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ORIGINAL ARTICLE

OPEN

High-resolution phylogenetic microbial community

profiling

Esther Singer', Brian Bushnell', Devin Coleman-Derr"?, Brett Bowman®, Robert M Bowers',
Asaf Levy', Esther A Gies?, Jan-Fang Cheng', Alex Copeland’, Hans-Peter Klenk®,

Steven ] Hallam®, Philip Hugenholtz®, Susannah G Tringe' and Tanja Woyke"

*US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; *USDA-ARS, Albany, CA, USA;
$Pacific Biosciences, Menlo Park, CA, USA; *University of British Columbia, Vancouver, BC, Canada;
*Newcastle University, School of Biology, Newcastle upon Tyne, UK and ®Australian Centre for Ecogenomics,
School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of

Queensland, St Lucia, QLD, Australia

Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed
clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to
new technologies has provided more quantitative information at the expense of taxonomic resolution
with implications for inferring metabolic traits in various ecosystems. We applied single-molecule
real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene
sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated
this approach using a defined microbial community. When further applied to samples from the water
column of meromictic Sakinaw Lake, we show that while community structures at the phylum level
are comparable between PhyloTags and lllumina V4 16S rRNA gene sequences (iTags), variance
increases with community complexity at greater water depths. PhyloTags moreover allowed less
ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico
generated partial 16S rRNA gene sequences demonstrated significant differences in community
structure and phylogenetic resolution across multiple taxonomic levels, including a severe
underestimation in the abundance of specific microbial genera involved in nitrogen and methane
cycling across the Lake’s water column. Thus, PhyloTags provide a reliable adjunct or alternative to
cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and
predictions on their metabolic potential.

The ISME Journal (2016) 10, 2020-2032; doi:10.1038/ismej.2015.249; published online 9 February 2016

Introduction

Enabled by the advent of polymerase chain reaction
(PCR) in 1983, the small subunit (SSU or 16S)
ribosomal RNA gene has become the most widely
used marker for performing phylogenetic analyses
allowing the classification of novel bacterial and
archaeal taxa. In addition to providing taxonomic
information, cultivation-independent 16S rRNA
gene profiling has transformed the study of microbial
ecology and human health, enabling quantitative
insights into microbial community diversity in
natural and engineered ecosystems including our
own bodies (e.g. Giovannoni et al., 1990; Muyzer
et al., 1993; Janssen, 2006; Turnbaugh et al., 2007;
Bolhuis and Stal, 2011; Kembel et al., 2012;
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Yatsunenko et al., 2012). Expanding exponentially
over the past three decades, the public 16S rRNA
gene databases have however been faced with the
challenge of accurately placing sequences into a
given reference tree. This challenge is particularly
prominent for environmental 16S TRNA gene
sequences, which are marked by high numbers of
novel taxa without cultivated representatives. Mas-
sive individual and institutional efforts have been
made to standardize classification of environmental
16S rRNA sequences through dedicated database
development and custom analysis tools (Giovannoni
et al., 1990; Muyzer et al., 1993; Desantis et al., 2006;
Janssen, 2006; Turnbaugh et al., 2007; Bolhuis and
Stal, 2011; Pagani et al., 2011; Pruitt et al.,, 2011;
Kembel et al., 2012; Pruesse et al., 2012; Quast et al.,
2012; Yatsunenko et al., 2012; Fish, 2013). Despite
these improvements, reference sequences with low
read accuracy, chimeric sequences and partial rRNA
gene sequences with reduced phylogenetic resolution
generated on short-read sequencing platforms
such as 454 and Illumina remain problematic,
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resulting in incorrect or less accurate classification of
environmental sequences. Although read lengths on
these platforms continue to improve, only
full-length (FL) or near FL 16S rRNA sequences
have been proven adequate for tree construction
necessary for precise phylogenetic placement (Kim
et al., 2011; Yarza et al., 2014). This reality poses
a serious analytic challenge given that the majority
of contemporary 16S rRNA sequence information
emanates from short-read sequencing platforms
(Tringe and Hugenholtz, 2008; Yarza et al., 2014).
Environmental 16S rRNA gene profiles were first
performed using Sanger sequencing, which could
provide accurate, near FL sequences. However, this
process remains costly and at low throughput,
involving the cloning of PCR products before
paired-end sequencing. Thus, Sanger-based profiles
generally involved relatively few samples with
sequence information for less than tens to hundreds
of clones per sample (Giovannoni et al, 1990).
Today, microbial community profiles generated on
the Sanger platform are scarce and unlikely to
capture complete community diversity as estimated
from richness analyses, rendering them adjunctive to
short-read sequencing data sets (Youssef et al., 2009).
The first commercially available next-generation
sequencer, the Roche/454 FLX pyrosequencer,
offered high-throughput technology at roughly
1/10th the cost of Sanger sequencing. To adopt
this technology for microbial community profiling,
Sogin et al. (2006) PCR-amplified the V6 variable
region of the bacterial 16S rRNA gene and generated
~118000 ‘16S pyrotags’ averaging 100bp read
length in a single run, orders of magnitude
more sequences than any previous Sanger study
(Sogin et al., 2006). The use of barcodes enabled
multiplexing of different samples within a single run
further increasing the statistical power of the 454
platform (Parameswaran et al., 2007; Hamady et al.,
2008). Lazarevic et al. (2009) ported this sequencing
paradigm to the Hlumina platform (Illumina, Inc.,
San Diego, CA, USA) by amplification and sequen-
cing of the V5 loop region, providing even greater
depth of coverage and a reduced price point.
Currently, the most common approach for microbial
community profiling uses V4, V3-V4 or V4-V5
primers on Illumina platforms to generate the so-
called Illumina V4 16S rRNA gene sequences (iTags)
averaging ~ 250—430 bp read length (Caporaso et al.,
2012; Takahashi et al., 2014; Parada et al., 2015).
Indeed, most 16S rRNA gene sequences in GenBank
were generated on Illumina platforms because
of their economy of scale (>10 million reads in
a single MiSeq run) and high base-calling accuracy
(Lazarevic et al., 2009; Claesson et al., 2010). Despite
the ease and quantitative power of short-read
amplicon sequencing, the representation of micro-
bial community diversity at different taxonomic
levels based on partial 16S rRNA gene sequences
has been received with skepticism, as the specific
combination of primer choice, read length,
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environmental source, reference database and assign-
ment method influence both taxon abundance esti-
mates and placement precision on the tree of life
(Soergel et al., 2012; Yarza et al, 2014). Optimal
primer selection for short-read sequencing requires
comparisons with other data sets and recruitment to
FL 16S rRNA gene sequences to assign accurate
taxonomy to incomplete sequences (Liu et al., 2007;
Walters et al., 2011; Soergel et al., 2012). Pacific
Biosciences (PacBio) has recently developed a long-
read sequencing technology, which for the first time
in sequencing history has the capacity to cost-
effectively sequence FL 16S rRNA genes at compara-
tively high throughput. A resurgence of FL sequences
used as ‘gold standards’ has the potential to yet again
transform microbial community studies, increasing
the accuracy of taxonomic assignments for known and
novel branches in the tree of life on previously
unobtainable scales.

