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Abstract

The visual expertise of adult humans is jointly determined by evolution, visual development, and 

visual perceptual learning. Perceptual learning refers to performance improvements in perceptual 

tasks after practice or training in the task. It occurs in almost all visual tasks, ranging from 

simple feature detection to complex scene analysis. In this Review, we focus on key behavioral 

aspects of visual perceptual learning. We begin by describing visual perceptual learning tasks 

and manipulations that influence the magnitude of learning, and then discuss specificity of 

learning. Next, we present theories and computational models of learning and specificity. We then 

review applications of visual perceptual learning in visual rehabilitation. Finally, we summarize 

the general principles of visual perceptual learning, discuss the tension between plasticity and 

stability, and conclude with new research directions.

TOC blurb

Perceptual learning, or performance improvements after training on perceptual tasks, is a 

widespread phenomenon in visual perception. In this Review, Lu and Dosher describe findings 

of specificity and transfer of perceptual learning, mechanisms of learning, and key applications in 

visual rehabilitation
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Introduction

Perceptual learning, or performance improvements in perceptual tasks through practice 

or training, has fascinated sensory psychologists from the beginning of experimental 

psychology.1,2 Perceptual learning occurs in all sensory modalities, including vision, 

audition, touch, smell, taste, and multimodal combinations,3 and can significantly improve 

performance4 and persist for years.5 Visual perceptual learning in laboratory experiments 

can improve accuracy in judgements of orientation, spatial frequency, and motion direction 

from slightly above chance to 90% correct or more,6–8 increase contrast sensitivity by more 

than 150%,9,10 and reduce response times in judgement of motion direction by about 40%.11 

Because perceptual performance can be so significantly altered by perceptual learning, a 

complete understanding of perception requires an understanding of how it is modified by 

perceptual learning.3

Perceptual expertise also arises across many years of training in real-world tasks.12–15 For 

instance, chess masters can perceive and remember meaningful arrangements of pieces 

on the board, enabling them to plan useful moves better than novices.12 Expert weather 

forecasters can extract and classify systematic patterns of visual and other features in 

satellite images.13 The powerful impact of perceptual learning on human performance 

suggests that perceptual systems are remarkably plastic even in adults whose cortical 

organization and function are mature.

In real-world tasks, perceptual judgements often involve complex stimuli and performance 

contexts, and perceptual expertise can be achieved through coordinated improvements of 

multiple processes.13 One approach to understand the basis of perceptual expertise is 

studying how perceptual learning improves one or more component processes. Thus, studies 

on perceptual learning in the laboratory typically use relatively simple stimuli and judgments 

and controlled training protocols.3,16–21 The goals are to characterize the basic functions, 

properties, and mechanisms of perceptual learning in each component process, and then 

apply the principles to understand and facilitate the development of perceptual expertise in 

the real world, including rehabilitation procedures for patients with sensory deficits.22–25

A trademark characteristic of perceptual learning in the laboratory is its specificity: 

performance improvements from training in one task with a particular stimulus and 

judgment typically fail to transfer to improvements with highly related tasks and 

stimuli.3,4,16 In visual perceptual learning, specificity has been reported for stimulus 

orientation, spatial frequency, motion direction, stimulus pattern, and even location in the 

visual field. Specificity distinguishes perceptual learning from cognitive learning, strategy 

selection, and motor learning, which exhibit broader generalizability. However, specificity 

is a graded phenomenon; there can be some specificity but also some transfer of trained 

improvements to other stimuli and tasks. The extent of specificity or transfer can be affected 

by many experimental factors, and the interpretation of specificity in the context of a brain 

network helps locate the site of plasticity.3,26 Specificity might hinder practical applications 

of perceptual learning because it somewhat limits the benefits of training to the trained 

stimulus and task.10 The optimization of transfer to untrained stimuli and tasks is therefore 
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an important precursor for applications of perceptual learning in the development of real-

world expertise and sensory rehabilitation.27

In this Review, we provide an integrated treatment of key behavioral aspects of visual 

perceptual learning. We begin with a survey of the visual tasks that exhibit perceptual 

learning and manipulations that impact the magnitude of learning. We then turn to 

the trademark phenomenon of specificity. Next, we focus on how perceptual learning 

changes visual processing. We detail a set of modeling and experimental investigations that 

enhance the development of new theoretical frameworks and enable more efficient practical 

applications. Then we review applications of perceptual learning in visual rehabilitation. 

Finally, we summarize the general principles of visual perceptual learning and propose new 

research directions.

Although there are notable differences between sensory modalities, including the receptors 

used to register the sensory inputs and the corresponding representations and perceptual 

processes in the brain, perceptual learning across sensory modalities shares common 

methodologies, theories, and computational models. Across modalities, performance 

improves through training and practice, the extent of specificity and transfer depends 

on the stimulus and task, and experience-dependent improvements of the signal-to-noise 

ratio limit perceptual judgments. Thus, a review of visual perceptual learning can also 

benefit researchers studying other sensory modalities. For specific information about 

perceptual learning in other modalities, interested readers can refer to specialized review 

articles.3,17,28–31

Visual perceptual learning tasks

A wide range of tasks exhibit visual perceptual learning, including simple tasks such as 

feature detection (‘Is there a horizontal line present?’) and feature discrimination (‘Which 

of these two lines tilts more clockwise?’) and more complex tasks such as scene analysis 

and perceptual aspects of sports. Perceptual learning occurs far more often than not in 

many thousands of studies.3,16,17,19,20 Only a few stimuli and tasks have resulted in 

relatively small or no effects of perceptual learning, mostly involving basic discriminations 

of orientations or motion direction around the horizontal or vertical meridian in the fovea 

[G].32 In the majority of cases, if initial performance in a perceptual task is not optimal, it 

can be improved by perceptual learning.

