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ABSTRACT OF THE DISSERTATION
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This thesis presents novel approaches to improve the accuracy and efficiency of scientific

simulations, particularly those involving complex geometries, intrinsic physical modeling,

and demanding computational costs.

The first contribution extends the MPM to unstructured meshes, addressing the chal-

lenges of the transfer kernel’s gradient continuity and stability issue on any general mesh

tesselation. The Unstructured Moving Least Squares MPM (UMLS-MPM) incorporates

a diminishing function into the MLS kernel’s sample weights, ensuring an analytically

continuous function and gradient reconstruction. It is the first-of-its-kind framework in

this field. Several numerical test cases demonstrate the method’s stability and accuracy.

The second contribution is a hybrid scheme for modeling the interaction between com-

pressible flow, shock waves, and deformable structures. By combining recent advancements

in time-splitting compressible flow and Material Point Methods (MPMs), this approach

seamlessly integrates Eulerian and Lagrangian/Eulerian methods for monolithic flow-

structure interactions. Reflective and penetrable boundary conditions handle deforming

boundaries with sub-cell particles, while a mixed-order finite element formulation utilizing

B-spline shape functions discretizes the coupled velocity-pressure system. This comprehen-
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sive framework accurately captures shock wave propagation, temperature/density-induced

buoyancy effects, and topology changes in solids.

The third contribution addresses challenges in learning physical simulations on large-

scale meshes using Graph Neural Networks (GNNs). Existing state-of-the-art methods

often encounter issues related to over-smoothing and incorrect edge construction during

multi-scale adaptation. To overcome these limitations, a novel pooling strategy, termed

bi-stride, is introduced. This approach, inspired by bipartite graph structures, involves

pooling nodes on alternate frontiers of the breadth-first search (BFS), eliminating the

need for labor-intensive manual creation of coarser meshes and mitigating incorrect edge

problems. The proposed BSMS-GNN framework employs non-parametrized pooling and

unpooling through interpolations, resulting in a substantial reduction of computational

costs and improved efficiency. Experimental results demonstrate the superiority of

the BSMS-GNN framework in terms of both accuracy and computational efficiency in

representative physical simulations on large-scale meshes.
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CHAPTER 1

Introduction

In the realm of scienti�c exploration, simulation has emerged as a reliable and rigorous

method for conducting research across various domains. From computational uid

dynamics (CFD) (Anderson and Wendt, 1995; Eymard et al., 2000; Reddy and Gartling,

2010; Bridson, 2015) to computational solid elastodynamics (Fung et al., 2001; De Borst

et al., 2012; Hughes, 2012; Jiang et al., 2016a), simulations have proven to be invaluable

tools in understanding and visualizing intricate physical phenomena. This introduction

delves into the dynamic landscape of simulation, highlighting its signi�cance, challenges,

and the innovative solutions that drive its advancement.

While simulations hold immense potential, their integration into real-world applications

is not without challenges. These challenges include handling complex geometries and

boundaries, such as those encountered in computer graphics (Li et al., 2020a; Fang

et al., 2021) and CFD (Osher and Fedkiw, 2001; Peskin, 2002; Taira and Colonius, 2007),

addressing complex physical phenomena like plasticity (Kl�ar et al., 2016; Jiang et al.,

2017a; Gao et al., 2017; Li et al., 2022b,a) and turbulence modeling (Alfonsi, 2009;

Germano et al., 1991; Shih et al., 1995; Piomelli, 1999), and dealing with scenarios where

only partial observations are available, such as human body modeling. Additionally,

simulations often come with demanding computational costs, as exempli�ed by large eddy

simulation (LES) (Piomelli, 1999) and direct numerical simulation (DNS) of CFD (Moin

and Mahesh, 1998).

Traditionally, addressing these challenges has relied heavily on the expertise of re-

searchers who meticulously crafted solutions tailored to speci�c problems. While these

expert-driven approaches have proven e�ective, they often require extensive manual
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intervention and �ne-tuning. In recent years, the �eld of machine learning has evolved

signi�cantly, demonstrating its potential to complement, and in some cases, replace

conventional simulation methods as surrogate models (Sanchez-Gonzalez et al., 2020; Pfa�

et al., 2020; Sun et al., 2020). Additionally, substituting traditional numerical solvers

with a physics-informed loss term (Raissi et al., 2019; Karniadakis et al., 2021; Gao

et al., 2021, 2022), and learning models that operate at coarser resolutions, can accelerate

future simulations (Kochkov et al., 2021). This evolving synergy between simulation and

machine learning holds the promise of revolutionizing the application of simulation and

computing in real-world scenarios.

This thesis focuses on leveraging both conventional and machine learning approaches

to push the boundaries of accuracy and e�ciency in scienti�c computing and simulations.

By harnessing the strengths of both methodologies, the aim is to address the challenges

associated with simulations involvingcomplex geometries, intricate and partially unknown

modeling, and demanding computational costs. From traditional material point methods

and CFD to the development of state-of-the-art machine learning methods for simulations,

each chapter contributes to the overarching goal of enhancing the accuracy and e�ciency

of simulations. The next section will motivate the major research components of the

thesis in greater detail.

1.1 Motivations

1.1.1 Unstructured Moving Least Squares MPMs

The Material Point Method (MPM) (Sulsky et al., 1995) is a hybrid Eulerian-Lagrangian

approach, originally introduced to solid mechanics to extend the capabilities of both the

Fluid-Implicit Particle (FLIP) method (Brackbill et al., 1988) and the Particle-in-Cell

(PIC) method (Harlow, 1962). MPM tracks all physical attributes on a collection of

particles, while leveraging a background grid to solve the governing equations. The

e�ectiveness of MPM is well-documented in handling extreme deformations of solid

2



materials including, but not limited to, biological soft tissues (Ionescu et al., 2006; Guilkey

et al., 2006), explosive materials (Guilkey et al., 2007; Ma et al., 2009a), sand (Homel

et al., 2014; Kl�ar et al., 2016; Tampubolon et al., 2017), and snow (Stomakhin et al., 2013;

Gaume et al., 2018, 2019).

In terms of Lagrangian formulations, MPM is classi�ed into total Lagrangian (Vaucor-

beil et al., 2020; Vaucorbeil and Nguyen, 2021; Vaucorbeil et al., 2022a,b), where particles

are perceived as a static embedding within their initial cells, and updated Lagrangian

(Pretti et al., 2023) MPM, wherein a particle's neighboring cell is dynamically updated

at each timestep based on the particle's new location. Each approach presents distinct

advantages and challenges: The total Lagrangian MPM avoids numerical dissipation errors

and arti�cial fractures, but faces di�culties with signi�cant mesh distortion, whereas the

updated Lagrangian MPM demonstrates enhanced robustness in scenarios involving large

mesh distortions. Our study concentrates on the updated Lagrangian MPM.

Despite its numerous applications, the updated Lagrangian MPM predominantly

utilizes a uniformly-structured background grid. This poses challenges when simulating

domains with complex geometries, commonly encountered in mechanical and geotechnical

engineering (Fern et al., 2019), due to di�culties in discretizing space conformally.

Consequently, several researchers (Wikeckowski, 2004; Beuth et al., 2011; Jassim et al.,

2013; Wang et al., 2021) have advocated the adoption of unstructured (2D) triangles

or (3D) tetrahedra for discretization, o�ering exibility in accommodating geometrically

complex boundaries. However, most existing methods on the unstructured mesh rely on a

piecewise linear (C0) basis function (Wikeckowski, 2004; Beuth et al., 2011; Jassim et al.,

2013; Wang et al., 2021), leading to discontinuous gradients across element boundaries.

Since stress evaluation depends on the gradient of the projection kernel between particles

and grids, particles crossing cell boundaries induce oscillations in the stress �eld, thereby

generating substantial numerical errors known as cell-crossing error (Bardenhagen and

Kober, 2004).

E�orts to mitigate this cell-crossing error include the generalized interpolation material

point (GIMP) method (Bardenhagen and Kober, 2004; Charlton et al., 2017), dual domain

3



MPM (DDMPM) (Zhang et al., 2011), utilization of high-order basis functions like B-

splines (Ste�en et al., 2008; Gan et al., 2018), and methods based on moving least squares

(MLS) basis functions (Hu et al., 2018; Tran et al., 2019). Despite these advancements,

limitations persist, either restricted to structured grids or con�ned to 2D tessellation with

triangle elements (Koster et al., 2021). The cell-crossing error remains a notable challenge

in applying general unstructured tessellations within MPM across both 2D and 3D.