Here we directly address current limitations
associated with partial 16S rRNA gene sequencing,
through the application of PacBio’s long-read,
single-molecule real-time (SMRT) sequencing
technology for high-resolution phylogenetic micro-
bial community profiling. As PacBio sequencing
performance has improved in recent years, its
average read lengths now exceed 8 kb at ~87% read
accuracy (Koren and Phillippy, 2015). In theory,
such read lengths should provide high-quality
sequences for 1.5kb 16S rRNA gene amplicons via
circular consensus sequencing, yet this method has
only been used for a few environmental surveys
(Babauta et al., 2014; Mosher et al., 2014). To test
and validate this approach, we generated PacBio
shotgun sequences as well as PacBio FL (PhyloTags)
and iTags from a defined mock community of 23
cultivated bacterial strains (Supplementary Table 1).
We then used this same approach to assess the
microbial diversity of Sakinaw Lake on the Sunshine
coast of British Columbia, Canada, a meromictic lake
rich in candidate phyla.

Materials and methods

DNA extraction

The mock community was made up of 23 bacterial
and 3 archaeal species as described in Supplementary
Table 1. DNA from Escherichia coli, Salmonella
bongori, Salmonella enterica, Clostridium perfrin-
gens, Clostridium thermocellum and Streptococcus
pyogenes was purchased from the American Type-
Culture Collection (ATCC, Manassas, VA, USA).
DNA from Fervidobacterium pennivorans, Thermoba-
cillus composti and Corynebacterium glutamicum
was extracted using phenol—chloroform extraction, as
described in Moore and Dennis (2002). DNA from
Desulfosporosinus acidiphilus, Desulfosporosinus mer-
idiei, Desulfotomaculum gibsoniae, Echinicola vietna-
mensis, Frateuria aurantia, Natronococcus occultus,
Olsenella uli and Terriglobus roseus was isolated using
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the Jetflex Genomic DNA Purification Kit (Genomed
GmbH, Loehne, Germany). DNA from Hirschia baltica
was extracted using the Blood and Cell Culture DNA
Maxi Kit (Qiagen, Valencia, CA, USA). DNA from
Meiothermus silvanus, Nocardiopsis dassonvillei and
Segniliparus rotundus was extracted using the Qiagen
Genomic 500 DNA Kit (Qiagen, Hilden, Germany). DNA
from Pseudomonas stutzeri was isolated using the
Wizard Genomic DNA Purification Kit (Promega Corp.,
Madison, WI, USA). DNA from Coraliomargarita
akajimensis, Halovivax ruber and Spirochaeta smar-
agdinae was extracted using the Masterpure Gram-
Positive DNA Purification Kit (Epicentre, Madison, WI,
USA). All DNA extracts were quantified using the
PicoGreen assay and the Qubit 2.0 fluorometer (Invitro-
gen, Carlsbad, CA, USA) (Supplementary Figure 1).
Each sample was quantified in quadruplicate. Samples
were pooled at varying ratios to generate the mock
community (Supplementary Figure 1). Environmental
DNA was collected from Sakinaw Lake, British
Columbia, Canada (49°40.968' N, 124°00.119'W),
at 30 m—80 m depth intervals on 6 June 2013, and at
120m on 5 January 2010. Water was filtered onto
0.22 M Sterivex filters (Mo Bio Laboratories Inc.,
Carlsbad, CA, USA), DNA was extracted as described
previously (Wright et al., 2009) and quantified using the
PicoGreen assay (Invitrogen).

Shotgun sequencing and processing of mock
community DNA

Shotgun sequences of the mock community were
generated using one SMRT cell on the PacBio RSII
platform (Pacific Biosciences, Menlo Park, CA, USA).
Quality filtering and error correction of PacBio
sequences was performed using hgap self-correction
by mapping all reads against each other. This resulted
in 23848 quality-filtered reads with average read
length of 1472bp used for analysis of the mock
community. Reads were mapped against genomes
downloaded from IMG (Markowitz, 2006) using
BBMap (http://sourceforge.net/projects/bbmap/). Read
counts were normalized to the chromosome size of
reference genomes.

