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SpaceCase: A Model of Spatial Preposition Use 
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Department of Computer Science, 1890 Maple Ave. 
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Abstract 

We present SpaceCase, a computational model of spatial 
preposition use that combines geometric and functional 
influences. SpaceCase treats spatial preposition use as 
governed by evidential rules, each representing influences of 
particular factors. Our model is unique in relying on both 
automatically constructed visual representations from 
sketched input, and drawing our functional representations 
from an independently derived large knowledge base, both of 
which reduce tailorability. SpaceCase can account for the 
results of Feist and Gentner (2003), whose experiments about 
in/on judgments in native English speakers showed the 
influence of four factors: (1) geometry of the ground, (2) 
animacy of the ground (3) animacy of the figure and (4) 
function of the ground. SpaceCase also captures Feist and 
Gentner’s (2001) result that memory for spatial relationships 
can be influenced by spatial language during encoding. 

Keywords: Spatial language, Bayesian models 
 

Introduction 
Our aptitude for communicating and reasoning about space 
is key to our abilities to navigate, give directions, and to 
reason analogically about other subjects (Gentner, Imai, & 
Boroditsky, 2002).  One way that we describe spatial scenes 
is through the use of prepositions like in and on. 
Traditionally, it was thought that the spatial preposition 
used to describe a scene depended solely on the geometric 
arrangement and properties of the objects in the scene. As 
described below, however, recent research indicates that 
non-geometric properties also play important roles. This 
raises a new difficulty for modeling the use of spatial 
prepositions: Representations of these other factors need to 
be created, ideally created independently from the spatial 
preposition model itself, to reduce tailorability. The same is 
true of course for the spatial representations used in stimuli 
given to models. Fortunately, progress in Artificial 
Intelligence has provided off-the-shelf knowledge bases and 
sketching systems with reasonable stand-ins for visual 
processing abilities. SpaceCase exploits both, by contrast 
with all previous models that we are aware of. 

We begin by reviewing some of the evidence about 
spatial prepositions, focusing on the Feist and Gentner 
(2001, 2003) experiments.  Next we describe SpaceCase, 
showing how it uses an independently-motivated sketch 
understanding system (sKEA, (Forbus & Usher, 2002) ) and 
draws its representations from a large knowledge base (over 
39,000 concepts, constrained by 1.2 million facts). We next 
show how SpaceCase can account for the Feist and Gentner 

(2003) labeling experiment, including a sensitivity analysis 
that indicates the model is working for the right reasons. We 
show how SpaceCase models Feist and Gentner’s (2001) 
retrieval results next. Finally, we discuss related and future 
work. 

Psychological Evidence 
The issue of how language and space interact has had a long 
history in cognitive science research. Early theories of 
spatial preposition use claimed that people assigned spatial 
prepositions based on the geometry of a visual scene. 
However, more recent work has shown that the use of 
spatial prepositions is influenced by a variety of functional 
factors in addition to the geometry of the situation. Factors 
such as context (Coventry, 1999; Herskovitz, 1986), 
functional relationships between the objects (Carlson-
Radvansky et al., 1999; Coventry et al., 1994; Vandeloise, 
1994), and control relationships (Feist & Gentner, 2003; 
Garrod et al., 1999) also influence how we use prepositions 
in everyday language (see Coventry & Garrod, 2004 for a 
review).  

We focus here on modeling the results of Feist and 
Gentner (2003), for concreteness. They examined the role of 
four factors in in/on determinations in visual scenes 
involving two objects, a figure (located object) and a ground 
(reference object): (1) the geometry of the ground, (2) the 
animacy of the ground, (3) the animacy of the figure, and 
(4) the functional role of the ground. They found that all of 
these factors were involved in determining whether subjects 
would describe the figure as on or in the ground. 
Specifically, high curvature is more likely to lead to in, and 
low curvature more likely to be associated with on. If the 
ground were animate (a hand, for instance), in was more 
likely to be used, whereas if the figure is animate, on was 
more likely to be used. Moreover, subjects were more likely 
to use in than on if they were told that the ground was a 
container (say, a bowl) than when they were told it was 
something else (e.g., a plate), even with the same curvature.  
Can language affect how spatial relations are processed? 
Feist and Gentner (2001) showed that giving subjects a 
sentence involving a spatial preposition while viewing a 
scene affects how that scene is stored in memory. That is, 
suppose a subject is shown Figure 1(right) below while 
being told “The puppet is on the table.”, as part of a larger 
set of stimuli. When later asked if they had seen Figure 
1(left), which was not shown to them earlier, subjects who 
had heard on during encoding were more likely to 
incorrectly report that they had seen it. This suggests that 
information from multiple modalities (visual and linguistic) 
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can be combined into a single representation, such that one 
influences the other.  
 

