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Abstract—Buffer management in queuing systems plays an im-
portant role in addressing the tradeoff between efficiency mea-
sured in terms of overall packet loss and fairness measured in terms
of individual source packet loss. Complete partitioning (CP) of a
buffer with the best fairness characteristic and complete sharing
(CS) of a buffer with the best efficiency characteristic are at the
opposite ends of the spectrum of buffer management techniques.
Dynamic partitioning buffer management techniques aim at ad-
dressing the tradeoff between efficiency and fairness. Ease of im-
plementation is the key issue when determining the practicality of
a dynamic buffer management technique. In this paper, two novel
dynamic buffer management techniques for queuing systems ac-
commodating self-similar traffic patterns are introduced. The tech-
niques take advantage of the adaptive learning power of percep-
tron neural networks when applied to arriving traffic patterns of
queuing systems. Relying on the water-filling approach, our pro-
posed techniques are capable of coping with the tradeoff between
packet loss and fairness issues. Computer simulations reveal that
both of the proposed techniques enjoy great efficiency and fairness
characteristics as well as ease of implementation.

Index Terms—Buffer management, fairness, neural network
teletraffic forecasting, packet loss, water-filling.

I. INTRODUCTION

NEURAL networks are a class of nonlinear systems ca-
pable of adaptively learning and performing tasks accom-

plished by other systems. Their broad range of applications in-
cludes speech and signal processing, pattern recognition, and
system modeling. The adaptive learning power of neural net-
works has also proven useful in various contexts of the literature
on computer communication networks. For example, neural net-
works have been successfully utilized in dynamic allocation of
bandwidth for variable bit rate (VBR) video over asynchronous
transfer mode (ATM) [9]. Systems with neural network building
blocks are robust in the sense that the occurrence of small errors
in the systems does not interfere with the proper operation of the
system. This characteristic of neural networks makes them quite
suitable for forecasting traffic patterns.

In [35] and [36], the absence of natural length of a burst for
the high quality, high time-resolution Ethernet local area net-
work (LAN) traffic data was reported. The data was collected
between August 1989 and February 1992 on several Ethernet
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LANs. This behavior is very different from conventional tele-
phone traffic and from formal models of packet traffic. The
available data sets verified the persistent self-similar feature
of Ethernet traffic across the network and across the time. In
general, the degree of self-similarity depends on the utilization
level of the medium. For the Ethernet, it increases as the uti-
lization increases. Analysis of traffic data from other networks
and services such as VBR video [7], integrated services digital
network (ISDN) traffic [25], common channel signaling net-
work (CCSN) [11], ATM traffic [41], and broad-band networks
[3] have all convincingly demonstrated the presence of features
such as long-range dependence, slowly decaying variances, and
heavy-tailed distributions. These features are best described
within the context of second-order self-similarity and fractal
theory approach. Forecasting self-similar traffic patterns is
more challenging than forecasting traditional traffic patterns
considering their rich dynamics.

Reducing packet loss in queuing systems is one of the most
important issues in the design of traffic control algorithms. Re-
ducing packet loss in the queuing systems is equivalent to im-
proving efficiency and is usually considered as a performance
evaluation tool. For systems consisting of more than one source,
there is another major issue worth considering known as fair-
ness. Fairness provides each individual source with the ability
to take advantage of a fair portion of the shared available re-
sources such as buffer space or server bandwidth also known as
service rate. The combination of buffer management and server
bandwidth scheduling specifies the efficiency and the fairness
of a multiple source queuing system. Accommodating self-sim-
ilar traffic patterns further complicates the buffer management
of multiple source queuing systems manifesting in higher drop
rates and longer queuing delays.

In this study, two different server scheduling schemes are
considered. These are namely fixed time division multiplexing
(FTDM) and statistical time division multiplexing (STDM). In
FTDM, each source takes advantage of a preassigned portion
of the server bandwidth. Server bandwidth is allocated to each
source regardless of whether it has data to transmit. In STDM,
each source only utilizes an aggregate portion of the server
bandwidth when it has actual data to be transmitted. Simply
put, the difference between the two schemes is that in FTDM
there is no bandwidth sharing while in STDM the unused
portion of the server bandwidth assigned to each source might
be used to service packets generated by other sources. FTDM
is typically used for ATM switching systems with a number of
virtual paths where as STDM is typically used in ATM queuing
systems with a number of virtual channels.
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There are a number of different buffer management schemes
studied in [19], [21], [31], [32], and [37]. These are namely com-
plete sharing (CS) with no enforced capacity allocation mecha-
nism, complete partitioning (CP) with equal partitioning of the
available buffer capacity, and partial sharing (PS) with dedi-
cated portions of the buffer space as well as a common shared
portion. A survey of the literature shows that CS achieves op-
timal throughput-delay performance. However, the work in [28]
suggests that the CS scheme may not perform well when ac-
commodating ill-behaved greedy sources or heavily loaded sys-
tems. There is also another variation of CS known as the static
threshold (ST) scheme in which an arriving packet is accommo-
dated if the queue length is smaller than a given threshold. The
work in [18], [28], and [37] all propose simple implementations
of static PS (SPS) methods with the objective of balancing the
tradeoff between efficiency and fairness. While implementation
of these schemes is relatively simple, their performance suffers
as the result of relying on static partitioning. The latter is due to
the fact that the schemes can allow packet loss in a partitioned
buffer while another partitioned buffer is not full. The work in
[27] provides a discussion of performance analysis for a class
of SPS methods.

