Young’s modulus of 3.3 MPa and a

Poisson’s ratio of ν = 0.49. The elastic object was discretized using a significant number

of material points (2,392,177) for high-fidelity simulation. Also, the spherical container

was discretized using 2,178,129 tetrahedral elements, each with an average edge length of

h = 0.025 m. Note that to avoid negative kernel values at boundary nodes, an extra layer

of elements was added outside the original boundary, as discussed in Section 2.1.3.5.

45



(a) t = 0 s (b) t = 0.004 s
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Figure 2.25: The contact force magnitude of the 3D elastic object expansion.
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To consider the frictional collision between the elastic object and the container

boundary, a barrier approach (Zhao et al., 2023a) was adopted, ensuring that the elastic

object does not penetrate the boundary. Contact forces are applied when the distance

between a material point and the boundary is below a specific value d̂, which was chosen

to be a quarter of h for sufficient accuracy. Also, a friction coefficient of µ = 0.5 was

introduced to stop the sliding of the elastic object in the later stages. The simulation ran

with a time increment of ∆t = 6.16× 10−5 s until t = 1.5 s.

Figure 2.25 presents six snapshots simulated with UMLS-MPM, where the particles

are colored based on the magnitude of the contact force. The dynamic behavior of the

object at various stages is well captured, including the initial expansion stage (a), the

first collision stage (b–d), the rebounding stage (e), and the final static stage (f). Overall,

the UMLS-MPM effectively handles complex geometry with a conformal discretization,

which is critical for simulating a wide range of interactions between deformable objects

and complex boundaries.
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CHAPTER 3

Shockwave and Compressible Flow Simulation With

Material Point Methods

This chapter introduces a novel approach for modeling the interaction between compressible

flow, shock waves, and deformable structures, with a focus on capturing destructive

dynamics. Building upon recent advancements in time-splitting compressible flow and

Material Point Methods (MPMs), we present a hybrid scheme that combines Eulerian and

Lagrangian/Eulerian methods for monolithic flow-structure interactions. The continuity

equation is advanced using the second-order WENO scheme for improved accuracy. To

effectively handle deforming boundaries with sub-cell particles, we propose a blending

treatment of reflective and passable boundary conditions, drawing inspiration from porous

media theory. The coupled velocity-pressure system is discretized using a new mixed-order

finite element formulation that employs B-spline shape functions. Our approach seamlessly

captures shock wave propagation, temperature/density-induced buoyancy effects, and

topology changes in solids.

3.1 Related Work

An extensive body of mechanical literature exists on traditional partitioned methods for

coupling compressible flow with solids. The most well-known categories include the arbi-

trary Lagrangian-Eulerian method (Banks et al., 2016), the immersed boundary method

(Pasquariello et al., 2016; Wang et al., 2017; Monasse et al., 2012), the discontinuous

Galerkin method (Kośık et al., 2015), the ghost fluid method (Bailoor et al., 2017), and

the Lattice Boltzmann method (Li and Favier, 2017). However, many of these methods
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only support small deformations or vibrations, and only some of them accommodate large

deformations without fracture. In the field of computer graphics, (Sewall et al., 2009)

also adopted the partitioned method to weakly couple shockwaves with rigid bodies.

A defining visual characteristic of explosions and shockwaves is their destructive impact

on structures. However, the aforementioned works, due to the absence of fracture mechan-

ics modeling, cannot accurately simulate these destructive visual effects. Additionally, the

partitioned approaches of these methods often encounter numerical instabilities during

significant deformations.

To enable the simulation of solid fracturing, we employ the recently advanced Material

Point Method (MPM) (Sulsky et al., 1995; Stomakhin et al., 2013; Zhang et al., 2016;

Jiang et al., 2016a) for the solid domain. MPM is now widely used in computer graphics

and computational engineering to simulate elastoplastic materials with topology changes.

Utilizing meshless Lagrangian particles and Eulerian grids, MPM naturally captures

material separation and contact.

The MPM also naturally simulates mixed materials (Jiang et al., 2016a; Hu et al., 2018)

without requiring explicit modeling of their coupling. Nevertheless, MPM’s utilization

of a single grid leads to artificial adhesion artifacts at material interfaces. Moreover,

representing gas with particles is computationally and memory-intensive. As a result,

we confine our modeling to the solid phase with MPM and employ an Eulerian grid-

based discretization for the fluid phase. Existing work has coupled MPM sediments with

Eulerian incompressible fluids (Gao et al., 2018; Baumgarten et al., 2021). (Ma et al.,

2009b)’s method switches from MPM to FDM during the detonation process based on

the dominance of material interaction or gas pressure evolution. However, they do not

address the coupling between the two phases.

In summary, most existing approaches for coupling compressible flow with deformable

solids lack simultaneous support for strong coupling, solid fracture, and efficient integration

of compressible flow. This motivates our work to develop a new, computationally efficient,

monolithic, and fracture-supporting strong coupling scheme for destructive effects caused

49



by shockwaves and high-speed flows.

A closely related work is the Interface Quadrature Material Point Method (IQ-MPM)

by (Fang et al., 2020). IQ-MPM employs MPM particles to represent both solid and

incompressible liquid phases. Strong coupling is achieved by modeling interfacial interac-

tions with a layer of imaginary quadrature points. Their approach is computationally

efficient, requiring the solution of an SPD system per time step. We extend some of their

ideas from incompressible liquids to compressible flow.

The final component of our framework concerns the performance of the compressible

flow solver. We follow the work of (Kwatra et al., 2009, 2010), which successfully employed

the time-splitting method in the compressible flow regime, removed the strict sound speed

restriction, and built an SPD pressure-only system – a system that can be integrated into

the coupling phase from (Fang et al., 2020). In recent years, the semi-implicit solver in

(Kwatra et al., 2009, 2010) was further improved for stability (Grétarsson et al., 2011),

mass conservation (Grétarsson and Fedkiw, 2013), and subgrid resolution (Hyde and

Fedkiw, 2019). These works couple gas with sediments and simple elastic bodies, also

capturing basic fracture events by incorporating pressure-induced forces into a rigid

body fracture tool. In contrast, our work supports arbitrarily complex fracture events

of nonlinear elastic solids under extreme deformation, along with splitting and merging

dynamics of plastic materials, without additional efforts beyond having an MPM solver

for modeling these processes.

3.2 Method

3.2.1 Governing Equations

In accordance with standard literature, we describe the governing equations: a conservative

form of the inviscid compressible Euler equations for fluids and the conservation of mass

and momentum for elastoplastic solids. Introducing density ρ, velocity u, and pressure p,
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the compressible flow (•f ) region is governed by

∂ρf

∂t
+∇ · (ρfuf ) = 0, (3.1)

∂ρfuf

∂t
+∇ · (ρfuf ⊗ uf ) +∇pf = 0, (3.2)

∂ρfE

∂t
+∇ ·

(
(ρfE + pf )uf

)
= 0, (3.3)

and the solid region (•s) is governed by

∂ρs

∂t
+∇ · (ρsus) = 0, (3.4)

ρs
∂us

∂t
+ us · ∇us −∇ · σ − ρsg = 0. (3.5)

At the solid-gas interface, we enforce the slip velocity condition and pressure continuity:

(us − uf ) · n = 0, (3.6)

pf − ps = 0. (3.7)

In (3.3), E represents the fluid’s enthalpy (total energy per unit volume), related to the

internal energy e as

E = e +
1

2
∥uf∥2 = e +

1

2
uf · uf . (3.8)

The system is closed by the equation of state (EOS) for an ideal gas (Kwatra et al., 2010)

pf = (γ − 1)ρfe, (3.9)

where we choose γ = 1.4.

In the subsequent subsections, we partition these coupled equations into advection

and non-advection components. As mentioned in the introduction, we discretize the gas

with an Eulerian grid and the solid with the hybrid Lagrangian/Eulerian MPM.
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Figure 3.1: Algorithm overview for CSMPM. This schematic illustrates our method.
The pipeline commences with previously advected particles transferring their physical
properties to a background grid through a Particle-to-Grid (P2G) process. The grid
is employed for: a) implicit integration of the solids (upper row), and b) estimating a
passable ratio for more accurate flow advection (bottom row). Based on degrees-of-freedom
(DOFs) on the grid, we assemble and solve a coupled velocity-pressure system to advance
these quantities to the next step. Section 2.2 presents a more detailed overview of our
full algorithm.

3.2.2 Pipeline Overview

We present an overview of our pipeline in Figure 3.1. Our method involves the following

steps in each time step:

1. Particle-to-Grid Transfer. Solid particles transfer their physical properties us,

ms, and Jg to the grid (Jiang et al., 2015).

2. Moving Interface Identification. Proper velocity and the passable ratio are

computed at each cell interface between the two phases, following the technical

details in Section 3.2.3.

3. Flux-Based Advection for the Fluid. The conserved fluid variables are updated

using (3.10)–(3.12) with a second-order WENO-LLF solver.

4. Intermediate Pressure Update. Intermediate pressures for fluid and solid phases

are computed using (3.9) and (3.17), respectively.

5. Coupled Solve. A coupled linear system (3.37) is constructed and solved. The

solid’s velocity is updated using (3.36). The fluid’s conserved variables are updated

using local gradient calculation, as in (Kwatra et al., 2009).
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6. MPM Grid Update. Standard MPM-based time integration updates solid grid

velocity values, incorporating elasticity and wall collisions.

7. Grid-to-Particle Transfer. Information from the solid grid is transferred back

to solid particles. We update particles’ deformation gradients and advect their

positions.

3.2.3 Advection

Solid advection occurs during the grid-to-particle transfer at the end of the previous

time step (Jiang et al., 2016a). At the beginning of the current step, solid particles

transfer their quantities to the Eulerian grid through a standard particle-to-grid operation.

Subsequently, the location and velocity of the interface between the two phases are

determined.

Fluid advection involves updating the conserved fluid variables, treating them as

independent variables, temporarily ignoring pressure influence. Fluid is updated to

an intermediate state (•∗) after advection. We use the finite difference method and

second-order WENO-LLF flux reconstruction to solve the advection equations:

ρf,∗ = ρf,n −∆t∇ · (ρfuf ), (3.10)

(ρu)f,∗ = (ρu)f,n −∆t∇ · (ρfuf ⊗ uf ), (3.11)

(ρE)f,∗ = (ρE)f,n −∆t∇ ·
(
(ρE)fuf

)
. (3.12)

In simulations involving extensive destruction, numerous solid fragments are scat-

tered, resulting in intricate moving interfaces between the two phases. To handle these

complexities and avoid errors, we discuss our approaches below.