1.1.2 Shockwave and Compressible Flow Simulation with the MPM

Supersonic motions and the detonation of explosive devices give rise to shock waves

propagating through the air. Characterized by rapid pressure changes, shock waves carry

an immense amount of energy having destructive impacts on structures, including rock

fragmentation, organic tissue rupture, and soil displacement. Accurately simulating these

phenomena presents formidable challenges in e�ciently handling both compressible ow

and its intricate two-way interaction with solids, particularly under conditions of extreme

deformation and topological changes. The ignition of explosive materials in uids leads

to rapid motion exceeding the speed of sound, generating high-energy shock wavefronts

that cause extensive material disruption. These phenomena pose multifaceted challenges

to existing numerical simulation schemes.

In the domain of computer graphics, many established methods focus on simulating

incompressible uids. Among these, hybrid Lagrangian/Eulerian approaches, such as

Particle-in-Cell (PIC) methods (Brackbill et al., 1988; Bridson, 2015; Jiang et al., 2015,

2017b; Fu et al., 2017), are widely adopted. PIC methods track uid motion through

particles, facilitating the creation of initial uid volumes or emission of uids from

sources. Additionally, the time-splitting scheme (Chorin, 1967; Bridson, 2015) decouples

the nonlinear advection step from linear steps, enabling e�cient solution of each step.

Various Eulerian advection schemes have been developed to accommodate large time

steps (Stam, 1999; Kim et al., 2005; Qu et al., 2019). Notably, the advection process

inherently conserves mass when using particle-based uid representation. Conversely,
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enforcing incompressibility often involves pressure projection, entailing the solution of

a pressure Poisson's equation. The pressure projection system is typically symmetric

positive de�nite (SPD) (Batty et al., 2007; Bridson, 2015) when a uniform grid represents

constant uid density. For liquids with free surfaces, domain sparsity (Setaluri et al., 2014;

Wu et al., 2018) is frequently exploited to reduce memory usage and computational cost.

Adapting incompressible ow solvers, computer graphics researchers have devised

methods for modeling explosion e�ects by introducing arti�cial volume changes. A

prevalent approach involves \divergence control" to enforce a speci�ed source value

for pressure divergence, e�ectively simulating non-uniform density. This technique has

been used to mimic the appearance of expanding smoke plumes (Feldman et al., 2003;

Takeshita et al., 2003). The Boussinesq approximation (Spiegel and Veronis, 1960) is

another method for simulating buoyancy-like e�ects. Procedural explosion models based

on grid-based incompressible ow simulations have also been developed (Kawada and

Kanai, 2011). However, these approaches often neglect various physical quantities except

velocity, potentially yielding misleading e�ects. The Boussinesq approximation-based

methods, in particular, rely on a temperature �eld-based buoyancy model, which may fall

outside its reliable regime, leading to convergence issues. Despite their visually plausible

outcomes, these methods lack physical accuracy, and the quality of their results relies on

arti�cial parameter tuning.

Unfortunately, extending from incompressible to compressible ow is far from straight-

forward, introducing several challenges:

� The utilization of particles and sparse grids to represent the uid domain is no

longer viable due to the presence of ambient air, leading to a substantial increase in

the number of degrees of freedom (DOFs).

� The preference for direct one-step methods over operator splitting arises due to

internal relations, such as the Equation of State, between pressure and other

conserved variables (Forrer and Jeltsch, 1998; Forrer and Berger, 1999; Monasse

et al., 2012). This introduces additional complexities when handling nonlinear terms

using various methods like characteristic decomposition (Deconinck et al., 1993; Fey,
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1998).

� More accurate advection schemes, such as the Weighted Essentially Non-Oscillatory

(WENO) scheme (Shu and Osher, 1988; Liu et al., 1994), require conservatism and

often necessitate small time steps strictly bounded by a small CFL number and the

sound speed.

� The linear system associated with implicit integration is not guaranteed to be SPD

due to di�ering densities and resultant coe�cients in the mass matrix.

Given the inevitable increase in the number of DOFs, much research in the compressible

ow domain has focused on addressing the last three challenges.

1.1.3 Bi-Stride Multi-Scale GNNs for Mesh-Based Physical Simulation

Simulating physical systems through numerical solutions of partial di�erential equations

(PDEs) is a fundamental pursuit in science and engineering, with diverse applications

spanning solid mechanics (Jiang et al., 2016b; Li et al., 2020a), uid dynamics (Bridson,

2015; Cao and Li, 2018), aerodynamics (Cao et al., 2022), and heat transfer (Cao et al.,

2019). However, conventional numerical solvers often entail signi�cant computational

expense, particularly in time-sensitive scenarios like iterative design optimization, where

rapid online inference is imperative.

In recent years, the machine learning community has exhibited keen interest in

enhancing e�ciency or substituting traditional solvers with learned models. These

endeavors encompass holistic frameworks (Grzeszczuk et al., 1998; Obiols-Sales et al.,

2020) as well as those incorporating physics-informed losses (Raissi et al., 2019; Karniadakis

et al., 2021; Sun et al., 2020). Numerous existing initiatives leverage convolutional neural

networks (CNNs) (Fukushima and Miyake, 1982) for physical systems situated on two- or

three-dimensional structured grids (Guo et al., 2016; Tompson et al., 2017; Kim et al.,

2019; Fotiadis et al., 2020). Nevertheless, their rigid dependence on regular domain shapes

poses challenges for application on unstructured meshes. While it is feasible to deform

uncomplicated irregular domains into rectangular shapes to accommodate CNNs (Gao
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(a) Learnable Pooling (b) Pooling by Rasterization (c) Pooling by Spatial Proximity

Figure 1.1: Challenges of existing multi-level GNNs. (a) Learnable pooling (Gao and
Ji, 2019) may result in a loss of connectivity even after the 2nd-order enhancement. (b)
Pooling by rasterization (Lino et al., 2021, 2022a,b) and (c) by spatial proximity (Liu
et al., 2021; Fortunato et al., 2022) can lead to incorrect connections across boundaries at
the coarser level.

et al., 2021; Li et al., 2022c), the obstacle persists for domains with intricate topologies,

commonly encountered in practical scenarios.

As a consequence, the utilization of graph neural networks (GNNs) in physics-based

simulations on unstructured meshes has recently garnered substantial attention (Battaglia

et al., 2018; Sanchez-Gonzalez et al., 2018; Belbute-Peres et al., 2020; Pfa� et al., 2020;

Sanchez-Gonzalez et al., 2020; Harsch and Riedelbauch, 2021; Gao et al., 2022). The

rudimentary GNN approach involves stacking multiple message-passing (MP) layers to

model information propagation across space. However, as the graph size increases, this

strategy confronts two primary challenges: (1)Complexity; with both the quantity of

nodes for processing and MP iterations increasing linearly, a quadratic complexity becomes

inevitable for both computation time and memory consumption of the computational

graph (Fortunato et al., 2022). (2)Oversmoothing; graph convolution can be perceived as

a low-pass �lter that dampens higher-frequency signals (Chen et al., 2020; Li et al., 2020b).

Stacked MP layers then iteratively project information onto the graph's Eigenspace,

e�ectively smudging out all higher-frequency signals, thereby complicating training.
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To overcome these limitations, researchers have commenced introducing multi-scale

GNNs (MS-GNNs) for physics-based simulation (Li et al., 2020b; Liu et al., 2021; Lino

et al., 2021; Fortunato et al., 2022; Lino et al., 2022b,a). The multi-scale approach mitigates

oversmoothing by constructing sub-level graphs at coarser resolutions, promoting longer-

range interactions and curtailing MP iterations. Existing methods for constructing the

multi-scale structure encompass utilizing spatial proximity to generate sub-level graphs at

coarser levels (Lino et al., 2021; Liu et al., 2021; Lino et al., 2022a), applying Guillard's

coarsening algorithm (Guillard, 1993; Lino et al., 2022b), manually generating coarser

meshes for the original geometry (Liu et al., 2021; Fortunato et al., 2022), or randomly

pooling nodes and applying adjacency matrix factorization (Li et al., 2020b). However,

these solutions su�er respective limitations. For instance, learnable or random pooling can

introduce arti�cial partitions in the sub-level graphs (Figure 1.1(a)), even with adjacency

enhancement, obstructing information exchange across partitions; spatial proximity can

result in erroneous edges across coarser level boundaries (Figure 1.1(b) and (c)); Guillard's

algorithm is restricted to 2D triangle meshes; and manually generating thousands of

meshes is excessively labor-intensive.

