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Machine Learning Quantifies Accelerated White-Matter
Aging in Persons With HIV
Kalen J. Petersen,1, Jeremy Strain,1 Sarah Cooley,1, Florin Vaida,2 and Beau M. Ances1

1Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; and 2Department of Family and Preventive Medicine, University of California, San Diego, California,
USA

Background. Persons with HIV (PWH) undergo white matter changes, which can be quantified using the brain-age gap (BAG),
the difference between chronological age and neuroimaging-based brain-predicted age. Accumulation of microstructural damage
may be accelerated in PWH, especially with detectable viral load (VL).

Methods. In total, 290 PWH (85% with undetectable VL) and 165 HIV-negative controls participated in neuroimaging and
cognitive testing. BAG was measured using a Gaussian process regression model trained to predict age from diffusion magnetic
resonance imaging in publicly available normative controls. To test for accelerated aging, BAG was modeled as an age × VL
interaction. The relationship between BAG and global neuropsychological performance was examined. Other potential
predictors of pathological aging were investigated in an exploratory analysis.

Results. Age and detectable VL had a significant interactive effect: PWH with detectable VL accumulated +1.5 years BAG/
decade versus HIV-negative controls (P= .018). PWH with undetectable VL accumulated +0.86 years BAG/decade, although
this did not reach statistical significance (P= .052). BAG was associated with poorer global cognition only in PWH with
detectable VL (P, .001). Exploratory analysis identified Framingham cardiovascular risk as an additional predictor of
pathological aging (P= .027).

Conclusions. Aging with detectable HIV and cardiovascular disease may lead to white matter pathology and contribute to
cognitive impairment.

Keywords. HIV; white matter; machine learning; MRI; diffusion tensor imaging; aging; brain age.

Human immunodeficiency virus (HIV) infection is linked with
accelerated age-like neurological changes atmultiple scales, from
epigenetics [1] to tissue microstructure [2–7] and volume [8–
11]. While combination antiretroviral therapy (cART) has re-
duced the prevalence of severe neural injury and overt dementia,
subtler white matter changes may still occur in older persons
withHIV (PWH) [12]. However, imaging findings in white mat-
ter have proven heterogenous in degree and localization.

Older PWH are a growing population, with a majority in the
United States over 50 years of age [13]. This demographic shift
has precipitated a new focus on clinical characterization of old-
er PWH [14]. It is crucial to accurately measure neural aging
phenotypes, quantify the contributions of non-HIV risk fac-
tors, and examine the role that predictors of risk or resilience
play in neurological heterogeneity [15]. Studies of PWH must
account for comorbidities, especially cardiovascular disease,

coinfections, and neurocognitive disorders, which are often
confounded with primary HIV effects [16].
To address these challenges, innovative approaches are need-

ed. Brain-predicted age is an emerging technique to quantify
the effects of disease on brain health [8, 17]. This approach de-
pends on the existence of a predictable relationship between
chronological age and biological brain predicted age, estimated
from age-like biomarkers. Associations between chronological
age and neuroimaging features (eg, cortical thickness) are mod-
eled in a normative population using supervised machine
learning. These models are then used to test for deviation in
a population of interest, which may demonstrate accelerated
aging. Model residuals capture the difference between biologi-
cal and chronological age, and are termed the brain-age gap
(BAG). BAG provides a reproducible, prognostic summary
metric of neural health [18].
Here, we apply this method to quantify the neurological ef-

fects of HIV across the lifespan. Previous work has found evi-
dence of BAG-associated volumetric loss in PWH [19] and
faster decline in cerebral blood flow with detectable viral load
(VL) [20]. However, it is unknown whether similar acceleration
is present in white matter microstructure.
Microstructure is quantified using diffusion tensor imaging

(DTI) quantities including fractional anisotropy (FA) and
mean diffusivity (MD). FA measures the directional bias of
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diffusion in parallel axon bundles. FA is reduced in damaged
white matter, and is sensitive to axonal degeneration and al-
tered myelination. In contrast, MDmeasures membrane densi-
ty and is sensitive to cellularity, necrosis, and edema. Here, we
applied machine learning to both FA and MD to derive BAG
from white matter microstructure.