Mixed Reflective and Passable Interface The particle-to-grid operation may result

in cells with small solid volume fractions. Advection at the interface between such a cell

and a gas cell is neither purely reflective nor purely passable. To address this, we take
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Figure 3.2: Illustration of the flux blending method and grid configuration. (Top)
Illustration of the flux blending method. The overall flux at the interface is treated as a
mixture of that on a passable wall and on a reflective wall. For the passable part, the
ghost velocity and ghost conserved variables are extrapolated. For the reflective part, the
ghost velocity is reflected, while the ghost conserved variables are extrapolated. (Bottom)
Grid configuration. To avoid staggered velocity DOFs between the two phases, we adhere
to B2B1 (quadratic velocity and linear pressure) shape functions for the solid phase. The
grid configuration is compatible with both B2B1 and B1B0 (linear velocity and constant
pressure) shape functions for the fluid phase.

three steps to blend between purely reflective and passable interfaces. First, we model

each interface as a mixture of a reflective wall and a passable passage (see Figure 3 in

(Hyde and Fedkiw, 2019)). The passable ratio R is determined from the cross-section of

the solid’s volume, treating it as a ball. Thus, we have

R = min

(
2

(
V s

π

)1/2

/dx2, 1

)
in 2D,

R = min

(
π

(
3V s

4π

)2/3

/dx2, 1

)
in 3D,

where V s is the solid’s volume (Baumgarten and Kamrin, 2019; Gao et al., 2018). Second,

we extrapolate both conserved variables and velocity for the passable flux stencil and

extrapolate only conserved variables, while reflecting the velocity for the reflective flux

stencil (Forrer and Jeltsch, 1998; Forrer and Berger, 1999). Lastly, the two obtained fluxes

are blended using the passable ratio. We illustrate this mixed interface I1 in Figure 3.2.

Avoiding Reflection at Interfaces Except for Evaluated Flux Interface Consider

an interface such as I1 in Figure 3.2. There are scenarios where the adjacent gas cell C1

is touching another solid cell C0. In such cases, the ghost values of the higher-order terms
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in the flux stencil (those in C0) become ambiguous. Specifically, it becomes a question

of whether to treat the interface I0 as a reflective interface. If this choice is made, the

ambiguity intensifies in multi-dimensional cases due to the potential presence of other

solid-gas interfaces in other dimensions (e.g., at the top face of C0). In such scenarios,

reflecting the ghost value at different interfaces leads to inconsistent results and introduces

simulation artifacts. To circumvent this issue, we refrain from applying reflection at any

solid-gas interfaces other than the one where we are evaluating the flux. Instead, we

utilize the extrapolated value from the nearest gas cell, corresponding to a lower-order

term in the stencil, for additional required higher-order terms from solid cells.

Following the advection step, we update the fluid’s pressure using the equation of

state (EOS) with the intermediate quantities. This approach differs from the use of

semi-Lagrangian methods as employed in (Kwatra et al., 2009). The rationale behind our

choice is to mitigate numerical drifting caused by non-conservative advection methods

(Aanjaneya et al., 2013).

3.2.4 Post-Advection Equations

Projection is a standard technique in incompressible flow simulation (Bridson, 2015),

involving the projection of intermediate post-advection velocities onto a divergence-free

subspace through pressure enforcement. While the advection step in compressible flow

does not explicitly involve pressure-related terms (as we use conserved variables), we treat

velocity and pressure as primary states in our description of the equations they adhere to.

3.2.4.1 Fluid Mass and Momentum

Given that the mass equation lacks pressure-related terms in compressible flow, the

intermediate state for ρf is assumed to require no further correction after advection. Thus,

we have

ρf,n+1 = ρf,∗. (3.13)
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With constant density, the post-splitting momentum equation aligns with that for incom-

pressible fluids when advancing from (•∗) to (•n+1):

∂(ρfuf )

∂t
+∇pf = ρf,n+1∂u

f

∂t
+∇pf = 0. (3.14)

3.2.4.2 Fluid Energy/Pressure

We convert the post-splitting energy equation into a pressure diffusion equation using the

primitive form of the Euler equation and by linking pressure with internal energy through

the EOS:

∂pf

∂t
+ ρfc2∇ · uf = 0; (3.15)

a detailed derivation is available in (Fedkiw et al., 2002).

3.2.4.3 Solid Ghost Pressure

Following (Fang et al., 2020), we enhance the hyperelastic energy density function of

the solid by incorporating a quadratic volume penalization term Ψg(Jg) = 1
2
λg(Jg − 1)2,

where λg represents Lamé first parameter, and Jg is an independent strain measure of

infinitesimal volume change ratio. In concept, this involves embedding the solid within a

background ghost matrix that solely resists volume change. The overall energy density in

the solid domain becomes

Ψ(Fs, Jg) = Ψs(Fs) + Ψg(Jg), (3.16)

where Ψs(Fs) is a hyperelastic energy density function (e.g., neo-Hookean). We address

the response of Ψs(Fs) during the MPM grid update step post-coupled solve. During

coupling, we exclusively consider the mechanical response of Ψg(Jg), or equivalently, the
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effect of its corresponding pressure (Stomakhin et al., 2014; Fang et al., 2020):

pg = −∂Ψg(Jg)

∂Jg
= −λg(Jg − 1). (3.17)

Note that pg is pivotal to our coupling mechanism, connecting to the solid’s interface

velocity and crucially ensuring the continuity of interfacial velocities. Subsequently, the

influence of pg on solid momentum adheres to

ρs,∗
∂us

∂t
+∇pg = 0. (3.18)

An evolution equation for pg is deducible (Stomakhin et al., 2014; Gonzalez and Stuart,

2008):

∂pg

∂t
+ λgJg∇ · us = 0. (3.19)

Alternatively, we can track Jg through

∂Jg

∂t
= (∇ · us)Jg, (3.20)

and update pg utilizing (3.17). Notice the analogous form between (3.14) and (3.18), as

well as between (3.15) and (3.19).

3.2.5 Summarizing Time-Discretized Equations

In summary, through operator splitting, we achieve a post-advection coupled solve for

solid-fluid coupling. This coupling step occurs subsequent to solid particle-to-grid transfer

and fluid advection but prior to the MPM grid update (see Figure 3.1). To be more

precise, the time-discretized equations are as follows:

1. Fluid Momentum Update (x ∈ Ωf ):

1

∆t
ρf,n+1(uf,n+1 − uf,∗) +∇pf,n+1 = 0; (3.21)
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2. Fluid Pressure Evolution (x ∈ Ωf ):

∇ · uf,n+1 +
1

ρf,n(c2)n∆t
(pf,n+1 − pf,∗) = 0; (3.22)

3. Solid Momentum Update (x ∈ Ωs):

1

∆t
ρs,∗(us,n+1 − us,∗) +∇pg,n+1 = 0; (3.23)

4. Solid Pressure Evolution (x ∈ Ωs):

∇ · us,n+1 +
1

λgJg,n∆t
(pg,n+1 − pg,∗) = 0. (3.24)

In conjunction with interfacial continuity equations (3.6, 3.7) at the solid-fluid interface

Γ, and Dirichlet wall boundary conditions for u• at ∂Ω•, these equations establish a

first-order system in terms of the unknown fields {uf,n+1, pf,n+1,us,n+1, pg,n+1}. Further

spatial discretization can be applied using the finite element method.

3.2.6 Weak Form and B-spline Based Spatial Discretization

The utilization of B-spline shape functions for finite elements has recently been demon-

strated to be effective for incompressible flow (Fang et al., 2020; Gagniere et al., 2020). In

this work, we extend the formulation to our compressible fluid-structure coupled system.

For ensuring continuity of elastic forces in MPM, the solid’s velocity field must be C1

continuous (Hughes, 2012; Bardenhagen and Kober, 2004), which necessitates the use

of quadratic polynomials as shape functions. The pressure, on the other hand, can be

either piecewise linear or piecewise constant. (Fang et al., 2020) discussed two options for

discretizing coupled incompressible fluids and solids. The first scheme employs quadratic

B-splines for velocities and linear functions for pressures in both phases, resulting in a

B2B1-B1-B2B1 scheme. The second scheme, aiming to reduce memory bandwidth and

computational cost, employs piecewise constant pressures everywhere and piecewise linear

velocities for the fluid phase, resulting in a B2B0-B0-B1B0 scheme.
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In our scenario, adopting the B2B0-B0-B1B0 scheme would lead to staggered velocity

nodes for the two phases, and the interface would intersect the inner volume of the fluid

cell. This “cut-cell” configuration would necessitate additional complex treatments during

the advection step due to our use of the flux-based solver.

To address this challenge, we adhere to the B2B1 scheme for solids and introduce

offsets to the fluid coordinates, leveraging the Eulerian nature of the fluid. In most cases,

the solid phase occupies only a small portion of the entire domain, making the use of

B2B1 a reasonable choice without significantly impacting performance. We refer to our

discretization approach as B2B1-B1/B0-B1B0 and apply it to large-scale 3D simulations,

while we employ B2B1 for the fluid phase in our 1D and 2D benchmarks.

The weak form of our coupled system, as described in Section 3.2.5, can be derived by

appropriately applying test functions qf,s, rf,s:

1

∆t

∫
Ωf

ρf,n+1(uf,n+1 − uf,∗) · qf
αdΩf +

∫
Ωf

∇pf,n+1 · qf
αdΩf = 0, (3.25)∫

Ωf

∇ · uf,n+1rfdΩf +
1

ρf,n(c2)n∆t

∫
Ωf

(pf,n+1 − pf,∗)rfdΩf = 0, (3.26)

1

∆t

∫
Ωs

ρs,∗(us,n+1 − us,∗) · qs
αdΩs +

∫
Ωs

∇pg,n+1 · qs
αdΩs = 0, (3.27)∫

Ωs

∇ · us,n+1rsdΩs +
1

λgJg,n∆t

∫
Ωs

(pg,n+1 − pg,∗)rsdΩs = 0. (3.28)

The weak form of the velocity conditions at the solid-fluid interface and the domain

boundaries are:

∫
∂Ωf

uf,n+1 · nfrfdA =

∫
∂Ωf

ubr
fdA, (3.29)∫

Γ

uf,n+1 · nirfdA =

∫
Γ

us,n+1 · nirsdA, (3.30)∫
∂Ωs

us,n+1 · nsrsdA =

∫
∂Ωs

ubr
sdA. (3.31)

In these equations, qα collocates with the velocity nodes and is nonzero only on its α

component, Γ represents the solid-fluid interface, p denotes the pressure, ub is the normal
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velocity at the slip boundaries of the solid or fluid domains, and r is the test function

collocated with the pressure nodes. For B2B1, we have:

qα,i(x, xu) = δα,iN
2(x− xu), (3.32)

r(x, xp) = N1(x− xp), (3.33)

where Nk stands for the kth order B-spline kernel and δ represents the Kronecker delta.