1.2 Contributions

In Chapter 2 , we introduce an innovative MPM framework that e�ectively addresses

the challenges discussed in Section 1.1.1 with theoretical guarantees on the continuous

kernel and gradient reconstructions for MPM on the general mesh. Our contributions are

manifold (Cao et al., 2023b):

� We introduce a novel material point method based on an MLS reconstruction process

that resolves cross-cell errors in general unstructured tessellations, representing a

pioneering e�ort in this �eld.

� This achievement was realized by incorporating a diminishing function into the

sample weights of the MLS kernel. We provide an analytical proof of our approach,

establishing a theoretical bound for its e�ectiveness.
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� Additionally, we present comprehensive numerical experiments that demonstrate

the versatility and ease of integrating our method into existing MPM frameworks.

In Chapter 3 , we introduce a novel method for simulating potentially destructive

interactions between compressible ow (shock waves) and nonlinear elastoplastic solids.

Our technical contributions (Cao et al., 2022) include:

� A hybrid Eulerian Finite Element and Lagrangian/Eulerian Material Point scheme

for monolithic modeling of compressible ow and nonlinear structural interactions;

� A mixed treatment of reective and passable interfaces inspired by porous media

theory, enabling stablesub-grid resolution|a crucial element for modeling gas and

fragment interactions accurately; and

� A new mixed-order �nite element discretization utilizing B-spline kernels with

mismatching interface pressure orders and (thus)non-staggeredsolid/uid degrees

of freedom, avoiding additional interpolation steps and resulting in a diagonally

dominant SPD system for velocity-pressure unknowns.

In contrast to the method of Kwatra et al. (2010), which couples staggered Marker-and-

Cell (MAC) grid �nite di�erence-based uids with purely Lagrangian solids, our approach

is based on the non-staggered grid. This eliminates extrapolation during the advection

step for compressible ow. Our framework relies on operator splitting and remains stable

for large time step sizes determined by pressure gradients and maximum velocities.

In Chapter 4 , we discern that all the limitations of multi-scale graph neural networks

stem from immature operations, speci�cally pooling and establishing graph connections at

coarser levels. We devise operations that 1) uphold accurate connections at coarser levels,

2) abstain from introducing edges that blur boundaries, 3) remain universally applicable

to any mesh type, and 4) are automated. We tackle these challenges with two progressive

contributions (Cao et al., 2023a):

� First, we introduce a novel yet straightforward pooling strategy, termedbi-stride.

Bi-stride is inspired by bi-partition determination in a directed acyclic graph (DAG).
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It pools all nodes on alternate breadth-�rst search (BFS) frontiers, such that a

2nd-powered adjacency enhancement (A  A 2, whereA is the adjacency matrix

of the graph) conserves all correct connectivity. Bi-stride exclusively leverages the

input mesh, obviating the need for spatial proximity, is universally applicable to

any mesh type, and is fully automated.

� Second, bi-stride pooling preserves direct connections between pooled and unpooled

nodes; leveraging this advantage, a single MP operation su�ces for information

exchange between pooled and unpooled nodes before transitioning to the adjacent

level; we also devise a non-parameterized aggregation and propagation method,

akin to interpolation in U-Net, to manage the transition between adjacent levels.

These simpli�cations signi�cantly curtail computational requisites compared to

state-of-the-art approaches.

In unison, these two contributions give rise to our Bi-Stride Multi-Scale GNN (BSMS-

GNN), an innovative framework representing a notable advance in the domain of learned

mesh-based simulations that are especially suitable for deployment in genuine industrial

applications where meshes frequently feature intricate geometry and considerable size.
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CHAPTER 2

Unstructured Moving Least Squares Material Point

Method

The Material Point Method (MPM) is a hybrid Eulerian-Lagrangian simulation tech-

nique for solid mechanics with signi�cant deformation. Structured background grids are

commonly employed in the standard MPM, but they may give rise to several accuracy

problems in handling complex geometries. When using (2D) unstructured triangular

or (3D) tetrahedral background elements, however, signi�cant challenges arise (e.g.,

cell-crossing error). Substantial numerical errors develop due to the inherentC0 continuity

property of the interpolation function, which causes discontinuous gradients across element

boundaries. Prior e�orts in constructing C1 continuous interpolation functions have either

not been adapted for unstructured grids or have only been applied to 2D triangular

meshes. In this study, an Unstructured Moving Least Squares MPM (UMLS-MPM)

is introduced to accommodate 2D and 3D simplex tessellation. The central idea is to

incorporate a diminishing function into the sample weights of the MLS kernel, ensuring

an analytically continuous velocity gradient estimation. Numerical analyses con�rm

the method's capability in mitigating cell crossing inaccuracies and realizing expected

convergence.
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2.1 Methodology

2.1.1 Governing Equations

Following standard continuum mechanics (Bonet and Wood, 2008), consider the mapping

x = � (X ; t), which maps points from the (reference) material con�guration, represented

by X , to their corresponding locations in the (current) spatial con�guration, represented

by x . In this framework, velocity is de�ned in two di�erent but equivalent manners.

On the one hand,V (X ; t) = @x
@t(X ; t) de�nes the Lagrangian velocity in the material

con�guration. On the other hand, the Eulerian velocity in the spatial con�guration, is

denoted byv(x ; t) = V (� � 1(x ; t); t). Furthermore, the deformation experienced by the

material points is quanti�ed using the deformation gradient, given byF (X ; t) = @x
@X (X ; t).

The determinant of this gradient, represented byJ , is also crucial as it provides insights

into volumetric changes associated with the deformation process.

Given these de�nitions, the conservation equations for mass and momentum (neglecting

external forces) are (Zhang et al., 2016; Bonet and Wood, 2008)

�J = � 0;

�
Dv
Dt

= r � � ;
(2.1)

where� represents the density,D=Dt is the material derivative, and

� =
1
J

P F T : (2.2)

is the Cauchy stress tensor, which is related to the �rst Piola-Kirchho� stressP = @	
@F ,

where 	 denotes the strain energy density. The evolution of the deformation gradient is

given by

_F = ( r v)F : (2.3)

Consider a domain represented by 
. Boundaries on which the displacement is known,
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represented as@
 u, are governed by the Dirichlet boundary condition

xk(x ; t) = �xk(x ; t); 8x 2 @
 u; (2.4)

where �xk denotes the predetermined displacement for componentk. Boundaries on which

the tractions (forces per unit area) are prede�ned, represented as@
 � , adhere to the

Neumann boundary condition

� kl (x ; t)nl = �� k(x ; t); 8x 2 @
 � ; (2.5)

where �� k is the prescribed traction for componentk, and � kl (x ; t)nl represents the traction

inferred from the stress tensor� kl acting in the direction of the outward unit normal

vector nl . For ease of reference and notational clarity in our framework, the subscriptsk

and l refer to componentsk and l of any given vector or tensor.

To solve the conservation equations for mass and momentum within the MPM frame-

work, one often turns to the weak form. Speci�cally, a continuous test function� , which

vanishes on@
 u, is employed. Then, both sides of the equation are multiplied by� and

integrated over the domain 
:

Z



�� •xkd
 =

Z

@
 �

�� kdA �
Z




@�
@x l

� kl d
 : (2.6)

At this juncture, integration by parts and the Gauss integration theorem are utilized,

nullifying the contributions on @
 u due to the vanishing of the test function on this

boundary subset.

In the standard implementation of the MPM, physical quantities are retained at

material points and then projected onto background grids for further computation.

Equation (2.6) is discretized within the grid space by leveraging the Finite Element

Method (FEM) and then solved using either implicit or explicit time integration schemes.

This article focuses on the explicit symplectic Euler time integration method. While

the extension to implicit methods is possible and indeed straightforward, that would be
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Algorithm 1 Explicit MPM.