Primers, 16S rRNA gene amplification and sequencing
procedures

For universal amplification of the V4 region of
the 16S rRNA gene (V4 iTags), we used forward
primer 515F (5-GTGCCAGCMGCCGCGGTAA-3)
and reverse primer 806 R (5'-GGACTACHVGGGTT
CTAAT-3’) containing a variable 12bp barcode
sequence (Caporaso ef al., 2012). Primers used for
FL 16S rRNA gene amplification include primers 27 F
(5’-AGRGTTYGATYMTGGCTCAG-3’) (Stackebrandt
and Goodfellow, 1991) and 1492 R (5'-RGYTACCTTG
TTACGACTT-3'). DNA amplicon generation of the
V4 region and the FL 16S rRNA gene was performed
using the KAPA SYBR FAST gPCR Kit (20 replication
cycles) (Kapa Biosystems, Boston, MA, USA). Pooled
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amplicons were purified with the Agencourt AMPure
XP purification system (Beckman Coulter, Brea, CA,
USA) and analyzed with an Agilent bioanalyzer 2100
(Agilent Technologies, Palo Alto, CA, USA) to confirm
appropriate amplicon size. Both iTag and PacBio
sequencing were performed according to JGI's
standard procedures: iTag amplicons were diluted to
10 nM, quantified by quantitative PCR and sequenced
on the IHlumina MiSeq platform (reagent kit v.3;
[lumina Inc., Carlsbad, CA, USA). Mock Community
PacBio libraries were constructed from five PCR
technical replicate products using the PacBio
SMRTbell Template Prep Kit (Pacific Biosciences)
with a target insert size of 2 kbp. PacBio libraries of the
Sakinaw Lake depth samples were constructed using
the PacBio DNA Library Prep Kit 2.0 (Pacific
Biosciences; 250bp—<3kbp). All PacBio libraries
were sequenced on the PacBio RS II platform using
P4C2 chemistry. Sequence volumes obtained are
listed in Supplementary Table 2. In this study, we
discarded the data generated from the archaeal DNA
because we used universal bacterial primers to
generate 16S TRNA gene sequence amplicons.

Processing, clustering and classification of amplicon
reads
iTag sequences were analyzed using the JGI iTag
analysis pipeline (iTagger v.1.1) (Tremblay et al,
2015). Classification of clusters was achieved by
alignment to the SILVA database (Ref 119, 8 December
2014). Mock community iTag sequences were grouped
into 35 operational taxonomic unit (OTU) clusters with
> 10 reads per cluster after quality screening (1 680 879
reads). OTUs originating from reagent contaminants
made up 0.14% of the total community. The Sakinaw
Lake sample returned 366 185 iTag sequences, which
were binned into 2230 OTU clusters using a 97% cutoff.
PacBio 16S rRNA gene sequences were filtered
using the JGI SMRT Portal ‘reads of insert’ protocol
with predicted accuracy >99%, corresponding to
Q20. Filtering, chimera detection and clustering was
performed using a set of MOTHUR tools (align.segs,
summary.seqs, screen.seqs, chimera.uchime using
SILVA Gold as reference database, remove.seqs,
filter.seqs, unique.seqs, pre.cluster, dist.seqs, cluster,
align.seqs, filter.seqs, dist.seqs) (Schloss et al., 2009)
(Figure 1). Chimeras were additionally removed by
filtering reads <1340 and>1640bp based on read
length analysis using reformat.sh in BBMap (http://
sourceforge.net/projects/bbmap/) (Supplementary
Figure 3). Each step in the workflow was first
optimized using a synthetic data set generated
using randomreads.sh in BBMap (http://source
forge.net/projects/bbmap/). Synthetic reads were
made from copies of the 16S rRNA gene
sequences from our selected 23 mock community
genomes of variable read length (1.4-1.8 kbp) and
variable average quality scores (Q10-Q27). Edits
(insertions, deletions and/or substitutions) were
assigned based on the quality scores of the reads,
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Figure 1 Workflow of the PhyloTag sequence generation and
cluster analysis pipeline with results from one of the five mock
community replicate data sets (more details in Supplementary
Figure 1). A simulated FL 16S rRNA gene read data set generated
from the 23 genomes of the selected bacterial species was used to
optimize the clustering steps in the pipeline (see Materials and
methods section). Detailed processing steps for iTag and shotgun
sequences are illustrated in Supplementary Figure 1.

mimicking the PacBio error model. Clusters with
<3 reads were discarded. Using this workflow
(https://github.com/PacificBiosciences/rDnaTools),
all quality-filtered reads from the simulated FL 16S
rRNA gene sequences were mapped and rendered
28 OTU clusters. The same parameters were used to
cluster all FL 16S rRNA gene sequences from
biological sources. Sequence throughput for each
sample and corresponding OTU numbers are listed
in Supplementary Table 2. Mock community 16S
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rRNA gene abundances were normalized using
copy number information from respective reference
genomes.

For platform comparisons, PacBio FL and Illumina
V4 16S rRNA gene sequences from Sakinaw Lake
were classified according to the latest non-redundant
small subunit SILVA NR Ref 119 database using the
RDP-classifier (Wang et al., 2007; Quast et al., 2012).
Taxonomic classifications were reported as unam-
biguous if confidence thresholds were > 0.5.

The differences in the mock community struc-
tures recovered from PacBio and Illumina sequen-
cing were evaluated using Spearman’s ranks
correlation coefficient analysis. Coefficients were
calculated for each pairwise comparison in R
(Racine, 2012). Principal coordinate analyses for
comparison of Sakinaw Lake depth (PhyloTags vs
V4 iTags) and mock community samples (Phylo-
Tags, PacBio shotgun and V4 iTags) were per-
formed in R using the Bray—Curtis dissimilarity
index. Data sets were subsampled by rarefaction to
6000 reads in the Sakinaw Lake sample analysis
and to 2000 reads in the mock community analysis.
Raw and processed sequence data is publically
available on the JGI Genome portal page (http://
genome.jgi.doe.gov/PhyloTag.html).