The discrete and compact forms of the above equations can be derived through the

standard FEM assembling process, leading to the following system:

Mf

∆t
Gf Bf Hf 0 0 0

Gf,T −Sf,−1

∆t
0 0 0 0 0

Bf,T 0 0 0 0 0 0

Hf,T 0 0 0 Hs,T 0 0

0 0 0 Hs Ms

∆t
Gs Bs

0 0 0 0 Gs,T −Ss,−1

∆t
0

0 0 0 0 Bs,T 0 0





Uf,n+1
α

Pf,n+1

Yf,n+1

hn+1

Us,n+1
α

Pg,n+1

Ys,n+1


= rhs, (3.34)

where the vectors h and Yf ,s contain pressure DOFs at the solid-fluid interface and

domain boundaries, respectively, due to the integration by parts of
∫
Ω
∇pn+1 · qαdΩ. The

right-hand side is given by:

rhs =
[
Mf

∆t
Uf,∗

α ,−Sf,−1

∆t
Pf,∗, bf , 0, M

s

∆t
Us,∗

α ,−Ss,−1

∆t
Ps,∗, bs

]T
.

3.2.7 Building an SPD System

Equation (3.34), when considered as a KKT system, presents challenges in terms of

solvability. We address this challenge by transforming it into a system with Symmetric

Positive Definite (SPD) properties through mass lumping and the elimination of velocity

degrees of freedom. While the mass matrix Mf,s and the stiffness matrix Sf,s are not

inherently ill-conditioned, lumping makes them diagonal-scaling matrices, thus facilitating
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Update using weak form Update using local gradient

Figure 3.3: Comparison between two different methods for post-correction. A circular
shell is placed in quiescent air with uniform pressure. The method from (Kwatra et al.,
2009) is used to update the fluid states. For the solid, (left) adopting (3.36) yields a stable
solution; (right) using the local pressure gradient leads to instability.

inversion. Velocity DOFs are eliminated through the following reorganization:

Uf,n+1
α = Uf,∗

α −∆tMf,−1(GfPf,n+1 + BfYf,n+1 + Hfh), (3.35)

Us,n+1
α = Us,∗

α −∆tMs,−1(GsPs,n+1 + BsYs,n+1 + Hsh). (3.36)

This transformation yields a pressure-only system that is both SPD and well-conditioned:



A11 A12 A13 0 0

AT
12 A22 A23 0 0

AT
13 AT

23 A33 A34 A35

0 0 AT
34 A44 A45

0 0 AT
35 AT

45 A55





Pf,n+1

Yf,n+1

hn+1

Ys,n+1

Ps,n+1


= rhs. (3.37)

Here, the submatrices Aij and the vector rhs are defined as shown previously. This

pressure-only system is diagonal-dominant and can be efficiently solved using the Jacobi-

preconditioned Conjugate Gradient (CG) method, typically converging in fewer than 80

iterations for our examples.

After solving the linear system, we update the solid’s velocities using (3.36) and use

local gradients to update the fluid’s conserved variables, as described in (Kwatra et al.,

2009). It is worth noting that while updating the solid’s velocities with local gradients

can sometimes lead to instability, adopting (3.36) tends to yield a stable solution (see
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Figure 3.4: Demo: Blasting an ellipse. An ellipse with a biased mass center is blasted
using two different ordering choices in our pipeline: putting the coupling step before (left)
or after (right) the MPM grid update step. Placing the MPM step before the coupling
step results in artificial shocks (incorrect behavior).

Figure 3.3 for a visual comparison).

3.2.8 MPM Step

After the coupling step, the velocities on the solid cells incorporate contributions from the

fluid and need a final standard MPM grid update step to account for hyperelasticity. It is

important to note that (Fang et al., 2020) adopted a different order and placed the MPM

step before the coupling step. However, in our framework, placing the MPM step before

the coupling step led to instabilities when strong shocks interacted with stiff materials

(see Figure 3.4 for a visual comparison).

3.2.9 Inlet and Outlet Treatment

Inlet and outlet boundary conditions are modeled by extrapolating and attenuating

conserved variables in ghost cells, which is similar to the approach described in (Kwatra

et al., 2009). The intermediate velocities for interior cells and one layer of ghost cells are

determined from their conserved variables after advection. For outlets, the intermediate

transport velocity at boundary faces is interpolated and stored, while for inlets, the

desired velocity values are directly stored.
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Figure 3.5: 1D and 2D numerical validation tests. (Left) L2 mass error plot of the 1D
validations. (Right) L2 mass error plot of the 2D central circular shock test comparing
B2B1 and B1B0 schemes.

To model inlet and outlet conditions, we:

1. Extrapolate and attenuate conserved variables in ghost cells to calculate fluxes for

advection.

2. Determine intermediate velocities for interior cells and one layer of ghost cells using

their conserved variables after advection. For outlets, the intermediate transport

velocity at boundary faces is interpolated and stored; for inlets, the desired velocity

values are directly stored.

3. Enforce velocity boundary conditions in the coupled system through contributions

to boundary integrals in (3.29).

In summary, these steps allow for the accurate modeling of inlet and outlet conditions

in the coupled fluid-structure simulation.

3.3 Results

3.3.1 Validations

1D validation We validate the convergence behavior of our method following the 1D

cases from (Kwatra et al., 2009). High-resolution (4096 cells) results are generated using
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their solver, and the squared density deviation is measured as

e∆m =
Σ(ρ− ρb)

2

(Σρb)2
. (3.38)

The results are plotted in Figure 3.5, demonstrating excellent convergence behavior for

relatively higher speed flows, while the convergence order is 1 at lower speeds.

2D validation We employ the central circular shock test from (Kwatra et al., 2009)

as a 2D validation. The results at varying resolutions (ranging from 256 to 2048) are

compared against a 4096-resolution benchmark obtained by their method. This test is

also used to perform an ablation study, comparing the accuracy between B2B1 and B1B0

velocity/pressure orders. The results (see Figure 3.5) indicate that both B2B1 and B1B0

schemes converge under refinement, exhibiting negligible differences in visual results.

Therefore, we adopt B1B0 for our large-scale examples due to its lower computational

cost.

Boundary treatment We validate our inlet and outlet boundary treatment using the

classic stair flow test from computational fluid dynamics. The result in Figure 3.6 is

visually plausible.

Fluid-solid interaction We validate the qualitative accuracy of our fluid-solid coupling

scheme using the classic lifting cylinder test in 2D. The cylinder is sampled with uniformly

distributed material points featuring a high Young’s modulus. Our result is displayed in

Figure 3.7. The cylinder is elevated to the top of the channel near the outlet, in agreement

with the result presented in (Forrer and Berger, 1999).

3.3.2 Other Examples

We present additional examples to showcase the efficacy of our method, focusing on

MPM’s inherent advantage in handling large deformations and topology changes. The
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Figure 3.6: Demo: Stair flow simulation. Schlieren plot at different times during a stair
flow simulation. The left boundary has a constant Mach 3 flow, the right boundary is
an outlet, and the top and bottom boundaries are inviscid walls. The domain is initially
filled with Mach 3 flow. The simulation accurately captures wall reflections and models
inlet/outlet flow conditions correctly.

Figure 3.7: Demo: Lifting cylinder. Schlieren plot at (top to bottom) 0.18s, 0.53s, and
0.89s. The leftmost 8% of the domain features a constant Mach 3 flow; the right side of
the domain serves as the outlet with a denser but slower flow; the top and bottom act as
inviscid walls. Our method accurately captures the lifting of the cylinder to the top of
the channel near the outlet.
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Table 3.1: Simulation parameters of the CSMPM demos.

S: strong / W: weak / E: elastic / P: plastic / SE: strong elastic / WE: weak elastic / SP: strong plastic / WP: weak plastic

Example Grid resolution MPM particles(K) Young’s modulus Poisson’s ratio Yield stress

(Fig. 3.8) Car driving through a land mine 128*256*256 1300 body/tire: 2e4/1.5e3 0.22 body: 600

(Fig. 3.9) Tribunny 128*64*128 600 SE/WE/iron: 1600/200/2e4 0.22 iron: 600

(Fig. 3.10)Elastic Shell Explosion 2D 1024*1024 15.8 100 0.3 N/A

(Fig. 3.11)Firing Cannon at a truck 256*128*128 450 S/W: 1e8/5e7 S/W: 0.27/0.334 S/W: 1.7e6/5.2e5

(Fig. 3.12)Firing Bullet 2D 1600*400 1.3 1e6 0.25 N/A

(Fig. 3.13)Pumpkin explosion 128*128*128 120 E/P: 1.5e3/2e4 0.25 P: 600

(Fig. 3.14)Supernova 400*80*80 900 1e6 0.25 2.6e3

(Fig. 3.15)Cylinder flow and von Kármán vortices 200*40*24 80 SE/WE/SP/WP: 1e3/2e2/1e4/5e3 0.35 SP/WP: 150/75

(Fig. 3.16)Airplane in a wind tunnel 400*60*160 98 1e8 0.25 2.6e5

(Fig. 3.17)Cactus near explosion 300*100*75 430 1e6 0.25 6e4

(Fig. 3.19)Mach Diamond and Koalas 256*128*64 174 1e3 0.22 N/A

Figure 3.8: Demo: A car traverses a triggered landmine. The vehicle’s distinct materials
for its body and wheels result in unique interactions with the blowing exhaust. Our
method naturally accounts for these effects, offering a monolithic solution to the solid-gas
coupling problem.

simulation parameters are specified in Table 3.1.

Car driving through a land mine We simulate a car driving through a triggered

landmine (Figure 3.8). The car’s main body is made of plastic, while its wheels are

constructed from lighter elastic materials. The intense explosion shatters the rear wheels

and causes permanent distortion to the body.

Tribunny We simulate three bunny toys surrounding an explosion (Figure 3.9). The

heavy elastic bunny and the plastic bunny sustain damage without being propelled far.

Conversely, the lighter elastic bunny is fully propelled by the shockwave.
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Figure 3.9: Demo: “Tribunny”; three bunny models surrounded by an explosion. The
bunnies consist of iron, (yellow) rubber with high density, and (blue) rubber with low
density. The iron bunny sustains permanent damage to its feet, while the heavier elastic
bunny nearly regains its original shape by the end of the animation. In contrast, the
lighter elastic bunny is propelled into the air, spinning during its trajectory.

Figure 3.10: Demp: Explosive elastic shell. The left set of snapshots illustrate the primary
shockwave’s expansion while the right set depicts the back-flowing exhaust gases.

Elastic shell explosion We simulate the explosion of an elastic shell (Figure 3.10).