Standard paradigm

Most visual perceptual learning studies use forced-choice tasks. For example, in a two-

interval forced-choice detection task, a visual stimulus and a blank screen are shown to the 

observer in two separate time intervals within a trial. The observer is required to indicate 

which interval contains the stimulus. In an N-alternative forced-choice identification task, 

one of several visual stimuli is chosen randomly and presented to the observer in each trial, 

who is required to identify the stimulus (Fig. 1a). Usually, some form of feedback follows, 

either indicating if the response was correct or showing the correct response.
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The stimulus set is typically controlled with one of three procedures. In the constant stimuli 

procedure, the exact same set of visual stimuli is used during the entire course of training 

(Fig. 1b). Performance accuracy or response time are typically measured across a block 

(consisting of dozens of trials) or session (consisting of hundreds of trials), and performance 

is plotted against the number of training blocks or sessions as the learning curve. As training 

proceeds, the task becomes easier for the observer, that is, they become more accurate 

and/or faster. In adaptive training procedures, either the contrast of the stimuli (Fig. 1c) or 

the difference between the to-be-discriminated stimuli (Fig. 1d) is adjusted based on the 

observer’s responses to keep performance accuracy constant. The learning curve is based 

on the contrast or difference threshold, typically measured in blocks or sessions. Although 

visual perceptual learning in these procedures reduces the contrast or difference threshold at 

which observers can perform the task, their accuracy and therefore the task difficulty remain 

the same. Variations of these three basic training procedures include the same set of stimuli 

targeting multiple performance levels,26,33 a mixture of several adaptive training sequences 

each targeting distinct performance accuracy levels, or a sequence of constant stimuli and/or 

adaptive training episodes.34,35

Typical block-by-block or session-by-session learning curves used in all three procedures 

sample performance coarsely and therefore gloss over performance changes at other 

time scales such as initial rapid learning or overnight performance improvements.36,37 

In addition, the stimuli used to assess performance are the training stimuli in the vast 

majority of existing studies. The coupling of training and assessment limits the range of 

training stimuli to those near the threshold and might lead to suboptimal learning in these 

paradigms.34,35

Key manipulations

Every visual perceptual learning experiment must specify many experimental details, 

including the stimuli, perceptual task, target response accuracy (for adaptive methods), 

feedback, reward, attention, training protocol, and any brain stimulation or pharmaceutical 

intervention if present. Any one of these factors can influence the magnitude and specificity 

of visual perceptual learning and their effects should not be taken for granted.

For example, an orientation discrimination task might use Gaussian-windowed sinusoidal 

gratings (or ‘Gabors’) as the stimuli (Fig. 1a). A Gabor is defined by a large number of 

variables, including its retinal location, contrast, orientation, and the center spatial frequency 

and phase of the grating. If the Gabor is masked by external noise, additional parameters 

need to be specified for the noise. The magnitude of learning can depend systematically on 

several of these stimulus factors.10,16,26,32,38,39 For example, initial performance is worse 

and there is more learning if the stimulus is in the periphery or displayed with external 

noise.32,40

The kind of perceptual judgment can also significantly influence perceptual learning. 

Perceptual learning and degree of specificity might depend on whether the judgment 

requires detection or discrimination between two or more than two choices.41,42 The high 

degree of specificity between training on detection and discrimination tasks with identical or 
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highly similar stimuli suggest that observers learn different aspects of the visual stimuli in 

the different tasks.38,43

Feedback and reward also influence perceptual learning. Learning can occur with block 

feedback, which only informs the observer of the aggregate performance accuracy over 

many trials,44,45 or without any feedback.44–49 However, trial-by-trial feedback can improve 

the rate of learning or enable learning in otherwise not learnable tasks.50,51 Random or 

false feedback can eliminate learning, and biased feedback that consistently mislabels 

the accuracy of subject’s trial-by-trial responses can induce subjective decision bias in 

subsequent tests.44,52–54 One study showed that block feedback that exaggerated the 

observer’s response accuracy could improve the rate of learning.55 In tasks with more 

than two alternatives, feedback that indicates the correct answer can lead to better learning 

than accuracy feedback.56 Reward for correct responding can also serve as a form of 

feedback and support learning.57,58 High monetary reward,59 pharmaceutical intervention 

that increases acetylcholine level,60 and brain stimulation can lead to faster learning.61

Training at a high accuracy in adaptive training procedures can be beneficial, leading to 

faster learning, and mixing high-accuracy and low-accuracy training improves learning in 

the slower low-accuracy condition.35,51,62 Training schedule, including the total number of 

training days, sessions, trials per session, and intervals between training blocks and sessions 

can also influence the magnitude of learning. For instance, there is a minimum number of 

trials per session for observers to learn63 and too many trials in a session can lead to less 

learning.64

Most visual perceptual learning studies use a single task. Studies that explicitly manipulate 

attention involve multiple tasks or the same task in more than one spatial location, with 

observers required to attend to one or more tasks at a time. Spatial attention can enhance or 

even enable perceptual learning. When there is less or even no performance improvement 

in the unattended location, the magnitude of learning can be much greater in the attended 

location.65,66 Interleaving training trials of a target task with those of another task can also 

facilitate learning of the target task.67 Perceptual learning can also occur for subthreshold 

stimuli that are irrelevant for the observer’s main task but occur in close temporal proximity 

with the target stimuli in the main task.18,68

The details of the training procedures influence trial-by-trial learning and long-term 

accumulation of learning effects over time. In combination with other factors, they 

also control the total magnitude of performance improvements. Because any individual 

experiment typically manipulates one or a very limited number of these factors, finding the 

optimal combination is a challenge.

Learning at multiple levels

Visual perceptual learning occurs across different primary representations of the training 

stimuli. Here we consider three levels based on the primary representation of the training 

stimuli: single-feature tasks related to low-level vision, pattern tasks related to mid-level 

vision, and objects or natural scene tasks that involve high-level vision.
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A vast majority of studies have investigated low-level tasks with judgments based on a single 

feature of the stimuli, coded in early visual cortical areas. Gabors, which mimic the receptive 

field of V1 neurons, are used in many studies in two-interval or two-alternative forced-

choice tasks (Fig. 2a). Learning in these tasks has been observed in detection,38 contrast 

discrimination,69 color contrast discrimination,70 orientation discrimination in no noise71 

or external noise9, spatial frequency discrimination,72 phase discrimination,6 acuity73 and 

hyperacuity [G] tasks8,48. Substantial learning, sometimes improving performance by a 

factor of two or more in sensitivity (d′) or threshold reduction, has been observed after 

hundreds of trials of training. Relatively few cases have documented no learning; these tasks 

involve dominant forms of stimulus features such as vertical and horizontal (rather than 

oblique) orientations and stimulus presentation in the fovea (rather than the periphery).16,32 

The magnitude of learning is often greater when the stimuli are of high than low spatial 

frequency, presented in high external noise than in no external noise, or when the task 

is carried out in peripheral vision.3,10,32,38 Because the representations of the individual 

features exist in the visual system prior to perceptual learning, accounts of low-level 

perceptual learning posit that the relevant representations for the task are either enhanced 

and/or selected and their weights or read-out optimized in perceptual decision (Box 1).3

Mid-level visual perceptual learning tasks use patterns composed of simple visual features. 