1: Determine material point-grid connectivity, calculate kernel functionswip

2: P2G:
Nodal mass:mi =

P
p � pVpwip

Nodal momentum: p i =
P

p vp� pVpwip

Nodal velocity: v i = p i =mi

3: Internal force: f int
i = �

P
p Vp� pr wip

4: Gravity: f ext
i =

P
p wip mpgp

5: Nodal force: f i = f ext
i + f int

i
6: Deformation of grid:

Updated nodal accelerations:•x i = f i =mi

Update nodal velocities:~v i = v i + � t •x i

Enforce Dirichlet conditions: •x i = 0 and f i = 0
7: G2P:

Update point velocities: v � t
p = vp + � t

P
i wip •x i

Update point positions: x � t
p =

P
i wip ~x i

8: Update deformation gradient:F � t
p =

�
I +

P
i ( ~x i � x i )(r wip )T

�
Fp

9: Update point volume: V � t
p = det( F � t

p )V 0
p

10: Update point stresses:� p = C(Fp)
11: Enforce plasticity, reset grid deformation, advance to next timestep

orthogonal to the contribution of the article.

2.1.2 Explicit MPM Pipeline

The explicit MPM pipeline in each time step is delineated into four main stages: (1)

the transfer of material point quantities to the background grid, commonly known as

Particle-To-Grid (P2G), (2) the computation of the system's evolution on this background

grid, (3) the back-transfer of the evolved grid quantities to the material points, designated

as Grid-To-Particle (G2P), and (4) the execution of supplementary processing tasks,

speci�cally on strain and/or stress to incorporate e�ects such as elastoplasticity return

mapping and material hardening. Finally, the hypothetical deformation incurred on

the background grid is reset for the next computational cycle. Algorithm 1 presents an

overview of the MPM pipeline, and the main stages are elaborated below.
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Stage 1: P2G In the MPM, discrete material points represent physical attributes such

as mass, position, and velocity. For a given particle, labeledp, and a grid node, labeledi ,

the interpolation function's value associated with nodei , evaluated at the spatial position

x p of particle p, is represented aswip . Similarly, the gradient of this interpolation function,

evaluated at the same location, is denoted asr wip . In the explicit MPM framework, the

lumped grid mass is de�ned asmi =
P

p � pVpwip , where� p represents the density andVp

the volume of each material point. This de�nition facilitates the momentum calculation

on the grid, expressed as

mi •x i = f int
i + f ext

i ; (2.7)

where •x i is the acceleration of grid nodei . The internal forcesf int
i and external forces

f ext
i acting on the grid nodes are as follows:

f int
i = �

X

p

Vp� pr wip ; (2.8)

f ext
i =

X

p

mpwip bp +
X

p

mpwip gp: (2.9)

The stress tensor� is linked to the deformation gradientF through the constitutive

relation

� = C(F ); (2.10)

which de�nes how material deformation inuences internal force.

Stage 2: Evolution on the Background Grids Nodal accelerations are computed

using (2.7). To update the velocities and positions of the grid nodes, a symplectic Euler

time integrator is employed:

~v i = v i + � t •x i (Velocity Update); (2.11)

~x i = x i + � t ~v i (Position Update): (2.12)
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These equations ensure a time-stepped progression of the grid nodes where the time step

size � t is chosen based on the CFL condition.

Stage 3: G2P The FLIP scheme (Brackbill et al., 1988) is utilized for all the experiments

discussed in Section 2.3. In FLIP, the material point positions and velocities are updated

as

x � t
p =

X

i

wip ~x i ; (2.13)

v� t
p = vp + � t

X

i

wip •x i : (2.14)

Subsequently, the evolution of the deformation gradientF in (2.3) is discretized as

F � t
p =

 

I +
X

i

( ~x i � x i )(r wip )T

!

Fp: (2.15)

With an initial F 0 = I , material point volumes are updated as

V � t
p = det( F � t

p )V 0
p : (2.16)

Stage 4: Post-Processing and Resetting the Background Grid This stage

encompasses all post-processing tasks such as plasticity return mapping and hardening

(Simo and Hughes, 2006). In the updated Lagrangian MPM, the grid is reset to a non-

deformed state. This can be done by not updating grid positions while discarding other

grid information such as velocity and acceleration.

2.1.3 Transfer Kernel

In the MPM, the transfer kernel is vital for relaying particle information to adjacent

grid nodes. Techniques such as the B-spline MPM (Ste�en et al., 2008) and GIMP

(Bardenhagen and Kober, 2004) use a speci�c compact support function to smoothly

inuence nearby grid nodes, whereas methods like Moving Least Squares MPM (MLS-
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MPM) (Hu et al., 2018) determine the kernel implicitly, based on the proximity of nodes.

However, both strategies follow a similar workow: (1) identifying the set of nearby nodes,

and (2) calculating the weights (transfer kernel) for each node in relation to a particle in

its inuence zone.

This section �rst introduces the general MLS reconstruction process and the application

of MLS-MPM with a comprehensive linear polynomial basis. This is followed by a

discussion on a super�cially straightforward extension of MLS-MPM to unstructured

meshes, highlighting the aforementioned steps of identifying nearby nodes and computing

the transfer weights. We then delve into the desirable properties of the kernel, emphasizing

why the naive extension fails to yield continuous gradient reconstructions when particles

cross cell boundaries. Finally, we o�er a solution addressing the issue of discontinuous

gradient reconstructions and propose UMLS-MPM.

2.1.3.1 Introduction to General MLS and MLS-MPM

The essential concept of Moving Least Squares (MLS) is to approximate a functionu at a

point z within the continuous domain surroundingx . This approximation is achieved

by employing a polynomial least-squares �t ofu based on its sampled values at speci�c

points x i , where eachui denotes the value ofu at x i . The functional reconstruction is

given by

u(z) = P T (z � x )w (x ); (2.17)

whereP (z � x ) = [ p0(z � x ); p1(z � x ); : : : ; pl (z � x )]T represents the polynomial basis,

while w(x ) = [ w0(x ); w1(x ); : : : ; wl (x )] comprises the corresponding coe�cients, andl

indicates the number of polynomial basis functions. The coe�cientsw (x ) are determined

by minimizing the cumulative weighted reconstruction errors at the sampled points. This

is done by substitutingz  x i into (2.17) for each sample:

w (x ) = argmin
X

i 2B x

d(x i � x ) jjui � P T (x i � x )w (x )jj 2: (2.18)
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Here d represents the inverse of a separation function, which is typically a positive

value that decreases with increasing separation distance. It acts as the weight for the

reconstruction error at each sample. The setBx encompasses the local region aroundx

where this weighting function is non-zero; i.e.,d(x i � x ) > 0.

This minimization leads to the following solution forw :

w (x ) = M � 1(x )b(x ); (2.19)

whereM (x ) =
P

i 2B x
d(x i � x )P (x i � x )P T (x i � x ) and b =

P
i 2B x

d(x i � x )P (x i � x )ui .

Substituting (2.19) into (2.17), we obtain the reconstruction

u(x ) =
X

i 2B x

d(x i � x )P T (z � x )M � 1(x )P (x i � x )ui : (2.20)

The Linear Polynomial Basis Case A special case involves using a complete linear

polynomial basis, as is done in MLS-MPM (Hu et al., 2018), whereP (x i � x ) =

[1; (x i � x )T ]T . Then (2.20) can reconstruct the function valuêu and provide an estimation

of the gradient r û at x as follows:

2

4
û

r û

3

5 = M � 1(x )QT (x )D (x )u ; (2.21)

whereu = [ u1; : : : ; uN ]T is the stacked sampled values,Q(x ) = [ P (x 1 � x ); : : : ;P (x N �

x )]T is the stacked basis for every sample,D (x ) is the diagonal sample weighting matrix

with D i;i (x ) = d(x i � x ), and M (x ) = Q(x )T D (x )Q(x ). We adopt the linear basis.

2.1.3.2 Extending MLS-MPM Onto Unstructured Meshes

We select MLS-MPM as the foundational approach due to the inherent versatility of

MLS, which enables application to adjacent nodes without reliance on speci�c topological

or positional constraints. Our implementation and experimental work have focused on

triangular and tetrahedral meshes. Nonetheless, it is worth noting that our method can
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Figure 2.1: Schematic plot of the zeroth and �rst ring of neighbors.

easily be extended to other kinds of unstructured grid tessellations by designing a smooth

and locally diminishing function � v compatible with the tessellation, such as the one we

design below in (2.29) for simplex cells.

Identifying Nearby Nodes Around a Particle To determine the nearby vertices for

a given particlep, we �rst locate the cell that encompassesp and refer to its vertices as

N 0
p , representing the 0-ring neighbors ofp. Then, we de�ne N 1

p as the 1-ring neighbors,

which comprise all nodes connected toN 0
p . Note that N 0

p is a subset ofN 1
p . Similarly, we

can de�ne N 2
p ; : : : in an analogous manner, as illustrated in Figure 2.1.