The shell is filled with highly compressed hot gas, leading to its rupture. The process

results in two layers of primary shockwaves expanding outward, followed by an inward

injection of gas, mixing with post-explosion exhaust. The interaction of elastic fragments

with the complex flow pattern is observed.

Firing a cannon at a truck We simulate projectiles hitting toy trucks (Figure 3.11).

The trucks are first damaged by the projectiles and then further deformed by shockwaves.

The material parameters of each truck influence the extent of final damage.
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Figure 3.11: Demo: Targeting toy trucks with bullets. The trucks are constructed from
distinct materials: (left, sturdy) high Young’s modulus and von Mises yield stress; (right,
fragile) low Young’s modulus and von Mises yield stress. The robust truck experiences
partial deformation due to the shock, while the weaker truck undergoes catastrophic
destruction.

Figure 3.12: Demo: 2D Bullet simulations. Schlieren & density plots depicting the firing
of heavy (left, ρ = 1250kg/m3) and light (middle, ρ = 500kg/m3) bullets, along with
a light bullet equipped with a silencer at the chamber outlet (right, ρ = 500kg/m3).
Snapshots are captured at intervals of 0.028s, 0.0935s, and 0.17s, from bottom to top.
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Figure 3.13: Demo: Explosion of plastic and elastic pumpkins. The high internal pressure
causes the pumpkin shells to fracture, propelling their fragments away. The plastic
pumpkin’s deformation remains permanent; its fragments remain stretched and thin. The
elastic pumpkin exhibits jiggling motion in the air, reacting to the backflow.

Figure 3.14: Demo: Supernova. A supernova destroys multiple planets, producing a
massive amount of fragments in a mini solar system. This example contains numerous
complex solid-fluid interfaces with a wide range of solid volume fractions. Our partially
passable interface treatment robustly handles them.

Firing bullets We use high-temperature, high-pressure gas to propel bullets under

varying conditions (Figure 3.12). A heavy bullet reaches a transonic state and breaks the

wavefront towards the end of the simulation, generating uniform vortices behind its tail.

The lighter bullet reaches a supersonic state, breaking the wavefront early and producing

chaotic vortices. In another test, a silencer is added to the firing chamber to observe

its successful suppression of the primary shock. The bullet’s speed is slightly reduced,

allowing it to pass the slower shockwave and create a secondary shock.

Pumpkin explosion We simulate the explosions of a plastic pumpkin and an elastic

pumpkin by introducing ellipsoidal high-pressure gas inside them (Figure 3.13). Both

pumpkins are extensively fragmented. The plastic pumpkin’s deformation is permanent,

while the elastic pumpkin vibrates vividly in the backflow.
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Stiff and Elastic

Stiff and Plastic

Soft and Elastic

Soft and Plastic

Figure 3.15: Demo: Flow through cylinders. Schlieren (bottom) and density (side) plots
for Mach 3 flow through various cylinders: (top left) stiff elastic, (bottom left) stiff
plastic, (top right) soft elastic, and (bottom right) soft plastic. The stiff elastic cylinder
initially deforms significantly near its center and then rebounds to exhibit a more uniform
deformation. The stiff plastic cylinder experiences permanent deformation near its ends.
The soft cylinders quickly rupture from the walls. Elastic fragments regain their shapes,
while plastic fragments remain permanently bent.

Supernova We use a planar wave to simulate a distant supernova explosion, disrupting

a mini solar system (Figure 3.14). Due to the plastic nature of the solids, they are easily

disintegrated.

Cylinder flow and von Kármán vortices We simulate interactions between Mach 3

flow and cylinders composed of different elastoplastic materials (Figure 3.15). Varying

Young’s modulus and enabling/disabling plasticity reveals intricate fluid-solid coupling

behavior and distinct von Kármán vortex patterns.

Airplane in a wind tunnel We place a toy airplane in a wind tunnel and gradually

increase flow speed until fractures occur (Figure 3.16). Loss of balance causes the plane to

spin within the tunnel. The airplane undergoes severe deformation and fractures during

dynamic interaction with supersonic flow.

Cactus near explosion We simulate the interaction between a cactus forest and a

supersonic wind blow caused by a distant explosion (Figure 3.17). The cactus plants are

severed near their roots as the shockwave approaches.
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Figure 3.16: Demo: Airplane in a wind tunnel. Visualization of a slice of (bottom) flow
velocity and (side) schlieren, with MPM particles color-coded by their deviatoric stress
norms. The wings of the airplane experience significant lift-induced deformation, followed
by deformation of the body. Subsequently, the airplane undergoes fragmentation, with a
robust flow emanating from its small residual portion.

Figure 3.17: Demo: Cactus forest. The cactus plants are destroyed by high-speed airflow
from an explosion. The Mach 9 wavefront is initially reflected by the stairstep between
the highland and the desert. It then hits the forest and breaks the plants near their roots.

Mach Diamond and Koalas Mach diamonds form at the exhaust of a slightly over-

expanded jet with an outlet pressure slightly lower than ambient. Elastic koala toys

with varying densities are placed above air jets in a 3D simulation (Figure 3.19). The

lightest koala is easily propelled upward, the middle one maintains balance under the

jet’s influence and gravity, and the heaviest koala disrupts the jet’s wavefront.
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Figure 3.18: Demo: Mach diamond. Density plot of a Mach diamond in 2D at 0.22s,
0.44s, 0.85s, 1.11s, and 1.39s. The central 1/8 of the bottom serves as the inlet with Mach
3 and 50% of the ambient pressure.

Figure 3.19: Demo: Three koala toys hit by Mach diamond jets. The inlet setting mimics
the 2D version in Figure 3.18. The density ratio (from left to right) of the koalas is 1:4:9.
The lightest koala is easily propelled upward; the middle one maintains balance under
the effects of the pumping jet and gravity; the heaviest koala easily disrupts the jet’s
wavefront.
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CHAPTER 4

Bi-Stride Multi-Scale Graph Neural Network for

Mesh-Based Physical Simulation

Learning physical simulations on large-scale meshes using flat Graph Neural Networks

(GNNs) and stacked Message Passings (MPs) presents challenges due to scaling complexity

with respect to the number of nodes and issues related to over-smoothing. There has been

a growing interest in introducing multi-scale structures to GNNs for physical simulation.

However, current state-of-the-art methods are limited by their dependence on labor-

intensive manual creation of coarser meshes or constructing coarser levels based on spatial

proximity, which can introduce incorrect edges across geometry boundaries. Drawing

inspiration from bipartite graph determination, we propose a novel pooling strategy,

referred to as bi-stride, to address the aforementioned limitations. The bi-stride approach

involves pooling nodes on alternate frontiers of the breadth-first search (BFS), eliminating

the need for manual creation of coarser meshes and mitigating the issue of incorrect

edges due to spatial proximity. Moreover, it facilitates a one-Message Passing scheme

per level and employs non-parametrized pooling and unpooling through interpolations,

reminiscent of U-Net architectures, resulting in significant reduction of computational costs.

Experimental results demonstrate that our proposed framework, BSMS-GNN, outperforms

existing methods in terms of accuracy and computational efficiency in representative

physical simulations.
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4.1 Related Work

GNNs for Physics-Based Simulation The application of Graph Neural Networks

(GNNs) to physics-based simulation was initially explored in the context of deformable

solids and fluids, both represented by particles (Sanchez-Gonzalez et al., 2018). A notable

milestone in this field is the work by Pfaff et al., known as MeshGraphNets (Pfaff

et al., 2020), which introduced a general framework for learning mesh-based simulations.

Subsequently, various extensions of MeshGraphNets have been proposed. For instance,

GNNs have been combined with Physics-Informed Neural Networks (PINNs) (Gao et al.,

2022), long-term predictions have been achieved by combining Graph AutoEncoders

(GAEs) with Transformers (Han et al., 2022), steady-states have been directly predicted

using multi-layer readouts (Harsch and Riedelbauch, 2021), and finer-level simulation

acceleration has been achieved by utilizing up-sampled coarser results inferred by GNNs

(Belbute-Peres et al., 2020).

Multi-Scale GNNs Multi-Scale Graph Neural Networks (MS-GNNs) have found

applications beyond physics in various graph-related tasks (Wu et al., 2020; Mesquita

et al., 2020; Zhang et al., 2019). The concept of MS-GNNs was introduced by Gao et al.

in the form of GraphUNet (Gao and Ji, 2019), which incorporates a UNet structure into

GNNs along with a trainable scoring module for pooling. Additionally, a 2nd-powered

adjacency enhancement is utilized to preserve connectivity. In the context of physics-based

simulations, several works have explored the application of MS-GNNs, including two-level

and multi-level GNNs (Fortunato et al., 2022; Liu et al., 2021), often relying on manual

construction of coarse meshes. Other approaches, such as MS-GNN-Grid (Lino et al.,

2021, 2022a), leverage spatial proximity to generate multi-level structures. Li et al. (Li

et al., 2020b) adopt a multi-level matrix factorization technique for generating kernels at

coarser levels. Guillard’s coarsening algorithm is employed by Lino et al. (Lino et al.,

2022b) for building coarse-level meshes, primarily for 2D triangle elements. Notably, there

are representative works that diverge from the traditional mesh-based representation

and instead establish connections and hierarchies on point clouds. Examples include
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GNS (Sanchez-Gonzalez et al., 2020), PointNet (Qi et al., 2017a), PointNet++ (Qi et al.,

2017b), and GeodesicConv (Masci et al., 2015).

4.2 Multi-Scale Building as Preprocessing

We first introduce the bi-stride pooling strategy, multi-scale building, and the correspond-

ing data preprocessing. It is important to note that all algorithms and preprocessing

steps in this section are deterministic and performed in a single pass.

4.2.1 Motivations

As depicted in Figure 1.1, pooling strategies can be categorized into two groups: those

utilizing spatial proximity (Lino et al., 2021, 2022a) and those relying solely on graph

information (Gao and Ji, 2019; Li et al., 2020b). When dealing with complex geometries,

it is advisable to avoid spatial proximity unless necessary for simulation cases like contact

or interface interactions. An example of an algorithm relying solely on graph information

is GraphUNets(Gao and Ji, 2019); however, it has a significant drawback. Even with

the enhancement of the adjacency matrix, as shown in Figure 1.1(a), connectivity can be

lost and partitions can be introduced.

To provide a clearer illustration, we introduce the concept of K-th order adjacency

enhancement, denoted as A ← AK . In a geometric sense, A(i, j) = 1 signifies the

existence of an edge between nodes i and j, while AK(i, j) = 1 implies that node j is

connected to node i within a maximum of K hops. We define a K-th order outlier set

OK , where nodes in OK are not connected to any pooled nodes even after K-th order

adjacency enhancement (AK(i, j) = 0, ∀i ∈ I,∀j ∈ OK). We define a pooling strategy P

as K-th order connection conservative (K-CC) if OK is empty. Empirically, a larger K

is detrimental to distinguishing node features, and the most preferred value is naturally

K = 2.