A dynamic buffer management scheme is classified under
PS methods with the ability to adjust the buffer size of each
source according to the overall buffer occupancy. The schemes
in [20], [38], and [48]–[50] are all classified under dynamic push
out (DPO) which is a variant of dynamic buffer management
schemes. The schemes investigate different issues of the main
DPO idea. In DPO, a packet that arrives to find a partitioned
buffer full pushes out the packet at the head of the longest par-
titioned buffer. Although offering excellent efficiency and fair-
ness characteristics, DPO has proven to have a very high over-
head of implementation. Relying on the max-min proposal in
[29], the dynamic buffer management scheme in [10] proposes
simpler versions of DPO in which the individual partitioned
buffer length threshold, at any instant of time, is proportional
to the current amount of unused buffering in the main buffer.
Packet arrivals for a partitioned buffer are blocked whenever the
partitioned buffer length equals or exceeds the current threshold
value. In [23], the authors extend their earlier work of [10] to
regulate buffer sharing among traffic classes with different loss
priorities.

Other buffer management and scheduling schemes that have
been extensively discussed in the literature and can be catego-
rized under the previous classifications include earliest deadline
first (EDF), CS with virtual partitioning (CSVP), and general-
ized process sharing (GPS). Among the set of articles in the lit-
erature, the work in [12], [15], and [52] provides an appropriate
overview of the latter techniques, respectively. In [27] and [53],
performance analysis studies of a number of buffer management
schemes are provided. The tradeoff between the available band-
width and buffer space is studied in [40]. The work in [5] and
[33] are among recent literature articles providing a theoretical
and an intelligent treatment of the buffer management problem,
respectively.

The schemes introduced in this paper are also classified
under dynamic buffer management schemes. They are capable
of improving the loss performance of SPS scheme of [37] while

considering fairness versus loss trade off. Unlike the family of
DPO buffer management schemes, our proposed schemes do
not need to monitor and access any information about the status
of all of the partitioned buffers. Hence, they can be imple-
mented at each buffer independently. The schemes rely on the
power of neural networks to forecast the arriving traffic patterns
of multiple source queuing systems and dynamically adjust
the buffer space partitioning according to the corresponding
traffic arrival pattern. The schemes utilize water-filling tech-
nique satisfying the so-called max-min fairness property when
dynamically adjusting the buffer space. We note that while
our proposed schemes are described for fixed-length packets
typically utilized in ATM systems, they can also be applied to
to variable-length packets.

An outline of the paper follows. In Section II, we briefly re-
view the characteristics of self-similar packet traffic. In Sec-
tion III, we describe our proposed neural network forecasting
schemes of teletraffic patterns. In Section IV, we introduce and
analyze a typical multiple source queuing system utilized in the
context of our work. Section V provides the details of our buffer
management scheme. Section VI includes our simulation results
pertaining to packet loss reduction in multiple source queuing
systems. In this section, we also compare the performance of
our proposed dynamic neural sharing (DNS) schemes with other
buffer management schemes. Finally, we conclude the paper in
Section VII.

II. SELF-SIMILAR PACKET TRAFFIC

In this section, we provide a discussion of second-order self-
similarity as a statistical property of time series. Intuitively, self-
similar phenomena display structural similarities across a sig-
nificant number of time scales. The degree of self-similarity is
sometimes specified by measuring a single or a set of param-
eter(s) called Hurst parameter(s).

Suppose is a covariance sta-
tionary stochastic process with mean , variance , and auto-
correlation function . Particularly, assume the auto-
correlation function of has the form

as (1)

where 0 1 and constant is a finite positive integer. For
each let be
the covariance stationary time series with corresponding auto-
correlation function obtained from averaging the original
series over the nonoverlapping time periods of size , i.e.,
for each is given by

(2)

The process is called exactly second-order self-similar with
the self-similarity parameter if the corresponding

processes have the same correlation functions as , i.e.,
for all and .