Although the simple visual features are processed in early visual cortical areas, mid-level 

visual cortical areas are involved in integrating or segregating them into patterns.74 

For example, in a same-or-different compound grating judgment task (Fig. 2b),75 two 

component sinewave gratings with different spatial frequencies and orthogonal orientations 

are superimposed to form a plaid. In each trial, either the same plaid or two that differ in 

spatial frequency of one of the component gratings are presented in two intervals and the 

observer is asked to indicate if the two plaids are the same or different. Other mid-level tasks 

include discriminating between textures4 and indicating the dominant motion direction of 

moving random dots7.

Learning has been documented in perceptual judgements in mid-level tasks involving 

compound grating discrimination,75 texture discrimination,4 visual search,76 depth 

perception,77,78 and motion direction or speed discrimination tasks.7,79,80 Relative to low-

level tasks, effects of perceptual learning in mid-level tasks are larger.81 In addition, larger 

magnitudes of learning are found in tasks involving non-dominant stimuli such as oblique 

motion rather than horizontal or vertical motion, or with high speed rather than low speed.79 

Because the representations of the individual features used to create the patterns exist in the 

visual system prior to perceptual learning in the mid-level tasks, learning occurs through 

enhancement and/or selection of the relevant representations at both the feature and pattern 

levels and optimizing their weights in perceptual decision (Box 1).3,82

Research on visual perceptual learning in high-level tasks involving objects and natural 

scenes has only investigated a very small subset of potential stimuli. High-level stimuli are 

processed by high-level cortical areas such as the Inferior Temporal cortex and prefrontal 

cortex. Strong visual perceptual learning has been documented in contour perception,83 

object identification,84,85 face perception,86 and biological motion (Fig. 2c).87 Relative to 

low-level and mid-level tasks, visual perceptual learning in high-level tasks often requires far 
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fewer trials to reach asymptotic high performance levels, and might reflect creation of new 

high-level representations of objects or scenes by combining existing visual features.3

Although the primary representation of the training stimuli provides one way to organize the 

literature, there is considerable overlap in the phenomenology across the levels of perceptual 

learning as well as substantial variations within each level. Furthermore, the relationship 

between the primary representation of the training stimuli and perceptual learning might 

be more complex than currently appreciated. Perceptual learning in a low-level feature 

task might impact higher levels of visual analysis; learning in a mid-level pattern or high-

level object task might also involve learning to enhance and/or select low-level features; 

and learning at all levels might be involved in improved perceptual decision. In addition, 

substantial individual differences are often observed in visual perceptual learning.88 These 

differences might reflect individual differences in learning ability and are correlated to 

personality traits such as IQ, openness to experience, extraversion, and neuroticism scores 

and basic cognitive functions such as simple reaction time and cognitive flexibility.89,90 In 

summary, perceptual learning is a complex process that occurs within a complex set of brain 

networks and might be the result of plasticity at multiple levels.

Specificity and transfer

A hallmark finding in visual perceptual learning is its specificity to retinal location, eye, 

stimulus, and/or task. However, specificity is not absolute; there is usually some transfer of 

learning to related stimuli and tasks, which can depend on many factors. The observation 

of specificity in behavioral results might be consistent with improved weighting or readout 

from early cortical areas and might not necessarily imply plasticity in early visual cortical 

areas.9,26,40 The extent of specificity and transfer is quantified using the specificity index 

and varies over many task contexts. Multiple factors influence whether transfer arises and its 

size.

The specificity index

Three common forms of transfer include location, stimulus, and task transfer. For example, 

an observer might perform a training task to detect a vertical Gabor in the upper-left visual 

field (Fig. 3a). The Gabor, either symmetric with a 0 deg phase or asymmetric with a 90 

deg phase, appears in half of the trials and the observer must indicate if it is present in each 

trial. The contrast of the Gabor is adjusted across trials to keep observer’s performance at 

a constant accuracy level. A hypothetical learning curve of contrast sensitivity across trials 

would monotonically increase and then plateau after a few hundred trials, resulting in a total 

magnitude of learning referred to as Mlearning (the difference between the initial and final 

contrast sensitivity) (Fig. 3e).

To test location transfer, the observer performs the same Gabor detection task in the lower-

right visual field (Fig. 3b). To test stimulus transfer, a horizontal rather than a vertical 

Gabor might be used in the detection task (Fig. 3c). Finally, to test task transfer, the 

observer might perform a phase discrimination task, judging if the Gabor is symmetric or 

asymmetric, on the original stimulus (Fig. 3d). A hypothetical learning curve in the location 

and stimulus transfer tasks is a monotonically increasing curve, but with a higher initial 
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contrast sensitivity Mtransfer that reflects the benefit from training in the original task (Fig. 

3f). The specificity index is defined as one minus the ratio between Mtransfer and Mlearning. 

Complete specificity (specificity index of 1) results if there is no benefit from the training 

task and complete transfer (specificity index of 0) results if there is full benefit from the 

training task. For task transfer, an additional control experiment is often used to measure 

visual perceptual learning in the transfer task without initial training, and the learning curves 

with and without initial training are compared to derive the specificity index.3

Observations of specificity

Although a few studies have documented complete specificity or complete transfer, most 

find partial specificity and partial transfer (Table 1). Evidence for retinal location specificity 

has been found in contrast detection,38 orientation discrimination,71 texture discrimination,4 

motion-direction discrimination,91 depth from random-dot stereograms,92 and localization 

tasks.93 The texture discrimination task4,94 (but see 95) also exhibited eye specificity 

(monocular training benefits the trained eye more than the untrained eye), although 

orientation discrimination task did not.71,96 The sinewave motion direction discrimination 

task exhibited eye specificity without external noise but eye transfer in high external noise.97 

Visual perceptual learning in hyperacuity,8 complex pattern,6 motion-direction,7 and depth77 

judgements exhibited large degrees of orientation specificity. Spatial frequency specificity 

has been demonstrated in contrast detection10,38 and complex pattern discrimination tasks.6 

There was also specificity to the trained objects in object recognition.84 However, visual 

perceptual learning is largely non-specific to viewing distance or spatial scale, suggesting 

that perceptual learning in those tasks involved scale-invariant visual representations.32,84 

Large degrees of task specificity have been demonstrated between motion detection and 

motion direction discrimination,91 between orientation and luminance discriminations on 

lines,45 between bisection and Vernier judgments,98,99 and between global and local 

judgments on texture patterns.100 Although complete specificity has been famously reported 

in some instances such as retinal location specificity in texture discrimination, complete 

transfer has been reported in eye and viewing distance specificity. The most common 

observation is partial specificity and partial transfer, with a specificity index between 0 and 

1.