The goals of this cross-sectional study were 3-fold. First, we
tested the hypothesis that age and detectable VL interact to in-
crease the risk of elevated BAG in older PWH compared to
HIV-seronegative controls. Next, we quantified the association
between white matter aging and cognitive performance, and
tested whether detectable VLmoderates this structure-function
relationship. Finally, we sought to understand aging heteroge-
neity among PWH by identifying comorbid clinical risk factors
associated with white matter changes.

METHODS

Overview

DTI from a normative external dataset was used to train a ma-
chine learningmodel to quantify the BAG. This model was then
applied to study participants, both PWH and HIV-negative
controls. The resulting BAG values were then used in multivar-
iate regression analyses of HIV serostatus, aging, VL, and other
risk factors for accelerated aging and cognitive impairment
(Figure 1).

Participants

Adults with HIV were recruited from the Washington
University Infectious Diseases Clinic between 2009 and 2020,
and HIV-negative controls were recruited from the Research
Participant Registry or community organizations. Study proce-
dures were approved by the Institutional Review Board, and all
participants provided written informed consent.

Participants were excluded for confounding neurological or
psychiatric disorders, Beck Depression Inventory-II. 29, trau-
matic brain injury with prolonged unconsciousness, opportu-
nistic central nervous system infection, or current substance
use disorders. A urine-analysis test was administered to screen
for controlled substances other than cannabis.

Current CD4 and CD8 T-cell counts were measured for
PWH, and nadir CD4 values were identified from laboratory
or medical records. HIV serostatus and plasma VL were as-
sessed with reverse transcriptase-polymerase chain reaction
(PCR), and seronegativity was confirmed for controls. PWH
with plasma VL. 50 copies/mL were considered to have de-
tectable VL, and analyzed separately. Hepatitis C status, ART
duration, andHIV infection duration were obtained frommed-
ical records.

Body mass index and 10-year Framingham cardiovascular
risk score were calculated from values recorded during the
study visit. Framingham score is derived from a weighted

combination of age, total cholesterol, high density lipoprotein
cholesterol, systolic blood pressure, antihypertensive use,
and smoking, with different beta weights and interaction
terms for men and women [21]. For participants with missing
inputs (eg, cholesterol), multiple imputation from chained
equations (MICE) with 5 imputations was used to estimate
Framingham scores [22], as in previous studies [23, 24]. This
method was validated by random deletion of 50% of data to
create pseudomissing values, iterated 1000 times. True and
imputed scores had a mean correlation of r= 0.72 (SD 0.05).

Cognitive Testing

Participants underwent neuropsychological testing in 5 do-
mains: learning, delayed recall, executive function, psychomo-
tor speed, and language, as previously described [25]. Within
each domain, z-scores were calculated norming for age, sex,
race, and education where applicable. Global z-scores were ob-
tained by averaging across domains.

Neuroimaging

Magnetic resonance imaging (MRI) was performed at 3.0 Tesla
on a Tim Trio scanner (Siemens), and included T1-weighted
and diffusion-weighted MRI, acquired with repetition
time/echo time (TR/TE)= 9900/102 ms, spatial resolution
= 2× 2× 2 mm, 23 gradients directions, and b-values from
0 to 1400 s/mm2.
Images were preprocessed using the FMRIB Software

Library (FSL; Oxford, UK) and the ENIGMA DTI toolbox
[26]. Diffusion-weighted images were brain-extracted and cor-
rected for motion and eddy currents using eddy_correct, and
tensors were calculated using DTIFIT and registered to an FA
template brain in MNI space. Tract-based spatial statistics
(TBSS) were used tomap FA andMD values onto a 1-mm thick
white matter skeleton, reducing registration-related discrepan-
cies by mapping the maximal FA in the vicinity onto skeletal
voxels.
Mean FA and MD were extracted from skeleton voxels over-

lapping with 44 white matter regions-of-interest (ROIs) using
the Johns Hopkins University atlas, omitting brainstem. For
simplicity, white matter ROIs were reduced to 12 by averaging
left and right sides and combining subregions (eg, genu+ body
of corpus callosum). The following ROIs were examined: cin-
gulum, corona radiata, corpus callosum, corticospinal tract, ex-
ternal capsule, fornix, frontal-occipital fasciculus, internal
capsule, superior longitudinal fasciculus, sagittal stratum, tha-
lamic radiation, and uncinate fasciculus.