Ring Level Selection for Nearby Nodes When a speci�c level of ring neighbors

is chosen as the nearby nodal degrees of freedom, a natural question arises: What is

the minimum number of rings required to satisfy the desired properties of the MPM

kernel? AssumeN 0
p is selected, meaning the particle only a�ects the vertices in the cell

where it currently resides, and at leastC0 continuity is required for the kernel. This

scenario leads to the kernel degenerating, which is characterized by the kernel a�ecting

merely the shared edge in 2D or the shared face in 3D when the particle transitions

across cell boundaries, as depicted in Figure 2.2a. Conversely, opting for 1-ring neighbors,

N 1
p , e�ectively circumvents this issue, ensuring a non-degenerate kernel interaction as

illustrated in Figure 2.2b.
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Figure 2.2: The selection of di�erent ring of neighbors. (a) WhenN 0
p alone is selected

as the active Degrees of Freedom (DOFs), as a particle crosses the cell edge, the DOFs
indicated by the blue and red boxes are added or removed, respectively. Consequently,
the weights on these DOFs must approach zero to ensureC0 continuity, resulting in kernel
degeneration along the edge. (b) Advancing toN 1

p addresses this issue by incorporating a
su�cient number of DOFs to fully encompass the particles.

Computing the Weights For conciseness and consistency, we will omit the function

arguments and subscripts, such asx and i in (2.21). Instead, since we project onto the

mesh vertexv, we will hereafter use the subscriptv and obtain the following rewritten

form of (2.21): 2

4
ûp

r ûp

3

5 = M � 1
vp QT

vpD vpu vp; (2.22)

whereu vp = [uv1 ; : : : ; uvn ]T is the stacked vertex values withvi 2 N 1
p , i 2 [1; n] and the ma-

trix M vp = QT
vpD vpQvp with stacked vertex basisQvp = [P (x v1 � x p); : : : ;P (x vn � x p)]T

and diagonal sample weighting matrixD vp such that D pv;i;i = dvp = d(x v1 � x p), where

d is chosen to be a B-spline function.
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2.1.3.3 Required Properties for the Transfer Kernel

Despite implementing a broader interpolation kernel, the reconstruction method described

in Section 2.1.3.2 is not directly applicable as it still su�ers from cell crossing errors. To

grasp this problem, consider the essential desirable properties for an MPM kernel:

1. The kernel must be a non-negative partition of unity. This means that the sum of the

kernel weights for all nearby vertices to a particle should equal 1;i.e.,
P

v2N 1
p

wv = 1,

with each individual weight wv � 0; 8v 2 N 1
p .

2. There should be a continuous reconstruction of both the function value and gradient

as the particle transitions across the cell boundary.

Methods such as B-spline MPM and GIMP are speci�cally designed to ful�ll these

requirements. With MLS-MPM, the partition of unity is inherently assured by the

characteristics of MLS (Levin, 1998). The non-negativity of this partition additionally

depends on preventing sample degeneration, a requirement met in MLS-MPM due to

its use of uniform background nodes. Furthermore, MLS-MPM ensures continuous

reconstruction by utilizing a B-spline for sample weighting, which providesC1 continuity.

A key insight from MLS-MPM is that whenever a grid node is added or removed

from the nearby node set, its B-spline weighting function also smoothly approaches

zero, ensuring its inuence on the assembly ofM and Q in (2.21) is in�nitesimal and,

hence, the continuity of the reconstruction. However, since our method determines

nearby vertices based on the ring of neighbors rather than proximity, a uniform sample

weighting function cannot guarantee diminishing inuence for the added or removed

vertices. Consequently, the abrupt changes in inuence of these vertices during the MLS

assembly yield discontinuous reconstruction. This issue will be addressed in the next

section.

2.1.3.4 Remedying Discontinuous Reconstruction Across the Cell Boundary

To mitigate the abrupt inuence changes from vertices being added or removed during

cell crossings, an intuitive solution is to diminish their impact on the MLS assembly.
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This can be accomplished by adjusting the kernel to predominantly rely on vertices that

remain common before and after crossing the cell boundary. Intuitivly, we can multiply

any initial sample weighting functiondvp that is C1 by a smooth diminishing function� vp;

i.e., dvp  � vpdvp. Here, � vp approaches zero for vertices that are added or removed from

N 1
p during the cell crossing. The formal proof is provided below.

For conciseness, we drop the subscriptsvp in the following proofs. Assume there exists

a smooth, diminishing function� for the nodes added or removed from the set of nearby

nodesN 1 when a particle crosses the boundary of a cell. As such, we need to prove that

our kernel value and gradient estimation is continuous across the boundary.

Proposition 1. The kernel value and gradient estimation generated by the diminished

sample weighted MLS is continuous across cell boundaries.

Proof. Let N 1
o;n be the sets of nearby nodes before/after the particlep crosses the

common edge between the old/new cellsN 0
o;n. Here, the subscriptso; n denote the

old/new cell, respectively, and the superscripts0; 1 indicate the ring-0/1 neighbors of

the cell, respectively. Letx o;n
p be the position of particlep before/after the crossing and

jjx n
p � x o

pjj = O(� ). De�ne the common node setN 1
c = N 1

o \ N 1
n , the added node set

N 1
a = N 1

n n N 1
c , and the removed node setN 1

r = N 1
o n N 1

c . Since� is locally diminishing

for v 2 N 1
a;r , we have a positive valueK 1 such that � = O(K 1� ) = O(� ). The pertubation

for the assembled matrixM before/after the particle p crosses an edge is

� M =
X

v2N 1
c

� (�d P P T ) +
X

v2N 1
a

�d P P T �
X

v2N 1
r

�d P P T ; (2.23)

where the �rst term is continuous by construction since every factor is smooth;i.e.,
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jj � (�d P P T )jj = O(� ). For the second and third terms, since� = O(� ), we have

jj � M jj �
X

v2N 1
c

jj � (�d P P T )jj +
X

v2N 1
a

jj �d P P T jj +
X

v2N 1
r

jj �d P P T jj

�
�
jN 1

c j +
�
jN 1

a j + jN 1
r j

�
max

v2N 1
a;r

jjdP P T jj
�
O(� )

= O(jN 1jh2� )

= O(� ):

(2.24)

Here, as long as the mesh has a reasonably good quality,jN 1j is �nite and small; i.e.,

there is a �nite and small amount of ring-1 neighbors. Also,h, a constant, is the support

radius of the kernel, outside of which the weight is zero. In all, bothjN 1j and h can be

omitted in the analysis.

The perturbation of the inverse matrix is given by

jj � M � 1jj = jj (M + � M )� 1 � M � 1jj

= jjM � 1 � M � 1� MM � 1 + O(jj � M jj 2) � M � 1jj

= jjM � 1� MM � 1 + O(� 2)jj

� jj M � 1� MM � 1jj + O(� 2)

� jj M � 1jj 2 � jj � M jj + O(� 2)

=
jj � M jj

� (M )2
min

+ O(� 2)

= O
�

�
� (M )2

min

�
+ O(� 2)

= O
�

�
� (M )2

min

�
;

(2.25)

where� (M )min is the minimum singular value ofM .

Similarly, for the perturbation in the assembled vectorQT Du before/after the particle
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crossing is

jj �
�
QT Du

�
jj = jj

X

v2N 1
c

� (�du P ) +
X

v2N 1
a

�du P �
X

v2N 1
r

�du P jj

�
X

v2N 1
c

jj � (�du P )jj +
X

v2N 1
a

jj �du P jj +
X

v2N 1
r

jj �du P jj

�
�
jN 1

c j +
�
jN 1

a j + jN 1
r j

�
max

v2N 1
a;r

jjduP jj
�

O(� )

= O(jN 1jh� )

= O(� ):

(2.26)

Furthermore, we can establish the following bound for the assembled vectorQT Du :

jjQT Du jj = jj
X

v2N 1

�du P jj

� jN 1j � max
v2N 1

jj �du P jj

= O(jN 1jh)

= O(1):

(2.27)

Finally, the perturbation for
�
ûp; r ûT

p

� T
from (2.22) is

�
ûp; r ûT

p

� T
= jj � (M � 1QT Du )jj

= jj � M � 1QT Du + M � 1�
�
QT Du

�
jj

� jj � M � 1QT Du jj + jjM � 1�
�
QT Du

�
jj

� jj � M � 1jj � jj QT Du jj + jjM � 1jj � jj �
�
QT Du

�
jj

= O
��

1
� (M )2

min
+

1
� (M )min

�
�
�

:

(2.28)

In the incomplete singular value decomposition ofM , the singular values will always

be non-negative. And if the surrounding nodes are not degenerate, the minimum singular

value � (M )min will always be positive and the condition number ofM is bounded.