The process is called asymptotically second-order self-sim-
ilar with self-similarity parameter if
asymptotically approaches to given by (1), for large
and . If the correlation functions of the aggregated processes
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are the same as the correlation functions of or ap-
proach asymptotically to the correlation function of , then

is called exactly or asymptotically second-order self-sim-
ilar. Fractal Gaussian noise (FGN) is a good example of an
exactly self-similar process with self-similarity parameter

1. Fractional ARIMA processes with the
parameters such that 0 are examples
of asymptotically second-order self-similar processes with
self-similarity parameter .

Mathematically, self-similarity manifests itself in a number
of ways. In our discussion in the following, we assume that the
constants and are finite positive integers.

• The variance of sample mean decreases more slowly
than the reciprocal of the sample size. This is
called slowly decaying variance property indicating

as with 0 1.
• The autocorrelations decay hyperbolically rather than ex-

ponentially fast, implying a nonsummable autocorrelation
function . This is called long-range depen-
dence property.

• The spectral density obeys a power-law near the
origin. This is the concept of noise with the meaning

as with 0 1 and 1 .
It appears that the most important feature of self-similar pro-
cesses is that their aggregated process possesses a nonde-
generate correlation function as . This is different from
traditional packet traffic models with the property that their ag-
gregated processes tend to second-order pure noise, i.e.,

as .
The concept of self-similar processes provides an elegant ex-

planation for the Hurst effect phenomenon. In order to describe
the Hurst effect, we should first describe the rescaled adjusted
range. For a given set of observations
with sample mean and sample variance , the
rescaled adjusted range denoted by the statistic is given
by

(3)

where and

(4)

with 0. While many time series appear to be well repre-
sented by the relation , as ,
with an average Hurst parameter typically measured at 0.73
[45], observations from short-range dependent models are
known to satisfy , as . This
is usually referred to as the Hurst effect.

III. NEURAL NETWORK FORECASTING OF PACKET TRAFFIC

As pointed out in various research articles, many packet
traffic sources and patterns exhibit an ON–OFF behavior. An
ON–OFF traffic pattern is characterized by two states. Such a
pattern is delivering traffic at a peak rate in its active state and is
silent in its passive state. Aggregate Ethernet traffic patterns [35]
and VBR video sources [7] are among the examples of ON–OFF

traffic patterns. In this section, we propose two neural-based
techniques of forecasting ON–OFF traffic patterns. While our
first technique takes advantage of a first-order gradient-based
backpropagation learning, our second technique utilizes a
second-order quasi-Newton backpropagation learning.

The main idea of forecasting self-similar traffic patterns
with fixed structure neural networks is related to the original
proposals in [14] and [43] in which fixed structure feedforward
perceptron neural networks with backpropagation learning are
proposed as potential modeling tools of nonlinear systems.
The details of such a modeling task can be found in [24].
Treating self-similar traffic patterns as a class of nonlinear
dynamical systems, we use perceptron networks with back-
propagation learning to model aggregated self-similar traffic
patterns as an alternative to stochastic and chaotic systems
approaches proposed in [2], [4], [13], and [35]. Our modeling
approach provides an attractive solution for traffic modeling
and has the advantage of simplicity compared to the previ-
ously proposed modeling approaches namely stochastic and
deterministic chaotic map modeling. The promise of neural
network modeling approach is to replace the analytical diffi-
culties encountered in the other modeling approaches with a
straightforward computational algorithm. As opposed to the
other modeling approaches, neural network modeling does not
investigate identification of appropriate maps neither does it
introduce a parameter or a set of parameters describing the
fractal nature of traffic. It, hence, need not cope with the com-
plexity of estimating multifractal Hurst parameters [16], [35]
and/or fractal dimensions [13]. The proposed neural network
forecasting schemes of this work simply take advantage of
using a fixed structure nonlinear system with a well defined
analytical model that is able to forecast a traffic pattern after
learning the dynamics of the pattern through the use of infor-
mation available in a number of traffic samples. Interestingly
and as proposed by Gomes et al. [22], neural networks can also
be utilized as appropriate estimators of the Hurst parameter.

The fixed structure, fully connected, feedforward perceptron
neural network utilized for the task of forecasting in our study
consists of an input layer with eight neurons, three hidden layers
with twenty neurons in each layer, and an output layer with one
neuron. Fig. 1 illustrates the structure of the neural network. In
our perceptron network, a neuron transfers its output as

(5)

where is the present output state of the th neuron in layer
and is the weighting function between the th neuron

in layer and the th neuron in layer . Further, is the
combined input of the th neuron in layer and is the sigmoid
function defined as

(6)

To consider the threshold effects, each neuron in layer is as-
sumed to have an extra input with a fixed value of in addition
to its inputs from the neurons in layer . The learning process
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Fig. 1. Fixed structure neural network used for the task of traffic forecasting.

of the neural network is nothing more than minimizing its en-
ergy function . The energy function of the network at iteration

of the learning process is defined as

(7)

where indicates the present output of the network to a given
input and corresponds to the actual output.