With this rationale, (Gao and Ji, 2019) employs the smallest second-order enhancement
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Figure 4.1: Similarity between Bi-partition and Bi-stride. The number in the circle
indicates the depth of the frontiers of topological sorting or BFS. The red-bounded circle
(number 1) represents the starting node, i.e., the seed.

to preserve connectivity. However, there is no theoretical guarantee that a learnable

pooling module is consistently 2-CC for any graph. These limitations motivate us to

create a consistent 2-CC pooling strategy, as discussed in Section 4.2.2.

4.2.2 Bi-Stride Pooling and Adjacency Enhancement

Our initial inspiration for bi-stride pooling comes from the bi-partition determination

algorithm (Asratian et al., 1998) in a directed acyclic graph (DAG). As shown in Fig-

ure 4.1(a), pooling on every other depth (yellow and green) after topological sorting

creates a bi-partition where edges reside between two partitions, ensuring 2-CC when

pooling either partition.

To extend this idea to non-bipartite meshes, we employ breadth-first search (BFS)

to compute geodesic distances from a seed to all other nodes and perform stride and

pool operations on every other BFS frontier (bi-stride), as shown in Figure 4.1(b). This

pooling strategy is 2-CC by construction and conserves direct connections between pooled

and unpooled nodes. Thus, we avoid relying on spatial proximity, handle complex cases

like cross-boundary connections, and employ the smallest adjacency enhancement.

Seeding Heuristics We propose that seeding should be balanced to a certain degree.

For training datasets, we adopt two deterministic seeding heuristics: 1) CloseCenter
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Algorithm 2 CloseCenter: Seeding by minimum distance to the center of the cluster.

1: Input: Unweighted, bi-directional graph G = (N,E); Node positions, X ▷ List
of seeds in each cluster, Ls

2: Lc ← DetermineCluster(G)
3: Ls ← ∅
4: for idx in Lc do
5: X̄ ← average(X[idx], dim = 0)
6: ∆X ← X − X̄
7: D ← ||∆X||2
8: s← idx[argmin(D)]
9: Ls.append(s)
10: end for
11: Output: Ls

Algorithm 3 MinAve: Seeding by minimum average geodesic distance to neighbors.

1: Input: Unweighted, bi-directional graph G = (N,E) ▷ List of seeds in each
cluster, Ls

2: Lc ← DetermineCluster(G)
3: Ls ← ∅
4: D ← {BFS(s) for s in N}
5: for idx in Lc do
6: Dc ← D[idx, idx]
7: D̄c ← average(Dc, dim = 1)
8: s← idx[argmin(D̄c)]
9: Ls.append(s)
10: end for
11: Output: Ls

(Algorithm 2), which selects nodes closest to the center of a cluster for InflatingFont,

and 2) MinAve (Algorithm 3), which chooses nodes with the minimum average distance for

other cases. We preprocess multi-level building in a single pass. During online inference,

if an unseen geometry arises, the less expensive heuristic CloseCenter can be used.

We elaborate on the two seeding heuristics mentioned above. MinAve has a time

complexity of O(N2) as BFS is performed for every node to find the one with the minimum

average distance to neighbors. In our experiments, MinAve’s quadratic cost is acceptable

for all cases except InflatingFont.

For InflatingFont, where the largest mesh has around 47K nodes, the preprocessing

time with MinAve becomes intolerable. In this case, we switch to CloseCenter with linear
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Algorithm 4 DetermineCluster.

1: Input: Unweighted, Bi-directional graph, G = (N,E) ▷ R stands for remaining
nodes that are not inside any cluster

2: R← N
3: Lc ← ∅
4: while R ̸= ∅ do
5: s← R.pop()
6: if |R| = 0 then
7: Lc.append({s})
8: else
9: D ← BFS(s)
10: C ← ∅
11: R∗ ← ∅
12: for n in R do
13: if D[n] =∞ then
14: R∗.append(n)
15: else
16: C.append(n)
17: end if
18: end for
19: Lc.append(C)
20: R← R∗

21: end if
22: end while
23: Output: Lc

complexity.

For both heuristics, we search for seeds in a per-cluster fashion to avoid information

from other clusters that could influence the search result. For example, when determining

the center of an isolated part of the input geometry, the positions of nodes from other

clusters could interfere with this process. The process of determining clusters in a given

graph is elaborated in Algorithm 4.

Contact Edges For problems involving contacts, such as plates (Figure 4.4(c)) and

fonts (Figure 4.4(d)), the finest-level contact edges AC are dynamically built based on

spatial proximity between nodes. It is important to note that edge construction through

spatial proximity is not applicable to the internal elastic mechanics, where the edge is

defined solely by the mesh. Proper handling of contact edge enhancement is crucial for
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multi-scale GNNs, a topic that has not been previously addressed in the literature. At any

level l, given adjacent matrices Al obtained from the input mesh and the enhancement

rule, as well as the contact edge AC
l at that level, we initially perform bi-stride pooling

to select nodes I, and then enhance Al+1 and AC
l+1 using the following rule, where [I, I]

denotes striding on the matrix rows and columns:

A′
l+1 ← AlAl, Al+1 ← A′

l+1[I, I],

A′C
l+1 ← AlA

C
l Al, AC

l+1 ← A′C
l+1[I, I].

(4.1)

The enhancement of contact edges can be geometrically interpreted: a contact edge (i, j)

should exist if node j is reachable from node i in two hops, with at least one of those

hops being a contact edge at the finer level.

Proof of Conservation of Contact Edges: With Bi-stride pooling, our pooling

operation conserves all contact edges under the enhancement defined in (4.1). We assume

an undirected and unweighted graph, leading to an adjacent matrix that is boolean.

Formally, for any contact edge (i, j) at level l (i.e., AC
l [i, j] = 1) and a Bi-stride

pooling P that pools nodes I, there exists a contact edge (i′, j′) that remains at the

coarser level (i.e., A′C
l+1[i

′, j′] = 1, where i′, j′ ∈ I), and i/i′ and j/j′ are connected (i.e.,

Al[i, i
′] = Al[j, j

′] = 1). Four scenarios involving the pooling nodes I and the contact

edge nodes i and j can be considered, where the assertion holds in each case:

1. Both i and j are pooled, i.e., i, j ∈ I. It is evident that A′C
l+1[i

′, j′] = 1 by setting

i′ = i and j′ = j.

2. Only i is pooled, with i ∈ I and j /∈ I. Through Bi-stride pooling, j can either

be the seed at level 0 (Bi-stride can select either even or odd levels), directly

connecting to all nodes at level 1, or j must have at least one direct connection

from the previous level. Let j′ be a neighbor of j in the adjacent level that is

pooled, i.e., Al[j, j
′] = 1 and j′ ∈ I. Then AC

l Al[i, j
′] ≥ AC

l [i, j] ∗Al[j, j
′] = 1, and

Al(A
C
l Al)[i, j

′] ≥ Al[i, i] ∗ (AC
l Al)[i, j

′] = 1. Set i′ = i, yielding A′C
l+1[i

′, j′] = 1.
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3. Only j is pooled, with i /∈ I and j ∈ I. Similarly, find at least one i′ such

that Al[i
′, i] = 1 and i′ ∈ I. Then AlA

C
l [i′, j] ≥ Al[i

′, i] ∗ AC
l [i, j] = 1, and

(AlA
C
l )Al[i

′, j] ≥ (AlA
C
l )[i′, j] ∗Al[j, j] = 1. Set j′ = j, leading to A′C

l+1[i
′, j′] = 1.

4. Neither i nor j are pooled, i.e., i, j /∈ I. Select direct pooled neighbors for i and j,

respectively, such that Al[i
′, i] = Al[j, j

′] = 1, where i′, j′ ∈ I. Then AlA
C
l [i′, j] ≥

Al[i
′, i] ∗AC

l [i, j] = 1, and (AlA
C
l )Al[i

′, j′] ≥ (AlA
C
l )[i′, j] ∗Al[j, j

′] = 1.

4.3 Bi-Stride Multi-Scale BSMS-GNN

Here, we formally introduce BSMS-GNN, a hierarchical Graph Neural Network (GNN)

in which the multi-level structure is determined by the input mesh and the preprocessing

discussed in Section 4.2.

4.3.1 Definitions

Figure 4.2 illustrates the overall structure of BSMS-GNN. We consider the evolution of

a physics-based system discretized on a mesh, which is transformed into a bi-directional

graph G1 = (V1, E1). Here, with subscript 1, V1, and E1 denote the nodal fields and

edges at the finest level (the input mesh), respectively. Specifically, for edges, we define

E1 = {E11 , · · · , ES1 }, where E11 represents the edge set directly copied from the input mesh,

and {Ek1 |Sk=2} correspond to optional problem-dependent edge sets. For instance, both

the DeformingPlate (Figure 4.4(c)) and InflatingFont (Figure 4.4(d)) benchmarks

have a contact edge set E21 for colliding vertices. We use {p, q} to denote stacked vectors

of {pi, qi} for all nodes i ∈ V1, representing the input and output nodal fields, respectively.

Given an input field pj at time tj, one pass of BSMS-GNN returns the output field

qj+1 at time tj+1 = tj + ∆t, where ∆t is a fixed time step size. The output q may

include more physical fields than the input p and should be capable of deriving the

input for the subsequent pass. The term “rollout” refers to the iterative application of

BSMS-GNN from the initial state p0 → q1 → p1 → · · · → qn, producing the temporal

sequence output {q1, q2, · · · , qn} within the time range (t0, t0 + n∆t], with n being the
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1xMP

1xMP

downsample
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1xMP
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encoding decoding

Figure 4.2: The BSMS-GNN pipeline. Trained with one-step supervision. G1,G2, · · · ,Gd
represent graphs at different levels (fine to coarse). The encoder/decoder only connects
the input/output fields with the latent fields at G1. Latent nodal fields are updated by
one message passing operation at each level. Bi-stride pooling selects pooled nodes for
the adjacent coarser level, and the transition occurs in a non-parameterized manner.

total number of evaluations.

Message Passing In general, we adhere to the encode-process-decode framework in

MeshGraphNets, where the encoder and decoder are only present at the top level

G1, mapping the nodal input p and output q to/from the latent feature v, respectively.

