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EPIGRAPH

Go to the roots of these calculations! Group the operations. Classify them according to their
complexities rather than their appearances! This, I believe, is the mission of future

mathematicians. This is the road on which I am embarking in this work.

Évariste Galois

At each level of complexity, entirely new properties appear, and the understanding of the new
behaviors requires research which I think is as fundamental in its nature as any other.

P. W. Anderso

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.

Ludwig Wittgenstein
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PREFACE

When I first embarked on my journey in machine learning and ventured into the world of

robotic manipulation, I was surprised by the power of gradients in training large neural networks.

However, I soon became disillusioned by their limitations in exploring complex search spaces.

While sufficiently large neural networks can easily memorize vast amounts of data, they often

struggle when tasked with discovering unknown structures not present in the training data. For

instance, when trying to solve a new mathematical problem or uncover abstract concepts, simple

Stochastic Gradient Descent (SGD) frequently falls short.

From that moment, I became perplexed by the relationship between machine learning

and optimization. In my personal statement before beginning my Ph.D. studies, I expressed my

confusion as follows:

Learning can be considered as a mysterious memorization tool for efficient
search, so the learning complexity is directly related to the size of search space.
Interestingly, just like the graphical model, the complexity can be reduced by
factorizing the search space, where human priors are introduced... SGD, our
basic tool to build the deep learning world, seems to be not enough to explore
those hidden spaces even if we know the factorization.

From that point onward, I became captivated by the enigmatic relationship between

learning and search. As I delved deeper into robotic manipulation and reinforcement learning,

I discovered that these concepts are intricately interwoven across every aspect of robotics and

machine learning. For example, optimization is used to train any neural network. In reinforcement

learning (RL), we train a world model to optimize the policy while the policy itself models a

certain distribution of actions. One can later combine the model and the learned policy to do the

search.

This dissertation encapsulates my exploration in pursuit of answers to the questions

that have fueled my curiosity. First, optimization is often more challenging than modeling,

much like the distinction between P and NP. This principle generally holds true in learning

as well. Memorizing the solution to an NP-hard problem is non-trivial. A good practice is to

xiii



transform the it into one of learning a model to verify solutions and then use search to find the

solution. This approach helps explain why model-based methods with perception modules tend

to generalize better than end-to-end neural networks. Second, policy learning itself can be seen as

modeling the optimal solution or the current search space during exploration. Gradient descent,

for example, is a rudimentary linear model of the environment, and more can be achieved through

more sophisticated modeling of the policy or the search space. Third, by properly modeling the

optimization problem, we can factorize the original problem into a series of sub-optimization

problems, leveraging the concept of ‘optimal substructure.’

As the famous Chinese saying goes, we should unite action and knowledge. Similarly,

I believe that modeling and optimization are two sides of the same coin and should be unified.

In my view, learning involves both the modeling of problems and the optimization for better

solutions, and robotics is fundamentally about how to model and optimize the world. I hope

this explanation, though superficial, can inspire readers and offer a preliminary answer to the

questions I had before beginning my Ph.D. studies.
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This dissertation explores the intersection of modeling and optimization in robotics,

focusing on the development of efficient and effective systems for robotic manipulation. The

primary objective is to study how to integrate modeling techniques with optimization processes,

a concept we term ”modeling-based optimization.”

We first introduce a differentiable physics simulator for soft-body manipulation, demon-

strating the power of environment modeling in policy learning. By simulating elastoplastic

materials such as plasticine, we benchmark reinforcement learning (RL) and gradient-based

optimization methods, highlighting the strengths and limitations of each approach. The findings
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reveal that while gradient-based methods excel in environments with well-modeled physics, they

struggle with long-term planning and multi-stage tasks.

To address these challenges, we propose a reparameterized policy gradient method, which

leverages latent variable models to facilitate exploration and avoid local minima. This approach

integrates generative models to enhance policy expressiveness and improve performance in hard-

exploration tasks. We further extend the concept of hierarchical policy modeling by introducing

graph-based and vision-language-driven methods. These techniques enable robots to plan and

execute long-horizon tasks by abstracting the search space and using human-like instructions to

guide complex manipulations.

The contributions of this thesis include the development of novel algorithms for soft-

body manipulation, hierarchical policy modeling, and the integration of generative models with

reinforcement learning. These advancements offer new insights into the relationship between

learning, modeling, and optimization in robotics.
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Chapter 1

Introduction

1.1 Learning-based Robotic Manipulation

The early 2010s to 2020s marked a transformative era for artificial intelligence. Gen-

erative AI, particularly large language models, has had a significant impact on our daily lives.

Meanwhile, robotics—or embodied AI—emerged as one of the most compelling applications,

bridging the gap between digital intelligence and the real world, allowing us to fully harness the

potential of artificial intelligence.

In robotics, we want to find policies to manipulate robots or agents in the complex

physical world. To this end, we usually frame the problem as a policy learning problem

within Markov decision processes (MDPs) [199, 182]. For example, reinforcement learning

aims to find a parameterized policy πθ that maximizes expected reward Es0∼p(s0)[V
πθ (s0)] =

Eτ∼πθ ,s0∼p(s0)[Rγ(τ)], where V πθ (s0) is the value function of the initial state s0. The trajectory

τ = {s0,a0,s1, . . . ,st ,at , . . .} is a sequence of states {st} and actions {at} at different time steps.

The discounted reward of a trajectory Rγ(τ) is ∑t γ tR(st ,at) measure how well the trajectory is.

In real world, the agent may only observe partial information, forming a partially observable

Markov decision process (POMDP).

Embodied AI has been significantly fueled by deep learning and reinforcement learning

breakthroughs, which have accelerated the development of increasingly sophisticated robotic

algorithms and systems. The traditional “sense, plan, and act” can levearge advanced vision
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models to identify object poses or determine optimal grasp positions for object picking [11].

However, these methods often face limitations when dealing with soft bodies or can only work

limited categories of actions.

With the success in applications like Atari [168] and AlphaGo [225], as well as advance-

ments in algorithms like SAC [74], PPO [216], deep reinforcement learning (RL) have gained

traction in robotics. RL has succeeded in solving grasping and other challenging tasks [182, 125],

allowing us to search policies given any black box environments. However, model-free RL

algorithms are prone to getting stuck in local minima without proper reward engineering. Addi-

tionally, its high sample complexity limits its practical application, with most RL research still

predominantly conducted in simulation.

While RL faces challenges, the rise of large language models and the success of gen-

erative AI have shifted attention back to data-driven approaches. One can incorporate human

demonstrations to guide RL agents through imitation learning. Moreover, supervised learning

have also shown significant success. Works, such as [43, 112, 33], by leveraging large-scale

robot datasets, trained models that exhibit impressive generalizability. Diffusion policies or

similar generative models have shown the potential to generate diverse and realistic samples from

a limited number of human demonstrations [275, 29]. These data-driven methods require vast

data. To overcome these challenges, researchers have worked on developing more cost-effective

teleoperation systems and robots [275, 30], as well as exploring the potential of learning policies

from large-scale web videos [220]. However, it is still unclear how to obtain sufficient data and

even how much data is needed to train a generalizable robot policy.

How can we resolve the data dilemma in embodied AI? What is the most suitable

approach for learning effective policies? I believe the answer lies in fully harnessing the power

of generative models.

Instead of relying solely on collecting real world data, another approach is to use advanced

environment modeling techniques (simulators) and policy optimization method to search for

better policies or generate additional data within simulators. The learned policy can then be
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deployed in the real world. Numerous simulation platforms have been developed [45, 14, 18,

117, 193, 260, 210, 262, 58, 59], and the feasibility of simulation to real world transfer (sim2real)

has been demonstrated [72]. These achievements have demonstrated the potential of using

simulators, or environment models, to reduce the data needed for training robot policies.

The deep entanglement of modeling and optimization in policy learning creates new

opportunities for tackling complex manipulation tasks. In this thesis, I aim to explore the

synergies between models and policies through “modeling-based optimization”, presenting it as

a promising direction for robotic manipulation.

1.2 Modeling-based Optimization in Robotics

1.2.1 Modeling and Optimization

What is modeling, and what is optimization? From a probabilistic perspective, “modeling”

involves inferring the distributions of specific data. A “generative model,” denoted as p(X),

represents a probabilistic distribution that allows for sampling and generating data. This is

typically achieved using a parameterized neural network trained by maximizing the likelihood of

the observed data, or a lower-bound approximation. In robotics, we model the distribution for

various data types, such as the state-action trajectory τ , the environment model p(st+1 | st ,at), or

the policy π(a | s).

Embodied AI is related to optimization, finding a policy distribution such that the sampled

action will maximize the expected rewards. This is important especially when we need to find

new solutions to new problems, when the solution is not covered by the data we collected.

Following the probabilistic perspective, optimization can be viewed as a problem of

inferring p(X) given log p(X) up to a scale. Let us consider the trajectory optimization problem

to find a trajectory τ that maximizes the reward R(τ). The “reinforcement learning as inference

framework” [242, 243, 245, 278, 108, 124] defines optimality as an additional variable p(O |

τ) ∝ eR(τ)/T , where T is a temperature scalar, turning the reward maximization problem
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into a probabilistic inference framework of inferring the posterior of the optimal trajectories.

Specifically, the prior distribution of the trajectory is: p(τ) = p(s1)∏
T
t=1 p(at | st)p(st+1 | st ,at),

where p(at | st) is a known prior action distribution, e.g., a Gaussian distribution. Thus, one can

compute the density of optimality:

p(O) =
∫

p(O | τ)p(τ)dτ.

The posterior distribution of optimal trajectories becomes:

p(τ | O) =
p(O | τ)p(τ)∫
p(O | τ)p(τ)dτ

.

In maximum entropy framework [73], we can apply the evidence lower bound [114]:

log p(O)≥ Eτ∼π [log p(O | τ)+ log p(τ)− logπ(τ)] ,

leading to a practical algorithm for reinforcement learning (RL).

Directly sampling trajectories or using gradient descent to maximize this objective often

encounters significant challenges, such as getting trapped in local minima and dealing with high

sample complexity, calling for a better combination of search and optimization.

1.2.2 Environment Modeling

Modeling a low-level environment through a simulator is arguably the most straightfor-

ward way of leveraging generative models into the policy learning and optimization process.

Model-based RL [75, 78, 47] and sim2real method [119, 182, 87] all fall in this realm. The

advantages of environment modeling are two-fold. First, it decouples the policy learning problem

into a verification problem and searching problem, enabling us to leverage the existing solver to

solve the challenging non-convex optimization problem. Second, it is kind of widely believed it

is easier to learn a model to verify a solution than to directly find the optimal solution; this leads
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to the fact that a model-based approach often requires less amount of data than directly learning

the policy if we properly inject inductive bias into the model, like human knowledge about the

physical world. Properly leveraging the simulator can also help us reduce the data required in

the real world.

These benefits make model-based optimization already widely used in robotics. For an

audience familiar with optimization, you must know that a gradient, whether a policy gradient or

an analytical gradient, actually represents a linear model of the loss function; that is why we can

use descent to find optimal solutions. On the other hand, a physical simulator, widely used in the

robot algorithm verifications and the sim2real paradigm, indeed serves as a real-world model.

As we assume that the simulator is a model of the world, we can safely use it to optimize the

policy and deploy the policy to the real world. Moreover, recent model-based RL or huge video

models enable us to learn world models from data and use those models to either optimize the

policy or plan for better solutions.

1.2.3 Hierarchical Policy Modeling

Hierarchical reinforcement learning (HRL) is considered one of the most efficient ap-

proaches to solving long-horizon robotics tasks. The idea originates in the fact that long-horizon

tasks can be decomposed into small subtasks. Leveraging these optimal substructures, we can

design the policy into a composition of multiple policies, where a low-level policy handles the

subtasks and a high-level policy coordinates different policies to finish the whole task. When we

have well-defined sub-skills, this approach has been rigorously tested and proven to be highly

effective. However, the challenge arises when we need to find such a decomposition. What if we

don’t have this factorization and hope the optimization algorithm to discover the factorization?

This remains an open question, but the proven effectiveness of the approach instills confidence

in its potential.
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1.3 Overview of Techniques and Contributions

This dissertation extends previous modeling techniques in robotic manipulation for

building a scalable and general robot learning system. First, we can model the physical dynamics

that are more suitable for policy optimization. Chapter 2 describes how we model soft bodies

like Plasticine using a differentiable physical simulator, demonstrating the power of environment

modeling and its gradients in policy learning. Second, we not only model the environment

but also model the policy itself, as well as the process of searching for better policies. I

introduce the “reparameterized policy gradient” in Chapter 3, where we build a theoretical

framework for latent variable policies, provide empirical evidence for the necessities of the

hierarchical policy modeling, and illustrate how the density model can guide exploration during

the exploration. Finally, we illustrate two approaches to model hierarchical policies by leveraging

graphs (Chapter 4) and vision-languages (Chapter 5). These approaches leverage the optimal

substructure in the problem to decompose the optimization problems and build hierarchical

policy models.

1.3.1 Environment Modeling for Soft Body Manipulation

In PlasticineLab [96], we built the first differentiable physics simulation for elastic and

plastic soft body manipulation. This fully-featured differentiable physical engine supports

elastic and plastic deformation, soft-rigid material interaction, and a tailored contact model

for differentiability. We design multiple tasks to benchmark existing RL and gradient-based

optimization methods and make thorough comparisons.

In this work, we not only incorporate deformable objects into the simulation and research

of robotic manipulation but also demonstrate the feasibility of using the analytical model’s

gradient to optimize robot policy. This work inspires future research in soft body manipula-

tion [148, 264, 130], differentiable physics optimization [261, 185, 178] and sim2real [145].
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1.3.2 Learning Multimodal Policy with Reparameterized Policy Gradi-
ent

By modeling the environment, we can use gradient-based or sampling-based methods

to search for optimal robot policies. However, object manipulation involves a vast search

space, which presents challenges for both approaches: sampling-based methods struggle with

inefficiency, while gradient-based methods often get trapped in local minima.

This naturally leads to the question: Can we achieve more efficient optimization and

exploration beyond gradient descent while retaining the efficiency of gradient-based solvers? The

answer is yes, and the key lies in developing a policy that can capture multimodal distributions,

allowing us to sample and to optimize with gradients.

Our work in reparameterized policy learning [97] represents our efforts to explore policy

optimization from a probabilistic modeling perspective. This idea originated from studying

reinforcement learning in continuous optimization. We identified the unimodal Gaussian policy

as a key factor causing gradient-based optimization and continuous RL methods to get stuck

in local optima. The insight led us to focus on generative models. By following the common

design of generative models with latent distributions, we derived a latent variable policy using

variational inference, demonstrating that a hierarchical policy can naturally emerge to model the

posterior of an optimal trajectory. This approach enables the reparameterized policy to combine

global search with local gradient-based optimization, effectively bypassing local optima and

partially validating the motivation for a hierarchical policy.

In practice, we utilize a learned world model to optimize our latent variable policy.

Additionally, we found it crucial to model the exploration process by fitting a density model

that measures the entropy of state visitation, rather than focusing solely on the actions of the

policy. By integrating these elements, we establish a framework that models a multimodal policy,

the environment, and the previously visited states, fully harnessing the potential of generative

models in all aspects of policy learning.
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1.3.3 Modeling Hierarchical Policy Using Graph and Language

While [97] demonstrates a powerful exploration algorithm for tackling challenging tasks,

it is still not sufficient for real-world applications due to the large amount of data required for

effective exploration and latent space learning. In the worst-case scenario, the policy may need

to traverse the entire state space to find a meaningful reward signal. Additionally, constructing

abstractions and hierarchical structures is not without cost; learning a useful latent space demands

trajectories explored across different modalities. If we continue to treat policy learning as a

black-box problem and only apply hierarchy in the latent space, there will be no way to further

reduce the data requirements.

To address this issue, rather than solely learning the latent space, the best approach

is to maintain the hierarchical structure we’ve developed for the latent variable policy while

incorporating more model priors into the latent space. This allows us to explicitly factorize the

optimization problem into simpler subproblems.

From a policy modeling perspective, we should carefully design the policy’s latent or

skill space to either reduce the low-level search space or enable the rapid learning of high-level

skills. Fortunately, robotic manipulation in a 3D environment presents unique structures that

we can exploit. We demonstrate that a subgoal-based graph planning method can effectively

facilitate robot motion planning, while vision-language models can guide the robot in solving

long-horizon manipulation tasks.

Landmark Map for Combining RL and Search

In our early work [98] (Chapter 4), we proposed a graph-based environment modeling

method for long-horizon robot locomotion tasks in MDPs with sparse rewards, in which explo-

ration and routing across remote states are both extremely challenging. Our method explicitly

hierarchically models the environment, with a high-level dynamic landmark-based map abstract-

ing the visited state space and a low-level value network to derive precise local decisions. We

use the farthest point sampling to select landmark states from experience, which has improved
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exploration compared with simple uniform sampling. This approach built an abstract model of

the original environment, enabling the combination of high-level search and low-level policy

optimization, which is a very effective policy in real-world robot tasks.

Vision-language Driven Trajectory Optimization

The graph-based approach is primarily limited to navigation. For object manipulation,

which involves a diverse range of objects, materials, skills, and trajectories, finding a suitable

low-dimensional space for planning is challenging. In Chapter 5, we describe vision-language

task description as a more powerful sub-goal representation other than state/goal embedding.

The idea originates from exploring how language can be used to describe the process of

soft body manipulation to enhance a differentiable physics solver. Challenges arise when the

process involves complex geometrical information. For instance, while it is easy to state the goal

of ”making a bun,” it is much harder to convey what the bun looks like without directly showing

an image.

One potential solution to better describe such processes is to use vision-language represen-

tations, which integrate natural language and geometric shapes. Our DiffVL framework describes

a long horizon soft body manipulation problem as a sequence of 3D scenes or keyframes. Natural

language instructions describe the motion of the objects and the tool to use across adjacent

keyframes. We built GUI tools to allow non-expert users to annotate soft body manipulation

tasks inspired by real-life scenes, and we leverage LLM to translate those natural language

instructions as well as the geometry subgoals into machine-interpretable optimization objectives,

thus enabling us to use differentiable physics’ solver to synthesize the trajectory of solving

the tasks. In this work, we illustrated that language is a powerful tool for describing physical

constraints and can serve as a bridge between humans and robots. Moreover, the task annotation

and trajectory optimization scheme can be easily scaled up to collect extensive data for robot

policy training. This, in turn, provides a way to solve the need for more data in robotics.
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1.4 Additional Work Done During My Doctoral Career

My research primarily focuses on optimizing and modeling techniques for robotic manip-

ulation. However, I have been fortunate to collaborate on various impactful projects that have

expanded my expertise and enriched my understanding of the field.

Following our work on PlasticineLab, we investigated how demonstrations could signifi-

cantly accelerate the dexterous manipulation of soft bodies [130]. By generating demonstrations

using differentiable physics in simulation, we enhanced the real-world performance of robots in

complex tasks [144, 145, 264]. Our efforts also led to introducing a geometric-aware contact

loss [131], which markedly improved the manipulation of multi-stage soft bodies.

Beyond physical simulation, I collaborated on projects employing neural networks to

learn physical models from simulated environments and real-world data. A highlight of this

work was our exploration of the dynamics of real-world soft bodies, where we leveraged various

3D representations to capture its behavior accurately [42, 222].

Moreover, I was privileged to contribute to the ManiSkill project [70]. I also engaged in

a range of research projects beyond robotics, including computer vision [151, 266], the study

of graph neural networks [239], and the development of the multi-view dataset [141]. These

collaborations have been instrumental in shaping my research.
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Chapter 2

PlasticineLab: A Soft-Body Manipulation
Benchmark with Differentiable Physics

Simulated virtual environments serve as one of the main driving forces behind develop-

ing and evaluating skill learning algorithms. However, previous environments typically only

simulate rigid body physics. Additionally, the simulation process usually does not provide

gradients that might be useful for planning and control optimizations. We introduce a new

differentiable physics benchmark called PasticineLab, which includes a diverse collection of

soft body manipulation tasks. In each task, the agent uses manipulators to deform the plasticine

into a desired configuration. The underlying physics engine supports differentiable elastic and

plastic deformation using the DiffTaichi system, posing many under-explored challenges to

robotic agents. We evaluate several reinforcement learning (RL) methods and gradient-based

methods on this benchmark. Experimental results suggest that 1) RL-based approaches struggle

to solve most of the tasks efficiently; 2) gradient-based approaches, by optimizing open-loop

control sequences with the built-in differentiable physics engine, can rapidly find a solution

within tens of iterations, but still fall short on multi-stage tasks that require long-term planning.

We expect that PlasticineLab will encourage the development of novel algorithms that combine

differentiable physics and RL for more complex physics-based skill learning tasks. PlasticineLab

is publicly available 1.

1Project page: http://plasticinelab.csail.mit.edu
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2.1 Introduction

Virtual environments, such as Arcade Learning Environment (ALE) [15], MuJoCo [244],

and OpenAI Gym [18] have significantly benefited the development and evaluation of learning

algorithms on intelligent agent control and planning. However, existing virtual environments for

skill learning typically involves rigid-body dynamics only. Research on establishing standard

soft-body environments and benchmarks is sparse, despite the wide range of applications of

soft bodies in multiple research fields, e.g., simulating virtual surgery in healthcare, modeling

humanoid characters in computer graphics, developing biomimetic actuators in robotics, and

analyzing fracture and tearing in material science.

Compared to its rigid-body counterpart, soft-body dynamics is much more intricate to

simulate, control, and analyze. One of the biggest challenges comes from its infinite degrees

of freedom (DoFs) and the corresponding high-dimensional governing equations. The intrinsic

complexity of soft-body dynamics invalidates the direct application of many successful robotics

algorithms designed for rigid bodies only and inhibits the development of a simulation benchmark

for evaluating novel algorithms tackling soft-body tasks.

In this work, we aim to address this problem by proposing PlasticineLab, a novel

benchmark for running and evaluating 10 soft-body manipulation tasks with 50 configurations

in total. These tasks have to be performed by complex operations, including pinching, rolling,

chopping, molding, and carving. Our benchmark is highlighted by the adoption of differentiable

physics in the simulation environment, providing for the first time analytical gradient information

in a soft-body benchmark, making it possible to conduct supervised learning with gradient-based

optimization. In terms of the soft-body model, we choose to study plasticine (Figure 2.1, left),

a versatile elastoplastic material for sculpturing. Plasticine deforms elastically under small

deformation, and plastically under large deformation. Compared to regular elastic soft bodies,

plasticine establishes more diverse and realistic behaviors and brings challenges unexplored in

previous research, making it a representative medium to test soft-body manipulation algorithms
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(Figure 2.1, right).