Figure 1: Sample stimuli from Feist and Gentner 
(2001)  

The SpaceCase Model 
SpaceCase has been developed to model phenomena such as 
those described above. We assume that the assignment of 
spatial prepositions rests on the knowledge and skills that 
people bring to bear in other spatial tasks. Spatial 
prepositions encode a combination of geometric and 
functional properties, making them both detectable in visual 
scenes and able to provide information about what 
possibilities are relevant in that scene, when detected. For 
instance, the distinction between on and in in English 
includes an aspect of location control, with more control 
when in is used than when on is used. We assume that there 
are multiple, situation-specific criteria that determine when 
it is appropriate to use one term over another. We view 
these criteria as evidential, in that they tend to suggest, 
rather than uniquely determine, answers. Thus we describe 
our model in terms of evidence rules, which, given a 
situation, provide levels of belief about how prepositions 
should be assigned. 

 
 

              
Figure 2: Sketched input for stimuli of Figure 1 
 
Before we present the specific rules that comprise 

SpaceCase’s assignment criteria, we first must describe how 
we compute the input properties that are needed, according 
to what is known about the stimulus. To reduce tailorability, 
we input stimuli into the model as hand-drawn sketches. We 
use the sketching Knowledge Entry Associate (sKEA), an 
open-domain sketch understanding system (Forbus & 
Usher, 2002) for this purpose.  A sketch in sKEA consists of 
a set of glyphs. Each glyph has ink and content. The ink 
consists of the actual strokes drawn.  The content is the 
entity that the glyph represents. For example, Figure 2 
illustrates how the stimulus of Figure 1 is presented to 
sKEA. 

sKEA provides a rich set of visual processing capabilities. 
We focus here on those used by the current version of 
SpaceCase. sKEA uses the ink to compute geometric 
properties of a glyph, such as the curvature of the object 

depicted. It also uses the ink to compute relationships 
between glyphs, including qualitative topological 
relationships (i.e., Cohn’s RCC8 (1996) vocabulary) such as 
touching. 

The content of a glyph is assigned to be an instance of one 
or more collections drawn from Cycorp’s Cyc knowledge 
base1. This is specified by the stimulus drawer when the 
glyph is specified. For example, when drawing a bowl, the 
user first lays down the ink and then labels the glyph as an 
instance of Bowl-Generic using tools in sKEA. This 
identification allows us to infer additional information about 
the figure and the ground in the sketch. For example, the 
bowl mentioned above is inferred to be a Container, via 
an inheritance relationship. This provides a model of the 
functional information that is needed in assigning spatial 
prepositions. We are not claiming that the KB contents are a 
psychologically accurate model of human knowledge in 
detail; all we are relying on are very high-level, coarse 
distinctions. What is crucial, however, is that the vast 
majority of the KB contents were independently developed 
by other researchers. Similarly, most of sKEA’s visual 
processing abilities predate this project – only curvature was 
added to support this project, and the same curvature 
computations will be used in our subsequent simulations. 

SpaceCase collects the following information from a 
given sketch: (1) the geometry of the ground (2) the 
animacy of the figure (3) the animacy of the ground and (4) 
the function of the ground. The geometry of the ground is 
computed from the properties of the ink in the sketch and 
the other three factors are collected via inference about the 
kinds of entities involved. Animacy of the ground and 
animacy of the figure are binary values. Geometry of the 
ground is represented as either high curvature, medium 
curvature, or low curvature. The function of the ground is 
qualitatively assigned to one of three categories: strongly 
functions as a container, weakly functions as a container, or 
functions as a surface. These distinctions are taken directly 
from the human-subjects data. After all of the information is 
gathered from a scene, it is fed as evidence into a Bayesian 
updating algorithm which assigns a probability that either of 
the prepositions accurately describes the scene. We use 
Everett’s (1999) evidential rule engine, which in turn uses 
Pearl’s (1986) hierarchical updating algorithm. Evidence 
contributes to the support for a preposition based on the 
likelihood of that evidence for that preposition. Likelihood 
is defined as: 
λn= P(e|H) / P(e|¬H)   
After all of the evidence is considered and the model 

converges, if the likelihood of any preposition exceeds a 
threshold, that preposition is proposed as the correct 
descriptor for the scene. At present, the only options the 
model has are: in-ContGeneric, on-Physical, and other-
preposition. The first two are formal predicates which are 
used in the knowledge base for covering a very large set of 
specialized cases, defined by a hierarchy of specialized 
                                                           
1 sKEA’s KB uses content drawn from the Cyc KB, plus our own 
material related to analogy and qualitative reasoning. 
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predicates. in-ContGeneric has thirteen specializations, 
including different levels of location control (e.g., open 
versus closed container). on-Physical has two 
specializations, corresponding to floating on a liquid and 
particles strewn over a surface. 