Extent of specificity and transfer

The relative degree of specificity and transfer depends on many factors, including task 

difficulty or precision,101–105 extent of training,106 state of adaptation,107 attention,108–111 

sensory uncertainty of stimulus features,112 and cross training.34,113

One early study concluded that there was more specificity between difficult training and 

difficult transfer tasks than between easy training and easy transfer tasks.101 However, the 

study actually manipulated the difference between the stimuli (precision), rather than task 

difficulty (the performance accuracy level was kept the same in all the conditions). Using 

a complete factorial design that evaluated all four possible combinations of low-precision 

and high-precision training and transfer tasks, a later study found that the degree of retinal 

location specificity in an orientation identification task depended only on the precision, 

not the difficulty, of the transfer task. There was more transfer to a low-precision than a 
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high-precision transfer task, independent of the precision of the training task.103 The same 

pattern of results has also been observed in texture and motion discrimination tasks.104,105 

High precision tasks require distinguishing between very similar stimuli with acutely tuned 

judgments, so it is not surprising that transfer from related tasks is less effective.

The extent of training also influences the degree of specificity, with more training often 

leading to less transfer and more specificity. Shorter training in texture discrimination47 

and high-precision orientation-discrimination106 tasks and distributing the same number of 

training trials over more days in a hyperacuity task114 led to less orientation specificity than 

more extensive training. The extent of specificity might also depend on the level of visual 

adaptation for presented visual features, as illustrated in a study of texture discrimination.107 

When the target lines only occurred in one location and the target, background and mask 

line orientations remained the same throughout training, a large degree of retinal specificity 

was observed. However, interspersing frames of the texture display with differently oriented 

lines (but no target) reduced adaptation and greatly reduced specificity. Endogenous and 

exogenous spatial attention and feature-based attention also significantly reduced retinal 

location specificity in orientation discrimination and visual acuity tasks.108–111 Interestingly, 

feature-based attention enabled location transfer—reminiscent of its effect across the visual 

field—but preserved orientation specificity.110

Training of a secondary task in a transfer location can promote transfer of a primary 

task.113,115 In one study, a high precision orientation discrimination task with near vertical 

stimuli was highly specific to retinal location, but training a secondary horizontal Gabor 

contrast discrimination task at the transfer location led to a large degree of transfer from 

the primary task to this transfer location. The benefits from cross training also depended on 

performance levels during training, with less benefit from training at threshold performance 

levels.34

Understanding the factors that influence the balance between specificity and transfer is 

important not only for the theoretical understanding of visual perceptual learning, but also 

for its practical applications in visual rehabilitation, where transfer of learning to untrained 

tasks or new context is critical. Relative to the many potential factors that could influence 

the extent of specificity and transfer, the scope of existing investigations has been relatively 

limited. Additional systematic empirical and theoretical investigations on many additional 

factors in a broad range of perceptual learning tasks are necessary to identify causal factors 

of the extent of specificity and transfer.

Mechanisms of perceptual learning

Human perception is limited by various sources of noise such as intrinsic stimulus variability 

(such as quantum fluctuations), receptor sampling errors, randomness of neural responses, 

and loss of information during neural transmission. From this perspective, any perceptual 

task involves discerning relevant signal from noise and any performance improvement such 

as perceptual learning reflects an improved signal-to-noise ratio in perceptual processing.3 

Here we discuss sources of noise, the mechanisms and neural plasticity underlying improved 
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signal-to-noise ratio, and two broad theories of how visual perceptual learning improves 

performance.

Modeling internal and external noise

Regardless of the perceptual task, perceptual learning reflects improved signal-to-noise 

ratio in perceptual processing, either by improving the signal or reducing the noise of the 

observer. Measuring visual perceptual learning using stimuli embedded in systematically 

varying amounts of external noise and modeling the observer as a noisy perceptual decision 

maker with both additive and multiplicative internal noises116 reveals the mechanisms of 

visual perceptual learning.9,40 In the perceptual template observer model, there are three 

sources of noise: the external noise added to the signal stimulus (the Gabor) by the 

experimenter, the additive internal noise of the observer which does not vary with the 

input stimulus, and the multiplicative internal noise of the observer which increases with 

the amount of energy in the input stimulus. The signal-to-noise ratio is determined by the 

ratio of the signal contrast (or differences) and the pooled standard deviation of the external, 

additive and multiplicative internal noises. Learning-induced stimulus enhancement in the 

perceptual system amplifies the input stimulus, including both the signal and external noise 

as well as the multiplicative internal noise, relative to the additive internal noise (Fig. 4a). 

It is equivalent to additive internal noise reduction and can only improve performance when 

the external noise is low (Fig. 4c). Learning-induced external noise exclusion filters out 

external noise (Fig. 4b) and improves performance when the external noise is high (Fig. 4d). 

Learning-induced multiplicative internal noise reduction reduces the multiplicative noise 

without changing signal contrast, external noise, and additive internal noise (Figs. 4ab). It 

improves performance in the full range of external noise conditions (Fig. 4e).

Experiments using the external noise paradigm have documented a mixture of stimulus 

enhancement and external noise exclusion associated with visual perceptual learning 

in orientation identification, motion direction discrimination, face identification, and 

hyperacuity tasks,9,40,86,96,117 stimulus enhancement in second-order letter identification,118 

and external noise exclusion in orientation discrimination in the fovea.32 Training 

with stimuli in zero external noise engaged both stimulus enhancement and external 

noise exclusion, whereas training in high external noise only engaged external noise 

exclusion.39,119

Two mechanisms, stimulus enhancement and external noise exclusion, either in conjunction 

or separately, have explained all the data in external noise studies of perceptual learning and 

visual rehabilitation across a wide range of tasks. These mechanisms are fully compatible 

with the reweighting theory of perceptual learning and might help neuroscientists search for 

plasticity in the brain.