Community comparisons and phylogenetic reconstruction
Sequences were filtered and manipulated using
a variety of tools available in the BBMap package
(http://sourceforge.net/projects/bbmap/): for platform-
independent community comparisons, V4 16S rRNA
regions were retrieved by aligning V4 primer sequences
(515F, 806 R) to PhyloTag sequences (msa.sh) and
selecting intervening sequences (cutprimers.sh). V4
sequences were screened for a length of 232 +60bp
(3s.em. V4 iTag length) (reformat.sh), resulting in
195 036 sequences present in both FL and V4 sequence
pools (filterbyname.sh). V4 sequences were mapped
against PhyloTags using bbmap.sh (flag ‘ambiguous=
all’). Ambiguous matches were defined by a mapping
quality of <4 (indicating a <50% chance of correct
assignment). Pairwise sequence alignments of V4 and
FL sequences and subsequent data formatting were
conducted using BBMap (idmatrix.sh, matrixtocol-
umns.sh). Sequence pairs above various % identi-
ties reported in the Table inset in Supplementary
Figure 7 entail those that were exclusively present
in the FL or V4 sequences, respectively. For
community comparison at various taxonomic levels
in Table 2, both FL and V4 sequences were
clustered at 90%, 93%, 95%, 97% and 98%
identity thresholds by aligning against the non-
redundant small subunit SILVA NR Ref 119
database using the pick_open_reference.py work-
flow in QIME (v.1.9.0). Statistical significance of
differences between community structures accord-
ing to clustered FL and V4 sequences was evaluated
in QIIME (beta_significance.py).

2023
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Results

Different sequencing technologies for microbial
community profiling exhibit clear platform-specific
advantages and disadvantages. Primary benefits of
next-generation sequencing over Sanger sequencing
include the high-throughput nature and the cloning-
free process, with Illumina providing the lowest cost
per base (Table 1). Sanger and PacBio both allow
(near) FL. 16S rRNA gene sequencing, with PacBio
being orders of magnitude more cost-effective,
providing increased phylogenetic resolution in
community analysis. Using a mock and a lake
community, our following in-depth analysis further
resolves the strengths and potential weaknesses of
the PacBio platform for community analysis.

Mock community analysis
Using the mock community reference genomes,
we generated a simulated PacBio 16S rRNA gene
sequence data set, which directed the optimization of
the sequence processing pipelines for the PacBio 16S
rRNA gene sequences described in this study
(Figure 1, Supplementary Figure 2 and Materials and
methods). Figure 1 shows the workflow implemented
for the generation of PhyloTags (defined as FL 16S
rRNA gene sequences generated using the SMRT
technology). Consensus sequences were generated
from raw continuous long reads to correct most
sequencing errors resulting in ‘reads of insert’ with
99% accuracy, and median 99% sequence identity.
PhyloTag OTUs were defined by alignment against
the SILVA Gold database in a preclustering step.
Preclustered PhyloTags were grouped into consensus
sequences for each individual 16S TRNA gene copy
within OTU clusters. These consensus sequences
were then used to map remaining reads back to
cognate OTUs. OTUs were defined at 97% identity.
Genomic DNA obtained from the 23 bacterial
mock community members (see Materials and
methods section) was pooled and FL 16S rRNA
genes as well as the V4 hypervariable regions were
PCR-amplified. Amplicons were sequenced using
the PacBio SMRT RSII system to generate PhyloTags
and on the Illumina MiSeq platform producing
V4 ‘iTags’. To test data reproducibility, five technical

PhyloTag replicates were generated (Materials and
methods and Supplementary Figure 3). Owing to
their negligible bias, PacBio shotgun sequences
provided a baseline of the relative abundances of
each mock community member (Supplementary
Figure 4). They also provided higher accuracy and
reproducibility as compared with DNA molarity
(Supplementary Figures 1 and 4). All five mock
community PhyloTag data sets yielded similar
percentages of high-quality PhyloTags and were
successfully grouped into 22 OTU clusters with the
standard method of grouping any two sequences that
shared >97% 16S rRNA gene identity (Figure 1).
The two Salmonella spp. were 97.4% identical on
the basis of their FL. 16S rRNA gene sequences. The
single best PhyloTag in each cluster as chosen by its
quality scores was on average 99.5% identical to the
reference 16S rRNA gene sequences of the mock
genomes, whereas iTag consensus sequences
showed 99.9% identity. Relative abundance patterns

Table 2 (a) Significance test of Sakinaw Lake community
structure differences between PhyloTags and in silico generated
V4 sequences at various taxonomic levels and (b) percentage of
PhyloTags and in silico generated V4 sequences classified at
various taxonomic levels

(a)

FL vs V4 16S rRNA gene sequences total community

% Identity clusters Unweighted unifrac P-value

90 0.30 <0.001

93 0.21 <0.001

95 0.30 <0.001

97 0.16 <0.001

98 0.20 <0.001

(b)

Taxonomic level % FL sequences % V4 sequences
classified classified

Phylum 94.6 82.9

Class 92.9 80.7

Family 88.8 71.5

Genus 85.8 62.2

Species 74.5 49.4

Abbreviation: FL, full length.