Therefore, as long as the mesh is of reasonably good quality, both the function value and
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gradient estimation isC0 across the boundary.

Note the above conclusion holds for any general mesh tessellations. For simplex

elements, we design the following� vp:

� vp =
X

n2N 0
p

BnpA v;n ; (2.29)

where, for particlep, Bnp represents the barycentric weight forn 2 N 0
p , and A is the

mesh's adjacency matrix. Geometrically, for a nearby vertexv 2 N 1
p , � vp denotes the

sum of the barycentric weights for all verticesn 2 N 0
p that are directly connected tov.

Note that � vp = 1; 8v 2 N 0
p . Next, we prove that (2.29) is locally diminishing forN 1

a;r

when the particle crosses the edge. Note that the proof is presented in 2D when a particle

crosses an edge; the extension to 3D and other crossing cases is straightforward.

Proposition 2. The function � in (2.29) is locally diminishing for 8v 2 N 1
a;r .

Proof. Formally, we must prove that for any v 2 N 1
a;r , when x p crosses the edge of a

triangle and jjx n
p � x o

pjj = O(� ), the smoothing function � = O(� ).

Denote the edge that the particle is crossing ase and the portion of jjx n
p � x o

pjj in the

new/old cell asLn;o . Trivially,

Ln;o � Ln + Lo

= jjx n
p � x o

pjj

= O(� ):

(2.30)

Then, referring to Figure 2.3, let the far-away node not on the edge but in the new/old

cell bevfar (i.e., vn;o
far =2 e ^ vn;o

far 2 N 0
o;n) and the height from a nodev to an edgee be

H (v; e). Since the height is orthogonal to the edge, we haveH (x n;o
p ; e) � Ln;o = O(� ).

Consider the barycentric coordinate contributed by the far-away node, in the new/old
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Figure 2.3: A visual proof that � diminishes locally. As described in (2.31), for every
vertex v within the �rst ring of neighbors, N 1

a;r . The dashed line denotes the perpendicular
height from a given position to the shared edge. Dotted lines are drawn to construct a
triangle between the pointx p and the edge, facilitating the computation of the barycentric
coordinates.

cell respectively, forx p:

B n;o
vfar

=
H (x n;o

p ; e) � jj ejj

H (vn;o
far ; e) � jj ejj

=
H (x n;o

p ; e)

H (vn;o
far ; e)

= O(
�

H (vn;o
far ; e)

)

= O(� ):

(2.31)

Finally, if a node is added/removed during the particle crossing (i.e., v 2 N 1
a;r ), this

means that v is only connected to the far-away nodesvn;o
far but not to the edge e; i.e.,
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Figure 2.4: Di�erent 1D meshes used for veri�cation of kernel reconstruction. (a) Uniform.
(b) Uniform but truncated. (c) Periodically shrinking/expanding.

Av;vn;o
far

= 1; 8v 2 N 1
a;r , otherwiseAv;n = 0; 8n 2 e^ 8 v 2 N 1

a;r . Hence,

� =
X

n2N 0

BnAv;n

= B n;o
vfar

Av;vn;o
far

+
X

n2 e

BnAv;n

= B n;o
vfar

� 1 +
X

n2 e

Bn � 0

= B n;o
vfar

= O(� ); 8v 2 N 1
a;r :

(2.32)

This concludes the proof.

2.1.3.5 Veri�cation of the Proposed Kernel

To verify that the proposed method can produce continuous reconstruction, analytical

and numerical solutions of the kernels are produced on 1D and 2D meshes, respectively.

For the 1D case, the �rst basic veri�cation is conducted on a uniform mesh, as the

setup in Figure 2.4a. Here, each cell has a length of 1, so is the unit support length for

the B-spline as the sample weights. The analytical solution for the uniform 1D mesh,
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obtained usingMathematica 2023, is as follows, where the kernel value is denoted as

f =

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

0:25(0:5 � x)2x
x5 � 6x4+13 :5x3 � 13:75x2+6 :3125x� 0:5625; 0:5 < x � 1

� x6+5 x5 � 9:5x4+8 :5x3 � 3:3125x2+0 :3125x+0 :0625
� x5+4 x4 � 5:5x3+3 :25x2 � 1:3125x+1 :0625 ; 1 < x � 1:5

x6 � 12x5+58 :5x4 � 148:25x3+205 :563x2 � 147:063x+42 :25
x5 � 11x4+47 :5x3 � 100:25x2+103 :313x� 41:125 ; 1:5 < x � 2

x6 � 12x5+58 :5x4 � 147:75x3+202 :563x2 � 141:438x+39
� x5+9 x4 � 31:5x3+53 :75x2 � 45:3125x+16 :125 ; 2 < x � 2:5

x6 � 19x5+149 :5x4 � 623:5x3+1453 :31x2 � 1794:19x+915 :687
� x5+16 x4 � 101:5x3+318 :75x2 � 495:313x+304 :188 ; 2:5 < x � 3

� 0:25x3+2 :75x2 � 10:0625x+12 :25
� x5+14 x4 � 77:5x3+212 :25x2 � 288:313x+156 :688; 3 < x � 3:5

0; Otherwise,

(2.33)

and the gradient estimation is denoted as

g =

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

� 1(0:5 � x)2x(x� 2)
x5 � 6x4+13 :5x3 � 13:75x2+6 :3125x� 0:5625; 0:5 < x � 1

� x5+5 x4 � 10:5x3+11 :5x2 � 5:8125x+1 :0625
� x5+4 x4 � 5:5x3+3 :25x2 � 1:3125x+1 :0625 ; 1 < x � 1:5

� x5+9 x4 � 33:5x3+65 :75x2 � 67:3125x+27 :625
� x5+11 x4 � 47:5x3+100 :25x2 � 103:313x+41 :125; 1:5 < x � 2

� x5+11 x4 � 49:5x3+112 :25x2 � 125:313x+53 :625
x5 � 9x4+31 :5x3 � 53:75x2+45 :3125x� 16:125 ; 2 < x � 2:5

� x5+15 x4 � 90:5x3+274 :5x2 � 417:813x+254 :188
x5 � 16x4+101 :5x3 � 318:75x2+495 :313x� 304:188; 2:5 < x � 3

x4 � 13x3+62 :25x2 � 129:5x+98
� x5+14 x4 � 77:5x3+212 :25x2 � 288:313x+156 :688; 3 < x � 3:5

0; Otherwise.

(2.34)

Figure 2.5a shows the continous kernel reconstruction with the diminishing function� ,

while Figure 2.5b, as an ablation, shows that the discontinuous reconstruction even for

the simplest uniform mesh, proving the necessity of� .

Note that the presence of a particle within a boundary element, as depicted in

Figure 2.4b, can lead to a negative weight value for the most interior node. This

phenomenon is exempli�ed by Node 3 in Figure 2.6, where the kernel degenerates due

to the absence of a �rst ring of neighboring elements on the boundary side during MLS

sampling. To remedy the problem of negative kernel values and prevent numerical
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Figure 2.5: Ablation study of reconstruction with or without diminishing on 1D mesh.
Comparison of kernel values and gradient estimations on a uniform 1D mesh (a) with and
(b) without applying the diminishing function.

Figure 2.6: A failure example when there is no extra layer near the boundary. The
negative weight for Node 3 (yellow) when the particle is in the boundary cell and there is
no extra layer.

instabilities (Andersen and Andersen, 2010), drawing an additional layer of elements

beyond the original boundary is recommended in practice.

The next veri�cation is on a periodically shrinking and expanding 1D mesh (Fig-

ure 2.4c). The mesh contains cyclic cell sizes of [: : : ; 1; R; R2; R; 1; : : : ] designed to mimic

the transition between varying resolutions. The size transition ratios tested range from

1:1 to 1:5 so as to correspond with the typical transition ratios in FEM analysis. Kernel

reconstructions are conducted on Nodes 5, 6, 7, and 8 as they can present a full cycle. As

shown in Figure 2.7, both the kernel and the gradient estimations are piece-wiseC1.