Theories of perceptual learning

Two theories, representation enhancement and information reweighting, have been proposed 

to account for performance improvements in visual perceptual learning.4,9,18,82,120–126 

Although they both improve signal-to-noise ratio in perceptual learning, representation 

enhancement does so by changing the responses or tuning characteristics of neurons in 
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early visual cortical areas, whereas information reweighting does so by up-weighting the 

relevant and down-weighting the irrelevant representations from early visual cortical areas 

during perceptual decision without changing the representations themselves. In its strong 

form, the representation enhancement account assumes that perceptual learning enhances 

stimulus representations in the primary visual cortex.4,125 By contrast, the reweighting 

account assumes that perceptual learning improves the readout of task-relevant information 

that could occur early or late in the visual system, changes the lateral interactions within 

a layer, and/or introduces feedback from higher levels back to lower levels.127 Although 

reweighting of information from one area to the next could resemble representation change 

in the multi-area hierarchical visual system, there is a fundamental functional difference 

between the two theoretical positions. Representation enhancement is persistent and could 

influence tasks that are unrelated to the trained task but rely on the same representations, 

whereas selective reweighting is restricted to the trained task or similar tasks.3,98,99

Both representation enhancement and reweighting could contribute to visual perceptual 

learning,18,83,128,129 but selective reweighting seems to be the dominant component.3 The 

strongest behavioral evidence for representation enhancement is the specificity of learned 

behavioral improvements to stimulus features coded in early visual cortical areas, which 

can also be accounted for by selective reweighting. In addition, even if representation 

enhancement were to occur in the earliest visual representations, reweighting of the evidence 

from the altered representation responses is still required to optimize performance. In this 

sense, the two theories are not wholly exclusive of one another.120,130

A comprehensive review of neurophysiological perceptual learning studies concluded that 

the bulk of existing evidence supports relative stability of visual representations in early 

visual cortical areas.3 In studies reporting that learning induced neuronal representation 

changes, the observed neural plasticity in early visual cortical areas during passive viewing 

or in control tasks—which reflects persistent representation enhancement—only accounted 

for a small fraction of behavioral improvements.131,132 Evidence of neural plasticity was 

strongest in higher visual areas under conditions of active task performance, reflecting 

transient task-specific top-down influence, not persistent representation enhancement.133–135

In brain imaging studies, neurofeedback [G] designed to specifically target functional 

activation patterns in V1 (early visual cortex) in the absence of visual stimuli improved 

behavioral performance and decoding from the neural signal in V1 but not in V4 (a higher 

visual area). The results showed that V1 can be changed by neurofeedback.136 By contrast, 

one perceptual learning study found that training increased decoding accuracy of functional 

resonance imaging activity patterns in higher but not early visual cortical areas,137 and 

another study found no change in the overall level of the BOLD responses in V1-V4.
138 

These results suggest that, although neurofeedback could improve stimulus representation 

in early cortical areas, perceptual learning is consistent with plasticity in higher-level visual 

cortical areas by reweighting information from early visual cortical areas without altering 

their representations.

Representation enhancement has so far remained a verbal theory; virtually all existing 

computational models of visual perceptual learning are based on selective reweighting that 
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improves the readout of sensory information in decision (Box 1).8,9,26,80,121,127,139–142 

One modeling study showed that trial-by-trial learning through reweighting can account 

for all the observed mechanisms of perceptual learning in representative experimental data 

manipulating external noise.143

Specificity, the primary behavioral evidence for theories of representation enhancement, can 

be accounted for by the reweighting theory. Physiological and brain imaging studies have 

also supported the conclusion that visual perceptual learning largely reflects reweighting of 

sensory representations of visual stimuli, with early sensory representation enhancement 

accounting for a small fraction of behavioral performance improvements.3,131,133,144 

Although the pattern of learning-related changes in neural data support the idea that 

reweighting is a dominant form of plasticity, new physiological evidence is required to 

trace the reweighted connections between brain areas.

Neural plasticity

Retinal location specificity of visual perceptual learning originally suggested the 

involvement of early visual cortical representations because of their small receptive fields.71 

These data led to strong claims of plasticity in early visual cortical areas underlying these 

improvements; a change in visual performance would seem to imply plasticity in the region 

representing the visual stimulus. However, an analysis of training and transfer tasks with a 

simple neural network suggests that the involvement of representations encoded in a cortical 

area does not imply that plasticity happens in that area.26

Although it cannot distinguish representation enhancement and reweighting theories of 

visual perceptual learning, specificity is a powerful behavioral indicator of the cortical 

level(s) involved in learning. Specificity to retinal location, eye, or stimulus features 

indicates involvement of representations at a level that preserves those properties. By 

contrast, transfer or generalization over location, eye, or stimulus features indicates 

involvement of representations at a level that abandons those properties.

Essentially all the observed specificity in the literature is consistent with plasticity of the 

connections between sensory representations and perceptual decision, and does not require 

plasticity at the site of the sensory representations (such as in early visual cortex).3,26 In 

specificity to retinal location, eye, and stimulus, the stimuli in the training and transfer 

tasks are represented by different neurons in early visual cortical areas, with independent 

connections to perceptual decision. Learning in the training task by changing either the 

relevant neural representation or the connections to decision would not have any impact 

on the representation or connections of the transfer task and therefore result in specificity. 

Thus, specificity cannot indicate whether visual perceptual learning involves plasticity in 

early visual areas or improved connections from early visual areas to areas involved in 

decision-making. In task specificity, the stimuli in training and transfer tasks are represented 

by the same sensory neurons connected to different perceptual decisions. Specificity implies 

plasticity of the connections between sensory and decision areas rather than within sensory 

neurons.26,120 By contrast, any transfer suggests that higher-level visual representations 

invariant to location, eye, or stimulus features are involved in perceptual learning. In these 

higher-level visual representations, stimuli from different locations, eyes, or with different 
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features are represented by the same neurons. Improved representations or their connections 

to perceptual decision from training with a stimulus in one location, one eye, or with one 

stimulus feature would automatically benefit perceptual performance with stimuli in other 

locations, eye, or with other stimulus features.

Learned plasticity must be balanced by stability to optimize behavior over many tasks 

and environmental contexts.40,145 For instance, retuning representations in the early visual 

cortex to enhance performance in one task would impact performance in many other tasks 

that use the same representations. By contrast, plasticity based on selective reweighting 

of task relevant connections in a multiplexing cortical organization,146 in which different 

tasks involve independent connections from sensory areas to decision, could help maintain 

stability during visual perceptual learning of multiple tasks over time. Deep convolutional 

neural networks might provide a promising way to investigate the tradeoff between plasticity 

and stability (Box 2).

Applications to rehabilitation

Visual perceptual learning studies in the laboratory have demonstrated brain plasticity and 

large improvements in perceptual performance, inspiring a quest to translate the procedures 

of visual perceptual learning to rehabilitation therapies. Many clinical populations could 

potentially benefit from perceptual learning, including patients with amblyopia, myopia, 

presbyopia, optical aberrations, low vision, cataract, and cortical blindness.24,25,147–150 In all 

these cases, perceptual learning can be used to reduce visual deficits by training the brain to 

improve the signal-to-noise ratio in perceptual processing, without the need to alter physical 

limitations of the eye (such as the elongated axial length of the eye in myopia).