Unlike (Fortunato et al., 2022), we find that a single Message Passing (MP) operation

per level is adequate for all experiments. Instead of separately encoding the edge offsets

∆xij = xi − xj, we simply append this information to the stacked sender/receiver latent

vectors as input for calculating edge flow. For a problem involving S edge sets, an MP

pass at level l is formulated as follows:

es
l,ij ← fsl

(
∆xl,ij,vl,i,vl,j

)
, s = 1, · · · , S,

v′
l,i ← vl,i + fVl

(
vl,i,

∑
j

e1
l,ij, · · · ,

∑
j

eS
l,ij

)
,

(4.2)
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Figure 4.3: Schematic representation of the transition between adjacent levels.

where f represents a Multi-Layer Perceptron (MLP) function, e denotes the latent in-

formation flow through an edge, and v is the latent node feature. For a detailed model

architecture, please refer to Section 4.4.2.

4.3.2 Transition Between Levels

The transfer of information between two neighboring levels is facilitated using non-

parametrized downsampling and upsampling modules. This approach aims to minimize

the computational overhead associated with learnable transition modules between adjacent

level pairs. In the context of our methodology, downsampling refers to the sequence of

pooling nodes, followed by the aggregation of information from neighboring nodes onto

the coarser level. Conversely, upsampling involves the sequence of unpooling, followed by

the reinstatement of information from pooled nodes to their corresponding neighbors on

the finer level.

Downsampling Let A represent the unweighted, boolean adjacency matrix. We

initiate a nodal weight field w, set to one on the finest level, which accumulates during

the downsampling process. Given a receiver node j and its corresponding sender node i,

the downsampling process can be defined as follows (Figure 4.3):

• Begin by row-normalizing, akin to a standard graph convolution, where Âij ←

Aij/
∑

j Aij. Then, perform a single-weight convolution, ŵij ← wiÂij (Fig-

ure 4.3(a)).
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• Compute edge weights Cij ← ŵij/
∑

i ŵij , where matrix C serves as a contribution

table, with Cij representing the proportion of weights at receiver node j contributed

by sender node i (Figure 4.3(b)).

• Conduct a convolution of the latent information using the contribution table,

vj ←
∑

i viCij . This operation is analogous to equally distributing and transmitting

weighted information from sender nodes, followed by a weighted average operation

at the receiver nodes (Figure 4.3(c)).

Upsampling Upon unpooling, all nodes, except those that were pooled, possess zero

information. A retrieval process, reminiscent of transposed convolution in U-Net architec-

ture, aids in distinguishing information among receiver nodes. Given the contribution

table C, which records edge weights, a natural choice is to update node information using

vi ← vjC
T
ij (Figure 4.3(d)).

4.4 Experiments

4.4.1 Datasets

We adopt three representative public datasets from GraphMeshNets (Pfaff et al., 2020): 1)

CylinderFlow: incompressible fluid flow around a cylinder; 2) Airfoil: compressible

flow around an airfoil; and 3) DeformingPlate: deformation of an elastic plate with

an actuator. Additionally, we create the InflatingFont cases using the open-source

simulator (Fang et al., 2021), maintaining consistent material properties and inflation

speed. The input geometries for InflatingFont consist of 1, 400 2 × 2 character

matrices in Chinese. Compared to existing datasets, InflatingFont exhibits more

complex geometric shapes, 2 to 8 times the number of nodes, and 70 times the number

of contact edges. As a result, it is highly suitable for evaluating the scalability and

compatibility of various GNNs with intricate geometries. The example plots are presented

in Figure 4.4. The statistics of the graph features (such as number of nodes and edges,

the mesh type, the number of total time steps) are included in Table 4.1.
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(a) Cylinder-

Flow
(b) Airfoil (c) DeformingPlate

(d)

InflatingFont

Figure 4.4: Example multi-level graphs produced by Bi-stride pooling. Our datasets
contain both Eulerian and Lagrangian systems. Many meshes are highly irregular and
contain significant self-contact, making the construction of coarser-level connections
challenging based solely on spatial proximity. Our bi-stride strategy relies only on
topological information and has been demonstrated to be robust and reliable for arbitrary
geometries.

Table 4.1: Multi-level mesh configurations for benchmarks.

Case Avg # nodes Avg # edges Mesh type Seed method # Levels # Steps
Cylinder 1886 5424 triangle, 2D MinAve 7 600
Airfoil 5233 15449 triangle, 2D MinAve 9 600
Plate 1271 4611, 94∗ tetrahedron, 3D MinAve 6 400
Font 13177 39481, 6716∗ triangle, 3D CloseCenter 6 100

All datasets are divided into 1000 training, 200 validation, and 200 testing instances.

Entries in the second column of the table labeled with superscript∗ in the average edge

number represent contact edges:

Model Configurations We provide the input/output configurations for each experi-

mental case below: 1) the offset inputs to prepend before the material edge processor eMij

and eWij , and 2) nodes pi, along with the nodal outputs qi from the decoder. The detailed

configurations for all datasets are included in Table 4.2. In these configurations, X and x

represent material-space and world-space positions, v denotes velocity, ρ signifies density,

P stands for absolute pressure, and the notation ȧ = at+1 − at indicates temporal change
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Table 4.2: Model configurations for benchmarks.

Case Type Offset inputs eMij Offset inputs eWij Inputs pi Outputs qi
Cylinder Eulerian Xij, |Xij| NA vi, ni v̇i

Airfoil Eulerian Xij, |Xij| NA ρi,vi, ni v̇i, ρ̇i, Pi

Plate Lagrangian Xij, |Xij|,xij, |xij| xij, |xij| ẋi, ni ẋi

Font Lagrangian Xij, |Xij|,xij, |xij| xij, |xij| ni ẋi

for a variable a. All involved variables are normalized to have zero mean and unit variance

during pre-processing.

For time integration, Cylinder, Airfoil, and Plate inherit the first-order integration

from MeshGraphNets. For InflatingFont, the first-order quasi-static integration

(Fang et al., 2021) is employed in the solver. Consequently, we also employ first-order

integration for InflatingFont.

Baselines Across all datasets, we compare the computational complexity, training/inference

time, and memory footprint of BSMS-GNN against several baselines: 1) MeshGraph-

Nets(Pfaff et al., 2020): the single-level GNN architecture from GraphMeshNets; 2)

MS-GNN-Grid(Lino et al., 2021, 2022a,b): an example of methods constructing hierar-

chies based on spatial proximity; and 3) GraphUNets(Gao and Ji, 2019): a representative

approach employing learnable pooling modules. Implementation details are available in

Section 4.4.2. We emphasize that methods such as (Liu et al., 2021; Fortunato et al., 2022)

are not practical due to the requirement of manually generating coarser meshes for each

trajectory instance using CAE software, involving the manual creation of approximately

20, 000 meshes across all cases.

Miscellaneous Ablation studies are conducted for our specific choice of transition

method and seeding heuristics. The ablation study pertaining to the use of learnable

pooling modules is not presented in isolation but is addressed through comparison with

GraphUNets in comprehensive experiments (details in Section 4.4.3).
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4.4.2 Implementation Details

We implemented our framework using PyTorch (Paszke et al., 2019) and PyG (PyTorch

Geometric) (Fey and Lenssen, 2019). The entire model was trained by supervising the

single-step L2 loss between the ground truth and the nodal field output of the decoding

module.1

4.4.2.1 Basic Modules and Architectures

The MLPs for the nodal encoder, processor, and nodal decoder are ReLU-activated

two-hidden-layer MLPs with a hidden-layer and output size of 128, except for the nodal

decoder, whose output size matches the prediction q. All MLPs include a residual

connection. LayerNorm is applied to normalize all MLP outputs except for the nodal

decoder.

4.4.2.2 Baseline: MeshGraphNets

Our MeshGraphNets implementation uses the same MLPs as mentioned above but

includes an additional module: the edge encoder. Additionally, the edge latent is updated

and carried over throughout the end of multiple MPs. We use 15 time steps for message

passing in all cases to maintain consistency with MeshGraphNets.

4.4.2.3 Baseline: MS-GNN-Grid

Our re-implementation of MS-GNN-Grid utilizes the same MLPs as described above,

with four additional modules: the edge encoder at the finest level, aggregation modules for

nodes and edges at every level for transitions, and returning modules for nodes at every

level. This method also involves assigning regular grid nodes for each level. Grid nodes

are assigned by defining an initial grid resolution and an inflation rate between levels.

The initial grid sizes and the inflation rates between levels are recorded in Table 4.3. The

1Our datasets and code are publicly available at https://github.com/Eydcao/BSMS-GNN.
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Table 4.3: Details of re-implementing the multi-level structure in (Lino et al., 2022a).

Case # Levels Initial grid dx dx inflation Level-wise # MPs
Cylinder 4 [5e-2, 5e-2] 2 [4, 2, 2, 4]
Airfoil 4 [4.5, 4.5] 2 [4, 2, 2, 4]
Plate 4 [4e-3, 4e-3, 4e-3] 2 [4, 2, 2, 4]
Font 4 [1.5e-2, 1.5e-2, 1e-3] 2 [4, 2, 2, 4]

Table 4.4: Training noise parameters and batch sizes.

Case Batch size Noise scale
BSMS-GNN MS-GNN-Grid MeshGraphNets GraphUNets

Cylinder 32 16 16 2 velocity: 2e-2
Airfoil 8 4 8 1 velocity: 2e-2, density: 1e1
Plate 8 2 2 1 pos: 3e-3
Font 2 1 1 1 pos: [5e-3, 5e-3, 3.33e-4]

number of message passing iterations at each level follows (Lino et al., 2022a), using four

at the top and bottom levels and two for the others.

4.4.2.4 Baseline: GraphUNets

Our re-implementation of GraphUNets uses the same number of levels as BSMS-GNN.

We made the following modifications to the original GraphUNets: (1) We adjusted

the information passing from GCN to our message passing module for consistency and

translational invariance. (2) The original GraphUNetswas designed for small graphs

(100 nodes) and employed dense matrix multiplications, which is not scalable for our

graph size (1500 to 15000 nodes). To address this, we optimized operations such as matrix

multiplication and aggregation with sparse implementations.

4.4.2.5 Noise and Batch Size

For each benchmark, we introduced Gaussian noise with a specific scale and added it to

the original trajectory at the beginning of every epoch. Noise injection aimed to simulate

model-generated noise, enhancing the model’s ability to correct its output when given

noisy inputs. We carefully tuned the batch size for each method through smaller subset

experiments to achieve optimal convergence rates. The related details are recorded in
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Table 4.5: Detailed measurements of baselines in BSMS-GNN. BSMS-GNN consistently
produces stable and competitive global rollouts with the smallest training cost. BSMS-
GNN is also lightweight and has the fastest inference time. It is also free from the large
RMSE due to poor pooling on unseen geometries where the learnable pooling module
of GraphUNets struggles. The second column of entries in Infer time is the speedup
compared to the numerical solver. The second column of entries in Training cost is the
epoch at which the converged model is achieved.