The �nal veri�cation and ablation tests were performed on a 2D unstructured mesh

featuring \&" shapes. The comparison between scenarios with and without the use of� ,
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Figure 2.7: Reconstruction on a periodically shrinking/expanding 1D mesh. Kernel values
(left column) and gradient estimations (right column).
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Figure 2.8: Ablation study of reconstruction with or without diminishing on 2D mesh.
(a) without and (b) with the application of the diminishing function.

as shown in Figure 2.8a and Figure 2.8b respectively, validates the importance of� and

the e�ectiveness of the proposed method in managing unstructured meshes.

2.2 Conservation of the Linear and A�ne Momentum When

Combined With A�ne Particle-in-Cell

In the previous section, we numerically veri�ed the continuous reconstruction capabilities

of our approach. Before we move into conducting numerical test cases, it is noteworthy

to highlight that UMLS-MPM conforms to the partition of unity and conserves the linear

basis, assured by the properties of Moving Least Squares (MLS) (Levin, 1998), speci�cally:

X

i

wn
ip = 1;

X

i

wn
ip x n

i = x n
p ;

X

i

wn
ip (x n

i � x n
p ) = 0 ;

As a result, incorporating UMLS-MPM into the A�ne Particle-In-Cell (APIC) framework

(Jiang et al., 2015, 2017b) will conserve both total linear and total angular momentum
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of the system. This implies a signi�cant advantage of our methodology: that it can be

seamlessly integrated with any existing MPM framework to broaden its application on

unstructured meshes.

For self-completeness, a simple introduciton to APIC is provided herein, while a more

thorough proof and explanation are available in the original APIC paper (Jiang et al.,

2015).

In APIC, mass mp, position x p, velocity vp, and an a�ne matrix B p =
P

i wip vi (x i �

x p)T are stored and tracked on particles. Then,

De�nition 2.2.1. The total linear momentum on grids is

P tot
i =

X

i

mi v i :

De�nition 2.2.2. The total linear momentum on particles is

P tot
p =

X

p

mpvp:

De�nition 2.2.3. The total angular momentum on grids is

I tot
i =

X

i

x i � mi v i :

De�nition 2.2.4. The total angular momentum on particles is

I tot
p =

X

p

x p � mpvp +
X

p

mp(B p)T : �;

where � is the Levi-Civita permutation tensor, and for any matrix A , the contraction

A : � =
P

�� A �� � �� , which is usually used to transition from a cross product into the

tensor productu � v = ( vu T )T : � . Also note that for the total angular momentum of the

particles: 1) the grid node locations can be perceived as the sample points of a rotating

mass centered at the material particle location, and 2) the total angular momentum
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comprises both that of the center and that of the a�ne-rotation of the grids around the

center.

APIC P2G is given by

mn
i =

X

p

wn
ip mp

D n
p =

X

i

wn
ip (x n

i � x n
p )(x n

i � x n
p )T

mn
i vn

i =
X

p

wn
ip mp(vn

p + B n
p (D n

p )� 1(x n
i � x n

p ))

(2.35)

with G2P given by

vn+1
p =

X

i

wn
ip ~vn+1

i

B n+1
p =

X

i

wn
ip ~vn+1

i (x n
i � x n

p )T ;
(2.36)

where the superscript~means the intermediate value after the update on grids but before

the G2P process.

2.2.1 Numerical Validation

A numerical validation as in (Jiang et al., 2015) is also conducted here to verify these

conservations. A square with a side length ofl = 0:2 is discretized with 20� 20 particles.

The physical properties of the square are as follows:E = 1 � 104 Pa, � = 0:3, and

� = 1:0 kg/m3. Initially, the square is divided into two halves by a hypothetical vertical

line through the middle. The left half is initialized with an upward velocityv = (1 ; 0) m/s,

while the right half is initialized with a downward velocity v = ( � 1; 0) m/s. The schematic

plot of the setup is presented in Figure 2.9a.

The background mesh is generated using Delaunay triangulation with a target element

size of 0:01 m in a 1� 1 m2 box. The simulation is run for 1� 106 time steps with a time

step size of 1� 10� 5 s. Three typical timestamps are plotted in Figure 2.9b{d.
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Figure 2.9: Setup and snapshots of a rotating elastic square.

Figure 2.10: Conservation of the rotating elastic square system. Logs of (a) linear and (b)
angular momentum of the rotating cube experiment after 106 time steps.

The proposed conservation is accurately illustrated in Figure 2.10a{b, with only

round-o� errors on the order of 1� 10� 15 and 1� 10� 7 for the total linear and a�ne

momentum of the system, respectively.

2.3 Experiments and Results

To demonstrate and assess the e�ectiveness of our approach, particularly its reduced cross-

cell error owing to the continuous gradient reconstruction, we have chosen representative

test cases from prior related studies. Our benchmarking relies on analytical solutions

when feasible, or alternatively, on the standard B-spline MPM at a su�ciently high

resolution. All experiments were carried out on a single PC equipped with an Intel®

Core—i9-10920X CPU.
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Figure 2.11: Setup of the 1D bar vibration test.

2.3.1 1D Vibrating Bar

Consider the 1D vibration bar problem shown in Figure 2.11a (Wilson et al., 2021). The

left end of the bar is �xed and the right has a sliding condition in thex direction. The

physical properties of the bar are:E = 100 Pa, � = 0, L = 25 m, and � = 1 kg/m 3. The

initial velocity conditions are _u(x; t = 0) = v0 sin (� 1x) with � 1 = �
2L .

The analytical expression of the center of mass in this problem is

x(t)CM =
L
2

+
v0

� 1L! 1
sin (! 1t) ; (2.37)

and

_u(t)CM =
v0

� 1L
cos (! 1t) ; (2.38)

with ! 1 = � 1

p
E=� .

The original experiments in (Wilson et al., 2021) included two velocity settings:

v0 = 0:1 m/s and v0 = 0:75 m/s. The lower velocity setting,v0 = 0:1 m/s, was utilized

solely for validation against the linear kernel MPM, as it does not involve cell crossings.

Here, we focus on the higher-velocity setting to assess the e�ectiveness of UMLS-MPM in

addressing cell-crossing errors.

Figure 2.12 presents the convergence rate of UMLS-MPM with grid re�nement. Specif-

ically, Figure 2.12a shows that, with the exception of the coarsest resolutiondx = 2 m,

UMLS-MPM consistently achieves high accuracy, with a maximum root mean square error

(RMSE) of 0:554% in particle displacements. Figure 2.12b indicates that the convergence
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Figure 2.12: Displacement and convergence rate of the 1D vibration bar. (a) The center
of mass displacement of the bar and (b) convergence rate of the RMSE of particle
displacements.

rate is approximately second order on coarser grids, but it starts to level o� on �ner grids

due to mounting temporal errors, aligning with established MPM theory (Jiang et al.,

2016b).

Figure 2.13a displays the stress pro�le for a particle located atx0 = 12:75 m, which

undergoes the most frequent cell crossings during its vibrational motion. The outcomes

achieved with UMLS-MPM showcase a remarkable level of smoothness and precision.

Figure 2.13b illustrates the energy dynamics for the entire system, revealing that the sys-

tem's energy is largely conserved throughout the simulation, with only slight uctuations.

These �ndings collectively underscore the robustness and precision of UMLS-MPM in

managing intense cell crossings by particles.

2.3.2 2D Collision Disks

Next, we considered the problem of two colliding elastic disks shown in Figure 2.14a

(Wilson et al., 2021). The physical properties of the disks are:E = 1000 Pa, � = 0:3,

� = 1000 kg/m3, and v = � (0:1; 0:1) m/s for the left and right disks, respectively. Each

disk was discretized with 462 material points using the triangle mesh of a disk. The

background mesh was generated using Delaunay triangulation with a target element size
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Figure 2.13: The stress of sampled particle and system energy of the 1D vibration bar.
(a) The stress at the sampled particle closest to [17:5; 0:5] and (b) the system energy.

Figure 2.14: Setup and snapshots of the 2D collision disks. (a) Problem setup, (b){(d)
Snapshots of the simulation at 1.5s, 2.0s, and 2.5s.

of 0:025 m. We plot key snapshots of the simulation in Figure 2.14b{d, with the impact

at 1:5 s, total retardation right before 2:0 s, and rebounding separation right before 2:5 s.