Lessons from clinical applications have also greatly enhanced the scientific understanding of 

visual perceptual learning. Just as theories and procedures from visual perceptual learning 

studies of normal adults can provide a launch pad for the development of rehabilitation 

therapies, translation work faces many new challenges not encountered in laboratory studies 

and can lead to different theoretical accounts of patient behavior as well as new training 

procedures.3,27 We focus on amblyopia, myopia, and low vision, where visual perceptual 

learning has exhibited some promising outcomes.

Amblyopia

Amblyopia is the most common cause of visual impairment in childhood (present in 2–

5% of the population) and is characterized by poor spatial vision (the ability to perceive 

spatial patterns of light) in one (‘unilateral amblyopia’) or both eyes (‘bilateral amblyopia’) 

without detectable structural or pathological abnormalities.25,151 Conventionally, children 

with unilateral or asymmetric bilateral amblyopia are treated by patching or unilateral 

atropine application to block or blur the vision of the eye with better vision to decrease its 

use and promote use of the eye with worse vision. Adults with amblyopia are not treated 

in the clinic because the conventional wisdom is that the critical period for spatial vision 

development ends at age 8, after which patching and atropine treatments are no longer 

effective.152
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Visual perceptual learning has been evaluated as a treatment mostly for adults with 

amblyopia.25 Training the amblyopic eye using monocular tasks, such as Gabor contrast 

detection, Gabor orientation discrimination and hyperacuity, significantly improved 

performance of the amblyopic eye in the trained task without damaging performance of 

the fellow eye in adults with amblyopia.5,25,111,153–157 In particular, training the amblyopic 

eye in Gabor contrast detection improved the signal-to-noise ratio via stimulus enhancement 

and external-noise exclusion,158 transferred to a broader range of spatial and temporal 

frequencies than the equivalent training in observers with normal vision,10 159 and had a 

long retention period.5 Using simple visual tasks for adults with amblyopia and video games 

for both children and adults with amblyopia, training with simultaneous presentation of 

contrast-enhanced images in the eye with worse vision and/or contrast-reduced images in the 

eye with better vision improved performance in the trained tasks as well as stereo acuity and 

visual acuity.157,160–165

Reviews and meta-analyses of laboratory studies concluded that 6–30 hours of visual 

perceptual learning in a wide range of tasks transferred to 0.1 to 0.2 log minimum 

angle of resolution [G] (logMAR) visual acuity improvements in amblyopia, regardless 

of the task, whether training was monocular or binocular, age (for adults) or the type 

of amblyopia.25,153,154,157,166 In comparison, 120 hours of wear an eye patch is required 

to achieve a 0.1 logMAR acuity improvement. However, randomized clinical trials on 

binocular training generated visual acuity improvements comparable to patching.167,168 The 

many potential contributing factors of the different results from the small-scale laboratory 

studies and large-scale randomized clinical trials, including inclusion criteria, placebo 

effects, experimental protocol, and patient compliance, are still under active investigation.25

Myopia

The prevalence rate of myopia is 43% in the US population below age 50 and 80%–

90% in young adults in East Asia.169,170 Visual perceptual learning has been used to 

improve cortical processing of blurry myopic images on the retina to improve myopic 

vision. Training mildly to moderately myopic individuals in Gabor detection significantly 

improved contrast-sensitivity and produced about 0.16–0.25 logMAR improvements in 

acuity, with no change in refractive error [G].171–174 By measuring the threshold contrast 

versus external noise contrast functions (Fig. 4) before and after training, a study found 

that these improvements reflected increased signal to noise ratio via a combination of 

stimulus enhancement and external noise reduction.174 Although visual perceptual learning 

has shown some promising results in adults with mild to moderate myopia in several 

laboratory studies, large-scale clinical trials are necessary to fully evaluate its efficacy adults 

with mild to high myopia and children with myopia. Future studies should also evaluate 

whether visual perceptual learning can slow the progression of myopia in children.

Low vision

Low vision refers to vision loss that cannot be corrected with glasses, contact lenses 

or surgery, typically caused by age-related macular degeneration, diabetic retinopathy, or 

glaucoma. People with low vision might have blind spots, poor night vision, and/or blurry 

sight but are not fully blind.175 One study showed that training in a visual search task led 
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to improved performance for patients with severe to profound low vision.176 Low vision 

patients with central vision loss often develop one or more preferred areas in the periphery 

as their ‘new fovea’, which is repeatedly aligned with a visual target for a specified task 

and serves as the oculomotor reference. Several studies showed that visual perceptual 

learning on orientation discrimination, contrast detection and letter recognition improved 

visual acuity and contrast sensitivity and reduced visual crowding in the preferred retinal 

locus of patients with low vision.177–180 Furthermore, visual perceptual learning promoted 

the selection and stabilization of a good preferred retinal locus (that can precisely and 

stably align with visual targets) in normal observers with simulated central vision.181–183 

One review suggests that a more holistic intervention approach, taking into account 

eye movement planning, cognitive control mechanisms and visual perceptual learning, is 

necessary to improve rehabilitation in low vision.24 Whereas contrast sensitivity and visual 

acuity at the preferred retinal locus may be improved with visual perceptual learning, 

oculomotor control may be improved with eye tracking technology or computerized 

programs, and cognitive control can be trained with visual search and/or tasks engaging 

various components of attention.

Applications of visual perceptual learning in clinical populations have revealed its potential 

for partial remediation of specific visual functions. However, many challenges remain.25,27 

First, specificity can limit the benefits of training to trained stimuli and tasks or those 

highly similar to them. Second, many existing studies have used relatively simple laboratory 

training tasks. Translational research on perceptual learning could benefit from the inclusion 

of more real-world training tasks and a test battery to assess the generalizability of proposed 

training protocols. Such a battery should include a broader range of visual tests, from basic 

visual features to daily visual functions, such as reading, driving, or mobile device use. Full 

testing of medically relevant training interventions might require large sample randomized 

clinical trials and approval by regulatory agencies to truly establish the efficacy of visual 

perceptual learning-based treatments.25,27,157

Summary and future directions

Perception can be powerfully improved by training or practice, even in adults. Visual 

perceptual learning occurs at multiple levels of a complex hierarchical brain network 

by improving the signal-to-noise ratio in perceptual processing either through enhancing 

the stimulus or excluding external noise. One of the distinctive characteristics of visual 

perceptual learning is that the benefits are often specific to the trained stimulus and task, 

with the magnitude of learning and extent of specificity mediated by multiple task and 

stimulus factors. Computational models that reweight information from multiple visual 

areas to decision in a hierarchical brain network have accounted for a wide range of 

visual perceptual learning phenomena. In addition, visual perceptual learning has led 

to performance improvements in patients with visual disease and can offer effective 

rehabilitation in some visual conditions. Despite the tremendous progress made in our 

understanding of visual perceptual learning over the last three decades, there are still many 

unanswered questions.