In our current work, we propose the use of two iter-
ative learning schemes. They are namely the first-order
gradient-based backpropagation and BFGS quasi-Newton
backpropagation learning schemes.

A. First-Order Gradient-Based Backpropagation Learning

Our proposed gradient-based backpropagation learning
scheme overcomes the mismatch between the actual outputs
and the generated outputs of the neural network by adjusting
the weightings of interconnections in the opposite direction of
the gradient vector and its momentums. It is categorized under
first-degree unconstrained optimization methods and therefore
has the advantage of simplicity as well as low space complexity.
The latter makes the scheme attractive from the standpoint of
implementation in intermediate buffers with limited memory
resources. Iteration of our proposed gradient-based learning
scheme is described as the following:

• form the gradient ;
• utilize a quadratic interpolation line search method to find

minimizing ;
• find the vector of weighting functions’ changes as

(8)

with denoting the momentum term;
• set .

We refer the reader to [8, App. C] for further details of the line
search methods.

B. BFGS quasi-Newton Backpropagation Learning

The BFGS quasi-Newton backpropagation learning scheme
also overcomes the mismatch between the actual outputs and
the generated outputs of the neural network by adjusting the
weightings of interconnections. However, it is categorized
under second-degree gradient-based unconstrained optimiza-
tion methods and therefore has much better convergence
characteristics compared to any variation of the standard
backpropagation learning including our first learning scheme.
Although quicker convergence of second-degree gradient-based
methods comes at the cost of requiring to calculate the inverse
Hessian matrix in every iteration, BFGS learning avoids such
a per iteration calculation as explained in the following. In
iteration of learning, BFGS approximates the inverse
Hessian matrix by a positive–definite matrix

in the form of

(9)

where and
. We note that the space complexity of the scheme

is higher than that of first-degree backpropagation learning
schemes due to requiring to save the elements of . Iteration

of our proposed BFGS learning scheme is then described as
the following:

• form the gradient ;
• calculate matrix as described in (9);
• utilize a quadratic interpolation line search method to find

minimizing ;
• set .

We refer the reader to [8, Sec. 1.7] for further details of BFGS
algorithm.

The following discussion is applied to both learning schemes
described previously. In iteration of learning, both schemes
propagate the input vector in the forward direction through
the network until reaching to the output . During the propa-
gation process, all of the combined inputs and output states

for each neuron are set. In iteration , the neural network
input vector consists of samples through of the
actual traffic pattern. The difference between sample of the
actual traffic pattern and the neural network output is used
to adjust the weighting functions of the network accordingly. In
the next iteration, sample of the actual traffic pattern is
discarded, samples through of the actual traffic pattern
are used as the new input vector, and sample is used as
the new actual output. The neural network continues processing
more information in consecutive iterations of the learning phase
until the absolute error is less than a specified error bound .
Once the absolute error is within the specified error bound ,
the self-generated output of the neural network can be used to
forecast a given traffic pattern. The network can independently
self-generate samples by discarding the oldest input sample,
shifting the input samples by one, and using its output as the
most recent input sample. Since the neural network is utilizing
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sigmoid function, we assume the traffic pattern is active if the
generated output of the neural network is above the threshold of
0.5 and passive otherwise. A continuous sequence of learning
is carried even after the network is trained considering the fact
that the network can only predict a small number of iterations
at any time independently before the output error exceeds the
acceptable error bound .

The number of samples required for the first time training of
the neural network depends on the complexity of the traffic pat-
tern dynamics. The time complexity and the space complexity
of the first-order gradient-based backpropagation scheme are,
respectively, and where is the number of
weighting functions in the network and is the number of itera-
tions. Similar complexity terms for the BFGS backpropagation
scheme are, respectively, identified as and .
However, the number of iterations for BFGS learning is
usually an order of magnitude smaller than the similar quantity
for gradient-based learning. Hence, the tradeoff between the
two approaches is the better time complexity of BFGS learning
versus better space complexity of the first-order gradient-based
learning.

Further, the complexity characteristics of both neural learning
schemes are typically better than those of statistical modeling
schemes such as fractional ARIMA processes or the complexity
of calculating fractal dimensions such as correlation dimension.
However, wide variations of prevent us from making a strong
claim about the complexity advantage of our neural learning
schemes compared to other modeling schemes. Nonetheless
combining the straight forward way of implementation with the
analysis of complexity, we claim that our proposed neural net-
work schemes provide elegant approaches for the task of traffic
forecasting. Further, it is important to note that the schemes of
this section can be utilized to model any traffic pattern aside
from the fact that the emphasis of our work is on self-similar
traffic traffic forecasting.