Currently SpaceCase has a total of ten evidential rules. 
Three of the rules are used to describe the support 
relationship between the ground and the figure. This is an 
example of using sKEA to provide perceptual information 
to the system, since the triggers for these rules depend on 
the visual relationships between the sketched figure and 
ground relationships. The three support relationship rule 
variables are: 

* Figure-completely-supported-by-ground 
* Figure-partially-supported-by-ground 
* Figure-not-supported-by-ground  

They trigger based on how many of the figures bottom edge 
points intersect with the grounds edge points. The first rule 
(complete support) increases the likelihood that the figure is 
either in or on the ground. The second and third rules (no 
support or only partial support) increases the probability that 
another preposition would be more appropriate to describe 
the scene. 

The other seven rules in our system collect the evidence 
necessary to make the in/on judgments as in the Feist and 
Gentner (2003) experiments. Therefore, they relate to the 
factors studied (animacy, ground function and ground 
geometry). The variables that represent these likelihoods 
are: 

* ground-high-curvature 
* ground-medium-curvature 
* figure-animate 
* ground-animate  
* ground-function-container-strong 
* ground-function-cointainer-weak 
* ground-function-slab 

Based on the results from the human subjects trials, the 
ground high and medium curvature rules increase the 
likelihood that the figure is in the ground. The ground 
animate rule and the ground function container rules also 
increase the likelihood of in. The figure animate and ground 
function slab rules increase the likelihood that the figure is 
on the ground. The curvature rules are triggered by the 
curvature that sKEA computes from the digital ink for the 
glyph that represents the ground. The other rules are all 
triggered by inferences made from the knowledge base, 
using the concept instance information asserted when the 
sketch is created in sKEA.  

When each rule is triggered, it creates an evidence 
element that contains the name of the preposition to update 
(in, on or other) as well as the amount by which to update 
its likelihood. The evidence values associated with each rule 
are parameters of the model. The values chosen were based 
on the pattern of results found in the human subjects 
experiments. For example, the function of the ground, for 
people, has a much stronger influence on the number of in 

responses than the curvature of the ground. Therefore the 
ground function strong rule increases the likelihood of an in 
response by a greater value than the ground high curvature 
rule. The values of the likelihood update variables in the 
current incarnation of SpaceCase are described in Table 1. 

As we will see below, SpaceCase is not terribly sensitive 
to the specific values of these parameters. As long as their 
ordinal relationships fit the pattern of results found earlier, 
SpaceCase’s answers will accurately model the data. 

 

Labeling Experiments 
In Feist & Gentner (2003), subjects were shown simple 
pictures of figures located on grounds. The different factors 
(geometry, animacy, and function) were varied in the 
different stimuli. Subjects were given sentences the 
<figure> is in/on the <ground> (where <figure> and 
<ground> were replaced with appropriate labels) and asked 
to indicate which preposition best fit the situation displayed.  

We sketched the different stimuli using sKEA and 
identified the items as instances of appropriate concepts 
from the Cyc knowledge base. The sketches were labeled to 
represent the same entities as in the human trials and 
represented the same combinations of factors as the human 
subjects saw, as described above.   

There were a total of 36 stimuli. There are two choices for 
figure {firefly, coin}, 6 choices for ground {bowl, dish, 
plate, slab, rock, hand}, and three different curvatures for 
each ground item {low, medium, high}. For all trials in the 
original experiment, it was assumed that the relationship 
ground-supports-figure held, and that this would be obvious 
to human subjects from the stimuli. In our sketched stimuli 
however, we determined the support relationship as outlined 
in the rules in the previous section. Figure 3 below shows an 
example of a stimulus from the original experiment on the 
left and our sketched stimulus for the same trial on the right. 
This set of stimuli represents the condition where the figure 
is a firefly, the ground is a dish, and the ground exhibits 
medium curvature.  