We implement PlasticineLab, its gradient support, and its elastoplastic material model

using Taichi [93], whose CUDA backend leverages massive parallelism on GPUs to simulate a

diverse collection of 3D soft-bodies in real time. We model the elastoplastic material using the

Moving Least Squares Material Point Method [92] and the von Mises yield criterion. We use

Taichi’s two-scale reverse-mode differentiation system [91] to automatically compute gradients,

including the numerically challenging SVD gradients brought by the plastic material model.

With full gradients at hand, we evaluated gradient-based planning algorithms on all soft-robot

manipulation tasks in PlasticineLab and compared its efficiency to RL-based methods. Our

experiments revealed that gradient-based planning algorithms could find a more precious solution

within tens of iterations with the extra knowledge of the physical model. At the same time,

RL methods may fail even after 10K episodes. However, gradient-based methods lack enough

momentum to resolve long-term planning, especially on multi-stage tasks. These findings have

deepened our understanding of RL and gradient-based planning algorithms. Additionally, it

suggests a promising direction of combining both families of methods’ benefits to advance

complex planning tasks involving soft-body dynamics. In summary, we contribute in this work

the following:

• We introduce, to the best of our knowledge, the first skill learning benchmark involving

elastic and plastic soft bodies.

• We develop a fully-featured differentiable physical engine, which supports elastic and

plastic deformation, soft-rigid material interaction, and a tailored contact model for differ-

entiability.

• The broad task coverage in the benchmark enables a systematic evaluation and analysis of

representative RL and gradient-based planning algorithms. We hope such a benchmark can

inspire future research to combine differentiable physics with imitation learning and RL.
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Figure 2.1. Left: A child deforming a piece of plasticine into a thin pie using a rolling pin.
Right: The challenging RollingPin scene in PlasticineLab. The agent needs to flatten the
material by rolling the pin back and forth, so that the plasticine deforms into the target shape.

2.2 Related Work

Learning in virtual environments Recently, several simulation platforms and datasets

have been developed to facilitate the research and development of new algorithms on RL

and robotics. An incomplete list includes RL Benchmark [45], DeepMind Lab [14], OpenAI

Gym [18], AI2-THOR [117], VirtualHome [193], Gibson [260], Habitat [210], SAPIEN [262],

and TDW [58, 59]. We observe a tendency to use full-physics simulators with realistic dynamics.

However, most of these virtual environments are based on rigid-body physical engines, such

as MuJoCo [244] and PyBullet [34]. While some support soft-body dynamics in theory (e.g.,

TDW and SAPIEN is based on NVIDIA PhysX [1] that supports particle simulation), none has

provided the assets and tasks for soft-body manipulation. Differentiable information is also

missing in these engines. We fill in this gap with our PlasticineLab benchmark.

Differentiable physics engines Differentiable physics engines for machine learning have

gained increasing popularity. One family of approaches approximates physical simulators using

neural networks, which are naturally differentiable [13, 25, 172, 138]. A more direct and accurate

approach is to implement physics-based simulators using differentiable programming systems,

e.g., standard deep learning frameworks equipped with automatic differentiation tools [38, 36,

213, 82]. These systems are typically redistricted to explicit time integration. Other approaches

of evaluating simulation gradient computation include using the adjoint methods to differentiate

implicit time integrators [16, 65], LCP [36] and leveraging QR decompositions [140, 194].
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Closely related to our work is ChainQueen [94], a differentiable simulator for elastic bodies,

and DiffTaichi [91], a system to automatically generate high-performance simulation gradient

kernels. Our simulator is originated from ChainQueen but with significant modifications in order

to add our novel support for plasticity and contact gradients.

Trajectory optimization Our usage of differentiable simulation in planning soft-body

manipulation is closely related to trajectory optimization, a topic that has been extensively

studied in robotics for years and has been applied to terrestrial robots [192, 48, 36], aerial

robots [54, 240, 228], and, closest to examples in our work, robotic manipulators [158, 134].

Both trajectory optimization and differentiable physics formulate planning as an optimization

problem and derive gradients from governing equations of the dynamics [241]. Still, the problem

of motion planning for soft-body manipulation is under exploration in both communities because

of two challenges: first, the high DoFs in soft-body dynamics make traditional trajectory

optimization methods computationally prohibitive. Second, and more importantly, contacts

between soft bodies are intricate to formulate in a concise manner. Our differentiable physics

simulator addresses both issues with the recent development of DiffTaichi [91], unlocking

gradient-based optimization techniques on planning for soft-body manipulation with high DoFs

(> 10,000) and complex contact.

Learning-based soft body manipulation Finally, our work is also relevant to prior

methods that propose learning-based techniques for manipulating physics systems with high

degrees of freedom, e.g. cloth [140, 259], fluids [153, 88], and rope [265, 259]. Compared to our

work, all of these prior papers focused on providing solutions to specific robot instances, while the

goal of our work is to propose a comprehensive benchmark for evaluating and developing novel

algorithms in soft-body research. There are also considerable works on soft manipulators [66, 39].

Different from them, we study soft body manipulation with rigid manipulators.
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2.3 The PlasticineLab Learning Environment

PlasticineLab is a collection of challenging soft-body manipulation tasks powered by a

differentiable physics simulator. All tasks in PlasticineLab require an agent to deform one or more

pieces of 3D plasticine with rigid-body manipulators. The underlying simulator in PlasticineLab

allows users to execute complex operations on soft bodies, including pinching, rolling, chopping,

molding, and carving. We introduce the high-level design of the learning environment in this

section and leave the technical details of the underlying differentiable simulator in Section 2.4.

2.3.1 Task representation

PlasticineLab presents 10 tasks with the focus on soft-body manipulation. Each task

contains one or more soft bodies and a kinematic manipulator, and the end goal is to deform

the soft body into a target shape with the planned motion of the manipulator. Following the

standard reinforcement learning framework [18], the agent is modeled with the Markov Decision

Process (MDP), and the design of each task is defined by its state and observation, its action

representation, its goal definition, and its reward function.

Markov Decision Process An MDP contains a state space S , an action space A ,

a reward function R : S ×A ×S → R, and a transition function T : S ×A → S . In

PlasticineLab, the physics simulator determines the transition between states. The goal of

the agent is to find a stochastic policy π(a|s) to sample action a ∈A given state s ∈S , that

maximizes the expected cumulative future return Eπ [∑
∞
t=0 γ tR(st ,at)] where 0 < γ < 1 is the

discount factor.

State The state of a task includes a proper representation of soft bodies and the end

effector of the kinematic manipulator. Following the widely used particle-based simulation

methodology in previous work, we represent soft-body objects as a particle system whose state

includes its particles’ positions, velocities, and strain and stress information. Specifically, the

particle state is encoded as a matrix of size Np×dp where Np is the number of particles. Each
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row in the matrix consists of information from a single particle: two 3D vectors for position and

velocities and two 3D matrices for deformation gradients and affine velocity fields [103], all of

which are stacked together and flattened into a dp-dimensional vector.

Being a kinematic rigid body, the manipulator’s end effector is compactly represented by

a 7D vector consisting of its 3D position and orientation represented by a 4D quaternion, although

some DoFs may be disabled in certain scenes. For each task, this representation results in an

Nm×dm matrix encoding the full states of manipulators, where Nm is the number of manipulators

needed in the task and dm = 3 or 7 depending on whether rotation is needed. Regarding the

interaction between soft bodies and manipulators, we implement one-way coupling between

rigid objects and soft bodies and fix all other physical parameters such as particle’s mass and

manipulator’s friction.

Observation While the particle states fully characterize the soft-body dynamics, its high

DoFs are hardly tractable for any planning and control algorithm to work with directly. We

thus downsample Nk particles as landmarks and stack their positions and velocities (6D for

each landmark) into a matrix of size Nk× 6, which serves as the observation of the particle

system. Note that landmarks in the same task have fixed relative locations in the plasticine’s

initial configuration, leading to a consistent particle observation across different configurations

of the task. Combining the particle observation with the manipulator state, we end up having

Nk×6+Nm×dm elements in the observation vector.

Action At each time step, the agent is instructed to update the linear (and angular when

necessary) velocities of the manipulators in a kinematic manner, resulting in an action of size

Nm×da where da = 3 or 6 depending on whether rotations of the manipulators are enabled in

the task. For each task, we provide global Amin,Amax ∈ Rda , the lower and upper bounds on the

action, to stabilize the physics simulation.

Goal and Reward Each task is equipped with a target shape represented by its mass

tensor, which is essentially its density field discretized into a regular grid of size N3
grid . At

each time step t, we compute the mass tensor of the current soft body St . Discretizing both
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target and current shapes into a grid representation allows us to define their similarity by

comparing densities at the same locations, avoiding the challenging problem of matching

particle systems or point clouds. The complete definition of our reward function includes

a similarity metric as well as two regularizers on the high-level motion of the manipulator:

R = −c1Rmass− c2Rdist− c3Rgrasp + c4, where Rmass measures the L1 distance between the

two shapes’ mass tensors as described above, Rdist is the dot product of the signed distance

field (SDF) of the target shape and the current shape’s mass tensor, and Rgrasp encourages the

manipulators to be closer to the soft bodies. Positive weights c1,c2,c3 are constant for all tasks.

The bias c4 is selected for each environment to ensure the reward is nonnegative initially.

2.3.2 Evaluation Suite

Figure 2.2. Tasks and reference solutions of PlasticineLab. Certain tasks require multi-stage
planning.

PlasticineLab has a diverse collection of 10 tasks (Figure 2.2). We describe four repre-

sentative tasks here, and the remaining six tasks are detailed in Section 2.6.2.

These tasks, along with their variants in different configurations, form an evaluation suite

for benchmarking performance of soft-body manipulation algorithms. Each task has 5 variants

(50 configurations in total) generated by perturbing the initial and target shapes and the initial
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locations of manipulators.

Rope The agent needs to wind a rope, modeled as a long plasticine piece, around a rigid

pillar with two spherical manipulators. The pillar’s position varies in different configurations.

Writer The agent manipulates a “pen” (represented using a vertical capsule), to sculpt a

target scribble on cubic plasticine. For each configuration, we generate the scribble by drawing

random 2D lines on the plasticine surface. The three-dimensional action controls the tip of the

pen.

Chopsticks The agent uses a pair of chopsticks, modeled as two parallel capsules, to

pick up the rope on the ground and rotate it into the target location. The manipulator has 7 DoFs:

6 for moving and rotating the pair of chopsticks and 1 for controlling the distance between them.

RollingPin The agent learns to flatten a “pizza dough”, which is modeled as a plasticine

box, with a rigid rolling pin. We simulate the rolling pin with a 3-DoF capsule: 1) the pin can

descend vertically to press the dough; 2) the pin can rotate along the vertical axis to change its

orientation; 3) the agent can also roll the pin over the plasticine to flatten it.

2.4 Differentiable Elastoplasticity Simulation

The simulator is implemented using Taichi [93] and runs on CUDA. Continuum mechan-

ics is discretized using the Moving Least Squares Material Point Method (MLS-MPM) [92], a

simpler and more efficient variant of the B-spline Material Point Method (MPM) in computer

graphics [230]. Both Lagrangian particles and Eulerian background grids are used in the simu-

lator. Material properties, include position, velocity, mass, density, and deformation gradients,

are stored on Lagrangian particles that move along with the material, while particle interactions

and collisions with rigid bodies are handled on the background Eulerian grid. We refer the

reader to ChainQueen [94] and DiffTaichi [91] for more details on differentiable MPM with

elastic materials. Here we focus on extending the material model with (differentiable) plasticity,

a defining feature of plasticine. We leverage Taichi’s reverse-mode automatic differentiation
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system [91] for most of the gradient evaluations.

von Mises yield criterion We use a simple von Mises yield criterion for modeling

plasticity, following the work of [60]. According to the von Mises yield criterion, a plasticine

particle yields (i.e., deforms plastically) when its second invariant of the deviatoric stress exceeds

a certain threshold, and a projection on the deformation gradient is needed since the material

“forgets” its rest state. This process is typically called return mapping in MPM literature.

Return mapping and its gradients Following [116] and [60], we implement the return

mapping as a 3D projection process on the singular values of the deformation gradients of each

particle. This means we need a singular value decomposition (SVD) process on the particles’

deformation gradients, and we provide the pseudocode of this process in Section 2.6.1. For

backpropagation, we need to evaluate gradients of SVD. Taichi’s internal SVD algorithm [161]

is iterative, which is numerically unstable when automatically differentiated in a brute-force

manner. We use the approach in [248] to differentiate the SVD. For zeros appearing in the

denominator when singular values are not distinct, we follow [104] to push the absolute value of

the denominators to be greater than 10−6.

Contact model and its softened version for differentiability We follow standard MPM

practices and use grid-base contact treatment with Coulomb friction (see, for example, [230]) to

handle soft body collision with the floor and the rigid body obstacles/manipulators. Rigid bodies

are represented as time-varying SDFs. In classical MPM, contact treatments induce a drastic

non-smooth change of velocities along the rigid-soft interface. To improve reward smoothness

and gradient quality, we use a softened contact model during backpropagation. For any grid point,

the simulator computes its signed distance d to the rigid bodies. We then compute a smooth

collision strength factor s = min{exp(−αd),1}, which increases exponentially when d decays

until d = 0. Intuitively, collision effects get stronger when rigid bodies get closer to the grid

point. The positive parameter α determines the sharpness of the softened contact model. We

linearly blend the grid point velocity before and after collision projection using factor s, leading

to a smooth transition zone around the boundary and improved contact gradients.
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2.5 Experiments

2.5.1 Evaluation Metrics

We first generate five configurations for each task, resulting in 50 different reinforcement

learning configurations. We compute the normalized incremental IoU score to measure if the

state reaches the goal. We apply the soft IoU [198] to estimate the distance between a state and

the goal. We first extract the grid mass tensor S, the masses on all grids. Each value Sxyz stores

how many materials are located in the grid point (x,y,z), which is always nonnegative. Let two

states’ 3D mass tensors be S1 and S2. We first divide each tensor by their maximum magnitude

to normalize its values to [0,1]: S̄1 =
S1

maxi jk Si jk
1

and S̄2 =
S2

maxi jk Si jk
2

. Then the softened IoU of the

two state is calculated as IoU(S1,S2) =
∑i jk S̄1S̄2

∑i jk S̄1+S̄2−S̄1S̄2
. We refer readers to Section 2.6.6 for a

better explanation for the soft IoU. The final normalized incremental IoU score measures how

much IoU increases at the end of the episode than the initial state. For the initial state S0, the last

state St at the end of the episode, and the goal state Sg, the normalized incremental IoU score is

defined as IoU(St ,Sg)−IoU(S0,Sg)
1−IoU(S0,Sg)

. For each task, we evaluate the algorithms on five configurations

and report an algebraic average score.

2.5.2 Evaluations on Reinforcement Learning

We evaluate the performance of the existing RL algorithms on our tasks. We use

three SOTA model-free reinforcement learning algorithms: Soft Actor-Critic (SAC) [73], Twin

Delayed DDPG (TD3) [56], and Policy Proximal Optimization (PPO) [216]. We train each

algorithm on each configuration for 10000 episodes, with 50 environment steps per episode.

Figure 2.3 shows the normalized incremental IoU scores of the tested reinforcement

learning algorithms on each scene. Most RL algorithms can learn reasonable policies for Move.

However, RL algorithms can hardly match the goal shape exactly, which causes a small defect in

the final shape matching. We notice that it is common for the RL agent to release the objects

during exploration, leading to a free-fall of plasticine under gravity. Then it becomes challenging
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Figure 2.3. The final normalized incremental IoU score achieved by RL methods within 104

epochs. Scores lower than 0 are clamped. The dashed orange line indicates the theoretical upper
limit.

for the agent to regrasp the plasticine, leading to training instability and produces unsatisfactory

results. The same in Rope, agents can push the rope towards the pillar and gain partial rewards,

but they fail to move the rope around the pillar in the end. Increasing the numbers of manipulators

and plasticine boxes causes significant difficulties in TripleMove for RL algorithms, revealing

their deficiency in scaling to high dimensional tasks. In Torus, the performance seems to depend

on the initial policy. They could sometimes find a proper direction to press manipulators, but

occasionally, they fail as manipulators never touch the plasticine, generating significant final

score variance. Generally, we find that PPO performs better than the other two. In RollingPin,

both SAC and PPO agents find the policy to go back and forth to flatten the dough, but PPO

generates a more accurate shape, resulting in a higher normalized incremental IoU score. We

speculate that our environment favors PPO over algorithms dependent on MLP critic networks.

We suspect it is because PPO benefits from on-policy samples while MPL critic networks might

not capture the detailed shape variations well.

In some harder tasks, like Chopsticks that requires the agent to carefully handle the 3D

rotation, and Writer that requires the agent to plan for complex trajectories for carving the traces,

the tested algorithm seldom finds a reasonable solution within the limited time (104 episodes). In
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Assembly, all agents are stuck in local minima easily. They usually move the spherical plasticine

closer to the destination but fail to lift it up to achieve an ideal IoU. We expect that a carefully

designed reward shaping, better network architectures, and fine-grained parameter tuning might

be beneficial in our environments. In summary, plasticity, together with the soft bodies’ high

DoFs, poses new challenges for RL algorithms.

2.5.3 Evaluations on Differentiable Physics for Trajectory Optimization
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Figure 2.4. Rewards and their variances in each task w.r.t. the number of episodes spent on
training. We clamp the reward to be greater than 0 for a better illustration.

Thanks to the built-in differentiable physics engine in PlasticineLab, we can apply

gradient-based optimization to plan open-loop action sequences for our tasks. In gradient-based

optimization, for a certain configuration starting at state s, we initialize a random action sequence

{a1, . . . ,aT}. The simulator will simulate the whole trajectory, accumulate the reward at each

time step, and do back-propagation to compute the gradients of all actions. We then apply a

gradient-based optimization method to maximize the sum of rewards. We assume all information

of the environment is known. This approach’s goal is not to find a controller that can be executed

in the real world. Instead, we hope that differentiable physics can help find a solution efficiently

and pave roads for other control or reinforcement/imitation learning algorithms.
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Table 2.1. The averaged normalized incremental IoU scores and the standard deviations of each
method. Adam-H stands for optimizing on the hard contact model with Adam optimizer. We train
RL agent for 10000 episodes and optimizing for 200 episodes for gradient-based approaches.

Env Move Tri. Move Torus Rope Writer

SAC 0.27±0.27 0.12±0.11 0.53±0.42 0.29±0.20 0.41±0.23
TD3 0.31±0.20 0.00±0.02 0.42±0.42 0.12±0.15 0.19±0.18
PPO 0.69±0.15 0.13±0.09 0.44±0.38 0.38±0.19 0.37±0.17
Adam 0.90±0.12 0.35±0.20 0.77±0.39 0.59±0.13 0.62±0.27
GD 0.51±0.39 0.24±0.17 0.79±0.37 0.41±0.17 0.69±0.29
Adam-H 0.05±0.15 0.26±0.15 0.72±0.23 0.21±0.09 0.00±0.00

Env Pinch RollingPin Chopsticks Assembly Table

SAC 0.05±0.08 0.36±0.30 0.13±0.08 0.00±0.00 0.04±0.12
TD3 0.01±0.02 0.11±0.02 0.11±0.07 0.00±0.00 0.10±0.16
PPO 0.06±0.09 0.86±0.10 0.14±0.09 0.06±0.17 0.29±0.28
Adam 0.08±0.08 0.93±0.04 0.88±0.08 0.90±0.10 0.01±0.01
GD 0.03±0.05 0.89±0.11 0.03±0.04 0.27±0.36 0.00±0.00
Adam-H 0.00±0.02 0.26±0.12 0.02±0.06 0.03±0.03 0.00±0.01

In Figure 2.4, we demonstrate the optimization efficiency of differentiable physics by

plotting the reward curve w.r.t. the number of environment episodes and compare different

variants of gradient descent. We test the Adam optimizer (Adam) and gradient descent with

momentum (GD). We use the soft contact model to compute the gradients. We compare the

Adam optimizer with a hard contact model (Adam-H). For each optimizer, we modestly choose

a learning rate of 0.1 or 0.01 per task to handle the different reward scales across tasks. Notice

that we only use the soft contact model for computing the gradients and search for a solution.

We evaluate all solutions in environments with hard contacts. In Figure 2.4, we additionally

plot the training curve of reinforcement learning algorithms to demonstrate the efficiency of

gradient-based optimization. Results show that optimization-based methods can find a solution

for challenging tasks within tens of iterations. Adam outperforms GD in most tasks. This may be

attributed to Adam’s adaptive learning rate scaling property, which fits better for the complex loss

surface of the high-dimensional physical process. The hard contact model (Adam-H) performs

worse than the soft version (Adam) in most tasks, which validates the intuition that a soft model
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is generally easier to optimize.

Table 2.1 lists the normalized incremental IoU scores, together with the standard devia-

tions of all approaches. The full knowledge of the model provides differentiable physics a chance

to achieve more precious results. Gradient descent with Adam can find the way to move the rope

around the pillar in Rope, jump over the sub-optimal solution in Assembly to put the sphere

above the box, and use the chopsticks to pick up the rope. Even for Move, it often achieves better

performance by better aligning with the target shape and a more stable optimization process.

Some tasks are still challenging for gradient-based approaches. In TripleMove, the

optimizer minimizes the particles’ distance to the closet target shape, which usually causes two

or three plasticines to crowd together into one of the target locations. It is not easy for the

gradient-based approaches, which have no exploration, to jump out such local minima. The

optimizer also fails on the tasks that require multistage policies, e.g., Pinch and Writer. In

Pinch, the manipulator needs to press the objects, release them, and press again. However,

after the first touch of the manipulator and the plasticine, any local perturbation of the spherical

manipulator doesn’t increase the reward immediately, and the optimizer idles at the end. We also

notice that gradient-based methods are sensitive to initialization. Our experiments initialize the

action sequences around 0, which gives a good performance in most environments.

2.6 Additional Details

2.6.1 Simulator Implementation Details

von Mises plasticity return mapping pseudo code

Here we list the implementation of the forward return mapping [60]. Note the SVD in

the beginning leads to gradient issues that need special treatments during backpropagation.

def von_Mises_return_mapping(F):

# F is the deformation gradient before return mapping

U, sig , V = ti.svd(F)

25



epsilon = ti.Vector ([ti.log(sig[0, 0]), ti.log(sig[1, 1])])

epsilon_hat = epsilon - (epsilon.sum() / 2)

epsilon_hat_norm = epsilon_hat.norm()

delta_gamma = epsilon_hat_norm - yield_stress / (2 * mu)

if delta_gamma > 0: # Yields!

epsilon -= (delta_gamma / epsilon_hat_norm) * epsilon_hat

sig = make_matrix_from_diag(ti.exp(epsilon))

F = U @ sig @ V.transpose ()

return F

Parameters

We use a yield stress of 50 for plasticine in all tasks except Rope, where we use 200 as

the yield stress to prevent the rope from fracturing. We use α = 666.7 in the soft contact model.