IV. MULTIPLE SOURCE QUEUING SYSTEM

A. Queuing System Analysis

Our application testbed relies on a multiple source queuing
system as illustrated by Fig. 2. The multiple source queuing
system consists of a number of ON–OFF sources sharing an avail-
able buffer space. The sources can also be thought of as the
arriving traffic patterns of the buffer. Depending on the choice
of buffer management scheme, the queuing system can include
dedicated partitions assigned to individual traffic patterns. s

In our discussion, we view each individual source and its cor-
responding buffer as a separate first in–first out (FIFO) queuing
system. Next, we provide a queuing analysis for each source
within the multiple source queuing system. In our FIFO model,
there is a finite capacity buffer storing arrived packets before
they get transmitted.

The occupancy of the buffer is determined by the flow of the
arriving packets and the rate at which the packets are serviced. In
this model, a queue is identified by its buffer capacity , and its
server capacity . In each queue, the arrival rate is compared
with the service rate to determine whether the size of the queue

Fig. 2. Structure of a multiple source queuing system.

Fig. 3. Queuing diagram of the ith source at time k.

is increasing or decreasing as well as whether the queue is losing
packets.

Using the following notation:

• : input rate of the th buffer at time ;
• : output rate of the th buffer at time ;
• : queuing rate of the th buffer at time ;
• : loss rate of the th buffer at time ;
• : queue size of the th buffer at time ;
• : buffer capacity of the th buffer.

The state of the queue for each buffer is specified by

(10)

at any instant of time as shown in Fig. 3. Note that besides the
values of that could be positive or negative, all of the other
values are always positive. Originally, the queue is empty. It
begins to form when the buffer input rate exceeds the service
rate. Hence, the queue rate and the loss rate remain
zero as long as the input rate is less than or equal the service
rate, i.e.

(11)

The queue size begins to increase as soon as the input rate
exceeds the service rate . While the queue is not empty,
the output rate is always equal to the queue server capacity. In
this scenario, the total queuing rate is the difference between
the input rate and the queue server capacity. The loss rate is
zero at this stage. The queue keeps growing in size and finally
becomes full if the input rate remains higher than the queue
server capacity. In that situation, the queuing rate is zero and
the excess input rate is the packet loss rate as

(12)
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with . The effect of a change in the input rate is not
immediately appeared if there are packets in the queue waiting
to transmit. It is the queuing rate that changes according to

(13)

The queue size begins to decrease when the input rate becomes
less than the server capacity, i.e., . As the result,
the queuing rate goes below zero, i.e., 0. The queue
becomes empty if this situation lasts. The output rate is obtained
from the following:

(14)

The behavior of the queuing system described previously is
ruled by the queuing discipline. Analyzing the packet
arrival rate of such a queuing system is a rather complicated
task. Previously proposed techniques of analysis such as
Lindley’s integral equation described in [34, Sec. 8.2] and [39]
rely on stochastic theory approaches. The solution to Lindley’s
Integral Equation may be obtained under certain conditions
by relying on spectrum factorization and transform theory
techniques. As an alternative, we propose the use of our neural
network schemes of Section III to learn the dynamics and
forecast the packet arrival of the queuing system.

B. ON-OFF Source Analysis

Having described the multiple source queuing system utilized
in our study, we now focus on the ON–OFF traffic pattern of indi-
vidual sources. In our system, we represent the traffic pattern of
a typical ON–OFF source by an artificially generated pattern. The
traffic pattern can be generated by a single chaotic map or an ag-
gregate of such maps. Generally speaking, an ON–OFF source is
generating traffic at a peak rate when it is active and becomes
active as soon as the state variable of the describing chaotic map
goes beyond a threshold value. The source becomes passive as
soon as the state variable goes below the threshold value. We uti-
lize double intermittency map in our packet generation process
as it generates a self-similar traffic pattern according to what
is reported in [13]. The describing equation of double intermit-
tency map is

(15)

where represents the discrete state variable of the map and
the rest of the symbols represent various parameters with the
property . Fig. 4 illustrates a sample
drawing of double intermittency map. As observed in the figure,
the iterative map requires multiple samples to move from one
segment to another. We select initial conditions in the range of

along with a fixed threshold value of 0.7
and parameters 0.01 0.05 5 1.73
267.49 to obtain different traffic patterns for different sources.
As an alternative, one may use different threshold values with
fixed initial conditions to achieve varying traffic patterns.

It is proven in [6] that the binary trace of the autocorrela-
tion of the double intermittency map with 0 decays

Fig. 4. Sample drawing of the double intermittency map. The legend IM
indicates the path traversed by the map through consecutive iterations.

Fig. 5. General assignment of the buffer space (B ) for a three source queuing
system.

slowly. However, it is unclear whether this property is preserved
with nonzero albeit small values of and and whether the
Hurst parameter is continuous. Nonetheless, numerical simula-
tions seem to indicate that the Hurst parameter is continuous
and that for small values of and the Hurst parameter can
be approximated as 0.75. Identi-
fying an approximation of the value of the Hurst parameter for
traffic aggregates obtained from a set of double intermittency
maps is not straightforward. However, our numerical experi-
ments have identified the range [0.72, 0.77] for aggregates of
30 to 50 sources.