Table 1 Platform-dependent properties in Sanger-, [llumina- and PacBio-based community profiling

Sanger Hlumina (MiSeq) PacBio RSII
Cloning required Yes No® No®
Average sequence time ~3 h/96-well plate 8h 2 h/SMRT cell
Commonly used primers/amplicons 4aF/27 F, 1392 R Various 4aF/27 F, 1492 R

— near full-length®
Amplification during sequencing No*
Average data output

Approximate cost per Mb ~US$2000.00"

~0.1 Mb per 96-well plate

— up to 500 bp — full-length®

Yes No*

8 Gb per Flowcell* 0.3 Gb per SMRT Cell*
US$0.11° US$2.50

Abbreviations: F, forward; PacBio, Pacific Biosciences; R, reverse; SMRT, single-molecule real-time.

?Clear platform advantages.
*Cost is burdened.
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Figure 2 Analysis of the mock community profiles. (a) Abundance profiles of the mock community as represented by PhyloTags (pooled
from all five replicates), PacBio shotgun sequences and V4 iTags. Nocardiopsis dassonvillei, which was added at very low relative
abundance, was exclusively detected in the PacBio shotgun data set. Additional contaminant OTUs were found only in the V4 iTags
(Supplementary Table 3). (b) Spearman’s rank correlation coefficients and corresponding P-values were calculated to evaluate the strength
of relationships between various sequence data sets. (c) Principal coordinate analysis (PCoA) of microbial community structures at various
Sakinaw Lake depths according to PhyloTags and iTags. Mean PCoA distances between iTag and PhyloTag pairs of the same depth are
stated within parentheses in the legend. The inset shows depths 50 —120 m reanalyzed for higher resolution.
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on the phylum level as revealed by respective
sequencing platforms are shown in Figure 2a
(and Supplementary Figure 5). Shotgun sequences
are expected to be the most accurate assessment
of community structure because of the lack of
amplification bias and were hence used as reference
for the amplicon data sets. Spearman’s rank correla-
tion analysis was performed on the read abundance
of the mock community strains. The five PhyloTag
technical replicates for the mock community
show significant congruence based on community
composition and OTU clustering (Figure 2b).
All data sets shared a correlation coefficient of at
least 0.84 with significant P-values and thus do not
considerably deviate from one another (Figure 2b).
Comparison of species representation according
to %GC showed no obvious bias across sequencing
platforms (Supplementary Figure 6). The slightly
higher correlation between V4 iTags and PacBio
shotgun data suggests that the short tag data set is
overall less PCR-/primer-biased, at least for the mock
sample, providing a more accurate community
profile. However, some discrepancies in the V4 iTag
data set are noteworthy, for example, the relatively
high abundance of Fervidobacterium pennivorans
and the lack of Nocardiopsis dassonvillei. DNA from
N. dassonvillei was added at 0.01% (+22.74%)
molarity and appeared only in the PacBio shotgun
data set, with a relative abundance of 0.0016%.
The absence of this species from the amplicon data is
likely due to specific PCR bias. Last, the V4 iTag data
set contained various contaminant sequences, which
comprised about 0.05% of all sequences that were
not observed in PhyloTags (Supplementary Table 3).

Sakinaw Lake community analysis

To evaluate the performance of PhyloTag sequencing
for environmental surveys, we applied PhyloTag and
iTag sequencing to capture the microbial diversity of
Sakinaw Lake. Sakinaw Lake is a meromictic lake
rich in candidate phyla that partition along defined
redox gradients in the water column (Gies et al,
2014). Such candidate phyla are challenging to
accurately classify due to a paucity of phylogenetic
references in public databases. Geographically
isolated meromictic lakes have consistently been
shown to provide a natural enrichment in candidate
phyla in the redox transition zone and monimolim-
nion. Indeed, Sakinaw Lake has been recognized
for its extraordinarily high richness and diversity
in bacterial, as well as archaeal candidate phyla
(Rinke et al., 2013; Gies et al., 2014). By definition,
candidate phyla have no cultivated representatives
and their phylogenetic placement has largely
relied on 16S rRNA gene sequencing data alone
(Hugenholtz et al., 1998). The accurate placement
of novel lineages within candidate phyla is hence
an essential step towards extending phylogenetic
databases. We generated PhyloTag and V4 iTag
libraries for Sakinaw Lake communities from eight
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depths spanning the water column redox gradient.
As bacterial universal primers were used for the
amplification of the FL. 16S rRNA gene, we focused
our comparative analysis exclusively on the occur-
rence and abundance patterns of bacterial taxa by
assignment to the SILVA database.

Interestingly, 0.2—4.1% of V4 iTags were taxono-
mically unresolved at the phylum level, whereas
all PhyloTags were classified into distinct bacterial
phyla (data not shown). Overall, comparisons
between PhyloTag and V4 iTags at various depths
in Sakinaw Lake indicated that microbial commu-
nity composition profiles between 30 and 40m
depth intervals where bacterial candidate phyla are
less prevalent are in good agreement (Figure 2c and
Supplementary Figure 7). At these depths, a few
phyla are dominating the microbial communities
and the % variance in community composition is
larger between these samples than between 50 and
120m depth intervals. Separate principal coordi-
nates analysis of 50-120m depth intervals where
bacterial candidate phyla are much more prevalent
reveal pronounced differences in community com-
position profiles between PhyloTags and iTags at
relatively high % variance (Figure 2c, inset).

Phylogenetic resolution analysis

To evaluate discrepancies in community profiles
based on amplicon length rather than sequencing
technology and/or primer choice, we compared
PhyloTags and in silico generated partial V4 16S
rRNA gene sequences extracted from the PacBio FL
sequences. First, a randomly subsampled set of 1818
unclustered PhyloTags spanning the Sakinaw Lake
water column and their corresponding extracted
V4 regions were used in an all-against-all pairwise
identity comparison. In multiple instances, the same
sequence pairs exhibited varying percent identities
when FL and V4 sequences were compared
(Supplementary Figure 8; examples are depicted by
the dashed lines). The number of pairs within various
percent identity thresholds provides an overview
of these discrepancies, which are caused by
non-homogeneous distribution of mutations across
the 16S rRNA gene (Figure 3). This non-homogeneous
distribution varied across different phylogenetic
groups and hence leads to both over- and under-
estimation of community diversity. Although this
comparison does not allow conclusion of the impact
of clustering on the actual diversity within the
microbial community, it reveals cluster patterns
directly resulting from gene lengths considered.