Training Data

To model brain predicted age, we utilized publicly available
neuroimaging from healthy individuals across the lifespan
from the Cambridge Center for Ageing and Neuroscience
(CamCAN) [27, 28]. CamCAN diffusion MRI was acquired
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Figure 1. Study overview. Machine learning was used to generate the brain-age gap (BAG). Training data (left column) consisted of diffusion-weighted magnetic resonance
imaging (MRI) scans from the Cambridge Center for Ageing and Neuroscience (CamCAN). Diffusion tensor metrics fractional anisotropy (FA) and mean diffusivity (MD) were
calculated and used in training a Gaussian process regression machine learning model to estimate participant age from neuroimaging. Study participants (middle column)
including persons with HIV (PWH) and HIV-negative controls underwent a comparable MRI protocol. Diffusion tensor metrics from these participants constituted testing data
for the model. BAG, the difference between predicted and true age, was the output preserved for statistical analysis. Additionally, T1-weighted volumetric MRI (right column)
from the same participants was used to generate an alternative BAG measure for multimodal comparison using DeepBrainNet, a pretrained publicly available neural network.
This comparison was performed to test whether a novel metric of white matter microstructure is corroborated by more established morphological methods. Statistical anal-
ysis (bottom row) included 3 main parts. First, the primary hypothesis that brain aging is accelerated in PWH was tested by modeling the DTI-derived BAG as an age×viral
load interaction in multiple linear regression. Second, the association between BAG and cognition was assessed. Finally, additional potential risk factors for accelerated brain
aging including comorbidities were explored.
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in 626 normative participants (age= 55.0 [SD 18.4] years,
range = 18.5–88.9; sex= 50% female). CamCAN images were
also acquired on a Siemens 3.0 Tesla scanner, with TR/TE=
9100/104 ms, resolution= 2× 2× 2 mm, 30 gradient direc-
tions, and b-values from 0 to 2000 s/mm2. FA andMDwere ex-
tracted from white matter ROIs as described above.

Machine Learning

The MATLAB 2021a Regression Learner toolkit was used to
train a model of brain predicted age, in which DTI scalar fea-
tures were used to estimate age. Training data consisted of
FA and MD from CamCAN, testing data were FA and MD
from previously unseen study participants (PWH, controls).

A Gaussian process regression model was trained to predict
age from FA andMD, standardized before training. The covari-
ance kernel function was selected from among the following:
rational quadratic, exponential, squared exponential,
Matern-5/2, and Matern-3/2. An exponential kernel was cho-
sen based on error minimization in cross-validation. The ker-
nel is described by

k(xi, xj) = s2
f exp − r

sl

( )
,

where r is the Euclidian distance between inputs xi and xj.
Signal standard deviation σf was set to the standard deviation
of the response variable (age) divided√2, and the characteris-
tic length scale σlwas initialized as the mean standard deviation
of the DTI features. A constant basis function was used, with
exact fitting and prediction methods.

Ten-fold cross-validation was used to assess accuracy. The
trained model was then applied to the testing set, and the resid-
uals (ie, BAG) were linearly detrended on age [29] and pre-
served for statistical analysis.

Feature Ranking

To assess the relative importance of regional FA and MD fea-
tures, a Relief regression algorithm was applied (relieff,
MATLAB), producing a ranked ordering of ROIs by relative
importance (feature weight). A k-nearest-neighbors approach
was taken to identify DTI features that strongly predicted
BAG in the study population.

Multimodal Comparison

To determine whether white matter-derived BAG was consis-
tent with establishedmeasures of brain predicted age, a publicly
available deep learning model was applied to T1-weighted
structural MRI. DeepBrainNet is a 2-dimensional convolution-
al neural net trained on 11 729 normative participants across
multiple sites and scanners [30]. DeepBrainNet has previously
been applied to estimate BAG from volumetric features in
PWH, providing evidence of accelerated aging [20].

The goal of this step was to test whether BAG from our in-
house DTI model correlated with volumetric changes in the
same participants measured with a different MRI modality.
T1-weighted MRI reflects alterations in the volume and shape
of gray matter, white matter, and cerebrospinal fluid compart-
ments, frequently occurring in parallel with white matter mi-
crostructural changes. If DTI-derived BAG values represent
random residuals unrelated to pathology, they would not be ex-
pected to correlate with BAG from DeepBrainNet.