Parallelism and performance

Our parallel mechanism is based on ChainQueen (Hu et al.,2019b). A single MPM

substep involves three stages: particle to grid transform (p2g), grid boundary conditions (gridop),

and grid to particle transform (g2p). In each stage, we use a parallel for-loop to loop over all

particles (p2g) or grids (for gridop and g2p) to do physical computations and ap-ply atomic

operators to write results back to particles/grids. Gradient computation, which needs to reverse

the three stages, is automatically done by DiffTaich (Hu et al., 2020).

We benchmark our simulator’s performance on each scene in Table 2.2. Note one step of

our environment has 19 MPM substeps.

2.6.2 More Details on the Evaluation Suite

Move The agent uses two spherical manipulators to grasp the plasticine and move it to

the target location. Each manipulator has 3 DoFs controlling its position only, resulting in a 6D

action space.
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Table 2.2. Performance on an NVIDIA GTX 1080 Ti GPU. We show the average running time
for a single forward or forward + backpropagation step for each scene.

Env Forward Forward + Backward

Move 14.26 ms (70 FPS) 35.62 ms (28 FPS)
Tri.Move 17.81 ms (56 FPS) 41.88 ms (24 FPS)
Torus 13.77 ms (73 FPS) 35.69 ms (28 FPS)
Rope 15.05 ms (66 FPS) 38.70 ms (26 FPS)
Writer 14.00 ms (71 FPS) 36.04 ms (28 FPS)
Pinch 12.07 ms (83 FPS) 27.03 ms (37 FPS)
RollingPin 14.14 ms (71 FPS) 36.45 ms (27 FPS)
Chopsticks 14.24 ms (70 FPS) 35.68 ms (28 FPS)
Assembly 14.43 ms (69 FPS) 36.51 ms (27 FPS)
Table 14.00 ms (71 FPS) 35.49 ms (28 FPS)

TripleMove The agent operates three pairs of spherical grippers to relocate three plas-

ticine boxes into the target positions. The action space has a dimension of 18. This task is

challenging to both RL and gradient-based methods.

Torus A piece of cubic plasticine is fixed on the ground. In each configuration of the

task, we generate the target shape by randomly relocating the plasticine and push a torus mold

towards it. The agent needs to figure out the correct location to push down the mold.

Pinch In this task, the agent manipulates a rigid sphere to create dents on the plasticine

box. The target shape is generated by colliding the sphere into the plasticine from random angles.

To solve this task, the agent needs to discover the random motion of the sphere.

Assembly A spherical piece of plasticine is placed on the ground. The agent first deforms

the sphere into a target shape and then moves it onto a block of plasticine. The manipulators are

two spheres.

Table This task comes with a plasticine table with four legs. The agent pushes one of the

table legs towards a target position using a spherical manipulator.
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2.6.3 Reinforcement Learning Setup

We use the open-source implementation of SAC, PPO and TD3 in our environments. We

list part of the hyperparameters in Table 2.3 for SAC, Table 2.5 for TD3 and Table 2.4 for PPO.

We fix c1 = 10,c2 = 10 and c3 = 1 for all environments’ reward.

Table 2.3. SAC Parameters

gamma 0.99

policy lr 0.0003

entropy lr 0.0003

target update coef 0.0003

batch size 256

memory size 1000000

start steps 1000

Table 2.4. PPO Parameters

update steps 2048

lr 0.0003

entropy coef 0

value loss coef 0.5

batch size 32

horizon 2500

Table 2.5. TD3 Parameters

start timesteps 1000

batch size 256

gamma 0.99

tau 0.005

policy noise 0.2

noise clip 0.5

2.6.4 Ablation Study on Yield Stress

To study the effects of yield stress, we run experiments on a simple Move configuration

(where SAC can solve it well) with different yield stress. We vary the yield stress from 10 to 1000

to generate 6 environments and train SAC on them. Figure 2.5 plots the agents’ performances

w.r.t. the number of training episodes. The agents achieve higher reward as the yield stress

increase, especially in the beginning. Agents in high yield stress environments learn faster than

those in lower yield stress environments. We attribute this to the smaller plastic deformation in

higher yield stress environments. If we train the agents for more iterations, those in environments

with yield stress larger than 100 usually converge to a same performance level, close to solving

the problem. However, materials in environments with yield stress smaller than 100 tend to

deform plastically, making it hard to grasp and move an object while not destroying its structure.

This demonstrates a correlation between yield stress and task difficulty.

2.6.5 Optimization Efficiency of Differentiable Physics

We show the optimization efficiency of differentiable physics in Figure 2.6.
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Figure 2.5. Rewards w.r.t. the number of training episode on 6 environments. Their yield
stresses are 10, 20, 50, 100, 200, and 1000.

2.6.6 Explanation of Soft IoU

Let a,b be two numbers and can only be 0 or 1, then ab = 1 if and only if a = b = 1;

a+b−ab = 1 if and only if at least one of a,b is 1. If the two mass tensors only contain value of

0 or 1, ∑S1S2 equals the number of grids that have value 1 in both tensors, i.e., the “Intersection”.

For the same reason ∑S1 +S2−S1S2 counts the grids that S1 = 1 or S2 = 1, the “Union”. Thus,

the formula ∑S1S2/∑S1 +S2−S1S2 computes the standard Intersection over Union (IoU). In

our case, we assume the normalized mass tensor S1 and S2 are two tensors with positive values.

Therefore, we first normalize them so that their values are between 0 and 1, then apply the

previous formula to compute a “soft IoU,” which approximately describes if two 3D shapes

match.

2.7 Potential Research Problems to Study using Plas-
ticineLab

Our environment opens ample research opportunities for learning-based soft-body ma-

nipulation. Our experiments show that differential physics allows gradient-based trajectory

optimization to solve simple planning tasks extremely fast, because gradients provide strong

and clear guidance to improve the policy. However, gradients will vanish if the tasks involve

detachment and reattachment between the manipulators and the plasticine. When we fail to

use gradient-based optimization that is based on local perturbation analysis, we may consider
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Figure 2.6. Rewards and variances in each configuration w.r.t. the number of episodes spent on
training. We clamp the reward to be greater than 0 for a better illustration.
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those methods that allow multi-step exploration and collect cumulative rewards, e.g., random

search and reinforcement learning. Therefore, it is interesting to study how differentiable physics

may be combined with these sampling-based methods to solve planning problems for soft-body

manipulation.

Beyond the planning problem, it is also interesting to study how we shall design and

learn effective controllers for soft-body manipulation in this environment. Experimental results

(Section 2.5.2) indicate that there is adequate room for improved controller design and opti-

mization. Possible directions include designing better reward functions for RL and investigating

proper 3D deep neural network structures to capture soft-body dynamics.

A third interesting direction is to transfer the trained policy in PlasticineLab to the real

world. While this problem is largely unexplored, we believe our simulator can help in various

ways: 1. As shown in [63], MPM simulation results can accurately match the real world. In

the future, we may use our simulator to plan a high-level trajectory for complex tasks and then

combine with low-level controllers to execute the plan. 2. Our differential simulator can compute

the gradient to physical parameters and optimize parameters to fit the data, which might help

to close the sim2real gap. 3. PlasticineLab can also combine domain randomization and other

sim2real methods [159]. One can customize physical parameters and the image renderer to

implement domain randomization in our simulator. We hope our simulator can serve as a good

tool to study real-world soft-body manipulation problems.

Finally, generalization is an important exploration direction. Our platform supports proce-

dure generation and can generate and simulate various configurations with different objects [268],

evaluating different algorithms’ generalizability. PlasticineLab is a good platform to design rich

goal-condition tasks, and we hope it can inspire future work.
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2.8 Conclusion and Future Work

We presented PlasticineLab, a new differentiable physics benchmark for soft-body

manipulation. To the best of our knowledge, PlasticineLab is the first skill-learning environment

that simulates elastoplastic materials while being differentiable. The rich task coverage of

PlasticineLab allows us to systematically study the behaviors of state-of-the-art RL and gradient-

based algorithms, providing clues to future work that combines the two families of methods.

We also plan to extend the benchmark with more articulation systems, such as virtual

shadow hands2. As a principled simulation method that originated from the computational

physics community [233], MPM is convergent under refinement and has its own accuracy

advantages. However, modeling errors are inevitable in virtual environments. Fortunately, apart

from serving as a strong supervision signal for planning, the simulation gradient information can

also guide systematic identification. This may allow robotics researchers to “optimize” tasks

themselves, potentially simultaneously with controller optimization, so that sim-to-real gaps are

automatically minimized.

We believe PlasticineLab can significantly lower the barrier of future research on soft-

body manipulation skill learning, and will make its unique contributions to the machine learning

community.
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Chapter 3

Reparameterized Policy Learning for Mul-
timodal Trajectory Optimization

We investigate the challenge of parametrizing policies for reinforcement learning (RL) in

high-dimensional continuous action spaces. Our objective is to develop a multimodal policy that

overcomes limitations inherent in the commonly-used Gaussian parameterization. To achieve

this, we propose a principled framework that models the continuous RL policy as a generative

model of optimal trajectories. By conditioning the policy on a latent variable, we derive a novel

variational bound as the optimization objective, which promotes exploration of the environment.

We then present a practical model-based RL method, called Reparameterized Policy Gradient

(RPG), which leverages the multimodal policy parameterization and learned world model to

achieve strong exploration capabilities and high data efficiency. Empirical results demonstrate

that our method can help agents evade local optima in tasks with dense rewards and solve

challenging sparse-reward environments by incorporating an object-centric intrinsic reward.

Our method consistently outperforms previous approaches across a range of tasks. Code and

supplementary materials are available on the project page https://haosulab.github.io/RPG/

3.1 Introduction

Reinforcement learning (RL) with high-dimensional continuous action space is notori-

ously hard despite its fundamental importance for many application problems such as robotic
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Figure 3.1. (A) Our method reparameterizes latent variables into multimodal policy to facilitate
exploitation and exploration in continuous policy learning; (B) Average performance on 6 hard
exploration tasks. Our method outperforms previous methods.

manipulation [182, 173]. In practice, popular frameworks [226, 74, 216] of deep RL formulate

the continuous policy as a neural network that outputs a single-modal density function over

the action space (e.g., a Gaussian distribution over actions). This formulation, however, breaks

the promise of RL being a global optimizer of the return function because the single-modality

policy parameterization introduces local minima that are hard to escape using gradients w.r.t.

distribution parameters. Besides, a single-modality policy will significantly weaken the explo-

ration ability of RL algorithms because the sampled actions are usually concentrated around the

modality.

Although there are other candidates beyond the Gaussian distribution for policy parame-

terization, they often have limitations when used for continuous policy modeling. For example,

Gaussian mixture models can only accommodate a limited number of modes; normalizing flow

methods [204] can compute density values, but they may not be as numerically robust due to

their dependency on the determinant of the network Jacobian; furthermore, normalizing flows

must apply continuous transformations onto a continuously connected distribution, making it

difficult to model disconnected modes [202]. Option-critic [12] represents policies with op-

tions and temporal structure, but it often requires specially designed option spaces for efficient

learning, which motivates research on hierarchical imitation learning that uses demonstrations

to avoid exploration problems [188, 51]. Skill discovery methods learn a population of skills

without demonstrations or rewards by optimizing for diversity [49]. However, the separation of

optimization and skill learning can be non-efficient as it expends effort on learning task-irrelevant
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skills and may ignore more important ones that would benefit a specific task.

This work presents a principled framework for learning the continuous RL policy as a

multimodal density function through multimodal action parameterization. We adopt a sequence

modeling perspective [27] and view the policy as a density function over the entire trajectory

space (instead of the action space)[278, 124]. This allows us to sample a population of trajectories

that cover multiple modalities, enabling concurrent exploration of distant regions in the solution

space. Additionally, we use a generative model to parameterize the multimodal policies, drawing

inspiration from their success in modeling highly complex distributions such as natural images[68,

277, 205, 200]. We condition the policy on a latent variable z and use a powerful function

approximator to “reparameterize” the random distribution z into the multimodal trajectory

distribution [114], from which we can sample trajectories τ . This policy parameterization leads

us to adopt the variational method [114, 74, 169] to derive a novel framework for modeling

the posterior of the optimal trajectory using variational inference, which enables us to model

multimodal trajectories and maximize the reward with a single objective.

This framework allows us to build Reparameterized Policy Gradient (RPG), a model-

based RL method for multimodal trajectory optimization. The framework has two notable

features: First, RPG combines the multimodal policy parameterization with a learned world

model, enjoying the sample efficiency of the learned model and gradient-based optimization

while providing the additional ability to jump out of the local optima; Second, we equip RPG

with a novel density estimator to help the multimodal policy explore in the environments by

maximizing the state entropy [80]. We verify the effectiveness of our methods on several robot

manipulation tasks. These environments only provide sparse rewards when the agent successfully

fully finishes the task, which is challenging for single-modal policies even when they are guided

by intrinsic motivations. In comparison, our method is able to explore different modalities,

improve the exploration efficiency, and outperform single-modal policies, as shown in Figure 3.1.

Notably, our method is more robust than single-modal policies and consistently outperforms

previous approaches across different tasks.
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Our contributions are multifold: 1. We propose a variational policy learning framework

that models the posterior of multimodal optimal trajectories for reward optimization. 2. We

demonstrate that multimodal parameterization can help the policy escape local optima and

accelerate exploration in continuous policy optimization. 3. When combined with a learned

world model and a delicate density estimator, our method, RPG, is able to solve these challenging

sparse-reward tasks more efficiently and reliably.

3.2 Related Work

Policy as Sequential Generative Model.

Maximum entropy reinforcement learning [242, 243, 245, 278, 108] can be viewed as

variational inference in probabilistic graphical models [124] with optimality as an observed

variable and sampled trajectories as latent variables. When the demonstration or a fixed dataset is

provided in the offline RL setting [27, 203], policy learning is simplified as a sequence modeling

task [27, 276, 203]. They use autoregressive models to learn the distribution of the whole

trajectory, including actions, states, and rewards, and use the action prediction as policy. In our

work, we learn a sequential generative model of policy for online RL via the variational method.

Variational Skill Discovery

Under additional assumptions of rewards, our method degenerates to skill discovery

methods. However, previous skill discovery methods focus on unsupervised reinforcement

learning [49, 2, 24] or diverse skill learning [120, 184]. These methods build latent variable

policy and encourage the policy to reach states that are consistent with the sampled latent

variables through a mutual information term as a reward. These methods do not consider reward

maximization or exploration when learning the skills, making them differ from our method vastly.

For example, [49, 2] does not optimize the learned skill for the environment rewards; [184] does

not optimize the mutual information along trajectories; [120] needs to solve the optimization

problem first before finding a diverse set of solutions. Moreover, these methods fix the latent
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distributions, limiting their ability to achieve optimality when rewards are given. [160] also

learns skills within a learned world model. However, it decouples the exploration and skill

learning and needs offline data or data generated from other exploration policies to train the

model. In contrast, we are motivated by the parameterization problems in online RL and jointly

optimize the latent representation to model optimal trajectories. We show that learning a latent

variable model benefits optimization and exploration and they can be considered together.

Hierarchical Methods

The hierarchical methods, e.g., option-critic [12], can be regarded as a special way of

policy parameterization by conditioning the lower-level policy over a sequence of latent variables

z = (z1, · · · ,zT ). Usually, most hierarchical RL methods need special designs for the latent space,

e.g., state-based subgoals [118, 176, 175] or predefined skills [127] to avoid mode-collapse.

[183] regularized options to maximize the mutual information between the action and the options,

which are very relevant to ours. However, it does not model temporal structures as ours to ensure

consistency along the trajectories. Goal-conditioned RL [8, 165, 176] can also be considered a

special hierarchical method that uses states or goals to help parameterize the policy and has been

proven efficient in exploration, but designing the goal space, sampling and generating goals in

high-dimensional space is non-trivial. The specific reward design of goal-reaching tasks also

makes extending goal-conditioned policies to general reward functions not easy.

Hierarchical imitation learning [71, 189, 218, 107, 152, 52] extracts temporal abstractions

from demonstrations using generative models. For example, InfoGAN [137] and ASE [188] use

adversarial training [69, 85] to imitate demonstrations. These works all rely on demonstrations

rather than rewards to learn abstractions. [31] learns representation on the collected dataset

with variational inference and then utilizes the trained model for planning or policy learning.

The separation of the representation learning and reward maximization makes it differ from

our methods: first, it requires a state reconstruction module to supervise the generative model,

which is challenging for high-dimensional observations; second, it optimizes neither the latent
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distribution nor the actions for the reward directly, thus requires additional planning procedure

during the execution to find suitable actions.

3.3 Method

To overcome the limitations of single modality policies, we propose to use latent variables

to parameterize multimodal policies in Section 3.3.1. We then propose a novel variational bound

as the optimization objective to approximate the posterior of optimal trajectories in Section 3.3.2.

The variational bound naturally combines maximum entropy RL and includes a term to encourage

consistency [277] between the latent distribution and the sampled trajectories, preventing the

policy from mode collapse. To optimize this objective in hard continuous control problems, we

propose to learn a world model and build the Reparameterized Policy Gradient, a model-based

latent variable policy learning framework in Section 3.3.3. We design intrinsic rewards in

Section 3.3.3 to facilitate exploration. Figure 3.3 illustrates the whole pipeline.

3.3.1 Reparameterize Latent Variables for Multimodal Policy Learning

Policy parameterization matters.

In continuous RL, it is popular to model action distribution with a unimodal Gaussian

distribution. However, theoretically, to make sure that the optimal policy will be captured by

RL, the function class of continuous RL policies has to include density functions of arbitrary

probabilistic distributions [235]. Consider maximizing a continuous reward function with two

modalities as shown in Figure 3.2(A). When the action space is properly discretized, a SoftMax

policy can model the multimodal distribution and find the global optimum after sampling over

the entire action space as shown in Figure 3.2(B). However, discretization can lead to a loss of

accuracy and efficiency. If we instead use a Gaussian policy N (µ,σ2) by the common practice

in literature, we will have trouble – as shown in Figure 3.2(C), even if its standard deviation is so

large to well cover both modalities, the policy gradient can push it towards the local optimum

on the right side, causing it to fail to converge to the global optimum. To address the issue, a
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Figure 3.2. (A) rewards; (B); soft max policy over discrete action space; (C) single-modality
Gaussian policy; (D) our methods reparameterize a random variable into multimodal distributions
with neural networks.

more flexible policy parameterization is needed for continuous RL problems, one that is simple

to sample and optimize.

Multimodal policy by reparameterizing latent variables

Motivated by recent developments in generative models that have shown superiority in

modeling complex distributions [114, 86, 205, 200], we propose to parameterize policies using

latent variables, as illustrated in Figure 3.2(D). Instead of adding random noise to perturb network

outputs to generate an action distribution, we build a generative model of policy distribution

by taking random noise as input and relying on powerful neural networks to transform it into

actions of various modalities.

Formally, let z ∈Z be a random variable, which can be either continuous or categorical.

We design our “policy” as a joint distribution πθ (z,τ) of the latent z and the trajectory τ . This

work considers a particular factorization of πθ (z,τ) that samples z in the beginning of each

episode and then sample trajectory τ conditioning on z:

πθ (z,τ) = p(s1)πθ (z|s1)
T

∏
t=1

p(st+1|st ,at)πθ (at |z,st) (3.1)

where T is the length of the sampled trajectory.

One can use the policy gradient theorem [235], i.e., ∇J(π) = Eτ [R(τ)∇ log p(τ)] to

39



optimize the generative model policy. However, computing p(τ) needs to marginalize over z,

i.e., computing
∫

z p(z,τ)dz, which is often intractable when z is continuous. Besides, optimizing

the marginal distribution log p(τ) by gradient descent suffers from local optimality issues (e.g.,

using gradient descent to optimize Gaussian mixture models which have latent variables is not

effective, so EM is often used instead [179]).

3.3.2 Variational Inference for Optimal Trajectory Modeling

To overcome these obstacles, following [242, 243, 245, 278, 108, 124, 74], we adopt

variational method (maximum entropy RL) to directly optimize the joint distribution of the

optimal policy without hassles of integrating over z.

The evidence lower bound

We learn πθ (z,τ) using variational inference [114, 74, 169]. Like an EM algorithm, we

define an auxiliary distribution pφ (z|τ) to approximate the posterior distribution of z conditioning

on τ using function approximators. This auxiliary distribution pφ (z|τ) helps to factorize the joint

distribution of optimality O, latent z, and the trajectory τ as pφ (O,z,τ) = p(O|τ)pφ (z|τ)p(τ).

Treating πθ (z,τ) as the variational distribution, we can write the Evidence Lower Bound (ELBO)

for the optimality O:

log p(O)

= Ez,τ∼πθ

[
log pφ (O,z,τ)− logπθ (z,τ)

]︸ ︷︷ ︸
ELBO

+DKL(πθ (z,τ)||pφ (z,τ|O))

≥ Ez,τ∼πθ

[
log pφ (O,τ,z)− logπθ (z,τ)

]
= Ez,τ∼πθ

[
log p(O,τ)+ log pφ (z|τ)− logπθ (z,τ)

]
= Ez,τ

log p(O|τ)︸ ︷︷ ︸
reward

+ log p(τ)︸ ︷︷ ︸
prior

+ log pφ (z|τ)︸ ︷︷ ︸
cross entropy

− logπθ (z,τ)︸ ︷︷ ︸
entropy

 (3.2)
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If we optimize πθ (z,τ) and pφ (z|τ) using the gradient of the variational bound, the

variational distribution πθ (z,τ) learns to model the optimal trajectory distribution p(τ|O).