Measurements Case Ours (Lino et al., 2021) (Pfaff et al., 2020) (Gao and Ji, 2019)

Training time/step
[ms]

Cylinder 10.14 15.36 19.29 16.20
Airfoil 18.82 25.26 36.72 55.08
Plate 15.58 49.65 49.15 31.88

InflatingFont 45.96 107.16 117.48 1,833.37

Infer time/step
[ms]

Cylinder 6.75, 121x 6.18, 133x 14.50, 57x 24.30, 34x
Airfoil 8.64, 1275x 20.40, 540x 24.20, 455x 33.60, 328x
Plate 14.01, 207x 18.12, 160x 15.70, 184x 16.20, 179x

InflatingFont 33.33, 210x 41.66, 168x 82.35, 85x 629.33, 11x

Training cost
[hrs],

Final epoch

Cylinder 21.41, 19 35.84, 21 64.30, 30 76.15, 39
Airfoil 122.33, 39 176.82, 42 275.40, 45 206.55, 37
Plate 56.07, 27 125.78, 19 176.94, 27 127.50, 30

InflatingFont 2.68E+01, 21 5.66E+01, 19 6.20E+01, 19 NA

RMSE-1
[1e-2]

Cylinder 2.04E-01 2.20E-01 2.26E-01 8.09E-01
Airfoil 2.88E+01 2.68E+01 4.35E+01 2.93E+01
Plate 2.87E-02 2.20E-02 1.98E-02 2.03E-02

InflatingFont 1.77E-02 1.87E-02 1.95E-02 NA

RMSE-50
[1e-2]

Cylinder 2.42 2.74 4.39 1.87E+01
Airfoil 1.10E+03 1.22E+03 1.66E+03 1.17E+03
Plate 3.18E-02 2.78E-02 2.88E-02 5.19E-02

InflatingFont 1.08E-01 3.24E-01 1.78E-01 NA

RMSE-all
[1e-2]

Cylinder 8.37 8.49 1.07E+01 1.65E+02
Airfoil 4.21E+03 5.56E+03 6.95E+03 6.11E+03
Plate 1.60E-01 1.48E-01 1.51E-01 5.46E-01

InflatingFont 2.20E-01 3.78E-01 3.65E-01 NA

Table 4.4.

4.4.3 Results and Discussions

By evaluating BSMS-GNN and other competitors on all the baselines (Section 4.4.1),

we derive the following conclusions:

• We empirically demonstrate that the learnable pooling method is not suitable for

large-scale, complex geometries;

• We conduct a small-scale experiment where proximity-based pooling leads to incor-

rect edges and inference;

• BSMS-GNN offers significant advantages in terms of memory consumption, training

time to achieve desired accuracy, and inference time;

• BSMS-GNN also achieves the highest accuracy, reducing the rollout RMSE by
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Table 4.6: Memory footprint comparison between baselines. BSMS-GNN consistently
reduces RAM consumption by approximately half in all cases during the training stage,
and also has the smallest (except for DeformingPlate ) inference RAM.

Case Method Training RAM (GBs) with different Batch # Inference RAM (GBs)
2 4 8 16 32 64

CylinderFlow

Ours 2.41 2.92 4.37 6.06 11.4 22.27 1.92
(Lino et al., 2021) 2.79 3.60 5.31 8.56 15.10 - 1.97
(Pfaff et al., 2020) 3.25 4.46 6.91 11.84 21.60 - 1.94
(Gao and Ji, 2019) 23.33 - - - - - 2.18

Airfoil

Ours 3.66 5.46 8.88 15.70 - - 2.02
(Lino et al., 2021) 4.18 6.25 10.65 19.25 - - 2.02
(Pfaff et al., 2020) 5.53 8.90 16.08 - - - 2.06
(Gao and Ji, 2019) - - - - - - 2.67

DeformingPlate

Ours 2.36 2.87 3.85 5.78 9.28 16.85 1.95
(Lino et al., 2021) 3.41 4.81 7.75 13.20 - - 2.00
(Pfaff et al., 2020) 3.10 4.29 6.59 11.49 20.80 - 1.93
(Gao and Ji, 2019) - - - - - - 2.18

InflatingFont

Ours 6.28 10.80 - - - - 2.23
(Lino et al., 2021) 10.87 19.79 - - - - 2.45
(Pfaff et al., 2020) 12.48 23.39 - - - - 2.28
(Gao and Ji, 2019) - - - - - - 4.51

nearly half on InflatingFont with the largest mesh size and the most complex

geometries; we also achieve accurate results with a model zero-shot on a teaser with

approximately 7 times more nodes.

Detailed measurements are presented in Table. 4.5 and Table. 4.6. All experiments were

conducted using a single Nvidia RTX 3090.

Disadvantages of Learnable Pooling GraphUNets shows significantly higher

RMSE in both 1-step and global rollouts on all datasets, except for the Airfoil dataset,

where the mesh is consistent across trajectories. To confirm that varying mesh leads to

poor inference with learnable pooling, we apply the trained GraphUNets model to an

unseen test trajectory of the DeformingPlate dataset. Figure 4.5 clearly reveals the

unfair pooling distribution by the learnable module, which impedes information passing

on coarser levels and results in poor inference. In comparison, bi-stride pooling generates

uniform pooling and accurate inference.

Additionally, GraphUNets has to conduct the adjacency matrix multiplication in

the forward pass, which results in a 2–40× increase in the training and inference times,

particularly in larger datasets. In the largest InflatingFont, one training epoch requires

nearly 50 hours to complete, making the convergence of the model infeasible. Given its
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High error

Low error

Figure 4.5: Comparison between pooling methods. Unlike bi-stride pooling, which
generalizes to any input graph, a learnable module leads to unfair pooling on unseen
geometries, impeding the information exchange for unselected nodes. The inferred results
show larger errors than bi-stride pooling.

Figure 4.6: Failure cases for MS-GNN-Grid. Left: the configuration of the simplest
failure case for multi-level GNNs by spatial proximity: steady-state 1-D heat transfer.
Right, leading two columns: two tests showing that even if trained to convergence, the
erroneous edge across the boundary can still result in the wrong inference. Right, last
two columns: the erroneous edge coincidentally does not affect the results due to the
symmetry of the solution, and no heat will diffuse between two nodes with the same
temperature.

poor performance in both accuracy and efficiency, we conclude that GraphUNets is not

suitable for simulation cases with large-scale, complex geometries. By default, we will not

specifically make comparisons to GraphUNets in the following discussions.

Failure Cases for Spatial Proximity To illustrate the adversarial impact of wrongly

constructed edges by spatial proximity, we design a simple 1-D steady-state heat transfer

simulation on sticks (Figure 4.6 left), on which BSMS-GNN and MS-GNN-Grid are

trained and evaluated. The training set consists of two mirrored instances, where one

end of the stick is fixed at a certain temperature and the other end has a fixed heat flux,
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Low error High error

Figure 4.7: Zero-shot ability of BSMS-GNN. Left: Comparing the rollout RMSE between
BSMS-GNN and existing SOTAs on the InflatingFont benchmark. Our framework
reaches the highest accuracy, demonstrating a stronger capability for complex, large
geometries with massive contacts. Right: Our trained model can zero-shot infer on
never-seen fonts, with about 7× more nodes in the mesh size while maintaining the same
accuracy.

resulting in a linear temperature distribution. In the test set, we simply align two sticks in

a head-to-tail configuration with a tiny space between them to prevent heat diffusion across

the boundary. MS-GNN-Grid, utilizing spatial proximity, incorrectly constructs an

edge between the two sticks. As a result, in half of the test cases, MS-GNN-Grid shows

wrong results at the boundary due to the erroneous edge (Figure 4.6 right, leading two

columns). Although only in simple cases, one can alleviate this issue by marking the two

sticks as separate clusters and making inferences independently; a similar fix is unfeasible

for connected, complex geometries. For instance, in a long, thin U-shaped tunnel, two

nodes located on the parallel sides of the “U”S are spatially close but geodesically distant,

and hence should not be connected by an edge.

Accuracy and Generalization In terms of accuracy, our method exhibits the smallest

rollout Root Mean Squared Error (RMSE) across all cases except for the Deforming-

Plate dataset, where all three competitors achieve similar results. We attribute this

outcome to the relatively small mesh size of DeformingPlate, which does not pose

a disadvantage to the flat architecture. In the case of the largest and most complex

dataset, InflatingFont, our method achieves the highest accuracy, reducing the rollout

RMSE by 40% compared to the competitors (Figure 4.7, Left). Furthermore, our model

showcases the capability for zero-shot inference on larger meshes than those present in the

training set. It consistently generates accurate global rollouts, even when the characters

are in a different language.
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Figure 4.8: Performance comparison between baselines. GraphUNets is not included
due to poor performance. Full results are plotted in Table. 4.5 and Table. 4.6.

Performance Advantages of BSMS-GNN Our method features a lightweight

architecture characterized by a reduced number of Message Passing (MP) units at each

level and the absence of learnable transition modules. This leads to a significant reduction

in memory usage during training (Figure 4.8(c) and Table 4.6). Specifically, BSMS-

GNN consumes only 43% ∼ 87% of the memory used by MS-GNN-Grid, 48% ∼ 53% of

that used by MeshGraphNets, and merely 10% of the memory used by GraphUNets.

During inference, our method also boasts the lowest memory consumption, except for

the DeformingPlate dataset, where memory usage is slightly higher (20MB) than

MeshGraphNets.

The reduction in memory footprint contributes to enhanced training efficiency by

accommodating larger batch sizes, increased random sampling, and fewer CPU-GPU data

transfers. Consequently, BSMS-GNN exhibits the fastest unit training speed per epoch

among all competitors (Figure 4.8(a) and Table 4.5), requiring only 26% ∼ 58% of the

unit training time of MS-GNN-Grid and MeshGraphNets.

Regarding inference time, BSMS-GNN performs comparably to MS-GNN-Grid on

datasets with smaller mesh sizes (CylinderFlow and DeformingPlate), both sur-

passing the performance of MeshGraphNets. However, as the mesh size increases,

BSMS-GNN outperforms MS-GNN-Grid, demonstrating superior scalability. For

datasets with larger mesh sizes (Airfoil and InflatingFont), our method exhibits a

1.5× and 1.9× improvement over MS-GNN-Grid and MeshGraphNets, respectively

(Figure 4.8(b) and Table 4.5).
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Regarding the total training cost to achieve a desired global rollout RMSE, we observe

that all methods reach the target with a similar number of epochs. This is due to the fact

that all methods are trained to withstand rollout noise by encountering different random

noises in each epoch. Sufficient exposure to noise patterns (proportional to the epoch

number) is essential for accurate rollouts. Consequently, the total wall time is roughly

proportional to the unit training time, given similar epoch numbers, making our method

the most efficient.