Variable Name Preposition Likelihood 
figure-complete-support in/on 5 
figure-partial-support other 10 
figure-no-support other 30 
ground-high-curvature in 3 
ground-medium-curvature in 2 
figure-animate on 3 
ground-animate in 5 
ground-function-container-
strong 

in 10 

ground-function-container-
weak 

in 5 

ground-function-slab on 10 
Table 1: Evidential parameters currently used in 

SpaceCase 
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Figure 3: Example stimuli from the original human 

subjects experiments (left) and the sketched stimuli used 
as input to our model (right) 

 
One difference between the original experiment and our 

model of it was that the original stimuli were 3-D renderings 
and our sketches are 2-D, due to limitations of sKEA.  We 
have not seen any issues arising from this difference.  

Results 
SpaceCase was consistent with human subjects on all 36 

experimental stimuli for the values of the parameters given 
above. Importantly, SpaceCase is not overly sensitive to the 
specific values chosen: As long as parameters reflect the 
relative strengths of the factors as found by Feist & Gentner 
(2003), the correct results are generated. We determined this 
via a series of sensitivity analyses, looking at how the 
results changed when parameters were varied. Because this 
is a large space, we have focused on two dimensional 
subspaces of these parameters at a time, with the other 
parameters keeping the values from Table 1. Below is an 
example plot. The lighter gray squares indicate parameter 
settings where SpaceCase’s answers are consistent with 
human subjects, and the darker squares indicate 
inappropriate results: 
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Figure 4: Sensitivity Analysis: figure-animate versus 

ground-container-strong 
 
 
Examining why failures occur can lead to interesting 

insights. For example, the firefly-hand stimulus proves to be 
particularly interesting, since both are animate. Subjects 
were more likely to say “the firefly is in the hand”, and for 
many parameter values, SpaceCase does as well. However, 
when the figure-animate parameter is set sufficiently higher 
than the ground-animate parameter, we get instead “the 
firefly is on the hand”. Feist & Gentner (2003) found a 

much larger positive effect on on usage for ground animacy 
than the negative effect on figure animacy. Thus when 
SpaceCase’s parameters violate constraints found by 
psychological experimentation, it fails, suggesting that it is 
failing for the right reasons.  

Retrieval Experiment 
Feist & Gentner (2001) describes a series of experiments 
where human subjects were shown pictures that were 
ambiguous with respect to whether or not the figure was on 
the ground, with or without sentences that described the 
scene involving spatial prepositions. For example, in Figure 
5(initial picture), it is ambiguous as to whether the block is 
actually on the building, but the experimental group might 
also be asked to rate the applicability of the sentence “The 
block is on the building.”, while being shown the picture. 
(Several variations were used to rule out alternate 
explanations, e.g., simply concentrating on the picture, and 
whether language without prepositions would have an 
effect.)  In the retrieval phase, subjects would then be shown 
both the original picture and two variations, a plus variant 
which unambiguously satisfies the spatial preposition, and a 
minus variant, which is even worse with regard to exhibiting 
that spatial preposition than the original picture. Subjects 
tended to believe that they had seen the plus variant when 
they also were exposed to the appropriate spatial preposition 
during encoding, thus illustrating that language can affect 
the encoding and memory of spatial relations in visual 
stimuli.  
 

 
 

Figure 5: Example of Feist & Gentner (2001) stimuli,  
 

To model these results, we recreated all of the stimuli 
(original pictures as well as plus and minus variants) using 
sKEA. Because SpaceCase currently only handles on/in 
distinctions where the figure is supported by the ground, we 
eliminated stimulus sets that involved other pairs of 
prepositions. For retrieval we used Forbus et al’s (1994) 
MAC/FAC similarity-based reminding model. MAC/FAC’s 
memory consisted of the sketched versions of what the 
subjects saw.  

For the first experiment, the input sketches were run 
against our model to determine the applicability of the 
preposition to the initial situation. This is similar to one 
experiment run against human subjects to show the 
applicability of the preposition to each variant of the initial 
stimuli. These results are summarized below 
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initial sketch 0.363 
plus variant 0.859 
minus variant 0.2428 

 
Table 2: Applicability of the spatial preposition on for 
each of the input stimuli as judged by SpaceCase, all 

results are averaged across all sets of stimuli. 
 
These results are consistent with the human-subject trials 

where the plus variant was given the highest applicability 
rating, the initial sketch an in-between rating, and the minus 
variant the lowest applicability rating. These results also 
pointed out some weaknesses in our current version of 
SpaceCase which will be addressed in the next iteration. For 
example, one of the stimulus sets involved a block on top of 
a building. For this particular stimulus the rule for the 
ground acting as a container fired since a building can be 
inferred to be a container in the KB. Clearly, a building can 
be a container, but in this particular case (the block on the 
roof of the building) the support relationship is not one of 
containment. SpaceCase needs to use visual properties as 
well as conceptual properties, to ensure that containment is 
actually occurring in a given picture. 