How it works

ELBO contains four parts that can all be computed directly given the sampled z and τ

(the environment probability p(st+1|st ,at) is canceled as in [124]). The first two parts are the

predefined reward log p(O|τ) = R(τ)/T + c, where T is the temperature scalar, and c is the

normalizing constant that can be ignored in optimization. The prior distribution p(τ) is assumed

to be known. The third part is the log-likelihood of z, defined by our auxiliary distribution

pφ (z|τ). It is easy to see that if we fix πθ , maximize pφ alone will minimize the cross-entropy

Ez,τ∼πθ
[− log pφ (z|τ)], similar to the supervised learning of predicting z given τ . This achieves

optimality when pφ (z|τ) = pθ (z|τ) = πθ (z,τ)∫
z πθ (z,τ)dz , modeling the posterior of z for τ sampled from

πθ . On the other hand, by fixing φ , the policy πθ is encouraged to generate trajectories that

are easy to identify or classify; this helps to increase diversity and enforce consistency to avoid

mode collapse, letting the network not ignore the latent variables. The fourth part is the policy

entropy that enables maximum entropy exploration. Maximizing all terms together for the

parameters θ and φ will minimize DKL(πθ (z,τ)||pφ (z,τ|O)) = DKL(πθ (z,τ)||pφ (z|τ)p(τ|O)).

The optimality can be achieved when pφ (z|τ) equals to p(z|τ), the true posterior of z. Then,

pθ (τ) = pφ (z|τ)p(τ|O)/p(z|τ) = p(τ|O) where pθ (τ) =
∫

πθ (τ,z)dz is the marginal distribu-

tion of τ sampled from πθ .

Relationship with other methods

Our method is closely related to skill discovery methods [49, 160]. A skill discov-

ery method usually uses mutual information I(τ,z) = H(τ)−H(τ|z) or H(z)−H(z|τ) ≥

Ez,τ [log pφ (z|τ)− log p(z)] to encourage diversity. For example, DIYAN [49] directly opti-

mizes mutual information to learn various skills without reward. Dropping out the reward term

in Eq. 3.2 shows that the skill learning objective can be seamlessly embedded into the “RL as

inference” framework with external reward, and there is no need to introduce the mutual infor-
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mation term manually. Furthermore, the framework suggests we can model the posterior of the

optimal trajectories, which enables us to unify generative modeling and trajectory optimization

in a single framework. As for the relationship of our method with other generative models, we

refer readers to a more thorough discussion in Section 3.6.

Figure 3.3. An overview of our model pipeline: A) a reparameterized policy from which we can
sample latent variable z and action a given the latent state s; B) a latent dynamics model which
can be used to forward simulate the dynamic process when a sequence of actions is known. C)
an exploration bonus provided by a density estimator. Our Reparameterized Policy Gradient do
multimodal exploration with the help of the latent world model and the exploration bonus.

3.3.3 Reparameterized Policy Gradient for Model-based Exploration

We now describe Reparameterized Policy Gradient (RPG), a model-based RL method

with intrinsic motivation for sample efficient exploration in continuous control environments.

We first simplify the right side of Eq. 3.2 using the factorization in Eq. 3.1 and assuming

log pφ (z|τ) =∑t>0 log p(z|st ,at). Thus, the ELBO becomes− logπθ (z|s1)+∑
∞
t=1 R(st ,at)/T −

logπθ (at |st ,z)+ log pφ (z|st ,at), which can be optimized with an RL algorithm by maximizing

the reward

R(st ,at)/T︸ ︷︷ ︸
rt

−α logπθ (at |st ,z)+β log pφ (z|st ,at)︸ ︷︷ ︸
r′t

,

where scalars α,β control the exploration and consistency. We use neural networks to model

log pφ (z|st ,at) and πθ (at |st ,z).
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Model-based RL with Latent Variables

In our method Reparameterized Policy Gradient (RPG), we train a differentiable world

model [75, 214, 267, 78] to improve data efficiency. The world model contains the following

components: observation encoder st = fψ(ot), reward predictor rt = Rψ(st ,at), Q value Qt =

Qψ(st ,at ,z) and dynamics st+1 = hψ(st ,at).

Given any z and latent state st0 = fψ(ot0) at time step t0, the learned dynamics network

can generate an imaginary trajectory for any action sequence. If we sample actions from the

policy πθ (at |st ,z) for t ≥ t0 and execute them in the latent model, it will produce a Monte-Carlo

estimate for the value of st0 for optimizing the policy πθ :

Vest(ot0 ,z)≈ γ
K(Qt0+K + r′t0+K)+

t0+K−1

∑
t=t0

γ
t−t0(rt + r′t) (3.3)

We self-supervise the dynamics network to ensure state consistency without reconstruct-

ing observations as in [267, 78]. For any latent variable z and trajectory segments of length K+1

τt0:t0+K = {ot0,a
gt
t0 ,r

gt
t0 ,ot0+1, . . . ,ot0+K} sampled from the replay buffer, we execute actions {agt

t }

in the world model and use the following loss function to train the world model, as well as the Q

function:

Lψ(τ) =
t0+K−1

∑
t=t0

L1∥st+1−ng( fψ(ot+1))∥2 +L2(rt − rgt
t )2

+L3(Qt −ng(rgt
t + γVest(ot+1,z)))2 (3.4)

where ng(x) means stopping gradient and L1 = 1000,L2 = L3 = 0.5 are constants to balance

the loss.

Maximize State Entropy with Object-centric Randomized Network Distillation

For challenging continuous control tasks with sparse rewards, policies that maximize

the action entropy of πθ (a|s,z) usually have trouble obtaining a meaningful reward, making its

exploration inefficient. We follow [80] to let the policy additionally maximize the entropy of the

43



discounted stationary state distribution dπ(s) = (1− γ)∑
∞
t=1 γ tP(st = s|π).

We use the object-centric Randomized Network Distillation (RND) [23] as a simple

and effective method to approximate the state density in continuous control tasks. RND uses

a network gθ (ot) to distill the output of a random network g′(ot) by minimizing the difference

∥gθ (ot)−g′(ot)∥2 over states sampled by the current agent and treat the difference as the negative

density of each observation ot .

We make several modifications to the vallina RND to improve its performance for state

vector observations in control problems. First, we inject object-prior to the RND estimator

to make the policy sensitive to regions that include objects’ position change. Specifically,

before feeding objects’ coordinates into the network, we apply positional encoding [249, 166] to

turn all scalars x to a vector of {sin(2ix),cos(2ix)}i=1,2,... for objects of interest (e.g., in robot

manipulation, the end effector of the robot and the object). Second, we use a large replay

buffer to store past states to avoid catastrophic forgetting [273]. We verified that it is necessary

to normalize the RND’s output to stabilize the training and make it an approximated density

estimator. Lastly, to account for the latent world model, we relabel trajectories’ rewards sampled

from the replay buffer instead of estimating them directly in the latent model by reconstructing

the observation.

An implicit benefit of a latent variable policy model is its ability to maximize the state

entropy better, as will be shown in the experiments of Section 3.4.1. When combined with our

RND method, RPG achieves much better state coverage while single modality policy cannot

stabilize. The combination of multimodal policy learning and state entropy maximization

accelerates the exploration of continuous control tasks with sparse rewards. We describe the

whole algorithm in Alg. 1 and implementation details in Section 3.5.
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3.4 Experiments

In this section, we first illustrate the potential of RPG in optimization and exploration

through two example tasks. We then show that our method can help solve hard continuous

control problems, even with only sparse rewards. We ablate essential design choices and provide

additional experiments in section 3.4.3.

3.4.1 Illustrative Experiments

Figure 3.4. Illustrative experiment on con-
tinuous bandit

Figure 3.5. Illustrative experiment on 2D maze
navigation problem

Can multimodal policies help escape local optima?

We study the effects of our method on a 1D bandit problem as shown in Figure 3.4. It

has a 1d action space and a non-convex reward landscape with an additional discontinuous point.

Figure 3.4 compares the performance of our method with a single modality Gaussian

policy optimized by REINFORCE. Notice that we do not add the intrinsic reward for dense

reward maximization tasks. The Gaussian policy, initialized at 0 with a large standard deviation,

can cover the whole solution space. However, the gradient w.r.t µ is positive, which means

the action probability density will be pushed towards the right, as the expected return on the

right side is larger than the left side, although the left side contains a higher extreme value. As

a result, the policy will move right and get stuck at the local optimum with a low chance of

jumping out. In contrast, under the entropy maximization formulation, our method maximizes

the reward while seeking to increase diversity, providing more chances for the policy to explore
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Figure 3.6. Results
on dense reward tasks
with local optima (ex-
ploration disabled)

Figure 3.7. Results on sparse reward tasks

the whole solution space. Furthermore, by turning the latent variables into action distribution,

our method can build a multimodal policy distribution that fits the multimodal rewards, explore

both modalities simultaneously, and eventually stabilize at the global optimum. This experiment

suggests that a multimodal policy is necessary for reward maximization, and our method can

help the policy better handle local optima.

Can multimodal policies accelerate exploration?

We argue that maintaining a multimodal policy is beneficial even in the existence of an

intrinsic reward to guide the exploration. We illustrate it in a 2D maze navigation task shown in

Figure 3.5. The maze consists of 5×5 grids. Each of them is connected with neighbors with a

narrow passage. The agent starts in the center grid and can move in four directions. The action

space is its position change in two directions (∆x,∆y).

We apply RPG and single-modality model-based SAC [74] on this environment to

maximize the intrinsic reward described in Section 3.3.3. We count the areas covered by the two

policies during exploration with respect to the number of samples in Figure 3.5(D). The curve

suggests that our method explores the domain much faster, quickly reaching most grids, while
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the Gaussian agent only covers the right part of the maze within a limited sample budget.

To understand their differences, we visualize states sampled at different training steps

of the two policies in Figure 3.5 (A-B). Our policy below quickly finds four directions to move

and gradually expands the state distribution until it fully occupies all grids. Figure 3.5(C) shows

the historic state visitation count. It is easy to see that our multimodal policy induces a more

uniform distribution over the whole state space, generating a higher state distribution entropy.

The optimization procedure of single-modality policy, as shown in the first row of Figure 3.5,

suffers from its policy parameterization. It can only explore one modality every time and has

to switch modalities one by one, where modalities refer to different regions of the state space.

It is hard to predict when it switches modality, making algorithms behave vastly differently

in different environments with different random seeds. Sometimes it moves slowly from one

direction to another because it has to wait for samples for density estimators to generate enough

momentum. As a result, it never explores the left side in Figure 3.5(C). While sometimes, it

switches too fast due to the fast updates of the network and does not exploit some modalities

enough, missing far-end grids of certain directions that it has explored once. This also causes

issues when maximizing external rewards. Even if a single-modal policy finds the optimal

solution, it may switch to another modality to continue exploration and it is hard to guarantee

that it would come back in the end. In contrast, our method is more like Monte-Carlo sampling,

which samples all candidates while converging to solutions of high rewards with high probability.

3.4.2 Continuous Control Problems

We now verify if our method can scale up and help solve challenging continuous control

problems. We take 8 representative environments from standard RL benchmarks, including 2

table-top environments from MetaWorld [269], 2 dexterous hand manipulation tasks from [199],

1 navigation problems from [176], and 2 articulated object manipulation from ManiSkill [173].

We show environment examples and provide a detailed environment description in Section 3.5.2.

Only Cabinet (Dense) and AntPush contain dense rewards that lead to local optima. The

47



remaining 6 environments all only provide sparse rewards, which means the agents receive a

reward 1 when it succeeds to finish the task and 0 otherwise. This change dramatically increases

the difficulty of these environments and disastrously hurts the performance of classical RL

methods like SAC [74] and PPO [216].

We evaluate our methods against the following baselines: DreamerV2 + Plan2Explore

[217], abbreviated as DreamerV2 (P2E), a model-based exploration method based on the

disagreement of learned models’ prediction. We also consider 3 baselines, TDMPC, MBSAC,

and SAC using the same intrinsic rewards as ours. The suffix (R) means that when we apply

these methods to a sparse-reward environment, we will add RND intrinsic rewards that are the

same as in our method. For all results evaluated on dense-reward environments in Figure 3.6,

the exploration method of the corresponding algorithm is disabled. The standard SAC without

intrinsic rewards validates the difficulty of our tasks. Details of the baseline implementations are

in Section 3.5.3.

Figure 3.6 and 3.7 plots the learning progress of each algorithm in all environments

(x-axis: number of environment interaction steps in million, y-axis: task success rate). For all

environments, we run each algorithm for at least five trials. The curve and the shaded region

shows the average and the standard deviation of performance over trials. MBSAC shares almost

the same implementation as our method, except that it does not condition its policy on latent

variables..

We first observe that, for dense reward tasks, our method largely improves the success

rate on tasks with local optima (Figure 3.6). We can see that in both AntPush and Cabinet

(Dense) tasks, our method outperforms all baselines. Our method consistently finds solutions,

regardless of the local optima in the environments. For example, in the task of opening the

cabinets’ two doors and going to the two sides of the block, our method usually explores the

two directions simultaneously and converges at the global optima. In contrast, other methods’

performance highly depends on their initialization. If the algorithm starts by opening the wrong

doors or pushing the block in the wrong direction, it will not escape from the local minimums;
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thus, its success rates are low.

Our methods successfully solve the 6 sparse reward tasks as shown in Figure 3.7. Espe-

cially, it consistently outperforms the MBSAC(R) baseline, which is a method that only differs

from ours by the existence of latent variables to parameterize the policy. Our method reliably

discovers solutions in environments that are extremely challenging for other methods (e.g., the

StickPull environment), clearly demonstrating the advantages of our method in exploration.

Notably, we find that MBSAC(R), which is equipped with our object-centric RND, is a strong

baseline that can solve AdroitHammer and AdroitDoor faster than DreamerV2(P2E), proving

the effectiveness of our intrinsic reward design. TDMPC(R) has a comparable performance with

MBSAC(R) on several environments. We validate that it has a faster exploration speed in Adroit

Environments thanks to latent planning. We find that the Dreamer(P2E) does not perform well

except for the BlockPush environment without the object prior and is unable to explore the state

space well.

Visualization of the Multimodal Exploration

Here we visualize modalities explored by our method. We plot the trajectory of the agent

in AntPush environment, evaluated at different numbers of training stages in Figure 3.8. The

agent learned to move forward and explored all directions that would decrease the l2 distance. It

found the left side was easier for moving up in the beginning, but at episode 360, it learned to

explore all directions. Ultimately, it explored the left path to the upper room and converged on it.

Figure 3.8. Exploration of AntPush, which has the dense reward to guide the agent to move
forward.

We also plot the sampled states during exploration for Block, Cabinet, and Stickpull Envs
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in Figure 3.9.

Figure 3.9. Exploration on several environments; The first column shows the initial state. The
right 5 figures of the same row plot states sampled from a single agent.

3.4.3 Additional Experiments

Ablation study We analyze various factors influencing the performance of our method

in the Maze navigation task in Section 3.4.1. More detailed discussion and experiment results

are in Section 3.4.4. Experimental comparisons between different latent spaces show that a

Gaussian distribution of dimension 12 outperforms the categorical latent space, both surpassing

a baseline that does not use latent variables. A moderate latent space size ≥ 6 is found to be

sufficient, with performance declining if the latent dimensions are too small. In terms of reward

maximization, the weight of the cross-entropy term (β ) is crucial, with results indicating an ideal

range between 0.001 and 0.01 for the RND design. Furthermore, the performance from RND is

tied to maintaining a large replay buffer and using positional embedding, with a lack of either

resulting in degraded exploration. A comparative analysis of policy parameterization methods

shows the superiority of the vanilla Gaussian policy over the Gaussian Mixture Models (GMM)

and CEM-based policy. The latter two display several optimization issues; GMM struggles with
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log-likelihood maximization, and CEM, despite its proficiency at finding local optima, tends to

sacrifice its explorative capabilities. Finally, normalizing flow showed initial promise but soon

encountered numerical instabilities, highlighting the need for further investigation.

Evaluation on locomotion environments We modified the HalfCheetah-v3 environment

in OpenAI Gym [18] to study the performance of our methods in locomotion tasks, shown

in Figure 3.10. The cheetah robot moves backward for a certain distance to receive a sparse

reward of 1 to succeed. Our exploration method was able to effectively aid the exploration of

the Cheetah robot and solve the task easily while removing the exploration term that led to the

agent getting stuck. However, in this particular task, modeling multi-modal exploration did

not increase the sampling efficiency, as there were only two modalities (moving forward and

backward), and model-based SAC could exploit the two modes one by -one and solve the task.

This made the advantage of our method negligible in this case. We also evaluated our method

compared to SAC [74] on the standard Mujoco environments. Results are shown in Figure 3.11.

Vision-based RL As a proof of concept, we illustrate, in Figure 3.12, the potential of our

method for image observations in a single-block pushing environment: the observation consists

of two consecutive 64x64 RGB images; the agent needs to control the red block to push the

purple box into the target region. We use 4-layer convolutional networks as the encoder for both

the policy network and RND estimator. We compare our method with model-based SAC (RND),

which has an intrinsic reward to guide exploration but only models single modality policies, and

model-based SAC without RND. The result validates our method’s effectiveness.

Figure 3.10. Cheetah Back Task (left), success rate (right)
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Figure 3.11. Results on Mujoco-v2 Environments

Figure 3.12. Visual Block Push Task (left), success rate (right)

3.4.4 Ablation Study

We study and compare various factors in our methods in Figure 3.13 on the Maze

navigation task described in Section 3.4.1. Figure 3.13(A) compares different latent spaces to use.

The continuous latent space modeled by a Gaussian distribution of dimension 12 outperforms

the categorical latent space, while both are better than the one without latent variables, i.e., the

MBSAC baselines. Figure 3.13(B) shows the effects of our method when using a Gaussian

distribution as the latent space with different β values. The β controls the scale of the cross

entropy term log pφ (z|s,a) in reward maximization, as mentioned in Section 3.3.3. The policy

Figure 3.13. Comparing different factors in our methods.
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will ignore the latent variable if the β is too small, e.g., 0.,1e− 4. But if the β is too large,

though the policy generates diverse solutions, it may explore too much without exploiting past

experience. This β plays a similar role as β in β−VAE [84]. In experiments, we find that β from

0.001 to 0.01 works well in the case of our RND design. Figure 3.13(C) shows the effects of the

latent dimensions. For tasks like 2D maze, a moderate latent space size d ≥ 6 is sufficient. But

the performance will degrade when it is too small. Figure 3.13(D) ablates our design for the RND.

When the RND estimator does not maintain a large replay buffer or does not use the positional

embedding, the exploration will suffer a lot. We further compare various policy parameterization

methods in Figure 3.13(E). We find that in our implementation, Gaussian mixture models (GMM)

and CEM-based policy do not perform as well as the vanilla Gaussian policy. GMM may have

trouble in log-likelihood maximization. We noticed several numerical issues in optimizing

GMM and Flow when we applied them with RND in sparse reward tasks. Specifically, we have

encountered some instability when optimizing the log prob for GMM due to its non-convex

nature and the need for sampling to estimate entropy. Similarly, our experiments with Flow have

revealed significant parameter divergence and instabilities, warranting further investigation to

pinpoint the root cause. CEM has a stronger ability to find local optima and generates actions

with less randomness, which may sacrifice its ability to do exploration. Besides, we find the

policy parameterized by a normalizing flow distribution behaves well initially but soon meets

numerical instabilities and fails to proceed with optimization, suggesting more investigations are

needed in this direction.

3.5 Additional Details

3.5.1 Algorithm

Network architecture

We use the following two-layer MLP to model policy πθ , value Qψ , state encoder fψ ,

and the encoder pφ (z|s). The network structures are shown in the pytorch’s convention [186].
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Sequential(

(0): Linear(in_features=inp_dim, out_features=256, bias=True)

(1): ELU(alpha=1.0)

(2): Linear(in_features=256, out_features=256, bias=True)

(3): ELU(alpha=1.0)

(4): Linear(in_features=256, out_features=out_dim, bias=True)

)

The dynamics network is a single-layer GRU with a hidden dimension 256. The RND

network gθ we use is a 3 layer MLP network with hidden dimension 512 and leaky ReLU as its

activation function.

We maintain target networks like the standard double Q learning. The hyperparameters

for training the network are listed in Table 3.1.

Algorithm 1. Model-based Reparameterized Policy Gradient
Input: pφ ,πθ ,hψ ,Rψ , fψ ,Qψ and an optional density estimator gθ

Initialize pφ ,πθ , construct the replay buffer B.
while time remains do

Sample start state o1 and encode it as s1 = fψ(o1). Select z from πθ (z|s1).
Execute the policy πθ (a|s,z) and store transitions into the replay buffer B.
Sample a batch of trajectory segment of length K {τ i

t:t+K,z} from the buffer B.
Optional: update and estimate the density estimator gθ and relabel transitions with the

negative density as the intrinsic reward.
Optimize ψ using Equation 3.4.
Optimize πθ (a|s,z) with gradient descent to maximize the value estimate in Equation 3.3

for s,z sampled from the buffer.
Optimize πθ (z|s1) with policy gradient to maximize Vestimate(s1,z)−α logπθ (z|s1) for s1

sampled from the buffer.
Optimize α,β if necessary .

end while
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Table 3.1. RPG hyperparameters. We here list the hyper-parameters used in the experiments.
The hyper-parameters keep the same for our MBSAC baseline except that MBSAC has no latent
space. Notice that for dense reward tasks, the entropy of πθ (z|s1) is linearly decayed starting
from 3×105 environment steps to 1M steps to ensure optimality.

Hyperparameter Value

Discount factor (γ) 0.99
Seed step 1000

Replay buffer size 800000
Model rollout horizon (H) 3

Action distribution Tanh Normal
Entropy target −|A |

Initial entropy coefficient α 0.01
Cross-entropy coefficient β 0.005

RND coefficient β 0.1
Environment steps per gradient update 5

Temperature T
Learning rate 3×10−4

Batch size 512
Target network update ratio 0.005

Actor update freq 2
State embedding dimension 100

grad norm clip 1.0
Positional encoding dimension 6

Latent distribution Z Normal
Z dimension 12

pφ (z|s,a) distribution Normal distribution with std 0.38
πθ (z|s1) N (0,1) for sparse reward tasks
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3.5.2 Environment
Cabinet (Dense) [70]. The agent controls the movement of a 12 dof mobile

robot arm and gripper robot to open both cabinet doors. The agent receives

a dense reward for reaching its nearest door’s handle. Besides, it receives

a higher reward when it opens the right door than the left door. The agent

succeeds when it fully opens the right door while the dense reward will

typically drive the agent close to the handle of the left door. The episode

length is 60.
AntPush [176]. The agent controls an ant robot with action dimension 8 to

go to the upper room. The reward is the l2 distance between the agent and a

point in the upper room. The optimal path is to go to the left of the red block

and push it to the right and go to the upper room. However, agents often get

stuck at the local optima, which pushes the block forward or moves to go to

the right side. The episode length is 400.
Door [199]. The agent controls a dexterous hand with action dimension 26

to open a door. The agent only receives a reward of 1 when it successfully

undoes the latch and opens the door. The episode length is 100 with an action

repeat 2. Objects of interest include the hand’s palm, the latch, and the door.
Hammer [199]. The agent controls a dexterous hand with action dimension

26 to force drive a nail into the board. The agent only receives a reward of

1 when it has driven the nail all the way in. Action repeat is 2. The episode

length is 125. We encode the position of the hand’s palm, the hammer, and

the nail.
BlockPush [262]. The agent controls the movement of the red block with

action dimension 2 to push the green block (middle) to the green destination

(above) and the blue block (middle) to the blue destination (above). The agent

only receives a reward of 1 when it has successfully pushed both blocks to

the exact destination with a small tolerance. The objects of interest contain

the location of the three blocks. The environment horizon is 60.
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Cabinet (Sparse) [70]. The agent controls the movement of a 9 dof robot

arm and gripper robot to open both doors of the cabinet. The agent only

receives a reward of 1 when both cabinet doors are fully opened. We encode

the position of the robot’s end effector and the location of the cabinet’s door.