V. BUFFER MANAGEMENT UTILIZING WATER-FILLING

The main idea of our neural-based buffer management
scheme revolves around partitioning the available space of a
shared buffer among a number of traffic sources according to
their traffic generation patterns. Forecasting of the traffic gen-
eration pattern can be done utilizing one of the neural network
learning schemes of Section III.

Consider the general assignment of a given buffer space with
capacity among a number of sources as illustrated in Fig. 5.
The buffer space is partitioned into a common portion with a
fixed size and a number of dedicated per source portions.
We propose the use of water-filling approach to set the size of
the dedicated portions of the buffer. We follow the notation of
Section IV-A to describe the water-filling approach. For a given
multiple source queuing system accommodating sources, let
us assume that source is generating packets with the rate
in a time epoch with length , i.e., . Further,
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assume that the queue size of the dedicated portion of the buffer
to source at the beginning of the epoch is given by . Then
the queue size of source at time is described as

(16)

where all of the quantities in (16) are defined in Section IV-A.
Source is guaranteed not to experience any packet loss during
the epoch if

(17)

Hence, the requested dedicated buffer space of source in the
time epoch can be identified as

(18)

Defining as the remaining buffer space after
assigning the common portion of the buffer and for an ordered
set of , our proposed water-filling approach
assigns a dedicated portion of the buffer space to source
as the following:

Case 1) if

(19)

Case 2) if

(20)

where is an integer satisfying the following con-
dition:

(21)

for .
We observe that the water-filling approach of (20) starts by

dividing the remaining buffer space equally among all of the
sources until the first source reaches its requested buffer space

, then it fixes the assigned buffer space for the first source
to and divides the new remaining buffer space among the
remaining sources equally, and so on. Consequently, the sources
with lower requested buffer space are more likely to receive their
requested buffer space in full while the other sources receive
equal shares of the remaining buffer space guaranteed not to be
less than the assigned shares of the sources fully receiving their
requested buffer space. We note that our proposed water-filling
solution is max-min fair according to definition of [29]. The
solution has a linear complexity and, is hence, quite practical
from the implementation stand point. In [54], we also prove
that the water-filling solution provided previously is the solution
to an optimal resource allocation problem for a class of piece-
wise linear utility functions. Because the same resource alloca-
tion problem can be applied to the current buffer management
problem, we conclude that our proposed water-filling approach
is optimal.

Fig. 6. First-order neural network modeling results of a single source double
intermittency map.

Fig. 7. First-order neural network modeling results of a 50 aggregate source
double intermittency map.

VI. SIMULATION RESULTS

In order to investigate the performance of our proposed buffer
management scheme, we utilize a triple source system. The
traffic patterns of the first, second, and third source consist of an
aggregate pattern generated by 30, 40, and 50 individual double
intermittency map packet generators, respectively. We observe
that the aggregate traffic patterns exhibit self-similar character-
istics with Hurst parameters in the range of [0.72, 0.77]. We
apply the proposed neural network forecasting schemes of Sec-
tion III to predict the input rate of each buffer, i.e., with

over the discrete time . We note that the volumes
of traffic generated by different sources are not the same because
of using a different number of per source packet generators.

First, we show that our proposed neural learning schemes are
able to forecast self-similar traffic patterns. Fig. 6 illustrates and
compares the number of generated packets by a single source
double intermittency map and the trained neural network. We
have utilized the first-order gradient-based training scheme
of Section III-A. Fig. 7 shows similar results for an aggre-
gate source double intermittency map. Applying thousands of
learning iterations, the single and aggregate traffic pattern have
been followed within the specified error range for an average
of 41 and 56 samples ahead, respectively. An interesting obser-
vation is that applying the neural network modeling scheme to
an aggregate source traffic pattern consistently produces better
results compared to a single source traffic pattern in terms of
the number of accurate post training samples. The observation
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is expected as increasing the number of sources reduces the
degree of self-similarity in an aggregate traffic pattern.

We note that the convergence of the learning scheme is time
consuming because of the rich dynamics of the traffic pattern.
In addition, all of the convergence results are strongly affected
by the choice of initial conditions of the weighting functions
and the minimum acceptable error bound . This is specially
important as we have observed situations in which the optimal
values of the weighting functions only reflect a local optimum
rather than a global optimum. While this is expected due to the
nature of the utilized learning algorithms, the effects typically
show in quicker divergence from the acceptable error bounds.
Setting 0.1 and the initial values of the weighting functions
randomly between 0.01 and 0.09 yields best practical results
while avoiding biasing and saturation. We have also observed
the convergence of BFGS backpropagation learning is eight to
ten times faster than the first-order gradient-based backpropa-
gation learning for the same choices of parameters. Further, its
accuracy in terms of the number of samples followed in the post
training phase is about 10% better than that of the first-order
backpropagation learning. Another important consideration is
that improving the accuracy of the forecasting process in terms
of the number of samples could result in a better efficiency,
it should not affect the fairness characteristics of the utilized
scheme. In addition, we have utilized the hybrid linear/nonlinear
learning scheme of [42]. However, we have not found much
better convergence results compared to BFGS backpropagation
learning scheme.