Statistics and Hypothesis Testing

Demographic and clinical variables were compared between
study groups (HIV-negative controls; PWH with undetectable
VL; PWH with detectable VL) using 1-way ANOVAs.
Two-tailed t tests were used for comparisons exclusive to the
2 subgroups of PWH. χ2 tests were used for categorical
variables.
The primary hypothesis specified that white matter aging is

accelerated in older PWH with detectable VL compared to
those with undetectable VL or HIV-negative controls. To test
this, generalized linear regression was applied, with BAG as
the response variable. Age, race, and sex were modeled as co-
variates due to group difference in these potential confounds.
Next, we tested for associations between white matter BAG

and cognitive function in PWH, and for moderating effects
of VL. We hypothesized that BAG is associated with cognitive
performance in PWH, and that detectable VL would increase
susceptibility to BAG-related cognitive impairment (modeled
as a BAG×VL interaction on global z-score).
The final objective was to identify comorbid risk factors, oth-

er than age and VL, associated with heterogenous brain aging
among PWH. Age, VL, race, and sex were therefore regressed
out of BAG. This adjusted BAG was used to define subgroups:
PWH with adjusted BAG .1.0 standard deviation (SD) above
the mean were classified as having pathological aging, while
those with adjusted BAG≤+1.0 SD were defined as having
typical or resilient aging. Membership in the pathological aging
HIV subgroup was modeled with logistic regression on the fol-
lowing predictors: current CD4, nadir CD4, hepatitis C, body
mass index, and 10-year Framingham cardiovascular risk score.
This analysis was intended to be exploratory and hypothesis
generating.

RESULTS

Participants

In total, 455 adult participants provided informed consent and
participated in imaging and neuropsychological testing: 290
PWH (age= 48.2 [SD 13.7] years; 23% female; 65% African
American) and 165 HIV-negative controls (age= 37.5 [SD
16.3] years; 47% female; 56% African American); 85% of
PWH (n= 246) had undetectable plasma VL and 15% (n=
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44) had detectable VL at admission. These subgroups were con-
sidered independently.

Demographics and clinical variables comprise Table 1.
Participant subgroups differed in age (P, .001) and sex (P,
.001), but not race (P= .08). These demographic factors may
confound neuroimaging measures of brain predicted age, and
were thus included as covariates in all subsequent analyses.
Participant subgroups were not different in body mass index
or education.

Compared to those with undetectable VL, PWHwith detect-
able VL had significantly shorter disease duration (P, .001),
lower CD4 cell counts (P, .001), lower CD4/CD8 ratios
(P , .001), and greater 10-year Framingham cardiovascular
risk scores (P= .03). Subgroups were similar in ART duration,
nadir CD4 counts, and hepatitis C infection rates (all P. .05).

Brain Predicted Age

In the training dataset of 626 normative individuals, our DTI
model estimated age with a mean absolute error (MAE) of 5.3
years in cross-validation. This model was then applied to study
participants including PWH and controls. In the study cohort,
the model predicted age with MAE= 12.8 years before linear
detrending, and 5.1 years after this standard correction [29].

Multimodal Comparison

BAG values derived fromwhite matter FA andMDwere signif-
icantly correlated with BAG values from volumetrics
(T1-weighted MRI) obtained with DeepBrainNet (R= 0.38;
P , .001). This relationship held in controls and PWH,
regardless of VL (Supplementary Figure 1).

Brain-Age Gap Is Accelerated in PWH With Detectable VL

Controlling for main effects of age, sex, and race, there was a
significant overall age × group interaction on BAG (F= 3.54;
P= .030). In post hoc testing, PWH with detectable VL accu-
mulated a mean of +1.5 years (95% confidence interval, .26–
2.8 years) of BAG/decade compared to controls (P= .018;
Figure 2 and Table 2). PWH with undetectable VL showed in-
termediate aging, accumulating+0.86 years BAG/decade com-
pared to controls. However, this fell short of statistical
significance (P= .052).

Feature Ranking

DTI scalars from white matter ROIs contributed differently to
BAG estimation. The Relief algorithm ranked each ROI accord-
ing to its weight, normalized to the top-ranked feature
(Figure 3). For FA, the top 4 ROIs were corona radiata
(weight= 1.0), internal capsule (0.47), external capsule (0.33),
and fornix (0.27). For MD, top ROIs were fornix (1.0), cortico-
spinal tract (0.68), internal capsule (0.64), and frontal-occipital
fasciculus (0.54). As expected, global mean white matter FA
was negatively correlated with BAG, while MD was positively
correlated (Supplementary Figure 2).