We next compared taxonomic classifications
of unclustered PhyloTags and in silico generated
V4 16S rRNA gene sequences, according to
the SILVA database. Phylogenetic assignments at
various taxonomic levels were evaluated for
~195000 unclustered PhyloTags (84.0% of total
sequences) and their corresponding V4 regions
retrieved from all Sakinaw Lake depth samples
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Figure 3 Conceptual representation of the 16S rRNA gene sequence with conserved (green) and hypervariable (blue) regions. Pink strips
represent the abundance of mutations in respective variable regions. Target selection in amplicon sequencing determines community
fingerprints. (a) The 16S rRNA gene variability is not homogeneous across taxonomic groups and subregions of the FL sequence.
For example, Salmonella spp. are 97.4% identical across the FL 16S rRNA gene sequence, but are 100% identical across the V4 region.
(b) In other instances, exclusively considering the hypervariable V4 region may lead to an overestimation of community diversity because
mutations may accumulate here more than across the entire 16S rRNA gene.

combined. Generally, taxonomic classification of V4
16S rRNA gene sequences was more often either
impossible or incorrect, significantly altering com-
munity profiles across all taxonomic levels (Table 2).
Mapping in silico generated V4 sequences back
to their original FL sequences (via sequence
alignment using BBMap) resulted in 34 345 (17.6%)
V4 sequences with ambiguous matches to FL
sequences. These ambiguous matches are also linked
to more frequent ambiguous classifications of the V4
than the FL sequences. Discrepancies in % classified
sequences ranged from 11.7% at the phylum level
to 25.1% at the species level (Table 2b). Although the
relative classification differences at the sequence
level do not directly translate to differences in
community representation, they impact the subse-
quent clustering steps (Figure 1 and Supplementary
Figure 2), which may result in community structure
differences as seen in Figure 2c and previously
discussed in (Liu et al., 2007).

For instance, we compared the relative number of
FL and in silico generated V4 sequences per phylum
that were either discarded because of low confidence
values (<0.5) according to RDP-classifier or exhibited
phylum level classification discrepancies. The 33 283
(17.1%) V4 and 10507 (5.4%) FL sequences were
classified ambiguously at the phylum level. In all,
68.4% of the V4 sequences that could not be
phylogenetically placed were classified at the phylum
level according to their FL sequences (12.0% of total
sequences). Interestingly, there are several phyla
for which a partial 16S rRNA gene analysis resulted
in a higher proportion of misclassifications and/or
ambiguous match results. For instance, more than

40% of all sequences from three out of five candidate
phyla were ambiguously classified according to the
V4 data, that is, candidate phylum KB1 would not
have been reported with confidence, whereas
66.7% of Atribacteria (OP9) and 42.4% of Parcu-
bacteria would have been missed (Figure 4a). Other
phyla with large discrepancies in classification
results between FL and V4 16S rRNA gene
sequences include Nitrospirae (96.7% low confi-
dence values; 0.02% misclassified), Firmicutes
(79.7% low confidence value; 0.04% misclassified),
Armatimonadetes (52.8% low confidence value; 2.8%
misclassified), Acidobacteria (41.0% low confidence
value; 0.5% misclassified), Deferribacteres (39.6%
low confidence value), Verrucomicrobia (32.6% low
confidence value; 1.9% misclassified) and Fibrobac-
teres (24.6% low confidence value) (Figure 4a,
Supplementary Figure 9 and Supplementary Table 5).
In comparison, Supplementary Table 4a shows that
52.7% of the ambiguously classified FL sequences form
clusters with one to two sequences and are hence likely
the result of sequencing error. The remaining 47.3%
were grouped into 213 sequence clusters and returned
RDP-classifications with closest hits to various phyla,
including Proteobacteria (17.4%), Verrucomicrobia
(7.5%), Chloroflexi (7.0%), Acidobacteria (5.6%)
and three candidate phyla: Parcubacteria (9.9%),
candidate division KB1 (2.8%) and Saccharibacteria
(1.4%) (encompassing such with confidence values
<0.5) (Supplementary Table 4b). Members with high
sequence similarity to our sequences are either
currently missing from the SILVA database or could
in fact constitute new candidate phyla. According to
their corresponding V4 sequences, 608 of the un- or
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Figure 4 Community composition analysis of Sakinaw Lake depth profile at phylum and genus level represented by PhyloTag and in
silico generated V4 sequences. (a) Percentage of FL PhyloTag sequences by phylum with ambiguous classifications according to their in
silico generated V4 region and vice versa. Phyla with ambiguous sequences (V4: >5.0% of their total; FL: >1.0% of their total) are
reported in this figure. Relative sequence abundance of phyla in the total community based on the number of sequences is stated above
bars. (b) Community composition analysis of Sakinaw lake depth profile at genus level and arranged by phylum (with >1% relative
abundance). Color pairs denote samples of the same depth represented by FL and V4 sequences. Bubble sizes indicate read abundance
of individual genera. Several OTUs showing largest discrepancy between V4 and FL abundances are highlighted by boxes (solid gray:
more FL>V4; dotted black: V4>FL). Numbered boxes around bordered bubbles represent genera Methylocaldum (1), uncultivated
genus within the Nitrospiraceae (2), Bacillus (3) and Methylotenera (4). Biological importance of these selected genera is discussed in
the text. Examples of other genera with >1000 more FL than V4 sequences and >200 more V4 than FL sequences are depicted by
bordered bubbles and boxes. Ecological significance of these genera in Sakinaw Lake was difficult to predict, for example, owing to the
lack of reference genomes.