Its episode length is 60.
Meta-World BaseketBall [269]. The agent controls the movement of a

gripper with a 4 dof controller to move the ball into the basket. The agent

only receives a reward of 1 when the ball is sufficiently close to the basket.

The locations of the ball and the location of robots’ fingertips are what we

are concerned about. The episode length is 100, including 2 action repeats.
Meta-World StickPull [269]. The agent controls the movement of a gripper

with a 4 dof controller to pull the container with a blue stick. The agent

receives a reward of 1 only when the stick is inserted inside the handle,

and the container is already pulled sufficiently close to the green dot. We

encode the positions of the fingertips, the stick, and the handle of the cup for

computing intrinsic rewards. The remaining setup is the same as BasketBall.

3.5.3 Baseline

TDMPC [78], we used the publically available official implementation and default

hyperparameters provided by the authors at https://github.com/nicklashansen/tdmpc.

SAC [74], we implemented according to the original paper and used the default hyperpa-

rameter provided by the authors.

We use the abbreviation TDMPC(R), SAC(R) to represent that we add an intrinsic

reward with scale 0.1 for exploration in environments with only sparse rewards.

DreamerV2 [77], we used the publically available official implementation and default

hyperparameters provided by the authors at https://github.com/danijar/dreamerv2.

Plan2Explore [217], we run DreamerV2 according to the instructions provided by
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https://github.com/ramanans1/plan2explore with hyperparameters provided by the authors of the

paper.

For all baseline algorithms, we only change model update frequency to once every 5

environment steps.

3.6 Connection with Other Generative Models

Our method is based on the same variational bound shared with many other generative

models

log p(x) = Ez∼q(z) [log p(x,z)− logq(z)]+KL(q(z)∥p(z|x)).

By different choices of latent space, posterior q(z|x), joint distribution p(x,z), we can

obtain different generative models. For example, VAE models pθ (x,z) = pθ (x|z)p(z) and

q(z) = qφ (z|x) using neural networks and then optimize θ ,φ jointly to maximize the ELBO

bound. By doing so, qφ (z|x) will align with the true posterior of pθ (z|x). Thus

log p(x)≥ Ez∼qφ (z|x)[log pθ (x|z)+ log p(z)− logqφ (z|x)]

The Expectation–maximization algorithm (EM) [40] for learning Gaussian mixture models

assumes that we have pθ (x,z) = pθ (x|z)pθ (z) where z is a categorical representation.

• E-step: finding qφ (z|x) by solving maxφ log pθ (x)−DKL(qφ (z|x)||pθ (z|x)) where

pθ (z|x) = pθ (x,z)/
∫

pθ (x,z)dz.

• M-step: fixing φ , find maxθ Eqφ
[log pθ (x,z)]−Eqφ

[logqφ (z|x)] which is exactly maximiz-

ing the ELBO.

In Maximum Entropy RL [124], we have optimality p(O,τ) = p(O|τ)p(τ) defined by

the reward, and we optimize πθ (τ|O) only. The ELBO bound becomes a maximum entropy term
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Eτ∼π [log p(O|τ)+ log p(τ)− logπ(τ)] . Our method differs from it by introducing an additional

variable z. Table 3.2 compares various generative models.

Table 3.2. Comparison of different algorithms that optimize ELBO bounds for inference

Latent Encoder q(z|x) Joint p(x,z) MLE objective

VAE z pφ (z|x) pθ (x|z)p(z) p(x)
EM z maxφ log pθ (x)−DKL(qφ (z|x)||pθ (z|x)) pθ (x|z)pθ (z) p(x)

Diffusion {xt}t≥1 ∏
T
i=1 N (xt ;

√
1−βtxt−1,βtI) p(xT )∏t≥1 pθ (xt−1|xt) p(x0)

MaxEntRL τ πθ (τ) p(O|τ)p(τ) p(O)
RPG τ,z πθ (z,τ) p(O|τ)pφ (z|τ)p(τ) p(O)

3.7 Limitation and Future Work

Our approach capitalizes on the advantages offered by multiple components, effectively

addressing complex exploration issues in continuous spaces. However, it also introduces certain

hurdles and constraints. For instance, our intrinsic reward is predicated on assumptions regarding

the recognition of objects and their spatial positioning. This approach may be unsuitable in

environments with unidentified objects or where observations don’t plainly reveal object-related

information, akin to scenarios in vision-based RL; Learning the world model typically results in

a slower pace of gradient updates; Incorporating a cross-entropy network adds an extra layer of

complexity to the network design and training. Therefore, it is worth discussing potential future

directions that might address these limitations.

Object-centric learning for vision-based RL While the Random Network Distillation

(RND) is initially tailored for image observations, integrating object-centric design to accelerate

exploration in vision-based RL will be an interesting direction. This suggests two typical

strategies to apply our method to tasks with vision observations: (1) The first involves directly

encoding observations without considering object information. It proves effective in scenarios

with no occlusion and a static background, wherein objects emerge as the sole salient feature of

the input. We provide a proof-of-concept experiment in Section 3.4.3. (2) The second approach

harnesses computer vision techniques to identify objects for object-centric exploration. This
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includes applying recent large-scale vision foundation models, which possess zero-shot object

detection capabilities as outlined in [272] or leveraging slot-attention for object discovery as

described in [150].

Combining with previous model-based control and planning methods Instead of

learning the world model from on-policy data, we can pre-train a physical world model [138] or

use analytical models [192, 96] to gain generalizability and efficiency. Moreover, we drew inspi-

ration from RRT-like motion planners [109] to derive our policy to sample over the configuration

space and bias the exploration towards significant kinematics changes. Thus, an exciting direc-

tion is incorporating structures in model-based control into RL algorithms, including temporal

structures like dynamics motion primitives [231] and semantic information from TAMP [62].

Extending to other probabilistic models Our method can be viewed as variational

inference [201] over a particular stochastic computation graph [254]. The computation graph

contains hidden variables, and we use the Bellman equation and a learned model to estimate

its gradient. This provides a new perspective that bridges online Reinforcement Learning (RL)

with generative models and sequence modeling. In the future, we are interested in exploring how

sequence-modeling techniques, such as transformers and hierarchical methods, can be used to

model the policy in our framework.

3.8 Conclusion

We derive a framework that models the policy of continuous RL by a multimodal

distribution in the variational inference framework. The method reparameterizes latent variables

into trajectories like generative models. Under this framework, we learn a world model to help

learn multimodal policy data efficiently. Incorporating an object-centric intrinsic reward, our

method can solve challenging continuous control problems with little to no reward signal.
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Chapter 4

Mapping State Space using Landmarks
for Universal Goal Reaching

An agent that has well understood the environment should be able to apply its skills for

any given goals, leading to the fundamental problem of learning the Universal Value Function

Approximator (UVFA). A UVFA learns to predict the cumulative rewards between all state-goal

pairs. However, empirically, the value function for long-range goals is always hard to estimate

and may consequently result in failed policy. This has presented challenges to the learning

process and the capability of neural networks. We propose a method to address this issue in

large MDPs with sparse rewards, in which exploration and routing across remote states are

both extremely challenging. Our method explicitly models the environment in a hierarchical

manner, with a high-level dynamic landmark-based map abstracting the visited state space, and a

low-level value network to derive precise local decisions. We use the farthest point sampling to

select landmark states from past experience, which has improved exploration compared with

simple uniform sampling. Experimentally we showed that our method enables the agent to reach

long-range goals at the early training stage, and achieve better performance than previous RL

algorithms in a number of challenging tasks.
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4.1 Introduction

Reinforcement learning (RL) allows training agents for planning and control tasks by

feedbacks from the environment. While significant progress has been made in the standard setting

of achieving a goal known at training time, e.g., to reach a given flag as in MountainCar [170],

very limited efforts have been exerted on the setting when goals at evaluation are unknown at

training time. For example, when a robot walks in an environment, the destination may vary

from time to time. Tasks of this kind are unanimous and of crucial importance in practice. We

call them Universal Markov Decision Process (UMDP) problems following the convention of

[126].

Pioneer work handles UMDP problems by learning a Universal Value Function Approxi-

mator (UVFA). In particular, Schaul et al. [211] proposed to approximate a goal-conditioned

value function V (s,g)1 by a multi-layer perceptron (MLP), and Andrychowicz et al. [8] proposed

a framework called hindsight experience replay (HER) to smartly reuse past experience to fit the

universal value function by TD-loss. However, for complicated policies of long-term horizon, the

UVFA learned by networks is often not good enough. This is because UVFA has to memorize

the cumulative reward between all the state-goal pairs, which is a daunting job. In fact, the

cardinality of state-goal pairs grows by a high-order polynomial over the horizon of goals.

While the general UMDP problem is extremely difficult, we consider a family of UMDP

problems whose state space is a low-dimension manifold in the ambient space. Most control

problems are of this type and geometric control theory has been developed in the literature [22].

Our approach is inspired by manifold learning, e.g., Landmark MDS [37]. We abstract the state

space as a small-scale map, whose nodes are landmark states selected from the experience replay

buffer, and edges connect nearby nodes with weights extracted from the learned local UVFA.

A network is still used to fit the local UVFA accurately. The map allows us to run high-level

planning using pairwise shortest path algorithm, and the local UVFA network allows us to derive

1s is the current state and g is the goal.

63



an accurate local decision. For a long-term goal, we first use the local UVFA network to direct

to a nearby landmark, then route among landmarks using the map towards the goal, and finally

reach the goal from the last landmark using the local UVFA network.

Our method has improved sample efficiency over purely network learned UVFA. There

are three main reasons. First, the UVFA estimator in our framework only needs to work well

for local value estimation. The network does not need to remember for faraway goals, thus the

load is alleviated. Second, for long-range state-goal pairs, the map allows propagating accurate

local value estimations in a way that neural networks cannot achieve. Consider the extreme case

of having a long-range state-goal pair never experienced before. A network can only guess the

value by extrapolation, which is known to be unreliable. Our map, however, can reasonably

approximate the value as long as there is a path through landmarks to connect them. Lastly, the

map provides a strong exploration ability and can help to obtain rewards significantly earlier,

especially in the sparse reward setting. This is because we choose the landmarks from the replay

buffer using a farthest-point sampling strategy, which tends to select states that are closer to the

boundary of the visited space. In experiments, we compared our methods on several challenging

environments and have outperformed baselines.

Our contributions are: First, We propose a sample-based method to map the visited state

space using landmarks. Such a graph-like map is a powerful representation of the environment,

maintains both local connectivity and global topology. Second, our framework will simultane-

ously map the visited state space and execute the planning strategy, with the help of a locally

accurate value function approximator and the landmark-based map. It is a simple but effective

way to improve the estimation accuracy of long-range value functions and induces a successful

policy at the early stage of training.
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4.2 Related work

Variants of goal-conditioned decision-making problems have been studied in litera-

ture [236, 156, 211, 191]. We focus on the goal-reaching task, where the goal is a subset of the

state space. The agent receives meaningful rewards if and only if it has reached the goal, which

brings significant challenges to existing RL algorithms. A significant recent approach along the

line is Hindsight Experience Replay (HER) by Andrychowicz et al [8]. They proposed to relabel

the reached states as goals to improve data efficiency. However, they used only a single neural

network to represent the Q value, learned by DDPG [142]. This makes it hard to model the

long-range distance. Our method overcomes the issue by using a sample-based map to represent

the global structure of the environment. The map allows to propagate rewards to distant states

more efficiently. It also allows to factorize the decision-making for long action sequences into a

high-level planning problem and a low-level control problem.

Model-based reinforcement learning algorithms usually need to learn a local forward

model of the environment, and then solve the multi-step planning problem with the learned model

[76, 180, 225, 83, 229, 270]. These methods rely on learning an accurate local model and require

extra efforts to generalize to the long term horizon [111]. In comparison, we learn a model

of environment in a hierarchical manner, by a network-based local model and a graph-based

global model (map). Different from previous works to fit forward dynamics in local models,

our local model distills local cumulative rewards from environment dynamics. In addition, our

global model, as a small graph-based map that abstracts the large state space, supports reward

propagation at long range. One can compare our framework with Value Iteration Networks

(VIN) [238]. VIN focused on the 2D navigation problem. Given a predefined map of known

nodes, edges, and weights, it runs the value iteration algorithm by ingeniously simulating the

process through a convolutional neural network [123]. In contrast, we construct the map based

upon the learned local model.

Sample-Based Motion Planning (SBMP) has been widely studied in the robotics con-
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text [79, 121, 110]. The traditional motion planning algorithm requires the knowledge of

the model. Recent work has combined deep learning and deep reinforcement learning for

[101, 197, 115, 53]. In particularly, PRM-RL addressed the 2D navigation problem by combin-

ing a high-level shortest path-based planner and a low-level RL algorithm. To connect nearby

landmarks, it leveraged a physical engine, which depends on sophisticated domain knowledge

and limits its usage to other general RL tasks. In the general RL context, our work shows that

one can combine a high-level planner and a learned local model to solve RL problems more

efficiently. Some recent work also utilize the graph structure to perform planning [209, 271],

however, unlike our approach that discovers the graph structure in the process of achieving goals,

both [209, 271] require supervised learning to build the graph. Specifically, [209] need to learn a

Siamese network to judge if two states are connected, and [271] need to learn the state-attribute

mapping from human annotation.

Our method is also related to hierarchical RL research [126, 118, 176]. The sampled

landmark points can be considered as sub-goals. [126, 176] also used HER-like relabeling

technique to make the training more efficient. These work attack more general RL problems

without assuming much problem structure. Our work differs from previous work in how high-

level policy is achieved. In their methods, the agent has to learn the high-level policy as another

RL problem. In contrast, we exploit the structure of our universal goal reaching problem and

find the high-level policy by solving a pairwise shortest path problem in a small-scale graph,

thus more data-efficient.

4.3 Background

Universal Markov Decision Process (UMDP) extends an MDP with a set of goals G .

UMDP has reward function R : S ×A × G → R, where S is the state space and A is

the action space. Every episode starts with a goal selected from G by the environment and

is fixed for the whole episode. We aim to find a goal conditioned policy π : S ×G → A
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to maximize the expected cumulative future return Vg,π(s0) = Eπ [∑
∞
t=0 γ tR(st ,at ,g)], which

called goal-conditioned value, or universal value. Universal Value Function Approximators

(UVFA) [211] use neural network to model V (s,g) ≈ Vg,π∗(s) where π∗ is the optimal policy,

and apply Bellman equation to train it in a bootstrapping way. Usually, the reward in UMDP is

sparse to train the network. For a given goal, the agent can receive non-trivial rewards only when

it can reach the goal. This brings a challenge to the learning process.

Hindsight Experience Replay (HER) [8] proposes goal-relabeling to train UVFA in sparse

reward setting. The key insight of HER is to “turn failure to success”, i.e., to make a failed

trajectory become success, by replacing the original failed goals with the goals it has achieved.

This strategy gives more feedback to the agent and improves the data efficiency for sparse reward

environments. Our framework relies on HER to train an accurate low-level policy.

4.4 Universal Goal Reaching

Problem Definition:

Our universal goal reaching problem refers to a family of UMDP tasks. The state space

of our UDMP is a low-dimension manifold in the ambient space. Many useful planning problems

in practice are of this kind. Example universal goal reaching environments include labyrinth

walking (e.g., AntMaze [46]) and robot arm control (e.g., FetchReach [190]). Their states can

only transit in a neighborhood of low-dimensionality constrained by the degree of freedom of

actions.

Following the notions in Sec 4.3, we assume that a goal g in goal space G which is

a subset of the state space S . For example, in a labyrinth walking game with continuous

locomotion, the goal can be to reach a specific location in the maze at any velocity. Then, if

the state s is a vector consisting of the location and velocity, a convenient way to represent the

goal g would be a vector that only contains the dimensions of location, i.e., the goal space is a

projection of the state space.

The universal goal reaching problem has a specific transition probability and reward
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structure. At every time step, the agent moves into a local neighborhood based on the metric

in the state space, which might be perturbed by random noise. It also receives some negative

penalty (usually a constant, e.g., −1 in the experiments) unless it has arrived at the vicinity of

the goal. A 0 reward is received if the goal is reached. To maximize the accumulated reward, the

agent has to reach the goal in fewest steps. Usually the only non-trivial reward 0 appears rarely,

and the universal goal reaching problem falls in the category of sparse reward environments,

which are hard-exploration problems for RL.

A Graph View:

Assume that a policy π takes at most steps T to move from s to g and the reward at each

step rk’s absolute value is bounded by Rmax. Let wπ(s, t) be the expected total reward along the

trajectory, and dπ(s, t) =−wπ(s, t) for all s, t. If γ ≈ 1, we can show that UVFA Vπ(s,g) can be

approximated as (see supplementary for details):

Vπ(s,g)≈ E[wπ(s,g)] = E[−dπ(s,g)] (4.1)

This suggests us to view the MDP as a directed graph, whose nodes are the state set S ,

and edges are sampled according to the transition probability in the MDP. The general value

iteration for RL problems is exactly the shortest path algorithm in terms of dπ(s,g) on this

directed graph. Besides, because the nodes form a low-dimensional manifold, nodes that are far

away in the state space can only be reached by a long path.

The MDP of our universal goal reaching problem is a large-scale directed graph whose

nodes are in a low-dimensional manifold. This structure allows us to estimate the all-pair shortest

paths accurately by a landmark based coarsening of the graph.
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Figure 4.1. An illustration of our framework. The agent is trying to reach the other side of the
maze by planning on a landmark-based map. The landmarks are selected from its past experience,
and the edges between the landmarks are formed by a UVFA.

4.5 Approach

In this work, we choose deep RL algorithms such as DQN and DDPG for discrete and

continuous action space, respectively. UVFA [211] is a goal-conditioned extension of the original

DQN, while HER (Sec 4.3), can produce more informative feedback for UVFA learning. Our

algorithm is thus based upon HER, and the extension of this approach for other algorithms is

also straightforward.

4.5.1 Basic Idea

Our approach aims at addressing the fundamental challenges in UVFA learning. As

characterized in the previous section, the UVFA estimation solves a pair-wise shortest path

problem, and the underlying graph has a node space of high cardinality. Note that UVFA has

to memorize the distance between every state-goal pairs, through trajectory samples from the

starting state to the goal, which is much larger than the original state space.

Such large set of state-goal pairs poses the challenge. First, it takes longer time to sample

enough state-goal pairs. Particularly, at the early stage, only few state-goal samples have been

collected, so learning from them requires heavy extrapolation by networks, which is well known

to be unreliable. Second, memorizing all the experiences is too difficult even for large networks.
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We propose a map to abstract the visited state space by landmarks and edges to connect

them. This abstraction is reasonable due to the underlying structure of our graph — a low-

dimensional manifold [67]. We also learn local UVFA networks that only needs to be accurate in

the neighborhood of landmarks. As illustrated in Figure 4.1, an ant robot is put in an “U” Maze

to reach a given position. It should learn to model the maze as a small-scale map based on its

past experiences.

This solution addresses the challenges. For the UVFA network, it only needs to remember

experiences in a local neighborhood. Thus, the training procedure requires much lower sample

complexity. The map decomposes a long path into piece-wise short ones, and each of which is

from an accurate local network.

Our framework contains three components: a value function approximator trained with

hindsight experience replay, a map that is supported by sampled landmarks, and a planner that

can find the optimal path with the map. We will introduce them in Sec 4.5.2, Sec 4.5.3, and

Sec 4.5.4, respectively.

4.5.2 Learning a Local UVFA with HER

Specifically, we define the following reward function for goal reaching problem:

rt = R(st ,at ,g) =

 0 |s′t−g| ≤ δ

−1 otherwise

Here s′t is the next observation after taking action at . We first learn a UVFA based on HER, which

has proven its efficiency for UVFA. In experiments (see Sec 4.6.3), we find out that the agent

trained with HER does master the skill to reach goals of increasing difficulty in a curriculum

way. However, the agent can seldom reach the most difficult goals constantly, while the success

rate of reaching easier goals remains stable. All these observations prove that HER’s value and

policy is locally reliable.

70



One can pre-train the HER agent and then build map for planner. However, as an off-

policy algorithm, HER can work with arbitrary exploration policy. Thus we use the planner

based on current local HER agent as the exploration policy and train the local HER agent jointly.

We sample long horizon trajectories with the planner and store them into the replay buffer. We

change the replacement strategy in HER, ensuring that the replaced goals are sampled from the

near future within a fixed number of steps to increase the agent’s ability to reach nearby goals at

the early stage.

The UVFA trained in this step will be used in the planner for two purposes: (1) to estimate

the distance between two local states belonging to the same landmark, or between two nearby

landmarks; and (2) to decide whether two states are close enough so that we can trust the distance

estimation from the network. Although the learned UVFA is imperfect globally, it is enough for

the two local usages.

4.5.3 Building a Map by Sampling Landmarks

After training the UVFA, we will obtain a distance estimation d(s,g)2, a policy for any

state-goal pair (s,g), and a replay buffer that contains all the past experiences. We will build a

landmark-based map to abstract the state space based on the experiences. The pseudo-code for

the algorithm is shown in Algorithm 2.

Landmark Sampling

The replay buffer stores visited states during training. Instead of localizing few important

states that play a key role in connecting the environment, we seek to sample many states to cover

the visited state space.