Lu and Dosher Page 15

Nat Rev Psychol. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Improved measurement and modeling of the trial-by-trial learning curve has the potential 

to expand understanding of perceptual learning mechanisms.184,185 186 Incorporating 

regularities across observers and conditions, hierarchical Bayesian models provide more 

accurate and precise estimates of the parameters that define the learning curve. The 

fine-grained assessment captures rapid learning, within-session deterioration, and abrupt 

between-session performance changes.37 These methods can also provide more accurate 

and precise assessments of specificity and transfer because of better assessment of the 

initial performance in training and transfer tasks than block or session measures. These new 

methods can be applied in a wide range of studies to improve the use of data from individual 

participants to better understand learning in populations. A more efficient trial-by-trial 

assessment of the learning curve would also permit the estimation of learning curves with 

fewer assessment trials. Future work could use a mixture of supra-threshold trials for better 

training and near-threshold trials to assess performance improvements, a more efficient 

learning procedure.

Many factors impact the magnitude of performance improvements and extent of transfer in 

visual perceptual learning. It is impossible to find the optimal combination of the factors 

by evaluating all possible combinations through experimentation or even computational 

simulations. To obtain the optimal combination and therefore the optimal training protocol, 

an optimization framework could be used,187 which consists of a well-specified objective 

function such as maximum learning or transfer, a model of trial-by-trial performance in 

visual perceptual learning and transfer, and a powerful engine to efficiently search for the 

optimal combination. In addition, experiments are necessary to verify the key assumptions 

and evaluate the performance of the components of the optimization framework, especially 

the perceptual learning model.

Another avenue for future research is more realistic brain network models. Although 

existing models have successfully accounted for a wide range of observed behavioral 

phenomena in visual perceptual learning, they are necessarily abstract and relatively 

simplified. The next generation of visual perceptual learning models could directly 

incorporate the architecture of the visual system, from the optics of the eye to the 

retina, lateral geniculate nucleus, and visual cortical areas, as well as attention, reward, 

and decision circuitry. They might also incorporate recurrent, feedforward and feedback 

connections within and between brain areas as well as neuronal properties in each area, 

especially stochastic properties of neural processing. Such developments will require 

coordinated investigations across computational neuroscience, system neuroscience and 

sensory psychology.

Most laboratory perceptual learning studies have focused on adults, with few systematic 

studies of perceptual learning in children, whose brains are still undergoing development 

and are more labile. Animal studies show that the visual system is much more plastic 

during the critical period, which can be re-opened through dark rearing [G].188,189 There 

is tremendous interest in understanding the interaction between perceptual learning and 

development, especially the possibility of applying perceptual learning during a re-opened 

critical period to take advantage of the enhanced plasticity to improve sight in patients with 

Lu and Dosher Page 16

Nat Rev Psychol. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eye disease. However, children might be more susceptible to unforeseen side effects during 

development and many ethical issues must be addressed in this work.

Visual perceptual learning, reflecting plasticity of the visual system, is a fundamental 

property of the human brain. Tremendous progress has been made in understanding 

the phenomenology, mechanisms, and applications of visual perceptual learning over the 

last three decades. This research has in turn greatly enriched the understanding of the 

visual system. A new generation of measurement technologies, data analytical methods, 

applications of the optimization framework, and modeling efforts, will further deepen the 

understanding of visual perceptual learning and extend its application to child development 

and rehabilitation.
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Glossary

Fovea:
The location in the very center of the retina where eyesight is sharpest

Hyperacuity:
A sensory capability beyond classical visual acuity limits, such as the ability to detect 

a misalignment of lines that is considerably smaller than the diameter of a foveal cone 

receptor

Neurofeedback:
Feedback based on measurement of real-time brain activities, used to teach self-control of 

brain functions to participants

Log minimum angle of resolution:
The logarithm of the angle at which two objects such as two points subtended at the eye are 

just perceived as separate

Refractive error:
A type of vision problem, including nearsightedness, farsightedness, astigmatism and 

presbyopia, caused by the abnormal shape of the eye that keeps light from focusing correctly 

on the retina

Dark rearing:
A form of rearing with visual deprivation in which the animal spends more time in total 

darkness than the normal day-night cycle
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Box 1.

The Integrated Reweighting Theory

The visual system can be construed as a multi-layer hierarchical network.190 Visual 

inputs (see image) are initially represented in multiple feature maps in early visual 

cortical areas, each of which characterizes local properties of the visual input, including 

orientation, spatial frequency, phase, color, disparity, and local motion. These feature 

maps are further processed in each local region. Then features from different maps 

are integrated to generate feature-invariant representations, and further integrated across 

spatial locations to generate location invariant representations. All feature maps are 

directly connected to regions that conduct perceptual decision (only the connections 

between the location invariant representations to decision are shown in the image). The 

connections between different layers are bi-directional. There could also be recurrent 

connections within each feature map.

In the integrated reweighting theory, visual perceptual learning optimizes connection 

weights between layers of the hierarchical network and between each layer and 

perceptual decision without altering the initial feature maps. The weights are changed 

using an augmented Hebbian learning rule,26,127 based on the co-activation between 

connected regions and external feedback when available. In addition, the rate of weight 

change can be affected by attention and reward.3

In this framework, the extent of specificity and transfer depends on the degree of overlap 

and compatibility of connections for the training and transfer tasks. When stimuli in 

the training and transfer tasks in different locations (or with different features) are 

separately represented by location-specific (or feature-specific) regions, reweighting the 

connections from the representation of the stimuli to decision during training does not 

change the connections for the transfer task, leading to location (or feature) specificity. 

When stimuli in the training and transfer tasks in different locations (or with different 

features) are represented by the same location-invariant (or feature-invariant) region, 

reweighting the connections from the representation of the stimuli to decision during 

training changes the connections for the transfer task, leading to positive location (or 

feature) transfer if the two tasks are compatible and negative location (or feature) transfer 

if they are incompatible. If training and transfer tasks involve both location-specific 

(or feature-specific) and location-invariant (or feature-invariant) representations, partial 

specificity and partial transfer would occur.
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Box 2.

Deep convolutional neural networks

Deep convolutional neural networks are developed to perform perceptual functions such 

as image recognition. With large corpus of training images and associated labels, a deep 

convolutional neural network learns to adjust connection weights between different layers 

and can perform image recognition with very high accuracy. Although deep convolutional 

neural networks are developed to solve classification problems in artificial intelligence 

rather than to model human behavior, they face many of the same theoretical issues 

encountered in visual perceptual learning, such as specificity versus transfer and the 

trade-off between plasticity and stability.