misclassified FL sequences (5.8% of ambiguously  value; 1.0% misclassified) and Cyanobacteria (1.4%
classified FL sequences) were primarily classified low confidence value; 2.0% misclassified) (Figure 4a).
into Dictyoglomi (8.3% low confidence value), Discrepancies between community profiles repre-
Tenericutes (4.4% low confidence value; 0.6%  sented by FL and V4 sequences, respectively, are
misclassified), Firmicutes (3.7% low confidence  also apparent at the genus level (Figure 4b). Genera
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strongly under-represented in the V4 sequence data
include important players in the biogeochemical
cycling of methane between 33 and 45m depth
intervals (Gies et al., 2014). These genera encompass
Methylocaldum (4510 FL and 27 V4 sequences at
33m; 1745 FL and 35 V4 sequences at 36 m; 7314 FL
and 274 V4 sequences total) and Methylotenera (2021
FL and 1409 V4 sequences at 33 m depth; 1150 FL and
803 V4 sequences at 36 m depth; 4331 FL and 3099 V4
sequences total). Methylotenera is a group of methy-
lotrophs, which appears to be one of the dominant
players in maintaining the balance of C, compounds
at Sakinaw Lake according to relative sequence
abundance (Kalyuzhnaya et al., 2012). Furthermore,
sequence abundance comparison indicates that
Methylocaldum together with Methylobacter could
be the two dominant obligate methanotrophic genera
in the sulfate methane transition zone, which occurs
between 33 and 45 m (Gies et al., 2014). Methylobacter
is a genus of methanotrophs representing a subset
of unique obligately methylotrophic bacteria that use
methane as their primary carbon and energy source
(Bowman et al., 1993). Methylocaldum belongs to
a group of type X methanotrophs, with members
capable of using methane as well as methanol
(Pimenov et al., 2010). Methane concentrations were
determined to be highest between 33 and 45 m, while
O, concentrations decrease below 33 m (Gies et al.,
2014). This depth interval hence represents an
optimal habitat for (micro-)aerophilic methane oxidi-
zers (Gies et al., 2014).

In addition to methane cycling, identification
of Nitrosomonas (149 FL sequences and 0 V4
sequences at 30m depth; 173 FL and 0 V4
sequences total) and an uncultivated genus within
the Nitrospiraceae (882 FL and 0 V4 sequences at
50m depth; 1634 FL and 0 V4 sequences at 60 m
depth; 1737 FL and 0 V4 sequences at 80 m depth;
1006 FL and 0 V4 sequences at 120 m depth; 5260
FL and 1 V4 sequence total) provides a potential link
to the nitrogen cycle, yet V4 data largely missed
identification of these nitrifier groups. Members
of the genus Nitrosomonas oxidize ammonia into
nitrite as their basis for energy metabolism and fix
CO, to obtain carbon (Schmid et al., 2000). Its
predominant presence at 30m is likely due to its
need for oxygen, however, avoidance of light
(Theodore and Wardle, 2012), which is granted
at that depth in Sakinaw Lake (Gies et al., 2014).
Nitrobacter and Nitrospira are capable of performing
the second step of nitrification (Nogueira and
Melo, 2006). Nitrospira was found in both FL
and V4 sequences at 30m depth (67 FL and 67
V4 sequences), completing the nitrification process.
Other genera exhibiting similar or larger sequence
abundance discrepancies between FL and V4 data
sets were affiliated with candidate phyla (Parcubac-
teria, Omnitrophica, Aminicenantes), Chloroflexi,
Bacteroidetes, Planctomycetes and Tenericutes
(Figure 4b). Genus-level representatives of these
phyla in the current databases are either
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uncultivated and/or the metabolic potential of
reference organisms have not been previously
associated with important biogeochemical cycles.
Genera that were under-represented in the FL
sequences according to the V4 sequences are
dominated by groups of organisms without genomes
in the database or any other function prediction.
Examples with largest sequence abundance
differences are uncultivated Bacteroidetes bacterium
(21 and 718 FL sequences, 320 and 1046 V4
sequences at 36 and 40m, respectively), unculti-
vated Lentisphaerae bacterium (27 and 28 FL, 316
and 234 V4 sequences at 40 and 50 m, respectively)
and Smithella (27 FL and 268 V4 sequences at 50 m).
Although the lack of ecological data for the genera
under-represented in the PhyloTags does not allow
us to make inferences about their functional proper-
ties and/or ecological roles, the significantly higher
sequence discrepancy between FL and in silico
generated V4 sequences suggests a more impactful
ecological misinterpretations of the community
profile, if only V4 sequences would be considered.

Discussion

We here demonstrate that PhyloTags do not need
technical replication and strongly correlate with
shotgun metagenome sequences. PhyloTags overall
showed comparable results to traditional iTag
sequences for the relatively simple mock commu-
nity, as well as the more complex environmental
sample with PCR and/or primer bias being likely the
chief driver for differences in community profiles
between platforms. A comparison between FL and
in silico generated partial amplicon data in the
environmental sample, however, showed that multi-
ple phyla were completely missed by short-read
sequences, community structure was significantly
shifted at the genus level and that several dominant
microbial genera across the water column of
Sakinaw Lake could only be resolved via PhyloTags.