To provide a baseline of comparison for the next group of 
experiments, each case library was probed with the initial 
sketch to see which sketch would be retrieved. This is 
similar to the control condition in the retrieval experiment 
where human subjects were not given the spatial language 
sentence along with the picture. In all cases, the initial 
sketch was retrieved, as expected.  

 For the next experiment, the sketches were run again 
with the model, but we added the formal equivalent of 
spatial preposition indicated by the sentence into the 
representation of each sketch. Doing this led to retrieving 
the plus variant of the sketch rather than the initial sketch.  
This is consistent with the human-subjects results that 
subjects with the spatial language sentence were much more 
likely to false alarm to the plus variant. 

Related Work  
Many of the early spatial preposition models are based 

solely on geometric properties of scenes (Logan & Sadler, 
1996; Regier, 1996; Gapp, 1995). Others, such as, 
WordsEye (Coyne & Sprout, 2001) uses hand-coded 
databases of objects and representations that are crafted 
particularly for it. By contrast, our model uses a pre-
existing, independently developed representation system 
and a sketch understanding system developed for other 
purposes, and whose development continues to be 
constrained by multiple tasks.  

More recently, computational models have begun to 
address the role of functional information. Reiger, Carlson, 
and Corrigan (2005) are currently extending the Attentional 
Vector Sum (AVS) model (Regier & Carlson, 2001) of 
spatial prepositions to account for extra-geometric 
information. The initial AVS model created a vector-sum 
representation of the direction of the located object (figure) 

relative to the reference object (ground) weighted by the 
amount of attention paid to the point on the reference object. 
This model used only geometric properties to assign 
prepositions and was tested on afunctional geometric 
shapes. The new version of AVS was modified to focus 
attention on the functionally important parts of objects (and 
thus weight them more heavily). The results for this model 
are very promising, e.g. its’ ability to recreate the results of 
Carlson-Radvansky et al. (1999). We think it is an 
interesting and complementary approach as ground-
functionality is isolated in the functionally important parts 
of the object. 

Coventry, Cangelosi, Joyce, and Richards (2002; Joyce, 
Richards, Cangelosi, & Coventry, 2003) are currently 
developing a model for spatial language comprehension and 
production that is based on their functional geometric 
framework. Objects are encoded with “what + where” 
information and is fed into a predictive, time-delay 
connectionist model.  

Discussion  
We have presented SpaceCase, a computational model of 
human use of spatial prepositions. SpaceCase assigns in and 
on relationships in a manner consistent with Feist & 
Gentner’s (2003) results, and exhibits the influence of 
spatial language during encoding as found in Feist & 
Gentner (2001).  These results are made possible by sKEA, 
our open-domain sketching system which provides a high-
level model of visual processes and the input to our model. 
Both geometric and conceptual data from the sketched input 
are used as evidence in a probabilistic updating system to 
choose between prepositions.   

Our immediate goal is to expand our model to include 
more prepositions and a wider range of more complex 
inputs. In addition to being able to determine in/on for more 
complex input, we would like the model to be able to 
understand other prepositions such as over, under, above, 
near, next to, and around. We would also like to be able to 
correctly use spatial prepositions in more complex scenes. 
For example, a commonly used example is that if a stack of 
books is on a table, then it is also correct to say that the top 
book in the stack is “on” the table. However, if a jar with a 
lid is on the table, very few people would say that the lid is 
on the table.  

Expansion will necessarily involve the development of 
more rules for SpaceCase. Complex scenes may also require 
a more complete understanding of concepts like 
containment. Right now, SpaceCase only knows whether an 
item typically functions as a container. There is evidence 
that it is also important to determine how well a ground 
object is fulfilling its role (exerting location control over the 
figure). In particular, projective prepositions may require 
some naïve physics knowledge. One other difficulty we 
forsee is that the simple Baysian updating algorithm might 
not suffice for more complex scenes. If this turns out to be 
the case, we plan to experiment with multiple levels of 
competing agents.  
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SpaceCase might also provide a testbed for examining 
other areas of spatial language. Competing theories of 
spatial language can be tested by manipulating the rules of 
the system. For example, there is a debate on how exactly 
non-geometric features like functionality interact with 
geometric factors in scenes to determine the preposition 
used. For now we have focused on native English speakers, 
however, one area we are interested in is cross-linguistic 
spatial preposition use. One experiment would be to see if 
the same basic inputs to the model could be used to also 
model preposition use in another language by merely 
changing the available prepositions and the rules for how 
evidence is assigned.  
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