Cognitive Impairment and Viral Load

Because detectable VL was correlated with accelerated white
matter aging, we hypothesized that the BAG-cognition rela-
tionship is VL dependent. To test this, global cognitive z-score
was modeled as a BAG × VL interaction, controlling for age,
sex, and race. VL was found to be a significant moderator:
BAG was negatively associated with cognitive z-score in
PWH with detectable VL but not those with undetectable VL
(P, .001; Figure 4).

BAG Is Associated With Cardiovascular Risk in PWH

Pathological aging was defined as a demographically adjusted
BAG. 1.0 SD, or 6.4 years above the mean. Pathological aging
was modeled using logistic regression with univariate predic-
tors. Of 5 predictors considered, only 10-year Framingham car-
diovascular score (P= .027) was associated with pathological
aging, indicating an increase in brain predicted age with greater
cardiovascular risk.

DISCUSSION

In this neuroimaging study, machine learning quantified mi-
crostructural integrity of white matter in PWH and

Table 1. Demographic and Clinical Data

Characteristic
HIV-Negative

Controls
PWH

Undetectable VL
PWH

Detectable VL
P

Value

No. 165 246 44 …

Age, y 37.5 (16.3) 49.0 (13.1) 44.1 (16.7) ,.001

Sex, female, No. (%) 77 (46.7) 60 (24.4) 8 (18.2) ,.001

Race, African
American, No, (%)

92 (55.8) 156 (63.4) 32 (72.7) .08

Education, y 13.8 (2.4) 13.3 (2.8) 13.0 (2.0) .06

Body mass index 26.4 (5.7) 27.0 (6.1) 25.7 (5.3) .34

Global cognitive
z-score

−0.05 (0.63) −0.32 (0.56) −0.48 (0.84) ,.001

Viral load, copies/mL,
log10

… 1.3 (0.09) 3.4 (1.2) …

HIV duration, mo … 178.1 (112.5) 108.6 (108.4) ,.001

ART duration, mo … 173.0 (104.5) 155.7 (98.5) .51

Most recent CD4
count, cells/µL

… 610.3 (314.2) 406.0 (345.4) ,.001

Nadir CD4 count, cells/
µL

… 156.2 (183.7) 205.0 (211.4) .17

CD4/CD8 ratio … 0.81 (0.50) 0.41 (0.25) ,.001

Hepatitis C infection,
No. (%)

… 21 (8.5) 3 (6.8) .70

10-year Framingham
risk score

… 16.4 (12.4) 21.5 (9.3) .03

Data are mean (SD) except where indicated. P values are from 1-way analysis of variance
(ANOVA) for continuous variables with 3 groups, 2-tailed t tests for continuous variables
with 2 groups, and χ2 tests for categorical variables.

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; PWH,
persons with HIV.
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seronegative controls through estimation of the BAG, obtained
by modeling a normative relationship between age and DTI.
This model was subsequently applied to a large cohort of pre-
viously unseen study participants (n= 455) including PWH
and HIV-negative controls. The DTI-derived BAG was com-
pared with a well-established deep learning model of volumet-
ric BAG, with congruent results [30].

DTI-derived BAG was increased in older PWH with detect-
able VL, indicating a disparity between chronological age and
white matter-specific brain age (Figure 2). This gap was not
present in controls, PWH with undetectable VL, or younger
participants of either serostatus. This finding demonstrates ac-
celerated pathological changes to white matter microstructure
in at-risk subpopulations of PWH, and is consistent with an
emerging literature on brain aging with HIV [2, 19, 20].
There is some disagreement about whether this elevation rep-
resents a fixed accentuation over the lifespan, or an acceleration
that widens with age [31]. Our results are consistent with the
latter, as BAG was increased in older but not younger individ-
uals with detectable VL.