Quantitative results for the collision disks are presented in Figure 2.15. In Figure 2.15a,

a comparison of momentum recovery during collision between UMLS-MPM and the B-

spline MPM with su�ciently high resolution is shown. While a perfect momentum

recovery, such as that in the rigid collision (dashed gray line in Figure 2.15a), is not

expected, UMLS-MPM approaches this limit e�ectively. Similarly, Figure 2.15b displays

the kinetic energy recovery during the collision. The results indicate that UMLS-MPM

e�ectively preserves the system energy. Figure 2.15c illustrates the stress log at the

center particle of the left disk. The results align perfectly with the reference, but only

for negligible uctuations, showing that UMLS-MPM does not generate spurious stress
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Figure 2.15: System momentum, energy, and sampled stress of the 2D collision disks. (a)
The momentum in the x-direction of the left disk, (b) the energies of the system, and (c)
the stress at the sampled particle closest to the center of the left disk.

Figure 2.16: Setup of the 2D cantilever problem under di�erent rotation angles. (a) 0� ,
(b) 15� , (c) 30� , and (d) 45� .

oscillations either from the collision or cell crossings.

2.3.3 2D Cantilever With Rotations

Although an unstructured mesh o�ers the adaptability to match any boundary shape, the

cell orientation, or a di�erent tessellation, can potentially a�ect accuracy. To illustrate the

precision of our method under various rotation angles, we examined the case of a cantilever

under its own weight, as shown in Figure 2.16a (Wilson et al., 2021). The cantilever's

physical characteristics are as follows: lengthl = 10 m, height h = 2 m, gravitational

accelerationg = 9:81 m/s2, Young's modulusE = 100000 Pa, Poisson's ratio� = 0:29,

and density � = 2 kg/m 3. The cantilever was discretized with uniformly spaced particles
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Figure 2.17: Displacements and system energy of the 2D cantilever without rotation.
Plots of (a) the displacement in they-direction at the right tip of the cantilever and (b)
the energies of the system.

in both directions. We created the background mesh using Delaunay triangulation, aiming

for an element size of 0:5 m. Additionally, we rotated the mesh of the cantilever by angles

of 15� , 30� , and 45� to showcase the resilience of our method to rotation, as depicted in

Figure 2.16b{d.

Figure 2.17a illustrates the spatial convergence of they-displacement at the right tip

of the cantilever beam under grid re�nement. Notably, except for the coarse resolutions

of dx = 2 m and dx = 1 m, errors for all �ner resolutions are negligible. Therefore, a

resolution ofdx = 0:5 m was employed to ensure su�cient accuracy for all subsequent plots

in this experiment. Figure 2.17b demonstrates that UMLS-MPM e�ectively conserves

energy, aligning with the reference B-spline MPM.

Figure 2.18a shows snapshots of the cantilever with di�erent initial mesh rotation

angles. The results indicate that UMLS-MPM is robust under mesh rotation with only

minor visible errors. Figure 2.18b quantitatively compares they-displacement at the right

tip. The results align well overall with both zero rotation and the reference, with errors

of 1:27%, 2:18%, and 4:72% for 15� , 30� , and 45� rotation, respectively.

The convergence rate of UMLS-MPM is demonstrated in Figure 2.19. The results

indicate that for cases with zero rotation, the convergence rate is second order. While the

RMSE increases slightly for cases with mesh rotation, it still remains in the magnitude

of 1E � 2, and the convergence rate remains near second order. These combined results
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Figure 2.18: (a) Snapshots of the cantilever with di�erent initial rotating angles. (b)
Comparison of the displacement in they-direction at the right tip of the cantilever.

Figure 2.19: Convergence plot of the displacements of the 2D cantilever with rotations.
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Figure 2.20: Setup of the 3D slope failure. Geometry adapted from (Zhao et al., 2023b).

demonstrate the robustness and accuracy of UMLS-MPM under mesh rotation.

2.3.4 3D Slope Failure

Next, the performance of the proposed approach was investigated when dealing with

material behavior involving plasticity. To this end, we simulated failure of a 3D slope

comprosed of sensitive clay. The problem geometry was adopted from (Zhao et al., 2023b)

and is illustrated in Figure 2.20. Here, the bottom boundary of the slope is �xed and

the three lateral sides are supported with rollers. To model the elastoplastic behavior of

the sensitive clay in an undrained condition, a combination of Hencky elasticity and J2

plasticity with softening was used. The softening behavior is governed by the following

exponential form: � = ( � p � � r )e� �" p
q + � r , where� , � p, and � r denote the yield strength,

the peak strength, and the residual strength, respectively,"p
q denotes the equivalent plastic

strain, and � is a softening parameter. The speci�c parameters were adopted from (Zhao

et al., 2023b). They are a Young's modulus ofE = 25 MPa, a Poisson's ratio of� = 0:499,

a peak strength of� p = 40:82 kPa, a residual strength of� r = 2:45 kPa, and a softening

parameter of� = 5. The assigned soil density is� = 2:15 t/m 3.

The space was discretized using Delaunay triangulation with the shortest edge length

of 0.2 m. The material points were initialized with a spacing of 0.1 m in each direction,

amounting to 311,250 material points in the initial slope region. Note that the spatial

discretization aligns with the one used in (Zhao et al., 2023b) in terms of both the
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(a) t = 1 :5 s

(b) t = 2 :5 s

(c) t = 3 :5 s

(d) t = 5 :5 s

Figure 2.21: Comparison of the equivalent plastic strain between baselines. (Left) the
standard MPM uses quadratic B-splines basis functions as in Zhaoet al.(Zhao et al.,
2023b), (Right) UMLS-MPM .
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(a) t = 1 :5 s

(b) t = 2 :5 s

(c) t = 3 :5 s

(d) t = 5 :5 s

Figure 2.22: Comparison of the mean normal stress between baselines. (Left) the standard
MPM uses quadratic B-splines basis functions as in Zhaoet al.(Zhao et al., 2023b),
(Right) UMLS-MPM .
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Figure 2.23: Comparison of the run-out distance of the 3D slope failure.

shortest edge length of the background element and the number of material points. Also,

the �F approach proposed in (Zhao et al., 2023b) was utilized to circumvent volumetric

locking that UMLS-MPM solutions encounter when simulating a large number of particles

of incompressible materials. As a reference to verify the correctness of the proposed

formulation, the �F solution in (Zhao et al., 2023b) was used.

Figures 2.21 and 2.22 show the snapshots of the slope simulated by the standard and

UMLS-MPM, where particles are colored by the equivalent plastic strain and mean normal

stress, respectively. We can see that UMLS-MPM e�ectively captures the retrogressive

failure pattern of slopes made of sensitive clay. Also, in terms of equivalent plastic

strain �elds and mean normal stress �elds, we observe a strong similarity between the

UMLS-MPM solution and the reference solution from (Zhao et al., 2023b).

For a further quantitative comparison, Figure 2.23 presents the time evolutions of

the run-out distance|a measure of the farthest movement of the sliding mass. Observe

that the distances in the standard and UMLS-MPM solutions are remarkably similar.

Taken together, these �ndings con�rm that the proposed method performs similarly to

the standard MPM.
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Figure 2.24: Setup of the 3D elastic object expansion.

2.3.5 3D Elastic Object Expansion in a Spherical Container

Finally, we examined the performance of UMLS-MPM in problems involving complex

boundary geometry. In this problem, the standard MPM with a structured grid may be

challenged to impose conforming boundary conditions. Hence, a collision between an

elastic body with a spherical container was considered and simulated.

The geometry of the problem, as demonstrated in Figure 2.24, involves an elastic

object in the shape of a Metatron, which is located at the center of a spherical container

(with a radius of 0.5 m). The object is initially compressed isotropically (with an initial

deformation gradient ofF = 0:75I ), storing non-zero elastic potential energy. At the

onset of the simulation, the stored elastic energy is released, causing the object to expand

and collide with the spherical container's boundary. To capture the elastic behavior of

the object, a Neohooken elasticity was adopted with a Young's modulus of 3.3 MPa and a

Poisson's ratio of� = 0:49. The elastic object was discretized using a signi�cant number

of material points (2,392,177) for high-�delity simulation. Also, the spherical container

was discretized using 2,178,129 tetrahedral elements, each with an average edge length of

h = 0:025 m. Note that to avoid negative kernel values at boundary nodes, an extra layer

of elements was added outside the original boundary, as discussed in Section 2.1.3.5.
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Figure 2.25: The contact force magnitude of the 3D elastic object expansion.
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