4.4.4 Ablation Study

4.4.4.1 Transition Method

While exploring non-parametric transition solutions, we initially began with no transition

since our method is directly adapted from GraphUNets(Gao and Ji, 2019). The no-

transition strategy yields sufficiently low 1-step RMSE and visually accurate rollouts for

InflatingFont. However, in the global rollouts of CylinderFlow and Airfoil cases,

we observed stripe patterns (Figure 4.9 (c), column None), with stripes aligning with

edges at coarser levels (Figure 4.9 (d)). This error seems to result from the unpooled nodes

having zero information prior to message passing (MP), making them indistinguishable

from processor modules and exacerbating differences between pooled and unpooled nodes

during rollouts.

The no-transition strategy is analogous to no interpolation during the super-resolution

phase of CNN+UNet. Consequently, we attempted a single step of graph convolution

(without activation) to emulate interpolation in regular grids. However, this approach

overly smooths features (Figure 4.9 (e), column Graph Conv), and information propa-

gation is smeared out except near the generator (in this case, near the cylinder).

We believe the over-smoothing issue arises due to the mesh’s irregularity. Unlike

CNNs, where fine nodes are centrally located in coarser grids, irregular meshes exhibit

varying topology and element sizes. Element sizes are typically smaller near the interface

for higher simulation precision. Consequently, unweighted graph convolution can smear
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Figure 4.9: Rollout error plots for different transition methods. (a) All three transition
methods can achieve the target training RMSE within 200 iterations. (b) However, our
weighted graph aggregation+returning approach exhibits stronger resistance to noise
during rollouts. (c) Visual comparisons show that no transition produces mosaic-like
patterns, while the graph convolution transition smears out information and ceases
propagation downstream. (d) The global rollout error distribution of no transition
(Left) reveals mosaic-like pattern edges resembling the simulation mesh; the error of our
transition (Right) travels with the generated vortices downstream and leaves the domain
after step 200, explaining the RMSE drop in (b).
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Table 4.7: Detailed measurements of different transition methods. Our method and
Pos-Kernel are the only two non-parametric transitions offering lightweight and reliable
rollouts compared to the resourcE-intensive Learnable transition.

Measurement Ours None Graph-Conv Pos-Kernel Learnable
Training time/step [ms] 10.14 9.30 10.07 10.06 17.75
Infer time/step [ms] 6.75 5.70 6.46 6.90 11.28
Training RAM [GBs] 11.041 11.041 11.041 11.041 18.033
Infer RAM [GBs] 1.923 1.923 1.923 1.923 1.931
RMSE-1 [1E-2] 2.85E-01 1.49E-01 3.41E-01 6.38E-01 4.70E-01
RMSE-50 [1E-2] 1.43E+01 2.05E+02 2.40E+02 1.77E+01 1.35E+01
RMSE-all [1E-2] 1.68E+01 2.59E+02 5.51E+02 2.01E+01 1.57E+01

finer information near the cylinder and its adjacent neighbors during return. To address

this irregularity, we propose the solution detailed in Section 4.3.2, utilizing nodal weights

during aggregation and recording contribution shares for subsequent return. Our transition

method consistently performs well across all experimental cases and yields the lowest

RMSE for global rollouts (Figure 4.9 (b)).

Comparison to Alternative Transition Methods Additionally, we compare our

transition method to two alternatives from prior works: (1) computing edge weights

(kernels) for information flow using inverse length (node position offset), denoted as Pos-

Kernel (Liu et al., 2021); and (2) level-wise learnable transition modules implemented

through additional MP, denoted as Learnable (Fortunato et al., 2022).

The detailed measurements of training costs and inference performance and metrics

are presented in Table 4.7. Besides the high RMSE values for None and Graph-Conv

shown in Figure 4.9, we observe that: (1) training/inference time and RAM consumption

for all non-parametric transitions (including None) are similar, indicating the lightweight

nature of our transition method. (2) Learnable transition achieves slightly higher

accuracy but at approximately 70% greater training/inference time and RAM costs. As

mentioned in Section 4.4.3, higher training RAM can hinder batch size and increase

CPU-GPU data communication frequency, further slowing training with larger scales.

(3) Pos-Kernel results in slightly higher RMSE compared to our method, making it a

competitive alternative for production.
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Table 4.8: Sensitivity analysis of seeding heuristics on model performance. The “Random”
heuristic refers to choosing a random seed for every cluster, while “Inverse w.r.t. Train”
refers to choosing the inverse seeding heuristic compared to that used during the training
phase. For example, if the MinAve heuristic was used during training, the CloseCenter
heuristic was chosen during the testing phase.

Seeding @ Test Ratio in RMSE Cylinder Airfoil Plate Font

Random
1-step 2.06 14.04 2.95 1.15
50-step 1.06 2.16 5.21 1.04
Rollout 1.01 2.04 1.53 1.04

Inverse w.r.t. Train
1-step 1.96 12.77 3.14 1.15
50-step 1.07 1.76 7.52 1.02
Rollout 1.13 2.21 1.46 1.06

4.4.4.2 Seeding Heuristics

In this section, we investigate the impact of employing different seeding heuristics during

the training and testing phases on the sensitivity of a converged model. We intentionally

modify the heuristics used for each benchmark and assess the resulting RMSEs. The

results reveal that inconsistencies in seeding heuristics lead to increased roll-outs compared

to the outcomes obtained when using a consistent seeding approach, as presented in

Table 4.8. Specifically, the roll-outs range from 1.01× to 2.04× for random seeding and

1.13× to 2.21× for inverse seeding, relative to the consistent seeding. However, the

RMSEs remain within the same magnitude, indicating that our method is not highly

sensitive to initial seeding.

4.4.5 Scaling Analysis on Font Datasets

In our investigation of different resolutions (5K, 15K, 30K, and 45K) for the Inflating-

Font dataset, we find that both BSMS-GNN and MS-GNN-Grid exhibit near-linear

scaling behavior. Notably, our method (BSMS-GNN) demonstrates superior efficiency

compared to MS-GNN-Grid, as depicted in Figure 4.10.

To assess scalability, we create scaled-down and scaled-up versions of the Inflating-

Font dataset, each with varying average node counts for the initial geometry. We then

apply consistent simulation settings across these datasets. To ensure stable convergence
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Figure 4.10: Scaling analysis for different baselines. As the size of the font dataset
(InflatingFont) increases, our proposed method (BSMS-GNN) consistently outper-
forms both MeshGraphNets and MS-GNN-Grid in terms of efficiency and scalability.

Table 4.9: Adjustments for parameters in scaling analysis.

# Nodes d1 d2 Initial Grid Resolution Target RMSE Noise Injection
5k 4 2 [6e-2 6e-2 4e-3] 1.73e-4 [8.5e-3, 8.5e-3, 5.7e-4]
15k 6 4 [1.5e-2 1.5e-2 1e-3] 1e-4 [5e-3, 5e-3, 3.33e-4]
30k 7 5 [7.5e-3 7.5e-3 5e-4] 1e-4 [3.5e-3, 3.5e-3, 2.4e-4]
45k 7 5 [7.5e-3 7.5e-3 5e-4] 1e-4 [2.9e-3, 2.9e-3, 1.9e-4]

in the low-resolution scenarios, we relax the termination criteria by increasing the target

Root Mean Square Error (RMSE) relative to the average edge length, thereby preventing

convergence failures. Similarly, noise injection is adjusted proportionally to the average

edge length.

Furthermore, as the number of nodes decreases, fewer levels are required to achieve

equivalent bottom resolutions. Corresponding adjustments are made to the levels of our

model (d1) and those of MS-GNN-Grid (d2). The specific adjustments are presented in

Table 4.9.
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CHAPTER 5

Conclusions and Future Work

This thesis has advanced physics-based simulation techniques from both conventional and

machine learning perspectives. The unifying objective was to address the complexities

encountered when applying scientific computing and simulation to real-world industrial-

level geometries. In this context, each work within this thesis contributes uniquely towards

enhancing availability, accuracy, and computational efficiency.

Chapter 2 introduced the Unstructured Moving Least Square Material Point Method

(UMLS-MPM), which enables MPM to be applied to any 2D and 3D mesh tessellations.

The method guarantees no cell-crossing errors and demonstrates a high-order convergence

rate empirically, which significantly enhances the adaptability and accuracy of the MPM

on unstructured domains.

In Chapter 3, our Coupling Shockwaves with Material Point Method (CSMPM)

introduced a hybrid Eulerian and Lagrangian/Eulerian method for the coupled simulation

of complex flow-structure interactions. This approach offers a robust solution and the

ability to capture shock wave propagation and solid fracturing within arbitrary geometries,

thus significantly improving robustness and efficiency.

Chapter 4 developed our Bi-Stride Multi-Scale Graph Neural Network (BSMS-GNN)

method, a significant advancement in building multi-level graph neural networks for

mesh-based physical simulations. By employing a novel pooling strategy, BSMS-GNN

efficiently constructs multi-level meshes while preserving connectivity. It also reduces

computational overhead and prevents the introduction of erroneous cross-interface edges,

thereby maintaining high prediction accuracy.
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5.1 Future Work

The research conducted presents several promising avenues for future investigation:

• For the UMLS-MPM, developing algorithms that dynamically adjust the sample

weight function according to a sizing field within the mesh could address the

challenges of non-uniform kernel effects and enhance the method’s applicability to

broader simulation contexts. Automating the splitting and merging of particles

could adjust the resolution appropriately across different domain size regions.

• Coupling the UMLS-MPM with Finite Volume Methods (FVMs) for fluid phases

is a natural expansion, as both can adapt to unstructured meshes and irregular

domain geometries.

• For the CSMPM, future research could explore integrating cut-cell methods or

adaptive mesh refinement techniques to further enhance the spatial resolution and

accuracy of interface capture.

• Extending the CSMPM to include simulations with incompressible fluids, granu-

lar media, and other complex materials could broaden the applicability of these

simulation techniques across various domains.

• For the BSMS-GNN method, further exploration into batched and distributed

training methods could enhance the scalability of BSMS-GNNs. Integrating these

networks with advanced architectures such as Transformers could also improve the

stability and accuracy of simulations over long sequences.

• Recent advances in graph neural networks and conventional neural networks have

begun to incorporate mesh and numerical scheme information, achieving much

higher accuracy. The kernel construction in the UMLS-MPM can be a potential

novel paradigm for learning hybrid simulations, akin to embedding both kernel and

mesh information into the network’s channels.
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