Interpretation of this finding is complicated by alternative
explanations. Increased BAG may represent true acceleration,
where suboptimal viral suppression causes inflammation and
cumulative white matter degradation. The magnitude of path-
ological effects may be small enough that accreted differences
only become detectable later in life. Alternatively, this apparent

acceleration may represent a latent cohort effect, where older
PWH were exposed to a more risk factors than their younger
peers in the cART era. Our cross-sectional findings cannot ab-
solutely distinguish between these possibilities, which are not
mutually exclusive.
However, previous work on longitudinal white matter

changes may contextualize our results. A recent DTI study
with 4-year follow-up observed that PWH had greater MD in-
creases compared to controls, associated with cognitive decline
in older PWH [32]. In contrast, another study of PWH on sta-
ble cART found no DTI changes at 2-year median follow-up
[33]. Other studies have examined longitudinal relationships
between white matter and cognition. For example, intraindi-
vidual variability on neuropsychological performance in-
creased more for PWH than controls over 2 years.
Neuropsychological changes in PWH were also associated
with lower FA in 2 white matter tracts [34].
White matter health can also be quantified volumetrically, as

in a longitudinal study of PWH over age 60 years, which found
no significant changes in white matter volume at mean follow-
up of 3.4 years [35]. However, an earlier study did find white
matter loss in ART-treated PWH, even with viral suppression
[36]. These varying results may be due to modest rates of chan-
ge combined with limited sample sizes (n= 20–40). In contrast,
our cross-sectional analysis covers a much longer time scale
and utilizes a larger cohort.

Figure 2. Age and viral load effects on white matter brain age gap. A, Participant chronological ages (x) are plotted against brain predicted ages (y) for HIV-negative controls
(circles), persons with HIV (PWH) with undetectable viral load (VL; triangles), and PWH with detectable VL (squares). Shaded areas represent 95% confidence intervals. PWH
with detectable VL have increased BAG with age vs HIV-negative controls or PWH with undetectable VL (interaction P= .018). PWH with undetectable VL showed an inter-
mediate effect thatwas not statistically significant (interaction P= .052). B, Violin and box plots of the BAG for each study group across all ages. For box plots, central horizontal
line represents the median, box boundaries are quartiles 1 and 3, and whiskers extend to minimum and maximum non-outlier values. For violin plots, plot width represents
probability density of datapoints across the range of BAG.
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In this study, PWH with undetectable VL had acceleration
intermediate between PWH with detectable VL and controls.
While this effect did not achieve our predefined threshold for
significance (P= .052), its magnitude (+0.86 years BAG/dec-
ade) is sufficient to merit further investigation. Notably, previ-
ous findings on brain structure identified accelerated aging in
PWH with both detectable and undetectable VL [20], with an
apparent gradation of pathology with VL. Accelerated aging
in virally suppressed PWH may represent a legacy of acute in-
fection, or ongoing HIV replication in the central nervous sys-
tem even when suppressed in plasma.

Spatial patterns of white matter change were heterogeneous,
as indicated by differential contributions of ROIs to BAG esti-
mation. In general, greater weight was assigned to deep white
matter near the basal ganglia and limbic system, such as the

internal capsule and fornix. Cortical white matter including
the corona radiata and frontal-occipital fasciculus also influ-
enced BAG, suggesting that accelerated aging is distributed
(Figure 3). Notably, tract weights for FA and MD differed spa-
tially, possibly indicating spatial difference for different types of
HIV-related white matter pathology—for example, axonal de-
generation, gliosis, or demyelination. Further studies are need-
ed to verify such differences.
The fornix, the major output tract of the hippocampus, is a

marker of chronic HIV-related injury [16], and its atrophy pre-
dicts cognitive impairment in older adults [37]. Hippocampal
shrinkagemay confoundDTImeasures in this region; however,
Calon et al [16] found that fornix FA and MD were altered in
PWH with cardiovascular disease after controlling for hippo-
campal volume.

Table 2. Effects and Significance for Primary Hypothesis Testing

PWH Undetectable vs HIV-Negative
Controls PWH Detectable vs HIV-Negative Controls PWH Detectable vs PWH Undetectable

Effect P Value Effect P Value Effect P Value

+0.86 y BAG/decade .052 +1.5 y BAG/decade .018* +0.68 y BAG/decade .30

The hypothesis of accelerated aging in PWH with detectable VL was tested using an interaction model: BAG� age × group+ covariates, with 3 groups: HIV-negative controls, PWH with
undetectable VL, and PWH with detectable VL. Effects were quantified as the linear slope of BAG increase per decade. PWH with detectable VL were found to have a significantly faster
increase in BAG than controls (P= .018) while those with undetectable VL were not significantly different (P= .052). *P, .05.

Abbreviations: BAG, brain age gap; HIV, human immunodeficiency virus; PWH, persons with HIV; VL, viral load.