Deep convolutional neural networks have also been used to model perceptual 

learning.191,192 There are a few major differences between deep convolutional 

neural networks and the integrated reweighting theory (Box 1). First, whereas the 

representations and connection weights in deep convolutional neural networks are learned 

through training from scratch, the initial representations and connection weights in 

the integrated reweighting theory are based on known properties of the visual system, 

reflecting the fact that human observers can perform most visual perceptual learning 

tasks above chance before training. In fact, early layers of the deep convolutional 

neural networks after extensive training represent visual inputs in similar ways as early 

visual cortical areas.193 Second, whereas deep convolutional neural networks are trained 

with labeled images in a supervised mode, the integrated reweighting theory uses an 

augmented Hebbian rule and can learn without supervision, corresponding to the fact 

that learning often occurs in visual perceptual learning even in the absence of external 

feedback. The integrated reweighting theory is also more robust to small perturbations 

of the visual stimuli than the deep convolutional networks. Third, whereas only the 

highest representation layer is connected to decision-making in deep convolutional 

neural networks, every layer in the integrated reweighting theory is connected to 

decision-making. The types and degrees of invariance in different layers of the integrated 

reweighting theory account for the extent of specificity and transfer over a wide range of 

visual perceptual learning studies. On the other hand, deep convolutional neural networks 

often ‘yoke’ weight changes in different locations in each layer, assuming that training 

in one location propagates to analogous parts of the network. Such an architecture 

leads to complete location transfer. Furthermore, deep convolutional neural networks 

have not incorporated meaningful treatments of internal noise, a fundamental property 

of the human visual system. Despite these differences, cross fertilization of research on 

perceptual learning and deep convolutional neural networks might help advance both 

fields.
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Figure 1. 
Standard paradigm. (a) In a perceptual learning task, one of several potential stimuli (marked 

with a blue circle) is randomly chosen and shown to the observer, who identifies the 

stimulus (“O3”) and receives either no feedback, feedback regarding their accuracy (right 

or wrong), or is shown the correct response. (b) In the constant stimuli procedure, stimuli 

are kept constant throughout training and performance accuracy is measured over the course 

of training. (c) In the adaptive training procedure, one stimulus feature (here: contrast) is 

adaptively adjusted throughout training to keep the performance level constant; contrast 

threshold is measured over the course of training. (d) In the adaptive training paradigm, the 

difference between the to-be-discriminated stimuli (here: orientation) is adaptively adjusted 

throughout training to keep the performance level constant; difference threshold is measured 

over the course of training.
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Figure 2. 
Tasks that exhibit visual perceptual learning. (a) Low-level feature tasks: Gabor detection, 

contrast discrimination, color contrast discrimination, orientation identification, orientation 

identification in external noise, spatial frequency discrimination, phase discrimination, and 

hyperacuity. Two to-be discriminated stimuli are shown for each task. (b) Mid-level pattern 

tasks: compound grating discrimination, texture discrimination, depth discrimination, and 

motion direction discrimination. (c) High-level object/scene tasks: Contour/shape detection, 

face recognition, and object recognition.
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Figure 3. 
Training and transfer. (a) A sample training task: A vertical Gabor detection task in the 

upper-left visual field. The Gabor, with either a 0 or a 90 deg phase, occurs in 50% of 

the trials. The observer indicates the presence or absence of the Gabor in each trial. The 

contrast of the Gabor is adaptively adjusted from trial to trial to keep performance at a 

constant accuracy level. (b) Location transfer: The same vertical Gabor detection task in 

the lower-right visual field. (c) Stimulus transfer: A horizontal Gabor detection task in the 

upper-left visual field. (d) Task transfer: A phase discrimination task in the upper-left visual 

field in which the observer is asked to indicate the phase (0 or 90 deg) of the Gabor in 

each trial. (e) The contrast sensitivity learning curve in the training task. Mlearning is the total 

amount of learning. (f) The contrast sensitivity learning curve in the location (b) or stimulus 

(c) transfer task. Mtransfer is the total amount of transfer, representing the benefit from the 

training task. SI is the specificity index.
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Figure 4. 
Three ways to improve signal-to-noise ratio. (a) A signal Gabor in additive and 

multiplicative internal noises, without external noise. Stimulus enhancement increases the 

contrast of the Gabor and multiplicative noise relative to the (unchanged) additive internal 

noise. Multiplicative internal noise reduction reduces the multiplicative noise without 

changing signal contrast and additive internal noise. (b) A signal Gabor embedded in high 

external noise and additive and multiplicative internal noises. External noise exclusion 

filters out the external noise without changing signal contrast. Multiplicative internal noise 

reduction reduces the multiplicative internal noise without changing signal contrast, external 

noise, and additive internal noise. Signature threshold contrast vs external noise contrast 

functions for stimulus enhancement (c), external noise exclusion (d), and multiplicative 

internal noise reduction (e). The dotted and solid curves represent pre-training and post-

training functions, respectively.
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Table 1

Observations of specificity and transfer in visual perceptual learning

Level Task Stimuli Type of transfer 
tested

Transfer observed References

Low Contrast detection Sinewave gratings Spatial frequency Low to high specificity 
(depending on spatial 
frequency difference)

10,38

Hyperacuity Pairs of parallel lines Orientation Full specificity 8

Orientation discrimination Oriented bars of random dots Retinal location Low to moderate specificity 71

Gabors with and without 
noise

Viewing distance Full transfer 32

Orientation and brightness 
discriminations

Lines Task Full specificity 45

Complex pattern 
discrimination

Compound sinewave gratings Spatial frequency Full specificity 6

Mid Depth discrimination Random-line stereograms Orientation Moderate specificity 77

Mid Motion direction 
discrimination

Moving random dots Retinal location High specificity 91

Mid Moving sinewave gratings Eye Moderate specificity 97

Mid Moving sinewave gratings in 
noise

Eye Full transfer 97

Mid Moving random dots Orientation Full specificity 7

Mid Motion detection and motion 
direction discrimination

Moving random dots Task Full specificity 91

Mid Bisection and Vernier 
judgments

Patterns of dots Task Full specificity 98, 99

Mid Global and local texture 
judgments

Textures of lines Task Full specificity (local to 
global).

High specificity (global to 
local).

100

High Object recognition Images of common objects Object High specificity 84

High Object recognition Images of common objects Viewing distance Full transfer 84

Note: Degree of transfer is broadly labeled as low, moderate, high, or full transfer.
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