The 16S rRNA gene surveys have been radically
changing our view of microbial evolution and
diversity. FL. 16S rRNA gene sequences are known
to be more effective than partial gene sequences in
inferring phylogenetic affiliation among and between
microbial community members (Liu et al, 2007;
Walters et al., 2011; Soergel et al., 2012). Hence, near
FL sequences generated on the Sanger sequencing
platform have remained the gold standard for a long
time. However, while Sanger sequencing is associated
with the trouble and expense of low-throughput
cloning into host cells, PacBio has recently been
offering a cost-effective, high-throughput alternative
that produces long reads (2—15 kb), which can be used
to generate FL. 16S rRNA gene sequences.

Few 16S rRNA gene sequence studies have taken
advantage of the long reads that the PacBio platform
offers. Although recently Babauta et al. (2014)
sequenced the V1-V3 region of a microbial mat
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community to successfully track composition
changes during enrichment for microelectrode inter-
actions, Mosher et al. (2014) concluded that 16S
rRNA gene sequences >1400bp allowed enhanced
phylogenetic and taxonomic resolution to the spe-
cies level in environmental samples compared with
the 454 platform. Our study complements these
efforts by evaluating pros and cons for various types
of community analyses, including known simple and
unknown complex communities with phyla abun-
dantly and minimally represented in the database.
It is the first benchmark study using FL 16S rRNA
gene sequences generated on the PacBio platform
and provides a comprehensive comparison between
current iTag and emerging PhyloTag 16S rRNA
sequencing paradigms, highlighting the impact
of both short- and long-read sequencing platforms
on microbial community profile interpretations. Our
benchmarked 16S rRNA gene sequence analysis
pipeline for use with SMRT sequencing technology
was consistently reproducible. Although composi-
tion analysis of the mock community exhibited
a marginally higher correlation between shotgun
data and iTags, analysis of environmental samples
indicated superior phylogenetic resolution of
PhyloTags. We attribute the slightly higher correla-
tion between iTags and shotgun sequence data to
lower primer/PCR bias in the V4 primers and the
resulting shorter amplicons, as compared with the
FL amplification products. Moreover, the mock
community was composed of few, mostly distantly
related organisms, which are well represented in the
16S rRNA gene databases. Therefore, accurate
taxonomic placement was not problematic for either
FL or partial 16S rRNA gene sequences. The
resolving power of PhyloTags in our data sets was
more apparent in samples with complex microbial
communities and when reference sequences in the
database were scarce. Misclassifications and inabil-
ity to classify sequences due to read length alone
impaired interpretation of community function
inferred from community diversity information at
different taxonomic levels. From species to phylum,
~12-25% more FL than V4 sequences were unam-
biguously classified. Thus, FL sequences provide a
more complete picture of community composition
needed to accurately link microbial players with
important biogeochemical cycles within the given
ecosystem. Indeed, FL sequences enabled the identi-
fication of abundant genera known to participate
in methane and nitrogen cycling in Sakinaw Lake,
which were under-represented in the V4 sequences.

Since the generation of PhyloTags does not
require amplification during the sequencing step,
sequencing platform-specific bias is predicted to be
generally reduced compared with other platforms.
PhyloTag sequencing also offers the highest contig
accuracy without discrimination against GC-rich
or -poor regions, which further reduces bias
in amplicon-based profiling (Quail et al., 2012).
The raw error rate in PacBio sequences is <15%
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and dominated by indels, which are more difficult
to correct than substitutions (B Bushnell, personal
communication). For this study, shorter reads were
used representing the consensus of many passes
over the same molecule. These consensus reads had
an error rate around 0.5% relative to the original
genomic sequence. This is adequate to confidently
assign OTUs at the species level using a 97%
identity threshold, as two reads with 0.5% error
from the same sequence will retain 99% identity.
However, differentiation between strains or quanti-
fication of the 16S rRNA copy number of an
organism remains difficult at this point. PhyloTag
error rates can be further reduced in a number
of ways: first, by selecting an inter-read consensus
after cluster generation. This requires new algo-
rithm development, as the consensus program we
tested did not produce adequate results (typically
yielding chimeras between different 16S rRNA
copies). Second, longer movies (capturing image
information of the SMRT cell) will allow more
passes over a molecule, increasing the intra-read
consensus quality. Third, PacBio chemistry, software
and calibration improvements will directly result in
more accurate sequences. Finally, structural modeling
of the folded RNA may aid in differentiating between
genetic variation and sequencing error, allowing
better error correcting or filtering of high-error-rate
reads. PacBio has been directing efforts towards
improving their technology considering exactly
these parameters (Supplementary Figure 10), so that
approaching the quality of Sanger amplicon sequen-
cing appears realistic over time.

Although the use of V4 iTags for microbial
community profiling has multiple advantages
including cost-efficiency (lowest cost per base
at 0.11$/Mb), high-throughput multiplexing, the
possibility of using universal primers that target
archaeal and bacterial taxa simultaneously and
the opportunity to get a deep insight into the
rare biosphere, these do come at the expense of
taxonomic resolution. Accurately extending
the microbial 16S rRNA gene catalogue will be
challenging if only partial 16S rRNA gene
sequences are considered and evaluated as
short-read sequences can potentially lead to both
inflation of diversity and missing diversity,
for example, with respect to new candidate ranks
at various taxonomic levels. Moreover, comparison
between data sets generated with different primers
may lead to classification discrepancies, which
limit the accuracy of microbial community profil-
ing. This limitation can be mitigated if FL 16S
rRNA gene sequencing at high throughput as
alternative to Sanger sequencing becomes the
new standard, or at minimum complementary to
INlumina 16S rRNA gene surveys. Using PhyloTags
to assess microbial community diversity in envir-
onmental samples allows us to fill important gaps
in the tree of life while improving classification
and microbial community profiling accuracy with



important implications for inferred metabolic
potential and biogeochemical roles of uncultivated
microorganisms in natural and human engineered
ecosystems.
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