Limited by computation budget, we first uniformly sample a big set of states from the

replay buffer, and then use the farthest point sampling (FPS) algorithm [10] to select landmarks

to support the explored state space. The metric for FPS can either be the Euclidean distance

2If the algorithm returns a Q function, we will calculate the value by selecting the optimal action and calculate
the Q function and convert to d by Eq. 4.1
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Algorithm 2. Planning with State-space Mapping (Planner)
Input:state obs, goal g, UVFA Q(s,g,a), clip value τ

Output:Next subgoal gnext

1: Sample transitions T = (s,a,s′) from replay buffer B
2: V ← FPS(S = {s∥(s,a,s′) ∈ T}) ∪{g} ▷ Farthest point sampling to find landmarks
3: Wi j← ∞ ▷ Initialize Map as graph G = ⟨V,W ⟩
4: for For all pairs of (vi,v j) do
5: wi j←mina−Q(vi,v j,a)
6: if wi j ≤ τ then
7: Wi j← wi j
8: end if
9: end for

10: D←Bellman Ford(W) ▷ Calculate pairwise distance
11: gnext ← argminvi,a−Q(obs,vi,a)+Dvi,g
12: return gnext

between the original state representation or the pairwise value estimated by the agent.

We compare different sampling strategies in Section 4.6.3, and demonstrate the advantage

of FPS in abstracting the visited state space and exploration.

Connecting Nearby Landmarks

We first connect landmarks that have a reliable distance estimation from the UVFA and

assign the UVFA-estimated distance between them as the weight of the connecting edge.

Since UVFA is accurate locally but unreliable for long-term future, we choose to only

connect nearby landmarks. The UVFA is able to return a distance between any pair (s,g), so

we connect the pairs with distance below a preset threshold τ , which should ensure that all the

edges are reliable, as well as the whole graph is connected.

With these two steps, we have built a directed weighted graph which can approximate the

visited state space. This graph is our map to be used for high-level planning. Such map induces

a new environment, where the action is to choose to move to another landmark. The details can

be found in Algorithm 3.
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4.5.4 Planning with the Map

We can now leverage the map and the local UVFA network to estimate the distance

between any state-goal pairs, which induces a reliable policy for the agent to reach the goal.

For a given pair of (s,g), we can plan the optimal path between (s,g) by selecting a serial

of landmarks l1, · · · , lk, so that the approximated distance will be d̄(s,g) = minl1,··· ,lk d(s, l1)+

∑
k−1
i=1 d(li, li+1)+d(lk,g). The policy from s to g can then be approximated as: π̄(s,g) = π(s, l1)+

∑
k−1
i=1 π(li, li+1)+π(lk,g). Here the summation of π is the concatenation of the corresponding

action sequence.

In our implementation, we run the shortest path algorithm to solve the above minimization

problem. To speed up the pipeline, we first calculate the pairwise distances d(li,g) between each

landmark li and the goal g when episode starts. When the agent is at state s, we can choose the

next subgoal by finding gnext = argminli d(s, li)+d(li,g).

4.5.5 Proof of the Approximation

We have proposed to view the MDP as a directed graph. We can prove that this is true

when γ ≈ 1.

Assume that a policy π takes at most steps T to move from s to g and the reward at

each step rk’s absolute value is bounded by Rmax. Let wπ(s, t) be the expected total reward

along the trajectory, and dπ(s, t) = −wπ(s, t) for all s, t. If γ = 1− ε , we can prove that 3:

|Vπ(s,g)−wπ(s,g)| ≤ T 2Rmaxε . Thus, when γ ≈ 1 and T 2Rmax(1− γ)
+−→ 0, UVFA can be

approximated as:

Vπ(s,g)≈ E[wπ(s,g)] = E[−dπ(s,g)]. (4.2)

In this case, it is easy to show that the value iteration based on Bellman Equation Vπ∗(s,g) =

3When ε
+−→ 0, we can approximate (1− ε)k by its first-order Taylor expansion 1− εk.
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R(s,a,g)+ γE[Vπ∗(s′,g)]|s′∼Pπ∗(·|s,a) implies

wπ∗(s,g)≈ R(s,a,g)+wπ∗(s′,g)|s′∼Pπ∗(·|s,a),

where Pπ∗ is the transition probability of optimal policy π∗.

To prove this, note that γ is smaller than 1, we can further replace γ with ε = 1−γ . When

ε
+−→ 0, we can approximate (1− ε)k by its first-order Taylor expansion 1− εk. Thus we have:

|Vπ(s,g)−wπ(s,g)|= |E[
T

∑
k=1

rkγ
k−1]−E[

T

∑
k=1

rk]|

= |E[
T

∑
k=1

rk(1− ε)k−1]−E[
T

∑
k=1

rk]|

≈ |E[
T

∑
k=1

rk− (k−1)εrk]−E[
T

∑
k=1

rk]|

= |
T

∑
k=1

(k−1)εE[rk]|

≤ T 2Rmaxε
+−→ 0,

So we finish the proof of the relationship between Vπ and wπ when γ → 1, as mentioned in the

main paper.

4.5.6 Training Algorithm Outline

The Pseudo-code for the training algorithm is listed in Algorithm 3. The Algorithm 2 is

how we build the map and select subgoals by planning in a dynamic programming way.

4.5.7 Implementation Details in Experiments

We use the DDPG architecture and hyperparameters for all the experiments in Table 4.1.
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Algorithm 3. Train and Test with Planning
Input:current observation obs, desired goal g

1: for every training step do
2: with probability α , action← Actor(obs,g) + noise
3: with probability 1−α , action← Planner(obs,g)
4: next obs← env.step(action)
5: Train actor and critic network with hindsight experience replay
6: store trajectories in replay buffer when episode ends
7: end for
8: for every test step do
9: action = Planner(obs,g)

10: next obs = env.step(action)
11: end for
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Figure 4.2. The results on FourRoom Environment. Figure 4.2a shows the sampled landmarks
and the planned path based on our algorithm. Figure 4.2c, 4.2b, 4.2d are different evaluation
metrics of value estimation and success rate to reach the goal.

4.6 Experiments

4.6.1 FourRoom: An Illustrative Example

We first demonstrate the merits of our method in the FourRoom environment, where the

action space is discrete. The environment is visualized in Figure 4.2a. There are walls separating

the space into four rooms, with narrow openings to connect them. For this discrete environment,

we use DQN [168] with HER [8] to learn the Q value. Here, we use the one-hot representation

of the x-y position as the input of the network. The initial states and the goals are randomly

sampled during training.

We first get V (s,g) from the learned Q-value by equation V (s,g) = argmaxa Q(s,a,g),

and convert V (s,g) to pairwise distance D(s,g) based on Eq. 4.1. To evaluate the accuracy of
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Table 4.1. Implementation Details in Experiments

Parameter Value
Q/Critic Network Layers 5
Q/Critic Network Hidden Dimension 400
Policy Network Layers 3
Policy Network Hidden Dimension 400
Network Activation ReLU

Noise
OU-noise with σ = 0.02 (except AntMaze)
0.2 epsilon-greedy (AntMaze)

Discount Factor 0.99
Batch Size 128
Actor Learning Rate 0.0003
Critic Learning Rate 0.0003
Target Network Update Ratio 0.005
HER Replace Ratio 0.8

Episode Length

500 (PointMaze, AntMaze)
50 (Fetch/Push)
1500 (Complex AntMaze)
200 (Acrobot)

Distance Threshold δ

0.03 (2DMaze, 2DPush, Acrobot)
0.025 (FetchPush, FetchReach)
0.1 (PointMaze, AntMaze, Complex AntMaze)

distance estimation, we further calculate the ground truth distance Dgt(s,g) by running a shortest

path algorithm on the underlying ground-truth graph of maze. Then we adapt the mean distortion

error (MDE) as the evaluation metric: |D(s,g)−Dgt(s,g)|
Dgt(s,g)

.

Results are shown in Figure 4.2b. Our method has a much lower MDE at the very

beginning stage, which means that the estimated value is more accurate.

To better evaluate our superiority for distant goals, we first convert predicted values to

corresponding distances, and then plot the maximal distance during training. From Figure 4.2c,

we can observe that the planning module have a larger output range than DQN. We guess that this

comes from the max-operation in the Bellman-Ford equation, which pushes DQN to overestimate

the Q value, or in other words, underestimate the distance for distant goals. However, the planner

can still use piece-wise correct estimations to approximate the real distance to the goal.

We also compare our method with DQN on success reaching rate, and their performances
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(a) 2DReach (b) 2DPush (c) BlockedFetchReach (d) FetchPush

(e) PointMaze (f) AntMaze (g) Complex AntMaze (h) Acrobot

Figure 4.3. The environments we use for continuous control experiments.

are shown in Figure 4.2d. Our method can achieve better accuracy at the early stage.

4.6.2 Continuous Control

In this section, we will compare our method with HER on challenging classic control

tasks and MuJoCo [244] goal-reaching environments.

Environment Description

We test our algorithms on the following environments:

2DReach A green point in a 2D U-maze aims to reach the goal represented by a red

point, as shown in Figure 4.3a. The size of the maze is 15×15. The state space and the goal

space are both in this 2D maze. At each step, the agent can move within [−1,1]× [−1,1] as

δx,δy in x and y directions.

2DPush The green point A now need to push a blue point B to a given goal (red point)

lying in the same U-maze as 2DReach, as shown in Figure 4.3b. Once A has reached B, B will

follow the movement of A. In this environment, the state is a 4-dim vector that contains the

location of both A and B.
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BlockedFetchReach & FetchPush We need to control a gripper to either reach a location

in 3d space or push an object in the table to a specific location, as shown in Figure 4.3c and

Figure 4.3d. Since the original FetchReach implemented in OpenAI gym [19] is very easy

to solve, we further add some blocks to increase the difficulty. We call this new environment

BlockedFetchReach.

PointMaze & AntMaze As shown in Figure 4.3e and Figure 4.3f, a point mass or an

ant is put in a 12×12 U-maze. Both agents are trained to reach a random goal from a random

location and tested under the most difficult setting to reach the other side of maze within 500

steps. The states of point and ant are 7-dim and 30-dim, including positions and velocities.

Complex AntMaze As shown in Figure 4.3g, an ant is put in a 56×56 complex maze.

It is trained to reach a random goal from a random location and tested under the most difficult

setting to reach the farthest goal (indicated as the red point) within 1500 steps.

Acrobot As shown in Figure 4.3h, an acrobot includes two joints and two links. Goals

are states that the end-effector is above the black line at specific joint angles and velocities. The

states and goals are both 6-dim vectors including joint angles and velocities.

Experiment Result

The results compared with HER are shown in Figure 4.4. Our method trains UVFA with

planner and HER. It is evaluated under the test setting, using the model and replay buffer at

corresponding training steps.

In the 2DReach and 2DPush task (shown in Figure 4.4b), we can see our method

achieves better performance. When incorporating with control tasks, for BlockedFetchReach

and FetchPush environments, the results still show that our performance is better than HER, but

the improvement is not so remarkable. We guess this comes from the strict time limit of the two

environments, which is only 50. We observe that pure HER can finally learn well, when the task

horizon is not very long.

We expect that building maps would be more helpful for long-range goals, which is
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(a) 2DReach
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(c) BlockedReach
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(d) FetchPush
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(e) PointMaze
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(f) AntMaze
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(g) Complex AntMaze
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(h) Acrobot

Figure 4.4. Experiments on the continuous control environments. The red curve indicates the
performance of our method at different training steps.

evidenced in the environments with longer episode length. Here we choose PointMaze and

AntMaze with scale 12× 12. For training, the agent is born at a random position to reach a

random goal in the maze. For testing, the agent should reach the other side of the “U-Maze”

within 500 steps. For these two environments, the performance of planning is significantly

better and remains stable, while HER can hardly learn a reliable policy. Results are shown in

Figure 4.4e and Figure 4.4f.

We also evaluate our method on classic control, and more complex navigation + lo-

comotion task. Here we choose Complex Antmaze and Acrobot, and results are shown in

Figure 4.4h and Figure 4.4g. The advantage over baseline demonstrates our method is applicable

to complicated navigation tasks as well as general MDPs.

We also compare our method with Hierarchy RL on AntMaze and our method outperform

recent Hierarchy RL methods. See supplementary material for details.

4.6.3 Ablation Study

We study some key factors that affect our algorithm on AntMaze.

Choice of clip range and landmarks There are two main hyper-parameters for the

planner – the number of landmarks and the edge clipping threshold τ . Figure 4.6a shows the
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(a) Multi-level AntMaze (b) Average Steps (c) Success Rate

Figure 4.5. AntMaze of multi-level difficulty. Figure 4.5b and Figure 4.5c is the average steps
and success rate to reach different level of goals, respectively.

evaluation result of the model trained after 0.8M steps in AntMaze. We see that our method is

generally robust under different choices of hyper-parameters. Here τ is the negative distance

between landmarks. If it’s too small, the landmarks will be isolated and can’t form a connected

graph. The same problem comes when the landmarks are not enough.

The local accuracy of HER We evaluate our model trained between 0∼2.5M steps,

for goals of different difficulties. We manually define the difficulty level of goals, as shown in

Figure 4.5a. Goal’s difficulty increases from Level 1 to Level 6. We plot the success rate as well

as the average steps to reach these goals. We find out that, for the easier goals, the agent takes

less time and less steps to master the skill. The success rate and average steps also remain more

stable during the training process, indicating that our base model is more reliable and stable in

the local area.

Landmark sampling strategy comparison Our landmarks are dynamically sampled

from the replay buffer by iterative FPS algorithm using distances estimated by UVFA, and

get updated at the beginning of every episode. The FPS sampling tends to find states at the

boundary of the visited space, which implicitly helps exploration. We test FPS and uniform

sampling in fix-start AntMaze (The ant is born at a fixed position to reach the other side of maze

for both training and testing). Figure 4.6b shows that FPS has much higher success rate than

uniform sampling. Figure 4.6c shows landmark-based graph at four training stages. Through

FPS, landmarks expand gradually towards the goal (red dot), even if it only covers a small

proportion of states at the beginning.
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(a) Hyperparameters of the planner
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Figure 4.6. Figure 4.6a shows the relationship with the landmarks and clip range in the planner.
Figure 4.6b shows FPS outperforms uniform sampling. And Figure 4.6c is the landmark-based
map at different training steps constructed by FPS.

4.6.4 Comparison with HRL

We compare our method with HRL algorithms on large AntMaze (size 24× 24), as

shown in Table 4.2. We choose to compare with HIRO [176], which is the SOTA HRL algorithm

on AntMaze, and HAC [126], which also uses the hindsight experience replay. We test these

algorithms with the published codes45, under both sparse reward setting and dense reward setting.

On sparse reward setting, our algorithm can work well and reach the goal at the very

early stage (Ours sparse in Table 4.2). In contrast, neither HAC nor HIRO are able to reach the

goal in 2M steps. HIRO doesn’t use HER to replace the unachievable goals, which makes such

setting very challenging for the algorithm.

For dense reward setting, the map planner can obtain a high success rate at very early

stage shown as Ours dense in Table 4.2. Compared with HIRO dense, we can see that a planner

can reach distant goals sooner, since we don’t need to train a high-level policy to propose

subgoals for the low-level agent.

HAC introduced several complex hyper-parameters, and we couldn’t make it work well

for both settings.
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Table 4.2. Success Rate on Large AntMaze at different training steps.

0.5M 0.75M 1M 1.25M 1.5M 1.75M 2M
Ours Sparse 0.0 0.03 0.3 0.4 0.45 0.5 0.5
HIRO Sparse 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ours Dense 0.0 0.09 0.45 0.5 0.7 0.8 0.9
HIRO Dense 0.0 0.0 0.0 0.1 0.4 0.6 0.8

Figure 4.7. The success rate of HER to reach a random goal after we flip the training and testing
setting.

4.6.5 The Forgetting Issue of HER

We observe that HER may forget how to reach the ultimate goal even if it learns to reach

it some steps ago. For AntMaze, as shown in the main paper, the success rate for pure HER

is always below 0.2. Since the goal for testing is the most difficult one, to better evaluate this

issue for a larger goal space G of different difficulties, we then flip the setting for training and

testing, i.e., for training, the agent aims to reach a fixed goal at the other side of the maze, but

for testing, the agent is born at a random location and tries to reach a random goal. Here we

use a well-pretrained model, which has almost 0.7 success rate to reach a random sampled goal

within 200 steps. We then retrain it to reach a fixed goal under the new setting. We observe

that, although its performance to reach a fixed goal is slowly increasing, its ability to reach a

randomly picked goal in the maze drops to 0.5∼ 0.6.

4HIRO: https://github.com/tensorflow/models/tree/master/research/efficient-hrl
5HAC:https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-
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4.7 Conclusion

Learning a structured model and combining it with RL algorithms are important for

reasoning and planning over long horizons. We propose a sample-based method to dynamically

map the visited state space and demonstrate its empirical advantage in routing and exploration

in several challenging RL tasks. Experimentally we showed that this approach can solve long-

range goal reaching problems better than model-free methods and hierarchical RL methods, for

a number of challenging games, even if the goal-conditioned model is only locally accurate.

However, our method also has limitations. First, we empirically observe that some parameters,

particularly the threshold to check whether we have reached the vicinity of a goal, needs hand-

tuning. Secondly, a good state embedding is still important for the learning efficiency of our

approach, since we do not include heavy component of learning state embedding. Thirdly,

we find that in some environments whose intrinsic dimension is very high, especially when

the topological structure is hard to abstract, sample-based method is not enough to represent

the visited state space. And for those environments which is hard to obtain a reliable and

generalizable local policy, this approach will also suffer from the accumulated error.
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Chapter 5

DiffVL: Scaling Up Soft Body Manipula-
tion using Vision-Language Driven Differ-
entiable Physics

Combining gradient-based trajectory optimization with differentiable physics simulation

is an accurate and efficient technique for solving soft-body manipulation problems. Using a

well-crafted optimization objective, the solver can quickly converge onto a valid trajectory.

However, writing the appropriate objective functions requires expert knowledge, making it

difficult to collect a large set of naturalistic problems from non-expert users. We introduce

DiffVL, a framework that integrates the process from task collection to trajectory generation

leveraging a combination of visual and linguistic task descriptions. A DiffVL task represents

a long horizon soft-body manipulation problem as a sequence of 3D scenes (key frames) and

natural language instructions connecting adjacent key frames. We built GUI tools and tasked

non-expert users to transcribe 100 soft-body manipulation tasks inspired by real-life scenarios

from online videos. We also developed a novel method that leverages large language models to

translate task language descriptions into machine-interpretable optimization objectives, which

can then help differentiable physics solvers to solve these long-horizon multistage tasks that are

challenging for previous baselines. Experiments show that existing baselines cannot complete

complex tasks, while our method can solve them well. Videos can be found on the website

https://sites.google.com/view/diffvl/home.
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5.1 Introduction

This work focuses on soft body manipulation, a research topic with a wide set of

applications such as folding cloth [146, 253, 100], untangling cables [251, 250], and cooking

foods [221, 207]. Due to their complicated physics and high degree of freedom, soft body

manipulations raise unique opportunities and challenges. Recent works such as [96] and [264]

have heavily leveraged various differentiable physics simulators to make these tasks tractable.

Towards generalizable manipulation skill learning, such approaches have the potential to generate

data for learning from demonstration algorithms [144, 130]. However, to enable differentiable

physics solvers to generate a large scale of meaningful trajectories, we must provide them with

suitable tasks containing the scene and the optimization objectives to guide the solver. Previous

tasks are mostly hand-designed [96] or procedure-generated [144], resulting in a lack of diverse

and realistic soft-body manipulation tasks for researchers.

This work takes another perspective by viewing tasks as data, or more precisely, task

specifications as data. Each data point contains a pair of an initial scene and an optimization

objective depicting the goal of the task. Taking this perspective, we can annotate meaningful

tasks like annotating data of other modalities, like texts, images, videos, or each action trajectory,

by leveraging non-expert human labor, providing possibilities for scaling up the task space of

differentiable physics solvers.

A core problem in building a task collection framework with trajectory generation is

finding a suitable representation of the tasks. The representation should be intuitive for non-

expert annotators while being accurate enough to describe the complex shapes and motions of

the soft bodies that appear in various soft body manipulation processes. Last but not least, it

should be reliably interpreted by differentiable physics solvers to yield a valid trajectory.

Studies such as [5, 3, 162, 252] have shown that humans are proficient at defining

goal-driven, spatial object manipulation tasks using either sketches, natural languages, or both.

Figure 5.1(A), for instance, depicts the complete process of dumpling creation, supplemented
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sample("RollingPin", 
    y(    ) > y(max(  ))
)
optimize(
    keep(touch(  )),
    require(simiar(  ,   ))
)

scene 1

D) Optimization Programs

Large
Language
Model

NL2: Put the rolling pin above the white dough on the

right and deform it into the target shape

scene 2

B) Task Annotation

E) Sample and Optimize

C) DiffVL Task

scene 3

A) Dumpling Video

NL2NL1

NL1: ...

Figure 5.1. (A) A dumpling making video; (B) The annotator interacts with our GUI tool to
create DiffVL tasks; (C) A DiffVL task contains a sequence of 3D scenes along with natural
language instructions to guide the solver; (D) DiffVL leverages a large language model to compile
instructions into optimization programs consisting of vision elements; (E) The optimization
program guides the solver to solve the task in the end.

by textual instructions. Taking this as an inspiration, we present DiffVL, a framework that

enables non-expert users to specify soft-body manipulation tasks to a differentiable solver using

a combination of vision and language. Specifically, each DiffVL task consists of a sequence of

3D scenes (keyframes), with natural language instruction connecting adjacent keyframes. The

sequence of key frames specifies the sequence of subgoals of the manipulation task, and the

natural language instructions provides suggestions on how to use the actuators to manipulate the

objects through this sequence of subgoals. See Figure 5.1.

We develop tools to ease the annotation for non-expert users. With our interactive

simulator equipped with a GUI, the user can edit, manipulate, draw, or carve shapes easily like

other 3D editing tools and observe the consequence through simulation in an intuitive manner.

Meanwhile, when it is tedious for users to edit all the intermediate steps of a complex motion,

they can use natural language to describe the goal instead of drawing them step by step. This

enables us to build SoftVL100, a vision-language dataset with 100 diverse tasks. DiffVL uses

LLM to compile the natural language instructions to an optimization program – which enforces
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a set of constraints during the soft-body manipulations from one keyframe to the next. This

optimization program is then used by a differentiable physics solver to generate a working

trajectory.

To summarize, our work makes the following contributions:

• We propose a new multi-stage vision-language representation for defining soft-body

manipulation tasks that is suitable for non-expert user annotations.

• We developed a corresponding GUI, and curated SoftVL100, consisting of 100 realistic

soft-body manipulation tasks from online videos1.

• We develop a method, DiffVL, which marries the power of a large-language model

and differentiable physics to solve a large variety of challenging long-horizon tasks in

SoftVL100.