Next, the traffic generated by each source is collected and
sent to a shared buffer in a round robin manner. Depending on
the buffer management scheme, the shared buffer may be parti-
tioned into a common portion and three dedicated portions. In
the latter case, the arriving packets of each source are first des-
tined to the portion of the buffer dedicated to the source. Packets
are only sent to the common portion of the buffer if the dedicated
portion is full. Packets are lost if there is no space available ei-
ther in the dedicated or the common portion. At the output of
the buffer, the server utilizes either FTDM or STDM scheduling
schemes to service the three dedicated portions of the buffer and
the common portion.

We compare the performance of five different buffer manage-
ment scenarios. In the first scenario, CS scheme is deployed, i.e.,
there is only one queue for all of the sources. It is associated
with and 0 in Fig. 5. The second
scenario is a simple implementation of CP scheme in which the
capacity of the buffer is distributed equally among the sources.
It is associated with 0 and
in Fig. 5. The third scenario is a simple implementation of SPS
scheme that has three equal portions for the three sources with
an additional common portion available to all of the sources.
It is associated with 0 and 0
in Fig. 5. The last two scenarios are the dynamic assignment
of the buffer space relying on the water-filling result of Sec-
tion V in conjunction with the neural forecasting schemes of
Section III. It is important to note that the neural forecasting
schemes are applied continuously, i.e., the training continues
even after reaching the acceptable error bound. We refer to the
neural forecasting schemes as DNS schemes. They are associ-

Fig. 8. Total packet loss rate versus buffer size diagram for the triple source
queuing system using CP, SPS, DNS1, and DNS2 in presence of FTDM
scheduling algorithm.

ated with the general case of Fig. 5. The last two scenarios are, in
fact, generalizations of the third scenario keeping the common
portion size fixed and adjusting the buffer space size of each
source dynamically according to their traffic arrival patterns.
Each of the last two methods have a potential to outperform the
other buffer management schemes as they rely on forecasting
the arriving traffic patterns.

The process of utilizing our proposed dynamic buffer man-
agement scheme works as follows. We utilize an independent
neural network per traffic pattern. Originally, we allow the
neural networks to learn the dynamics of the underlying traffic
patterns. During the original learning period, the dedicated
portions of the buffer space are set according to the default
values of the third scenario. Once the neural networks have
learned the dynamics of the traffic patterns, we proceed with
applying consecutive epochs of buffer space allocation. At
the beginning of each epoch, individual portions of the buffer
space are assigned proportional to the arrival pattern of the
sources and utilizing the water-filling approach of Section V.
The assignments remain in effect for as long as none of the
following conditions are violated: 1) the forecasting errors
remain within the acceptable threshold bound ; 2) the number
of samples predicted ahead is not passed the moving average of
the accurately predicted samples in all of the previous epochs;
and 3) the current epoch has not ended. If conditions 1) or 2) are
violated in the middle of the epoch, the dedicated portions of
the buffer space are reset to the default values of SPS scenario
for the rest of the epoch. To consider practical overhead of
managing the buffer, we have selected an epoch length of 1000
samples. The dedicated portions are set according to the packet
arrival pattern of the sources at the beginning of the next epoch
and so on.

In order to evaluate the efficiency and fairness of different
scenarios, we compare their overall and their most passive
source loss rates together. Our experiments span over different
choices of the buffer size with a fixed service rate and a mod-
erately loaded queuing system. In our experiments, we rely on
the same discrete time scales for both the neural network and
the traffic generating intermittency maps.

Figs. 8 and 9, respectively, show plots of total packet loss
and the most passive source packet loss rate versus normalized
buffer size diagram for the triple source queuing system in pres-
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Fig. 9. Single source packet loss rate versus buffer size diagram for the triple
source queuing system using CP, SPS, DNS1, and DNS2 in presence of FTDM
scheduling algorithm.

ence of FTDM scheduling algorithm. Figs. 10 and 11 show plots
of the same quantities in presence of STDM scheduling algo-
rithm. In the figures, we use the abbreviations DNS1 and DNS2
to denote first-degree gradient-based DNS and BFGS DNS, re-
spectively. The simulation results have been collected over ten
million iterations per choice of buffer size.