Figure 3. Region-of-interest weights in brain-age gap (BAG) estimation. A Relief regression algorithm was applied to identify diffusion tensor imaging (DTI) features that
most strongly predict the BAG. Twelve bilateral white matter regions of interest were included, and their relative weights were normalized to the most important feature
(fixed at 1.0). Fractional anisotropy (FA, A) and mean diffusivity (MD, B) were analyzed separately. Two of the top 4 features for FA and MD were shared in common: the
internal capsule and fornix.
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Differences between older PWH and controls were small com-
pared to total BAG variability among PWH, indicating that het-
erogenous brain aging may depend on other predictors of risk or
resilience. We therefore performed an exploratory analysis to
identify potentially important factors. Among PWH, pathologi-
cally elevated BAG (.6.4 years) was significantly associated with
elevated 10-year Framingham cardiovascular risk. By contrast,
pathological BAG was not associated with traditional risk factors
such as T lymphocytes.

Non-HIV comorbidities are a subject of increasing empha-
sis, because age and VL are insufficient to account for the full
phenotypic spectrum. Cardiovascular disease is a major cause
of morbidity and mortality in PWH, and is connected to neu-
ropathology through shared inflammatory pathways [38].
Vascular disease is especially salient to PWH, who are at in-
creased risk for stroke [39], diminished cerebrovascular reac-
tivity [40], and vascular cognitive impairment [41]. The
presence of preexisting cardiovascular disease [42], insulin re-
sistance [43], abnormal glucose metabolism [44], and abdomi-
nal obesity [45] have all been linked with neurocognitive
disorders or brain imaging abnormalities in PWH. Our finding
of an association between Framingham score and pathological
white matter BAG suggests that mitigation of cerebrovascular
risk may be crucial for resilient aging in PWH.

The measured relationship between white matter micro-
structure and cognition has varied. Some reports have indicat-
ed that DTI reflects global impairment [46, 47] or

domain-specific function [2], while others have found little as-
sociation [3]. Here, the relationship between white matter aging
and cognition was examined with respect to VL. Persons with
detectable HIV were shown to drive the negative relationship
between BAG and cognition, with the greatest impairment in
those with both detectable VL and increased BAG (Figure 4).
This may indicate that PWH with undetectable VL have

greater cognitive reserve, as neuropsychological performance
in this subgroup is less sensitive to microstructural damage.
Previous studies have found that cognitive reserve is dimin-
ished in older PWH with cognitive impairment [48], but may
be maintained with viral suppression [49].
These results should be considered in light of some limita-

tions. Substance abuse is a major contributor to poor neurolog-
ical health in PWH, but this study was not designed to assess its
role. cART neurotoxicity was also not considered, despite evi-
dence linking specific classes of ART to structural changes [50].
Additionally, neuropsychological domains beyond cognition
such as negative valence or social systems were not considered.
Finally, we sought to compare our findings with an external,
well-validated BAG model. However, to our knowledge there
are no publicly available DTI-based brain age models, while
T1-weighted MRI approaches are more developed. Moreover,
volumetric deep learning models rely on minimally processed
images, whereas DTI requires extensive preprocessing, and is
very sensitive to postacquisition procedures (denoising, tract
mapping, parcellation), which may limit generalizability.
In conclusion, both nonmodifiable and modifiable risk fac-

tors likely impact the development of age-like white matter
changes in PWHover the lifespan. These findings also highlight
the heterogeneity of neurocognitive outcomes in older PWH,
underscoring the need to better characterize biological sub-
types of neurological HIV infection.

Supplementary Data

Supplementary materials are available at The Journal of
Infectious Diseases online (http://jid.oxfordjournals.org/).
Supplementary materials consist of data provided by the author
that are published to benefit the reader. The posted materials
are not copyedited. The contents of all supplementary data
are the sole responsibility of the authors. Questions or messages
regarding errors should be addressed to the author.
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accessible at (github.com/vishnubashyam/DeepBrainNet). We

Figure 4. Cognition is correlated with brain age gap (BAG) in people with detect-
able HIV. Global cognitive function was assessed with a 15-instrument battery.
Raw scores were converted to z-scores with adjustment for age, sex, race, and ed-
ucation following normative procedures. An inverse relationship between global
cognitive z-score and BAG was observed for persons with HIV (PWH) who had de-
tectable viral load (VL; squares) but not PWH with undetectable VL (triangles), con-
stituting a significant interaction (P, .001). The effect remains significant with
removal of the high-leverage point at bottom right.
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