5.2 Related Work

Differentiable simulation for soft bodies Differentiable physics [91, 257, 195, 55, 90]

has brought unique opportunities in manipulating deformable objects of various types [155, 89,

147, 99, 256, 140, 259, 234, 167, 265, 259, 153, 88, 136, 212, 64], including plasticine [96],

cloth [133], ropes [149] and fluids [261] simulated with mass-spring models [91], Position-

based Dynamics [174], Projective Dynamics [195, 44], MPM [104] or Finite Element Method

[81], which could be differentiable through various techniques [91, 44, 154, 17]. It has been

shown that soft bodies have smoother gradients compared to rigid bodies [96, 91, 257, 9, 232],

enabling better optimization. However, the solver may still suffer from non-convexity [132]

and discontinuities [232], motivating approaches to combine either stochastic sampling [132],

demonstrations [130, 9] or reinforcement learning [263, 171] to overcome the aforementioned

issues. DiffVL capitalizes on an off-the-shelf differentiable physics solver to annotate tasks. It

incorporates human priors through a novel vision-language task representation. This allows users
1both the GUI and dataset will be made public
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to employ natural language and GUI to guide the differentiable solver to solve long-horizon

tasks, distinguishing DiffVL from previous methods.

Task representation for soft body manipulation There are various ways of defining

tasks for soft body manipulation. To capture the complex shape variations of soft bodies, it

is natural to use either RGB images [259, 144, 208] or 3D point cloud [222, 136] to represent

goals. However, given only the final goal images, it may be hard for the solver to find a good

solution without further guidance. Besides, generating diverse images or point clouds that

adhere to physical constraints like gravity and collision avoidance in varied scenes can be

challenging without appropriate annotation tools. Our GUI tools are designed to address these

issues, simplifying the process. Other works use hand-defined features [26, 251] or formalized

languages [128]. These methods necessitate specialist knowledge and require tasks to be defined

on a case-by-case basis. Learning from demonstrations [130, 208] avoids defining the task

explicitly but requires agents to follow demonstration trajectories and learn to condition on

various goal representations through supervised learning or offline reinforcement learning [57,

51, 223, 71, 152, 102, 28, 4, 7]. However, collecting demonstrations step-by-step [196, 275, 130]

requires non-trivial human efforts, is limited to robots with human-like morphologies, and may

be challenging for collecting tasks that are non-trivial for humans (e.g., involving complex

dynamics or tool manipulation). Our annotation tool emphasizes the description of tasks over

the identification of solutions. Annotators are merely required to define the task, not execute the

trajectories themselves, thereby simplifying the annotation process. Our method is also related

to [135], but we consider a broader type of tasks and manipulation skills.

Language-driven robot learning Many works treat language as subgoals and learn

language-conditioned policies from data [224, 61, 177, 129, 20, 164, 163] or reinforcement

learning [105, 50, 237, 32]. It has been shown that conditioning policies on languages lead to

improved generalization and transferability [224, 105]. [219] turns languages into constraints to

correct trajectories. Our method distinguishes itself by integrating language with differentiable

physics through machine-interpretable optimization programs. Recent works aim at leveraging
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large language models [6, 43, 258, 143, 35] to facilitate robot learning. Most use language

or code [139] to represent policies rather than goals and focus on high-level planning while

relying on pre-defined primitive actions or pre-trained policies for low-level control. In contrast,

our language focuses on low-level physics by compiling language instructions to optimization

objectives rather than immediate commands. It’s noteworthy that VIMA [106] also introduces

multimodal prompts, embodying a similar ethos to our vision-language task representation. Their

approach views multimodal representation as the task prompts to guide the policy. However, it

still requires pre-programmed oracles to generate offline datasets for learning, which is hard to

generalize to soft-body tasks with complex dynamics. Contrastingly, we adopt a data annotation

perspective, providing a comprehensive framework for task collection, natural language compil-

ing, and trajectory optimization, enabling us to harness the potential of differentiable physics

effectively.

Task and motion planning Our optimization program compiled from natural language

is closely connected to the field of Task and Motion Planning (TAMP) [62], particularly Logic

Geometric Programming (LGP) [246, 247]. We draw inspiration from LGP’s multiple logical

states in designing our DiffVL task representation. However, unlike LGP, our approach asks

human annotators to assign ”logic states” and facilitates the manipulation of soft bodies through

our novel vision-language representation. Some recent works have explored the intersection of

TAMP and language models [41, 227, 157] while primarily focusing on generating high-level

plans.

5.3 SoftVL100: Vision-Language Driven Soft-body Manipu-
lation Dataset

In this representation, the original tasks are divided into a sequence of 3D scenes, or

key frames, along with text descriptions that detail the steps for progressing to the next scene.

Figure 5.2(A) illustrates our representation. Each key frame consists of multiple soft bodies with
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Grasp the back end of rope. Then Wind the rope and place the salmon ball.
Grasp the front end of rope. Then Wind the rope and place the black ball.

Grasp the front end of top yellow by gripper and place it on the bottom.
Then grasp the ropes by gripper to wind and place them into theirs goal shape.

Finally, grasp the red by gripper to place it on the top.

(A)Multistage Tasks (B) Scene examples

Put the rolling pin above the white and manipulate the white into goal.
Then grasp the yellow by gripper and place them into goal places.

Finally grasp the white and wrap it as well as the yellow in it.

Figure 5.2. (A) Example of multi-stage tasks and their text annotations; (B) Snapshots of scenes
in SoftVL100 dataset.

Select the object to edit. Add a new sphere Lift it upPress it into a cylinderCut it into two objects

Annotator

The chosen sub-goal

Figure 5.3. Example operations in GUI tools

different positions and shapes. By grouping two consecutive key frames together, we form a

manipulation stage. Natural language instructions may guide the selection of an actuator and

provide guidance on how to control it to reach the subsequent key frames. In Section 5.3.1, we

develop annotation tools to facilitate the task representation annotation process. These tools make

it easy to construct a diverse set of tasks, referred to as SoftVL100, as discussed in Section 5.3.2.

5.3.1 Vision-Language Task Annotator

Our annotation tool is based on PlasticineLab [96], a simulation platform that utilizes

the Material Point Method (MPM) [92] for elastoplastic material simulation. To enhance the

user experience and support scene creation, we integrate it into SAPIEN [262], a framework that

enables the development of customized graphical user interfaces.
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Our simulator runs on GPU servers and the interface is accessible as a web service

through VNC, allowing users to interact with the simulator directly from their web browser.

When starting a new task annotation, users can open the simulator, perform actions, and save the

current scene. Our GUI tools provide comprehensive support for creating, editing, managing,

and simulating objects, as illustrated in Figure 5.3. Scene creation: The GUI offers a variety of

primitive shapes, such as ropes, spheres, cubes, and cylinders, that users can add to the scene.

Before adding a soft-body shape, users can adjust its size, color, and materials (e.g., rubber, fiber,

dough, iron) if needed. Shape editing: Users have the ability to select, edit, or delete shapes

within the scene. The GUI tool includes a range of shape operators, including moving, rotating,

carving, and drawing. Simulation: Since the interface is built on a soft body simulator, users

can simulate and interact with the soft body using rigid actuators or magic forces. They can also

run simulations to check for stability and collision-free states. Object management: Users can

merge connected shapes to create a single object or divide an object into two separate ones with

distinct names. The annotation tool keeps tracking the identities of objects across scenes.

Once users have finished editing the scene and creating a new key frame, they can save

the scene into the key frame sequence. The key frames are displayed below the simulator,

visualizing the current task annotation progress. Users have the option to open any of these saved

scenes in the simulator, delete a specific scene if needed, and add text annotations for each scene.

5.3.2 The SoftVL100 Dataset

Our annotation tool simplifies the task creation process, enabling us to hire non-expert

users to collect new tasks to form a new task set, SoftVL100. The task collection involves several

stages, starting with crawling relevant videos from websites like YouTube that showcase soft

body manipulation, particularly clay-making and dough manipulation. We developed tools to

segment these videos and extract key frames to aid in task creation.

We hired students to annotate tasks, providing them with a comprehensive tutorial and

step-by-step guidelines for using our annotation tools. It took approximately two hours for each
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annotator to become proficient in using the annotation tool. Subsequently, they were assigned

a set of real-world videos to create similar tasks within the simulator. After collecting the

keyframes, we proceed to relabel the scenes with text descriptions. Annotators are provided with

a set of example text descriptions. We encourage users to include detailed descriptions of the

actuators, their locations, moving directions, and any specific requirements, such as avoiding

shape breakage for fragile materials. The annotation process for each task typically takes around

30 minutes. Using our task annotation tool, we have created a dataset called SoftVL100, which

consists of 100 tasks, and there are more than 4 stages on average. The tasks cover a wide range

of skills as illustrated in Figure 5.2 (A). Sample tasks from the dataset can be seen in Figure 5.2

(B).

5.3.3 Details of choosing keyframes

The selection of keyframes is determined by the annotators, as we believe humans can

naturally decompose complex tasks into simpler ones for communication. When annotators

manipulate a scene within the GUI, they can save the current scene as a key frame within the

task representation. They can also add, modify, or delete key frames using the editors within the

web server interface.

The annotators were instructed on what kind of decomposition would likely result in a

working trajectory, i.e., segmenting the manipulation processes at contact point changes., which

is a simple and effective way for the annotator to provide high-quality labels, without having any

expert understanding of the physics and the solver. If the agent is required to manipulate a new

object or the actuator needs to establish contact on a different face of the object, annotators would

introduce a new keyframe. Additionally, we employ heuristic methods to segment YouTube

videos. This segmentation occurs when there is a significant disparity between two frames,

aiming to simplify the keyframe selection for annotators.
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5.4 Optimization with Vision-Language Task Description

RollingPin = "RollingPin"
Dough      = get("white right dough")
Goal       = goal("white right dough")

sample(RollingPin,                      // use the rolling pin
    y(RollingPin) > y(max(pcd(Dough)))  // above the dough
)
optimize(
    keep(touch(Dough)),                 // deform the dough
    require(similar(Dough, Goal))       // into the target shape
)

require(similar(Dough, Goal))

y(RollingPin) > y(max(Dough))

Put the rolling pin above the white
dough on the right. Roll the pin to
deform it into the target shape.

keep(touch(Dough))

Current Frame Next Frame

A) One Stage of A Task

Large
Language
Model

RollingPin

B) Optimization Program

Dough

Goal

Extracted Visual
Elements

C) Smapling and Optimiation

Sampling Actuators Rollout Trajectory Ending states

y(RollingPin)

y(max(Dough))

>

dist(RollingPin, Dough)

Dough Goal

Earth Mover's Distance

Figure 5.4. (A) One stage of the DiffVL task of two keyframes and a natural language instruction.
(B) The compiled optimization program. (C) The sampling and optimization process.

We propose DiffVL to tackle the challenging tasks in SoftVL100. Given a stage of a

task depicted in Figure 5.4(A), DiffVL utilizes large language models to compile the natural

language instructions into a machine-interpretable optimization program in Figure 5.4(B). The

program comprises of the names of visible elements and Python functions, effectively capturing

the essence of the language instructions. We introduce the design of our DSL in Section 5.4.1

and outline the DiffVL compiler based on large language models (LLM) in Section 5.4.2. The

resulting optimization program includes crucial information for selecting and locating actuators

and can facilitate a differentiable physics solver to generate valid trajectories, as discussed in

Section 5.4.3.

5.4.1 Optimization Program

The optimization program is formulated using a specialized domain-specific language

(DSL) that incorporates several notable features. Firstly, it includes functions that extract the
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names of visible elements from the 3D scenes and support operations on these elements, rep-

resented as 3D point clouds. This enables manipulation and analysis of the visual information

within the optimization program. Secondly, the DSL provides various functions to express geo-

metric and temporal relations, encompassing common geometric and motion constraints. These

functions facilitate the representation and handling of natural language instructions. Further-

more, the DSL clauses are interpreted into PyTorch [187], making the constraints automatically

differentiable and directly applicable for differentiable physics solvers.

The example in Figure 5.4 already exposes multiple components of our DSL. In the

program, we can refer to the names of visible elements through get and goal functions, which

can look for and extract the 3D objects that satisfy the description, identified by their color, shapes,

and locations (we ensured that these attributes are sufficient to identify objects in our tasks).

The program will then start with a sample statement, which is used to specify the actuators

and their associated constraints over initial positions. Actuators refer to the entities utilized for

manipulation, such as a robot gripper, a knife, or the rolling pin depicted in Figure 5.4. The

constraint y(RollingPin) > y(max(pcd(Dough))) within the sample statement represents

a specific constraint. It ensures that the height of the actuator (RollingPin) is greater than the

highest y coordinate of the white dough in the scene, reflecting the meaning of “put bove” of

the language instructions. Following the sample statement, an optimize statement is included.

This statement plays a vital role in defining the constraints and objectives for the manipulation

trajectories. These constraints and objectives serve as the differentiable optimization objectives

that the differentiable physics solver aims to maximize. In an optimization program, two special

functions, namely require and keep, can be used to specify the temporal relationship of the

optimization objectives. By default, the require function evaluates the specified condition at

the end of the trajectories. On the other hand, the keep function is applied to each frame of the

trajectories, ensuring that the specified conditions are maintained throughout the trajectory. In

the example program shown in Figure 5.4(B), the optimization program instructs the actuator

to continuously make contact with the white dough. The function similar computes the Earth
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Mover distance [206] between two objects’ point clouds, which aims to shape the dough into

a thin pie, the goal shape extracted from the next key frame. We illustrate more example

optimization programs in Figure 5.5.

A) Grasp the front of the rope and then grasp the back 
of the rope. Deform the rope into its target shape.

sample("gripper", grasp(frontend(get("rope"))))
optimize(require(emd(get("rope"), goal("rope"))))
sample("gripper", grasp(backend(get("rope"))))
optimize(require(similar(get("rope"), goal("rope"))))

B) Use the gripper to first lift up the white cube above the
black wall and then move it to the target location

sample("gripper", grasp(get("white")))
optimize(
  require(y(com("white"))>y(max(pcd("black"))), 0.5),
  require(l2(com(get("white")), com(goal("white")))),
)

C) Put the knife above the white object. Cut the knife
down to match the target shape of the white object.
Ensure that the knife does not rotate.
sample("knife", roll(0.),
       y("knife") > y(max(pcd("white"))))
optimize(
    keep(touch(leftpart("white"))),
    keep(roll() < 0.1), keep(pitch() < 0.1),
    require(similar("white", goal("white"))),
)

D) Pick up the front part of object 'top left mat' and place
it into the goal without breaking it. 

sample("gripper", touch(frontpart("top left mat"))
optimize(
  keep(touch(frontpart("top left mat"))),
  require(similar("top left mat", 
  goal("top left mat"))),
  keep(no_break("top left mat")),
)

Figure 5.5. A) Decomposing a stage into sub-stages: manipulating a rope into a circle using a
single gripper requires the agent to first grasp the upper part of the rope and then manipulate
the other side to form the circle. The program counterpart contains two pairs of sample and
optimize, reflecting the two sub-stages in the language instruction. backend extracts the back
end of 3D objects; B) Guiding the motion of the objects to avoid local optima: we use com to
compute the center of the mass of objects and pcd to get the clouds; relation operators compare
two objects’ coordinate. The first require takes an additional argument 0.5, meaning the inner
clause, which asks the white object above the black one, should be evaluated halfway through
the trajectory to represent meanings of ‘first do A and then do B.’ C) Selecting a suitable tool to
split the objects; D) The program can include additional constraints like not breaking the shape,
which is critical for manipulating fragile materials.

5.4.2 Compiling Natural Languages with LLM

We utilize the power of the Large Language Model (LLM) to compile text instructions

into optimization programs. This approach capitalizes on the few-shot capabilities of the LLM

and employs various few-shot prompts [255, 21]. The prompts begin by defining the “types” and

“functions” within our DSL. Each function is accompanied by a language explanation to clarify

its purpose. Additionally, examples are given to demonstrate how primitive functions can be

combined to form complex clauses. To facilitate the translation, we provide the language model

with both the scene description of the objects that it contains and the natural language instructions

that we wish to compile. We then prompt the model with the instruction, ”Please translate the
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instructions into a program.” This step is repeated for all frames, resulting in their respective

optimization programs. Through our experimentation, we have observed that GPT-4 [181]

surpasses other models in terms of performance.

5.4.3 Solving the Optimization through Differentiable Physics

We leverage the differentiable physics solver in [96], which has been proven accurate

and efficient in solving the generated optimization programs. The process is illustrated in

Figure 5.4(C). The sample function is employed within a sampling-based motion planner.

Initially, it samples the pose of the specified actuator type to fulfill the provided constraints.

Subsequently, an RRT planner [122] determines a path toward the target location, and a PD

controller ensures that the actuators adhere to the planned trajectory. With the actuator suitably

initialized, the optimize clause is then passed to a gradient-based optimizer to optimize the

action sequence for solving the task. The solver performs rollouts, as depicted in Figure 5.4(C),

where the conditions enclosed by keep operators are evaluated at each time step. Conversely,

conditions enclosed by require are evaluated only at specified time frames. The resulting

differentiable values are accumulated to calculate a loss, which is utilized to compute gradients

for optimizing the original trajectories. For handling multistage tasks involving vision-language

representation, we can solve them incrementally, stage by stage.

5.5 Experiments

In this section, we aim to justify the effectiveness of our vision-language task representa-

tion in guiding the differentiable physics solver. To better understand the performance of different

solvers, we evaluate the tasks of two tracks. The first track focuses on tasks that only require

agents to transition from one key frame to another. Tasks in this track are often short-horizon.

This setup allows us to evaluate the efficiency and effectiveness of the differentiable physics

solver in solving short-horizon soft body manipulation tasks, as described in Section 5.5.1. In

the second track, we validate the agent’s capability to compose multiple key frames in order to
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solve long-horizon manipulation tasks. These tasks involve complex scenarios where agents

need to switch between different actuators and manipulate different objects. The evaluation of

this composition is discussed in Section 5.5.2.

We clarify that our approach does not use a gradient-based optimizer to optimize trajecto-

ries generated by the RRT planner. Motion planning and optimization occur in separate temporal

phases. Initially, we plan and execute a trajectory to position the actuator at the specified initial

pose. Subsequently, we initialize a new trajectory starting from this pose, and the actuator re-

mains fixed in this trajectory as we initialize the policy with zero actions to maintain its position.

The sample function generates poses in line with the annotators’ guidance.

5.5.1 Mastering Short Horizon Skills using Differentiable Physics

Before evaluating the full task set, we first study how our vision-language representation

can create short-horizon tasks that are solvable by differentiable physics solvers. We picked 20

representative task stages as our test bed from the SoftVL100. We classify these tasks into 5

categories, with 4 tasks in each category. The categories are as follows: Deformation involves

the deformation of a large single 3D shape, achieved through pinching and carving; Move

asks the movement of an object or stacking one object onto another; Winding involves the

manipulation of a rope-like object to achieve different configurations. Fold focuses on folding a

thin mat to wrap other objects. Cut involves splitting an object into multiple pieces. The selected

tasks encompass a wide spectrum of soft body manipulation skills, ranging from merging and

splitting to shaping. We evaluate different methods’ ability to manipulate the soft bodies toward

their goal configuration. The agents are given the goal configuration in the next frame, and we

measure the 3D IoU of the ending state as in [96]. We set a threshold for each scene’s target IoU

score to measure successful task completion, accommodating variations in IoU scores across

different scenes.

We compare our method against previous baselines, including two representative re-

inforcement learning algorithms, Soft Actor-Critic (SAC) [74] and Proximal Policy Gradient
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(PPO) [216]. The RL agents perceive a colored 3D point cloud as the scene representation and

undergo 106 steps to minimize the shape distance towards the goal configuration while con-

tacting objects. Additionally, we compare our approach with CPDeform [132], which employs

a differentiable physics solver. However, CPDeform uses the gradient of the Earth mover’s

distance as a heuristic for selecting the initial actuator position. It differs from DiffVL which

utilizes the text description to determine ways to initialize the actuators and the optimization

objectives. For differentiable physics solvers, we run Adam [113] optimization for 500 gradient

steps using a learning rate of 0.02.

Table 5.1 presents the success rates and mean IoU of various approaches. It is evident

that, except for specific deformation and cutting tasks where SAC shows success, the RL

baselines struggle to solve most tasks. Although RL agents demonstrate an understanding

of how to manipulate the soft bodies correctly, they lack the precision required to match the

target shape accurately. CPDeform achieves partial success in each task category. It surpasses

the RL baselines by utilizing a differentiable physics solver and employing a heuristic that

helps identify contact points to minimize shape differences. However, CPDeform’s heuristic

lacks awareness of physics principles and knowledge about yielding objects to navigate around

obstacles. Consequently, CPDeform fails to perform effectively in other tasks due to these

limitations. We want to emphasize that integrating language into RL baselines entails non-trivial

challenges. For example, many reward functions in our optimization program have temporal

aspects, making the original state non-Markovian. As we focus on enhancing the optimization

baseline through language-based experiments, we’ve chosen to defer tackling the complexities

of language-conditioned RL to future research.

Our approach surpasses all other methods, achieving the highest overall success rate. To

examine the impact of different components and illustrate their effects, we conduct ablation

studies. First, we remove the constraints in sample named “- Sample” in the table and ask the

agent to sample random tools without using hints from the language instructions. As a result,

the performance drops significantly, either getting stuck at the local optima or failing to select
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Table 5.1. Single stage experiment results. The metrics we use are Success Rate (SR) and 3D
Intersection Over Union (IOU).

previous baselines DiffVL

SAC PPO CPDeform - Sample - Optimize Ours

SR/IOU SR/IOU SR/IOU SR/IOU SR/IOU SR/IOU

Deform 0.25 (0.504) 0.00/0.392 0.25/0.532 0.11/0.489 0.44/0.524 1.00/0.564
Move 0.00/0.541 0.00 /0.527 0.08 /0.570 0.00/0.533 0.33/0.618 1.00/0.641
Wind 0.00/0.308 0.00/0.289 0.21/0.362 0.25 /0.351 0.08 /0.408 0.59/0.446
Fold 0.00/0.572 0.00 /0.457 0.33/0.612 0.00/0.550 1.00 /0.650 0.94/0.643
Cut 0.33/0.449 0.00/0.408 0.89/0.482 0.33/0.357 0.56/0.447 0.87/0.490
Total 0.12/0.475 0.00/0.415 0.35/0.512 0.14/0.456 0.48/0.529 0.88/0.557

suitable tools to finish the task. For example, in the cutting task, it failed to select knives and

split the white material into two pieces. On the other hand, the variant “- Optimize” replaces the

statement in optimize by an objective focusing solely on optimizing shape distance, removing

additional guidance for the physical process. The effects are lesser compared to the previous

variant, demonstrating that with a suitable tool initialization method, a differentiable physics

solver is already able to solve many tasks. However, as illustrated in Figure 5.6(A), it does not

lift the white cube to avoid the black wall in a moving task and breaks the mat shown in the

second row. In the winding task, it fails to find the relatively complex lifting-then-winding plan

directly from shape minimization. In contrast, our method can successfully solve these tasks

after leveraging the trajectory guidance compiled from the natural language instructions. We

find that our solver is quite efficient. For a single-stage task, it takes 10 minutes for 300 gradient

descent steps on a machine with NVIDIA GeForce RTX 2080, for optimizing a trajectory with

80 steps. For most tasks, 300 gradient steps are sufficient for finding good solutions.