It is clearly observed from the figures that for both FTDM
and STDM scheduling algorithms under DNS1 and DNS2 sce-
narios, the total loss rate compared to CP scenario as well as per
source loss rate compared to CS and/or SPS scenarios are re-
duced. The results provided under DNS1 and DNS2 scenarios
are interpreted as the evidence that the tradeoff between fair-
ness and efficiency has been addressed. Comparing the results
of SPS, DNS1, and DNS2 scenarios show the higher efficiency
of the latter two methods. We also observe that both fairness
and efficiency characteristics of the results of DNS2 scenario
outperform the results of DNS1 scenario. As mentioned before,
the price is the higher space complexity of DNS2 compared to
that of DNS1.

An important observation is that reducing the epoch length
decreases the overall and single source loss rates of both DNS
methods at a higher cost of buffer management. For an epoch
length of 50 DNS1 and DNS2 loss rates are almost matching
the overall and single source loss rates of CS and CP, respec-
tively. Utilizing the standard variant of DPO buffer management
scheme also leads to efficiency and fairness characteristics sim-
ilar to the case of utilizing CS and CP, respectively. Utilization
of the other variants of DPO typically leads to trading a lower
overhead of implementation with a lower loss performance. Fur-
ther, we note that the performance of different methods are very
different as the result of applying different methods for traffic
management of a heavily utilized system.

In addition, it is worth mentioning that the results of the plots
may resemble short-range dependent plots in which logarithmic
loss curves drop linearly with the increase of the buffer size. As
indicated in [17] and other research articles, the plots of loss
versus buffer size in the case of self-similar traffic patterns are
expected to become flat for an increase in the buffer size be-
yond a certain threshold. As indicated previously, the range of
measured Hurst parameters indicate that the traffic patterns are

Fig. 10. Total packet loss rate versus buffer size diagram for the triple source
queuing system using CP, SPS, DNS1, DNS2, and CS in presence of STDM
scheduling algorithm.

Fig. 11. Single source packet loss rate versus buffer size diagram for the triple
source queuing system using CP, SPS, DNS1, DNS2, and CS in presence of
STDM scheduling algorithm.

self-similar. The observations are mostly justified by the mod-
erate levels of server utilization. For heavily utilized servers op-
erating close to full capacity, the observations are consistent
with the previously reported observations.

In what follows, we discuss some of the important aspects
of the implementation of our experiments. We start by com-
menting on the choice of our neural network type and struc-
ture. We considered perceptron, Hopfield, and Kohonen net-
works and selected fixed-structure perceptron neural networks
due to simplicity of implementation. The number of neurons in
each layer reflects our best overall practical findings leading
to a balance between complexity and accuracy. We observed
that there is a significant improvement in the learning perfor-
mance when going from a single hidden layer structure to a
double hidden layer structure. However, increasing the number
of hidden layers beyond two does not have the same effect and,
is thus, not justified considering the overhead of calculations.
Further, small variations in the number of neurons of the input
and each of the two hidden layers do not have the same effect



1172 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 5, SEPTEMBER 2005

on the learning performance. We anticipate that the best choice
of the structure should be related to the degree of self-similarity
captured through the measure of the Hurst parameter or another
quantity.

We close this section by mentioning that the results presented
in our current work point to some predictability of traffic that can
be viewed as a source of contradiction with the results presented
in [46] and [47]. We point out that besides the difference in the
nature of traffic traces obtained from artificial traffic generators
and TCP traffic simulators, the key difference is that the utilized
neural network of our study represents a time-varying system
considering continuous readjustment of the weighting functions
where as the results of those articles are obtained from a set of
stationary models.

VII. CONCLUSION AND FUTURE WORK

In this paper, we provided dynamic buffer management
schemes as an application of adaptive neural learning systems.
We utilized two different learning schemes for a fixed structure
perceptron neural network to forecast teletraffic patterns. Our
proposed schemes were the first-order gradient-based learning
and BFGS quasi-Newton learning. Based on our forecasting
results, we provided dynamic buffer management schemes to
improve the loss performance of static PS buffer management
scheme while considering the fairness issue. Our dynamic
buffer management schemes relied on the water-filling ap-
proach. Our experimentation utilized a multiple source queuing
system accommodating artificially generated self-similar traffic
patterns. We compared the performance of different buffer
management schemes, namely CS, CP, static PS, and DNS in
presence of different server scheduling algorithms, FTDM and
STDM. We concluded that our DNS schemes were able to offer
the best solutions considering the trade off between fairness
and loss issues as well as practicality of implementation.

We note that our DNS schemes are best suited for the class of
sources with a life span exceeding the duration of the original
learning period. In order to apply our schemes to short-lived
sources, we are investigating potential ways of improving the
speed of standard traffic learning schemes. We are also studying
the applicability of statistical offline learning methods to the
dynamics of short-lived sources. Our future work further aims
at applying our schemes to a set of real traffic traces.
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