5.5.2 Driving Multi-Stage Solver using Vision-Language

Having evaluated short-horizon tasks, we apply our method to long-horizon tasks in

SoftVL100. We leverage the natural language instructions to generate the evaluation metrics

for each task, which might measure the relationships between objects, check if soft materials
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-OptimizeStart -Sample

(a) Move a single object to another side

Ours Goal

(b) Pick up the front end of top left mat and use it to cover the brown core

(c) First pick up the back end of the yellow rope and move it across the orange one 

(d) Use knife to cut out the left part of the white mat

(a)Multistage Task

(b) Our solution

(d) No actuator sample (e) Single stage

(c) final only

(1) (2)

Figure 5.6. (1) Performance on single stage tasks. (2) Performance on a multistage task that
includes moving, packing, and pressing.

rupture, or if two shapes are similar.

Our multistage vision-language task representation decomposes the long-horizon ma-

nipulation process into multiple short-horizon stages, allowing our method to solve them in a

stagewise manner. As baseline algorithms fail to make notable progress, we apply ablation to

our method: We first compare our method with a single-stage approach (single), which refers

to solving long-horizon tasks like short-horizon tasks, by dropping the key frames and directly

optimizing for the final goal. We then dropped the actuator sampling process in the middle (no

actuator sample). The solver is still told to optimize for key frames (sub-goals) at each stage

but was not informed to switch actuators and objects to manipulate. As expected, dropping the

stage information and the language instructions in our vision task representation significantly

degrades the performance, making solvers unable to complete most tasks. After leveraging the

language instructions, the FinalOnly solver removes the vision subgoals in each sub-stage but

provides the agent’s actuators to choose the objects to manipulate. In this case, similar to the “-

Sample” variant, the differentiable physics solver can solve certain tasks by only minimizing
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Figure 5.7. Success rate of multi-stage tasks of different ablations

shape distance. However, it may have troubles for tasks that require objects to deform into

multiple shapes. For example, as illustrated in Figure 5.6(B), the solver needs to first compress

the purple shape into a thin mat to warp the yellow dough.

The solver fails to discover the compression process after removing the subgoals but

directly moves the purple toward its final configurations, resulting in the failure in the end. This

showcases the importance of the introduction of the key frames in our vision-language task

annotation.

5.6 Additional Details of DiffVL

In this section, we provide additional details on the dataset, the GUI tools, and the

optimization program used in the DiffVL framework. We also provide a comparison between

GPT3.5 and GPT4 in the translation task.

5.6.1 DSL for Optimization Programs

Table 5.2 lists the functions and primitives in our domain-specific language.
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Table 5.2. Elements in the optimization program

Category FuncName Explanation
Objects get(desc) Get the point cloud of the objects

with the description, for example,
get(”left white mat”). If the desc
is ’all’, then get all the objects.

goal(descr) Get the point cloud of the goal for
the objects with the given name.
The name can also be ’all’.

Temporal conditions
keep(cond, start=0, end=1) Minimize the cond from time s to

time t. It only takes one cond as
an argument.

require(cond, end=1) Reach the condition at time t. By
default end is 1.

and(cond1, cond2, . . . ) Needs to satisfy all constraints

Shape operators

com(shape) Compute the center of the mass
of the point cloud

similar(A, B) Compare the shape distance us-
ing EMD distance

pcd(shape) Get the PyTorch tensor that repre-
sents the point cloud of the shape

leftpart, rightend, etc. Get a part of the point cloud
based on the description.

Actuator touch(ShapeA) Minimize the signed distance
function of the actuators and the
shape

away Check if the actuator is far away
from the shape

roll, vertical, etc. Get the rotation angle of the actu-
ator

Tensor operators Relation >,<,≥,≤ Compare relationships of two
vectors or scalar

Algebra +,− Add values to something.
l2(A, B) Compare the l2 distance
min, max Get the min max of a tensor

Soft Body Constraints fix shape Do not change the shape of the
objects for too much

fix place Keep the object not moving
no break Do not break the objects

Special stage(sample fn, optimize fn) An optimization stage that may
involve a motion planning proce-
dure and an optimization proce-
dure. It is only used for compil-
ing.

sample(tool name, *conds) Select the tool of tool name.
We provide “knife”, “board”,
“rolling pin” and “gripper”. The
conds are list of conditions that
we hope the tool satisfy

optimize(*conds) Optimize the trajectory to satisfy
the conditions.

102



We rely on the large language model’s few-shot ability to compile the natural language

description like “lift up the white cube above the black wall” into an executable optimization

program. The prompt start with the introduction to the DSL, listing the functions as well as

the explanations, followed by several examples illustrating how to compose those functions to

implement complex functions, e.g., by checking the x coordinates of two objects to decide if

one is on the left of the other. Then we provide several pairs of natural language inputs and

corresponding programs. In the end, we provide the natural language input to compile. Below is

an example prompt.

Here are the functions for obtaining objects and target objects. Their

return types are all one single point -cloud object. A desc can only

include strings that contain shape ["rope", "sphere", "box", "mat"],

colors like ["white", "gray", "green", "red", "blue", "black"], and

position like ["left", "right", "top", "bottom "]:

- get(desc) # Get the point cloud of the objects with the description ,

for example , get("left white mat"). If the desc is ’all ’, then get

all the objects.

- goal(desc) # Get the point cloud of the goal for the objects with the

given name. The name can also be ’all ’.

- others(desc) # Get all other point clouds except the object with the

given name.

- others_goals(desc) # Get all other point clouds of the goals except

the object with the given name.

Here are the functions that use constraints. Note that the obj , and

goal can only be one single point -cloud:

- keep(cond , start=s, end=t) # Minimize the reward from time s to time

t. It only takes one cond as an argument.

- require(cond , end=t) # Reach the condition at time t. By default end

=1.
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- similar(obj , goal) # Compare the shape earth mover distance of the

objects to the given goal shapes.

- touch(obj) # Minimize the distance between the tool and the object.

- fix_place(obj) # Ensure that the shape of the given object(s) and its

positions do not change. It only takes one argument.

- no_break(obj) # Do not break the objects.

- away() # check if the actuator is away from all objects

- roll() # actuators ’ rotation about x

- pitch () # actuator ’s rotation about y

- yaw() # actuator ’s rotation about y

- vertical () # actuator is vertical

- horizontal () # actuator is horizontal

Here are the example functions to obtain additional information:

- com(obj) # Center of the objects.

- pcd(obj) # point clouds of the objects.

- max(pcd(obj)) # max of the point cloud of the objects.

- min(pcd(obj)) # min of the point cloud of the objects.

- x(com(obj0)) # X coordinate of the points.

- x(min(pcd(obj0))) # smallest X coordinate of the boundary of the

points.

We can compose those functions to implement various functions. Below

are examples:

# The x coordinate of the objects

x(com(obj0))

# Obj0 is on the left of obj1.

lt(x(com(obj0)), x(com(obj1)))
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# the front end of the Obj0 is above obj1.

gt(y(com(frontend(obj0))), y(max(pcd(obj1))))

# Obj0 is in front of obj1.

lt(z(com(obj0)), z(min(pcd(obj1))))

# deform the rope named by ’blue ’ into its goal shape

require(similar(’blue ’, goal(’blue ’)))

# deform object ’blue ’ into its goal shape while fixing others

require(similar(’blue ’, goal(’blue ’))), keep(fix_place(others(’blue ’))

)

# first do A then do B

require(A, end =0.5), require(B, end =1.0)

# not rotate the actuator aboux x axis

keep(roll() < 0.1)

Here are special function for

- stage(sample_clause , optimize_clause) # Each program may have

multiple stage and each stage must have a ’sample ’ function and an ’

optimize ’ function. There are at most three stages. Start a new

stage if and only if we need to change the actuators or manipulate

different objects or parts.

- sample(actuator_name , *args) # sample the actuator with the given

name in the beginning , args denotes for the conditions or

requirements of the actuator ’s pose.

- optimize (*args) # conditions needs to satiesfied during the
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manipulation.

Below are examples of the scenes and the program to solve the scenes.

Input: grasp the front end of the blue rope vertically and then deform

into its goal pose and please do not break it. Then grasp the back

of the mat and then pick up the mat and move it into its goal

position.

Program:

blue_rope = get("blue rope")

stage(

sample (" gripper", grasp(frontend(blue rope)), vertical ()),

optimize(

require(similar(blue_rope , goal(’blue rope ’))),

keep(touch(blue_rope)),

keep(no_break(blue_rope))

)

)

mat = get("mat")

stage(

sample (" gripper", grasp(backpart(mat))),

optimize(

require(l2(com(get(mat)), com(goal("mat")))),

keep(touch(backpart(mat)))

)

)

Input: cut the mat into its goal shapes and then move the knife away.

Program:

mat = get("mat")
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stage(

sample ("knife", touch(mat)),

optimize(

require(similar(mat , goal(’mat ’))),

keep(touch(mat), end =0.5),

requre(away())

)

)

Input: move the object ’A’ to the left of ’B’ then move it to the right

.

Program:

A = get(’A’)

B = get(’B’)

stage(

sample (" gripper", grasp(A)),

optimize(

require(lt(x(com(A)), x(com(B))), end =0.5),

require(gt(x(com(A)), x(com(B))), end =1),

keep(touch(A))

)

)

Input: Put the board above all objects and deform them into their goal

shapes and keep them not broken

Program:

stage(

sample ("board", gt(y(" board"), y(max(pcd(’all ’))))),

optimize(

require(similar(’all ’, goal(’all ’))),

keep(touch(’all ’)),
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keep(no_break(’all ’)),

)

)

Input: Use the gripper to grasp the right part of the object on the

right and deform it into its target shape while fixing others.

Program:

left = get(’left ’)

stage(

sample (" gripper", rightpart(left)),

optimize(

require(similar(left , goal(’left ’))),

keep(fix_place(others(’left ’))),

keep(touch(rightpart(left))),

)

)

Input: There are two objects of different colors "red", "green ". Use

the board to touch them one by one. Deform them into their target

shape.

Program:

stage(

sample ("board", touch("red")),

optimize(

keep(touch(’red ’)),

require(similar ("red", goal("red")))

)

)

stage(

sample ("board", touch(" green")),

optimize(
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keep(touch(’green ’)),

require(similar (" green", goal(" green")))

)

)

Please compile the input into a program. The generated programs satisfy

several requirements: Do not use functions not mentioned before;

the program should be concise; only use ’touch ’ at most once within

a single ’optimize ’ and if we need to manipulate multiple objects ,

please use touch(’all ’).

Please include an ’optimize ’ for each stage. Do not use more than one

stage if it does not need to manipulate different objects or parts.

Here is the input to compile:

5.6.2 Comparing GPT3.5 and GPT4

We notice that GPT4 has a better performance compared with GPT3.5. Below we provide

the results of GPT3.5 and GPT4 of example tasks shown in the main text. Generally, we have

found that it is common for GPT3.5 to misinterpret the instructions, add/ignore constraints, and

write incorrect commands with incorrect grammar. In contrast, GPT4 can generate pretty good

results.

Although GPT4 already outperforms GPT3.5 in the translation task, we observed several

failure cases in the translation process. For example, the output of GPT4 will contain objects

that do not exist. In a task that lifts a sphere above a box, the output may contain an invalid

sentence like require(similar(’sphere’, goal(’sphere above box’))) where ’sphere above box’

which doesn’t correspond to a proper object. It may also generate a statement with a type error.

For example, sometimes it may output require(similar(’sphere’, y(max(pcd(’box’))))), which

would trigger a compilation error as we can not compute the shape distance between an object

109



and a coordinate. Fortunately, those compilation errors could be detected during the compilation

and can be resolved by resampling. However, there are also rare cases where LLM removes or

adds more constraints to the instructions. For example, it may ask the solver to fix the position

of an object that needs to move. In these cases, our solver may fail to find a suitable solution.

Restricting the output to fit a particular syntax, for instance, using context-free grammars would

resolve such problems.

Test Case 1

Grasp the front of the rope and then grasp the back of the rope. Deform the rope into its

target shape.

GPT3.5: added constraints not mentioned in the language

rope = get("rope")

stage(

sample("gripper", grasp(frontend(rope))),

optimize(

keep(touch(rope)),

require(similar(rope , goal(’rope’))),

keep(no break(rope))

)

)

stage(

sample("gripper", grasp(backpart(rope))),

optimize(

keep(touch(rope)),

require(similar(rope , goal(’rope’))),

keep(no_break(rope))

)

)
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rope = get("rope")

stage(

sample("gripper", grasp(frontend(rope))),

optimize(

keep(touch(frontend(rope))),

require(similar(rope , goal("rope")), end =0.5)

)

)

stage(

sample("gripper", grasp(backend(rope))),

optimize(

keep(touch(backend(rope))),

require(similar(rope , goal("rope")), end =1.0)

)

)

Test case 2

Use the gripper to first lift up the white cube above the black wall and then move it to the

target location.

GPT3.5: it creates two stages for single a stage task (not need to regrasp the object).

white_cube = get("white cube")

black_wall = get("black wall")

stage(

sample("gripper", lift(white_cube)),

optimize(

require(gt(y(com(white_cube)), y(max(pcd(black_wall))))),

keep(touch(white_cube)),

keep(no_break(white_cube))

)
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)

stage(

sample("gripper", gt(x(com(white_cube)), x(com(black_wall)))),

optimize(

require(l2(com(white_cube), com(goal("white cube")))),

keep(touch(white_cube)),

keep(no_break(white_cube))

)

)

GPT4

white_cube = get("white cube")

black_wall = get("black wall")

stage(

sample("gripper", grasp(white_cube)),

optimize(

require(gt(y(com(white_cube)), y(max(pcd(black_wall)))), end

=0.5),

require(l2(com(white_cube), com(goal("white cube"))), end=1),

keep(touch(white_cube))

)

)

Test case 3

Put the knife above the white object. Cut the knife down to match the target shape of the

white object. Ensure that the knife does not rotate.

112



GPT3.5: It uses z instead y to extract the objectsh́eight while the latter is true. It also misinterprets
the meaning to deform the knife into the goal.

white_obj = get("white")

stage(

sample("knife", gt(z(com("knife")), z(max(pcd(white obj))))),

optimize(

require(l2(com("knife"), com(white_obj))),

require(similar("knife", goal("white"))),

keep(pitch() < 0.1, yaw() < 0.1)

)

)

GPT4

stage(

sample("knife", above(get("white"))),

optimize(

require(similar(get("white"), goal("white"))),

keep(touch("white")),

keep(roll() < 0.1),

keep(pitch () < 0.1),

keep(yaw() < 0.1)

)

)

Test case 4

Pick up the front part of object ’top left mat’ and place it into the goal without breaking

it.

GPT3.5: It adds an incorrect command to let the gripper to move away from the object in the
beginning.
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mat = get("top left mat")

stage(

sample("gripper", grasp(frontpart(mat)), away()),

optimize(

require(similar(mat , goal(’top left mat’))),

keep(touch(mat)),

keep(no_break(mat))

)

)

GPT4

stage(

sample("gripper", grasp(frontpart(get("top left mat")))),

optimize(

require(l2(com(get("top left mat")), com(goal("top left mat")))

),

keep(touch(frontpart(get("top left mat")))),

keep(no_break(get("top left mat")))

)

)

5.6.3 Reinforcement Learning Baseline

We use the SAC and PPO implementation from stable-baselines3 with hyperparameters

in Table 5.3. Figure 5.8 compares the optimization performance of RL algorithms and the Adam

optimizer with respect to the IOU score of the ending state with different numbers of sampled

episodes for the 20 single-stage tasks of five categories.
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Table 5.3. Parameters for Reinforcement Learning

(a) SAC

gamma 0.95
learning rate 3×10−4

buffer size 106

target update coef 0.005
batch size 256

(b) PPO Parameters

update steps 2048
learning rate 3×10−4

entropy coef 0
value loss coef 0.5
batch size 64

Figure 5.8. Comparison between RL and differentiable physics solver
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5.6.4 Evaluation Metrics

We notice that in some tasks, a simple Intersection Over Union (IOU) score comparing

shapes does not effectively explain the human intuition of task completion. For example, a solver

might ”cut” two objects similar to the target shape without truly separating them, as the space

between the two parts might only contain a minimal amount of space. In other circumstances,

the solver may violate the requirements of no break and break a rope into two or destroy a mat.

To this end, we add checkers to check if two shapes are split and if a shape is not broken for

success evaluation. For no-breaking constraint, we track particles and ensure their distance to

their initial nearest neighbor does not change too much. On the other hand, we can check if two

shapes are separated from each other by finding the connected components of particles.

5.7 Limitations and Conclusion

We introduce DiffVL, a method that enables non-expert users to design specifications

of soft-body manipulation tasks through a combination of vision and natural language. By

leveraging large language models, task descriptions are translated into machine-interpretable

optimization objectives, allowing differentiable physics solvers to efficiently solve complex and

long-horizon multi-stage tasks. The availability of user-friendly GUI tools enables a collection

of 100 tasks inspired by real-life manipulations.

Several limitations of our approach must be acknowledged. Firstly, it relies heavily

on human labor for dataset creation, and the use of large language models incurs significant

computational costs. Additionally, the GUI tool for keyframe annotation requires further refine-

ment to enhance user-friendliness and currently lacks support for rigid body simulations and

reinforcement learning.

Despite these challenges, we see promising avenues for future exploration. We anticipate

expanding the range of tasks by leveraging crowdsourcing, which we believe is vital to scaling

up robot learning. Our initial efforts demonstrate how non-experts can contribute meaningfully
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to this process, potentially inspiring further research on involving individuals from diverse

backgrounds in advancing robot manipulation capabilities.

Moreover, transferring the policies developed in a differentiable simulator to real-world

applications is crucial. Several components of our framework can contribute to this transition.

Our vision-language representation naturally aligns with real-world tasks, while large language

models can generate meaningful rewards for evaluating real-world outcomes. Furthermore, our

GUI tool can facilitate effective manipulation of real-world materials, particularly in constrained

tasks, serving as a direct interface between human operators and robot controllers.

By leveraging these elements, we aim to bridge the gap between simulation and reality,

enhancing the applicability and effectiveness of robotic systems in diverse scenarios.

Acknowledgements

Chapter 5, in full, is a reprint of the material published in Advances in Neural Information

Processing Systems 36 (2023). DiffVL: Scaling Up Soft Body Manipulation using Vision-

Language Driven Differentiable Physics; Huang, Zhiao; Chen, Feng; Pu, Yewen; Lin, Chunru;

Gan, Chuang; Su, Hao. The dissertation author was the primary investigator and author of this

paper.

117



Chapter 6

Finale

This dissertation summarizes my study in modeling-based optimization. Although it is

not yet complete, I believe these efforts collectively outline a roadmap for developing a practical

robotic system in the real world.

• Accelerating Policy Learning with Simulators: As suggested in PlasticineLab, a proper

digital twin can significantly accelerate policy learning and reduce data requirements for

effective robot training. By bridging real-world data with simulations, we can construct

more accurate and sophisticated physical simulators for modeling environments.

• Generative Skill Learning: Within the simulator, generative skill learning [97] can be

utilized to learn low-level manipulation policies efficiently. This approach can even help

the robot discover policies that exceed human capabilities.

• Vision-Language-Based Skill Representation: The key to selecting the skills a robot

needs to master lies in leveraging human data through a vision-language-based skill

representation [95]. This representation bridges the gap between the robot’s physical world

and human intentions, enabling us to build a robot manipulation dataset with semantic

meaning.

• Developing High-Level Planners: With a robust skill representation, we can develop

high-level planners that mimic human reasoning and interaction with the real world [98].
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Deploying these algorithms in real-world scenarios and continually refining the models

with new data, we can close the loop and create a truly scalable system. However, this path is

not without its challenges. Even with a well-designed GUI tool, collecting large-scale policy

learning data for diverse scenes and tasks remains a significant hurdle. Additionally, developing

more accurate and efficient models for real-world soft materials requires further advancements.

Addressing the sim-to-real gap and achieving seamless hardware integration will also pose

substantial challenges in the future. Despite these obstacles, I am confident that by addressing

these challenges, we can build a more robust and adaptive robotic system capable of thriving in

real-world environments.

Besides, there are some of the related and interesting topics that I believe are worth

exploring in the future:

1. Schulman et al. [215] present the stochastic computation graph as a versatile framework

for reinforcement learning. An intriguing direction for future research is to develop a

framework that seamlessly integrates this with general graphical models in probabilistic

modeling while supporting modern deep reinforcement learning techniques. A key chal-

lenge in this endeavor is how to effectively describe the optimization and probabilistic

modeling problems, and subsequently, how to automatically identify the Markov struc-

ture [254] or other suboptimal structures within the problem. Additionally, extending this

framework to support bilevel optimization problems [274] would be another compelling

avenue for exploration.

2. The environment model acts as a proximal element in the optimization process, helping

to provide more accurate gradients. However, according to the ”law of requisite variety,”

there may be additional relationships between the model and the learned policy that have

yet to be fully explored. Developing a unified mathematical framework where planning

with the model naturally emerges would be an intriguing and valuable area of research.

3. Finding effective policies within a given environment is foundational to robotics. However,
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real-world scenarios often involve dynamic and evolving environments where tasks, scenes,

or even the robot itself may undergo significant changes. Adapting to these variations

requires not only the ability to continually learn from new experiences but also the develop-

ment of a robust organizational structure that can accommodate and integrate these changes

over time. This continual learning and structural organization are key challenges that must

be addressed to enable more adaptable and resilient systems. Moreover, the organization

and evolution of such complex systems—where multiple interacting components must

adapt and co-evolve—remains a largely unexplored area of research. Understanding and

mastering this evolution could lead to significant advancements in the development of

real-world robotic systems capable of thriving in unpredictable and varied environments.
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